WO2010044415A1 - 燃料電池および電子機器 - Google Patents

燃料電池および電子機器 Download PDF

Info

Publication number
WO2010044415A1
WO2010044415A1 PCT/JP2009/067771 JP2009067771W WO2010044415A1 WO 2010044415 A1 WO2010044415 A1 WO 2010044415A1 JP 2009067771 W JP2009067771 W JP 2009067771W WO 2010044415 A1 WO2010044415 A1 WO 2010044415A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuel
electrode
fuel cell
anode
exterior member
Prior art date
Application number
PCT/JP2009/067771
Other languages
English (en)
French (fr)
Inventor
和明 福島
直 妹尾
守 細谷
重輔 志村
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN2009801401073A priority Critical patent/CN102177608A/zh
Priority to US13/122,842 priority patent/US20110195330A1/en
Publication of WO2010044415A1 publication Critical patent/WO2010044415A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1004Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell including an electrode structure having an electrolyte membrane between an anode electrode and a cathode electrode, and an electronic device using the same.
  • the fuel cell has a configuration in which an electrolyte is disposed between an anode electrode (fuel electrode) and a cathode electrode (oxygen electrode), and fuel is supplied to the anode electrode and oxidant is supplied to the cathode electrode. At this time, an oxidation-reduction reaction occurs in which the fuel is oxidized by the oxidant, and the chemical energy that the fuel has is converted into electrical energy.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a fuel cell capable of reliably shutting off the supply of fuel and / or air during abnormal heat generation and an electronic device including the same. There is.
  • a fuel cell includes an electrode structure (power generation unit) having an electrolyte membrane between an anode electrode and a cathode electrode, and at least one electrolyte membrane of the anode electrode and the cathode electrode of the electrode structure. And a meltable porous membrane on the opposite side.
  • an electrode structure power generation unit having an electrolyte membrane between an anode electrode and a cathode electrode, and at least one electrolyte membrane of the anode electrode and the cathode electrode of the electrode structure.
  • a meltable porous membrane on the opposite side.
  • An electronic device includes the fuel cell of the present invention.
  • the meltable porous membrane is provided on the opposite side to the electrolyte membrane of at least one of the anode electrode and the cathode electrode of the electrode structure.
  • the meltable porous film is melted and deformed, the voids (pores) disappear, and the oxygen (air) or fuel passage to the electrode structure is blocked. Thereby, the supply of fuel and / or air to the electrode structure side is interrupted.
  • the meltable porous membrane simply allows fuel and / or air to permeate.
  • the meltable porous membrane is provided on the opposite side of the electrode membrane to the electrolyte membrane of at least one of the anode electrode and the cathode electrode.
  • the supply of fuel and / or air can be reliably shut off. Therefore, further abnormal heat generation can be suppressed, the safety of the fuel cell can be improved, and the safety of an electronic device equipped with the same can be improved.
  • FIG. 10 is a diagram illustrating a configuration of Modification 1.
  • FIG. 10 is a diagram illustrating a configuration of Modification 2.
  • FIG. 10 is a diagram illustrating a configuration of Modification 3.
  • FIG. 10 is a diagram illustrating a configuration of Modification 4.
  • FIG. 10 is a diagram illustrating a configuration of Modification 5.
  • FIG. 10 is a diagram illustrating a configuration of Modification 6.
  • FIG. It is a figure showing the structure of an electronic device.
  • FIG. 1 shows the configuration of a fuel cell according to the first embodiment of the present invention.
  • the fuel cell 1 is used in a portable electronic device, a notebook PC, or the like, and includes, for example, an electrode structure 10 as a power generation unit.
  • the electrode structure 10 is, for example, a DMFC including an electrolyte membrane 12 between a cathode electrode (air electrode) 11 and an anode electrode (fuel electrode) 13.
  • a cathode side exterior member 15 is provided outside the cathode electrode 11, and an anode side exterior member 16 is provided outside the anode electrode 13.
  • the cathode electrode 11 is obtained by forming the catalyst layer 11B on the cathode current collector 11A, and the anode electrode 13 is also obtained by forming the catalyst layer 13B on the anode current collector 13A.
  • the cathode electrode 11 and the anode electrode 13 are provided with a catalyst layer containing platinum (Pt) or ruthenium (Ru) on the surface of, for example, carbon cloth, and a collector such as titanium (Ti) mesh on the back surface. It is a thing.
  • the electrolyte membrane 12 is made of, for example, a polyperfluoroalkylsulfonic acid resin (“Nafion (registered trademark)” manufactured by DuPont) or another resin membrane having proton conductivity.
  • the cathode electrode 11, the anode electrode 13, and the electrolyte membrane 12 are fixed by a gasket 14.
  • the cathode-side exterior member 15 has, for example, a thickness of 2.0 mm and is made of an anodized aluminum (Al) plate, titanium (Ti) plate, acid-resistant metal plate, or the like, but the material is not particularly limited. .
  • the cathode-side exterior member 15 is provided with a large number of oxygen supply holes 15A through which air, that is, oxygen passes, and air, that is, oxygen is supplied to the cathode electrode 11 through these oxygen supply holes 15A. ing.
  • the anode side exterior member 16 is made of a material having high thermal conductivity and excellent corrosion resistance, such as stainless steel, aluminum (Al), or titanium (Ti). Further, the anode side exterior member 16 is provided with a number of fuel supply holes 16A through which fuel passes, and the fuel is supplied to the anode electrode 13 through these fuel supply holes 16A.
  • a fuel supply member 17 is opposed to the outside of the anode side exterior member 16, and an internal space surrounded by the anode side exterior member 16 and the fuel supply member 17 is a vaporization chamber 18 for vaporizing the fuel. It has become. That is, the fuel cell 1 is of a vaporization type in which liquid fuel is vaporized in the vaporization chamber 18 and is supplied to the anode electrode 13 in a gaseous state.
  • the fuel supply member 17 is made of a material having high thermal conductivity and excellent corrosion resistance, such as stainless steel, aluminum (Al), or titanium (Ti), for example, like the anode side exterior member 16.
  • a tip of a fuel supply pipe (not shown) from an external fuel tank (not shown) is connected to the fuel supply member 17 in order to supply liquid fuel to the vaporization chamber 18.
  • a space between the anode side exterior member 16 and the fuel supply member 17 is sealed with a sealant (not shown) such as EPDM (ethylene propylene diene rubber), fluorine rubber, or silicone rubber, whereby the vaporization chamber 18 is hermetically sealed. Is retained.
  • the fuel supply member 17 does not need to be a single member, and may be a member in which a concave structure is formed by assembling a frame to a flat plate-like member.
  • the meltable porous membranes 21A and 21B are provided on the opposite side of the anode electrode 13 and the cathode electrode 11 of the electrode structure 10 from the electrolyte membrane 12.
  • the fusible porous membrane 21A is between the cathode electrode 11 and the cathode side exterior member 15 of the electrode structure 10
  • the fusible porous membrane 21B is between the anode electrode 13 and the anode side of the electrode structure 10. It is preferable that they are respectively provided between the exterior members 16.
  • the thickness of the meltable porous membranes 21A and 21B is preferably, for example, 5 ⁇ m or more and 1 mm or less. This is because if the thickness is less than 5 ⁇ m, the barrier property of fuel and air is deteriorated, and if it is thicker than 1 mm, not only the amount of fuel supplied is lowered but also the fuel cell becomes thick.
  • the meltable porous membranes 21A and 21B are preferably made of, for example, a resin that is not soluble in fuel (methanol). Specifically, resins having a relatively low melting point (melting point of 130 ° C. or lower) such as polyethylene, polyolefin, ethylene acrylic acid copolymer neutralization salt, ethylene / glycidyl methacrylate copolymer, copolymer nylon and copolymer polyester are used. preferable.
  • the melting point of the resin that is, the melting temperature of the meltable porous membranes 21A and 21B is preferably, for example, 60 ° C. or higher and 120 ° C. or lower. This is because the supply of fuel and / or air can be reliably shut off at a temperature close to 65 ° C., which is the boiling point of methanol, which is the fuel.
  • the meltable porous films 21A and 21B for example, a configuration in which a porous film and a low melting point polyolefin wax are combined is also preferable.
  • the meltable porous membranes 21A and 21B can be, for example, a blend of a polyolefin wax and a porous film. More preferably, for example, a porous film 22 as shown in FIG. 2A is laminated with a polyolefin wax 23, or a large number of pores 22A as shown in FIG. 2B. The thing which impregnated the polyolefin-type wax 23 to the porous film 22 to have is mentioned. These can be produced more easily than blends. The impregnation amount and lamination amount of the polyolefin wax 23 are adjusted by the volume of the gap 22 ⁇ / b> A of the porous film 22.
  • the porous film 22 is not necessarily made of a resin having a low melting point, and a porous film made of polyethylene, polypropylene, polyester, or a fluororesin can be used.
  • the polyolefin wax 23 include polyethylene wax.
  • the melting temperature of the meltable porous membranes 21A and 21B can be changed depending on the degree of polymerization of the polyolefin wax 23 to be added, and specifically, for example, preferably 60 ° C. or more and 120 ° C. or less. This is because the supply of fuel and / or air 24 can be reliably shut off at a temperature closer to 65 ° C., which is the boiling point of methanol, which is the fuel.
  • meltable porous membranes 21A and 21B are made of a resin that is not soluble in fuel, the selection of materials is limited. However, since the resin itself has a low melting point, the fuel and air during abnormal heat generation. Can be reliably shut off.
  • the meltable porous membranes 21A and 21B are a combination of a porous film and a polyolefin wax, the range of selection of materials is widened. Further, by selecting a polyolefin wax having a lower melting point, it becomes possible to shut off the fuel and the like at a lower temperature, for example, 70 ° C. or less and around 60 ° C., and higher safety can be obtained.
  • the fuel cell 1 can be manufactured, for example, as follows.
  • the meltable porous films 21A and 21B are formed using the above-described resin that is not soluble in fuel.
  • the porous film made of the above-described material is used.
  • the polyolefin wax 23 described above is applied (coated) to the film 22.
  • the polyolefin film 23 may be impregnated into the porous film 22 made of the above-described material.
  • the cathode electrode 11 and the anode electrode 13 are joined to the electrolyte membrane 12 by thermocompression bonding the electrolyte membrane 12 made of the above-described material between the cathode electrode 11 and the anode electrode 13, thereby forming the electrode structure 10.
  • the meltable porous films 21A and 21B are bonded to the outside of the cathode electrode 1 and the anode electrode 13 by thermal fusion or thermocompression bonding, respectively.
  • the cathode side exterior member 15 is disposed outside the meltable porous membrane 21A on the cathode electrode 11 side.
  • the fuel supply hole 16A and the outer member 16B are prepared, and the fuel supply hole 16A and the outer member 16B are combined and sealed with a sealant, thereby forming the anode side exterior member 16 having the vaporization chamber 16C therein.
  • This anode side exterior member 16 is joined to the meltable porous film 21B on the anode electrode 13 side by heat fusion or thermocompression bonding. Thereby, the fuel cell 1 shown in FIG. 1 is completed.
  • meltable porous membranes 21A and 21B are previously joined to the electrode structure 10, but are first joined to the cathode side exterior member 15 and the fuel supply hole 16A by thermal fusion or thermocompression bonding, respectively. After that, they may be joined to the electrode structure 10.
  • Anode electrode 13 CH 3 OH + H 2 O ⁇ CO 2 + 6H + + 6e ⁇
  • Cathode electrode 11 6H + + (3/2) O 2 + 6e ⁇ ⁇ 3H 2 O
  • the whole electrode structure 10 CH 3 OH + (3/2) O 2 ⁇ CO 2 + 2H 2 O
  • the electrical energy extracted from the fuel cell 1 is used as a power source for the electronic device (load) 100 as shown in FIG.
  • the electronic device 100 include mobile devices such as mobile phones and PDAs (Personal Digital Assistants), notebook PCs (Personal Computers), and the like.
  • the meltable porous membranes 21A and 21B are melted by heat. That is, when the meltable porous membranes 21A and 21B are made of a resin that is not soluble in fuel, when the temperature of the electrode structure 10 reaches the vicinity of the melting point of the resin, the resin melts and becomes empty. The hole is blocked. In the case of the structure in which the polyolefin wax 23 is laminated on the porous film 22 as shown in FIG.
  • the meltable porous membranes 21A and 21B are provided on the opposite side of the anode electrode 13 and the cathode electrode 11 of the electrode structure 10 from the electrolyte membrane 12, so that abnormal heat generation occurs. Sometimes the fuel and / or air 24 supply can be reliably shut off.
  • the meltable porous membrane 21A is disposed between the cathode electrode 11 and the cathode side exterior member 15 of the electrode structure 10, and the meltable porous membrane 21B is disposed between the anode electrode 13 and the anode side exterior member 16 of the electrode structure 10. Therefore, the meltable porous films 21A and 21B can be disposed inside the cathode side exterior member 15 and the anode side exterior member 16, that is, in contact with the electrode structure 10. Therefore, the meltable porous membranes 21A and 21B can directly sense the temperature of the electrode structure 10, and the fuel or the like can be shut off quickly.
  • the fusible porous membranes 21A and 21B are made of a resin that is not soluble in fuel, or the porous film 22 is impregnated or laminated with a polyolefin wax 23.
  • the resin can be melted and deformed in the event of abnormal heat generation, or the voids of the porous film 22 can be eliminated, and the supply of fuel or the like can be more reliably interrupted compared to conventional polymer swelling membranes. .
  • FIG. 3 shows the configuration of the fuel cell 2 according to the second embodiment of the present invention.
  • the first porous layer 21 A is disposed outside the cathode-side exterior member 15 and the meltable porous membrane 21 B is disposed outside the anode-side exterior member 16.
  • the configuration is the same as that of the embodiment.
  • the fusible porous membranes 21A and 21B are disposed at positions farther from the electrode structure 10 than in the first embodiment.
  • the constituent materials of the cathode-side exterior member 15 and the anode-side exterior member 16 are made of aluminum (Al) or the like having higher thermal conductivity so that the meltable porous films 21A and 21B can quickly sense the temperature of the electrode structure 10. It is preferable that
  • the fuel cell 2 can be manufactured as follows. First, the electrode structure 10 is formed by the same method as in the first embodiment. Next, the meltable porous membrane 21A is joined to the cathode side exterior member 15, and the cathode side exterior member 15 is joined to the cathode electrode 11 so that the meltable porous membrane 21A is on the outside. Subsequently, the meltable porous membrane 21 ⁇ / b> B is joined to the anode side exterior member 16, and the anode side exterior member 16 is disposed so that the meltable porous membrane 21 ⁇ / b> B faces the anode electrode 13. Furthermore, the vaporizing chamber 18 is formed by combining the anode side exterior member 16 and the fuel supply member 17 and sealing with a sealant.
  • meltable porous membranes 21A and 21B are thermally melted and the voids (pores) disappear. As a result, the supply of fuel and / or air is shut off, and abnormal heat generation is suppressed.
  • the meltable porous membranes 21A and 21B are disposed outside the cathode side exterior member 15 and the anode side exterior member 16 and are separated from the electrode structure 10, so that the temperature of the electrode structure 10 is reduced.
  • the detection sensitivity is inferior to that of the first embodiment, there are advantages in that the meltable porous membranes 21A and 21B can be exchanged after the ease of assembly and the shutdown function at the time of abnormal heat generation are exhibited.
  • the fuel cell 3 of FIG. 4 is obtained by removing the fusible porous membrane 21A of the first embodiment to obtain only the fusible porous membrane 21B.
  • the meltable porous film 21 ⁇ / b> B is provided between the anode electrode 13 of the electrode structure 10 and the anode side exterior member 17, so that the meltable porous film 21 ⁇ / b> B melts and deforms during abnormal heat generation. Then, the supply of methanol is cut off before the fuel methanol reaches the power generation unit.
  • the fuel cell 7 in FIG. 8 is a combination of the first embodiment and the second embodiment.
  • the meltable porous membrane 21A is disposed between the cathode electrode 11 and the cathode side exterior member 15 of the electrode structure 10, that is, adjacent to the cathode electrode 11, while the meltable porous membrane 21B is disposed on the anode side exterior member 16.
  • the meltable porous membranes 21A and 21B are both melted and deformed to cut off the supply of air and the supply of fuel.
  • Modification 6 The fuel cell 8 in FIG. 9 is also a combination of the first embodiment and the second embodiment.
  • the meltable porous membrane 21A is disposed outside the cathode side exterior member 15, while the meltable porous membrane 21B is disposed between the anode electrode 13 and the anode side exterior member 16 of the electrode structure 10. Yes, the same effect as in Modification 5 can be obtained.
  • meltable porous films 21A and 21B are provided in the vicinity of the electrode structure 10
  • the positions of the meltable porous films 21A and 21B are the anode electrode 13 and the cathode electrode 11.
  • a meltable porous membrane may be provided inside a fuel supply pipe (not shown) provided between a fuel tank (not shown) and the fuel supply member 17. In this case, when abnormal heat generation occurs, the fuel supply pipe is closed by the meltable porous membrane, and the fuel supply is stopped.
  • the configuration of the electrode structure 10, the meltable porous films 21 ⁇ / b> A and 21 ⁇ / b> B, the cathode side exterior member 15, and the anode side exterior member 16 has been specifically described. You may make it comprise with the material of.
  • the material and thickness of each component described in the above embodiment are not limited, and may be different.
  • the liquid fuel may be other liquid fuels such as ethanol, isopropyl alcohol, butanol, and dimethyl ether in addition to the methanol used in the above embodiment. In that case, it is necessary to select a material that is not soluble in the selected liquid fuel for the meltable porous membranes 21A and 21B.
  • the air supply to the cathode electrode 11 is natural ventilation, but it may be forcibly supplied using a pump or the like. In that case, oxygen or a gas containing oxygen may be supplied instead of air.
  • the present invention can also be applied to a case where the fuel is supplied as a liquid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)

Abstract

 異常な発熱時に、燃料および/または空気の供給を停止させ、更なる異常発熱を抑制することのできる燃料電池を提供する。電極構造体10(発電部)のカソード電極11とカソード側外装部材15との間に溶融性多孔質膜21A、アノード電極13とアノード側外装部材16との間に溶融性多孔質膜21Bをそれぞれ配設する。溶融性多孔質膜21A,21Bは、燃料(メタノール)への溶解性のない低融点樹脂により構成してもよいし、または多孔質フィルムと低融点のポリオレフィン系ワックスを組み合わせた構成としてもよい。燃料電池1の異常発熱時、溶融性多孔質膜21A,21Bが熱溶融し、空隙(ポア)が消失し、燃料および/または空気の供給を確実に遮断する。

Description

燃料電池および電子機器
 本発明は、アノード電極およびカソード電極の間に電解質膜を有する電極構造体を備えた燃料電池およびこれを用いた電子機器に関する。
 燃料電池は、アノード電極(燃料電極)とカソード電極(酸素電極)との間に電解質が配置された構成を有し、アノード電極には燃料、カソード電極には酸化剤がそれぞれ供給される。このとき、燃料が酸化剤によって酸化される酸化還元反応が起こり、燃料がもっていた化学エネルギーが電気エネルギーに変換される。
 このような燃料電池では、燃料供給系統の不良により燃料が過剰に供給されてクロスオーバーが発生した場合、または燃料が過剰に供給されたときにアノード電極およびカソード電極の間で短絡が生じたりした場合に、異常発熱が起こる可能性がある。燃料電池の異常発熱は、搭載された電子機器の故障の原因となる。
 従来では、例えば、燃料を気体の状態で供給する気化型の燃料電池において、親水性の高分子膨潤膜を燃料供給部の開口部に設けることで燃料濃度を調整することが提案されている(例えば、特許文献1参照。)。
特開2006-269126号公報
 しかしながら、特許文献1に記載された従来技術では、燃料電池内部の温度上昇(異常発熱)時に高分子膨潤膜がゲル化することで燃料の拡散速度を低下させて、燃料の過剰供給を防ぐ機能はあるが、燃料の供給を完全に停止することはできず、異常発熱を抑制する効果は十分とは言えなかった。
 本発明はかかる問題点に鑑みてなされたもので、その目的は、異常な発熱時に、燃料および/または空気の供給を確実に遮断することのできる燃料電池およびそれを備えた電子機器を提供することにある。
 本発明の一実施の形態による燃料電池は、アノード電極およびカソード電極の間に電解質膜を有する電極構造体(発電部)を備え、この電極構造体のアノード電極およびカソード電極の少なくとも一方の電解質膜とは反対側に溶融性多孔質膜を備えたものである。
 本発明の一実施の形態による電子機器は、上記本発明の燃料電池を備えたものである。
 本発明の一実施の形態による燃料電池では、電極構造体のアノード電極およびカソード電極の少なくとも一方の電解質膜とは反対側に溶融性多孔質膜が設けられているので、電極構造体(発電部)において異常発熱が発生すると、溶融性多孔質膜が溶融変形してその空隙(ポア)が消失し、電極構造体への酸素(空気)または燃料の通路が塞がれる。これにより、燃料および/または空気の電極構造体側への供給が遮断される。一方、通常の発電時には、溶融性多孔質膜は単純に燃料および/または空気を透過させる。
 本発明の一実施の形態による燃料電池によれば、電極構造体のアノード電極およびカソード電極の少なくとも一方の電解質膜とは反対側に溶融性多孔質膜を設けるようにしたので、異常発熱時において燃料および/または空気の供給を確実に遮断することができる。よって、更なる異常発熱を抑制し、燃料電池の安全性を向上させることができると共に、これを備えた電子機器の安全性が向上する。
本発明の第1の実施の形態に係る燃料電池の構成を表す図である。 溶融性多孔質膜の構成例および溶融時の状態を表す図である。 本発明の第2の実施の形態に係る燃料電池の構成を表す図である。 変形例1の構成を表す図である。 変形例2の構成を表す図である。 変形例3の構成を表す図である。 変形例4の構成を表す図である。 変形例5の構成を表す図である。 変形例6の構成を表す図である。 電子機器の構成を表す図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。
 (第1の実施の形態)
 図1は、本発明の第1の実施の形態に係る燃料電池の構成を表したものである。この燃料電池1は、後述するように携帯型電子機器またはノートPC等に用いられるものであり、例えば、発電部としての電極構造体10を備えている。電極構造体10は、例えば、カソード電極(空気電極)11およびアノード電極(燃料電極)13の間に電解質膜12を備えたDMFCである。カソード電極11の外側にはカソード側外装部材15、アノード電極13の外側にはアノード側外装部材16がそれぞれ設けられている。
 カソード電極11はカソード集電体11Aに触媒層11Bを形成したものであり、アノード電極13もまたアノード集電体13Aに触媒層13Bを形成したものである。これらカソード電極11およびアノード電極13は、例えばカーボンクロス等の表面に、白金(Pt)またはルテニウム(Ru)等を含む触媒層を形成し、裏面にチタン(Ti)メッシュ等の集電体を設けたものである。
 電解質膜12は、例えば、ポリパーフルオロアルキルスルホン酸系樹脂(デュポン社製「Nafion(登録商標)」)またはその他のプロトン伝導性を有する樹脂膜により構成されている。カソード電極11,アノード電極13および電解質膜12はガスケット14により固定されている。
 カソード側外装部材15は、例えば、厚みが2.0mmであり、アルマイト処理されたアルミニウム(Al)板,チタン(Ti)板または耐酸性金属板などにより構成されているが、材料は特に限定されない。なお、カソード側外装部材15には、空気すなわち酸素を通過させる多数の酸素供給孔15Aが設けられており、これら酸素供給孔15Aを介してカソード電極11に空気すなわち酸素が供給されるようになっている。
 アノード側外装部材16は、例えば、ステンレス鋼,アルミニウム(Al)あるいはチタン(Ti)など、熱伝導性が高く、耐腐食性に優れた材料により構成されている。また、アノード側外装部材16には、燃料を通過させる多数の燃料供給孔16Aが設けられており、これら燃料供給孔16Aを介して、燃料がアノード電極13に供給されるようになっている。
 アノード側外装部材16の外側には燃料供給部材17が対向配置されており、これらアノード側外装部材16と燃料供給部材17とにより囲まれた内部空間が、燃料を気化させるための気化室18となっている。すなわち、この燃料電池1は、液体燃料を気化室18で気化させ、気体の状態でアノード電極13に供給する気化型のものである。燃料供給部材17は、例えば、アノード側外装部材16と同様に、ステンレス鋼,アルミニウム(Al)あるいはチタン(Ti)など、熱伝導性が高く、耐腐食性に優れた材料により構成されている。また、燃料供給部材17には、気化室18に液体燃料を供給するため、外部の燃料タンク(図示せず)からの燃料供給管(図示せず)の先端が接続されている。アノード側外装部材16と燃料供給部材17との間はEPDM(エチレンプロピレンジエンゴム),フッ素系ゴムまたはシリコーンゴム等のシール剤(図示せず)より封止され、これにより気化室18の気密が保持されている。なお、燃料供給部材17は、一の部材である必要はなく、平板状の部材に枠を組み付けることにより凹構造を形成したものであってもよい。
 また、この燃料電池では、電極構造体10のアノード電極13およびカソード電極11の、電解質膜12とは反対側に、溶融性多孔質膜21A,21Bが設けられている。これにより、この燃料電池では、異常な発熱時に、燃料および/または空気の供給を確実に遮断することができるようになっている。
 具体的には、溶融性多孔質膜21Aは、電極構造体10のカソード電極11とカソード側外装部材15との間、溶融性多孔質膜21Bは、電極構造体10のアノード電極13とアノード側外装部材16との間にそれぞれ設けられていることが好ましい。溶融性多孔質膜21A,21Bをカソード側外装部材15およびアノード側外装部材16の内側、つまり電極構造体10に接して配設することにより、電極構造体10の温度を溶融性多孔質膜21A,21Bが直に感知することができるので、燃料等の遮断を迅速に行うことができるからである。
 溶融性多孔質膜21A,21Bの厚みは、例えば、5μm以上1mm以下であることが好ましい。5μmよりも薄いと燃料や空気の遮断性が悪くなり、1mmよりも厚いと燃料の供給量が低下するばかりでなく、燃料電池が厚くなってしまうからである。
 溶融性多孔質膜21A,21Bは、例えば、燃料(メタノール)への溶解性のない樹脂により構成されていることが好ましい。具体的には、ポリエチレン、ポリオレフィン、エチレンアクリル酸共重合中和塩、エチレン・グリシジルメタアクリレート共重合体、共重合ナイロンおよび共重合ポリエステルなど、比較的低融点(融点が130℃以下)の樹脂が好ましい。樹脂の融点、すなわち溶融性多孔質膜21A,21Bの溶融温度は、例えば60℃以上120℃以下であることが好ましい。燃料であるメタノールの沸点である65℃により近い温度で、燃料および/または空気の供給を確実に遮断することが可能となるからである。
 また、溶融性多孔質膜21A,21Bとしては、例えば多孔質フィルムと低融点のポリオレフィン系ワックスとを組合わせた構成も好ましい。具体的には、溶融性多孔質膜21A,21Bは、例えば、多孔質フィルムにポリオレフィン系ワックスをブレンドしたものとすることができる。より好ましくは、例えば図2(A)に示したような多孔質フィルム22にポリオレフィン系ワックス23を積層したもの、または、図2(B)に示したような、多数の空隙(ポア)22Aを有する多孔質フィルム22にポリオレフィン系ワックス23を含浸させたものが挙げられる。これらは、ブレンドしたものよりも簡単に製造することができる。ポリオレフィン系ワックス23の含浸量や積層する量は、多孔質フィルム22の空隙22Aの体積により調整される。
 この場合、多孔質フィルム22は必ずしも低融点の樹脂よりなるものでなくてもよく、ポリエチレン、ポリプロピレン、ポリエステルまたはフッ素樹脂からなる多孔質フィルムを用いることも可能である。ポリオレフィン系ワックス23としては、例えばポリエチレンワックスが挙げられる。溶融性多孔質膜21A,21Bの溶融温度は、添加するポリオレフィン系ワックス23の重合度により変化させることができ、具体的には、例えば60℃以上120℃以下であることが好ましい。燃料であるメタノールの沸点である65℃により近い温度で、燃料および/または空気24の供給を確実に遮断することが可能となるからである。
 ちなみに、溶融性多孔質膜21A,21Bを燃料への溶解性のない樹脂により作製した場合には、材料の選択が限られるが、樹脂自体が低融点であるため、異常発熱時において燃料および空気の供給を確実に遮断することができる。一方、溶融性多孔質膜21A,21Bを多孔質フィルムとポリオレフィン系ワックスとを組み合わせたものとする場合には、材料の選択の幅が広くなる。また、より低融点のポリオレフィン系ワックスを選択することにより、更に低温、例えば70℃以下、60℃付近において燃料等を遮断することが可能となり、より高い安全性が得られる。
 この燃料電池1は、例えば、次のようにして製造することができる。
 まず、上述した燃料への溶解性のない樹脂を用いて、溶融性多孔質膜21A,21Bを形成する。また、図2(A)に示したような多孔質フィルム22にポリオレフィン系ワックス23の粒子を積層した構造の溶融性多孔質膜21A,21Bを形成する場合には、上述した材料よりなる多孔質フィルム22に、上述したポリオレフィン系ワックス23を塗布(コーティング)する。あるいは、図2(B)に示したように、上述した材料よりなる多孔質フィルム22にポリオレフィン系ワックス23を含浸させるようにしてもよい。
 また、上述した材料よりなる電解質膜12をカソード電極11およびアノード電極13の間に挟んで熱圧着することにより、電解質膜12にカソード電極11およびアノード電極13を接合し、電極構造体10を形成する。次いで、これらカソード電極1およびアノード電極13の外側に、溶融性多孔質膜21A,21Bをそれぞれ熱融着あるいは熱圧着して接合させる。続いて、カソード電極11側の溶融性多孔質膜21Aの外側にカソード側外装部材15を配設する。そののち、燃料供給孔16Aおよび外側部材16Bを用意し、これら燃料供給孔16Aおよび外側部材16Bを組み合わせてシール剤で封止することにより、内部に気化室16Cを有するアノード側外装部材16を形成する。このアノード側外装部材16を、アノード電極13側の溶融性多孔質膜21Bに熱融着あるいは熱圧着により接合させる。これにより図1に示した燃料電池1が完成する。
 なお、ここでは溶融性多孔質膜21A,21Bを予め電極構造体10に接合させるようにしたが、それぞれ先にカソード側外装部材15および燃料供給孔16Aに熱融着あるいは熱圧着により接合させておき、その後、それらを電極構造体10に接合させるようにしてもよい。
 この燃料電池1では、アノード電極13に燃料(メタノール)が供給され、ここでの反応によりプロトンと電子とを生成する。プロトンは電解質膜12を通ってカソード電極11に移動し、電子および酸素と反応して水を生成する。アノード電極13、カソード電極11および電極構造体10全体で起こる反応は、化1で表される。これにより燃料であるメタノールの化学エネルギーが電気エネルギーに変換されて、電極構造体(発電部)10から電流が取り出される。
(化1)
 アノード電極13:CHOH+HO→CO+6H+6e
 カソード電極11:6H+(3/2)O+6e→3H
 電極構造体10全体:CHOH+(3/2)O→CO+2H
 この燃料電池1から取り出された電気エネルギーは、図10に示したように電子機器(負荷)100の電源として供される。電子機器100としては、携帯電話やPDA(Personal Digital Assistant;個人用携帯情報機器)などのモバイル機器、ノート型PC(Personal Computer)などが挙げられる。
 ここで、上記燃料電池1において、例えば燃料の過剰供給によるクロスオーバーや、電解質膜12の劣化などによる穴の形成などにより、電極構造体10において燃料や電気的な短絡が発生し、異常発熱が生じた場合には、溶融性多孔質膜21A,21Bが熱溶融する。すなわち、溶融性多孔質膜21A,21Bが、燃料への溶解性のない樹脂により構成されている場合は、電極構造体10の温度が樹脂の融点の近辺に達すると、樹脂が溶融して空孔が閉塞される。また、図2(A)に示したような多孔質フィルム22にポリオレフィン系ワックス23を積層した構造の場合は、電極構造体10の温度がポリオレフィン系ワックス23の融点の近辺に達すると、図2(C)に示したように、ポリオレフィン系ワックス23が溶融して多孔質フィルム22の空隙22Aが埋まる。また、図2(B)に示したような多孔質フィルム22にポリオレフィン系ワックス23を含浸させたものの場合、電極構造体10の温度がポリオレフィン系ワックス23の融点の近辺に達すると、同じく図2(C)に示したように、ポリオレフィン系ワックス23が溶融して多孔質フィルム22の空隙22Aが埋まる。これにより、いずれの場合も、燃料および/または空気24が溶融性多孔質膜21A,21Bまたは多孔質フィルム22を通過することが不可能となり、燃料および/または空気の供給が確実に遮断される。よって、更なる異常発熱が抑えられ、燃料電池1、延いては電子機器100の安全性が向上する。
 このように本実施の形態では、電極構造体10のアノード電極13およびカソード電極11の、電解質膜12とは反対側に、溶融性多孔質膜21A,21Bを設けるようにしたので、異常な発熱時に、燃料および/または空気24の供給を確実に遮断することができる。
 特に、溶融性多孔質膜21Aを、電極構造体10のカソード電極11とカソード側外装部材15との間、溶融性多孔質膜21Bを、電極構造体10のアノード電極13とアノード側外装部材16との間にそれぞれ設けるようにしたので、溶融性多孔質膜21A,21Bをカソード側外装部材15およびアノード側外装部材16の内側、つまり電極構造体10に接して配設することができる。よって、電極構造体10の温度を溶融性多孔質膜21A,21Bが直に感知することができ、燃料等の遮断を迅速に行うことができる
 また、特に、溶融性多孔質膜21A,21Bを、燃料への溶解性のない樹脂により構成し、または、多孔質フィルム22にポリオレフィン系ワックス23を含浸または積層したものとするようにしたので、異常発熱時に樹脂を溶融変形させ、または、多孔質フィルム22の空隙を消失させることができ、従来のような高分子膨潤膜に比較して、燃料等の供給をより確実に遮断することができる。
 以下、本発明の他の実施の形態および変形例について説明するが、上記第1の実施の形態と同一構成要素については同一符号を付してその説明は省略する。
(第2の実施の形態)
 図3は、本発明の第2の実施の形態に係る燃料電池2の構成を表したものである。この燃料電池2では、溶融性多孔質膜21Aをカソード側外装部材15の外側、溶融性多孔質膜21Bをアノード側外装部材16の外側にそれぞれ配設したことを除いては、上記第1の実施の形態と同様の構成を有している。本実施の形態では、溶融性多孔質膜21A,21Bが、第1の実施の形態に比べて電極構造体10から離れた位置に配設されている。そのため、溶融性多孔質膜21A,21Bが電極構造体10の温度を素早く感知するように、カソード側外装部材15およびアノード側外装部材16の構成材料をより熱伝導性の高いアルミニウム(Al)などとすることが好ましい。
 この燃料電池2は以下のようにして製造することができる。まず、第1の実施の形態と同様の方法で電極構造体10を形成する。次いで、カソード側外装部材15に溶融性多孔質膜21Aを接合し、このカソード側外装部材15をカソード電極11に対して溶融性多孔質膜21Aが外側になるように接合させる。続いて、アノード側外装部材16に溶融性多孔質膜21Bを接合し、このアノード側外装部材16をアノード電極13に対して溶融性多孔質膜21Bが外側になるように配置する。更に、アノード側外装部材16と燃料供給部材17とを組み合わせてシール剤で封止することにより、気化室18を形成する。
 この燃料電池2においても、第1の実施の形態と同様に、電極構造体10に異常発熱の生じると、溶融性多孔質膜21A,21Bが熱溶融し、その空隙(ポア)が消失することによって、燃料および/または空気の供給が遮断され、異常発熱が抑制される。本実施の形態では、溶融性多孔質膜21A,21Bがカソード側外装部材15およびアノード側外装部材16の外側に配設され、電極構造体10から離れているので、電極構造体10の温度の検知感度は第1の実施の形態のそれに劣るものの、組み立てのしやすさ、異常発熱時のシャットダウン機能を発揮した後の溶融性多孔質膜21A,21Bの交換が可能であるという長所がある。
 (変形例1)
 図4の燃料電池3は、第1の実施の形態の溶融性多孔質膜21Aを取り除いて、溶融性多孔質膜21Bのみとしたものである。この燃料電池3では、電極構造体10のアノード電極13とアノード側外装部材17との間に溶融性多孔質膜21Bが設けられているので、異常発熱時において溶融性多孔質膜21Bが溶融変形し、燃料であるメタノールが発電部に到達する前に供給を遮断する。
 (変形例2)
 図5の燃料電池4は、第1の実施の形態の溶融性多孔質膜21Bを取り除いて、溶融性多孔質膜21Aのみとしたものである。この燃料電池4では、異常発熱時において燃料がアノード電極13まで到達してしまうが、電極構造体10のカソード電極11とカソード側外装部材15との間に溶融性多孔質膜21Aが設けられているので、この溶融性多孔質膜21Aが溶融変形し、空気の供給を停止する。そのため反応が停止し、更なる発熱が抑制される。
(変形例3)
 図6の燃料電池5は、第2の実施の形態の溶融性多孔質膜21Aを取り除いて、溶融性多孔質膜21Bのみとしたもので、変形例1と同様の効果が得られる。
 (変形例4)
 図7の燃料電池6は、第2の実施の形態の溶融性多孔質膜21Bを取り除いて溶融性多孔質膜21Aのみとしたもので、変形例2と同様の効果が得られると共に、溶融性多孔質膜21Aの交換も可能となる。
 (変形例5)
 図8の燃料電池7は、第1の実施の形態と第2の実施の形態とを組み合わせたものである。溶融性多孔質膜21Aを電極構造体10のカソード電極11とカソード側外装部材15との間、すなわちカソード電極11に隣接して配設する一方、溶融性多孔質膜21Bをアノード側外装部材16の外側に配設したものであり、異常発熱時には溶融性多孔質膜21A, 21Bがともに溶融変形し、空気の供給と燃料の供給とを遮断する。
 (変形例6)
 図9の燃料電池8も、第1の実施の形態と第2の実施の形態とを組み合わせたものである。溶融性多孔質膜21Aをカソード側外装部材15の外側に配設する一方、溶融性多孔質膜21Bを電極構造体10のアノード電極13とアノード側外装部材16との間に配設したものであり、変形例5と同様の効果が得られる。
 以上、実施の形態を挙げて本発明を説明したが、本発明は、上記実施の形態に限定されるものではなく、種々変形可能である。例えば、上記実施の形態では、溶融性多孔質膜21A,21Bを電極構造体10の近辺に設ける場合について説明したが、溶融性多孔質膜21A,21Bの位置は、アノード電極13およびカソード電極11の少なくとも一方の電解質膜12とは反対側であり、異常発熱時に電極構造体10への酸素(空気)または燃料の通路を塞ぐことができれば、特に限定されない。例えば、溶融性多孔質膜を、燃料タンク(図示せず)と燃料供給部材17との間に設けられた燃料供給管(図示せず)の内部に設けるようにしてもよい。この場合、異常発熱が生じると、溶融性多孔質膜により燃料供給管が閉塞され、燃料の供給が停止する。
 また、例えば、上記実施の形態では、電極構造体10,溶融性多孔質膜21A,21B,カソード側外装部材15およびアノード側外装部材16の構成について具体的に説明したが、他の構造あるいは他の材料により構成するようにしてもよい。
 更に、上記実施の形態において説明した各構成要素の材料および厚みなどは限定されるものではなく、異なるものとしてもよい。加えてまた、例えば、液体燃料は、上記実施の形態において用いたメタノールのほか、エタノールやイソプロピルアルコール、ブタノール、ジメチルエーテルなどの他の液体燃料でもよい。その場合には、溶融性多孔質膜21A,21Bは選択した液体燃料に溶解性のない材料を選択する必要がある。
 加えて、上記実施の形態では、カソード電極11への空気の供給を自然換気とするようにしたが、ポンプなどを利用して強制的に供給するようにしてもよい。その場合、空気に代えて酸素または酸素を含むガスを供給するようにしてもよい。
 更にまた、上記実施の形態では、燃料を気体の状態で供給する場合について説明したが、本発明は、燃料を液体として供給する場合にも適用可能である。

 

Claims (7)

  1.  アノード電極およびカソード電極の間に電解質膜を有する電極構造体と、
     前記電極構造体の前記アノード電極およびカソード電極の少なくとも一方の前記電解質膜とは反対側に配設された溶融性多孔質膜と
     を備えた燃料電池。
  2.  前記電極構造体の前記カソード電極側には、酸素供給孔を有するカソード側外装部材が配設される一方、前記アノード電極側には燃料供給孔を有するアノード側外装部材が配設されており、
     前記溶融性多孔質膜は、
     前記電極構造体と前記アノード側外装部材との間、前記電極構造体と前記カソード側外装部材との間、前記アノード側外装部材の外側、および前記カソード側外装部材の外側のうちの少なくともいずれか1カ所に配設されている
     請求項1記載の燃料電池。
  3.  前記アノード側外装部材に対向配置された燃料供給部材と、
     前記アノード側外装部材および前記燃料供給部材で囲まれた気化室と
     を備えた請求項2記載の燃料電池。
  4.  前記溶融性多孔質膜は、燃料への溶解性のない樹脂により構成されている
     請求項1記載の燃料電池。
  5.  前記溶融性多孔質膜は、多孔質フィルムにポリオレフィン系ワックスを含浸または積層したものにより構成されている
     請求項1記載の燃料電池。
  6.  前記溶融性多孔質膜の溶融温度は、60℃以上120℃以下である
     請求項4または5記載の燃料電池。
  7.  燃料電池を備え、前記燃料電池が、
     アノード電極およびカソード電極の間に電解質膜を有する電極構造体と、
     前記電極構造体の前記アノード電極およびカソード電極の少なくとも一方の前記電解質膜とは反対側に配設された溶融性多孔質膜と
     を備えた電子機器。
PCT/JP2009/067771 2008-10-17 2009-10-14 燃料電池および電子機器 WO2010044415A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN2009801401073A CN102177608A (zh) 2008-10-17 2009-10-14 燃料电池和电子设备
US13/122,842 US20110195330A1 (en) 2008-10-17 2009-10-14 Fuel cell and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-268839 2008-10-17
JP2008268839A JP2010097867A (ja) 2008-10-17 2008-10-17 燃料電池および電子機器

Publications (1)

Publication Number Publication Date
WO2010044415A1 true WO2010044415A1 (ja) 2010-04-22

Family

ID=42106578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/067771 WO2010044415A1 (ja) 2008-10-17 2009-10-14 燃料電池および電子機器

Country Status (4)

Country Link
US (1) US20110195330A1 (ja)
JP (1) JP2010097867A (ja)
CN (1) CN102177608A (ja)
WO (1) WO2010044415A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013089404A (ja) * 2011-10-17 2013-05-13 Shiseido Co Ltd パッシブ型燃料電池及び液体燃料供給部材
JP2015111494A (ja) * 2012-03-29 2015-06-18 三洋電機株式会社 燃料貯蔵体
CN102842730B (zh) * 2012-09-27 2015-01-07 山西金能世纪科技有限公司 全钒液流电池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296348A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 燃料電池用容器および燃料電池
JP2008084609A (ja) * 2006-09-26 2008-04-10 Toshiba Corp 燃料電池
JP2008192461A (ja) * 2007-02-05 2008-08-21 Sony Corp 燃料電池およびこれを備えた電子機器
JP2009081111A (ja) * 2007-09-27 2009-04-16 Sony Corp 燃料電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0603500B1 (en) * 1992-12-21 1998-09-09 Mitsubishi Chemical Corporation Porous film or sheet, battery separator and lithium battery
US20040146772A1 (en) * 2002-10-21 2004-07-29 Kyocera Corporation Fuel cell casing, fuel cell and electronic apparatus
US20050100794A1 (en) * 2003-11-06 2005-05-12 Tiax, Llc Separator for electrochemical devices and methods
JP4853701B2 (ja) * 2005-10-27 2012-01-11 富士通株式会社 燃料電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004296348A (ja) * 2003-03-27 2004-10-21 Kyocera Corp 燃料電池用容器および燃料電池
JP2008084609A (ja) * 2006-09-26 2008-04-10 Toshiba Corp 燃料電池
JP2008192461A (ja) * 2007-02-05 2008-08-21 Sony Corp 燃料電池およびこれを備えた電子機器
JP2009081111A (ja) * 2007-09-27 2009-04-16 Sony Corp 燃料電池

Also Published As

Publication number Publication date
CN102177608A (zh) 2011-09-07
US20110195330A1 (en) 2011-08-11
JP2010097867A (ja) 2010-04-30

Similar Documents

Publication Publication Date Title
US9142853B2 (en) Fuel cell stack and electronic device provided with the same
US20060269828A1 (en) Fuel cell
TWI332726B (ja)
US20100233572A1 (en) Fuel cell
JP4566995B2 (ja) 膜電極アッセンブリを備える装置及びこの装置を準備する方法
WO2010044415A1 (ja) 燃料電池および電子機器
US8148025B2 (en) Solid polymer fuel cell
US11424467B2 (en) Method for manufacturing membrane electrode assembly, and stack
US20060046126A1 (en) Fuel cell and information terminal carrying the same
JP2009158407A (ja) 燃料電池
JP2009283150A (ja) 燃料電池
JP2008293735A (ja) 燃料電池および燃料電池システム
JP5071378B2 (ja) 燃料電池
WO2010013425A1 (ja) 燃料電池
JP2008016258A (ja) 燃料電池
JP5112233B2 (ja) 燃料電池
JP2007200826A (ja) 電気化学反応器
JP2011008959A (ja) 燃料電池
JP2009266681A (ja) 燃料電池
JPWO2008102424A1 (ja) 燃料電池
JP2007311102A (ja) 燃料電池
JP2009087713A (ja) 燃料電池システムおよび電子機器
JP2011113912A (ja) 燃料電池
JP2009134928A (ja) 燃料電池
JP2009026654A (ja) 燃料電池のシール構造および燃料電池

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980140107.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09820593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13122842

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09820593

Country of ref document: EP

Kind code of ref document: A1