WO2010038666A1 - 連系システムの制御方法 - Google Patents

連系システムの制御方法 Download PDF

Info

Publication number
WO2010038666A1
WO2010038666A1 PCT/JP2009/066613 JP2009066613W WO2010038666A1 WO 2010038666 A1 WO2010038666 A1 WO 2010038666A1 JP 2009066613 W JP2009066613 W JP 2009066613W WO 2010038666 A1 WO2010038666 A1 WO 2010038666A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
interconnection system
sodium
sulfur battery
Prior art date
Application number
PCT/JP2009/066613
Other languages
English (en)
French (fr)
Inventor
幸治 小川
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to EP09817699.3A priority Critical patent/EP2330711B1/en
Priority to CN200980134631XA priority patent/CN102144345B/zh
Priority to JP2010531825A priority patent/JP5543355B2/ja
Publication of WO2010038666A1 publication Critical patent/WO2010038666A1/ja
Priority to US13/036,257 priority patent/US8384242B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/381Dispersed generators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • H02J3/466Scheduling the operation of the generators, e.g. connecting or disconnecting generators to meet a given demand
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/28The renewable source being wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a control method for an interconnection system that supplies power to an electric power system by combining a power generation device such as a wind power generation device and a power storage compensation device having a sodium-sulfur battery.
  • Natural energy power generation equipment is a clean power generation equipment that uses natural and inexhaustible energy sources without using limited resources such as oil, and can suppress carbon dioxide emissions. Therefore, the number of companies and local governments to be introduced is increasing.
  • the natural energy power generation apparatus since the energy brought from the natural world changes every moment, the natural energy power generation apparatus has an obstacle to the spread that the fluctuation of the output power is unavoidable. Therefore, in order to remove this obstacle, when adopting a natural energy power generation device, an interconnection (power generation) combining the natural energy power generation device and a power storage compensation device having a plurality of secondary batteries as main components. It is preferable to construct a system.
  • the sodium-sulfur battery in particular, has a high energy density, high output in a short time, and excellent high-speed response, so it is equipped with a bidirectional converter that controls charging and discharging. By doing so, it is suitable for applications that compensate for fluctuations in the output of the natural energy power generation apparatus that can occur in the order of several hundred milliseconds to several seconds.
  • an interconnection system in which a natural energy power generation device is combined with a power storage compensation device including a plurality of sodium-sulfur batteries as a constituent device is a desirable power generation system.
  • the power storage and compensation device Since the generated energy fluctuates in the natural energy power generation device, the power storage and compensation device frequently repeats the input or output of power. That is, it means that the sodium-sulfur battery constituting the power storage and compensation device continuously charges and discharges. As a result, the battery discharge capacity of the sodium-sulfur battery can no longer be managed accurately, and suddenly the charge ends and the charge cannot continue, or the discharge ends suddenly and the discharge cannot continue. The problem of stopping while compensating for output fluctuations became apparent. Thus, various control methods for sodium-sulfur batteries constituting the power storage compensation device have been disclosed (see, for example, Japanese Patent Application Laid-Open No. 2003-317808).
  • the sodium-sulfur battery that constitutes the power storage compensator of the interconnection system is intended to function to suppress or completely flatten the generation plan specified by the fluctuation of natural energy generation, human or computer etc. It is.
  • a power generation plan is made based on the prediction of the generated power of natural energy and the remaining battery level, and power is supplied from the interconnection system to the power system according to the power generation plan. Then, when power generation by natural energy cannot be expected for a long time (for example, if there is wind, there is no wind), the power generation plan value is set to 0 kW in the normal power generation plan (that is, power is not supplied to the power system). Even in this case, power for the on-site load in the interconnection system is necessary, and the sodium-sulfur battery will discharge the power for the on-site load, and the remaining battery capacity will decrease. .
  • the power generation plan value is set to 0 kW as shown in FIG. (That is, the power P T measured by the wattmeter 48 (the thick solid line in FIG. 4) is set to 0 kW), and the power P A + power P C (the broken line in FIG. 4) exceeds 0 kW.
  • the sodium-sulfur battery 3 is charged.
  • the power P A + power P C is in the case of less than 0kW are sodium - sulfur battery 3 will be discharged to compensate for the power shortage, the battery remaining amount decreases.
  • setting the power generation plan value on the power receiving direction side to which power is supplied from the power system 1 can reduce the amount of discharged power and the remaining battery level. In this case, charging is performed from the electric power system 1. In other words, the interconnection system 8 that should supply power to the power system 1 is supplied with power from the power system 1, which is not preferable.
  • the power P A + power P C has exceeded the power generation planned value are sodium - sulfur battery is charged becomes a Rukoto, although the power P a + power P C is greater than the power generation planned value is less than 0 kW, it will be charged from the power system 1.
  • the power P A + power P C is less than the power generation planned value are sodium - sulfur battery 3 will be discharged, the battery remaining amount decreases.
  • the present invention has been made in view of such problems of the prior art, and its object is to reduce the remaining capacity of a sodium-sulfur battery when power generation by natural energy cannot be expected for a long time.
  • An object of the present invention is to provide a control method of a connection system that can be suppressed.
  • the present inventors have stopped the operation of the sodium-sulfur battery when power generation cannot be expected for a long period of time, or set the power generation plan of the interconnection system to the generated power of the power generator. And the total load power in the interconnection system, it was found that the above-mentioned problem can be achieved, and the present invention has been completed. That is, according to the present invention, there is provided a method for controlling the interconnection system shown below.
  • an interconnection system that supplies power to an electric power system by combining a power generation device whose output fluctuates and a power storage compensation device, when the power generation plan value is 0 kW or less, the generated power of the power generation device and the interconnection system Operation of the sodium-sulfur battery that constitutes the power storage compensator and compensates for fluctuations in the output of the power generator when the sum of the power and the internal load power is in the receiving direction in which power is supplied from the power system Or a control method for an interconnected system in a non-transmission mode in which the power generation plan value in the power generation plan of the interconnected system is the sum of the generated power of the power generator and the on-site load power in the interconnected system .
  • the power generation planned value is The control method of the interconnection system according to [1], in which the power is 0 kW.
  • the operation of the sodium-sulfur battery is stopped, or the power generation plan of the interconnection system is the sum of the generated power of the power generator and the on-site load power in the interconnection system.
  • the system configuration diagram shown in FIG. 1 represents an example of an interconnection system having a power generation device whose output fluctuates and a power storage compensation device.
  • the interconnection system 8 illustrated in FIG. 1 includes a natural energy power generation device 7 (wind power generation device or solar power generation device), a power storage compensation device 5, and a local load 11.
  • the power storage compensation device 5 includes a sodium-sulfur battery 3 which is a secondary battery capable of storing and inputting / outputting power, a bidirectional converter 4 having a DC / AC conversion function, and a transformer 9. .
  • the bidirectional converter 4 can be composed of, for example, a chopper and an inverter, or an inverter.
  • the interconnection system 8 includes a natural energy power generation device 7 and a sodium-sulfur battery 3 (power storage compensation device 5).
  • the sodium-sulfur battery 3 included in one power storage compensator 5 is handled as one sodium-sulfur battery 3 as a whole.
  • the interconnection system 8 includes a heater of the sodium-sulfur battery 3 and other auxiliary equipment (computer, lighting, etc.) as the local load 11.
  • the interconnection system 8 makes a power generation plan from the prediction of the generated power of natural energy and the remaining battery level, and supplies power from the interconnection system 8 to the power system 1 according to the power generation plan.
  • the power PT of the wattmeter 48 is controlled to be the power generation plan value set by the power generation plan.
  • the sodium-sulfur battery 3 is charged / discharged in the power storage compensation device 5, and the power P B of the power storage compensation device 5 is generated by the natural energy power generation device 7 (
  • the output fluctuation of the power P A ) measured by the power meter 41 and the power consumed by the premises load 11 (power P C measured by the power meter 43) is compensated. Therefore, the power P T to be the power meter 48 thus measured, and the value of the power P A measured by the power meter 41 is input to the power storage compensation device 5, sodium - charging and discharging sulfur battery 3 is controlled It is the composition which becomes.
  • the on-site load 11 includes a heater for the sodium-sulfur battery 3, a control power source, and the like.
  • the power storage compensator 5 inputs electric power for compensating the output based on the output (electric power P A ) from the natural energy generator 7.
  • the sodium-sulfur battery 3 is charged or discharged by changing the control amount (control target value) of the bidirectional converter 4 so as to be output, and the output fluctuation of the natural energy power generation device 7 is absorbed.
  • the interconnection system 8 is a preferred power generation system because it can supply stable and high-quality power using the natural energy power generation device 7 and the sodium-sulfur battery 3 (power storage compensation device 5) that hardly emit carbon dioxide. It can be said.
  • the region R1 is a region where the sodium-sulfur battery 3 is discharged (P B > 0), and the region R2 is a region where the sodium-sulfur battery 3 is charged (P B ⁇ 0).
  • the sodium-sulfur battery 3 is charged and discharged so that the power PT measured by the wattmeter 48 becomes the power generation planned value.
  • (including 0 kW) power generation planned value is 0 kW or less
  • the premises load power of the generated power P A and the communication system in the system of the power plant P C sodium sum to compensate when a power receiving direction supplied (P a + P C ⁇ 0kW ) power from the power system, the variation in the output of the constructed power generator power storage compensation device 5 and - sulfur battery 3 Stop operation.
  • the non-power transmission mode is particularly preferable when power generation using natural energy cannot be expected for a long time.
  • Such non-transmission mode by controlling the interconnection system 8, the power P T measured by a power meter 48 P A + P C, and the sodium - sulfur battery 3, it is not possible to discharge the battery remaining The amount will not decrease.
  • the power generation planned value are the 0kW greater than a predetermined value, in the region R1, since the above the power P A + P C, sodium - in areas where sulfur battery 3 is discharged Yes (before going into non-power transmission mode).
  • the power generation planned value is controlled so that P A + P C, i.e. since the power P T is controlled so that P a + P C (a thick solid and dashed lines coincide), sodium - sulfur battery 3 is not charged and discharged.
  • the power generation plan value is set to 0 kW. To do. That is, when the P A + P C has exceeded 0 kW, by the power generation planned value and 0 kW (sodium - if the driver of the sulfur battery 3 has been stopped, to resume operation), region R2 Thus, the sodium-sulfur battery 3 is charged.
  • FIG. 3 is a system configuration diagram showing another example of a connected system having a power generation device whose output varies and a power storage compensation device.
  • the interconnection system 8 shown in FIG. 3 includes a natural energy power generation device 7, a power storage compensation device 5, and a local load 11.
  • the power generation planned value becomes the power receiving direction the sum of the premises load power P C of the generated power P A and the communication system in the system of the generator when: 0kW is powered from the power system, ie , if P a + P C is less than 0 kW, the sodium to compensate for variations in the output of the constructed power generator power storage compensation device 5 - stopping the operation of the sulfur battery 3.
  • the control method of the interconnection system of the present invention when the power generation by natural energy cannot be expected for a long time, the operation of the sodium-sulfur battery is stopped when the power generation plan value is 0 kW or less, or
  • the power generation plan value in the power generation plan of the interconnected system is set to a non-transmission mode in which the generated power of the power generation apparatus and the on-site load power in the interconnected system are summed.
  • the power control method for a secondary battery supplies power to a power system by combining a power generation device that uses natural energy such as wind power, solar light, and geothermal energy, and a power storage compensation device.
  • the power storage compensation device can be used as a control method for the interconnection system including a plurality of sodium-sulfur batteries.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

 出力が変動する発電装置と電力貯蔵補償装置とを組み合わせて電力系統へ電力を供給する連系システムにおいて、発電計画値が0kW以下の場合に発電装置の発電電力と連系システム内の構内負荷電力との合計が電力系統から電力を供給される受電方向となった場合に、電力貯蔵補償装置を構成し発電装置の出力の変動を補償するナトリウム-硫黄電池の運転を停止させ、または、当該連系システムの発電計画における発電計画値を発電装置の発電電力と連系システム内の構内負荷電力との合計とする非送電モードとする。

Description

連系システムの制御方法
 本発明は、風力発電装置等の出力が変動する発電装置と、ナトリウム-硫黄電池を有する電力貯蔵補償装置と、を組み合わせて電力系統へ電力を供給する連系システムの制御方法に関する。
 近年、風力、太陽光、地熱等から電力を作り出す自然エネルギー発電装置が注目を集め、実用化されている。自然エネルギー発電装置は、石油等の限りある資源を使用せず、自然に無尽蔵に存在するエネルギー源を用いるクリーンな発電装置であり、二酸化炭素の排出を抑制し得るので、地球温暖化防止の観点から、導入する企業、自治体等は増加しつつある。
 但し、自然界からもたらされるエネルギーは刻一刻と変動することから、自然エネルギー発電装置には、出力する電力の変動が避けられない、という普及に向けての障害がある。従って、この障害を取り除くため、自然エネルギー発電装置を採用する場合には、その自然エネルギー発電装置と、複数の二次電池を主構成機器とする電力貯蔵補償装置と、を組み合わせた連系(発電)システムを構築することが好ましい。
 二次電池のうち、とりわけナトリウム-硫黄電池は、エネルギー密度が高く、短時間で高出力が可能であり、且つ、高速応答性に優れることから、充電及び放電を制御する双方向変換器を併設することによって、数百m秒~数秒オーダーで起き得る自然エネルギー発電装置の出力の変動を補償する用途に好適である。換言すれば、自然エネルギー発電装置に、複数のナトリウム-硫黄電池を構成機器とする電力貯蔵補償装置を組み合わせた連系システムは、望ましい発電システムであるといえる。
 自然エネルギー発電装置は、発電電力が変動するため、電力貯蔵及び補償装置においては電力の入力又は出力が頻繁に繰り返される。つまり、電力貯蔵及び補償装置を構成するナトリウム-硫黄電池が、連続的に充放電を繰り返すことを意味する。その結果、ナトリウム-硫黄電池の電池放電容量を精度よく管理出来なくなってしまい、突然、充電末になり充電が継続出来なくなったり、突然、放電末になり放電が継続出来なくなり、自然エネルギー発電装置の出力変動を補償している最中に停止してしまう、という問題が顕在化していた。そこで、電力貯蔵補償装置を構成するナトリウム-硫黄電池の様々な制御方法が開示されている(例えば、特開2003-317808号公報参照)。
 連系システムの電力貯蔵補償装置を構成するナトリウム-硫黄電池は、自然エネルギー発電の動揺、人的または計算機などによって指定された発電計画を抑制または完全にフラットにするために、機能するためのものである。連系システムでは、自然エネルギーの発電電力予測と電池残量から発電計画を立案し、発電計画に従って連系システムから電力系統へ電力を供給する。そして、自然エネルギーによる発電が長期間期待できない(例えば風力ならば、風が無い)場合、通常発電計画において発電計画値を0kWにするが(すなわち、電力系統に電力を供給しないことを意味する)、この場合であっても連系システム内の構内負荷分の電力が必要であり、ナトリウム-硫黄電池は構内負荷分の電力を放電することになり、電池残量が減少していくことになる。
 例えば図1に示すような、風力発電装置7(自然エネルギー発電装置)と、電力貯蔵補償装置5と、構内負荷11を有する連系システム8において、図4に示すように、発電計画値を0kWとすると(すなわち、電力計48によって測定される電力P(図4の太い実線)が0kWとなるように設定する)、電力P+電力P(図4の破線)が0kWを上回った場合には、ナトリウム-硫黄電池3が充電される。一方、電力P+電力Pが0kW未満の場合には、ナトリウム-硫黄電池3が不足分の電力を補償するため放電することになり、電池残量が減少する。
 そこで、このように発電が期待できない場合には、図5に示すように、発電計画値を電力系統1から電力を供給される受電方向側に設定すると、放電電力量を低減でき、電池残量の低下を抑制することができるが、この場合、電力系統1から充電することになる。つまり、電力系統1へ電力を供給すべき連系システム8が、電力系統1から電力の供給を受けることとなり、好ましくない。
 このように、発電計画値を受電方向とすると(すなわち、電力Pをマイナスに設定する)、電力P+電力Pが発電計画値を上回った場合には、ナトリウム-硫黄電池が充電されることになるが、電力P+電力Pが発電計画値を上回っているが0kW未満である場合、電力系統1から充電することになる。一方、電力P+電力Pが発電計画値未満の場合には、ナトリウム-硫黄電池3は、放電することになり、電池残量が減少する。
 或いは、図6に示すように、自然エネルギー発電電力と構内負荷電力を監視して、発電計画を変化させて電力系統からの充電をさせないようにすることもできるが、人的負担となる。
 本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その目的とするところは、自然エネルギーによる発電が長期間期待できない場合にナトリウム-硫黄電池の残存容量の低下を抑制できる連系システムの制御方法を提供することにある。
 本発明者らは上記目的を達成すべく鋭意検討した結果、発電が長期間期待できない場合に、ナトリウム-硫黄電池の運転を停止させ、または、当該連系システムの発電計画を発電装置の発電電力と連系システム内の構内負荷電力との合計とすることによって、上記課題を達成することが可能であることを見出し、本発明を完成するに至った。即ち、本発明によれば、以下に示される連系システムの制御方法が提供される。
 [1] 出力が変動する発電装置と電力貯蔵補償装置とを組み合わせて電力系統へ電力を供給する連系システムにおいて、発電計画値が0kW以下の場合に前記発電装置の発電電力と前記連系システム内の構内負荷電力との合計が前記電力系統から電力を供給される受電方向となったとき、前記電力貯蔵補償装置を構成し前記発電装置の出力の変動を補償する前記ナトリウム-硫黄電池の運転を停止させ、または、当該連系システムの発電計画における発電計画値を前記発電装置の発電電力と前記連系システム内の構内負荷電力との合計とする非送電モードとする連系システムの制御方法。
 [2] 前記非送電モード時に、前記発電装置の発電電力と前記連系システム内の構内負荷電力との合計が前記電力系統へ電力を供給する送電方向となった場合に、前記発電計画値を0kWとする前記[1]に記載の連系システムの制御方法。
 本発明の連系システムの制御方法は、ナトリウム-硫黄電池の運転を停止させ、または、当該連系システムの発電計画を発電装置の発電電力と連系システム内の構内負荷電力との合計とする非送電モードとすることにより、自然エネルギーによる発電が長期間期待できない場合に残存容量の低下を抑制でき、自然エネルギー発電電力を有効に利用できる。
出力が変動する発電装置と電力貯蔵補償装置とを有する連系システムの一例を表すシステム構成図である。 本発明の連系システムの制御方法の一例を模式的に示すグラフである。 出力が変動する発電装置と電力貯蔵補償装置とを有する連系システムの他の一例を表すシステム構成図である。 比較例の連系システムの制御方法の一例を模式的に示すグラフである。 他の比較例の連系システムの制御方法の一例を模式的に示すグラフである。 さらに他の比較例の連系システムの制御方法の一例を模式的に示すグラフである。
 以下、本発明の実施の最良の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜、設計の変更、改良等が加えられることが理解されるべきである。
 先ず、連系システムについて説明する。図1に示されるシステム構成図は、出力が変動する発電装置と電力貯蔵補償装置とを有する連系システムの一例を表している。図1に示される連系システム8は、自然エネルギー発電装置7(風力発電装置や太陽光発電装置)と、電力貯蔵補償装置5と、構内負荷11を有する。そして、電力貯蔵補償装置5は、電力を貯蔵し入出力することが可能な二次電池であるナトリウム-硫黄電池3、直流/交流変換機能を有する双方向変換器4、及び変圧器9を備える。双方向変換器4は、例えばチョッパとインバータ、あるいはインバータから構成することが出来る。
 連系システム8には、自然エネルギー発電装置7及びナトリウム-硫黄電池3(電力貯蔵補償装置5)が備わっている。1基の電力貯蔵補償装置5に含まれるナトリウム-硫黄電池3は、全体として1基のナトリウム-硫黄電池3として取り扱う。又、一般に、連系システム8では、構内負荷11としてナトリウム-硫黄電池3のヒータやその他の補機(コンピュータ、照明等)が存在する。
 図1に示すように、連系システム8は、自然エネルギー発電装置7の電力Pを測定する電力計41を有する。また、構内負荷の電力Pを測定する電力計43と、電力P+P+P(=P)を測定する電力計48を有する(なお、Pは、電力貯蔵補償装置5の電力)。連系システム8から電力系統1への電力方向を+として考える。
 連系システム8は、自然エネルギーの発電電力予測と電池残量から発電計画を立案し、発電計画に従って連系システム8から電力系統1へ電力を供給する。すなわち、電力計48の電力Pが、発電計画によって設定された発電計画値となるように制御される。
 このため、連系システム8においては、電力貯蔵補償装置5においてナトリウム-硫黄電池3の充電・放電を行い、電力貯蔵補償装置5の電力Pが、自然エネルギー発電装置7により発電された電力(電力計41で測定される電力P)及び構内負荷11により消費される電力(電力計43で測定される電力P)の出力変動を補償する。このため、電力計48よって測定される電力P、及び電力計41によって測定される電力Pの値は、電力貯蔵補償装置5に入力され、ナトリウム-硫黄電池3の充電・放電が制御される構成となっている。そして、具体的には、連系システム8全体として出力する電力(電力計48で測定される電力P)が、P=P+P+P=発電計画値を満たすように、ナトリウム-硫黄電池3の充放電(即ち電力P)を制御することによって、連系システム8全体として出力する電力P(総電力Pともいう)を安定した品質のよい電力にして電力系統1に供給する。尚、構内負荷11には、ナトリウム-硫黄電池3のヒータ、制御用電源等が含まれる。
 連系システム8では、自然エネルギー発電装置7により発電された電力Pの出力変動に合わせて、電力貯蔵補償装置5においてナトリウム-硫黄電池3の充電を行う。具体的には、電力Pが、P=P-(P+P)となるように、ナトリウム-硫黄電池3の充放電(即ち電力P)を制御することによって、変動する電力Pを補償して、連系システム8全体として出力する電力Pを発電計画値にすることが可能となる。
 ナトリウム-硫黄電池3を放電する場合、充電する場合の何れの場合も、電力貯蔵補償装置5において、自然エネルギー発電装置7からの出力(電力P)に基づき、その出力を補償する電力を入力又は出力させるように、双方向変換器4の制御量(制御目標値)を変更することによってナトリウム-硫黄電池3を充電又は放電させて、自然エネルギー発電装置7の出力変動を吸収する。二酸化炭素を殆ど排出しない自然エネルギー発電装置7及びナトリウム-硫黄電池3(電力貯蔵補償装置5)を用いて、安定した品質のよい電力を供給出来ることから、連系システム8は好ましい発電システムであるといえる。
 次に、図2を参照して、図1に示される連系システム8において、系統との取引電力を発電計画値(設定値)にした場合における、ナトリウム-硫黄電池3の電力制御方法について説明する。図2の横軸は、時間、縦軸は、電力を示す。また、電力Pは太い実線、P+Pは破線である。図2は右上の拡大図に示すように、発電計画値=0kWおよびP+P<0となったときに非送電モードに変更した場合を示す。領域R1は、ナトリウム-硫黄電池3が放電している領域(P>0)、領域R2は、ナトリウム-硫黄電池3が充電している領域(P<0)である。
 連系システム8では、電力計48で測定される電力Pが発電計画値となるようにナトリウム-硫黄電池3が充電・放電される。本発明の連系システムの制御方法においては、図2に示すように、発電計画値が0kW以下(0kWを含む)となり、発電装置の発電電力Pと連系システム内の構内負荷電力Pとの合計が電力系統から電力を供給される受電方向(P+P<0kW)となった場合に、電力貯蔵補償装置5を構成し発電装置の出力の変動を補償するナトリウム-硫黄電池3の運転を停止させる。または、当該連系システムの発電計画値を発電装置の発電電力Pと連系システム内の構内負荷電力Pとの合計(P+P)とする。非送電モードとするのは、特に自然エネルギーによる発電が長期間期待できない場合が好ましい。このように非送電モードとして、連系システム8を制御することにより、電力計48で測定される電力PはP+Pとなり、ナトリウム-硫黄電池3が、放電することがなくなり、電池残量が減少しなくなる。
 図2においては、当初、発電計画値が、0kWより大きい所定の値とされており、領域R1では、電力P+Pを上回っているため、ナトリウム-硫黄電池3が放電している領域である(非送電モードとする前)。一方、自然エネルギーによる発電が長期間期待できない場合に、発電計画値が0kW以下のときに連系システム8を非送電モードとすると、発電計画値がP+Pとなるように制御され、つまり、電力PがP+Pとなるように制御されるため(太い実線と破線が一致)、ナトリウム-硫黄電池3は充放電しない。また、非送電モード時に、発電装置の発電電力と連系システム内の構内負荷電力との合計が一時的に電力系統へ電力を供給する送電方向となった場合には、発電計画値を0kWとする。つまり、P+Pが0kWを超えた場合には、発電計画値を0kWとすることにより(ナトリウム-硫黄電池3の運転が停止されていた場合には、運転を再開する)、領域R2のように、ナトリウム-硫黄電池3が充電されることになる。
 図3に、出力が変動する発電装置と電力貯蔵補償装置とを有する連系システムの他の一例を表すシステム構成図を示す。図3に示される連系システム8も、図1の場合と同様に、自然エネルギー発電装置7と、電力貯蔵補償装置5と、構内負荷11を有する。
 図3に示すように、連系システム8は、電力P+P(=PAC)を測定する電力計46を有する(Pは、自然エネルギー発電装置7の電力、Pは、構内負荷11の電力)。また、電力P+P+P(=P)を測定する電力計48を有する(Pは、電力貯蔵補償装置5の電力)。
 本実施形態においても、図1及び図2を用いて説明した前述の実施形態のように、電力計48の電力Pが、発電計画によって設定された発電計画値となるように、つまり、P=P+P+P=発電計画値を満たすように、ナトリウム-硫黄電池3の放電(即ち電力P)を制御する。そして、発電計画値が0kW以下のときに発電装置の発電電力Pと連系システム内の構内負荷電力Pとの合計が電力系統から電力を供給される受電方向となった場合に、つまり、P+Pが0kW未満となった場合に、電力貯蔵補償装置5を構成し発電装置の出力の変動を補償するナトリウム-硫黄電池3の運転を停止させる。または、当該連系システムの発電計画の発電計画値を発電装置の発電電力Pと連系システム内の構内負荷電力Pとの合計とする(非送電モード)。
 以上のように、本発明の連系システムの制御方法では、自然エネルギーによる発電が長期間期待できない場合に、発電計画値が0kW以下のときにナトリウム-硫黄電池の運転を停止させ、または、当該連系システムの発電計画における発電計画値を発電装置の発電電力と連系システム内の構内負荷電力との合計とする非送電モードとする。非送電モードとすることにより、ナトリウム-硫黄電池の残存容量の低下を抑制できる。
 本発明に係る二次電池の電力制御方法は、風力、太陽光、地熱等の自然エネルギーを用いた、出力が変動する発電装置と、電力貯蔵補償装置と、を組み合わせて電力系統へ電力を供給する連系システムにおいて、上記電力貯蔵補償装置を構成する複数のナトリウム-硫黄電池を備える連系システムの制御方法として利用することができる。
1:電力系統、3:ナトリウム-硫黄電池、4:双方向変換器、5:電力貯蔵補償装置、7:風力発電装置、8:連系システム、9:変圧器、11:構内負荷、41,43,46、48:電力計。

Claims (2)

  1.  出力が変動する発電装置と電力貯蔵補償装置とを組み合わせて電力系統へ電力を供給する連系システムにおいて、
     発電計画値が0kW以下の場合に前記発電装置の発電電力と前記連系システム内の構内負荷電力との合計が前記電力系統から電力を供給される受電方向となったとき、
     前記電力貯蔵補償装置を構成し前記発電装置の出力の変動を補償する前記ナトリウム-硫黄電池の運転を停止させ、または、当該連系システムの発電計画における発電計画値を前記発電装置の発電電力と前記連系システム内の構内負荷電力との合計とする非送電モードとする連系システムの制御方法。
  2.  前記非送電モード時に、前記発電装置の発電電力と前記連系システム内の構内負荷電力との合計が、一時的に前記電力系統へ電力を供給する送電方向となった場合に、前記発電計画値を0kWとする請求項1に記載の連系システムの制御方法。
PCT/JP2009/066613 2008-09-30 2009-09-25 連系システムの制御方法 WO2010038666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09817699.3A EP2330711B1 (en) 2008-09-30 2009-09-25 Method for controlling interconnection system
CN200980134631XA CN102144345B (zh) 2008-09-30 2009-09-25 互联系统的控制方法
JP2010531825A JP5543355B2 (ja) 2008-09-30 2009-09-25 連系システムの制御方法
US13/036,257 US8384242B2 (en) 2008-09-30 2011-02-28 Method for controlling interconnection system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10116908P 2008-09-30 2008-09-30
US61/101,169 2008-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/036,257 Continuation US8384242B2 (en) 2008-09-30 2011-02-28 Method for controlling interconnection system

Publications (1)

Publication Number Publication Date
WO2010038666A1 true WO2010038666A1 (ja) 2010-04-08

Family

ID=42073430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066613 WO2010038666A1 (ja) 2008-09-30 2009-09-25 連系システムの制御方法

Country Status (5)

Country Link
US (1) US8384242B2 (ja)
EP (1) EP2330711B1 (ja)
JP (1) JP5543355B2 (ja)
CN (1) CN102144345B (ja)
WO (1) WO2010038666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138546A (ja) * 2013-01-18 2014-07-28 Mitsubishi Heavy Ind Ltd 分散型電源の出力平準化システム及びその方法並びに分散型電源システム
WO2018070037A1 (ja) * 2016-10-14 2018-04-19 東芝三菱電機産業システム株式会社 電力変換システム、電力供給システムおよび電力変換装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648614B2 (ja) * 2016-04-05 2020-02-14 オムロン株式会社 蓄電装置
CN106640523B (zh) * 2016-10-20 2018-10-16 湖南大学 一种垂直轴风力发电系统的蓄电池充放电控制策略

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298872A (ja) * 2000-04-13 2001-10-26 Sumitomo Electric Ind Ltd 電力貯蔵システム
JP2003317808A (ja) 2002-04-22 2003-11-07 Ngk Insulators Ltd ナトリウム−硫黄電池の充放電制御方法、並びに電力貯蔵及び補償装置
JP2005130572A (ja) * 2003-10-22 2005-05-19 Osaka Gas Co Ltd 分散型発電システム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10201129A (ja) * 1996-12-27 1998-07-31 Japan Storage Battery Co Ltd 太陽光エネルギ−活用発電設備
DE19948196A1 (de) * 1999-10-06 2001-05-17 Aloys Wobben Verfahren zum Betrieb eines Windparks
JP2001327083A (ja) * 2000-05-18 2001-11-22 Ngk Insulators Ltd 高温二次電池による電力貯蔵及び補償システム
US20070100506A1 (en) * 2005-10-31 2007-05-03 Ralph Teichmann System and method for controlling power flow of electric power generation system
JP5073258B2 (ja) * 2006-09-27 2012-11-14 日本碍子株式会社 ナトリウム−硫黄電池の制御方法
JP4796974B2 (ja) * 2007-01-26 2011-10-19 株式会社日立産機システム 風力発電装置と蓄電装置のハイブリッドシステム,風力発電システム,電力制御装置
JP5096018B2 (ja) * 2007-02-23 2012-12-12 日本碍子株式会社 ナトリウム−硫黄電池の制御システム
JP4949902B2 (ja) * 2007-03-16 2012-06-13 日本碍子株式会社 二次電池の電力制御方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001298872A (ja) * 2000-04-13 2001-10-26 Sumitomo Electric Ind Ltd 電力貯蔵システム
JP2003317808A (ja) 2002-04-22 2003-11-07 Ngk Insulators Ltd ナトリウム−硫黄電池の充放電制御方法、並びに電力貯蔵及び補償装置
JP2005130572A (ja) * 2003-10-22 2005-05-19 Osaka Gas Co Ltd 分散型発電システム

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014138546A (ja) * 2013-01-18 2014-07-28 Mitsubishi Heavy Ind Ltd 分散型電源の出力平準化システム及びその方法並びに分散型電源システム
WO2018070037A1 (ja) * 2016-10-14 2018-04-19 東芝三菱電機産業システム株式会社 電力変換システム、電力供給システムおよび電力変換装置
JPWO2018070037A1 (ja) * 2016-10-14 2019-07-11 東芝三菱電機産業システム株式会社 電力変換システム、電力供給システムおよび電力変換装置
US10886744B2 (en) * 2016-10-14 2021-01-05 Toshiba Mitsubishi-Electric Industrial Systems Corporation Power conversion system, power supply system and power conversion device

Also Published As

Publication number Publication date
US20110198930A1 (en) 2011-08-18
US8384242B2 (en) 2013-02-26
EP2330711A1 (en) 2011-06-08
JP5543355B2 (ja) 2014-07-09
CN102144345A (zh) 2011-08-03
EP2330711A4 (en) 2017-06-21
CN102144345B (zh) 2013-10-16
EP2330711B1 (en) 2020-10-21
JPWO2010038666A1 (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5599714B2 (ja) 二次電池の電力制御方法
JP5073258B2 (ja) ナトリウム−硫黄電池の制御方法
CN102427249A (zh) 一种用于控制分布式微网并网运行的方法及系统
JP5514729B2 (ja) ナトリウム−硫黄電池の制御方法
JP2010051074A (ja) ナトリウム−硫黄電池のヒータ電力供給方法
JP5529029B2 (ja) ナトリウム−硫黄電池の制御方法
JP5453288B2 (ja) ナトリウム−硫黄電池の制御方法
JP5543355B2 (ja) 連系システムの制御方法
US8598839B2 (en) Method for controlling sodium-sulfur battery
JP5529028B2 (ja) ナトリウム−硫黄電池の制御方法
JP5324376B2 (ja) ナトリウム−硫黄電池用ヒータのヒータ制御方法
KR20190139182A (ko) 풍력발전 시스템의 최대 소비 전력 저감 장치 및 방법, 그리고 이를 이용하는 풍력발전 시스템

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134631.X

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817699

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009817699

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010531825

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE