WO2010038427A1 - 再生信号評価方法、情報記録媒体、再生装置、記録装置 - Google Patents

再生信号評価方法、情報記録媒体、再生装置、記録装置 Download PDF

Info

Publication number
WO2010038427A1
WO2010038427A1 PCT/JP2009/004991 JP2009004991W WO2010038427A1 WO 2010038427 A1 WO2010038427 A1 WO 2010038427A1 JP 2009004991 W JP2009004991 W JP 2009004991W WO 2010038427 A1 WO2010038427 A1 WO 2010038427A1
Authority
WO
WIPO (PCT)
Prior art keywords
mark
space
shortest
adjacent
pattern
Prior art date
Application number
PCT/JP2009/004991
Other languages
English (en)
French (fr)
Inventor
伊藤清貴
日野泰守
宮下晴旬
小林勲
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to EP09817469A priority Critical patent/EP2333776A4/en
Priority to BRPI0905745-5A priority patent/BRPI0905745A2/pt
Priority to MX2010005892A priority patent/MX2010005892A/es
Priority to JP2010531735A priority patent/JPWO2010038427A1/ja
Priority to US12/745,297 priority patent/US8243571B2/en
Priority to CA2707185A priority patent/CA2707185A1/en
Priority to CN2009801012130A priority patent/CN101884070A/zh
Publication of WO2010038427A1 publication Critical patent/WO2010038427A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/14Digital recording or reproducing using self-clocking codes
    • G11B20/1403Digital recording or reproducing using self-clocking codes characterised by the use of two levels
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10055Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10046Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter
    • G11B20/10055Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom
    • G11B20/1012Improvement or modification of read or write signals filtering or equalising, e.g. setting the tap weights of an FIR filter using partial response filtering when writing the signal to the medium or reading it therefrom partial response PR(1,2,2,2,1)
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10268Improvement or modification of read or write signals bit detection or demodulation methods
    • G11B20/10287Improvement or modification of read or write signals bit detection or demodulation methods using probabilistic methods, e.g. maximum likelihood detectors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10268Improvement or modification of read or write signals bit detection or demodulation methods
    • G11B20/10287Improvement or modification of read or write signals bit detection or demodulation methods using probabilistic methods, e.g. maximum likelihood detectors
    • G11B20/10296Improvement or modification of read or write signals bit detection or demodulation methods using probabilistic methods, e.g. maximum likelihood detectors using the Viterbi algorithm
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10305Improvement or modification of read or write signals signal quality assessment
    • G11B20/10398Improvement or modification of read or write signals signal quality assessment jitter, timing deviations or phase and frequency errors
    • G11B20/10407Improvement or modification of read or write signals signal quality assessment jitter, timing deviations or phase and frequency errors by verifying the timing of signal transitions, e.g. rising or falling edges, or by analysing signal slopes
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10481Improvement or modification of read or write signals optimisation methods
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/10009Improvement or modification of read or write signals
    • G11B20/10481Improvement or modification of read or write signals optimisation methods
    • G11B20/1049Improvement or modification of read or write signals optimisation methods using closed-form solutions
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B20/00Signal processing not specific to the method of recording or reproducing; Circuits therefor
    • G11B20/10Digital recording or reproducing
    • G11B20/18Error detection or correction; Testing, e.g. of drop-outs
    • G11B20/1816Testing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/002Recording, reproducing or erasing systems characterised by the shape or form of the carrier
    • G11B7/0037Recording, reproducing or erasing systems characterised by the shape or form of the carrier with discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0045Recording
    • G11B7/00458Verification, i.e. checking data during or after recording
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/005Reproducing
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B2007/0003Recording, reproducing or erasing systems characterised by the structure or type of the carrier
    • G11B2007/0009Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage
    • G11B2007/0013Recording, reproducing or erasing systems characterised by the structure or type of the carrier for carriers having data stored in three dimensions, e.g. volume storage for carriers having multiple discrete layers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/23Disc-shaped record carriers characterised in that the disc has a specific layer structure
    • G11B2220/235Multilayer discs, i.e. multiple recording layers accessed from the same side
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B2220/00Record carriers by type
    • G11B2220/20Disc-shaped record carriers
    • G11B2220/25Disc-shaped record carriers characterised in that the disc is based on a specific recording technology
    • G11B2220/2537Optical discs
    • G11B2220/2541Blu-ray discs; Blue laser DVR discs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/2403Layers; Shape, structure or physical properties thereof
    • G11B7/24035Recording layers
    • G11B7/24038Multiple laminated recording layers

Definitions

  • the present invention relates to a signal processing method using maximum likelihood decoding and a method for evaluating an information recording medium using maximum likelihood decoding.
  • the resolution depending on the detection system refers to an optical resolution based on the size of the light spot on which the laser beam is focused.
  • the PRML system is a technique that combines partial response (PR) and maximum likelihood decoding (ML), and is a system that selects the most probable signal sequence from a reproduced waveform on the assumption that known intersymbol interference occurs.
  • Non-Patent Document 1 the decoding performance is improved as compared with the conventional level determination method (for example, Non-Patent Document 1).
  • Jitter which is a reproduction signal evaluation index that has been used in the past, is premised on signal processing of a level determination method. Therefore, there is a case where there is no correlation between level determination and decoding performance of a PRML method having a different signal processing algorithm. I came.
  • Patent Document 1 new indexes that have a correlation with the decoding performance of the PRML method have been proposed (for example, Patent Document 1 and Patent Document 2).
  • the distribution in FIG. 25 represents the distribution of the difference metric classified into four by the mark having a length of 3T, the space having a length of 2T, 3T, 4T, and 5T, and the total distribution thereof.
  • T represents a channel clock.
  • Patent Document 3 solves this problem.
  • the index proposed in Patent Document 3 can detect a positional deviation (edge deviation) between a mark and a space by a combination of the mark length and the space length.
  • the recording / reproduction quality obtained by the index proposed in Patent Document 1 can be divided into an SN component and a shift component.
  • Non-patent document 1 describes that it is possible to maintain the system margin of the information recording / reproducing apparatus by changing the PRML method to a higher order method.
  • the system margin can be maintained by adopting the PR1221ML system.
  • Patent Document 3 proposes an index that can detect a positional deviation (edge deviation) due to a combination of one mark and one space, which represents the recording / reproduction quality of an information recording medium.
  • Non-Patent Document 1 in an optical disk medium using a blue laser, the light spot size where the laser beam is condensed is 390 nm, and the recording layer per recording layer using RLL (1, 7) as a recording code is used.
  • the recording capacity is 25 GB, the length of the shortest mark is 149 nm.
  • the length of the shortest mark is 112 nm. If further densification is to be measured, the length of the shortest mark is further shortened.
  • the recording capacity of 25GB is such that 2.6 shortest marks are included in the light spot 201, but FIG. ),
  • the recording capacity of 33.3 GB is a size that allows 3.5 shortest marks to enter the light spot 201, and the length of the mark with respect to the light spot size serving as a detection system for the optical disk medium is small. Shorter.
  • the combination of marks and spaces entering the light spot size is not only a pattern with one mark and a space, but also a pattern having a plurality of marks and spaces.
  • a signal affected by the positional deviation including a plurality of edges is detected depending on the number of marks and spaces entering the light spot size.
  • a pattern of one mark sandwiched between two spaces and a pattern of one space sandwiched between two marks as shown in FIG. Includes two edges.
  • a pattern including two marks and two spaces includes three edges.
  • the evaluation index of the recording / reproducing quality of the information recording medium described in Patent Document 3 takes into account only a case where one edge shift is caused by a combination of the mark length and the space length. It is not considered to evaluate the recording / reproducing quality for the positional deviation.
  • Non-Patent Document 1 describes that it is necessary to adopt a PR12221ML system with a recording capacity per layer of 33.3 GB in the 12 cm optical disk medium using the blue laser described above. 3 describes that PR12221ML is also applicable.
  • the shortest mark is continuous, and two ideal signals, the most probable state transition sequence and the second most probable state transition sequence. There is a pattern in which the square of the Euclidean distance is 12.
  • the shortest mark is included and is detected as a pattern including a plurality of edges as shown in FIG.
  • the present invention solves the above-described conventional problems, and various positional shifts due to intersymbol interference of recording marks of an information recording medium with a high density and thermal interference when information is recorded on the information recording medium. It is an object of the present invention to provide a method and apparatus for evaluating recording / reproduction quality by classifying and indexing detection signals including a plurality of edges for each pattern.
  • the reproduction signal evaluation method of the present invention is a binary signal using a PRML signal processing method from a signal obtained by reproducing a data string from an information recording medium capable of recording a data string in which marks and spaces are combined.
  • the difference metric is calculated by using the reproduction signal and the most probable first state transition sequence and second most probable second state transition sequence obtained based on the binarized signal and the reproduced signal A difference calculation step, wherein an edge shift amount of the shortest mark in a pattern in which the shortest space is adjacent to the front or rear of the shortest mark is a length of a space adjacent to the shortest mark and not adjacent to the shortest space.
  • the length of the first pattern longer than the shortest space and the mark adjacent to the shortest space and not adjacent to the shortest mark, It is obtained from the serial differential metrics calculated with respect to one of the patterns of the long second pattern than the shortest mark and said.
  • the length of each of the shortest mark and the shortest space is 2T, and the shortest mark and the shortest space are adjacent to each other in the pattern 2.
  • the binary data is represented by “0” and “1”
  • the binary data is “x000110011x” or “x001100111x” (“x” is “0” or “1”).
  • the edge shift amount of the shortest mark is obtained from the calculated difference metric.
  • the length of each of the shortest mark and the shortest space is 2T, and the shortest mark and the shortest space are adjacent to each other in the pattern 2.
  • the binary data is represented by “0” and “1”
  • the binary data is “x110011000x” or “x111001100x” (where “x” is “0” or “1”).
  • the edge shift amount of the shortest mark is obtained from the calculated difference metric.
  • the information recording medium of the present invention is an information recording medium capable of recording a data string in which marks and spaces are combined, and the information recording medium has a track for recording the data string, and the information recording medium
  • the reproduction signal of the medium is evaluated using a predetermined method, and the predetermined method generates a binary signal using a PRML signal processing method from a signal obtained by reproducing the data string from the information recording medium. And calculating a difference metric using the reproduced signal and the most probable first state transition sequence and the second most probable second state transition sequence obtained based on the binarized signal An edge shift amount of the shortest mark in a pattern in which the shortest space is adjacent in front of or behind the shortest mark.
  • a length of a space not adjacent to the space is longer than the shortest space, and a length of a mark adjacent to the shortest space and not adjacent to the shortest mark is longer than the shortest mark. It is obtained from a difference metric calculated for one of the two patterns.
  • the reproducing apparatus of the present invention is a reproducing apparatus for reproducing the information recording medium, and an irradiation unit that irradiates the track with laser light, a light receiving unit that receives reflected light of the irradiated laser light, A reproducing unit that reproduces the data string based on the signal obtained by the light reception.
  • the recording apparatus of the present invention is a recording apparatus for recording information on the information recording medium, wherein the track is irradiated with a laser beam, a mark is formed on the track by the irradiation, and the mark And a recording unit that records a data string in which spaces between the marks are alternately arranged.
  • the reproduction signal evaluation method of the present invention is a method for evaluating a reproduction signal obtained from an information recording medium capable of recording a data string in which marks and spaces are combined, and recognizes a predetermined pattern from the data string. And a recognition step for evaluating a reproduction signal corresponding to the recognized pattern, wherein the recognition step includes a first mark included in the data string, and a front of the first mark. Or recognizing a pattern including a first space adjacent to the back and a second mark not adjacent to the first mark and adjacent to the first space; and When each length of the second mark is equal to or less than a predetermined length, a second space not adjacent to the first mark and adjacent to the second mark is Characterized in that it comprises a step of recognizing whether long or not than a predetermined length.
  • the information recording medium of the present invention is an information recording medium capable of recording a data string in which marks and spaces are combined, and the information recording medium has a track for recording the data string, and the information recording medium
  • the reproduction signal of the medium is evaluated using a predetermined method, and the predetermined method performs a recognition step of recognizing a predetermined pattern from the data string, and evaluates the reproduction signal corresponding to the recognized pattern.
  • An evaluation step wherein the recognition step is adjacent to the first mark, a first space adjacent to the front or rear of the first mark, and the first mark.
  • recognizing a pattern including a second mark adjacent to the first space, and a length of each of the first space and the second mark is a predetermined length.
  • a second space that is not adjacent to the first mark and is adjacent to the second mark is less than or equal to the predetermined length. It is characterized by.
  • the reproducing apparatus of the present invention is a reproducing apparatus for reproducing the information recording medium, and an irradiation unit that irradiates the track with laser light, a light receiving unit that receives reflected light of the irradiated laser light, A reproducing unit that reproduces the data string based on the signal obtained by the light reception.
  • the recording apparatus of the present invention is a recording apparatus for recording information on the information recording medium, wherein the track is irradiated with a laser beam, a mark is formed on the track by the irradiation, and the mark And a recording unit that records a data string in which spaces between the marks are alternately arranged.
  • the reproduction signal evaluation method of the present invention is a method for evaluating a reproduction signal obtained from an information recording medium capable of recording a data string in which marks and spaces are combined, and recognizes a predetermined pattern from the data string. And a recognition step for evaluating a reproduction signal corresponding to the recognized pattern, wherein the recognition step includes a first mark included in the data string, and a front of the first mark. Or recognizing a pattern including a first space adjacent to the rear and a third space not adjacent to the first space and adjacent to the first mark; and When each length of the third space is equal to or less than a predetermined length, a third mark that is not adjacent to the first space and adjacent to the third space is Characterized in that it comprises a step 121 determines whether longer than the predetermined length.
  • the information recording medium of the present invention is an information recording medium capable of recording a data string in which marks and spaces are combined, and the information recording medium has a track for recording the data string, and the information recording medium
  • the reproduction signal of the medium is evaluated using a predetermined method, and the predetermined method performs a recognition step of recognizing a predetermined pattern from the data string, and evaluates the reproduction signal corresponding to the recognized pattern.
  • An evaluation step wherein the recognition step includes a first mark included in the data string, a first space adjacent to the front or rear of the first mark, and adjacent to the first space. Without recognizing and including a third space adjacent to the first mark, and a length of each of the first mark and the third space is predetermined. Recognizing whether or not a third mark that is not adjacent to the first space and is adjacent to the third space is longer than the predetermined length when the length is equal to or shorter than the length. It is characterized by that.
  • the reproducing apparatus of the present invention is a reproducing apparatus for reproducing the information recording medium, and an irradiation unit that irradiates the track with laser light, a light receiving unit that receives reflected light of the irradiated laser light, A reproducing unit that reproduces the data string based on the signal obtained by the light reception.
  • the recording apparatus of the present invention is a recording apparatus for recording information on the information recording medium, wherein the track is irradiated with a laser beam, a mark is formed on the track by the irradiation, and the mark And a recording unit that records a data string in which spaces between the marks are alternately arranged.
  • the amount of deviation of the edge of the shortest mark of the 2T / 2T portion that is a 2T continuous pattern is represented by the difference metric of the pattern including a mark or space having a length of 3T or more before or after the 2T / 2T portion Obtain by calculating.
  • the shift amount of the edge of the shortest mark of the 2T / 2T portion can be detected.
  • a binary signal is generated from a signal obtained by reproducing the data string using a PRML signal processing method, and the binary signal is generated.
  • a signal evaluation method for evaluating the certainty of a digitized signal wherein a difference between a reproduced signal and a first state transition sequence most likely from the binarized signal and a second state transition sequence most likely to be second
  • the difference metric is calculated, and the difference metric is classified into a plurality of data patterns including at least one mark and at least one space, and the classification for each data pattern is included in the data string.
  • the first mark is classified using a combination of the length of the first mark and the length of the first space located adjacent to the front or rear of the first mark.
  • a binarized signal is generated from a signal obtained by reproducing the data string using a PRML signal processing method, and the 2 A signal evaluation method for evaluating the certainty of a binarized signal, comprising: a reproduced signal of a first state transition sequence most likely from the binarized signal and a second state transition sequence most likely to be second A difference metric that is a difference is calculated, and the difference metric is classified into a plurality of data patterns including at least one mark and at least one space, and the classification for each data pattern is included in the data string.
  • FIG. 3 is a trellis diagram corresponding to the state transition rule shown in FIG. 2. It is a figure which shows PR equalization ideal waveform shown in Table 1 by embodiment of this invention. It is a figure which shows PR equalization ideal waveform shown in Table 2 by embodiment of this invention. It is a figure which shows PR equalization ideal waveform shown in Table 3 by embodiment of this invention. It is a figure which shows the classification
  • FIG. 2 is a state transition diagram showing a state transition rule determined from the RLL (1, 7) recording code and the equalization method PR (1, 2, 2, 2, 1).
  • FIG. 3 is a trellis diagram corresponding to the state transition rule shown in FIG.
  • PR12221ML and RLL (1, 7) limits the number of states of the decoding unit to 10, the number of paths for the state transition is 16, and the playback level is 9 levels.
  • state S (0,0,0,0) at a certain time is S0
  • state S (0,0,0,1) is S1
  • state S (0, 1, 1, 1) to S3 state S (1, 1, 1, 1) to S4
  • state S (1, 1, 1, 0) S5 state S (1, 1, 0, 0) is S6
  • state S (1, 0, 0, 0) is S7
  • state S (1, 0, 0, 1) is S8
  • state S (0, 1 , 1, 0) is expressed as S9 and 10 states are expressed.
  • “0” or “1” described in parentheses indicates a signal sequence on the time axis and indicates which state may be brought about by a state transition from a certain state to the next time. ing. Further, when the state transition diagram is developed along the time axis, the trellis diagram shown in FIG. 3 is obtained.
  • PR12221ML state transition sequence patterns (state combinations) that can take two state transitions when transitioning from a predetermined state at one time to a predetermined state at another time. is there.
  • patterns that are likely to cause errors are limited to specific patterns that are difficult to distinguish. Focusing on this error-prone pattern, the PR12221ML state transition sequence patterns can be summarized as shown in Table 1, Table 2, and Table 3.
  • the first column of Tables 1 to 3 represents a state transition (Sm k-9 ⁇ Sn k ) in which two state transitions that are likely to cause an error branch and rejoin.
  • the second column represents a transition data sequence (b ki ,..., B k ) that generates this state transition.
  • X in the demodulated data string indicates a bit that is likely to cause an error in these data.
  • this X number (! X is also the same) is an error. Number.
  • transition data string one corresponding to X or 1 corresponds to the most probable first state transition string, and the other corresponds to the second most probable second state transition string.
  • the third column represents the first state transition column and the second state transition column.
  • the fourth column shows two ideal reproduction waveforms (PR equivalent ideal values) when passing through each state transition
  • the fifth column is the square of the Euclidean distance of these two ideal signals. (Euclidean distance between paths).
  • Table 1 shows 18 types of state transition patterns in which the square of the Euclidean distance of the state transition pattern that can take two state transitions is 14.
  • These patterns correspond to the mark / space switching part (waveform edge part) of the optical disk medium.
  • this is a 1-bit shift error pattern of the edge.
  • one path in which the recording sequence transitions to “0, 0, 0, 0, 1, 1, 1, 0, 0” is detected, and “0” of the reproduction data is marked as a space portion and “1” is marked.
  • this corresponds to a space having a length of 4T space or more, a 3T mark, a space having a length of 2T space or more.
  • FIG. 4 is a diagram showing an example of the PR equalization ideal waveform of the recording sequence shown in Table 1.
  • the PR equalized ideal waveform of the recording sequence shown above is shown as the A path waveform in FIG.
  • FIG. 5 is a diagram showing an example of the PR equalized ideal waveform shown in Table 2.
  • FIG. 6 is a diagram showing an example of the PR equalization ideal waveform shown in Table 3.
  • the horizontal axis indicates the sample time (sampling at every time of the recording sequence), and the vertical axis indicates the reproduction signal level.
  • the ideal reproduction signal level is 9 levels (0 level to 8 level).
  • 1,0,0 ” is a space with a length of 5T space or more, a space with a length of 2T mark or more, a space with a length of 2T space or more, when“ 0 ”of the reproduction data is replaced with a space portion and“ 1 ”with a mark portion. It corresponds to.
  • the PR equivalent ideal waveform of the path is shown as a B path waveform in FIG.
  • the feature of the pattern whose square of Euclidean distance shown in Table 1 is 14 is that it always includes one edge information.
  • Table 2 shows 18 types of state transition patterns in which the square of the Euclidean distance is 12.
  • These patterns correspond to 2T mark or 2T space shift errors and are 2-bit error patterns.
  • one path in which the recording sequence transitions to “0, 0, 0, 0, 1, 1, 0, 0, 0, 0” is detected.
  • 1 ′′ is replaced with a mark portion, it corresponds to a space having a length of 4T space or more, a 2T mark, or a space having a length of 5T space or more.
  • the PR equivalent ideal waveform of the path is shown as A path waveform in FIG.
  • Another pass recording sequence transition “0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0” indicates that “0” of the reproduction data is a space portion and “1” is a mark portion. This corresponds to a space having a length of 5T space or more, a 2T mark, a space having a length of 4T space or more.
  • the PR equivalent ideal waveform of the path is shown as a B path waveform in FIG.
  • the feature of 12 patterns of squares of Euclidean distance shown in Table 2 is that 2T rising and falling edge information is always included.
  • Table 3 shows 18 types of state transition sequence patterns in which the square of another type of Euclidean distance is 12.
  • the space portion, “1” is replaced with a mark portion, it corresponds to a space having a length of 4T space or more, a 2T mark, a 2T space, a 3T mark, a space having a length of 2T space or more.
  • the PR equivalent ideal waveform of the path is shown as A path waveform in FIG.
  • transition “0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 1, 0, 0” of the recording sequence of the other pass is “0” of the reproduction data, “1”
  • “” When “” is replaced with a mark portion, it corresponds to a space having a length of 5T space or more, a 2T mark, 2T space, 2T mark, 2T space or more.
  • the PR equivalent ideal waveform of the path is shown as a B path waveform in FIG.
  • the feature of the pattern whose square of Euclidean distance shown in Table 3 is 12 is that at least three pieces of edge information are included.
  • the edge discrimination is sufficient when the recording capacity per layer is 25 GB. As much signal amplitude variation as possible was obtained.
  • the recording layer has a recording density of 33.3 GB or more per layer, the waveform becomes almost flat at the 2T / 2T portion as shown in FIG. I knew that I could't get it.
  • a mark or space having a length of 3T or more is required before or after this 2T / 2T.
  • Such a pattern is "Shortest mark / Shortest space / Next minimum mark”, Or “Next minimum space / shortest mark / shortest space”, Or “Shortest Space / Shortest Mark / Next Shortest Space”, Or “Next minimum mark / shortest space / shortest mark” It is.
  • the above pattern is a pattern in which the shortest space is adjacent to the front or rear of the shortest mark, and the length of the space adjacent to the shortest mark and not adjacent to the shortest space is longer than the shortest space. It is a pattern. Or it is a pattern in which the shortest space is adjacent to the front or rear of the shortest mark, and the length of the mark adjacent to the shortest space and not adjacent to the shortest mark is longer than the shortest mark. Further details of the features of the present invention will be described later with reference to FIG.
  • shortest mark or “shortest space” may be simply referred to as “shortest”. For example, when “shortest / shortest” is written, it means that “shortest space” is adjacent to “shortest mark” or “shortest mark” is adjacent to “shortest space”. I mean.
  • “ ⁇ / next shortest / shortest / shortest / ⁇ ” Marks of any length (or spaces), Space (or mark) beyond the next shortest, Shortest mark (or space), Shortest space (or mark), Mark of any length (or space) Means a sequence of data.
  • “the space of the next shortest or longer” means “a space of 3T or longer”.
  • FIG. 1 is a diagram showing an optical disc device 100 according to a first embodiment of the present invention.
  • the optical disc device 100 is a device that reproduces information from the mounted information recording medium 1 or records information on the information recording medium 1.
  • the information recording medium 1 is, for example, an optical disk medium.
  • the optical disc apparatus 100 includes an optical head unit 2, a preamplifier unit 3, an AGC (Automatic Gain Controller) unit 4, a waveform equalization unit 5, an A / D conversion unit 6, a PLL unit 7, and a PR equalization unit. 8, a maximum likelihood decoding unit 9, a signal evaluation index detection unit 10, and an optical disk controller unit 15.
  • AGC Automatic Gain Controller
  • the optical head unit 2 includes an irradiation unit that irradiates a track of the information recording medium with laser light, and a light receiving unit that receives reflected light from the track.
  • the preamplifier unit 3, the AGC unit 4, the waveform equalization unit 5, the A / D conversion unit 6, the PLL unit 7, the PR equalization unit 8, and the maximum likelihood decoding unit 9 are arranged based on the signal obtained by the light reception. It functions as a playback unit that plays back.
  • the signal evaluation index detection unit 10 includes a 14 pattern detection unit 101, a 12A pattern detection unit 104, and a 12B pattern that detect patterns corresponding to Table 1 (14 patterns), Table 2 (12A patterns), and Table 3 (12B patterns).
  • the optical head unit 2 converges the laser beam that has passed through the objective lens on the recording layer of the information recording medium 1, receives the reflected light, and generates an analog reproduction signal indicating the information recorded on the information recording medium 1.
  • the numerical aperture of the objective lens is 0.7 to 0.9, more preferably 0.85.
  • the wavelength of the laser beam is 410 nm or less, more preferably 405 nm.
  • the preamplifier unit 3 amplifies the analog reproduction signal with a predetermined gain and outputs the amplified signal to the AGC 4.
  • the AGC unit 4 amplifies the reproduction signal using a preset target gain so that the level of the reproduction signal output from the A / D conversion unit 6 becomes a constant level, and outputs the amplified signal to the waveform equalization unit 5 To do.
  • the waveform equalization unit 5 has an LPF characteristic that cuts off the high frequency range of the reproduction signal and a filter characteristic that amplifies a predetermined frequency band of the reproduction signal.
  • the waveform equalization unit 5 shapes the reproduction waveform into a desired characteristic and performs A / D. Output to the converter 6.
  • the PLL circuit 7 generates a reproduction clock that is synchronized with the reproduction signal after waveform equalization, and outputs it to the A / D converter 6.
  • the A / D conversion unit 6 samples the reproduction signal in synchronization with the reproduction clock output from the PLL circuit 7 and converts the analog reproduction signal into a digital reproduction signal.
  • the PR equalization unit 8 is a frequency characteristic set so that the frequency characteristic of the reproduction system becomes a characteristic assumed by the maximum likelihood decoding unit 9 (for example, PR (1, 2, 2, 2, 1) equalization characteristic). And performs PR equalization processing for suppressing high-frequency noise and intentionally adding intersymbol interference to the reproduced signal, and outputs the result to the maximum likelihood decoding unit 9.
  • the maximum likelihood decoding unit 9 for example, PR (1, 2, 2, 2, 1) equalization characteristic.
  • the PR equalization unit 8 has a FIR (Finite Impulse Response) filter configuration, and may adaptively control tap coefficients using an LMS (The Last-Mean Square) algorithm (see Non-Patent Document 2). ).
  • FIR Finite Impulse Response
  • LMS The Last-Mean Square
  • the maximum likelihood decoding unit 9 is, for example, a Viterbi decoder, which uses a maximum likelihood decoding method for estimating a most likely sequence based on a code rule intentionally added according to a partial response type, and performs PR equalization.
  • the reproduction signal that has been PR-equalized by the unit 8 is decoded and binarized data is output.
  • the binarized data is output as a demodulated binarized signal to the optical disk controller 15 at the subsequent stage, and a predetermined process is executed to reproduce information recorded on the information recording medium 1.
  • the signal evaluation index detection unit 10 receives the waveform-shaped digital reproduction signal output from the PR equalization unit 8 and the binarized signal output from the maximum likelihood decoding unit 9.
  • the pattern detection units 101, 104, and 107 compare the transition data strings in Tables 1, 2, and 3 with the binarized data, and if the binarized data matches the transition data strings in Tables 1, 2, and 3. Based on Tables 1, 2, and 3, the most probable state transition sequence 1 and the second most probable state transition sequence 2 are selected.
  • the difference metric calculation units 102, 104, and 108 calculate a metric that is the distance between the ideal value of the state transition sequence (PR equalization ideal value: see Tables 1, 2, and 3) and the digital reproduction signal. Further, the difference between the metrics calculated from the two state transition sequences is calculated. Further, since this metric difference has a positive value and a negative value, absolute value processing is performed.
  • the pattern detection units 101, 104, and 107 generate pulse signals to be assigned to the patterns of the start and end edges of the marks shown in FIGS. 7, 8, and 9 based on the binarized data,
  • the data is output to the memory units 103, 106, and 109.
  • the memory units 103, 106, and 109 show the metric differences of the respective patterns obtained by the difference metric calculation units 102, 104, and 108 based on the pulse signals output from the pattern detection units 101, 104, and 107, as shown in FIG. 8 and 9 are cumulatively added for each pattern.
  • FIGS. 7, 8, and 9 will be described in detail.
  • i indicates the time. For example, if (2S (i-1), 3M (i), 4S (i + 1) are present, there is a 2T space before the reference 3T mark and a 4T space after. Means.
  • the pattern numbers in FIGS. 7, 8, and 9 correspond to the pattern numbers described in Table 1, Table 2, and Table 3, respectively.
  • the pattern is 3T mark, 2T space or more).
  • W, x, y, and z are arbitrary numerical values for the length of marks and spaces.
  • the detailed pattern classification of the 14 detection patterns in FIG. 7 classifies one edge shift consisting of one space and one mark.
  • the start edge of the 14 detection pattern indicates an edge shift related to the mark at time i and the space at time i ⁇ 1
  • the end position of the 14 detection pattern indicates an edge shift related to the mark at time i and the space at time i + 1.
  • the detailed pattern classification of the 12A detection pattern in FIG. 8 is based on the 2T mark and 2T space classification of the 14 detection pattern in FIG. It is divided into cases.
  • the start of the 12A detection pattern is the classification of the 2T mark shift at time i sandwiched between the space at time i-1 and time i + 1 according to the length of the space at time i + 1, or the mark at time i and time i-2.
  • the gap in the 2T space at time i-1 that is sandwiched is classified according to the length of the mark at time i-2.
  • the end of the 12A detection pattern means that the deviation of the 2T mark at the time i sandwiched between the space at the time i-1 and the time i + 1 is classified according to the length of the space at the time i-1, or the mark at the time i and the time i + 2
  • the gap of 2T space at time i + 1 that is sandwiched is classified according to the length of the mark at time i + 2.
  • the detailed pattern classification of the 12B detection pattern in FIG. 9 is the following one for the classification of the pattern in which the 2T mark and 2T space of the 12A detection pattern in FIG. Cases are classified according to marks and spaces, and two consecutive 2T marks sandwiched between one mark and one space are classified as a continuous 2T shift between 2T spaces.
  • the start of the 12B detection pattern is classified by the length of the time i + 2 mark or the time i + 2 2T mark sandwiched between the time i + 2 mark and the time i-1 space, or the time i + 2 mark.
  • the difference between the 2T mark at time i-2 and the 2T space at time i-1 between the space at time -3 and the mark at time i is classified according to the length of the space at time i-3.
  • the end of the 12B detection pattern is the difference between the 2T mark at time i and the 2T space at time i-1 between the space at time i + 1 and the mark at time i-2, and is classified according to the length of the mark at time i-2.
  • the difference between the 2T space at time i + 1 and the 2T mark at time i + 2 between the mark at time i and the space at time i + 3 is classified according to the length of the space at time i + 3.
  • bit strings represented by “x”, “0”, and “1” written under each classification pattern in FIGS. 7, 8, and 9 represent data strings corresponding to the respective patterns. Yes.
  • “0” represents binarized data corresponding to a space in the data string
  • “1” represents binarized data corresponding to a mark in the data string.
  • the reference period of the data string is T
  • one “0” represents binarized data corresponding to a space corresponding to 1T
  • one “1” represents binarized data corresponding to a mark corresponding to 1T.
  • “X” represents “0” or “1”.
  • the valued data is represented as “x000110011x” or “x110011000x”, for example.
  • the binarized data is expressed as “x001100111x” or “x111001100x”, for example.
  • the operation for recognizing a predetermined pattern from the binarized data is performed by the pattern detection units 101, 104, and 107.
  • the pattern detection unit 107 based on the binarized data, the first mark included in the data string and the first adjacent to the front or rear of the first mark. And a pattern including a second mark that is not adjacent to the first mark and is adjacent to the first space. Then, when the lengths of the first space and the second mark are equal to or shorter than a predetermined length, the second space is not adjacent to the first mark and is adjacent to the second mark. It is recognized whether or not the space is longer than the predetermined length. If it is long, the 12B detection pattern is detected.
  • the predetermined length is, for example, 2T, but is not limited thereto.
  • the pattern detection unit 107 when detecting the above 12B detection pattern, the pattern detection unit 107, based on the binarized data, the first mark included in the data string, and the front or rear of the first mark A pattern including a first space adjacent to and a third space not adjacent to the first space and adjacent to the first mark is recognized. And when each length of the 1st mark and the 3rd space is below predetermined length, it is not adjacent to the 1st space, and the 3rd adjacent to the 3rd space. It is recognized whether or not the mark is longer than the predetermined length. If it is long, the 12B detection pattern is detected.
  • the difference metric calculation unit 108 calculates a difference metric using the first and second state transition sequences and the digital reproduction signal.
  • the reproduction signal quality can be evaluated using the calculation result of the difference metric. For example, the quality can be evaluated by calculating the shift amount of the edge of the shortest mark of the 2T / 2T portion described above.
  • FIG. 10 is a distribution diagram of the difference metric in the PR12221ML signal processing.
  • the horizontal axis represents the square of the Euclidean distance, and the vertical axis represents the frequency.
  • the square of the Euclidean distance has a group of distributions at 12 and 14, and the square of the Euclidean distance higher than that is only 30 or more.
  • the pattern detection units 101, 104, and 107 identify this pattern.
  • Binary signal is generated from the playback signal played back from the disc by PRML processing.
  • the PR equalized ideal values of the state transition strings 1 and 2 are determined.
  • the most probable state transition sequence 1 is the pattern [14].
  • 1A S0, S1, S2, S3, S5, S6
  • pattern [14] 1B S0, S0, S1, S2, S9, S6 is selected as the second most likely state transition sequence 2.
  • the PR equalization ideal value corresponding to the state transition sequence 1 is (1, 3, 5, 6, 5).
  • the PR equalization ideal value corresponding to the state transition sequence 2 is (0, 1, 3, 4, 4).
  • the square value of the difference between the reproduced signal sequence and the PR equalization ideal value corresponding to the state transition sequence 1 is obtained, and this is set to Pa.
  • the PR equalization corresponding to the reproduced signal sequence and the state transition sequence 2 is performed.
  • This operation is the operation of the differential metric calculation unit.
  • a k is a PR equalization ideal value corresponding to the state transition sequence 1
  • b k is a PR equalization ideal value corresponding to the state transition sequence 2
  • y k is a reproduction signal sequence.
  • FIG. 11A shows the output frequency distribution of the difference metric calculation unit 102.
  • FIG. 11B shows the output frequency distribution of the difference metric calculation unit 105
  • FIG. 11C shows the output frequency distribution of the difference metric calculation unit 108.
  • 11A, 11B, and 11C have different frequencies and central positions. Also, the number of error bits generated when these patterns cause an error is different.
  • the Table 1 pattern in which the square of the Euclidean distance is 14 is a pattern in which a 1-bit error occurs
  • the Table 2 pattern in which the square of the Euclidean distance is 12 is a pattern in which a 2-bit error is generated.
  • Table 3 pattern with a power of 12 is a pattern in which an error of 3 bits or more occurs.
  • the pattern in Table 3 depends on the number of 2T continuations. For example, if the recording modulation code allows up to 6 continuations, a maximum 6-bit error occurs.
  • FIG. 12 shows a correlation between a reproduction waveform and a mark shift for the pattern shown in FIG. 4 as an example of 14 patterns.
  • the path A21 is the most probable state transition sequence
  • the path B22 is the second most probable state transition sequence.
  • a reproduction waveform 23 indicated by a dotted line ⁇ indicates a reproduction waveform when data of an information recording medium having a signal level slightly close to the path B22 with the path A21 as a reference is reproduced.
  • the ideal space and mark position of path A21 in the most probable state transition sequence are indicated by space 24 and mark 25, and the space and mark position where reproduction waveform 23 is obtained are indicated by space 26 and mark 27.
  • the signal levels (y k ⁇ 4 , y k ⁇ 3 , y k ⁇ 2 , y k ⁇ 1 , y k ) at each sample point of the reproduction waveform 23 are set to (0.7, 2.7, 4.7, 5). .7, 4.7).
  • the distance Pa 14 between the reproduction waveform 23 and the path A21 and the distance Pb 14 between the reproduction waveform 23 and the path B22 are represented by the expressions (10) and (11). It is obtained like this.
  • Equation (12) the differential metric D 14 is obtained as shown in Equation (12).
  • Pstd 14 the distance between the path A and the path B is Pstd 14 .
  • Deviation amount E 14 the most likely reproduced waveform from the state transition sequence path A21 is obtained by the following equation (13).
  • FIG. 12B shows a case where the reproduction waveform 29 indicated by the dotted line ⁇ has a signal level that moves away from the path B22 with reference to the path A21.
  • FIGS. 12C and 12D show a case where the path B22 is the most probable state transition sequence.
  • (C) shows a case where the reproduction waveform 33 indicated by the dotted line ⁇ has a signal level that moves away from the path A21 with reference to the path B22, and (d) shows that the reproduction waveform 39 indicated by the dotted line ⁇ is indicated by the path B22. , The signal level slightly close to the path A21 is shown.
  • the sign of the value of E 14 becomes negative when the signal level is close to the second most probable state transition sequence based on the most probable state transition, and the reproduction waveform is reproduced.
  • the sign of the value of E 14 is positive when it has a signal level distance from likely state transition sequence on the second moves away.
  • FIG. 13 shows, as an example of the 12A pattern, the correlation between the reproduction waveform and the mark shift for the pattern shown in FIG.
  • path A51 is the most probable state transition sequence
  • path B52 is the second most probable state transition sequence
  • a reproduction waveform 53 indicated by a dotted line ⁇ indicates a reproduction waveform when data of an information recording medium having a signal level slightly close to the path B52 with the path A51 as a reference is reproduced.
  • the ideal space and mark position of the path A51 in the most probable state transition sequence are indicated by spaces 54, 56 and mark 55, and the space and mark position where the reproduction waveform 53 is obtained are indicated by spaces 57, 59 and mark 58. Show.
  • the signal level (y k-6 , y k-5 , y k-4 , y k-3 , y k-2 , y k-1 , y k ) at each sample point of the reproduction waveform 53 is set to (0.7 2.7, 3.7, 4, 3.3, 1.3, 0.3).
  • the distance Pa 12A between the reproduction waveform 53 and the path A51 and the distance Pb 12A between the reproduction waveform 53 and the path B52 are expressed by the expressions (14) and (15). It is obtained like this.
  • the differential metric D 12A is obtained as in equation (16).
  • the distance between the path A and the path B is Pstd 12A
  • the reproduction waveform deviation E 12A from the most probable state transition sequence path A51 is obtained by the following equation (17).
  • the pattern 12A also has a minus sign of the value of E 12A when the reproduction waveform has a signal level whose distance approaches the second most probable state transition sequence based on the most probable state transition.
  • the sign of the value of E 12A is positive when the reproduced waveform has a signal level whose distance is farther from the state transition sequence that is most likely to be the reference, based on the state transition sequence that is most likely to be the reproduced waveform.
  • FIG. 14 shows, as an example of the 12B pattern, the correlation between the reproduction waveform and the mark shift for the pattern shown in FIG.
  • FIG. 14 shows that the path A71 is the most probable state transition sequence, and the path B72 is the second most probable state transition sequence.
  • a reproduction waveform 73 indicated by a dotted line ⁇ indicates a reproduction waveform when data of an information recording medium having a signal level slightly close to the path B72 with the path A71 as a reference is reproduced.
  • the ideal space and mark position of the path A71 in the most probable state transition sequence are indicated by spaces 74 and 76 and marks 75 and 77, and the space and mark position from which the reproduction waveform 73 is obtained are indicated by spaces 78 and 80 and mark. 79, 81.
  • the signal level at each sample point of the reproduced waveform 73 (y k-8 , y k-7 , y k-6 , y k-5 , y k-4 , y k-3 , y k-2 , y k-1 , y k ) (0.7, 2.7, 3.7, 4 , 4 , 4 , 4.7, 5.7) 4.7).
  • the distance Pa 12B between the reproduction waveform 73 and the path A 71 and the distance Pb 12B between the reproduction waveform 73 and the path B 72 are expressed by the expressions (18) and (19). It is obtained like this.
  • the differential metric D 12B is obtained as in equation (20).
  • Pstd 12B the distance between the path A and the path B is Pstd 12B .
  • the reproduction waveform shift amount E 12B from the most probable state transition sequence path A 71 is obtained by the following equation (21).
  • the state transition sequence pattern includes a 2T / 2T portion that is a 2T continuous pattern
  • the 2T / 2T portion has a sufficient signal amplitude. Variation is not obtained. Therefore, in order to calculate the shift amount of the edge of the shortest mark in the 2T / 2T portion, a difference metric is used by using a pattern including a mark or space having a length of 3T or more before or after the 2T / 2T portion.
  • the path A is indicated as “4T or more space (74) / 2T mark (75) / 2T space (76) / 3T mark (77) / 2T or more space”. Is included.
  • the shift amount of the edge of the shortest mark (2T mark (75)) is the difference metric of the pattern of “4T or more space (74) / 2T mark (75) / 2T space (76)”. It can be obtained by calculating.
  • Such a “pattern of 4T or more space (74) / 2T mark (75) / 2T space (76)” corresponds to “a pattern including 3T or more marks or spaces before or after 2T / 2T”. .
  • the path B is indicated as “5T or more space / 2T mark / 2T space / 2T mark / 2T or more space” and includes a 2T continuous portion.
  • the shift amount of the edge of the shortest mark (2T mark) in such a path B can be obtained by calculating a differential metric of a pattern of “space of 5T or more / 2T mark / 2T space”.
  • Such “a space of 5T or more / 2T mark / 2T space pattern” corresponds to “a pattern including a mark or space of 3T or more before or after 2T / 2T”.
  • the pattern whose Euclidean distance squared is 12 includes at least three pieces of edge information.
  • calculating the shift amount of the edge of the shortest mark using a pattern of “ ⁇ / next shortest / shortest / shortest / ⁇ ” or “ ⁇ / shortest / shortest / next shortest / ⁇ ” Not only can it be applied, but it can be applied to 12A patterns as well.
  • the pattern including the shortest continuity has been described as a pattern in which sufficient signal amplitude fluctuation cannot be obtained.
  • the 2T continuous portion does not necessarily correspond to a pattern in which sufficient signal amplitude fluctuation cannot be obtained.
  • the data string has an arrangement of marks and spaces that are less than a length at which sufficient signal amplitude fluctuation cannot be obtained (an arrangement of marks that are less than a predetermined length and spaces that are less than a predetermined length).
  • the square of the Euclidean distance of two ideal signals of the most probable state transition sequence and the second most probable state transition sequence is 12 14 is calculated, and in the detection signal including a plurality of edges, how each edge is shifted can be expressed by an index correlated with the error rate. It is possible to evaluate the recording / reproduction quality in a new information recording medium.
  • the recording quality evaluation result is fed back to the reproduction compensation unit and the recording compensation unit at the time of information reproduction and recording on a high-density information recording medium, thereby reducing errors during reproduction and error. It is possible to perform recording with less recording quality and good recording quality.
  • the preamplifier unit 3, the AGC unit 4, and the waveform equalization unit 5 shown in FIG. 1 may be configured as one analog integrated circuit (LSI).
  • LSI analog integrated circuit
  • Preamplifier unit 3 AGC unit 4, waveform equalization unit 5, A / D conversion unit 6, PLL unit 7, PR equalization unit 8, maximum likelihood decoding unit 9, signal evaluation index detection unit 10, optical disc controller unit 15, analog You may comprise as one integrated circuit (LSI) of digital mounting.
  • LSI integrated circuit
  • optical disc apparatus 100 is a reproducing apparatus that reproduces an information recording medium, but may be a recording / reproducing apparatus or a recording apparatus.
  • the optical disc apparatus 100 includes a recording unit for recording information on the information recording medium 1.
  • the recording unit forms a mark on the track by irradiation with laser light, and records a data string in which marks and spaces between the marks are alternately arranged.
  • the recording unit includes, for example, a pattern generation unit, a recording compensation unit, and a laser driving unit.
  • the pattern generating unit outputs a recording pattern for adjusting the edge of the recording mark.
  • the recording compensation unit generates a laser emission waveform pattern according to the recording parameter and the recording pattern received from the optical disc controller unit.
  • the laser drive unit controls the laser emission operation of the optical head unit 2 in accordance with the generated laser emission waveform pattern.
  • the optical head unit 2 irradiates the track with laser light, marks are formed on the track, and a data string in which marks and spaces are alternately arranged is recorded.
  • optical disc apparatus do not limit the present invention, and may have other configurations.
  • the code with the shortest mark length of 2 or 3 and the equalization method PR (C0, C1, C1, C0)
  • the code with the shortest mark length of 3 and the equalization method PR (C0, C1) , C2, C1, C0).
  • C0, C1, and C2 are arbitrary positive numbers.
  • the shortest mark length even if it is not the shortest mark length, it can be applied to a mark or space next to the shortest mark or a mark or space shorter than a predetermined length.
  • BD Blu-ray disc
  • other standard optical discs there are types of BDs such as a BD-ROM which is a read-only type, a BD-R which is a write once / write once type, and a BD-RE which is a rewritable type.
  • ROM read-only type
  • R write-once type / write-once type
  • RE rewrite type
  • the laser beam with a wavelength of about 405 nm 400 to 410 nm if the tolerance of the error range is ⁇ 5 nm with respect to the standard value of 405 nm) and the numerical aperture (NA) is about 0.85 (standard value). If the tolerance of the error range is ⁇ 0.01 with respect to 0.85, an objective lens of 0.84 to 0.86) is used.
  • the track pitch of the BD is approximately 0.32 ⁇ m (0.310 to 0.330 ⁇ m if the tolerance of the error range is ⁇ 0.010 ⁇ m with respect to the standard value of 0.320 ⁇ m), and the recording layer has one or two recording layers. Layers are provided.
  • the recording layer has a single-sided or double-sided recording surface from the laser incident side, and the distance from the surface of the protective layer of the BD to the recording surface is 75 ⁇ m to 100 ⁇ m.
  • the recording signal modulation method uses 17PP modulation, and the mark of the shortest mark to be recorded (2T mark: T is the period of the reference clock (the reference period of modulation in the case of recording a mark by a predetermined modulation rule))
  • T is the period of the reference clock (the reference period of modulation in the case of recording a mark by a predetermined modulation rule)
  • the length is 0.149 ⁇ m (or 0.138 ⁇ m) (channel bit length: T is 74.50 nm (or 69.00 nm)).
  • the recording capacity is a single-sided single layer 25 GB (or 27 GB) (more specifically 25.005 GB (or 27.020 GB)) or a single-sided double layer 50 GB (or 54 GB) (more specifically 50.050 GB (or 54 .040 GB)).
  • the channel clock frequency is 66 MHz (channel bit rate 66.000 Mbit / s) at a transfer rate of standard speed (BD1x), 264 MHz (channel bit rate 264.000 Mbit / s) at a transfer rate of quadruple speed (BD4x), 6
  • the transfer rate at double speed (BD6x) is 396 MHz (channel bit rate 396.000 Mbit / s), and the transfer rate at 8 times speed (BD8x) is 528 MHz (channel bit rate 528.000 Mbit / s).
  • the standard linear velocity (reference linear velocity, 1x) is 4.917 m / sec (or 4.554 m / sec).
  • the linear velocities of 2x (2x), 4x (4x), 6x (6x) and 8x (8x) are 9.834 m / sec, 19.668 m / sec, 29.502 m / sec and 39.50, respectively. 336 m / sec.
  • the linear velocity higher than the standard linear velocity is generally a positive integer multiple of the standard linear velocity, but is not limited to an integer and may be a positive real multiple. Also, a linear velocity that is slower than the standard linear velocity, such as 0.5 times (0.5x), may be defined.
  • the above is about commercialization, mainly about 1GB or 2GB BD of about 25GB per layer (or about 27GB).
  • a high-density BD having a capacity of approximately 32 GB or approximately 33.4 GB and a BD having a number of layers of three or four have been studied, and these will be described below.
  • FIG. 15 shows a general configuration example of a multilayer disk in that case.
  • the illustrated optical disc is composed of (n + 1) information recording layers 502 (n is an integer of 0 or more).
  • the configuration is such that a cover layer 501, (n + 1) information recording layers (Ln to L0 layers) 502, and a substrate 500 are laminated on the optical disc in order from the surface on the side where the laser beam 505 is incident. Has been.
  • an intermediate layer 503 serving as an optical buffer material is inserted between (n + 1) information recording layers 502. That is, recording is performed such that the reference layer (L0) is provided at the farthest position (the furthest position from the light source) at a predetermined distance from the light incident surface, and the layers are increased from the reference layer (L0) to the light incident surface side.
  • the layers are stacked (L1, L2,..., Ln).
  • the distance from the light incident surface to the reference layer L0 in the multilayer disc is substantially the same as the distance from the light incident surface to the recording layer in the single-layer disc (for example, about 0.1 mm). May be.
  • the distance to the innermost layer is made constant (that is, the same distance as in the case of a single layer disc), regardless of whether it is a single layer or multiple layers. Compatibility regarding access to the reference layer can be maintained.
  • traveling direction of the spot also referred to as a track direction or a spiral direction
  • it may be a parallel path or an opposite path.
  • the playback direction is the same in all layers. That is, the traveling direction of the spot proceeds from the inner periphery to the outer periphery in all layers, or from the outer periphery to the inner periphery in all layers.
  • the playback direction is reversed between a layer and a layer adjacent to the layer. That is, when the reproduction direction in the reference layer (L0) is a direction from the inner periphery to the outer periphery, the reproduction direction in the recording layer L1 is a direction from the outer periphery to the inner periphery, and in the recording layer L2, the inner layer is directed to the outer periphery.
  • the reproducing direction is the direction from the inner periphery to the outer periphery in the recording layer Lm (m is 0 and an even number), and the direction from the outer periphery to the inner periphery in the recording layer Lm + 1.
  • the recording layer Lm (m is 0 and an even number) is a direction from the outer periphery to the inner periphery
  • the recording layer Lm + 1 is a direction from the inner periphery to the outer periphery.
  • the thickness of the protective layer (cover layer) is set to be thinner so that the focal length becomes shorter as the numerical aperture NA increases, and the influence of spot distortion due to tilt can be suppressed.
  • the numerical aperture NA is set to 0.45 for CD, 0.65 for DVD, and approximately 0.85 for BD.
  • the protective layer may have a thickness of 10 to 200 ⁇ m. More specifically, on a substrate of about 1.1 mm, a transparent protective layer of about 0.1 mm for a single layer disc, and an intermediate layer (SpacerLayer of about 0.025 mm on a protective layer of about 0.075 mm for a dual layer disc. ) May be provided. If the disc has three or more layers, the thickness of the protective layer and / or the intermediate layer may be further reduced.
  • FIG. 16 shows a configuration example of a single-layer disc
  • FIG. 17 shows a configuration example of a two-layer disc
  • FIG. 18 shows a configuration example of a three-layer disc
  • FIG. 19 shows a configuration example of a four-layer disc.
  • the total thickness of the disc is approximately 1.2 mm in any of FIGS.
  • the thickness of the substrate 500 is approximately 1.1 mm
  • the distance from the light irradiation surface to the reference layer L0 is approximately 0.1 mm.
  • n 0 in FIG.
  • the cover layer 5012 has a thickness of about 0.075 mm
  • the intermediate layer 5302 has a thickness of about 0.025 mm
  • the thicknesses of the cover layers 5013 and 5014 and / or the intermediate layers 5303 and 5304 are further reduced.
  • information can be reproduced by irradiating a laser with a wavelength of 400 nm or more and 410 nm or less onto a substrate having a thickness of approximately 1.1 mm through an objective lens having a numerical aperture of 0.84 or more and 0.86 or less.
  • K recording layers are formed.
  • k-1 intermediate layers are formed between the recording layers.
  • a protective layer having a thickness of 0.1 mm or less is formed on the kth recording layer counted from the substrate side (in the case of a multilayer disc, the recording layer farthest from the substrate).
  • the reproducing direction is changed from the inner periphery side to the outer periphery side of the disc. Concentric or spiral tracks are formed so as to be in the directions. Further, when the jth recording layer (j is an even number not less than 1 and not more than k) from the substrate side is formed, it is concentric so that the reproducing direction is the direction from the outer peripheral side to the inner peripheral side of the disc. Alternatively, a spiral track is formed.
  • Such a single-layer or multi-layer disc (a disc having k recording layers, k is an integer of 1 or more) is reproduced by a reproducing apparatus having the following configuration.
  • k recording layers are formed by an optical head that irradiates a laser having a wavelength of 400 nm or more and 410 nm or less. Information can be reproduced from each.
  • i-th recording layer In the i-th recording layer (i is an odd number from 1 to k) counted from the substrate side, concentric or spiral tracks are formed, and reproduction is performed from the inner circumference side to the outer circumference side of the disc. By controlling the reproduction direction by the control unit, information can be reproduced from the i-th recording layer.
  • the j-th recording layer (j is an odd number from 1 to k) counted from the substrate side, concentric or spiral tracks are formed, and reproduction is performed from the outer peripheral side to the inner peripheral side of the disc.
  • the control unit By controlling the reproducing direction by the control unit, information can be reproduced from the jth recording layer.
  • the modulation rule may be an RLL (Run Length Limited) encoding method in which the mark length is limited.
  • RLL Un Length Limited
  • the minimum number of 0s appearing between 1 and 1 is the maximum. It means k (d and k are natural numbers satisfying d ⁇ k).
  • T a reference period of modulation
  • a recording mark and a space having a shortest 2T and a longest 8T are obtained.
  • 1-7PP modulation may be employed in which the following features [1] and [2] are further added to RLL (1, 7) modulation.
  • P in 1-7PP is an abbreviation of Parity preserve / Prohibit Repeated Minimum Transition Length.
  • the first P, Parity preserve is the number of odd-numbered (1) odd numbers of source data bits before modulation (ie, Parity) and the number of odd-numbered “1” s in the modulated bit pattern corresponding to it match.
  • ProhibitpeRepeated Minimum Transition Length which is the latter P, is recorded after modulation. This means a mechanism for limiting the number of repetitions of the shortest mark and space on the waveform (specifically, limiting the number of repetitions of 2T to a maximum of 6).
  • the recording density is improved, there is a possibility that a plurality of types of recording density of the optical disk medium exist.
  • the various formats and methods described above only a part of them may be adopted or a part of them may be changed to another format or method according to the recording density.
  • FIG. 20 shows a physical configuration of the optical disc 1 according to the present embodiment.
  • a large number of tracks 2A are formed, for example, concentrically or spirally, and a large number of finely divided sectors are formed on each track 2A.
  • data is recorded on each track 2A in units of blocks 3A having a predetermined size.
  • the optical disc 1 has a larger recording capacity per information recording layer than a conventional optical disc (for example, a 25 GB BD).
  • the expansion of the recording capacity is realized by improving the recording linear density, for example, by reducing the mark length of the recording mark recorded on the optical disc.
  • “to improve the recording linear density” means to shorten the channel bit length.
  • the channel bit is a length corresponding to the period T of the reference clock (the reference period T of modulation when a mark is recorded by a predetermined modulation rule).
  • the optical disk 1 may be multilayered. However, in the following, only one information recording layer is mentioned for convenience of explanation.
  • the recording linear density may be different for each layer.
  • the track 2A is divided into blocks every 64 kB (kilobytes) of data recording, and block address values are assigned in order.
  • the block is divided into sub-blocks of a predetermined length, and one block is constituted by three sub-blocks. Subblock numbers 0 to 2 are assigned to the subblocks in order from the front.
  • FIG. 21A shows an example of a 25 GB BD.
  • the wavelength of the laser 123 is 405 nm
  • the numerical aperture (NA) of the objective lens 220 is 0.85.
  • recording data is recorded as a physical change mark row 120, 121 on the track 2A of the optical disc in the BD.
  • the shortest mark in the mark row is called the “shortest mark”.
  • the mark 121 is the shortest mark.
  • the physical length of the shortest mark 121 is 0.149 ⁇ m. This is equivalent to approximately 1 / 2.7 of DVD, and even if the wavelength parameter (405 nm) and NA parameter (0.85) of the optical system are changed to increase the resolution of the laser, the light beam identifies the recording mark. We are approaching the limit of optical resolution that is possible.
  • FIG. 22 shows a state in which a light beam is irradiated to a mark row recorded on a track.
  • the light spot 30A is about 0.39 ⁇ m due to the optical system parameters.
  • the recording linear density is improved without changing the structure of the optical system, the recording mark becomes relatively small with respect to the spot diameter of the light spot 30A, so that the reproduction resolution is deteriorated.
  • FIG. 21 (b) shows an example of an optical disc having a higher recording density than a 25 GB BD.
  • the wavelength of the laser 123 is 405 nm
  • the numerical aperture (NA) of the objective lens 220 is 0.85.
  • the physical length of the shortest mark 125 in the mark rows 125 and 124 of this disc is 0.1115 ⁇ m.
  • the spot diameter is the same, about 0.39 ⁇ m, but the recording mark becomes relatively small and the mark interval becomes narrow, so that the reproduction resolution is deteriorated.
  • the amplitude of the reproduction signal when the recording mark is reproduced with the light beam decreases as the recording mark becomes shorter, and becomes zero at the limit of optical resolution.
  • the reciprocal of the recording mark period is called a spatial frequency, and the relationship between the spatial frequency and the signal amplitude is called OTF (Optical-Transfer-Function).
  • OTF Optical-Transfer-Function
  • the signal amplitude decreases almost linearly as the spatial frequency increases.
  • the limit frequency of reproduction at which the signal amplitude becomes zero is called OTF cut-off.
  • FIG. 23 is a graph showing the relationship between the OTF and the shortest recording mark in the case of a 25 GB recording capacity.
  • the spatial frequency of the shortest mark of the BD is about 80% with respect to the OTF cutoff, and is close to the OTF cutoff. It can also be seen that the amplitude of the reproduction signal of the shortest mark is very small, about 10% of the maximum detectable amplitude.
  • the recording capacity in the BD corresponds to about 31 GB.
  • the resolution of the laser may be limited or exceeded, and the reproduction amplitude of the reproduction signal becomes small. This is a region where the S / N ratio deteriorates rapidly.
  • the recording linear density of the high recording density optical disc in FIG. 21B is the case where the frequency of the shortest mark of the reproduced signal is near the OTF cutoff frequency (below the OTF cutoff frequency but not significantly lower than the OTF cutoff frequency). In this case, it can be assumed that the frequency is higher than the OTF cutoff frequency.
  • FIG. 24 is a graph showing an example of the relationship between the signal amplitude and the spatial frequency when the spatial frequency of the shortest mark (2T) is higher than the OTF cutoff frequency and the amplitude of the 2T reproduction signal is 0. It is.
  • the 2T spatial frequency of the shortest mark length is 1.12 times the OTF cutoff frequency.
  • the SN ratio deterioration due to the multilayer information recording layer may be unacceptable from the viewpoint of the system margin.
  • the S / N ratio deterioration becomes remarkable when the frequency of the shortest recording mark exceeds the OTF cutoff frequency.
  • the recording density is described by comparing the frequency of the reproduction signal of the shortest mark with the OTF cutoff frequency. However, when the density is further increased, the next shortest mark (and the shortest one after another). Based on the same principle as described above, the recording density (recording line density, recording capacity) corresponding to the frequency of the reproduction signal of the mark (and the recording mark more than the next shortest mark) and the OTF cutoff frequency is used. May be set.
  • the recording capacity per layer when the spatial frequency of the shortest mark is equal to or higher than the OTF cutoff frequency is, for example, approximately 32 GB (for example, 32.0 GB ⁇ 0.5 GB or 32 GB ⁇ 1 GB) or more, or more Approximately 33 GB (for example, 33.0 GB ⁇ 0.5 GB, or 33 GB ⁇ 1 GB) or more, or approximately 33.3 GB (for example, 33.3 GB ⁇ 0.5 GB, or 33.3 GB ⁇ 1 GB) or more Or approximately 33.4 GB (for example, 33.4 GB ⁇ 0.5 GB, or 33.4 GB ⁇ 1 GB) or more, or approximately 34 GB (for example, 34.0 GB ⁇ 0.5 GB, or 34 GB ⁇ 1 GB), or more More than or approximately 35 GB (for example, 35.0 GB ⁇ 0.5 GB, or 35 GB ⁇ 1 GB or the like) or more.
  • 35 GB for example, 35.0 GB ⁇ 0.5
  • the recording density is about 33.3 GB
  • a recording capacity of about 100 GB (99.9 GB) can be realized with three layers
  • a recording capacity of 100 GB or more (100.2 GB) with three layers is achieved. realizable.
  • the recording density is 33 GB
  • 33 ⁇ 3 99 GB and the difference from 100 GB is 1 GB (1 GB or less)
  • 34 ⁇ 3 102 GB and the difference from 100 GB is 2 GB (2 GB or less)
  • the choice of whether the disk configuration is a four-layer structure of 25 GB per layer or a three-layer structure of 33 to 34 GB per layer occurs.
  • Multi-layering is accompanied by a decrease in reproduction signal amplitude (deterioration of SN ratio) in each recording layer, influence of multi-layer stray light (signal from an adjacent recording layer), and the like. Therefore, by using a 33-34 GB three-layer disc instead of a 25 GB four-layer disc, the influence of such stray light is suppressed as much as possible, that is, with a smaller number of layers (three layers instead of four layers), about It becomes possible to realize 100 GB.
  • a disc manufacturer who wants to achieve about 100 GB while avoiding multi-layering as much as possible can select three layers of 33 to 34 GB.
  • a disc manufacturer who wants to realize about 100 GB with the conventional format (recording density 25 GB) can select 25 GB of four layers. In this manner, manufacturers having different purposes can realize the respective purposes by using different configurations, and can give a degree of freedom in designing the disc.
  • the recording density per layer is about 30 to 32 GB, a 3-layer disc does not reach 100 GB (about 90 to 96 GB), and a 4-layer disc can achieve 120 GB or more.
  • the recording density is about 32 GB, a recording capacity of about 128 GB can be realized with a four-layer disc.
  • the number 128 is also a numerical value that matches the power of 2 (2 to the 7th power), which is convenient for processing by a computer.
  • the reproduction characteristic for the shortest mark is not stricter.
  • a combination of a plurality of types of recording densities and the number of layers can be used for disc manufacturers.
  • design freedom For example, a manufacturer who wants to increase the capacity while suppressing the influence of multilayering is given an option to manufacture a three-layer disc of about 100 GB by making three layers of 33 to 34 GB, while suppressing the influence on the reproduction characteristics.
  • an option of manufacturing a four-layer disc of about 120 GB or more by forming four layers of 30 to 32 GB can be given.
  • the reproduction signal evaluation method of the present invention is based on the PRML signal processing method from the signal obtained by reproducing the data string from the information recording medium capable of recording the data string combining the mark and the space.
  • the length of the non-adjacent space being longer than the shortest space
  • the length of each of the shortest mark and the shortest space is 2T, and the shortest mark and the shortest space are adjacent to each other in the pattern 2.
  • the binary data is represented by “0” and “1”
  • the binary data is “x000110011x” or “x001100111x” (“x” is “0” or “1”).
  • the edge shift amount of the shortest mark is obtained from the calculated difference metric.
  • the length of each of the shortest mark and the shortest space is 2T, and the shortest mark and the shortest space are adjacent to each other in the pattern 2.
  • the binary data is represented by “0” and “1”
  • the binary data is “x110011000x” or “x111001100x” (where “x” is “0” or “1”).
  • the edge shift amount of the shortest mark is obtained from the calculated difference metric.
  • the information recording medium of the present invention is an information recording medium capable of recording a data string in which marks and spaces are combined, and the information recording medium has a track for recording the data string,
  • the reproduction signal of the information recording medium is evaluated using a predetermined method, and the predetermined method uses a PRML signal processing method to binarize the signal from the signal obtained by reproducing the data string from the information recording medium.
  • the difference metric is calculated by using the reproduction signal and the most probable first state transition sequence and second most probable second state transition sequence obtained based on the binarized signal and the reproduced signal
  • a difference calculating step wherein an amount of edge shift of the shortest mark in a pattern in which the shortest space is adjacent to the front or rear of the shortest mark is adjacent to the shortest mark and The length of the space not adjacent to the shortest space is longer than the first pattern, and the length of the mark adjacent to the shortest space and not adjacent to the shortest mark is longer than the shortest mark. It is characterized in that it is obtained from a difference metric calculated for one of the long second patterns.
  • the reproducing apparatus of the present invention is a reproducing apparatus for reproducing the information recording medium, and an irradiation unit for irradiating the track with laser light and a light receiving unit for receiving reflected light of the irradiated laser light And a reproducing unit that reproduces the data string based on the signal obtained by the light reception.
  • the recording apparatus of the present invention is a recording apparatus for recording information on the information recording medium, wherein the track is irradiated with a laser beam, a mark is formed on the track by the irradiation, And a recording unit for recording a data string in which marks and spaces between the marks are alternately arranged.
  • the reproduction signal evaluation method of the present invention is a method for evaluating a reproduction signal obtained from an information recording medium in which a data string in which marks and spaces are combined can be recorded, and a predetermined pattern is selected from the data string. And a recognition step for evaluating a reproduction signal corresponding to the recognized pattern.
  • the recognition step includes a first mark included in the data string, and the first mark.
  • the information recording medium of the present invention is an information recording medium capable of recording a data string in which marks and spaces are combined, and the information recording medium has a track for recording the data string,
  • the reproduction signal of the information recording medium is evaluated using a predetermined method.
  • the predetermined method includes a recognition step for recognizing a predetermined pattern from the data string, and evaluation of the reproduction signal corresponding to the recognized pattern.
  • the recognition step includes: a first mark included in the data string; a first space adjacent to the front or rear of the first mark; and the first mark.
  • Recognizing a pattern that is not adjacent and includes a second mark adjacent to the first space, and the length of each of the first space and the second mark is Recognizing whether a second space not adjacent to the first mark and adjacent to the second mark is longer than the predetermined length when the length is equal to or less than a predetermined length; It is characterized by including.
  • the reproducing apparatus of the present invention is a reproducing apparatus for reproducing the information recording medium, and an irradiation unit for irradiating the track with laser light and a light receiving unit for receiving reflected light of the irradiated laser light And a reproducing unit that reproduces the data string based on the signal obtained by the light reception.
  • the recording apparatus of the present invention is a recording apparatus for recording information on the information recording medium, wherein the track is irradiated with a laser beam, a mark is formed on the track by the irradiation, And a recording unit for recording a data string in which marks and spaces between the marks are alternately arranged.
  • the reproduction signal evaluation method of the present invention is a method for evaluating a reproduction signal obtained from an information recording medium in which a data string in which marks and spaces are combined can be recorded, and a predetermined pattern is selected from the data string. And a recognition step for evaluating a reproduction signal corresponding to the recognized pattern.
  • the recognition step includes a first mark included in the data string, and the first mark. Recognizing a pattern including a first space adjacent to the front or rear of the first space and a third space not adjacent to the first space and adjacent to the first mark; and When the length of each of the mark and the third space is equal to or less than a predetermined length, the third marker is not adjacent to the first space and is adjacent to the third space.
  • Click characterized in that it comprises a step to recognize whether or not the one predetermined longer than the length.
  • the information recording medium of the present invention is an information recording medium capable of recording a data string in which marks and spaces are combined, and the information recording medium has a track for recording the data string,
  • the reproduction signal of the information recording medium is evaluated using a predetermined method.
  • the predetermined method includes a recognition step for recognizing a predetermined pattern from the data string, and evaluation of the reproduction signal corresponding to the recognized pattern.
  • the recognition step includes: a first mark included in the data string; a first space adjacent to the front or rear of the first mark; and the first space.
  • the reproducing apparatus of the present invention is a reproducing apparatus for reproducing the information recording medium, and an irradiation unit for irradiating the track with laser light and a light receiving unit for receiving reflected light of the irradiated laser light And a reproducing unit that reproduces the data string based on the signal obtained by the light reception.
  • the recording apparatus of the present invention is a recording apparatus for recording information on the information recording medium, wherein the track is irradiated with a laser beam, a mark is formed on the track by the irradiation, And a recording unit for recording a data string in which marks and spaces between the marks are alternately arranged.
  • the reproduction signal evaluation method of the present invention generates a binarized signal using a PRML signal processing method from a signal obtained by reproducing the data string in an information recording medium having a data string in which marks and spaces are alternately arranged.
  • a signal evaluation method for evaluating the certainty of the binarized signal comprising: a first state transition sequence most likely from the binarized signal; and a second state transition sequence most likely to be second.
  • the classification for each data pattern includes the length of the first mark included in the data string and the first space located adjacent to the front or rear of the first mark.
  • the information recording medium by further classifying according to the length of the second mark that is not adjacent to the first mark but adjacent to the first space. It is characterized by evaluating signal quality.
  • the classification based on the length of the second mark is performed only when the length of the first space is a predetermined length or less.
  • the data pattern in the classification of the data pattern, is further classified according to the length of a second space located adjacent to the second mark, not adjacent to the first mark and the first space. To do.
  • the classification based on the length of the second space is performed only when the length of the second mark is equal to or less than the predetermined length.
  • the reproduction signal evaluation method of the present invention generates a binarized signal using a PRML signal processing method from a signal obtained by reproducing the data string in an information recording medium having a data string in which marks and spaces are alternately arranged.
  • a signal evaluation method for evaluating the certainty of the binarized signal comprising: a first state transition sequence most likely from the binarized signal; and a second state transition sequence most likely to be second.
  • the classification for each data pattern includes the length of the first mark included in the data string and the first space located adjacent to the front or rear of the first mark. And further classifying according to the length of the third space located adjacent to the first mark, not adjacent to the first space, thereby reproducing the information recording medium. It is characterized by evaluating signal quality.
  • the classification by the length of the third space is performed only when the length of the first mark is equal to or less than the predetermined length.
  • the data pattern in the classification of the data pattern, is further classified by the length of a third mark that is not adjacent to the first space and adjacent to the third space. To do.
  • the classification by the length of the third mark is performed only when the length of the third space is equal to or less than the predetermined length.
  • the predetermined length is the shortest mark length of the data string.
  • the information reproducing apparatus of the present invention generates a binarized signal using a PRML signal processing method from a signal obtained by reproducing the data sequence in an information recording medium having a data sequence in which marks and spaces are alternately arranged.
  • An information reproducing apparatus for evaluating the certainty of the binarized signal comprising: reproducing the first state transition sequence most likely from the binarized signal and the second state transition sequence most likely to be second
  • a differential metric calculation unit that calculates a differential metric that is a difference from the signal
  • a pattern detection unit that classifies the differential metric into a plurality of data patterns including at least one mark and at least one space.
  • the classification for each data pattern is based on the length of the first mark included in the data string and the first space located adjacent to the front or rear of the first mark.
  • Information recording by further classifying according to the length of the second mark that is not adjacent to the first mark but adjacent to the first space.
  • the reproduction signal quality of the medium is evaluated.
  • the classification based on the length of the second mark is performed only when the length of the first space is a predetermined length or less.
  • the data pattern in the classification of the data pattern, is further classified according to the length of a second space located adjacent to the second mark, not adjacent to the first mark and the first space. To do.
  • the classification based on the length of the second space is performed only when the length of the second mark is equal to or less than the predetermined length.
  • the information reproducing apparatus of the present invention generates a binarized signal using a PRML signal processing method from a signal obtained by reproducing the data sequence in an information recording medium having a data sequence in which marks and spaces are alternately arranged.
  • An information reproducing apparatus for evaluating the certainty of the binarized signal comprising: reproducing the first state transition sequence most likely from the binarized signal and the second state transition sequence most likely to be second
  • a differential metric calculation unit that calculates a differential metric that is a difference from the signal
  • a pattern detection unit that classifies the differential metric into a plurality of data patterns including at least one mark and at least one space.
  • the classification for each data pattern is based on the length of the first mark included in the data string and the first space located adjacent to the front or rear of the first mark. Information recording by further classifying according to the length of the third space not adjacent to the first space but adjacent to the first mark. The reproduction signal quality of the medium is evaluated.
  • the classification by the length of the third space is performed only when the length of the first mark is equal to or less than the predetermined length.
  • the data pattern in the classification of the data pattern, is further classified by the length of a third mark that is not adjacent to the first space and adjacent to the third space. To do.
  • the classification by the length of the third mark is performed only when the length of the third space is equal to or less than the predetermined length.
  • the predetermined length is the shortest mark length of the data string.
  • the present invention is particularly useful in the technical field of performing signal processing using the maximum likelihood decoding method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Probability & Statistics with Applications (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Signal Processing For Digital Recording And Reproducing (AREA)

Abstract

 本発明の再生信号評価方法は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体より、データ列を再生して得られる信号から、PRML信号処理方式を用いて2値化信号を生成するステップと、2値化信号に基づいて得られた最も確からしい第1の状態遷移列および2番目に確からしい第2の状態遷移列と、再生信号とを用いて差分メトリックを算出する差分算出ステップとを包含する。最短マークの前方または後方に最短スペースが隣接するパターンにおける、最短マークのエッジズレ量は、最短マークに隣接し且つ最短スペースには隣接しないスペースの長さが、最短スペースよりも長い第1のパターンと、最短スペースに隣接し且つ最短マークには隣接しないマークの長さが、最短マークよりも長い第2のパターンとの一方のパターンに対して算出した差分メトリックから得る。

Description

再生信号評価方法、情報記録媒体、再生装置、記録装置
 本発明は、最尤復号を用いた信号処理方法および、最尤復号を用いて情報記録媒体を評価する方法に関するものである。
 近年、情報記録媒体の高密度化により、記録マークの最短マーク長が検出系に依存する分解能の限界に近づいている。
 例えば、情報記録媒体が光ディスク媒体である場合では、検出系に依存する分解能とはレーザ光を集光した光スポットの大きさによる光学的な分解能を指す。
 その分解能の限界のため、符号間干渉の増大およびSNR(Signal Noise Ratio)の劣化がより顕著となり、信号処理方法として、PRML(Partial Response Maximum Likelihood)方式等を用いることが一般的になりつつある。
 PRML方式は、パーシャルレスポンス(PR)と最尤復号(ML)とを組み合わせた技術であり、既知の符号間干渉が起こることを前提に再生波形から最も確からしい信号系列を選択する方式である。
 このため、従来のレベル判定方式よりも復号性能が向上することが知られている(例えば、非特許文献1)。
 一方、信号処理方式がレベル判定方式からPRML方式へ移行することで、再生信号の評価方法に課題が出てきた。
 従来から用いられてきた再生信号評価指標であるジッターは、レベル判定方式の信号処理を前提とするため、レベル判定とは信号処理のアルゴリズムが異なるPRML方式の復号性能との相関がない場合が出てきた。
 そこで、PRML方式の復号性能と相関のある新たな指標が提案されている(例えば、特許文献1および特許文献2)。
 ここで、記録再生品質が図25に示すような分布となって検出された場合を考える。
 図25の分布は、3Tという長さのマークと、2T,3T,4T,5Tという長さのスペースで4つに分類した差分メトリックの分布と、それらの合計の分布を表している。Tはチャネルクロックを表している。
 図25は例として3T長さのみを分類しているが、本来は3T以外の長さのマークに対しても分類を行なう。
 図25(a)に示すように、マーク長さとスペース長さで分類しても全ての組み合わせで分布の幅にあたるSN成分が支配的である場合と、図25(b)に示すようにマーク長さとスペース長さで分類すると、パターンごとでのSN成分は良いが、分布の中心からのずれにあたるシフト成分がパターンごとに異なっており、それぞれの分布を合計するとSN成分が悪いかのように見えている場合が存在する。
 特許文献1の指標では、差分メトリックの分布がSN成分によるものか、シフト成分によるものかを切り分けることができなかった。
 この課題を解決したのが、特許文献3である。
 特許文献3で提案されている指標は、マーク長さとスペース長さの組み合わせによって、マークとスペースの位置ずれ(エッジずれ)を検出することができる。
 つまり、特許文献1に提案されている指標で求められた記録再生品質を、SN成分とシフト成分とに切り分けることができる。
 このSN成分とシフト成分の切り分けにより、どのパターンでどのようなエラーが起こっているかを解析することが可能となった。
 先に述べたように、情報記録媒体の高密度化がさらに進むと、符号間干渉およびSN劣化がさらに問題となる。
 情報記録再生装置のシステムマージンを維持するためには、PRML方式を高次の方式にすることで対応可能と非特許文献1に記載されている。
 例えば、12cmの光ディスク媒体の記録層1層当たりの記録容量が25GBの場合では、PR1221ML方式を採用することで、システムマージンを維持することができた。
 しかし、1層当たりの記録容量が33.3GBの場合では、PR12221ML方式を採用する必要があることが説明されている。
特開2003-141823号公報 特開2004-213862号公報 特開2004-335079号公報
図解 ブルーレイディスク読本 オーム社 適応信号処理アルゴリズム 培風館
 特許文献3には、情報記録媒体の記録再生品質を表す、1つのマークと1つのスペースの組み合わせによる位置ずれ(エッジずれ)を検出することができる指標が提案されている。
 しかしながら、情報記録媒体が高密度化すると、検出系の分解能よりも極端に短いマークやスペースが現れるため、1つずつ以上のマークとスペースの組み合わせによる複数のエッジを含んだ位置ずれを考慮する必要がある。
 以下、複数のエッジを含んだ位置ずれについて説明する。
 例えば、405nmの波長を有する青色レーザを用いた12cmの光ディスク媒体で説明する。
 非特許文献1によれば、青色レーザを用いた光ディスク媒体で、レーザ光を集光させた光スポットサイズは390nmであり、記録符号にRLL(1,7)を用いた記録層1層当たりの記録容量が25GBの場合、最短マークの長さは149nmとなる。
 また、この光ディスク媒体で、1層当たりの記録容量を33.3GBとした場合、最短マークの長さは112nmとなる。更なる高密度化を測ろうとすれば、さらに最短マークの長さは短くなる。
 同じ検出系を使用した場合、図26(a)に示すように、記録容量25GBでは、光スポット201の中に最短マーク2.6個分が入る大きさであったものが、図26(b)に示すように、記録容量33.3GBでは、光スポット201の中に最短マーク3.5個分入る大きさとなり、光ディスク媒体の検出系となる光スポットサイズに対してのマークの長さが短くなる。
 このため、光スポットサイズに入ってくるマークとスペースの組み合わせが、マークとスペースが1つずつのパターンだけでなく、複数のマークとスペースを有するパターンとなるものもある。
 故に、光スポットサイズに入ってくるマークとスペースの数によって、複数のエッジを含んだ位置ずれの影響を受けた信号が検出されることになる。
 例えば、図27(a)に示すように、2つのスペースに挟まれた1つのマークのパターンと、図27(b)に示すように、2つのマークに挟まれた1つのスペースのパターンでは、2つのエッジを含んでいる。また、図27(c)に示すように2つのマークと2つのスペースを含むパターンでは、3つのエッジを含んでいる。
 特許文献3に記載されている情報記録媒体の記録再生品質の評価指標は、マーク長さとスペース長さの組み合わせによる1つのエッジずれを含む場合のみについて考慮したものとなっており、複数のエッジを有する位置ずれについての記録再生品質を評価することが考慮されていない。
 また、非特許文献1に、前述の青色レーザを用いた12cmの光ディスク媒体で、1層当たりの記録容量を33.3GBにし、PR12221ML方式を採用する必要があることが記載されており、特許文献3には、PR12221MLについても適用が可能と記載されている。
 記録符号にRLL(1,7)を用いた光ディスク媒体に、PR12221MLを用いた場合、最短マークが連続し、最も確からしい状態遷移列と2番目に確からしい状態遷移列という2つの理想的な信号のユークリッド距離の2乗が12となるパターンが存在する。
 このユークリッド距離の2乗が12となるパターンの詳細については、本明細書内にて後述する。
 上記のユークリッド距離の2乗が12となるパターンでは、最短マークが含まれており、図27のように複数のエッジを含むパターンとして検出される。
 しかしながら、PRML信号処理によって検出された複数のエッジずれ情報を含む検出信号を指標化することは可能だが、それぞれのエッジがどのようにずれているかを指標化することについて考慮されていない。
 本発明は上記従来の課題を解決するものであり、高密度化した情報記録媒体の記録マークの符号間干渉や、情報記録媒体に情報が記録された際の熱干渉による様々な位置ずれについて、複数のエッジを含む検出信号をパターンごとに分類し指標化することで、記録再生品質を評価する方法と装置を提供することを目的とする。
 本発明の再生信号評価方法は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体より、前記データ列を再生して得られる信号から、PRML信号処理方式を用いて2値化信号を生成するステップと、前記2値化信号に基づいて得られた最も確からしい第1の状態遷移列および2番目に確からしい第2の状態遷移列と、再生信号とを用いて差分メトリックを算出する差分算出ステップとを包含し、最短マークの前方または後方に最短スペースが隣接するパターンにおける、前記最短マークのエッジズレ量は、前記最短マークに隣接し且つ前記最短スペースには隣接しないスペースの長さが、前記最短スペースよりも長い第1のパターンと、前記最短スペースに隣接し且つ前記最短マークには隣接しないマークの長さが、前記最短マークよりも長い第2のパターンとの一方のパターンに対して算出した差分メトリックから得ることを特徴とする。
 ある実施形態によれば、前記データ列の基準周期をTとしたとき、前記最短マークおよび前記最短スペースのそれぞれの長さは2Tであり、前記最短マークと前記最短スペースとが隣接するパターンの2値化データを“0”と“1”とで表したとき、前記2値化データが「x000110011x」または「x001100111x」(“x”は、“0”または”1”)となるパターンに対して算出した差分メトリックから前記最短マークのエッジズレ量を得る。
 ある実施形態によれば、前記データ列の基準周期をTとしたとき、前記最短マークおよび前記最短スペースのそれぞれの長さは2Tであり、前記最短マークと前記最短スペースとが隣接するパターンの2値化データを“0”と“1”とで表したとき、前記2値化データが「x110011000x」または「x111001100x」(“x”は、“0”または“1”)となるパターンに対して算出した差分メトリックから前記最短マークのエッジズレ量を得る。
 本発明の情報記録媒体は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体であって、前記情報記録媒体は、前記データ列を記録するためのトラックを有し、前記情報記録媒体の再生信号は所定の方法を用いて評価され、前記所定の方法は、前記情報記録媒体より前記データ列を再生して得られる信号から、PRML信号処理方式を用いて2値化信号を生成するステップと、前記2値化信号に基づいて得られた最も確からしい第1の状態遷移列および2番目に確からしい第2の状態遷移列と、再生信号とを用いて差分メトリックを算出する差分算出ステップとを包含し、最短マークの前方または後方に最短スペースが隣接するパターンにおける、前記最短マークのエッジズレ量は、前記最短マークに隣接し且つ前記最短スペースには隣接しないスペースの長さが、前記最短スペースよりも長い第1のパターンと、前記最短スペースに隣接し且つ前記最短マークには隣接しないマークの長さが、前記最短マークよりも長い第2のパターンとの一方のパターンに対して算出した差分メトリックから得ることを特徴とする。
 本発明の再生装置は、前記情報記録媒体を再生するための再生装置であって、前記トラックにレーザ光を照射する照射部と、前記照射されたレーザ光の反射光を受光する受光部と、前記受光により得られた信号に基づいて前記データ列を再生する再生部とを備える。
 本発明の記録装置は、前記情報記録媒体に情報を記録するための記録装置であって、前記トラックにレーザ光を照射する照射部と、前記照射により前記トラックにマークを形成し、前記マークと前記マーク間のスペースとが交互に並べられたデータ列を記録する記録部とを備える。
 本発明の再生信号評価方法は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体から得られた再生信号を評価する方法であって、前記データ列の中から所定のパターンを認識する認識ステップと、前記認識されたパターンに対応した再生信号の評価を行う評価ステップとを包含し、前記認識ステップは、前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のマークには隣接せず且つ前記第1のスペースに隣接する第2のマークとを含むパターンを認識するステップと、前記第1のスペースおよび前記第2のマークのそれぞれの長さが所定の長さ以下である場合に、前記第1のマークには隣接せず且つ前記第2のマークに隣接する第2のスペースが、前記所定の長さよりも長いか否かを認識するステップとを含むことを特徴とする。
 本発明の情報記録媒体は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体であって、前記情報記録媒体は、前記データ列を記録するためのトラックを有し、前記情報記録媒体の再生信号は所定の方法を用いて評価され、前記所定の方法は、前記データ列の中から所定のパターンを認識する認識ステップと、前記認識されたパターンに対応した再生信号の評価を行う評価ステップとを包含し、前記認識ステップは、前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のマークには隣接せず且つ前記第1のスペースに隣接する第2のマークとを含むパターンを認識するステップと、前記第1のスペースおよび前記第2のマークのそれぞれの長さが所定の長さ以下である場合に、前記第1のマークには隣接せず且つ前記第2のマークに隣接する第2のスペースが、前記所定の長さよりも長いか否かを認識するステップとを含むことを特徴とする。
 本発明の再生装置は、前記情報記録媒体を再生するための再生装置であって、前記トラックにレーザ光を照射する照射部と、前記照射されたレーザ光の反射光を受光する受光部と、前記受光により得られた信号に基づいて前記データ列を再生する再生部とを備える。
 本発明の記録装置は、前記情報記録媒体に情報を記録するための記録装置であって、前記トラックにレーザ光を照射する照射部と、前記照射により前記トラックにマークを形成し、前記マークと前記マーク間のスペースとが交互に並べられたデータ列を記録する記録部とを備える。
 本発明の再生信号評価方法は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体から得られた再生信号を評価する方法であって、前記データ列の中から所定のパターンを認識する認識ステップと、前記認識されたパターンに対応した再生信号の評価を行う評価ステップとを包含し、前記認識ステップは、前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のスペースには隣接せず且つ前記第1のマークに隣接する第3のスペースとを含むパターンを認識するステップと、前記第1のマークおよび前記第3のスペースのそれぞれの長さが所定の長さ以下である場合に、前記第1のスペースには隣接せず且つ前記第3のスペースに隣接する第3のマークが、前記所定の長さよりも長いか否かを認識するステップとを含むことを特徴とする。
 本発明の情報記録媒体は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体であって、前記情報記録媒体は、前記データ列を記録するためのトラックを有し、前記情報記録媒体の再生信号は所定の方法を用いて評価され、前記所定の方法は、前記データ列の中から所定のパターンを認識する認識ステップと、前記認識されたパターンに対応した再生信号の評価を行う評価ステップとを包含し、前記認識ステップは、前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のスペースには隣接せず且つ前記第1のマークに隣接する第3のスペースとを含むパターンを認識するステップと、前記第1のマークおよび前記第3のスペースのそれぞれの長さが所定の長さ以下である場合に、前記第1のスペースには隣接せず且つ前記第3のスペースに隣接する第3のマークが、前記所定の長さよりも長いか否かを認識するステップとを含むことを特徴とする。
 本発明の再生装置は、前記情報記録媒体を再生するための再生装置であって、前記トラックにレーザ光を照射する照射部と、前記照射されたレーザ光の反射光を受光する受光部と、前記受光により得られた信号に基づいて前記データ列を再生する再生部とを備える。
 本発明の記録装置は、前記情報記録媒体に情報を記録するための記録装置であって、前記トラックにレーザ光を照射する照射部と、前記照射により前記トラックにマークを形成し、前記マークと前記マーク間のスペースとが交互に並べられたデータ列を記録する記録部とを備える。
 本発明によれば、2T連続パターンである2T/2T部分の最短マークのエッジのズレ量を、2T/2T部分の前または後ろに3T以上の長さのマークまたはスペースを含むパターンの差分メトリックを算出することにより得る。これにより、2T/2T部分の信号振幅変動が十分に得られない場合でも、2T/2T部分の最短マークのエッジのズレ量を検出することができる。
 本発明によれば、マークとスペースが交互に並べられたデータ列を有する情報記録媒体において、前記データ列を再生した信号からPRML信号処理方式を用いて2値化信号を生成し、前記2値化信号の確かさを評価する信号評価方法であって、前記2値化信号から最も確からしい第1の状態遷移列と2番目に確からしい第2の状態遷移列との、再生信号との差である差分メトリックを算出し、前記差分メトリックを、少なくとも1つのマークと、少なくとも1つのスペースを含んだ、複数のデータパターンごとに分類し、前記データパターンごとの分類は、前記データ列に含まれる第1のマークの長さと、前記第1のマークの前または後ろに隣接して位置する第1のスペースの長さとの組み合わせを用いて分類し、前記第1のマークには隣接せず、前記第1のスペースに隣接して位置する第2のマークの長さによってさらに分類することで、情報記録媒体の再生信号品質を評価することが可能となり、少なくとも1つ以上のエッジを含むデータパターンごとのエッジずれを指標化することが可能となる。
 また本発明によれば、マークとスペースが交互に並べられたデータ列を有する情報記録媒体において、前記データ列を再生した信号からPRML信号処理方式を用いて2値化信号を生成し、前記2値化信号の確かさを評価する信号評価方法であって、前記2値化信号から最も確からしい第1の状態遷移列と2番目に確からしい第2の状態遷移列との、再生信号との差である差分メトリックを算出し、前記差分メトリックを、少なくとも1つのマークと、少なくとも1つのスペースを含んだ、複数のデータパターンごとに分類し、前記データパターンごとの分類は、前記データ列に含まれる第1のマークの長さと、前記第1のマークの前または後ろに隣接して位置する第1のスペースの長さとの組み合わせを用いて分類し、前記第1のスペースには隣接せず、前記第1のマークに隣接して位置する第3のスペースの長さによってさらに分類することで、情報記録媒体の再生信号品質を評価することが可能となり、少なくとも1つ以上のエッジを含むデータパターンごとのエッジずれを指標化することが可能となる。
本発明の実施形態による光ディスク装置を示す図である。 本発明の実施形態によるRLL(1,7)記録符号と等化方式PR(1,2,2,2,1)とから定まる状態遷移則を示す図である。 図2に示す状態遷移則に対応するトレリス図である。 本発明の実施形態による表1に示すPR等化理想波形を示す図である。 本発明の実施形態による表2に示すPR等化理想波形を示す図である。 本発明の実施形態による表3に示すPR等化理想波形を示す図である。 本発明の実施形態によるPR(1,2,2,2,1)MLの検出パターン14の差分メトリックの詳細パターンごとの分類を示す図である。 本発明の実施形態によるPR(1,2,2,2,1)MLの検出パターン12Aの差分メトリックの詳細パターンごとの分類を示す図である。 本発明の実施形態によるPR(1,2,2,2,1)MLの検出パターン12Bの差分メトリックの詳細パターンごとの分類を示す図である。 本発明の実施形態によるPR(1,2,2,2,1)MLの差分メトリックの分布を示す図である。 本発明の実施形態によるPR(1,2,2,2,1)MLの各ユークリッド距離パターンにおける差分メトリックの分布を示す図である。 本発明の実施形態による表1に示す検出パターン14のPR等化理想波形、再生波形とマークのズレとの相関の一例を示す図である。 本発明の実施形態による表2に示す検出パターン12AのPR等化理想波形、再生波形とマークのズレとの相関の一例を示す図である。 本発明の実施形態による表1に示す検出パターン12BのPR等化理想波形、再生波形とマークのズレとの相関の一例を示す図である。 本発明の実施形態による多層ディスクの構成例を示す図である。 本発明の実施形態による単層ディスクの構成例を示す図である。 本発明の実施形態による二層ディスクの構成例を示す図である。 本発明の実施形態による三層ディスクの構成例を示す図である。 本発明の実施形態による四層ディスクの構成例を示す図である。 本発明の実施形態による光ディスクの物理的構成を示す図である。 (a)は本発明の実施形態による25GBのBDの例を示す図であり、(b)は本発明の実施形態による25GBのBDよりも高記録密度の光ディスクの例を示す図である。 本発明の実施形態によるトラック上に記録されたマーク列に光ビームを照射させている様子を示す図である。 本発明の実施形態による25GB記録容量の場合のOTFと最短記録マークの関係を示す図である。 本発明の実施形態による最短マーク(2T)の空間周波数がOTFカットオフ周波数よりも高く、かつ、2Tの再生信号の振幅が0になっている例を示す図である。 パターンごとの差分メトリックの分布の一例を示す図である。 光スポットサイズとマーク長さとの関係の一例を示す図である。 光スポットサイズと複数のエッジを含むパターンとの関係の一例を示す図である。
 以下、図面を参照しながら本発明の実施形態を説明する。同様の構成要素には同様の参照符号を付し、同様の説明の繰り返しは省略する。
 本発明の実施形態によるPRML方式を用いた光ディスク装置(信号評価装置)について図1を用いて説明する。光ディスク装置は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体より、そのデータ列を再生して得られる信号の評価を、PRML信号処理方式を用いて行う。光ディスク装置において、再生系の信号処理にPR12221ML方式を採用し、記録符号にRLL(1,7)符号等のRLL(Run Length Limited)符号を用いる。まず、図2および図3を参照して、PR12221MLを簡単に説明する。図2は、RLL(1,7)記録符号と等化方式PR(1,2,2,2,1)とから定まる状態遷移則を示す状態遷移図である。図3は、図2に示す状態遷移則に対応するトレリス図である。
 PR12221MLとRLL(1,7)との組み合わせにより、復号部の状態数は10に制限され、その状態遷移のパス数は16になり、再生レベルは9レベルとなる。
 図2に示すPR122221MLの状態遷移則を参照して、ある時刻での状態S(0,0,0,0)をS0、状態S(0,0,0,1)をS1、状態S(0,0,1,1)をS2、状態S(0,1,1,1)をS3、状態S(1,1,1,1)をS4、状態S(1,1,1,0)をS5、状態S(1,1,0,0)をS6、状態S(1,0,0,0)をS7、状態S(1,0,0,1)をS8、状態S(0,1,1,0)をS9というように表記し、10状態を表現する。ここで、括弧の中に記載されている“0”または“1”は、時間軸上の信号系列を示し、ある状態から次の時刻の状態遷移でどの状態になる可能性があるのかを示している。また、この状態遷移図を時間軸に沿って展開すると図3に示すトレリス図が得られる。
 図3に示すPR12221MLの状態遷移において、ある時刻の所定の状態から別の時刻の所定の状態へ遷移するときに2つの状態遷移を取り得るような状態遷移列パターン(状態の組み合わせ)が無数にある。しかしながらエラーを引き起こす可能性が高いパターンは、判別が難しい特定のパターンに限定される。この特にエラーの発生しやすいパターンに着目すると、PR12221MLの状態遷移列パターンは、表1、表2および表3に示すようにまとめることができる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~表3の第1番目の列は、エラーを起こしやすい2つの状態遷移が分岐して再合流する状態遷移(Smk-9→Snk)を表す。
 第2番目の列は、この状態遷移を発生する遷移データ列(bk-i,・・・,bk)を表す。
 復調データ列中のXは、これらのデータの中でエラーを起こす可能性が高いビットを示しており、この状態遷移がエラーと判定された際に、このX数(!Xも同様)がエラー数となる。
 遷移データ列の中で、Xが1もしくは0となった一方が、最も確からしい第1の状態遷移列に対応し、もう一方が2番目に確からしい第2の状態遷移列に対応する。
 表2および表3において、!XはXのビット反転を表している。
 ビタビ復号部が復調を行った復調データ列の中から、この遷移データ列と比較(XはDon't care)を行うことでエラーを起こしやすい最も確からしい第1の状態遷移列と2番目に確からしい第2の状態遷移列を抽出することができる。
 3番目の列は、第1の状態遷移列および第2の状態遷移列を表している。
 4番目の列は、それぞれの状態遷移を経由した場合の2つの理想的な再生波形(PR等価理想値)を示しており、5番目の列は、この2つの理想信号のユークリッド距離の2乗(パス間のユークリッド距離)を示している。
 表1は、2つの状態遷移を取り得る状態遷移パターンのユークリッド距離の2乗が14となる状態遷移パターンを示し、18種類ある。
 これらのパターンは、光ディスク媒体のマークとスペースの切り替わり部分(波形のエッジ部分)に該当する。
 言い換えると、エッジの1ビットシフトエラーのパターンである。
 一例として、図3に示す状態遷移則におけるS0(k-5)からS6(k)に到る状態遷移パスを説明する。
 この場合、記録系列が“0,0,0,0,1,1,1,0,0”と遷移する1つのパスが検出され、再生データの“0”をスペース部分、“1”をマーク部分に置き換えて考えると、4Tスペース以上の長さのスペース、3Tマーク、2Tスペース以上の長さのスペースに該当する。
 図4は、表1に示す上記記録系列のPR等化理想波形の一例を示す図である。上記示した記録系列のPR等化理想波形を図4のAパス波形として示す。
 同様に、図5は、表2で示すPR等化理想波形の一例を示す図である。
 図6は、表3で示すPR等化理想波形の一例を示す図である。
 図4、図5および図6において、横軸はサンプル時間(記録系列の1時刻ごとにサンプリング)を示し、縦軸は再生信号レベルを示している。
 上述したように、PR12221MLでは、理想的な再生信号レベルは9レベル(0レベルから8レベル)ある。
 図3に示す状態遷移則におけるS0(k-5)からS6(k)に到る状態遷移パスのうちのもう1つのパスの記録系列の遷移“0,0,0,0,0,1,1,0,0”は、再生データの“0”をスペース部分、“1”をマーク部分に置き換えて考えると、5Tスペース以上の長さのスペース、2Tマーク、2Tスペース以上の長さのスペースに該当する。
 そのパスのPR等価理想波形を図4にBパス波形として示す。
 表1に示すユークリッド距離の2乗が14のパターンの特徴は、エッジ情報が必ず1つ含まれている点が特徴である。
 表2は、ユークリッド距離の2乗が12となる状態遷移パターンを示し、18種類ある。
 これらのパターンは、2Tマークまたは2Tスペースのシフトエラーに該当し、2ビットエラーのパターンである。
 一例として、図3で示す状態遷移則におけるS0(k-7)からS0(k)に到る状態遷移パスを説明する。
 この場合、記録系列が“0,0,0,0,1,1,0,0,0,0,0”と遷移する1つのパスが検出され、再生データの“0”をスペース部分、“1”をマーク部分に置き換えて考えると、4Tスペース以上の長さのスペース、2Tマーク、5Tスペース以上の長さのスペースに該当する。
 そのパスのPR等価理想波形を図5にAパス波形として示す。
 もう1つのパスの記録系列の遷移“0,0,0,0,0,1,1,0,0,0,0”は、再生データの“0”をスペース部分、“1”をマーク部分に置き換えて考えると、5Tスペース以上の長さのスペース、2Tマーク、4Tスペース以上の長さのスペースに該当する。
 そのパスのPR等価理想波形を図5にBパス波形として示す。
 表2に示すユークリッド距離の2乗が12パターンの特徴は、2Tの立ち上がりおよび立ち下りのエッジ情報が必ず2つ含まれていることである。
 表3は、もう一種類のユークリッド距離の2乗が12となる状態遷移列パターンを示し、18種類ある。
 これらのパターンは、2Tマークと2Tスペースとが連続する箇所に該当し、3ビットエラーのパターンである。
 一例として、図3で示す状態遷移則におけるS0(k-9)からS6(k)に到る状態遷移パスを説明する。
 この場合、記録系列が“0,0,0,0,1,1,0,0,1,1,1,0,0”と遷移する1つのパスが検出され、再生データの“0”をスペース部分、“1”をマーク部分に置き換えて考えると、4Tスペース以上の長さのスペース、2Tマーク、2Tスペース、3Tマーク、2Tスペース以上の長さのスペースに該当する。
 そのパスのPR等価理想波形を図6にAパス波形として示す。
 もう1つのパスの記録系列の遷移“0,0,0,0,0,1,1,0,0,1,1,0,0”は、再生データの“0”をスペース部分、“1”をマーク部分に置き換えて考えると、5Tスペース以上の長さのスペース、2Tマーク、2Tスペース、2Tマーク、2Tスペース以上の長さのスペースに該当する。
 そのパスのPR等価理想波形を図6にBパス波形として示す。
 表3に示すユークリッド距離の2乗が12のパターンの特徴は、エッジ情報が少なくとも3つ含まれていることである。
 状態遷移列パターンが、2T連続パターンである2T/2T(「最短マーク/最短スペース」または「最短スペース/最短マーク」)を含む場合でも、1層当たりの記録容量が25GBでは、エッジ判別が十分可能な程度の信号振幅変動が得られていた。しかし、1層当たりの記録容量が33.3GB以上となるような高密度の記録層になると、図6からわかるように、2T/2T部分では波形がほぼフラットになり、十分な信号振幅変動が得られないことが分かった。しかし本願発明者らが研究を重ねた結果、2T/2T部分の最短マークのエッジのズレ量を算出するためには、この2T/2Tの前または後ろに3T以上の長さのマークまたはスペースを含むパターンを用いて、差分メトリックを算出するのが有効であることを見出した。このようなパターンは、
 「最短マーク/最短スペース/次最短以上のマーク」、
 または「次最短以上のスペース/最短マーク/最短スペース」、
 または「最短スペース/最短マーク/次最短以上のスペース」、
 または「次最短以上のマーク/最短スペース/最短マーク」
である。
 上記のパターンは、言い換えると、最短マークの前方または後方に最短スペースが隣接するパターンであって、その最短マークに隣接し且つその最短スペースには隣接しないスペースの長さが、最短スペースよりも長いパターンである。あるいは、最短マークの前方または後方に最短スペースが隣接するパターンであって、その最短スペースに隣接し且つその最短マークには隣接しないマークの長さが、最短マークよりも長いパターンである。このような本発明の特徴のさらなる詳細は、図14を参照しながら後述する。
 なお、本願明細書中において、“最短マーク”または“最短スペース”のことを単に“最短”と標記する場合がある。例えば、“最短/最短”と記載した場合は、“最短マーク”の後方に“最短スペース”が隣接していること、または“最短スペース”の後方に“最短マーク”が隣接していることを意味している。
 また、例えば「○/次最短以上/最短/最短/△」と記載した場合は、
 任意の長さのマーク(またはスペース)、
 次最短以上のスペース(またはマーク)、
 最短マーク(またはスペース)、
 最短スペース(またはマーク)、
 任意の長さのマーク(またはスペース)
が順に並んだデータ列を意味している。なお、“次最短”とは“最短”の次に長い長さを表しており、ここでは3Tである。例えば、“次最短以上のスペース”は、“3T以上の長さのスペース”を意味している。
 (実施形態1)
 次に、本発明の実施形態による光ディスク装置を説明する。
 図1は、本発明の第1の実施形態による光ディスク装置100を示す図である。
 光ディスク装置100は、搭載された情報記録媒体1から情報の再生を行うか、または、情報記録媒体1へ情報の記録を行う装置である。
 情報記録媒体1は、例えば光ディスク媒体である。
 光ディスク装置100は、光ヘッド部2と、プリアンプ部3と、AGC(Automatic Gain Controller)部4と、波形等化部5と、A/D変換部6と、PLL部7と、PR等化部8と、最尤復号部9と、信号評価指標検出部10と、光ディスクコントローラ部15を備える。
 光ヘッド部2は、情報記録媒体のトラックにレーザ光を照射する照射部と、トラックからの反射光を受光する受光部とを備える。プリアンプ部3、AGC部4、波形等化部5、A/D変換部6、PLL部7、PR等化部8、最尤復号部9は、上記受光により得られた信号に基づいてデータ列を再生する再生部として機能する。
 信号評価指標検出部10は、上記表1(14パターン)、表2(12Aパターン)、表3(12Bパターン)に対応したパターンを検出する14パターン検出部101、12Aパターン検出部104、12Bパターン検出部107と、各パターンのメトリック差を演算する差分メトリック演算部102、105、108と、差分メトリック演算部102、105、108で演算された各パターンの位置ずれ指標を累積し保持するメモリ部103、06、109とから構成されている。
 光ヘッド部2は、対物レンズを通過したレーザ光を情報記録媒体1の記録層に収束させ、その反射光を受光して、情報記録媒体1に記録された情報を示すアナログ再生信号を生成する。対物レンズの開口数は0.7~0.9であり、より好ましくは0.85である。
 レーザ光の波長は410nm以下であり、より好ましくは405nmである。
 プリアンプ部3は、アナログ再生信号を所定のゲインで増幅してAGC4へ出力する。
 AGC部4は、予め設定されたターゲットゲインを用いて、A/D変換部6から出力される再生信号のレベルが一定のレベルとなるように再生信号を増幅して波形等化部5へ出力する。
 波形等化部5は、再生信号の高域を遮断するLPF特性と、再生信号の所定の周波数帯域を増幅するフィルタ特性を有しており、再生波形を所望の特性に整形させてA/D変換部6へ出力する。
 PLL回路7は、波形等化後の再生信号に同期する再生クロックを生成してA/D変換部6へ出力する。
 A/D変換部6は、PLL回路7から出力される再生クロックに同期して再生信号をサンプリングしてアナログ再生信号をデジタル再生信号へ変換し、PR等化部8、PLL部7およびAGC部4へ出力する。
 PR等化部8は、再生系の周波数特性が最尤復号部9の想定する特性(例えば、PR(1,2,2,2,1)等化特性)となるように設定された周波数特性を有し、再生信号に対して高域雑音の抑制および意図的な符号間干渉の付加を行うPR等化処理を実行して最尤復号部9へ出力する。
 また、PR等化部8は、FIR(Finite Impulse Response)フィルタ構成を備え、LMS(The Least-Mean Square)アルゴリズムを用いて、適応的にタップ係数を制御してもよい(非特許文献2参照)。
 最尤復号部9は、例えばビタビ復号器であり、パーシャルレスポンスの型に応じて意図的に付加された符号的規則に基づいて尤も確からしい系列を推定する最尤復号方式を用い、PR等化部8でPR等化された再生信号を復号して2値化データを出力する。
 この2値化データは、復調2値化信号として後段の光ディスクコントローラ15へ出力され、所定の処理が実行されて情報記録媒体1に記録されている情報が再生される。
 信号評価指標検出部10には、PR等化部8から出力された波形整形されたデジタル再生信号と、最尤復号部9から出力された2値化信号とが入力される。
 パターン検出部101、104、107は表1、2、3の遷移データ列と2値化データを比較して、この2値化データが表1、2、3の遷移データ列と一致する場合は、表1、2、3に基づいて最も確からしい状態遷移列1と2番目に確からしい状態遷移列2を選択する。
 この選択結果に基づき、差分メトリック演算部102、104、108では、状態遷移列の理想値(PR等化理想値:表1、2、3参照)とデジタル再生信号との距離であるメトリックが演算され、更に2つの状態遷移列から演算されたメトリック同士の差が演算され、更に、このメトリック差は、プラスとマイナスの値を持つために絶対値処理が行われる。
 また、パターン検出部101、104、107は、2値化データに基づいて、図7、図8、図9で示したマークの始終端エッジのパターンごとに割り当てるためのパルス信号を生成して、メモリ部103、106、109に出力する。
 メモリ部103、106、109は、パターン検出部101、104、107から出力されたパルス信号に基づいて、差分メトリック演算部102、104、108で求められたそれぞれのパターンのメトリック差を、図7、図8、図9で示したパターンごとに累積加算する。
 ここで、図7、図8、図9の詳細なパターン分類について詳細な説明をする。
 図7、図8、図9内で、「M」はマーク、「S」はスペースを示している。
 また、iは時刻を示しており、例えば、(2S(i-1)、3M(i)、4S(i+1)とあれば、基準となる3Tマークの前に2Tスペース、後に4Tスペースがあることを意味する。
 図7、図8、図9の各パターン番号は、それぞれ表1、表2、表3に記載のパターンの番号に対応している。
 例えば、表1のパターン[14]1Aであれば、遷移データ列(0、0、0、0、1、1、1、0、0)から、0がスペース、1がマークだとすると、(4Tスペース以上、3Tマーク、2Tスペース以上)というパターンになる。
 これのパターンは、図7の(wS(i-3)、xM(i-2)、4S(i-1)、3M(i)、yS(i+1),zM(i+2))となるセルに当てはまる。
 w、x、y、zはマークやスペースのとりうる長さの任意の数値が入る。
 例えば、RLL(1,7)記録符号の場合、は2~9の任意の数値が入る。
 まず、図7の14検出パターンの詳細なパターン分類は、1つのスペースと1つのマークからなる1つのエッジずれを分類している。14検出パターンの始端とは時刻iのマークと時刻i-1のスペースに関するエッジずれを示し、14検出パターンの終端とは時刻iのマークと時刻i+1のスペースに関するエッジずれを示している。
 次に、図8の12A検出パターンの詳細なパターン分類は、図7の14検出パターンの2Tマークと2Tスペースの分類に関して、さらに1つ前の時刻、または1つ後の時刻のマークやスペースによって場合分けしている。
 12A検出パターンの始端とは、時刻i-1と時刻i+1のスペースに挟まれた時刻iの2Tマークのズレを時刻i+1のスペースの長さによって分類、または時刻iと時刻i-2のマークに挟まれた時刻i-1の2Tスペースのズレを時刻i-2のマークの長さによって分類している。
 12A検出パターンの終端とは、時刻i-1と時刻i+1のスペースに挟まれた時刻iの2Tマークのズレを時刻i-1のスペースの長さによって分類、または時刻iと時刻i+2のマークに挟まれた時刻i+1の2Tスペースのズレを時刻i+2のマークの長さによって分類している。
 最後に、図9の12B検出パターンの詳細なパターン分類は、図8の12A検出パターンの2Tマークと2Tスペースが連続するパターンの分類に関して、さらに1つ前の時刻、または1つ後の時刻のマークやスペースによって、場合分けしており、1つのマークと1つのスペースに挟まれた、2つ連続した2Tマークと2Tスペースの連続2Tのズレを分類している。
 12B検出パターンの始端とは、時刻i+2のマークと時刻i-1のスペースに挟まれた時刻iの2Tマークと時刻i+1の2Tスペースのズレを時刻i+2のマークの長さによって分類、または時刻i-3のスペースと時刻iのマークに挟まれた時刻i-2の2Tマークと時刻i-1の2Tスペースのズレを時刻i-3のスペースの長さによって分類している。
 12B検出パターンの終端とは、時刻i+1のスペースと時刻i-2のマークに挟まれた時刻iの2Tマークと時刻i-1の2Tスペースのズレを時刻i-2のマークの長さによって分類、または時刻iのマークと時刻i+3のスペースに挟まれた時刻i+1の2Tスペースと時刻i+2の2Tマークのズレを時刻i+3のスペースの長さによって分類している。
 なお、図7、図8、図9中の各分類パターンの下に表記された“x”、“0”、“1”で表されるビット列は、それぞれのパターンに対応したデータ列を表している。ここで、“0”はデータ列中のスペースに対応する2値化データを表し、“1”はデータ列中のマークに対応する2値化データを表わしている。データ列の基準周期をTとした場合、一つの“0”は1T相当分のスペースに対応する2値化データを表し、一つの“1”は1T相当分のマークに対応する2値化データを表している。“x”は“0”または“1”を表わしている。
 上述したパターン(最短マークの前方または後方に最短スペースが隣接するパターンであって、その最短マークに隣接し且つその最短スペースには隣接しないスペースの長さが、最短スペースよりも長いパターン)の2値化データは、例えば「x000110011x」または「x110011000x」と表される。
 また、上述したパターン(最短マークの前方または後方に最短スペースが隣接するパターンであって、その最短スペースに隣接し且つその最短マークには隣接しないマークの長さが、最短マークよりも長いパターン)の2値化データは、例えば「x001100111x」または「x111001100x」と表される。
 このような、2値化データから所定のパターンを認識する動作は、パターン検出部101、104、107が行う。例えば、上記の12B検出パターンを検出する場合、パターン検出部107は、2値化データに基づき、データ列に含まれる第1のマークと、その第1のマークの前方または後方に隣接する第1のスペースと、その第1のマークには隣接せず且つその第1のスペースに隣接する第2のマークとを含むパターンを認識する。そして、その第1のスペースおよびその第2のマークのそれぞれの長さが所定の長さ以下である場合に、その第1のマークには隣接せず且つその第2のマークに隣接する第2のスペースが、上記所定の長さよりも長いか否かを認識する。長い場合は、12B検出パターンを検出する。所定の長さは例えば2Tであるがそれに限定されない。
 また、別の例では、上記の12B検出パターンを検出する場合、パターン検出部107は、2値化データに基づき、データ列に含まれる第1のマークと、その第1のマークの前方または後方に隣接する第1のスペースと、その第1のスペースには隣接せず且つその第1のマークに隣接する第3のスペースとを含むパターンを認識する。そして、その第1のマークおよびその第3のスペースのそれぞれの長さが所定の長さ以下である場合に、その第1のスペースには隣接せず且つその第3のスペースに隣接する第3のマークが、上記所定の長さよりも長いか否かを認識する。長い場合は、12B検出パターンを検出する。
 この例のように2値化信号に基づいて12B検出パターンを検出した場合は、最も確からしい第1の状態遷移列および2番目に確からしい第2の状態遷移列を12B検出パターンから選択する。差分メトリック演算部108は、これら第1および第2の状態遷移列とデジタル再生信号とを用いて差分メトリックを算出する。差分メトリックの演算結果を用いて再生信号品質を評価することができる。例えば、上述した2T/2T部分の最短マークのエッジのズレ量を算出して品質を評価することができる。
 再生信号品質(記録品質)を評価するプロセスを以下、詳細に説明を行う。
 エラーレートと、より高い相関のある信号評価指標とするためには、PR12221ML信号処理において、エラーが発生する可能性が高いパターンをすべて考慮した評価方法が必要となる。
 図10は、PR12221ML信号処理における差分メトリックの分布図である。
 横軸は、ユークリッド距離の2乗とし、縦軸は、その頻度を示している。
 ユークリッド距離の2乗が小さい分布ほど、PR12221ML信号処理において、エラーとなる可能性を秘めていることを示している。
 この図から、ユークリッド距離の2乗が12と14の部分に分布の群を持ち、それより高いユークリッド距離の2乗は、30以上しかないことが分かる。
 すなわち、エラーレートと高い相関のある信号指標とするためには、ユークリッド距離の2乗が12と14の群に着目すれば十分であることがわかる。
 この群は、すなわち、表1及と表2と表3のパターンである。
 このパターンを識別するのが、パターン検出部101、104、107である。
 この識別されたパターンからメトリック差を演算する差分メトリック演算部の動作を以下に更に詳しく説明する。
 PRML処理によりディスクより再生された再生信号から2値化信号を生成する。
 その2値化信号から表1の遷移データ列のパターンのいずれかを検出すると、状態遷移列1および2のPR等化理想値が決定される。
 例えば、表1において、2値化信号として(0,0,0,0,X,1,1,0,0)が復調された場合、もっとも確からしい状態遷移列1としては、パターン[14]1A(S0,S1、S2,S3,S5,S6)が選択され、2番目に確からしい状態遷移列2としてはパターン[14]1B(S0,S0、S1,S2,S9,S6)が選択される。
 このとき、状態遷移列1に対応するPR等化理想値は、(1,3,5,6,5)となる。
 一方、状態遷移列2に対応するPR等化理想値は、(0,1,3,4,4)となる。
 次に、再生信号系列と状態遷移列1に対応するPR等化理想値との差の2乗値を求め、それをPaとし、同様に再生信号系列と状態遷移列2に対応するPR等化理想値との差の2乗値を求め、それをPbとし、その差分の絶対値が差分メトリックD14=|Pa14-Pb14|となる。
 この処理を行うのが差分メトリック演算部の動作である。
 Pa14の演算を式(1)に、Pb14の演算を式(2)に示す。
 ここで、akは状態遷移列1に対応するPR等化理想値、bkは状態遷移列2に対応するPR等化理想値、ykは再生信号系列である。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 図11の(A)に差分メトリック演算部102の出力頻度分布を示す。
 同様に差分メトリック演算部105の出力を式(4)~(6)に、差分メトリック演算部108の出力を式(7)~(9)に示す。
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
 図11(B)は、差分メトリック演算部105の出力頻度分布であり、図11(C)は、差分メトリック演算部108の出力頻度分布である。
 図11(A)、(B)、(C)の分布は、その頻度と中心位置がそれぞれ異なっている。 また、これらのパターンがエラーを起こした際に発生するエラービット数も異なる。
 ユークリッド距離の2乗が14の表1パターンは、1ビットエラーが発生するパターンであり、ユークリッド距離の2乗が12の表2パターンは、2ビットエラーが発生するパターンであり、ユークリッド距離の2乗が12の表3パターンは、3ビット以上のエラーが発生するパターンである。
 特に、表3パターンは、2T連続個数に依存し、例えば、6個連続まで許容されている記録変調符号であれば、最大6ビットエラーが発生するパターンとなる。
 表3では、6ビットエラーまで表現はしていないが、2Tの連続するパターンを拡張すればよい。
 しかし、本実施の形態では省略している。
 次に、上記差分メトリック演算を用いた、各検出パターンを詳細なパターンに分類する方法について説明する。
 まず、図12は、14パターンの例として、図4に示したパターンについての再生波形とマークのずれとの相関を示す。
 図12(a)は、パスA21が最も確からしい状態遷移列であり、パスB22が2番目に確からしい状態遷移列である。
 また、点線△印の再生波形23は、パスA21を基準に、パスB22に少し近づいた信号レベルを有する情報記録媒体のデータを再生した際の再生波形を示す。
 また、最も確からしい状態遷移列のパスA21の理想のスペースとマークの位置をスペース24とマーク25で示し、再生波形23が得られるスペースとマークの位置をスペース26とマーク27で示す。
 再生波形23の各サンプル点での信号レベル(yk-4、yk-3、yk-2、yk-1、yk)を(0.7、2.7、4.7、5.7、4.7)とする。
 このとき、パスA21とパスB22のそれぞれの信号レベルは、ak=(1、3、5、6、5),bk=(0、1、3、4、4)である。
 上記の各信号レベルと、式(1)および式(2)から、再生波形23とパスA21の距離Pa14、再生波形23とパスB22の距離Pb14は、式(10)および式(11)のように求まる。
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
 式(3)から、差分メトリックD14は式(12)のように求まる。
Figure JPOXMLDOC01-appb-M000012
 ここで、パスAとパスBの距離をPstd14とすると、Pa14=0となるときのPb14の値になるので、Pstd14は14となる。
 最も確からしい状態遷移列パスA21からの再生波形のズレ量E14は、以下の式(13)で求められる。
Figure JPOXMLDOC01-appb-M000013
 式(13)から求まるE14の絶対値がズレ量であり、その符号がズレ方向である。
 次に、E14の符号がどのようなズレ方向をあらわしているかを説明する。
 同様に、図12(b)は、点線△印の再生波形29が、パスA21を基準に、パスB22から遠ざかる信号レベルを有する場合である。
 再生波形29の信号レベル(yk-4、yk-3、yk-2、yk-1、yk)を(1.3、3.3、5.3、6.3、5.3)とし、E14(32)を求めると、E14(32)=4.8と算出される。
 図12(c)、(d)では、パスB22が最も確からしい状態遷移列であるとした場合を示している。
 また、(c)は、点線△印の再生波形33が、パスB22を基準に、パスA21から遠ざかる信号レベルを有する場合を示し、(d)は、点線△印の再生波形39が、パスB22を基準に、パスA21に少し近づいた信号レベルを有する場合を示している。
 それぞれの再生波形33、39の信号レベル(yk-4、yk-3、yk-2、yk-1、yk)を(0、0.7、2.7、3.7、3.7)、(0.3、1.3、3.3、4.3、4.3)とし、E14(38)、E14(42)を求めると、E14(38)=4.2、E14(42)=-4.8と算出される。
 以上のことから、再生波形が最も確からしい状態遷移を基準に、2番目に確からしい状態遷移列に距離が近づく信号レベルを有しているときにE14の値の符号がマイナスになり、再生波形が最も確からしい状態遷移列を基準に、2番目に確からしい状態遷移列から距離が遠ざかる信号レベルを有しているときにE14の値の符号がプラスになる。
 図13に、12Aパターンの例として、図5に示したパターンについての再生波形とマークのずれとの相関を示す。
 図13は、パスA51が最も確からしい状態遷移列であり、パスB52が2番目に確からしい状態遷移列である。
 また、点線△印の再生波形53は、パスA51を基準に、パスB52に少し近づいた信号レベルを有する情報記録媒体のデータを再生した際の再生波形を示す。
 また、最も確からしい状態遷移列のパスA51の理想のスペースとマークの位置をスペース54、56とマーク55で示し、再生波形53が得られるスペースとマークの位置をスペース57、59とマーク58で示す。
 再生波形53の各サンプル点での信号レベル(yk-6、yk-5、yk-4、yk-3、yk-2、yk-1、yk)を(0.7、2.7、3.7、4、3.3、1.3、0.3)とする。
 このとき、パスA51とパスB52のそれぞれの信号レベルは、ak=(1、3、4、4、3、1、0),bk=(0、1、3、4、4、3、1)である。
 上記の各信号レベルと、式(1)および式(2)から、再生波形53とパスA51の距離Pa12A、再生波形53とパスB52の距離Pb12Aは、式(14)および式(15)のように求まる。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 式(3)から、差分メトリックD12Aは式(16)のように求まる。
Figure JPOXMLDOC01-appb-M000016
 ここで、パスAとパスBの距離をPstd12Aとすると、Pa12A=0となるときのPb12Aの値になるので、Pstd12Aは12となる。
 最も確からしい状態遷移列パスA51からの再生波形のズレ量E12Aは、以下の式(17)で求められる。
Figure JPOXMLDOC01-appb-M000017
 パターン12Aでもパターン14と同様に、再生波形が最も確からしい状態遷移を基準に、2番目に確からしい状態遷移列に距離が近づく信号レベルを有しているときにE12Aの値の符号がマイナスになり、再生波形が最も確からしい状態遷移列を基準に、2番目に確からしい状態遷移列から距離が遠ざかる信号レベルを有しているときにE12Aの値の符号がプラスになる。
 なお、図13の例では、マーク55とマーク58が同じ長さのままズレることを述べているが、12Aパターンでのズレは、理想のマークと再生波形のマークの長さが異なる場合にも適用できる。
 図14に、12Bパターンの例として、図6に示したパターンについての再生波形とマークのずれとの相関を示す。
 図14は、パスA71が最も確からしい状態遷移列であり、パスB72が2番目に確からしい状態遷移列である。
 また、点線△印の再生波形73は、パスA71を基準に、パスB72に少し近づいた信号レベルを有する情報記録媒体のデータを再生した際の再生波形を示す。
 また、最も確からしい状態遷移列のパスA71の理想のスペースとマークの位置をスペース74、76とマーク75、77で示し、再生波形73が得られるスペースとマークの位置をスペース78、80とマーク79、81で示す。
 再生波形73の各サンプル点での信号レベル(yk-8、yk-7、yk-6、yk-5
k-4、yk-3、yk-2、yk-1、yk)を(0.7、2.7、3.7、4、4、4、4.7、5.7、4.7)とする。
 このとき、パスA71とパスB72のそれぞれの信号レベルは、ak=(1、3、4、4、4、4、5、6、5),bk=(0、1、3、4、4、4、4、4、4)である。
 上記の各信号レベルと、式(1)および式(2)から、再生波形73とパスA71の距離Pa12B、再生波形73とパスB72の距離Pb12Bは、式(18)および式(19)のように求まる。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
 式(3)から、差分メトリックD12Bは式(20)のように求まる。
Figure JPOXMLDOC01-appb-M000020
 ここで、パスAとパスBの距離をPstd12Bとすると、Pa12B=0となるときのPb12Bの値になるので、Pstd12Bは12となる。
 最も確からしい状態遷移列パスA71からの再生波形のズレ量E12Bは、以下の式(21)で求められる。
Figure JPOXMLDOC01-appb-M000021
 パターン12Bについても、パターン14と同様に、再生波形が最も確からしい状態遷移を基準に、2番目に確からしい状態遷移列に距離が近づく信号レベルを有しているときにE12Bの値の符号がマイナスになり、再生波形が最も確からしい状態遷移列を基準に、2番目に確からしい状態遷移列から距離が遠ざかる信号レベルを有しているときにE12Bの値の符号がプラスになる。
 なお、図14の例では、マーク75、スペース76と、マーク79、スペース80のそれぞれの長さが同じままズレることを述べているが、12Bパターンでのズレは、理想波形と再生波形で、マークやスペースの長さがそれぞれ異なる場合にも適用できる。
 また、上記で図6を参照しながら説明したが、状態遷移列パターンが2T連続パターンである2T/2T部分を含む場合、図14からもわかるように、2T/2T部分では、十分な信号振幅変動が得られない。そのため、2T/2T部分の最短マークのエッジのズレ量を算出するためには、この2T/2T部分の前または後ろに、3T以上の長さのマークまたはスペースを含むパターンを用いて、差分メトリックを算出するのが有効となる。このようなパターンは、
 「最短マーク/最短スペース/次最短以上のマーク」、
 または「次最短以上のスペース/最短マーク/最短スペース」、
 または「最短スペース/最短マーク/次最短以上のスペース」、
 または「次最短以上のマーク/最短スペース/最短マーク」
である。
 より具体的に説明すると、パスAは、「4T以上のスペース(74)/2Tマーク(75)/2Tスペース(76)/3Tマーク(77)/2T以上のスペース」と示され、2T連続部分を含んでいる。このようなパスAにおける、最短マーク(2Tマーク(75))のエッジのズレ量は、「4T以上のスペース(74)/2Tマーク(75)/2Tスペース(76)」のパターンの差分メトリックを算出することで得ることができる。そのような「4T以上のスペース(74)/2Tマーク(75)/2Tスペース(76)のパターン」は、「2T/2Tの前または後ろに3T以上のマークまたはスペースを含むパターン」に該当する。
 また、パスBは、「5T以上のスペース/2Tマーク/2Tスペース/2Tマーク/2T以上のスペース」と示され、2T連続部分を含んでいる。このようなパスBにおける、最短マーク(2Tマーク)のエッジのズレ量は、「5T以上のスペース/2Tマーク/2Tスペース」のパターンの差分メトリックを算出することで得ることができる。そのような「5T以上のスペース/2Tマーク/2Tスペースのパターン」は、「2T/2Tの前または後ろに3T以上のマークまたはスペースを含むパターン」に該当する。
 なお、上記で図6を参照しながら説明したように、ユークリッド距離の2乗が12のパターンは、エッジ情報が少なくとも3つ含まれている。つまり、「○/次最短以上/最短/最短/△」または「○/最短/最短/次最短以上/△」のパターンを用いて最短マークのエッジのズレ量を算出することは、12Bパターンに適用できるだけでなく、12Aパターンにも同様に適用できる。
 なお、上記の例では、十分な信号振幅変動が得られないパターンとして最短連続(例えば2T連続)を含むパターンを説明した。しかし、後述する記録密度やスポット径のサイズとの関係により、必ずしも2T連続部分だけが十分な信号振幅変動が得られないパターンに該当するとは限らない。そのような場合は、データ列に、十分な信号振幅変動が得られない長さ以下のマークとスペースの並び(所定長以下のマークと所定長以下のスペースの並び)があるかどうかを認識して、さらに、その並びに隣接したマークまたはスペースが上記所定長より長いか否かを識別するようにしてもよい。
 以上のように、本実施形態1によれば、PR12221ML信号処理を用いて、最も確からしい状態遷移列と2番目に確からしい状態遷移列という2つの理想的な信号のユークリッド距離の2乗が12と14となるパターンの差分メトリックを計算し、複数のエッジを含んだ検出信号において、それぞれのエッジがどのようにずれているかを、エラーレートと相関のある指標で表すことが可能となり、高密度な情報記録媒体において記録再生品質を評価することが可能となる。
 また、その評価指標を用いることで、高密度な情報記録媒体において、情報の再生時や記録時に、再生補償部や記録補償部へ記録品質評価結果をフィードバックし、再生時のエラー低減や、エラーの少ない記録品質の良い記録を行なうことが可能となる。
 本実施例で図1に示したプリアンプ部3、AGC部4および波形等化部5は1つの、アナログ集積回路(LSI)として構成されてもよい。
 プリアンプ部3、AGC部4、波形等化部5、A/D変換部6、PLL部7、PR等化部8、最尤復号部9、信号評価指標検出部10、光ディスクコントローラ部15、アナログデジタル混載の1つの集積回路(LSI)として構成されてもよい。
 なお、上述した光ディスク装置100は、情報記録媒体を再生する再生装置であったが、記録再生装置や記録装置であってもよい。
 この場合は、記録のための回路が追加される構成となるが、本実施例において詳細な説明は省略する。例えば、光ディスク装置100は、情報記録媒体1に情報を記録するための記録部を備える。記録部は、レーザ光の照射によりトラックにマークを形成し、マークとマーク間のスペースとが交互に並べられたデータ列を記録する。記録部は、例えば、パターン発生部、記録補償部およびレーザ駆動部を備える。パターン発生部は、記録マークのエッジを調整するための記録パターンを出力する。記録補償部は、光ディスクコントローラ部から受け取った記録パラメータと、記録パターンとに従ってレーザ発光波形パターンを生成する。レーザ駆動部は、生成されたレーザ発光波形パターンに従って、光ヘッド部2のレーザ発光動作を制御する。光ヘッド部2はトラックにレーザ光を照射し、トラックにマークが形成され、マークとスペースとが交互に並べられたデータ列が記録される。
 これら光ディスク装置の構成例は、本発明を限定するものではなく、他の構成であってもよい。
 なお、上記実施の形態では、最短マーク長さが2である符号と等化方式PR(1、2、2、2、1)から定まる状態遷移則を用いて最尤復号を行なう場合について説明したが、本発明はこれに限定されない。
 例えば、最短マーク長さが2または3である符号と等化方式PR(C0、C1、C1、C0)を用いた場合や最短マーク長さが3である符号と等化方式PR(C0、C1、C2、C1、C0)を用いた場合においても適用できる。C0、C1、C2は任意の正の数である。
 なお、上記実施の形態では、各検出パターンにおいて、最短マーク長さのマークやスペースのみについて、詳細な分類を行なっているが、本発明はこれに限定されない。
 例えば、最短マーク長さでなくても、最短マークの次に長いマークやスペース、所定の長さよりも短いマークやスペースについても適用できる。
 次に、本発明の情報記録媒体についてより詳細に説明する。
 (主要パラメータ)
 本発明が適用可能な記録媒体の一例として、ブルーレイディスク(BD)や他の規格の光ディスクがあるが、ここではBDに関して説明する。BDには、記録膜の特性に応じて、再生専用型であるBD-ROM,追記記録型・ライトワンス型であるBD-R,書換記録型であるBD-REなどのタイプがあり、本発明は、BDや他の規格の光ディスクにおけるROM(再生専用型),R(追記型・ライトワンス型),RE(書換型)のいずれのタイプの記録媒体にも適用可能である。ブルーレイディスクの主な光学定数と物理フォーマットについては、「ブルーレイディスク読本」(オーム社出版)やブルーレイアソシエーションのホームページ(http://www.blu-raydisc.com/)に掲載されているホワイトペーパに開示されている。
 BDでは、波長が略405nm(標準値405nmに対して誤差範囲の許容値を±5nmとすれば、400~410nm)のレーザ光および開口数(NA:Numerical Aperture)が略0.85(標準値0.85に対して誤差範囲の許容値を±0.01とすれば、0.84~0.86)の対物レンズを用いる。BDのトラックピッチは略0.32μm(標準値0.320μmに対して誤差範囲の許容値を±0.010μmとすれば、0.310~0.330μm)であり、記録層が1層または2層設けられている。記録層の記録面がレーザ入射側から片面1層あるいは片面2層の構成であり、BDの保護層の表面から記録面まで距離は75μm~100μmである。
 記録信号の変調方式は17PP変調を利用し、記録されるマークの最短マーク(2Tマーク:Tは基準クロックの周期(所定の変調則によってマークを記録する場合における、変調の基準周期))のマーク長は0.149μm(又は0.138μm)(チャネルビット長:Tが74.50nm(又は69.00nm))である。記録容量は片面単層25GB(又は27GB)(より詳細には、25.025GB(又は27.020GB))、または、片面2層50GB(又は54GB)(より詳細には、50.050GB(又は54.040GB))である。
 チャネルクロック周波数は、標準速度(BD1x)の転送レートでは66MHz(チャネルビットレート66.000Mbit/s)であり、4倍速(BD4x)の転送レートでは264MHz(チャネルビットレート264.000Mbit/s)、6倍速(BD6x)の転送レートでは396MHz(チャネルビットレート396.000Mbit/s)、8倍速(BD8x)の転送レートでは528MHz(チャネルビットレート528.000Mbit/s)である。
 標準線速度(基準線速度、1x)は4.917m/sec(又は、4.554m/sec)である。2倍(2x)、4倍(4x)、6倍(6x)および8倍(8x)の線速度は、それぞれ、9.834m/sec、19.668m/sec、29.502m/secおよび39.336m/secである。標準線速度よりも高い線速度は一般的には、標準線速度の正の整数倍であるが、整数に限られず、正の実数倍であってもよい。また、0.5倍(0.5x)など、標準線速度よりも遅い線速度も定義し得る。
 なお、上記は既に商品化が進んでいる、主に1層当たり約25GB(又は約27GB)の1層又は2層のBDに関するものであるが、更なる大容量化として、1層あたりの記録容量を略32GB又は略33.4GBとした高密度なBDや、層数を3層又は4層としたBDも検討されており、以降では、それらに関しても説明する。
 (多層について)
レーザ光を保護層の側から入射して情報が再生及び/又は記録される片面ディスクとすると、記録層を二層以上にする場合、基板と保護層の間には複数の記録層が設けられることになるが、その場合における多層ディスクの一般的な構成例を図15に示す。図示された光ディスクは、(n+1)層の情報記録層502で構成されている(nは0以上の整数)。その構成を具体的に説明すると、光ディスクには、レーザ光505が入射する側の表面から順に、カバー層501、(n+1)枚の情報記録層(Ln~L0層)502、そして基板500が積層されている。また、(n+1)枚の情報記録層502の層間には、光学的緩衝材として働く中間層503が挿入されている。つまり、光入射面から所定の距離を隔てた最も奥側の位置(光源から最も遠い位置)に基準層(L0)を設け、基準層(L0)から光入射面側に層を増やすように記録層を積層(L1,L2,・・・,Ln)している。
 ここで、単層ディスクと比較した場合、多層ディスクにおける光入射面から基準層L0までの距離を、単層ディスクにおける光入射面から記録層までの距離とほぼ同じ(例えば0.1mm程度)にしてもよい。このように層の数に関わらず最奥層(最遠層)までの距離を一定にする(すなわち、単層ディスクにおける場合とほぼ同じ距離にする)ことで、単層か多層かに関わらず基準層へのアクセスに関する互換性を保つことができる。また、層数の増加に伴うチルト影響の増加を抑えることが可能となる。チルト影響の増加を抑えることが可能になるのは、最奥層が最もチルトの影響を受けるが、最奥層までの距離を、単層ディスクとほぼ同じ距離とすることで、層数が増加しても最奥層までの距離が増加することがなくなるからである。
 また、スポットの進行方向(あるいは、トラック方向,スパイラル方向とも言う)に関しては、パラレル・パスとしても、オポジット・パスとしてもよい。
 パラレル・パスでは、全ての層において、再生方向が同一である。つまり、スポットの進行方向は、全層にて内周から外周の方向へ、又は全層にて外周から内周の方向へ進行する。
 一方、オポジット・パスでは、ある層とその層に隣接する層とで、再生方向が逆になる。つまり、基準層(L0)における再生方向が、内周から外周へ向かう方向である場合、記録層L1における再生方向は外周から内周へ向かう方向であり、記録層L2では内周から外周へ向かう方向である。すなわち、再生方向は、記録層Lm(mは0及び偶数)では内周から外周へ向かう方向であって、記録層Lm+1では外周から内周へ向かう方向である。あるいは、記録層Lm(mは0及び偶数)では外周から内周へ向かう方向であって、記録層Lm+1では内周から外周へ向かう方向である。
 保護層(カバー層)の厚みは、開口数NAが上がることで、焦点距離が短くなるのに伴って、またチルトによるスポット歪みの影響を抑えられるよう、より薄く設定される。開口数NAは、CDでは0.45,DVDでは0.65に対して、BDでは略0.85に設定される。例えば記録媒体の総厚み1.2mm程度のうち、保護層の厚みを10~200μmとしてもよい。より具体的には、1.1mm程度の基板に、単層ディスクならば0.1mm程度の透明保護層、二層ディスクならば0.075mm程度の保護層に0.025mm程度の中間層(SpacerLayer)が設けられてもよい。三層以上のディスクならば、保護層及び/又は中間層の厚みはさらに薄くしてもよい。
 (1層から4層の各構成例)
 ここで、単層ディスクの構成例を図16に、二層ディスクの構成例を図17に、三層ディスクの構成例を図18に、四層ディスクの構成例を図19に示す。前述のように、光照射面から基準層L0までの距離を一定にする場合、図17から図19のいずれにおいても、ディスクの総厚みは略1.2mm(レーベル印刷なども含んだ場合、1.40mm以下にするのが好ましい)、基板500の厚みは略1.1mm、光照射面から基準層L0までの距離は略0.1mmとなる。図16の単層ディスク(図15においてn=0の場合)においては、カバー層5011の厚みは略0.1mm、また、図17の二層ディスク(図15においてn=1の場合)においては、カバー層5012の厚みは略0.075mm、中間層5302の厚みは略0.025mm、また、図18の三層ディスク(図15においてn=2の場合)や図19の四層ディスク(図15においてn=3の場合)においては、カバー層5013,5014の厚み、及び/又は、中間層5303,5304の厚みは、更に薄くなる。
 (光ディスクの製造方法)
 これらの単層又は多層のディスク(k層の記録層を有するディスク,kは1以上の整数)は、以下のような工程により製造することができる。
 つまり、厚みが略1.1mmの基板上に、開口数が0.84以上、0.86以下の対物レンズを介して、波長が400nm以上、410nm以下のレーザを照射することにより情報が再生可能なk個の記録層が形成される。
 次に、記録層と記録層との間にはk-1個の中間層が形成される。なお、単層ディスクの場合、k=1となるので、k-1=0となり中間層は形成されない。
 次に、基板側から数えてk番目の記録層(多層ディスクの場合は、基板から最も遠い記録層)の上に、厚みが0.1mm以下の保護層が形成される。
 そして、記録層を形成する工程において、基板側から数えてi番目(iは1以上、k以下の奇数)の記録層が形成される際には、再生方向がディスクの内周側から外周側の方向となるように同心円状又はスパイラル状のトラックが形成される。また、基板側から数えてj番目(jは1以上、k以下の偶数)の記録層が形成される際には、再生方向がディスクの外周側から内周側の方向となるように同心円状又はスパイラル状のトラックが形成される。なお、単層ディスクの場合、k=1となるので、k=1における1以上、k以下を満たす奇数であるiは“1”しか存在しないため、i番目の記録層としては1つの記録層しか形成されず、また、k=1における1以上、k以下を満たす偶数であるjは存在しないため、j番目の記録層は形成されないことになる。
 そして、記録層におけるトラックには、各種の領域が割り当て可能となる。
 (光ディスクの再生装置)
 このような単層又は多層のディスク(k層の記録層を有するディスク,kは1以上の整数)の再生は、以下のような構成を有する再生装置によって行われる。
 ディスクの構成としては、厚みが略1.1mmの基板と、前記基板上にk個の記録層と、記録層と記録層との間にはk-1個の中間層と(なお、単層ディスクの場合、k=1となるので、k-1=0となり中間層は存在しない)、基板側から数えてk番目の記録層(多層ディスクの場合は、基板から最も遠い記録層)の上に、厚みが0.1mm以下の保護層と、を有する。k個の記録層のそれぞれにはトラックが形成され、そのうちの少なくとも1つのトラックには、各種の領域が割り当て可能である。
 そして、前記保護層の表面側から、開口数が0.84以上、0.86以下の対物レンズを介して、波長が400nm以上、410nm以下のレーザを照射する光ヘッドによりk個の記録層のそれぞれから情報の再生が可能となる。
 そして、基板側から数えてi番目(iは1以上、k以下の奇数)の記録層では、同心円上又はスパイラル状のトラックが形成されており、ディスクの内周側から外周側の方向に再生する制御部により、再生方向を制御することで、i番目の記録層から情報を再生することができる。
 また、基板側から数えてj番目(jは1以上、k以下の奇数)の記録層では、同心円上又はスパイラル状のトラックが形成されており、ディスクの外周側から内周側の方向に再生する制御部により、再生方向を制御することで、j番目の記録層から情報を再生することができる。
 (変調)
 次に、記録信号の変調方式について述べる。データ(オリジナルのソースデータ/変調前のバイナリデータ)を記録媒体に記録する場合、所定のサイズに分割され、さらに所定のサイズに分割されたデータは所定の長さのフレームに分割され、フレーム毎に所定のシンクコード/同期符号系列が挿入される(フレームシンク領域)。フレームに分割されたデータは、記録媒体の記録再生信号特性に合致した所定の変調則に従って変調されたデータ符号系列として記録される(フレームデータ領域)。
 ここで変調則としては、マーク長が制限されるRLL(RunLengthLimited)符号化方式などでもよく、RLL(d,k)と表記した場合、1と1の間に出現する0が最小d個,最大k個であることを意味する(dおよびkは、d<kを満たす自然数である)。例えばd=1,k=7の場合、Tを変調の基準周期とすると、最短が2T、最長が8Tの記録マーク及びスペースとなる。またRLL(1,7)変調に更に次の[1][2]の特徴を加味した1-7PP変調としてもよい。1-7PPの“PP”とは、Parity preserve/Prohibit Repeated Minimum Transition Lengthの略で、[1]最初のPであるParity preserveは、変調前のソースデータビットの“1”の個数の奇偶(すなわちParity)と、それに対応する変調後ビットパターンの“1”の個数の奇偶が一致していることを意味し、[2]後ろの方のPであるProhibit Repeated Minimum Transition Lengthは、変調後の記録波形の上での最短マーク及びスペースの繰り返し回数を制限(具体的には、2Tの繰り返し回数を最大6回までに制限)する仕組みを意味する。
 なお、記録密度が向上すると、光ディスク媒体の記録密度は複数種類存在する可能性が生じることになる。この場合は、上記の各種のフォーマットや方式に関して、記録密度に応じて、その一部のみを採用したり、一部を別のフォーマットや方式に変更したりしてもよい。
 次に、光ディスクの物理的構成について説明する。
 図20は、本実施形態による光ディスク1の物理的構成を示す。円盤状の光ディスク1には、たとえば同心円状またはスパイラル状に多数のトラック2Aが形成されており、各トラック2Aには細かく分けられた多数のセクタが形成されている。なお、後述するように、各トラック2Aには予め定められたサイズのブロック3Aを単位としてデータが記録される。
 本実施形態による光ディスク1は、従来の光ディスク(たとえば25GBのBD)よりも情報記録層1層あたりの記録容量が拡張されている。記録容量の拡張は、記録線密度を向上させることによって実現されており、たとえば光ディスクに記録される記録マークのマーク長をより短くすることによって実現される。ここで「記録線密度を向上させる」とは、チャネルビット長を短くすることを意味する。このチャネルビットとは、基準クロックの周期T(所定の変調則によってマークを記録する場合における、変調の基準周期T)に相当する長さをいう。なお、光ディスク1は多層化されていてもよい。ただし、以下では説明の便宜のため、1つの情報記録層にのみ言及する。また、複数の情報記録層が設けられている場合において、各情報記録層に設けられたトラックの幅が同一であるときでも、層ごとにマーク長が異なり、同一層中ではマーク長が一様であることで、層ごとに記録線密度を異ならせてもよい。
 トラック2Aは、データの記録単位64kB(キロバイト)毎にブロックに分けられて、順にブロックアドレス値が割り振られている。ブロックは、所定の長さのサブブロックに分割され、3個のサブブロックで1ブロックを構成している。サブブロックは、前から順に0から2までのサブブロック番号が割り振られている。
 (記録密度について)
 次に、記録密度について、図21、図22および図23を用いて説明する。
 図21(a)は25GBのBDの例を示す。BDでは、レーザ123の波長は405nm、対物レンズ220の開口数(Numerical Aperture;NA)は0.85である。
 DVD同様、BDにおいても、記録データは光ディスクのトラック2A上に物理変化のマーク列120、121として、記録される。このマーク列の中で最も長さの短いものを「最短マーク」という。図では、マーク121が最短マークである。
 25GB記録容量の場合、最短マーク121の物理的長さは0.149umとなっている。これは、DVDの約1/2.7に相当し、光学系の波長パラメータ(405nm)とNAパラメータ(0.85)を変えて、レーザの分解能を上げても、光ビームが記録マークを識別できる限界である光学的な分解能の限界に近づいている。
 図22は、トラック上に記録されたマーク列に光ビームを照射させている様子を示す。BDでは、上記光学系パラメータにより光スポット30Aは、約0.39um程度となる。光学系の構造は変えないで記録線密度向上させる場合、光スポット30Aのスポット径に対して記録マークが相対的に小さくなるため、再生の分解能は悪くなる。
 たとえば図21(b)は、25GBのBDよりも高記録密度の光ディスクの例を示す。このディスクでも、レーザ123の波長は405nm、対物レンズ220の開口数(Numerical Aperture;NA)は0.85である。このディスクのマーク列125、124のうち、最短マーク125の物理的長さは0.1115umとなっている。図21(a)と比較すると、スポット径は同じ約0.39umである一方、記録マークが相対的に小さくなり、かつ、マーク間隔も狭くなるため、再生の分解能は悪くなる。
 光ビームで記録マークを再生した際の再生信号の振幅は記録マークが短くなるに従って低下し、光学的な分解能の限界でゼロとなる。この記録マークの周期の逆数を空間周波数といい、空間周波数と信号振幅の関係をOTF(Optical Transfer Function)という。信号振幅は、空間周波数が高くになるに従ってほぼ直線的に低下する。信号振幅がゼロとなる再生の限界周波数を、OTFカットオフ(cutoff)という。
 図23は、25GB記録容量の場合のOTFと最短記録マークとの関係を示すグラフである。BDの最短マークの空間周波数は、OTFカットオフに対して80%程度であり、OTFカットオフに近い。また、最短マークの再生信号の振幅も、検出可能な最大振幅の約10%程度と非常に小さくなっているこが分かる。BDの最短マークの空間周波数が、OTFカットオフに非常に近い場合、すなわち、再生振幅がほとんど出ない場合の記録容量は、BDでは、約31GBに相当する。最短マークの再生信号の周波数が、OTFカットオフ周波数付近である、または、それを超える周波数であると、レーザの分解能の限界、もしくは超えていることもあり、再生信号の再生振幅が小さくなり、SN比が急激に劣化する領域となる。
 そのため、図21(b)の高記録密度光ディスクの記録線密度は、再生信号の最短マークの周波数が、OTFカットオフ周波数付近の場合(OTFカットオフ周波数以下だがOTFカットオフ周波数を大きく下回らない場合も含む)からOTFカットオフ周波数以上の場合が想定できる。
 図24は、最短マーク(2T)の空間周波数がOTFカットオフ周波数よりも高く、かつ、2Tの再生信号の振幅が0であるときの、信号振幅と空間周波数との関係の一例を示したグラフである。図24において、最短マーク長の2Tの空間周波数は、OTFカットオフ周波数の1.12倍である。
 (波長と開口数とマーク長との関係)
 また、高記録密度のディスクBにおける波長と開口数とマーク長/スペース長との関係は以下の通りである。
 最短マーク長をTMnm、最短スペース長をTSnmとしたとき、(最短マーク長+最短スペース長)を“P”で表すと、Pは、(TM+TS)nmである。17変調の場合、P=2T+2T=4Tとなる。レーザ波長λ(405nm±5nm、すなわち400~410nm)、開口数NA(0.85±0.01すなわち0.84~0.86)、最短マーク+最短スペース長P(17変調の場合、最短長は2Tとなるため、P=2T+2T=4T)の3つのパラメータを用いると、
  P ≦ λ/2NA
となるまで基準Tが小さくなると、最短マークの空間周波数は、OTFカットオフ周波数を超えることになる。
 NA=0.85,λ=405としたときの、OTFカットオフ周波数に相当する基準Tは、
  T = 405/(2x0.85)/4 = 59.558nm
となる(なお、逆に、P > λ/2NA である場合は、最短マークの空間周波数はOTFカットオフ周波数より低い)。
 このように、記録線密度を上げるだけでも、光学的な分解能の限界によりSN比が劣化する。よって、情報記録層の多層化によるSN比劣化は、システムマージンの観点で、許容できない場合がある。特に、上述のように、最短記録マークの周波数が、OTFカットオフ周波数を越える辺りから、SN比劣化が顕著になる。
 なお、以上では、最短マークの再生信号の周波数とOTFカットオフ周波数を比較して記録密度に関して述べたものであるが、更に高密度化が進んだ場合には、次最短マーク(更には次々最短マーク(更には次最短マーク以上の記録マーク))の再生信号の周波数とOTFカットオフ周波数との関係により、以上と同様の原理に基づき、それぞれに対応した記録密度(記録線密度,記録容量)を設定してもよい。
 (記録密度及び層数)
 ここで、波長405nm,開口数0.85等のスペックを有するBDにおける1層あたりの具体的な記録容量としては、最短マークの空間周波数がOTFカットオフ周波数付近である場合においては、例えば、略29GB(例えば、29.0GB±0.5GB,あるいは29GB±1GBなど)若しくはそれ以上、又は略30GB(例えば、30.0GB±0.5GB,あるいは30GB±1GBなど)若しくはそれ以上、又は略31GB(例えば、31.0GB±0.5GB,又は31GB±1GBなど)若しくはそれ以上、又は略32GB(例えば、32.0GB±0.5GB,あるいは32GB±1GBなど)若しくはそれ以上、などを想定することが可能である。
 また、最短マークの空間周波数がOTFカットオフ周波数以上における、1層あたりの記録容量としては、例えば、略32GB(例えば、32.0GB±0.5GB,あるいは32GB±1GBなど)若しくはそれ以上、又は略33GB(例えば、33.0GB±0.5GB,あるいは33GB±1GBなど)若しくはそれ以上、又は略33.3GB(例えば、33.3GB±0.5GB,あるいは33.3GB±1GBなど)若しくはそれ以上、又は略33.4GB(例えば、33.4GB±0.5GB,あるいは33.4GB±1GBなど)若しくはそれ以上、又は略34GB(例えば、34.0GB±0.5GB,あるいは34GB±1GBなど)若しくはそれ以上、又は略35GB(例えば、35.0GB±0.5GB,あるいは35GB±1GBなど)若しくはそれ以上、などを想定することが可能である。
 特に、記録密度が略33.3GBである場合、3層で約100GB(99.9GB)の記録容量が実現でき、略33.4GBとすると3層で100GB以上(100.2GB)の記録容量が実現できる。これは、25GBのBDを4層にした場合の記録容量とほぼ同じになる。例えば、記録密度を33GBとした場合、33x3=99GBで100GBとの差は1GB(1GB以下)、34GBとした場合、34x3=102GBで100GBとの差は2GB(2GB以下)、33.3GBとした場合、33.3x3=99.9GBで100GBとの差は0.1GB(0.1GB以下)、33.4GBとした場合、33.4x3=100.2GBで100GBとの差は0.2GB(0.2GB以下)となる。
 なお、記録密度が大幅に拡張されると、先に述べたように、最短マークの再生特性の影響により、精密な再生が困難になる。そこで、記録密度の大幅な拡張を抑えつつ、かつ100GB以上を実現する記録密度としては、略33.4GBが現実的である。
 ここで、ディスクの構成を、1層あたり25GBの4層構造とするか、1層あたり33~34GBの3層構造とするか、の選択肢が生じる。多層化には、各記録層における再生信号振幅の低下(SN比の劣化)や、多層迷光(隣接する記録層からの信号)の影響などが伴う。そのため、25GBの4層ディスクではなく、33~34GBの3層ディスクとすることにより、そのような迷光の影響を極力抑えつつ、即ち、より少ない層数(4層ではなく3層)で、約100GBを実現することが可能となる。そのため、多層化を極力避けつつ約100GBを実現したいディスクの製造者は、33~34GBの3層化を選択することが可能となる。一方、従来のフォーマット(記録密度25GB)のまま約100GBを実現したいディスク製造者は、25GBの4層化を選択することが可能となる。このように、異なる目的を有する製造者は、それぞれ異なる構成をによって、それぞれの目的を実現することが可能となり、ディスク設計の自由度を与えることができる。
 また、1層あたりの記録密度を30~32GB程度とすると、3層ディスクでは100GBに届かないものの(90~96GB程度)、4層ディスクでは120GB以上が実現できる。そのうち、記録密度を略32GBとすると、4層ディスクでは約128GBの記録容量が実現できる。この128という数字はコンピュータで処理するのに便利な2のべき乗(2の7乗)に整合した数値でもある。そして、3層ディスクで約100GBを実現する記録密度のものと比べると、最短マークに対する再生特性はこちらの方が厳しくない。
 このことから、記録密度の拡張にあたっては、記録密度を複数種類設けることで(例えば略32GBと略33.4GBなど)、複数種類の記録密度と層数との組み合わせにより、ディスクの製造者に対して設計の自由度を与えることが可能となる。例えば、多層化を影響を抑えつつ大容量化を図りたい製造者に対しては33~34GBの3層化による約100GBの3層ディスクを製造するという選択肢を与え、再生特性を影響を抑えつつ大容量化を図りたい製造者に対しては、30~32GBの4層化による約120GB以上の4層ディスクを製造するという選択肢を与えることが可能となる。
 以上、説明したように、本発明の再生信号評価方法は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体より、前記データ列を再生して得られる信号から、PRML信号処理方式を用いて2値化信号を生成するステップと、前記2値化信号に基づいて得られた最も確からしい第1の状態遷移列および2番目に確からしい第2の状態遷移列と、再生信号とを用いて差分メトリックを算出する差分算出ステップとを包含し、最短マークの前方または後方に最短スペースが隣接するパターンにおける、前記最短マークのエッジズレ量は、前記最短マークに隣接し且つ前記最短スペースには隣接しないスペースの長さが、前記最短スペースよりも長い第1のパターンと、前記最短スペースに隣接し且つ前記最短マークには隣接しないマークの長さが、前記最短マークよりも長い第2のパターンとの一方のパターンに対して算出した差分メトリックから得ることを特徴とする。
 ある実施形態によれば、前記データ列の基準周期をTとしたとき、前記最短マークおよび前記最短スペースのそれぞれの長さは2Tであり、前記最短マークと前記最短スペースとが隣接するパターンの2値化データを“0”と“1”とで表したとき、前記2値化データが「x000110011x」または「x001100111x」(“x”は、“0”または”1”)となるパターンに対して算出した差分メトリックから前記最短マークのエッジズレ量を得る。
 ある実施形態によれば、前記データ列の基準周期をTとしたとき、前記最短マークおよび前記最短スペースのそれぞれの長さは2Tであり、前記最短マークと前記最短スペースとが隣接するパターンの2値化データを“0”と“1”とで表したとき、前記2値化データが「x110011000x」または「x111001100x」(“x”は、“0”または“1”)となるパターンに対して算出した差分メトリックから前記最短マークのエッジズレ量を得る。
 また、本発明の情報記録媒体は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体であって、前記情報記録媒体は、前記データ列を記録するためのトラックを有し、前記情報記録媒体の再生信号は所定の方法を用いて評価され、前記所定の方法は、前記情報記録媒体より前記データ列を再生して得られる信号から、PRML信号処理方式を用いて2値化信号を生成するステップと、前記2値化信号に基づいて得られた最も確からしい第1の状態遷移列および2番目に確からしい第2の状態遷移列と、再生信号とを用いて差分メトリックを算出する差分算出ステップとを包含し、最短マークの前方または後方に最短スペースが隣接するパターンにおける、前記最短マークのエッジズレ量は、前記最短マークに隣接し且つ前記最短スペースには隣接しないスペースの長さが、前記最短スペースよりも長い第1のパターンと、前記最短スペースに隣接し且つ前記最短マークには隣接しないマークの長さが、前記最短マークよりも長い第2のパターンとの一方のパターンに対して算出した差分メトリックから得ることを特徴とする。
 また、本発明の再生装置は、前記情報記録媒体を再生するための再生装置であって、前記トラックにレーザ光を照射する照射部と、前記照射されたレーザ光の反射光を受光する受光部と、前記受光により得られた信号に基づいて前記データ列を再生する再生部とを備える。
 また、本発明の記録装置は、前記情報記録媒体に情報を記録するための記録装置であって、前記トラックにレーザ光を照射する照射部と、前記照射により前記トラックにマークを形成し、前記マークと前記マーク間のスペースとが交互に並べられたデータ列を記録する記録部とを備える。
 また、本発明の再生信号評価方法は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体から得られた再生信号を評価する方法であって、前記データ列の中から所定のパターンを認識する認識ステップと、前記認識されたパターンに対応した再生信号の評価を行う評価ステップとを包含し、前記認識ステップは、前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のマークには隣接せず且つ前記第1のスペースに隣接する第2のマークとを含むパターンを認識するステップと、前記第1のスペースおよび前記第2のマークのそれぞれの長さが所定の長さ以下である場合に、前記第1のマークには隣接せず且つ前記第2のマークに隣接する第2のスペースが、前記所定の長さよりも長いか否かを認識するステップとを含むことを特徴とする。
 また、本発明の情報記録媒体は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体であって、前記情報記録媒体は、前記データ列を記録するためのトラックを有し、前記情報記録媒体の再生信号は所定の方法を用いて評価され、前記所定の方法は、前記データ列の中から所定のパターンを認識する認識ステップと、前記認識されたパターンに対応した再生信号の評価を行う評価ステップとを包含し、前記認識ステップは、前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のマークには隣接せず且つ前記第1のスペースに隣接する第2のマークとを含むパターンを認識するステップと、前記第1のスペースおよび前記第2のマークのそれぞれの長さが所定の長さ以下である場合に、前記第1のマークには隣接せず且つ前記第2のマークに隣接する第2のスペースが、前記所定の長さよりも長いか否かを認識するステップとを含むことを特徴とする。
 また、本発明の再生装置は、前記情報記録媒体を再生するための再生装置であって、前記トラックにレーザ光を照射する照射部と、前記照射されたレーザ光の反射光を受光する受光部と、前記受光により得られた信号に基づいて前記データ列を再生する再生部とを備える。
 また、本発明の記録装置は、前記情報記録媒体に情報を記録するための記録装置であって、前記トラックにレーザ光を照射する照射部と、前記照射により前記トラックにマークを形成し、前記マークと前記マーク間のスペースとが交互に並べられたデータ列を記録する記録部とを備える。
 また、本発明の再生信号評価方法は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体から得られた再生信号を評価する方法であって、前記データ列の中から所定のパターンを認識する認識ステップと、前記認識されたパターンに対応した再生信号の評価を行う評価ステップとを包含し、前記認識ステップは、前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のスペースには隣接せず且つ前記第1のマークに隣接する第3のスペースとを含むパターンを認識するステップと、前記第1のマークおよび前記第3のスペースのそれぞれの長さが所定の長さ以下である場合に、前記第1のスペースには隣接せず且つ前記第3のスペースに隣接する第3のマークが、前記所定の長さよりも長いか否かを認識するステップとを含むことを特徴とする。
 また、本発明の情報記録媒体は、マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体であって、前記情報記録媒体は、前記データ列を記録するためのトラックを有し、前記情報記録媒体の再生信号は所定の方法を用いて評価され、前記所定の方法は、前記データ列の中から所定のパターンを認識する認識ステップと、前記認識されたパターンに対応した再生信号の評価を行う評価ステップとを包含し、前記認識ステップは、前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のスペースには隣接せず且つ前記第1のマークに隣接する第3のスペースとを含むパターンを認識するステップと、前記第1のマークおよび前記第3のスペースのそれぞれの長さが所定の長さ以下である場合に、前記第1のスペースには隣接せず且つ前記第3のスペースに隣接する第3のマークが、前記所定の長さよりも長いか否かを認識するステップとを含むことを特徴とする。
 また、本発明の再生装置は、前記情報記録媒体を再生するための再生装置であって、前記トラックにレーザ光を照射する照射部と、前記照射されたレーザ光の反射光を受光する受光部と、前記受光により得られた信号に基づいて前記データ列を再生する再生部とを備える。
 また、本発明の記録装置は、前記情報記録媒体に情報を記録するための記録装置であって、前記トラックにレーザ光を照射する照射部と、前記照射により前記トラックにマークを形成し、前記マークと前記マーク間のスペースとが交互に並べられたデータ列を記録する記録部とを備える。
 また、本発明の再生信号評価方法は、マークとスペースが交互に並べられたデータ列を有する情報記録媒体において、前記データ列を再生した信号からPRML信号処理方式を用いて2値化信号を生成し、前記2値化信号の確かさを評価する信号評価方法であって、前記2値化信号から最も確からしい第1の状態遷移列と2番目に確からしい第2の状態遷移列との、再生信号との差である差分メトリックを算出する差分算出ステップと、前記差分メトリックを、少なくとも1つのマークと、少なくとも1つのスペースを含んだ、複数のデータパターンごとに分類するステップを有し、前記データパターンごとの分類は、前記データ列に含まれる第1のマークの長さと、前記第1のマークの前または後ろに隣接して位置する第1のスペースの長さとの組み合わせを用いて分類し、前記第1のマークには隣接せず、前記第1のスペースに隣接して位置する第2のマークの長さによってさらに分類することで、情報記録媒体の再生信号品質を評価することを特徴とする。
 ある実施形態では、前記第2のマークの長さによる分類は、前記第1のスペースの長さが、所定の長さ以下の場合にのみ実施する。
 ある実施形態では、前記データパターンの分類において、前記第1のマークと前記第1のスペースには隣接せず、前記第2のマークに隣接して位置する第2のスペースの長さによってさらに分類する。
 ある実施形態では、前記第2のスペースの長さによる分類は、前記第2のマークの長さが、前記所定の長さ以下の場合にのみ実施する。
 また、本発明の再生信号評価方法は、マークとスペースが交互に並べられたデータ列を有する情報記録媒体において、前記データ列を再生した信号からPRML信号処理方式を用いて2値化信号を生成し、前記2値化信号の確かさを評価する信号評価方法であって、前記2値化信号から最も確からしい第1の状態遷移列と2番目に確からしい第2の状態遷移列との、再生信号との差である差分メトリックを算出する差分算出ステップと、前記差分メトリックを、少なくとも1つのマークと、少なくとも1つのスペースを含んだ、複数のデータパターンごとに分類するステップを有し、前記データパターンごとの分類は、前記データ列に含まれる第1のマークの長さと、前記第1のマークの前または後ろに隣接して位置する第1のスペースの長さとの組み合わせを用いて分類し、前記第1のスペースには隣接せず、前記第1のマークに隣接して位置する第3のスペースの長さによってさらに分類することで、情報記録媒体の再生信号品質を評価することを特徴とする。
 ある実施形態では、前記第3のスペースの長さによる分類は、前記第1のマークの長さが、前記所定の長さ以下の場合にのみ実施する。
 ある実施形態では、前記データパターンの分類において、前記第1のマークと前記第1のスペースには隣接せず、前記第3のスペースに隣接して位置する第3のマークの長さによってさらに分類する。
 ある実施形態では、前記第3のマークの長さによる分類は、前記第3のスペースの長さが、前記所定の長さ以下の場合にのみ実施する。
 ある実施形態では、前記所定の長さは、前記データ列の最短マーク長さとする。
 また、本発明の情報再生装置は、マークとスペースが交互に並べられたデータ列を有する情報記録媒体において、前記データ列を再生した信号からPRML信号処理方式を用いて2値化信号を生成し、前記2値化信号の確かさを評価する情報再生装置であって、前記2値化信号から最も確からしい第1の状態遷移列と2番目に確からしい第2の状態遷移列との、再生信号との差である差分メトリックを算出する差分メトリック演算部と、前記差分メトリックを、少なくとも1つのマークと、少なくとも1つのスペースを含んだ、複数のデータパターンごとに分類するパターン検出部を有し、前記データパターンごとの分類は、前記データ列に含まれる第1のマークの長さと、前記第1のマークの前または後ろに隣接して位置する第1のスペースの長さとの組み合わせを用いて分類し、前記第1のマークには隣接せず、前記第1のスペースに隣接して位置する第2のマークの長さによってさらに分類することで、情報記録媒体の再生信号品質を評価することを特徴とする。
 ある実施形態では、前記第2のマークの長さによる分類は、前記第1のスペースの長さが、所定の長さ以下の場合にのみ実施する。
 ある実施形態では、前記データパターンの分類において、前記第1のマークと前記第1のスペースには隣接せず、前記第2のマークに隣接して位置する第2のスペースの長さによってさらに分類する。
 ある実施形態では、前記第2のスペースの長さによる分類は、前記第2のマークの長さが、前記所定の長さ以下の場合にのみ実施する。
 また、本発明の情報再生装置は、マークとスペースが交互に並べられたデータ列を有する情報記録媒体において、前記データ列を再生した信号からPRML信号処理方式を用いて2値化信号を生成し、前記2値化信号の確かさを評価する情報再生装置であって、前記2値化信号から最も確からしい第1の状態遷移列と2番目に確からしい第2の状態遷移列との、再生信号との差である差分メトリックを算出する差分メトリック演算部と、前記差分メトリックを、少なくとも1つのマークと、少なくとも1つのスペースを含んだ、複数のデータパターンごとに分類するパターン検出部を有し、前記データパターンごとの分類は、前記データ列に含まれる第1のマークの長さと、前記第1のマークの前または後ろに隣接して位置する第1のスペースの長さとの組み合わせを用いて分類し、前記第1のスペースには隣接せず、前記第1のマークに隣接して位置する第3のスペースの長さによってさらに分類することで、情報記録媒体の再生信号品質を評価することを特徴とする。
 ある実施形態では、前記第3のスペースの長さによる分類は、前記第1のマークの長さが、前記所定の長さ以下の場合にのみ実施する。
 ある実施形態では、前記データパターンの分類において、前記第1のマークと前記第1のスペースには隣接せず、前記第3のスペースに隣接して位置する第3のマークの長さによってさらに分類する。
 ある実施形態では、前記第3のマークの長さによる分類は、前記第3のスペースの長さが、前記所定の長さ以下の場合にのみ実施する。
 ある実施形態では、前記所定の長さは、前記データ列の最短マーク長さとする。
 本発明は、最尤復号法を用いて信号処理を行う技術分野において特に有用である。
 1  情報記録媒体
 2  光ヘッド部
 3  プリアンプ部
 4  AGC部
 5  波形等化部
 6  A/D変換部
 7  PLL部
 8  PR等化部
 9  最尤復号部
 10 信号評価指標検出部
 15 光ディスクコントローラ部
 100 光ディスク装置
 101、104、107 パターン検出部
 102、105、108 差分メトリック演算部
 103、106、109 メモリ部
 21、22 検出パターン14のPR等化理想波形
 23、29、33、39 検出パターン14の再生波形
 24、34 検出パターン14のPR等化理想波形のスペース
 25、35 検出パターン14のPR等化理想波形のマーク
 26、30、36、40 検出パターン14の再生波形のスペース
 27、31、37、41 検出パターン14の再生波形のマーク
 28、32、38、42 検出パターン14のズレ量
 51、52 検出パターン12AのPR等化理想波形
 53 検出パターン12Aの再生波形
 54、56 検出パターン12AのPR等化理想波形のスペース
 55 検出パターン12AのPR等化理想波形のマーク
 57、59 検出パターン12Aの再生波形のスペース
 58 検出パターン12Aの再生波形のマーク
 60 検出パターン12Aのズレ量
 71、72 検出パターン12BのPR等化理想波形
 73 検出パターン12Bの再生波形
 74、76 検出パターン12BのPR等化理想波形のスペース
 75、77 検出パターン12BのPR等化理想波形のマーク
 78、80 検出パターン12Bの再生波形のスペース
 79、81 検出パターン12Bの再生波形のマーク
 82 検出パターン12Bのズレ量
 201 光スポットサイズ

Claims (14)

  1.  マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体より、前記データ列を再生して得られる信号から、PRML信号処理方式を用いて2値化信号を生成するステップと、
     前記2値化信号に基づいて得られた最も確からしい第1の状態遷移列および2番目に確からしい第2の状態遷移列と、再生信号とを用いて差分メトリックを算出する差分算出ステップと
     を包含し、
     最短マークの前方または後方に最短スペースが隣接するパターンにおける、前記最短マークのエッジズレ量は、
     前記最短マークに隣接し且つ前記最短スペースには隣接しないスペースの長さが、前記最短スペースよりも長い第1のパターンと、
     前記最短スペースに隣接し且つ前記最短マークには隣接しないマークの長さが、前記最短マークよりも長い第2のパターンと
     の一方のパターンに対して算出した差分メトリックから得る、再生信号評価方法。
  2.  前記データ列の基準周期をTとしたとき、前記最短マークおよび前記最短スペースのそれぞれの長さは2Tであり、
     前記最短マークと前記最短スペースとが隣接するパターンの2値化データを“0”と“1”とで表したとき、
     前記2値化データが「x000110011x」または「x001100111x」(“x”は、“0”または”1”)となるパターンに対して算出した差分メトリックから前記最短マークのエッジズレ量を得る、請求項1に記載の再生信号評価方法。
  3.  前記データ列の基準周期をTとしたとき、前記最短マークおよび前記最短スペースのそれぞれの長さは2Tであり、
     前記最短マークと前記最短スペースとが隣接するパターンの2値化データを“0”と“1”とで表したとき、
     前記2値化データが「x110011000x」または「x111001100x」(“x”は、“0”または“1”)となるパターンに対して算出した差分メトリックから前記最短マークのエッジズレ量を得る、請求項1に記載の再生信号評価方法。
  4.  マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体であって、
     前記情報記録媒体は、前記データ列を記録するためのトラックを有し、
     前記情報記録媒体の再生信号は所定の方法を用いて評価され、
     前記所定の方法は、
     前記情報記録媒体より前記データ列を再生して得られる信号から、PRML信号処理方式を用いて2値化信号を生成するステップと、
     前記2値化信号に基づいて得られた最も確からしい第1の状態遷移列および2番目に確からしい第2の状態遷移列と、再生信号とを用いて差分メトリックを算出する差分算出ステップと
     を包含し、
     最短マークの前方または後方に最短スペースが隣接するパターンにおける、前記最短マークのエッジズレ量は、
     前記最短マークに隣接し且つ前記最短スペースには隣接しないスペースの長さが、前記最短スペースよりも長い第1のパターンと、
     前記最短スペースに隣接し且つ前記最短マークには隣接しないマークの長さが、前記最短マークよりも長い第2のパターンと
     の一方のパターンに対して算出した差分メトリックから得る、情報記録媒体。
  5.  請求項4に記載の情報記録媒体を再生するための再生装置であって、
     前記トラックにレーザ光を照射する照射部と、
     前記照射されたレーザ光の反射光を受光する受光部と、
     前記受光により得られた信号に基づいて前記データ列を再生する再生部と
     を備えた、再生装置。
  6.  請求項4に記載の情報記録媒体に情報を記録するための記録装置であって、
     前記トラックにレーザ光を照射する照射部と、
     前記照射により前記トラックにマークを形成し、前記マークと前記マーク間のスペースとが交互に並べられたデータ列を記録する記録部と
     を備えた、記録装置。
  7.  マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体から得られた再生信号を評価する方法であって、
     前記データ列の中から所定のパターンを認識する認識ステップと、
     前記認識されたパターンに対応した再生信号の評価を行う評価ステップと
     を包含し、
     前記認識ステップは、
     前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のマークには隣接せず且つ前記第1のスペースに隣接する第2のマークとを含むパターンを認識するステップと、
     前記第1のスペースおよび前記第2のマークのそれぞれの長さが所定の長さ以下である場合に、前記第1のマークには隣接せず且つ前記第2のマークに隣接する第2のスペースが、前記所定の長さよりも長いか否かを認識するステップと
     を含む、再生信号評価方法。
  8.  マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体であって、
     前記情報記録媒体は、前記データ列を記録するためのトラックを有し、
     前記情報記録媒体の再生信号は所定の方法を用いて評価され、
     前記所定の方法は、
     前記データ列の中から所定のパターンを認識する認識ステップと、
     前記認識されたパターンに対応した再生信号の評価を行う評価ステップと
     を包含し、
     前記認識ステップは、
     前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のマークには隣接せず且つ前記第1のスペースに隣接する第2のマークとを含むパターンを認識するステップと、
     前記第1のスペースおよび前記第2のマークのそれぞれの長さが所定の長さ以下である場合に、前記第1のマークには隣接せず且つ前記第2のマークに隣接する第2のスペースが、前記所定の長さよりも長いか否かを認識するステップと
     を含む、情報記録媒体。
  9.  請求項8に記載の情報記録媒体を再生するための再生装置であって、
     前記トラックにレーザ光を照射する照射部と、
     前記照射されたレーザ光の反射光を受光する受光部と、
     前記受光により得られた信号に基づいて前記データ列を再生する再生部と
     を備えた、再生装置。
  10.  請求項8に記載の情報記録媒体に情報を記録するための記録装置であって、
     前記トラックにレーザ光を照射する照射部と、
     前記照射により前記トラックにマークを形成し、前記マークと前記マーク間のスペースとが交互に並べられたデータ列を記録する記録部と
     を備えた、記録装置。
  11.  マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体から得られた再生信号を評価する方法であって、
     前記データ列の中から所定のパターンを認識する認識ステップと、
     前記認識されたパターンに対応した再生信号の評価を行う評価ステップと
     を包含し、
     前記認識ステップは、
     前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のスペースには隣接せず且つ前記第1のマークに隣接する第3のスペースとを含むパターンを認識するステップと、
     前記第1のマークおよび前記第3のスペースのそれぞれの長さが所定の長さ以下である場合に、前記第1のスペースには隣接せず且つ前記第3のスペースに隣接する第3のマークが、前記所定の長さよりも長いか否かを認識するステップと
     を含む、再生信号評価方法。
  12.  マークとスペースとを組み合わせたデータ列が記録可能な情報記録媒体であって、
     前記情報記録媒体は、前記データ列を記録するためのトラックを有し、
     前記情報記録媒体の再生信号は所定の方法を用いて評価され、
     前記所定の方法は、
     前記データ列の中から所定のパターンを認識する認識ステップと、
     前記認識されたパターンに対応した再生信号の評価を行う評価ステップと
     を包含し、
     前記認識ステップは、
     前記データ列に含まれる第1のマークと、前記第1のマークの前方または後方に隣接する第1のスペースと、前記第1のスペースには隣接せず且つ前記第1のマークに隣接する第3のスペースとを含むパターンを認識するステップと、
     前記第1のマークおよび前記第3のスペースのそれぞれの長さが所定の長さ以下である場合に、前記第1のスペースには隣接せず且つ前記第3のスペースに隣接する第3のマークが、前記所定の長さよりも長いか否かを認識するステップと
     を含む、情報記録媒体。
  13.  請求項12に記載の情報記録媒体を再生するための再生装置であって、
     前記トラックにレーザ光を照射する照射部と、
     前記照射されたレーザ光の反射光を受光する受光部と、
     前記受光により得られた信号に基づいて前記データ列を再生する再生部と
     を備えた、再生装置。
  14.  請求項12に記載の情報記録媒体に情報を記録するための記録装置であって、
     前記トラックにレーザ光を照射する照射部と、
     前記照射により前記トラックにマークを形成し、前記マークと前記マーク間のスペースとが交互に並べられたデータ列を記録する記録部と
     を備えた、記録装置。
PCT/JP2009/004991 2008-10-02 2009-09-29 再生信号評価方法、情報記録媒体、再生装置、記録装置 WO2010038427A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
EP09817469A EP2333776A4 (en) 2008-10-02 2009-09-29 METHOD FOR EVALUATING A REPRODUCED SIGNAL, INFORMATION RECORDING MEDIUM, PLAYING DEVICE AND RECORDING DEVICE
BRPI0905745-5A BRPI0905745A2 (pt) 2008-10-02 2009-09-29 Método de avaliação de sinal de reprodução, meio de gravação de informações, aparelho de reprodução e aparelho de gravação
MX2010005892A MX2010005892A (es) 2008-10-02 2009-09-29 Metodo de evaluacion de señal de reproduccion, medio de grabacion de informacion, aparato de reproduccion y aparato de grabacion.
JP2010531735A JPWO2010038427A1 (ja) 2008-10-02 2009-09-29 再生信号評価方法、情報記録媒体、再生装置、記録装置
US12/745,297 US8243571B2 (en) 2008-10-02 2009-09-29 Reproduced signal evaluating method, information recording medium, reproducing device, and recording device
CA2707185A CA2707185A1 (en) 2008-10-02 2009-09-29 Reproduced signal evaluating method, information recording medium, reproducing device, and recording device
CN2009801012130A CN101884070A (zh) 2008-10-02 2009-09-29 再现信号评估方法、信息记录介质、再现装置、记录装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008257679 2008-10-02
JP2008-257679 2008-10-02

Publications (1)

Publication Number Publication Date
WO2010038427A1 true WO2010038427A1 (ja) 2010-04-08

Family

ID=42073209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004991 WO2010038427A1 (ja) 2008-10-02 2009-09-29 再生信号評価方法、情報記録媒体、再生装置、記録装置

Country Status (11)

Country Link
US (1) US8243571B2 (ja)
EP (1) EP2333776A4 (ja)
JP (1) JPWO2010038427A1 (ja)
KR (1) KR20110081768A (ja)
CN (1) CN101884070A (ja)
BR (1) BRPI0905745A2 (ja)
CA (1) CA2707185A1 (ja)
MX (1) MX2010005892A (ja)
RU (1) RU2010122319A (ja)
TW (1) TW201030738A (ja)
WO (1) WO2010038427A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2333776A4 (en) 2008-10-02 2012-06-13 Panasonic Corp METHOD FOR EVALUATING A REPRODUCED SIGNAL, INFORMATION RECORDING MEDIUM, PLAYING DEVICE AND RECORDING DEVICE
US8179760B2 (en) * 2008-10-02 2012-05-15 Panasonic Corporation Reproduction signal evaluation method, information recording medium, reproduction apparatus and recording apparatus
CN113614830B (zh) * 2019-03-29 2023-08-11 松下知识产权经营株式会社 记录状态评估方法、记录补偿方法和信息记录/回放设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141823A (ja) 2001-07-19 2003-05-16 Matsushita Electric Ind Co Ltd 再生信号品質評価方法および情報再生装置
JP2003272304A (ja) * 2002-03-13 2003-09-26 Toshiba Corp 情報記録再生装置とその信号評価方法及び情報記録再生媒体
JP2004213862A (ja) 2002-12-17 2004-07-29 Nec Corp 光ディスク及び光ディスク記録再生装置および光ディスクの信号品質評価方法
JP2004335079A (ja) 2003-04-14 2004-11-25 Matsushita Electric Ind Co Ltd 記録制御装置、記録再生装置および記録制御方法
JP2008047181A (ja) * 2006-08-11 2008-02-28 Sony Nec Optiarc Inc 記録再生装置、評価値演算方法、評価値演算装置
WO2008081820A1 (ja) * 2006-12-28 2008-07-10 Panasonic Corporation 情報記録媒体評価方法、情報記録媒体、情報記録媒体の製造方法、信号処理方法、アクセス制御装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0251256A (ja) 1988-08-15 1990-02-21 Nec Corp 半導体装置用封止キャップ
JP3374086B2 (ja) 1998-08-28 2003-02-04 三洋電機株式会社 光磁気記録媒体
CN1306514C (zh) 2001-07-19 2007-03-21 松下电器产业株式会社 再现信号质量的评价方法和信息再现装置
US7038869B2 (en) * 2003-04-14 2006-05-02 Matsushita Electric Industrial Co., Ltd. Recording control apparatus, recording and reproduction apparatus, and recording control method
CN100474429C (zh) 2003-11-06 2009-04-01 松下电器产业株式会社 记录/再现装置、记录/再现方法和记录功率调整装置
JP4429086B2 (ja) * 2004-03-09 2010-03-10 三洋電機株式会社 光ディスク記録再生装置及び光ディスク評価方法
JP4313755B2 (ja) 2004-05-07 2009-08-12 株式会社日立製作所 再生信号の評価方法および光ディスク装置
JP4641815B2 (ja) * 2005-02-04 2011-03-02 パナソニック株式会社 光ディスク再生装置
JP2007317343A (ja) 2006-04-28 2007-12-06 Sharp Corp 記録パラメータ設定装置、そのプログラムおよび該プログラムを記録したコンピュータ読取り可能な記録媒体、情報記録媒体、ならびに記録パラメータ設定方法
JP4987843B2 (ja) * 2007-12-28 2012-07-25 パナソニック株式会社 位相誤差検出装置、波形整形装置及び光ディスク装置
WO2009107399A1 (ja) * 2008-02-28 2009-09-03 パナソニック株式会社 信号評価方法および信号評価装置
BRPI0904329A2 (pt) 2008-07-01 2015-06-30 Panasonic Corp Método de avaliação de sinal de reprodução, unidade de avaliação de sinal de reprodução e dispositivo de disco adotando o mesmo
EP2333776A4 (en) 2008-10-02 2012-06-13 Panasonic Corp METHOD FOR EVALUATING A REPRODUCED SIGNAL, INFORMATION RECORDING MEDIUM, PLAYING DEVICE AND RECORDING DEVICE
US20100085851A1 (en) * 2008-10-02 2010-04-08 Panasonic Corporation Method and apparatus for evaluating information recording medium
US8179760B2 (en) * 2008-10-02 2012-05-15 Panasonic Corporation Reproduction signal evaluation method, information recording medium, reproduction apparatus and recording apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003141823A (ja) 2001-07-19 2003-05-16 Matsushita Electric Ind Co Ltd 再生信号品質評価方法および情報再生装置
JP2003272304A (ja) * 2002-03-13 2003-09-26 Toshiba Corp 情報記録再生装置とその信号評価方法及び情報記録再生媒体
JP2004213862A (ja) 2002-12-17 2004-07-29 Nec Corp 光ディスク及び光ディスク記録再生装置および光ディスクの信号品質評価方法
JP2004335079A (ja) 2003-04-14 2004-11-25 Matsushita Electric Ind Co Ltd 記録制御装置、記録再生装置および記録制御方法
JP2008047181A (ja) * 2006-08-11 2008-02-28 Sony Nec Optiarc Inc 記録再生装置、評価値演算方法、評価値演算装置
WO2008081820A1 (ja) * 2006-12-28 2008-07-10 Panasonic Corporation 情報記録媒体評価方法、情報記録媒体、情報記録媒体の製造方法、信号処理方法、アクセス制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2333776A4

Also Published As

Publication number Publication date
MX2010005892A (es) 2010-08-12
US8243571B2 (en) 2012-08-14
RU2010122319A (ru) 2011-12-10
EP2333776A1 (en) 2011-06-15
EP2333776A4 (en) 2012-06-13
CN101884070A (zh) 2010-11-10
KR20110081768A (ko) 2011-07-14
CA2707185A1 (en) 2010-04-08
BRPI0905745A2 (pt) 2015-07-14
US20100302925A1 (en) 2010-12-02
TW201030738A (en) 2010-08-16
JPWO2010038427A1 (ja) 2012-03-01

Similar Documents

Publication Publication Date Title
JP5450376B2 (ja) 信号評価方法および信号評価装置
JP5042236B2 (ja) 情報記録媒体評価方法、情報記録媒体、情報記録媒体の製造方法、信号処理方法、アクセス制御装置
WO2010038397A1 (ja) 情報記録媒体および記録再生装置
JPWO2009066470A1 (ja) 光ディスク媒体、光ディスク装置、光ディスク記録再生方法、及び集積回路
JPWO2016139863A1 (ja) データ検出装置、再生装置、データ検出方法
JPWO2009075115A1 (ja) 情報記録媒体および情報記録媒体の評価方法
US8289829B2 (en) Information recording medium and recording/reproduction apparatus
WO2010038432A1 (ja) 再生信号評価方法、情報記録媒体、再生装置、記録装置
WO2010038427A1 (ja) 再生信号評価方法、情報記録媒体、再生装置、記録装置
WO2010038398A1 (ja) 情報記録媒体および記録再生装置
WO2010103769A1 (ja) 情報記録媒体、情報記録媒体への情報の記録方法、情報記録媒体からの情報の再生方法および情報記録媒体の製造方法
US8179760B2 (en) Reproduction signal evaluation method, information recording medium, reproduction apparatus and recording apparatus
WO2010103770A1 (ja) 情報記録媒体、情報記録媒体への情報の記録方法、情報記録媒体からの情報の再生方法および情報記録媒体の製造方法
JP2010140519A (ja) 再生信号の最尤復号方法、光ディスク装置、集積回路および光ディスク

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980101213.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2010531735

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817469

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009817469

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20107011827

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2707185

Country of ref document: CA

Ref document number: 12745297

Country of ref document: US

Ref document number: MX/A/2010/005892

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2010122319

Country of ref document: RU

Ref document number: 3256/CHENP/2010

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0905745

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100601