WO2010038343A1 - Device for accelerated atmospheric corrosion test - Google Patents

Device for accelerated atmospheric corrosion test Download PDF

Info

Publication number
WO2010038343A1
WO2010038343A1 PCT/JP2009/003576 JP2009003576W WO2010038343A1 WO 2010038343 A1 WO2010038343 A1 WO 2010038343A1 JP 2009003576 W JP2009003576 W JP 2009003576W WO 2010038343 A1 WO2010038343 A1 WO 2010038343A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt water
salt
specimen
corrosion
corroded
Prior art date
Application number
PCT/JP2009/003576
Other languages
French (fr)
Japanese (ja)
Inventor
藤井和美
高橋克仁
大橋健也
宮坂徹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2010038343A1 publication Critical patent/WO2010038343A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N17/00Investigating resistance of materials to the weather, to corrosion, or to light
    • G01N17/002Test chambers

Definitions

  • the present invention relates to a corrosion accelerating test apparatus capable of reproducing the corrosion form of a metal material used in the atmosphere, and more particularly to an apparatus for uniformly attaching a chemical substance that promotes corrosion to a test object.
  • the salt spray test method specified in JIS Z 2371 and the cycle corrosion test method specified in JIS K 5600-7-9 are known. Is used.
  • a conventional test apparatus employs a method in which salt water adjusted to a predetermined concentration is used as a chemical substance that promotes corrosion, and this salt water is sprayed in a mist form from a spray tower to adhere to a test object.
  • the spray amount of the salt water it is required as the accuracy of the test apparatus that there is little variation depending on the salt water collection position in the test tank.
  • a method for reducing variations in salt spray for example, a method for improving the spray tower by making the spray tower have a double structure is disclosed in Patent Document 1.
  • the above-described method of adhering salt particles by spraying salt water cannot reproduce corrosion due to adhesion of salt particles flying in the natural environment, and at the same time, the spray variation is still large, and the test object in the test apparatus is There is a problem that variation due to the installation position cannot be sufficiently resolved.
  • the method in which the salt particles are allowed to fly in a fixed space has a problem that even if the salt particles flying in the natural environment can be reproduced, the variation in the amount of salt particles deposited in the test tank cannot be controlled.
  • An object of the present invention is to provide a test apparatus capable of reproducing the salt particles flying in the natural environment and at the same time reducing the variation in the amount of adhered salt depending on the position of the test object in the test tank.
  • the gist of the present invention for achieving the above object is as follows.
  • the atmospheric corrosion promotion test apparatus is composed of a constant temperature and humidity chamber, a gantry for holding a test object, a mechanism for washing salt particles attached to the test object, and a mechanism for attaching salt water to the test object. This is achieved by controlling the diameter of the salt water droplets attached to the test object and the attachment position of the droplets, and uniformly attaching the salt water droplets attached to the test object without agglomeration.
  • the relationship between the target diameter (R) of the salt water droplets to be adhered and the diameter (r) of the salt water droplets actually adhered to the DUT is 0.9R ⁇ r ⁇ 1.1R
  • the relationship between the interval (L) between the droplets actually attached to the DUT and the target diameter (R) of the salt water droplet to be attached is L ⁇ 1.2R.
  • the object is achieved by adhering salt water droplets satisfying such a relationship to the DUT at regular intervals.
  • salt water droplets that can simulate the natural environment can be attached, and salt water droplets can be uniformly attached in the test tank. Variations in the amount of salt attached due to the location of the test specimen are reduced, and the test accuracy can be improved.
  • Example 1 The block diagram of the atmospheric corrosion acceleration
  • Example 1 the figure which shows the state from which the discharged salt water became a droplet and adhered to the plate-shaped test material.
  • Example 1 the figure which shows the relationship between the salt content and the diameter of a salt water droplet, or the salt concentration in a droplet.
  • Example 3 the figure which shows the state which the discharged salt water became a droplet and adhered to the plate-shaped test material.
  • Example 3 it is a figure which shows the relationship between the amount of salt adhesion, the diameter of a salt water droplet, or the salt concentration in a droplet.
  • FIG. 1 shows the configuration of the atmospheric corrosion acceleration test apparatus of this example.
  • the atmospheric corrosion promotion test apparatus of the present embodiment is a temperature / humidity setting function in which the temperature and humidity can be controlled independently, and a plurality of combination conditions of the temperature and humidity in the constant temperature and humidity chamber can be continuously changed and maintained.
  • Temperature control and humidity chamber 1 which has a controllability, salt water discharge mechanism 2 for discharging (spraying) salt water to adhere salt to the specimen to be corroded, and washing and removing salt attached to the specimen to be corroded
  • a salinity cleaning / drying chamber 3 provided with a cleaning mechanism, and a corrosion test specimen mount 4 for holding the corrosion test specimen.
  • a plate-like test material 5 is installed on a corrosion test specimen base 4 as a corrosion test specimen.
  • the test procedure in this atmospheric corrosion acceleration test apparatus is shown.
  • the plate-shaped test material 5 is washed and dried, it is arranged on the entire surface of the corrosion test specimen mount 4.
  • the salt water discharge mechanism 2 changes to the plate-like test material 5.
  • the plate-like test material 5 is inserted into the constant temperature and humidity chamber 1 under program control, and a corrosion test is started.
  • the plate-like test material 5 to which salt water is attached is subjected to a corrosion test in an environment of a temperature and humidity cycle in which a predetermined temperature and humidity are combined in the constant temperature and humidity chamber 1.
  • the plate-shaped test material 5 is first dried at 60 ° C. for 3 hours in a dry environment with a relative humidity of 35% RH and then at 40 ° C. for a relative humidity of 95%.
  • the cycle of holding in an RH humid environment for 3 hours was repeated 12 times.
  • each transition time from the dry environment to the wet environment or from the wet environment to the dry environment was set to 1 hour, and a series of cycles was set to 8 hours.
  • the plate-like test material 5 installed on the corrosion test stand 4 is taken out through the salt cleaning / drying chamber 3.
  • a water washing nozzle and a hot air drying nozzle (not shown) are installed in the salt washing / drying chamber 3.
  • a predetermined amount of clean water is discharged from the water washing nozzle onto the plate-shaped test material 5, and the salt attached to the plate-shaped test material 5 is washed away.
  • warm air is blown from the warm air drying nozzle, and the plate-shaped test material 5 is dried.
  • the temperature of the washing water was set to 30 ° C.
  • the temperature of the hot air was set to 50 ° C.
  • the corrosion test was continued by repeating this series of salt water adhesion process, temperature / humidity cycle process, and washing and drying process.
  • the drying and wetting in the temperature and humidity cycle process was repeated for 4 weeks or 8 weeks, and in that, the salt water adhesion process and the washing and drying process were performed twice a week.
  • FIG. 2 is a view showing a salt water discharge mechanism in the atmospheric corrosion promotion test apparatus of the present embodiment.
  • a salt water port 6 for supplying salt water
  • a drain port 7 for discharging salt water in the salt water discharge mechanism
  • a water intake port 8 for supplying clean water for cleaning the salt water discharge mechanism as supply and exhaust ports.
  • the salt water in the salt water discharge mechanism is discharged toward the plate-shaped test material from the salt water discharge port 9 by driving a piston 10 installed immediately above the salt water discharge port 9.
  • FIG. 3 shows a state in which the discharged salt water becomes droplets 11 and adheres to the plate-like test material 5.
  • the droplet diameter (r) actually attached to the plate-shaped test material 5 could be controlled within 1.1 times the droplet diameter (R) set by the control of the discharge mechanism. Furthermore, from the relationship between the driving conditions of the piston and the moving speed of the corroded test specimen mount, in order to reproduce the adhesion of salt in a state close to the actual environment without agglomerating the discharged droplets, the interval between the droplets ( It was found that L) is required to be 1.2 times or more the droplet diameter (R) set by the control of the discharge mechanism.
  • Repeatability is determined by whether a certain amount of salt water adheres within a predetermined area, or a certain amount of salt water adheres to an arbitrary unit area of the predetermined area, or more than once in each application. It is judged whether a certain amount of salt water adheres.
  • the condition for depositing salt in a state close to the actual environment is that the salt water droplet diameter (r) adhering to the surface of the specimen to be corroded and the droplet diameter (R) controlled by the salt water discharge mechanism.
  • the relationship is 0.9R ⁇ r ⁇ 1.1R, and the relationship between the interval (L) between the droplets adhering to the surface of the specimen to be corroded and the diameter (R) of the droplet controlled by the salt water discharge mechanism is L ⁇ 1.2R, that is, salt water is adhered to the surface of the corrosion test specimen at regular intervals.
  • FIG. 4 is a diagram in which the relationship between the salt adhesion amount per 1 m 2 of the plate-shaped test material, the diameter of the salt water droplets, and the salt concentration in the droplets in the salt water adhesion form shown in FIG. 3 is examined.
  • NaCl was used as the salinity
  • the salt concentration was examined by changing the salinity concentration from 0.0033 mass% to 35 mass%.
  • the salt adhesion amount can be controlled to 0.1 to 10000 mg / m 2 by controlling the diameter of the salt water droplets adhering to the plate-shaped test material to 10 to 300 ⁇ m and controlling the NaCl concentration in the salt water. It was confirmed that the adhesion state of salt flying in the actual environment can be reproduced with a wide range of adhesion amounts.
  • the variation in the amount of adhering salt in the surface of the corrosion test specimen mount was examined. Forty test materials of 100 mm ⁇ 100 mm were arranged on a corrosion test specimen frame having an area of 600 mm ⁇ 900 mm. Here, titanium was used as a test material. In the same manner as described above, the salt water discharge mechanism was controlled so that the salt adhesion amount of the plate-shaped test material was 1 g / m 2, and the salt content was adhered to the test material. After drying in a constant temperature and humidity chamber, the test material was taken out as it was, and the mass of salt adhering to the surface of the test material was measured with an electronic balance.
  • the mass of salt adhering to one test material was 0.0110 g (1.1 g / m 2 ) at the maximum and 0.00092 g (0.92 g / m 2 ) at the minimum. That is, the mass (m) per 1 cm 2 of the salt actually attached to the surface of the test specimen and the target mass (M) per 1 cm 2 of the salt controlled by the salt water discharge mechanism to be attached to the test specimen surface. In this relationship, 0.9M ⁇ m ⁇ 1.1M, the salt content uniformly adhered to the surface of the specimen.
  • an atmospheric corrosion promotion test apparatus that controls the diameter of the salt water droplets discharged from the salt water discharge mechanism and adhered to the surface of the test material, the interval between the droplets, and the salt concentration in the discharged salt water.
  • FIG. 5 is a configuration diagram of an atmospheric corrosion promotion test apparatus according to Example 2 of the present invention.
  • the atmospheric corrosion promotion test apparatus of the present embodiment is a temperature / humidity setting function in which the temperature and humidity can be controlled independently, and a plurality of combination conditions of the temperature and humidity in the constant temperature and humidity chamber can be continuously changed and maintained.
  • Temperature control and humidity chamber 1 that can be programmed and controlled, salt water discharge mechanism 2 for discharging salt water to adhere salt to the specimen to be corroded, salt water discharge mechanism cleaning and storage room for cleaning and storing the salt water discharge mechanism 12 and a corrosion test specimen mount 4 for holding the corrosion test specimen.
  • a plate-like test material 5 is installed on a corrosion test specimen base 4 as a corrosion test specimen.
  • the test procedure in this atmospheric corrosion acceleration test apparatus is shown.
  • the plate-shaped test material 5 is washed and dried, it is arranged on the entire surface of the corrosion-resistant test specimen mount 4 installed in the constant temperature and humidity chamber 1 that can be controlled by the program.
  • the salt water discharge mechanism 2 moves while discharging salt water over the plate-shaped test material 5 installed on the corrosion test specimen mount 4, and a predetermined amount of salt water is applied to the surface of the plate-shaped test material 5.
  • the plate-like test material 5 to which salt water is attached is subjected to a corrosion test in an environment of a temperature and humidity cycle in which a predetermined temperature and humidity are combined in the constant temperature and humidity chamber 1.
  • the salt water discharge mechanism 2 is provided with a water washing nozzle and a blower nozzle (not shown) for washing the plate-shaped test material 5, and the salt content washing after the plate-shaped test material 5 is exposed for a predetermined period of time.
  • the salt water discharge mechanism 2 again moves on the upper part of the plate-shaped test material 5 installed on the corrosion-resistant test body mount 4.
  • a predetermined amount of clean water is discharged from the attached water washing nozzle to the plate-like test material 5, and the salt attached to the plate-like test material 5 is washed away. It is.
  • the constant temperature and humidity chamber 1 is operated at a constant temperature of 40 ° C. so as not to humidify, and the plate-like test material 5 is dried. After the plate-like test material 5 is dried, the salt water discharge mechanism 2 is moved again to deposit salt. The corrosion test was continued by repeating this series of salt water adhesion process, temperature / humidity cycle process, and washing and drying process.
  • the salt water discharge mechanism 2 is fixed with salt deposited from the salt water while being stored in the salt water discharge mechanism cleaning / storage chamber 12, and the variation in the salt adhesion accuracy in the subsequent salt adhesion step increases. there is a possibility. Therefore, while the salt water discharge mechanism 2 is stored, clean water is supplied from the water supply port provided in the salt water discharge mechanism 2 and discharged from the salt water discharge port, thereby remaining in the salt water discharge mechanism 2. The salt water is washed. As a result, the corrosion test could be continued while maintaining the salt adhesion accuracy shown in Example 1.
  • the atmospheric corrosion promotion test apparatus of this example it is possible to reproduce the salinity state flying in the actual environment, and at the same time, it is possible to reduce variations in the amount of salt adhesion due to the installation position of the test material, The repeatability of the atmospheric corrosion acceleration test can be improved.
  • FIG. 6 is a configuration diagram of an atmospheric corrosion promotion test apparatus according to Example 3 of the present invention.
  • the atmospheric corrosion promotion test apparatus of the present embodiment is a temperature / humidity setting function in which the temperature and humidity can be controlled independently, and a plurality of combination conditions of the temperature and humidity in the constant temperature and humidity chamber can be continuously changed and maintained.
  • Temperature control and humidity chamber 1 which has a controllability, a salt water discharge mechanism 2 for discharging salt water to adhere salt to the material to be corroded, a salt water discharge mechanism cleaning / storage room for cleaning and storing the salt water discharge mechanism 12, a movable corrosion test object base 13 for holding the corrosion test material, and a water washing tank 14 for cleaning the corrosion test material.
  • a plate-like test material 5 is installed on a movable corrosion-resistant test body mount 13 as a corrosion-resistant test material.
  • the test procedure in this atmospheric corrosion acceleration test apparatus is shown.
  • the plate-shaped test material 5 is washed and dried, it is arranged on the entire surface of the movable corrosion-resistant test specimen mount 13 installed in the constant temperature and humidity chamber 1 that can be controlled by the program.
  • the salt water discharge mechanism 2 moves while discharging salt water on the upper part of the plate-like test material 5 installed on the movable corrosion-resistant test object base 13, and a predetermined amount is applied to the surface of the plate-like test material 5.
  • the plate-like test material 5 to which salt water is attached is subjected to a corrosion test in an environment of a temperature and humidity cycle in which a predetermined temperature and humidity are combined in the constant temperature and humidity chamber 1.
  • the corrosion-resistant test material (plate-like test material 5) is immersed in the water washing tank 14 together with the movable corrosion-resistant test object mount 13.
  • the salt adhering to the plate-shaped test material 5 is washed away by the clean water circulating in the washing tank 14.
  • the movable corrosion-resistant test object base 13 is pulled out of the water washing tank 14, and the constant temperature and humidity chamber 1 is operated at a constant temperature of 50 ° C. to dry the plate-like test material 5.
  • the salt water discharge mechanism 2 was moved again to deposit salt, and the corrosion test was continued.
  • FIG. 7 is a view showing a salt water discharge mechanism in the atmospheric corrosion promotion test apparatus of the present embodiment.
  • a salt water port 6 for supplying salt water
  • a drain port 7 for discharging salt water in the salt water discharge mechanism
  • a water intake port 8 for supplying clean water for cleaning the salt water discharge mechanism as supply and exhaust ports.
  • the salt water in the salt water discharge mechanism is discharged toward the plate-shaped test material from the salt water discharge port 9 by driving a piston 10 installed immediately above the salt water discharge port 9.
  • the discharge ports are arranged in two rows in a staggered pattern (staggered arrangement).
  • FIG. 8 shows a state in which the salt water discharged from the discharge port array becomes droplets 11 and adheres to the plate-shaped test material 5. Compared with the adhesion state of Example 1 shown in FIG. 3, it can be seen that the area ratio of the droplets 11 to the plate-like test material 5 is increased.
  • the diameter of the salt water discharge port and the driving condition of the piston were examined in detail, and as a result of attempting to control the droplet diameter from the salt water discharge mechanism to 50 ⁇ m, the diameter of the salt water adhering to the plate-shaped test material 5 was controlled to 50 ⁇ 5 ⁇ m. That is, the droplet diameter (r) actually attached to the plate-shaped test material 5 could be controlled within 1.1 times the droplet diameter (R) set by the control of the discharge mechanism.
  • the interval between the droplets (L ) Is required to be 1.2 times or more the droplet diameter (R) set by controlling the discharge mechanism.
  • the condition for depositing salt in a state close to the actual environment is that the salt water droplet diameter (r) adhering to the surface of the corrosion test material and the droplet diameter (R) controlled by the salt water discharge mechanism.
  • the relationship is 0.9R ⁇ r ⁇ 1.1R, and the relationship between the interval (L) of the droplets adhering to the surface of the corrosion test material and the diameter (R) of the droplets controlled by the salt water discharge mechanism is L ⁇ 1.2R, and salt water is attached to the surface of the corrosion test material at regular intervals.
  • FIG. 9 is a diagram in which the relationship between the salt adhesion amount per 1 m 2 of the plate-shaped test material, the diameter of the salt water droplet, and the salt concentration in the droplet in the salt water adhesion form shown in FIG. 8 is examined.
  • NaCl was used as the salinity
  • the salt concentration was examined by changing the salinity concentration from 0.0033 mass% to 35 mass%.
  • the discharge port array of the present embodiment has a wider control range of the amount of salt adhering than the discharge port array of Example 1 (FIG. 2) in which the discharge ports are arranged in a row, and the adhesion of salt that flies in the actual environment. It was confirmed that the amount could be reproduced in a wider range.
  • an atmospheric corrosion promotion test apparatus that controls the diameter of the salt water droplets discharged from the salt water discharge mechanism and adhered to the surface of the test material, the interval between the droplets, and the salt concentration in the discharged salt water.
  • FIG. 10 is a block diagram of an atmospheric corrosion promotion test apparatus according to Example 4 of the present invention.
  • the atmospheric corrosion promotion test apparatus of the present embodiment can control temperature and humidity independently, and has a function of setting a plurality of conditions of temperature and humidity in a constant temperature and humidity chamber and can be controlled by a program.
  • It comprises a movable corrosion-resistant specimen mount 13 for washing and a water washing tank 14 for washing the corrosion-resistant specimen.
  • a plate-like test material 5 is installed on a movable corrosion-resistant test specimen mount 13 as a corrosion-resistant specimen.
  • the test procedure in this atmospheric corrosion acceleration test apparatus is shown.
  • the plate-shaped test material 5 is washed and dried, it is arranged on the entire surface of the movable corrosion-resistant test object mount 13.
  • the plate-shaped test material 5 is inserted into the temperature-and-humidity chamber 1 that can be controlled by the program and the corrosion test is started, the plate-shaped test material 5 installed on the movable corrosion-resistant test object base 13 is washed with the salt water discharge mechanism.
  • salt water is discharged from the salt water discharge mechanism 2 toward the plate test material 5, so that the surface of the plate test material 5 is discharged. A predetermined amount of salt water adheres.
  • the plate-like test material 5 to which salt water is attached is subjected to a corrosion test in an environment of a temperature and humidity cycle in which a predetermined temperature and humidity are combined in the constant temperature and humidity chamber 1.
  • the plate-like test material 5 was exposed to a combined environment of drying and wetting in a temperature and humidity cycle for a predetermined period.
  • the corroded test body (plate-shaped test material 5) is immersed in the water washing tank 14 together with the movable corrosion-tested specimen mount 13.
  • the salt adhering to the plate-shaped test material 5 is washed away by the clean water circulating in the washing tank 14.
  • the movable corrosion test specimen base 13 is pulled out from the water washing tank 14 and taken out through the salt water discharge mechanism washing / storage chamber 12.
  • a hot air drying nozzle (not shown) is installed in the salt water discharge mechanism cleaning / storage chamber 12, and the plate-like test material 5 is dried by blowing hot air from the hot air drying nozzle.
  • the corrosion test was continued by repeating this series of salt water adhesion process, temperature / humidity cycle process, and washing and drying process.
  • an atmospheric corrosion promotion test apparatus for controlling the diameter of the salt water droplets discharged from the salt water discharge mechanism and adhering to the surface of the test body, the interval between the droplets, and the salt concentration in the discharged salt water.

Abstract

The existing devices for accelerated atmospheric corrosion test have such problems that corrosion caused by sticking of salt particles flying in the natural environment cannot be reproduced thereby and spraying rate still varies widely so that the variation in the amount of stuck salt particles in a test tank cannot be controlled. A device for accelerated atmospheric corrosion test wherein the diameters and sticking sites of salt solution drops to be stuck to a test material can be controlled and thus the salt solution drops are allowed to uniformly stick to the test material without aggregating together.  More specifically, a device for accelerated atmospheric corrosion test comprising a constant temperature and humidity tank, a test material table on which a test material to be subjected to the corrosion test is placed, a water washing member and a salt solution-spraying member from which a salt solution is sprayed to the test material to be corroded, wherein the relation between the diameter of salt solution drops sticking to the surface of the test material to be corroded (r) and the diameter of solution drops having been controlled by the salt solution-spraying member (R) satisfis 0.9R≤r≤1.1R; the relation between the interval of drops sticking to the surface of the test material to be corroded (L) and the diameter of solution drops having been controlled by the salt solution-spraying member (R) satisfies L≥1.2R; and, to the surface of the test material to be corroded, a predetermined amount of the salt solution is stuck per unit area.

Description

大気腐食促進試験装置Atmospheric corrosion acceleration test equipment
 本発明は、大気中で使用される金属材料の腐食形態を再現できる腐食促進試験装置に係り、特に腐食を促進させる化学物質を被試験体に均一に付着させる装置に関する。 The present invention relates to a corrosion accelerating test apparatus capable of reproducing the corrosion form of a metal material used in the atmosphere, and more particularly to an apparatus for uniformly attaching a chemical substance that promotes corrosion to a test object.
 大気腐食の促進試験法としては、JIS Z 2371で規定されている塩水噴霧試験方法やJIS K 5600-7-9で規定されているサイクル腐食試験方法が知られており、規格に準拠した試験装置が用いられている。従来の試験装置では、腐食を促進させる化学物質として所定の濃度に調整された塩水を用い、この塩水を噴霧塔からミスト状に噴霧して被試験体に付着させる方法を採用していた。この塩水の噴霧量に関しては、試験槽内の塩水の採取位置によるバラツキが少ないことが、試験装置の精度として要求されている。塩水噴霧のバラツキを小さくする方法として、例えば、噴霧塔を二重構造とすることにより改善する方法が特許文献1に公開されている。 As the atmospheric corrosion acceleration test method, the salt spray test method specified in JIS Z 2371 and the cycle corrosion test method specified in JIS K 5600-7-9 are known. Is used. A conventional test apparatus employs a method in which salt water adjusted to a predetermined concentration is used as a chemical substance that promotes corrosion, and this salt water is sprayed in a mist form from a spray tower to adhere to a test object. As for the spray amount of the salt water, it is required as the accuracy of the test apparatus that there is little variation depending on the salt water collection position in the test tank. As a method for reducing variations in salt spray, for example, a method for improving the spray tower by making the spray tower have a double structure is disclosed in Patent Document 1.
 一方、霧状に噴霧された塩水が試験体に付着すると、噴霧された液滴が凝集して表面がぬれた状態になり、液滴のサイズは、自然環境で飛来する海塩粒子のサイズが数10μm程度であるのと比べて大きく異なる。その結果、従来の腐食促進試験装置による腐食状態は、実際の自然環境中に置かれている材料の腐食状態とはかけ離れているものであった。自然環境で飛来する塩粒子の付着状況を再現する方法としては、発生させた塩粒子を一定の緩衝空間を飛来させた後に被試験体に付着させることにより再現する方法が特許文献2に公開されている。 On the other hand, when salt water sprayed in the form of mist adheres to the specimen, the sprayed droplets aggregate and become wet, and the size of the droplets is the size of sea salt particles flying in the natural environment. This is greatly different from that of several tens of μm. As a result, the corrosion state by the conventional corrosion acceleration test apparatus is far from the corrosion state of the material placed in the actual natural environment. As a method of reproducing the adhesion state of salt particles flying in the natural environment, a method of reproducing the generated salt particles by causing them to fly through a certain buffer space and then adhering to a test object is disclosed in Patent Document 2. ing.
特許第2031365号公報Japanese Patent No. 2031365 特許第3668743号公報Japanese Patent No. 3668743
 上記、塩水を噴霧することにより塩粒子を付着させる方法では、自然環境で飛来する塩粒子の付着による腐食を再現できないのと同時に、噴霧のバラツキが未だ大きく、試験装置内での被試験体の設置位置によるバラツキが十分に解消できていない課題がある。また、塩粒子を一定空間飛来させて付着させる方法では、自然環境で飛来する塩粒子を再現できても、試験槽内における塩粒子付着量のバラツキを制御できない課題がある。 The above-described method of adhering salt particles by spraying salt water cannot reproduce corrosion due to adhesion of salt particles flying in the natural environment, and at the same time, the spray variation is still large, and the test object in the test apparatus is There is a problem that variation due to the installation position cannot be sufficiently resolved. In addition, the method in which the salt particles are allowed to fly in a fixed space has a problem that even if the salt particles flying in the natural environment can be reproduced, the variation in the amount of salt particles deposited in the test tank cannot be controlled.
 本発明の目的は、自然環境で飛来する塩粒子を再現すると同時に試験槽内での被試験体の設置位置による塩分付着量のバラツキを小さくできる試験装置を提供することにある。 An object of the present invention is to provide a test apparatus capable of reproducing the salt particles flying in the natural environment and at the same time reducing the variation in the amount of adhered salt depending on the position of the test object in the test tank.
 前記目的を達成する本発明の要旨は次の通りである。 The gist of the present invention for achieving the above object is as follows.
 本発明による大気腐食促進試験装置は、恒温恒湿槽、被試験体を保持する架台、被試験体に付着した塩粒子を洗浄する機構、および被試験体に塩水を付着させる機構から構成され、被試験体に付着させる塩水液滴の直径と液滴の付着位置とを制御し、被試験体に付着した塩水液滴を凝集させずに均一に付着させることにより達成される。ここで、付着させる塩水液滴の目標直径(R)と被試験体に実際に付着した塩水液滴の直径(r)との関係は、0.9R≦r≦1.1Rであり、かつ、被試験体に実際に付着した液滴の間隔(L)と付着させる塩水液滴の目標直径(R)との関係は、L≧1.2Rである。このような関係を満たす塩水液滴を等間隔で被試験体に付着させることにより、前記目的は達成される。 The atmospheric corrosion promotion test apparatus according to the present invention is composed of a constant temperature and humidity chamber, a gantry for holding a test object, a mechanism for washing salt particles attached to the test object, and a mechanism for attaching salt water to the test object. This is achieved by controlling the diameter of the salt water droplets attached to the test object and the attachment position of the droplets, and uniformly attaching the salt water droplets attached to the test object without agglomeration. Here, the relationship between the target diameter (R) of the salt water droplets to be adhered and the diameter (r) of the salt water droplets actually adhered to the DUT is 0.9R ≦ r ≦ 1.1R, and The relationship between the interval (L) between the droplets actually attached to the DUT and the target diameter (R) of the salt water droplet to be attached is L ≧ 1.2R. The object is achieved by adhering salt water droplets satisfying such a relationship to the DUT at regular intervals.
 本発明の大気腐食促進試験装置では、自然環境を模擬できる塩水液滴を付着でき、かつ、試験槽内で均一に塩水液滴を付着できるため、大気腐食環境を再現するとともに試験槽内の被試験体の設置位置による塩分付着量のバラツキが小さくなり、試験精度を向上できる効果がある。 In the atmospheric corrosion acceleration test apparatus of the present invention, salt water droplets that can simulate the natural environment can be attached, and salt water droplets can be uniformly attached in the test tank. Variations in the amount of salt attached due to the location of the test specimen are reduced, and the test accuracy can be improved.
本発明の実施例1による大気腐食促進試験装置の構成図。The block diagram of the atmospheric corrosion acceleration | stimulation test apparatus by Example 1 of this invention. 本発明の実施例1による大気腐食促進試験装置の塩水吐出機構を示した図。The figure which showed the salt water discharge mechanism of the atmospheric corrosion acceleration | stimulation test apparatus by Example 1 of this invention. 実施例1において、吐出された塩水が液滴となり板状試験材に付着した状態を示す図。In Example 1, the figure which shows the state from which the discharged salt water became a droplet and adhered to the plate-shaped test material. 実施例1において、塩分付着量と塩水液滴の直径あるいは液滴中の塩分濃度との関係を示す図。In Example 1, the figure which shows the relationship between the salt content and the diameter of a salt water droplet, or the salt concentration in a droplet. 本発明の実施例2による大気腐食促進試験装置の構成図。The block diagram of the atmospheric corrosion acceleration | stimulation test apparatus by Example 2 of this invention. 本発明の実施例3による大気腐食促進試験装置の構成図。The block diagram of the atmospheric corrosion acceleration | stimulation test apparatus by Example 3 of this invention. 本発明の実施例3による大気腐食促進試験装置の塩水吐出機構を示した図。The figure which showed the salt water discharge mechanism of the atmospheric corrosion acceleration | stimulation test apparatus by Example 3 of this invention. 実施例3において、吐出された塩水が液滴となり板状試験材に付着した状態を示す図。In Example 3, the figure which shows the state which the discharged salt water became a droplet and adhered to the plate-shaped test material. 実施例3において、塩分付着量と塩水液滴の直径あるいは液滴中の塩分濃度との関係を示す図。In Example 3, it is a figure which shows the relationship between the amount of salt adhesion, the diameter of a salt water droplet, or the salt concentration in a droplet. 本発明の実施例4による大気腐食促進試験装置の構成図。The block diagram of the atmospheric corrosion acceleration | stimulation test apparatus by Example 4 of this invention.
 以下、本発明の詳細について実施例を用い説明する。 Hereinafter, details of the present invention will be described using examples.
 図1に、本実施例の大気腐食促進試験装置の構成を示す。本実施例の大気腐食促進試験装置は、温度と湿度とが独立に制御でき、かつ、恒温恒湿槽内の温度と湿度の複数の組み合わせ条件を連続的に変化させて保持できる温湿度設定機能を有しプログラム制御可能な恒温恒湿槽1、被腐食試験体に塩分を付着させるために塩水を吐出(噴霧)するための塩水吐出機構2、被腐食試験体に付着した塩分を洗浄除去するための洗浄機構を備えた塩分洗浄・乾燥室3、および被腐食試験体を保持するための被腐食試験体架台4から構成されている。図中では、板状試験材5が被腐食試験体として被腐食試験体架台4上に設置されている。 FIG. 1 shows the configuration of the atmospheric corrosion acceleration test apparatus of this example. The atmospheric corrosion promotion test apparatus of the present embodiment is a temperature / humidity setting function in which the temperature and humidity can be controlled independently, and a plurality of combination conditions of the temperature and humidity in the constant temperature and humidity chamber can be continuously changed and maintained. Temperature control and humidity chamber 1 which has a controllability, salt water discharge mechanism 2 for discharging (spraying) salt water to adhere salt to the specimen to be corroded, and washing and removing salt attached to the specimen to be corroded And a salinity cleaning / drying chamber 3 provided with a cleaning mechanism, and a corrosion test specimen mount 4 for holding the corrosion test specimen. In the figure, a plate-like test material 5 is installed on a corrosion test specimen base 4 as a corrosion test specimen.
 次に、この大気腐食促進試験装置における試験手順を示す。先ず、板状試験材5を、洗浄および乾燥させた後に、被腐食試験体架台4の全面に並べる。被腐食試験体架台4に設置された板状試験材5が塩分洗浄・乾燥室3内に設置された塩水吐出機構2の下を通過する際に、塩水吐出機構2から板状試験材5に向けて塩水が吐出されることにより、板状試験材5の表面に所定量の塩水が付着する。この板状試験材5をプログラム制御された恒温恒湿槽1内に挿入して腐食試験を開始する。塩水が付着した板状試験材5は、恒温恒湿槽1内で所定の温湿度が組み合わせられた温湿度サイクルの環境で腐食試験される。 Next, the test procedure in this atmospheric corrosion acceleration test apparatus is shown. First, after the plate-shaped test material 5 is washed and dried, it is arranged on the entire surface of the corrosion test specimen mount 4. When the plate-like test material 5 installed on the corroded test specimen mount 4 passes under the salt water discharge mechanism 2 installed in the salt washing / drying chamber 3, the salt water discharge mechanism 2 changes to the plate-like test material 5. By discharging the salt water toward the surface, a predetermined amount of salt water adheres to the surface of the plate-shaped test material 5. The plate-like test material 5 is inserted into the constant temperature and humidity chamber 1 under program control, and a corrosion test is started. The plate-like test material 5 to which salt water is attached is subjected to a corrosion test in an environment of a temperature and humidity cycle in which a predetermined temperature and humidity are combined in the constant temperature and humidity chamber 1.
 今回、板状試験材5の挿入後の温湿度サイクルとして、板状試験材5を、先ず60℃で相対湿度35%RHの乾燥環境で3時間乾燥させた後に、40℃で相対湿度95%RHの湿潤環境に3時間保持するサイクルを12回繰り返した。ここで、乾燥環境から湿潤環境、あるいは、湿潤環境から乾燥環境への移行時間は、各々1時間とし、一連のサイクルを8時間に設定した。乾燥と湿潤の組み合わせ環境に板状試験材5を12サイクル、計96時間暴露した後、被腐食試験架台4に設置された板状試験材5は、塩分洗浄・乾燥室3を通して、取り出される。塩分洗浄・乾燥室3内には、図示しない水洗ノズルと温風乾燥ノズルとが設置されている。先ず、水洗ノズルから清浄な水が板状試験材5に所定量放水されて、板状試験材5に付着していた塩分が洗い流される。続いて、温風乾燥ノズルから温風が吹き付けられ、板状試験材5は乾燥させられる。ここで、水洗水の温度を30℃、温風の温度を50℃に設定した。この一連の塩水付着工程、温湿度サイクル工程、および洗浄乾燥工程を繰り返すことにより、腐食試験を継続した。温湿度サイクル工程での乾燥・湿潤を4週間、または8週間繰り返し、その中で、週に二回、塩水付着工程及び洗浄乾燥工程を行った。 As a temperature / humidity cycle after the insertion of the plate-shaped test material 5 this time, the plate-shaped test material 5 is first dried at 60 ° C. for 3 hours in a dry environment with a relative humidity of 35% RH and then at 40 ° C. for a relative humidity of 95%. The cycle of holding in an RH humid environment for 3 hours was repeated 12 times. Here, each transition time from the dry environment to the wet environment or from the wet environment to the dry environment was set to 1 hour, and a series of cycles was set to 8 hours. After the plate-like test material 5 is exposed to a combined environment of dry and wet for 12 cycles for a total of 96 hours, the plate-like test material 5 installed on the corrosion test stand 4 is taken out through the salt cleaning / drying chamber 3. A water washing nozzle and a hot air drying nozzle (not shown) are installed in the salt washing / drying chamber 3. First, a predetermined amount of clean water is discharged from the water washing nozzle onto the plate-shaped test material 5, and the salt attached to the plate-shaped test material 5 is washed away. Subsequently, warm air is blown from the warm air drying nozzle, and the plate-shaped test material 5 is dried. Here, the temperature of the washing water was set to 30 ° C., and the temperature of the hot air was set to 50 ° C. The corrosion test was continued by repeating this series of salt water adhesion process, temperature / humidity cycle process, and washing and drying process. The drying and wetting in the temperature and humidity cycle process was repeated for 4 weeks or 8 weeks, and in that, the salt water adhesion process and the washing and drying process were performed twice a week.
 図2は、本実施例の大気腐食促進試験装置における塩水吐出機構を示した図である。塩水吐出機構には、給排気口として、塩水を供給する塩水口6、塩水吐出機構内の塩水を排出するための排水口7、および塩水吐出機構内を洗浄する清浄水を供給する吸水口8がある。塩水吐出機構内の塩水は、塩水吐出口9の直上に設置されているピストン10を駆動することにより、塩水吐出口9から板状試験材に向けて吐出される。 FIG. 2 is a view showing a salt water discharge mechanism in the atmospheric corrosion promotion test apparatus of the present embodiment. In the salt water discharge mechanism, a salt water port 6 for supplying salt water, a drain port 7 for discharging salt water in the salt water discharge mechanism, and a water intake port 8 for supplying clean water for cleaning the salt water discharge mechanism as supply and exhaust ports. There is. The salt water in the salt water discharge mechanism is discharged toward the plate-shaped test material from the salt water discharge port 9 by driving a piston 10 installed immediately above the salt water discharge port 9.
 吐出された塩水が液滴11となり板状試験材5に付着した状態を、図3に示す。塩水吐出機構の吐出口直径、ピストンの駆動条件、および被腐食試験体架台の移動速度を制御することにより、板状試験材5に付着する塩水液滴11の量を制御することができる。先ず、塩水吐出口の直径とピストンの駆動条件とを詳細に検討し、塩水吐出機構からの液滴直径を60μmに制御することを試みた結果、板状試験材5に付着した塩水の直径を60±5μmに制御できた。すなわち、板状試験材5に実際に付着した液滴直径(r)を、吐出機構の制御で設定した液滴直径(R)の1.1倍以内に制御できた。さらに、ピストンの駆動条件と被腐食試験体架台の移動速度との関係から、吐出した液滴が凝集せずに実際の環境に近い状態の塩分付着を再現するためには、液滴の間隔(L)が吐出機構の制御で設定した液滴直径(R)の1.2倍以上必要なことが判明した。 FIG. 3 shows a state in which the discharged salt water becomes droplets 11 and adheres to the plate-like test material 5. By controlling the discharge port diameter of the salt water discharge mechanism, the driving condition of the piston, and the moving speed of the corrosion test specimen mount, the amount of salt water droplets 11 adhering to the plate-like test material 5 can be controlled. First, the diameter of the salt water discharge port and the driving condition of the piston were examined in detail, and as a result of trying to control the droplet diameter from the salt water discharge mechanism to 60 μm, the diameter of the salt water adhering to the plate-like test material 5 was determined. It could be controlled to 60 ± 5 μm. That is, the droplet diameter (r) actually attached to the plate-shaped test material 5 could be controlled within 1.1 times the droplet diameter (R) set by the control of the discharge mechanism. Furthermore, from the relationship between the driving conditions of the piston and the moving speed of the corroded test specimen mount, in order to reproduce the adhesion of salt in a state close to the actual environment without agglomerating the discharged droplets, the interval between the droplets ( It was found that L) is required to be 1.2 times or more the droplet diameter (R) set by the control of the discharge mechanism.
 繰り返し再現性は、所定の面積内に一定量の塩水が付着しているか、所定の面積のうち、任意の単位面積にそれぞれ一定量の塩水が付着しているか、さらに複数回の塗布で、毎回一定量の塩水が付着するかどうかで判断される。 Repeatability is determined by whether a certain amount of salt water adheres within a predetermined area, or a certain amount of salt water adheres to an arbitrary unit area of the predetermined area, or more than once in each application. It is judged whether a certain amount of salt water adheres.
 以上から、実際の環境に近い状態で塩分を付着させる条件は、被腐食試験体表面に付着した塩水の液滴直径(r)と塩水吐出機構で制御された液滴の直径(R)との関係が0.9R≦r≦1.1Rであり、かつ、被腐食試験体表面に付着した液滴の間隔(L)と塩水吐出機構で制御された液滴の直径(R)との関係がL≧1.2Rであり、等間隔で被腐食試験体表面に塩水を付着させることである。 From the above, the condition for depositing salt in a state close to the actual environment is that the salt water droplet diameter (r) adhering to the surface of the specimen to be corroded and the droplet diameter (R) controlled by the salt water discharge mechanism. The relationship is 0.9R ≦ r ≦ 1.1R, and the relationship between the interval (L) between the droplets adhering to the surface of the specimen to be corroded and the diameter (R) of the droplet controlled by the salt water discharge mechanism is L ≧ 1.2R, that is, salt water is adhered to the surface of the corrosion test specimen at regular intervals.
 さらに、吐出させる塩水中の塩分濃度を制御することにより、板状試験材に付着する塩分量を制御できる範囲を検討した。図4は、図3に示した塩水の付着形態において、板状試験材1m2あたりの塩分付着量と、塩水液滴の直径および液滴中の塩分濃度との関係を検討した図である。ここでは、塩分としてNaClを用い、塩分濃度を0.0035mass%から35mass%まで変化させて塩付着量を検討した。検討結果から、板状試験材に付着した塩水液滴の直径を10~300μmに制御し塩水中のNaCl濃度を制御することにより、塩分付着量を0.1~10000mg/m2に制御でき、実際の環境で飛来する塩分の付着状態を広範囲の付着量で再現できることが確認できた。 Furthermore, the range which can control the amount of salt adhering to a plate-shaped test material was examined by controlling the salt concentration in the salt water to discharge. FIG. 4 is a diagram in which the relationship between the salt adhesion amount per 1 m 2 of the plate-shaped test material, the diameter of the salt water droplets, and the salt concentration in the droplets in the salt water adhesion form shown in FIG. 3 is examined. Here, NaCl was used as the salinity, and the salt concentration was examined by changing the salinity concentration from 0.0033 mass% to 35 mass%. From the examination results, the salt adhesion amount can be controlled to 0.1 to 10000 mg / m 2 by controlling the diameter of the salt water droplets adhering to the plate-shaped test material to 10 to 300 μm and controlling the NaCl concentration in the salt water. It was confirmed that the adhesion state of salt flying in the actual environment can be reproduced with a wide range of adhesion amounts.
 本実施例に示した大気腐食促進試験装置を用いて、被腐食試験体架台の面内における塩分付着量のバラツキを検討した。600mm×900mmの面積を有する被腐食試験体架台に100mm×100mmの試験材を40枚並べた。ここでは、試験材としてチタンを用いた。前記と同様の方法で、板状試験材の塩分付着量が1g/m2となるように塩水吐出機構を制御して、試験材に塩分を付着させた。恒温恒湿槽内で乾燥させた後、そのまま試験材を取り出し、試験材表面に付着した塩の質量を電子天秤で計測した。試験材一枚当たりに付着していた塩の質量は、最大0.0110g(1.1g/m2)、最小0.0092g(0.92g/m2)であった。すなわち、試験体表面に実際に付着した塩の任意の1cm2あたりの質量(m)と、塩水吐出機構で制御し試験体表面に付着させる塩の1cm2あたりの目標の質量(M)とが、0.9M≦m≦1.1Mの関係で、試験体表面に塩分が均一に付着したことになる。 Using the atmospheric corrosion acceleration test apparatus shown in the present example, the variation in the amount of adhering salt in the surface of the corrosion test specimen mount was examined. Forty test materials of 100 mm × 100 mm were arranged on a corrosion test specimen frame having an area of 600 mm × 900 mm. Here, titanium was used as a test material. In the same manner as described above, the salt water discharge mechanism was controlled so that the salt adhesion amount of the plate-shaped test material was 1 g / m 2, and the salt content was adhered to the test material. After drying in a constant temperature and humidity chamber, the test material was taken out as it was, and the mass of salt adhering to the surface of the test material was measured with an electronic balance. The mass of salt adhering to one test material was 0.0110 g (1.1 g / m 2 ) at the maximum and 0.00092 g (0.92 g / m 2 ) at the minimum. That is, the mass (m) per 1 cm 2 of the salt actually attached to the surface of the test specimen and the target mass (M) per 1 cm 2 of the salt controlled by the salt water discharge mechanism to be attached to the test specimen surface. In this relationship, 0.9M ≦ m ≦ 1.1M, the salt content uniformly adhered to the surface of the specimen.
 本実施例が示すように、塩水吐出機構から吐出し試験材表面に付着する塩水液滴の直径とその液滴の間隔、および、吐出する塩水中の塩分濃度を制御する大気腐食促進試験装置を用いることにより、実際の環境中で飛来する塩分状態を再現することができると同時に、試験材の設置位置による塩分付着量のバラツキを少なくすることができ、大気腐食促進試験の繰り返し再現性を向上することができる。 As shown in this example, an atmospheric corrosion promotion test apparatus that controls the diameter of the salt water droplets discharged from the salt water discharge mechanism and adhered to the surface of the test material, the interval between the droplets, and the salt concentration in the discharged salt water. By using it, it is possible to reproduce the state of salinity flying in the actual environment, and at the same time, it is possible to reduce the variation in the amount of salt adhesion due to the installation position of the test material, improving the repeatability of the atmospheric corrosion acceleration test can do.
 図5は、本発明の実施例2による大気腐食促進試験装置の構成図である。本実施例の大気腐食促進試験装置は、温度と湿度とが独立に制御でき、かつ、恒温恒湿槽内の温度と湿度の複数の組み合わせ条件を連続的に変化させて保持できる温湿度設定機能を有しプログラム制御可能な恒温恒湿槽1、被腐食試験体に塩分を付着させるために塩水を吐出するための塩水吐出機構2、塩水吐出機構を洗浄し保管する塩水吐出機構洗浄・保管室12、および被腐食試験体を保持するための被腐食試験体架台4から構成されている。図中では、板状試験材5が被腐食試験体として被腐食試験体架台4上に設置されている。 FIG. 5 is a configuration diagram of an atmospheric corrosion promotion test apparatus according to Example 2 of the present invention. The atmospheric corrosion promotion test apparatus of the present embodiment is a temperature / humidity setting function in which the temperature and humidity can be controlled independently, and a plurality of combination conditions of the temperature and humidity in the constant temperature and humidity chamber can be continuously changed and maintained. Temperature control and humidity chamber 1 that can be programmed and controlled, salt water discharge mechanism 2 for discharging salt water to adhere salt to the specimen to be corroded, salt water discharge mechanism cleaning and storage room for cleaning and storing the salt water discharge mechanism 12 and a corrosion test specimen mount 4 for holding the corrosion test specimen. In the figure, a plate-like test material 5 is installed on a corrosion test specimen base 4 as a corrosion test specimen.
 次に、この大気腐食促進試験装置における試験手順を示す。先ず、板状試験材5を、洗浄および乾燥させた後に、プログラム制御可能な恒温恒湿槽1内に設置された被腐食試験体架台4の全面に並べる。腐食試験を開始する際、被腐食試験体架台4に設置された板状試験材5の上部を塩水吐出機構2が塩水を吐出しながら移動し、板状試験材5の表面に所定量の塩水を付着させる。塩水が付着した板状試験材5は、恒温恒湿槽1内で所定の温湿度が組み合わせられた温湿度サイクルの環境で腐食試験される。 Next, the test procedure in this atmospheric corrosion acceleration test apparatus is shown. First, after the plate-shaped test material 5 is washed and dried, it is arranged on the entire surface of the corrosion-resistant test specimen mount 4 installed in the constant temperature and humidity chamber 1 that can be controlled by the program. When the corrosion test is started, the salt water discharge mechanism 2 moves while discharging salt water over the plate-shaped test material 5 installed on the corrosion test specimen mount 4, and a predetermined amount of salt water is applied to the surface of the plate-shaped test material 5. To attach. The plate-like test material 5 to which salt water is attached is subjected to a corrosion test in an environment of a temperature and humidity cycle in which a predetermined temperature and humidity are combined in the constant temperature and humidity chamber 1.
 塩水吐出機構2には、板状試験材5を洗浄するための水洗ノズルと送風ノズルとが設置されており(図示せず)、板状試験材5が所定の期間暴露された後の塩分洗浄と乾燥工程では、再び塩水吐出機構2が被腐食試験体架台4に設置された板状試験材5上部を移動する。この時、塩水吐出機構2から塩水は吐出しない状態で、併設された水洗ノズルからから清浄水が板状試験材5に所定量放水されて、板状試験材5に付着していた塩分が洗い流される。引き続き、塩水を吐出しない状態で、併設された送風ノズルから冷風が板状試験材5に吹き付けられて板状試験材5に付着している清浄水の液滴を除去する。次に、塩水吐出機構2を塩水吐出機構洗浄・保管室12に保管した後に、恒温恒湿槽1を加湿しない40℃の一定温度で運転して、板状試験材5を乾燥させる。板状試験材5が乾燥した後に再び、塩水吐出機構2を移動させて塩分を付着させる。この一連の塩水付着工程、温湿度サイクル工程、および洗浄乾燥工程を繰り返すことにより、腐食試験を継続した。 The salt water discharge mechanism 2 is provided with a water washing nozzle and a blower nozzle (not shown) for washing the plate-shaped test material 5, and the salt content washing after the plate-shaped test material 5 is exposed for a predetermined period of time. In the drying process, the salt water discharge mechanism 2 again moves on the upper part of the plate-shaped test material 5 installed on the corrosion-resistant test body mount 4. At this time, in a state where salt water is not discharged from the salt water discharge mechanism 2, a predetermined amount of clean water is discharged from the attached water washing nozzle to the plate-like test material 5, and the salt attached to the plate-like test material 5 is washed away. It is. Subsequently, in a state where salt water is not discharged, cool air is blown from the provided air blowing nozzle to the plate-like test material 5 to remove clean water droplets adhering to the plate-like test material 5. Next, after storing the salt water discharge mechanism 2 in the salt water discharge mechanism cleaning / storage chamber 12, the constant temperature and humidity chamber 1 is operated at a constant temperature of 40 ° C. so as not to humidify, and the plate-like test material 5 is dried. After the plate-like test material 5 is dried, the salt water discharge mechanism 2 is moved again to deposit salt. The corrosion test was continued by repeating this series of salt water adhesion process, temperature / humidity cycle process, and washing and drying process.
 この一連の工程で、塩水吐出機構2は、塩水吐出機構洗浄・保管室12に保管されている間に塩水から析出した塩分が固着し、以降の塩分付着工程における塩分付着精度のバラツキが大きくなる可能性がある。そこで、塩水吐出機構2が保管されている間に、塩水吐出機構2に併設されている給水口から清浄水を供給して塩水吐出口から吐出することにより、塩水吐出機構2内に残存している塩水を洗浄した。その結果、実施例1に示した塩分付着精度を維持して腐食試験が継続できた。 In this series of steps, the salt water discharge mechanism 2 is fixed with salt deposited from the salt water while being stored in the salt water discharge mechanism cleaning / storage chamber 12, and the variation in the salt adhesion accuracy in the subsequent salt adhesion step increases. there is a possibility. Therefore, while the salt water discharge mechanism 2 is stored, clean water is supplied from the water supply port provided in the salt water discharge mechanism 2 and discharged from the salt water discharge port, thereby remaining in the salt water discharge mechanism 2. The salt water is washed. As a result, the corrosion test could be continued while maintaining the salt adhesion accuracy shown in Example 1.
 本実施例の大気腐食促進試験装置を用いることにより、実際の環境中で飛来する塩分状態を再現することができると同時に、試験材の設置位置による塩分付着量のバラツキを少なくすることができ、大気腐食促進試験の繰り返し再現性を向上することができる。 By using the atmospheric corrosion promotion test apparatus of this example, it is possible to reproduce the salinity state flying in the actual environment, and at the same time, it is possible to reduce variations in the amount of salt adhesion due to the installation position of the test material, The repeatability of the atmospheric corrosion acceleration test can be improved.
 図6は、本発明の実施例3による大気腐食促進試験装置の構成図である。本実施例の大気腐食促進試験装置は、温度と湿度とが独立に制御でき、かつ、恒温恒湿槽内の温度と湿度の複数の組み合わせ条件を連続的に変化させて保持できる温湿度設定機能を有しプログラム制御可能な恒温恒湿槽1、被腐食試験材に塩分を付着させるために塩水を吐出するための塩水吐出機構2、塩水吐出機構を洗浄し保管する塩水吐出機構洗浄・保管室12、被腐食試験材を保持するための可動式被腐食試験体架台13、および被腐食試験材を洗浄するための水洗槽14から構成されている。図中では、板状試験材5が被腐食試験材として可動式被腐食試験体架台13上に設置されている。 FIG. 6 is a configuration diagram of an atmospheric corrosion promotion test apparatus according to Example 3 of the present invention. The atmospheric corrosion promotion test apparatus of the present embodiment is a temperature / humidity setting function in which the temperature and humidity can be controlled independently, and a plurality of combination conditions of the temperature and humidity in the constant temperature and humidity chamber can be continuously changed and maintained. Temperature control and humidity chamber 1 which has a controllability, a salt water discharge mechanism 2 for discharging salt water to adhere salt to the material to be corroded, a salt water discharge mechanism cleaning / storage room for cleaning and storing the salt water discharge mechanism 12, a movable corrosion test object base 13 for holding the corrosion test material, and a water washing tank 14 for cleaning the corrosion test material. In the figure, a plate-like test material 5 is installed on a movable corrosion-resistant test body mount 13 as a corrosion-resistant test material.
 次に、この大気腐食促進試験装置における試験手順を示す。先ず、板状試験材5を、洗浄および乾燥させた後に、プログラム制御可能な恒温恒湿槽1内に設置された可動式被腐食試験体架台13の全面に並べる。腐食試験を開始する際、可動式被腐食試験体架台13に設置された板状試験材5の上部を塩水吐出機構2が塩水を吐出しながら移動し、板状試験材5の表面に所定量の塩水を付着させる。塩水が付着した板状試験材5は、恒温恒湿槽1内で所定の温湿度が組み合わせられた温湿度サイクルの環境で腐食試験される。 Next, the test procedure in this atmospheric corrosion acceleration test apparatus is shown. First, after the plate-shaped test material 5 is washed and dried, it is arranged on the entire surface of the movable corrosion-resistant test specimen mount 13 installed in the constant temperature and humidity chamber 1 that can be controlled by the program. When starting the corrosion test, the salt water discharge mechanism 2 moves while discharging salt water on the upper part of the plate-like test material 5 installed on the movable corrosion-resistant test object base 13, and a predetermined amount is applied to the surface of the plate-like test material 5. Of salt water. The plate-like test material 5 to which salt water is attached is subjected to a corrosion test in an environment of a temperature and humidity cycle in which a predetermined temperature and humidity are combined in the constant temperature and humidity chamber 1.
 板状試験材5が所定の期間暴露された後の塩分洗浄と乾燥工程では、可動式被腐食試験体架台13ごと被腐食試験材(板状試験材5)が水洗槽14に浸漬されて、水洗槽14内を循環している清浄水により板状試験材5に付着していた塩分が洗い流される。塩分が洗い流された後、可動式被腐食試験体架台13は水洗槽14から引き出され、恒温恒湿槽1を加湿しない50℃の一定温度で運転して、板状試験材5を乾燥させる。板状試験材5が乾燥した後に再び、塩水吐出機構2を移動させて塩分を付着させ、腐食試験を継続した。 In the salt washing and drying process after the plate-like test material 5 has been exposed for a predetermined period, the corrosion-resistant test material (plate-like test material 5) is immersed in the water washing tank 14 together with the movable corrosion-resistant test object mount 13. The salt adhering to the plate-shaped test material 5 is washed away by the clean water circulating in the washing tank 14. After the salt content has been washed away, the movable corrosion-resistant test object base 13 is pulled out of the water washing tank 14, and the constant temperature and humidity chamber 1 is operated at a constant temperature of 50 ° C. to dry the plate-like test material 5. After the plate-like test material 5 was dried, the salt water discharge mechanism 2 was moved again to deposit salt, and the corrosion test was continued.
 図7は、本実施例の大気腐食促進試験装置における塩水吐出機構を示した図である。塩水吐出機構には、給排気口として、塩水を供給する塩水口6、塩水吐出機構内の塩水を排出するための排水口7、および塩水吐出機構内を洗浄する清浄水を供給する吸水口8がある。塩水吐出機構内の塩水は、塩水吐出口9の直上に設置されているピストン10を駆動することにより、塩水吐出口9から板状試験材に向けて吐出される。本実施例の塩水吐出機構では、吐出口が二列に千鳥格子(千鳥配列)状に配置されている。 FIG. 7 is a view showing a salt water discharge mechanism in the atmospheric corrosion promotion test apparatus of the present embodiment. In the salt water discharge mechanism, a salt water port 6 for supplying salt water, a drain port 7 for discharging salt water in the salt water discharge mechanism, and a water intake port 8 for supplying clean water for cleaning the salt water discharge mechanism as supply and exhaust ports. There is. The salt water in the salt water discharge mechanism is discharged toward the plate-shaped test material from the salt water discharge port 9 by driving a piston 10 installed immediately above the salt water discharge port 9. In the salt water discharge mechanism of the present embodiment, the discharge ports are arranged in two rows in a staggered pattern (staggered arrangement).
 図8に、この吐出口配列で吐出された塩水が液滴11となり板状試験材5に付着した状態を示す。図3に示した実施例1の付着状態と比較すると、板状試験材5に対する液滴11の占める面積割合が多くなっていることがわかる。 FIG. 8 shows a state in which the salt water discharged from the discharge port array becomes droplets 11 and adheres to the plate-shaped test material 5. Compared with the adhesion state of Example 1 shown in FIG. 3, it can be seen that the area ratio of the droplets 11 to the plate-like test material 5 is increased.
 実際に、塩水吐出口の直径とピストンの駆動条件とを詳細に検討し、塩水吐出機構からの液滴直径を50μmに制御することを試みた結果、板状試験材5に付着した塩水の直径を50±5μmに制御できた。すなわち、板状試験材5に実際に付着した液滴直径(r)を、吐出機構の制御で設定した液滴直径(R)の1.1倍以内に制御できた。さらに、ピストンの駆動条件と被腐食試験体架台の移動速度の関係から、吐出した液滴が凝集せずに実際の環境に近い状態の塩分付着を再現するためには、液滴の間隔(L)が吐出機構の制御で設定した液滴直径(R)の1.2倍以上必要なことが判明した。 Actually, the diameter of the salt water discharge port and the driving condition of the piston were examined in detail, and as a result of attempting to control the droplet diameter from the salt water discharge mechanism to 50 μm, the diameter of the salt water adhering to the plate-shaped test material 5 Was controlled to 50 ± 5 μm. That is, the droplet diameter (r) actually attached to the plate-shaped test material 5 could be controlled within 1.1 times the droplet diameter (R) set by the control of the discharge mechanism. Furthermore, from the relationship between the driving conditions of the piston and the moving speed of the corrosion test specimen mount, in order to reproduce the adhesion of salt in a state close to the actual environment without agglomerating the discharged droplets, the interval between the droplets (L ) Is required to be 1.2 times or more the droplet diameter (R) set by controlling the discharge mechanism.
 以上から、実際の環境に近い状態で塩分を付着させる条件は、被腐食試験材表面に付着した塩水の液滴直径(r)と塩水吐出機構で制御された液滴の直径(R)との関係が0.9R≦r≦1.1Rであり、かつ、被腐食試験材表面に付着した液滴の間隔(L)と塩水吐出機構で制御された液滴の直径(R)との関係がL≧1.2Rであり、等間隔で被腐食試験材表面に塩水を付着させることである。 From the above, the condition for depositing salt in a state close to the actual environment is that the salt water droplet diameter (r) adhering to the surface of the corrosion test material and the droplet diameter (R) controlled by the salt water discharge mechanism. The relationship is 0.9R ≦ r ≦ 1.1R, and the relationship between the interval (L) of the droplets adhering to the surface of the corrosion test material and the diameter (R) of the droplets controlled by the salt water discharge mechanism is L ≧ 1.2R, and salt water is attached to the surface of the corrosion test material at regular intervals.
 さらに、吐出させる塩水中の塩分濃度を制御することにより、板状試験材に付着する塩分量を制御できる範囲を検討した。図9は、図8に示した塩水の付着形態において、板状試験材1m2あたりの塩分付着量と、塩水液滴の直径および液滴中の塩分濃度との関係を検討した図である。実施例1(図4)と同様に、塩分としてNaClを用い、塩分濃度を0.0035mass%から35mass%まで変化させて塩付着量を検討した。本実施例の吐出口配列の方が、一列で吐出口を配置した実施例1(図2)の吐出口配列よりも付着塩分量の制御範囲が広くなり、実際の環境で飛来する塩分の付着量をより広範囲で再現できることが確認できた。 Furthermore, the range which can control the amount of salt adhering to a plate-shaped test material was examined by controlling the salt concentration in the salt water to discharge. FIG. 9 is a diagram in which the relationship between the salt adhesion amount per 1 m 2 of the plate-shaped test material, the diameter of the salt water droplet, and the salt concentration in the droplet in the salt water adhesion form shown in FIG. 8 is examined. In the same manner as in Example 1 (FIG. 4), NaCl was used as the salinity, and the salt concentration was examined by changing the salinity concentration from 0.0033 mass% to 35 mass%. The discharge port array of the present embodiment has a wider control range of the amount of salt adhering than the discharge port array of Example 1 (FIG. 2) in which the discharge ports are arranged in a row, and the adhesion of salt that flies in the actual environment. It was confirmed that the amount could be reproduced in a wider range.
 さらに、板状試験材の可動式被腐食試験体架台上の設置位置による塩分付着量のバラツキを調べた。この結果、試験材表面に実際に付着した塩の任意の1cm2あたりの質量(m)と、塩水吐出機構に制御し試験材表面に付着させる塩の1cm2あたりの目標の質量(M)とが、0.9M≦m≦1.1Mの関係で、試験材表面に塩分が均一に付着することが確認できた。 Furthermore, the variation in the amount of salt adhesion due to the installation position of the plate-shaped test material on the movable corrosion-resistant test specimen mount was examined. As a result, the mass (m) per 1 cm 2 of the salt actually adhered to the surface of the test material and the target mass (M) per 1 cm 2 of the salt to be adhered to the surface of the test material controlled by the salt water discharge mechanism However, it was confirmed that the salt content uniformly adhered to the surface of the test material in a relationship of 0.9M ≦ m ≦ 1.1M.
 本実施例が示すように、塩水吐出機構から吐出し試験材表面に付着する塩水液滴の直径とその液滴の間隔、および、吐出する塩水中の塩分濃度を制御する大気腐食促進試験装置を用いることにより、実際の環境中で飛来する塩分状態をより広範囲に再現することができると同時に、試験材の設置位置による塩分付着量のバラツキを少なくすることができ、大気腐食促進試験の繰り返し再現性を向上することができる。 As shown in this example, an atmospheric corrosion promotion test apparatus that controls the diameter of the salt water droplets discharged from the salt water discharge mechanism and adhered to the surface of the test material, the interval between the droplets, and the salt concentration in the discharged salt water. By using it, it is possible to reproduce the salinity state flying in the actual environment in a wider range, and at the same time, it is possible to reduce the variation in the amount of salt adhesion due to the installation position of the test material, and to repeat the atmospheric corrosion acceleration test repeatedly Can be improved.
 図10は、本発明の実施例4による大気腐食促進試験装置の構成図である。本実施例の大気腐食促進試験装置は、温度と湿度とが独立に制御でき、かつ、恒温恒湿槽内の温度と湿度の複数の組み合わせ条件を設定する機能を有しプログラム制御可能な恒温恒湿槽1、被腐食試験体に塩分を付着させるために塩水を吐出するための塩水吐出機構2、塩水吐出機構を洗浄し保管する塩水吐出機構洗浄・保管室12、被腐食試験体を保持するための可動式被腐食試験体架台13、および被腐食試験体を洗浄するための水洗槽14から構成されている。図中では、板状試験材5が被腐食試験体として可動式被腐食試験体架台13上に設置されている。 FIG. 10 is a block diagram of an atmospheric corrosion promotion test apparatus according to Example 4 of the present invention. The atmospheric corrosion promotion test apparatus of the present embodiment can control temperature and humidity independently, and has a function of setting a plurality of conditions of temperature and humidity in a constant temperature and humidity chamber and can be controlled by a program. Holds a wet tank 1, a salt water discharge mechanism 2 for discharging salt water to adhere salt to the specimen to be corroded, a salt water discharge mechanism cleaning / storage chamber 12 for cleaning and storing the salt water discharge mechanism, and a specimen to be corroded. It comprises a movable corrosion-resistant specimen mount 13 for washing and a water washing tank 14 for washing the corrosion-resistant specimen. In the figure, a plate-like test material 5 is installed on a movable corrosion-resistant test specimen mount 13 as a corrosion-resistant specimen.
 次に、この大気腐食促進試験装置における試験手順を示す。先ず、板状試験材5を、洗浄および乾燥させた後に、可動式被腐食試験体架台13の全面に並べる。この板状試験材5をプログラム制御可能な恒温恒湿槽1内に挿入して腐食試験を開始する際、可動式被腐食試験体架台13に設置された板状試験材5が塩水吐出機構洗浄・保管室12内に設置された塩水吐出機構2の下を通過する際に、塩水吐出機構2から板状試験材5に向けて塩水が吐出されることにより、板状試験材5の表面に所定量の塩水が付着する。塩水が付着した板状試験材5は、恒温恒湿槽1内で所定の温湿度が組み合わせられた温湿度サイクルの環境で腐食試験される。温湿度サイクルの乾燥と湿潤の組み合わせ環境に、板状試験材5を所定の期間暴露した。 Next, the test procedure in this atmospheric corrosion acceleration test apparatus is shown. First, after the plate-shaped test material 5 is washed and dried, it is arranged on the entire surface of the movable corrosion-resistant test object mount 13. When the plate-shaped test material 5 is inserted into the temperature-and-humidity chamber 1 that can be controlled by the program and the corrosion test is started, the plate-shaped test material 5 installed on the movable corrosion-resistant test object base 13 is washed with the salt water discharge mechanism. -When passing under the salt water discharge mechanism 2 installed in the storage chamber 12, salt water is discharged from the salt water discharge mechanism 2 toward the plate test material 5, so that the surface of the plate test material 5 is discharged. A predetermined amount of salt water adheres. The plate-like test material 5 to which salt water is attached is subjected to a corrosion test in an environment of a temperature and humidity cycle in which a predetermined temperature and humidity are combined in the constant temperature and humidity chamber 1. The plate-like test material 5 was exposed to a combined environment of drying and wetting in a temperature and humidity cycle for a predetermined period.
 板状試験材5が所定の期間暴露された後の塩分洗浄と乾燥工程では、可動式被腐食試験体架台13ごと被腐食試験体(板状試験材5)が水洗槽14に浸漬されて、水洗槽14内を循環している清浄水により板状試験材5に付着していた塩分が洗い流される。塩分が洗い流された後、可動式被腐食試験体架台13は水洗槽14から引き出され、塩水吐出機構洗浄・保管室12を通して、取り出される。塩水吐出機構洗浄・保管室12内には図示しない温風乾燥ノズルが設置されており、温風乾燥ノズルから温風を吹き付けて板状試験材5を乾燥させる。この一連の塩水付着工程、温湿度サイクル工程、および洗浄乾燥工程を繰り返すことにより、腐食試験を継続した。 In the salt washing and drying process after the plate-shaped test material 5 has been exposed for a predetermined period, the corroded test body (plate-shaped test material 5) is immersed in the water washing tank 14 together with the movable corrosion-tested specimen mount 13. The salt adhering to the plate-shaped test material 5 is washed away by the clean water circulating in the washing tank 14. After the salt content is washed away, the movable corrosion test specimen base 13 is pulled out from the water washing tank 14 and taken out through the salt water discharge mechanism washing / storage chamber 12. A hot air drying nozzle (not shown) is installed in the salt water discharge mechanism cleaning / storage chamber 12, and the plate-like test material 5 is dried by blowing hot air from the hot air drying nozzle. The corrosion test was continued by repeating this series of salt water adhesion process, temperature / humidity cycle process, and washing and drying process.
 本実施例の大気腐食促進試験装置の性能を調べたところ、実施例3と同様に、実際の環境で飛来する塩分の付着状態を広範囲の付着量で再現できることが確認できた。板状試験材の可動式被腐食試験体架台上の設置位置による塩分付着量のバラツキも、試験体表面に実際に付着した塩の任意の1cm2あたりの質量(m)と、塩水吐出機構で制御し試験体表面に付着させる塩の1cm2あたりの目標の質量(M)とが、0.9M≦m≦1.1Mの関係で、試験体表面に塩分が均一に付着することが確認できた。 As a result of investigating the performance of the atmospheric corrosion acceleration test apparatus of this example, it was confirmed that the adhesion state of salt flying in the actual environment can be reproduced with a wide range of adhesion amounts as in Example 3. Variations in the amount of salt adhering depending on the installation position of the plate-shaped test material on the movable corroded test specimen stand also depend on the mass (m) per 1 cm 2 of salt actually adhered to the test specimen surface and the salt water discharge mechanism. It is confirmed that the target mass (M) per 1 cm 2 of the salt to be controlled and adhered to the surface of the test specimen is 0.9M ≦ m ≦ 1.1M, and the salt content uniformly adheres to the specimen surface. It was.
 本実施例が示すように、塩水吐出機構から吐出し試験体表面に付着する塩水液滴の直径とその液滴の間隔、および、吐出する塩水中の塩分濃度を制御する大気腐食促進試験装置を用いることにより、実際の環境中で飛来する塩分状態を再現することができると同時に、試験体の設置位置による塩分付着量のバラツキを少なくすることができ、大気腐食促進試験の繰り返し再現性を向上することができる。 As shown in this example, an atmospheric corrosion promotion test apparatus for controlling the diameter of the salt water droplets discharged from the salt water discharge mechanism and adhering to the surface of the test body, the interval between the droplets, and the salt concentration in the discharged salt water. By using it, it is possible to reproduce the state of salinity flying in the actual environment, and at the same time, it is possible to reduce the variation in the amount of salt adhesion due to the position of the specimen, improving the repeatability of the atmospheric corrosion acceleration test. can do.
 1  プログラム制御恒温恒湿槽
 2  塩水吐出機構
 3  塩分洗浄・乾燥室
 4  被腐食試験体架台
 5  板状試験材
 6  塩水口
 7  排水口
 8  吸水口
 9  塩水吐出口
 10  ピストン
 11  塩水液滴
 12  塩水吐出機構洗浄・保管室
 13  可動式被腐食試験体架台
 14  水洗槽
DESCRIPTION OF SYMBOLS 1 Program control constant temperature and humidity chamber 2 Salt water discharge mechanism 3 Salt washing | cleaning / drying chamber 4 Corrosion test body mount 5 Plate-shaped test material 6 Salt water port 7 Drain port 8 Water intake port 9 Salt water discharge port 10 Piston 11 Salt water droplet 12 Salt water discharge Mechanism cleaning / storage room 13 Movable corrosion test specimen base 14 Water washing tank

Claims (10)

  1.  恒温恒湿槽と、被腐食試験体を載せる被腐食試験体架台と、水洗洗浄機構と、前記被腐食試験体に塩水を噴霧する塩水吐出機構とから構成される大気腐食促進試験装置であって、
     前記塩水吐出機構は、吐出する塩水の液滴の直径を制御し、
     前記塩水吐出機構から吐出され前記被腐食試験体表面に付着した塩水の液滴直径(r)と前記塩水吐出機構で制御された液滴の直径(R)との関係が0.9R≦r≦1.1Rで、かつ、前記被腐食試験体表面に付着した液滴の間隔(L)と前記塩水吐出機構で制御された液滴の直径(R)との関係がL≧1.2Rで、前記被腐食試験体表面に単位面積あたり所定量の塩水を付着させることを特徴とする大気腐食促進試験装置。
    An atmospheric corrosion acceleration test apparatus comprising a thermostatic and humidity chamber, a corrosion test specimen mount on which a corrosion test specimen is placed, a washing and washing mechanism, and a salt water discharge mechanism for spraying salt water onto the corrosion test specimen. ,
    The salt water discharge mechanism controls the diameter of the salt water droplets to be discharged,
    The relationship between the droplet diameter (r) of salt water discharged from the salt water discharge mechanism and adhered to the surface of the specimen to be corroded and the diameter (R) of droplets controlled by the salt water discharge mechanism is 0.9R ≦ r ≦ 1.1R, and the relationship between the interval (L) between the droplets adhering to the surface of the specimen to be corroded and the diameter (R) of the droplet controlled by the salt water discharge mechanism is L ≧ 1.2R, An atmospheric corrosion acceleration test apparatus, wherein a predetermined amount of salt water per unit area is adhered to the surface of the test object to be corroded.
  2.  前記被腐食試験体表面に付着した塩水の液滴直径が10~300μmであり、かつ、前記被腐食試験体表面に付着した塩水が蒸発乾固して付着析出した塩の質量が0.1~10000mg/m2であることを特徴とする請求項1に記載の大気腐食促進試験装置。 The droplet diameter of the salt water adhering to the surface of the specimen to be corroded is 10 to 300 μm, and the mass of the salt deposited and deposited by evaporation of the salt water adhering to the surface of the specimen to be corroded is 0.1 to The atmospheric corrosion acceleration test apparatus according to claim 1, wherein the apparatus is 10000 mg / m 2 .
  3.  前記塩水吐出機構が前記被腐食試験体を走査することにより、前記被腐食試験体表面に塩水を付着させることを特徴とする請求項2記載の大気腐食促進試験装置。 3. The atmospheric corrosion acceleration test apparatus according to claim 2, wherein the salt water discharge mechanism causes the salt water to adhere to the surface of the corrosion test specimen by scanning the corrosion test specimen.
  4.  前記被腐食試験体を設置した前記被腐食試験体架台が移動することにより、前記被腐食試験体表面に塩水を付着させることを特徴とする請求項2記載の大気腐食促進試験装置。 3. The atmospheric corrosion acceleration test apparatus according to claim 2, wherein the corrosion test specimen mount on which the corrosion test specimen is installed moves to cause salt water to adhere to the surface of the corrosion test specimen.
  5.  恒温恒湿槽と、被腐食試験体を載せる可動式被腐食試験体架台と、水洗洗浄槽と、塩水吐出機構とから構成され、
     前記塩水吐出機構は、吐出する塩水の液滴の直径を制御し、
     前記塩水吐出機構から吐出された塩水を前記被腐食試験体表面に付着させ、前記可動式被腐食試験体架台とともに前記被腐食試験体を前記水洗洗浄槽内に浸漬させることにより前記被腐食試験体表面に付着した塩を除去し、前記被腐食試験体を乾燥させ、前記塩水吐出機構により前記被腐食試験体表面に塩水を再び付着させ、
     前記被腐食試験体表面に再び付着した塩水の液滴直径(r)と前記塩水吐出機構で制御された液滴の直径(R)との関係が0.9R≦r≦1.1Rで、かつ、前記被腐食試験体表面に付着した液滴の間隔(L)と前記塩水吐出機構で制御された液滴の直径(R)との関係がL≧1.2Rで、前記被腐食試験体表面に塩水を付着させることを特徴とする大気腐食促進試験装置。
    Consists of a constant temperature and humidity chamber, a movable corrosion test specimen mount on which a corrosion test specimen is placed, a washing and washing tank, and a salt water discharge mechanism.
    The salt water discharge mechanism controls the diameter of the salt water droplets to be discharged,
    The corroded test specimen is obtained by adhering salt water discharged from the salt water discharging mechanism to the surface of the corroded specimen and immersing the corroded specimen together with the movable corroded specimen base in the washing and washing tank. Removing salt adhering to the surface, drying the corroded specimen, allowing salt water to adhere again to the corroded specimen surface by the salt water discharge mechanism,
    The relationship between the droplet diameter (r) of salt water reattached to the surface of the specimen to be corroded and the diameter (R) of the droplet controlled by the salt water discharge mechanism is 0.9R ≦ r ≦ 1.1R, and The relationship between the interval (L) between the droplets adhering to the surface of the specimen to be corroded and the diameter (R) of the droplet controlled by the salt water discharge mechanism is L ≧ 1.2R, and the surface of the specimen to be corroded Atmospheric corrosion promotion test equipment characterized by adhering salt water to water.
  6.  前記被腐食試験体表面に付着した塩水の液滴直径が10~300μmであり、かつ、前記被腐食試験体表面に付着した塩水が蒸発乾固して付着析出した塩の質量が0.1~10000mg/m2であることを特徴とする請求項5に記載の大気腐食促進試験装置。 The droplet diameter of the salt water adhering to the surface of the specimen to be corroded is 10 to 300 μm, and the mass of the salt deposited and deposited by evaporation of the salt water adhering to the surface of the specimen to be corroded is 0.1 to The atmospheric corrosion acceleration test apparatus according to claim 5, wherein the apparatus is 10000 mg / m 2 .
  7.  前記塩水吐出機構が前記被腐食試験体を走査することにより、前記被腐食試験体表面に塩水を付着させることを特徴とする請求項6記載の大気腐食促進試験装置。 The atmospheric corrosion acceleration test apparatus according to claim 6, wherein the salt water discharge mechanism causes the salt water to adhere to the surface of the corrosion test specimen by scanning the corrosion test specimen.
  8.  前記被腐食試験体を設置した前記可動式被腐食試験体架台が移動することにより、前記被腐食試験体表面に塩水を付着させることを特徴とする請求項6記載の大気腐食促進試験装置。 The atmospheric corrosion acceleration test apparatus according to claim 6, wherein the movable corrosion test specimen mount on which the corrosion test specimen is installed moves to cause salt water to adhere to the surface of the corrosion test specimen.
  9.  前記塩水吐出機構に洗浄水導入口および塩水導入口を具備し、塩水の吐出後に洗浄水を吐出することを特徴とする請求項1乃至8に記載の大気腐食促進試験装置。 9. The atmospheric corrosion acceleration test apparatus according to claim 1, wherein the salt water discharge mechanism includes a cleaning water inlet and a salt water inlet, and the cleaning water is discharged after the salt water is discharged.
  10.  恒温恒湿槽と、被腐食試験体を載せる被腐食試験体架台と、水洗洗浄機構と、前記被腐食試験体に塩分を付着させる塩分付着機構とから構成され、
     前記塩分付着機構は、前記被腐食試験体の表面に付着させる塩の質量を制御し、
     前記被腐食試験体表面に付着した塩の任意の1cm2あたりの質量(m)と前記塩分付着機構で制御し前記被腐食試験体表面に付着させる塩の1cm2あたりの質量(M)とが0.9M≦m≦1.1Mの関係で、前記被腐食試験体表面に塩を付着させることを特徴とする大気腐食促進試験装置。
    Consists of a constant temperature and humidity chamber, a corrosion test specimen mount on which a corrosion test specimen is placed, a washing and washing mechanism, and a salt adhesion mechanism for adhering salt to the corrosion test specimen,
    The salt adhesion mechanism controls the mass of salt to be attached to the surface of the corrosion test specimen,
    Wherein at the mass of 1cm per second to control the mass of 2 per any 1cm salt adhering to the corrosion test surface (m) in the salt deposition mechanism salt to be attached to the object to be corrosion test surface (M) An atmospheric corrosion acceleration test apparatus characterized in that salt is attached to the surface of the specimen to be corroded in a relationship of 0.9M ≦ m ≦ 1.1M.
PCT/JP2009/003576 2008-09-30 2009-07-29 Device for accelerated atmospheric corrosion test WO2010038343A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-252155 2008-09-30
JP2008252155A JP2010085144A (en) 2008-09-30 2008-09-30 Testing equipment for testing acceleration of atmospheric corrosion

Publications (1)

Publication Number Publication Date
WO2010038343A1 true WO2010038343A1 (en) 2010-04-08

Family

ID=42073132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/003576 WO2010038343A1 (en) 2008-09-30 2009-07-29 Device for accelerated atmospheric corrosion test

Country Status (2)

Country Link
JP (1) JP2010085144A (en)
WO (1) WO2010038343A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103115864A (en) * 2013-01-22 2013-05-22 北京科技大学 Indoor simulation/rapid assessment device for comprehensive atmospheric environment corrosion
GB2498059A (en) * 2011-12-27 2013-07-03 Hitachi Ltd Atmospheric corrosion test procedure and apparatus
CN103411876A (en) * 2013-08-16 2013-11-27 山东方圆建筑工程检测中心 Device for alkali resistance test on alkali-resistant glass fiber gridding cloth
CN104237115A (en) * 2014-10-11 2014-12-24 无锡鑫宏业特塑线缆有限公司 Constant temperature oil groove device
CN104535483B (en) * 2014-12-11 2016-11-02 练志伟 A kind of can the salt spray test device of constant temperature and humidity
CN106124389A (en) * 2016-06-28 2016-11-16 芜湖鸣人热能设备有限公司 The decay resistance test box of boiler pipe plate
CN112697687A (en) * 2020-12-10 2021-04-23 广东艾斯瑞仪器科技有限公司 Test box

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012093185A (en) * 2010-10-26 2012-05-17 Jfe Techno Research Corp Salt solution spray device
JP2012093184A (en) * 2010-10-26 2012-05-17 Jfe Techno Research Corp Spray device for corrosion acceleration test
JP6565665B2 (en) * 2014-12-26 2019-08-28 日本製鉄株式会社 Corrosion resistance evaluation method for electrical steel sheets
CN108760608A (en) * 2018-05-10 2018-11-06 芜湖市黄山松工业地坪新材料有限公司 Industry ground slab corrosion testing device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004340907A (en) * 2003-05-13 2004-12-02 Shinichi Motoda Reproduction method and device of sea salt grain attachment by airbrush spray
JP3668743B2 (en) * 1999-02-19 2005-07-06 独立行政法人物質・材料研究機構 Salt particle generator
JP2007139483A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP2008082963A (en) * 2006-09-28 2008-04-10 Jfe Steel Kk Corrosion resistance test method, corrosion-resistant steel, and corrosion-resistant tank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3668743B2 (en) * 1999-02-19 2005-07-06 独立行政法人物質・材料研究機構 Salt particle generator
JP2004340907A (en) * 2003-05-13 2004-12-02 Shinichi Motoda Reproduction method and device of sea salt grain attachment by airbrush spray
JP2007139483A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP2008082963A (en) * 2006-09-28 2008-04-10 Jfe Steel Kk Corrosion resistance test method, corrosion-resistant steel, and corrosion-resistant tank

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2498059A (en) * 2011-12-27 2013-07-03 Hitachi Ltd Atmospheric corrosion test procedure and apparatus
GB2498059B (en) * 2011-12-27 2014-08-20 Hitachi Ltd Atmospheric corrosion test procedure
CN103115864A (en) * 2013-01-22 2013-05-22 北京科技大学 Indoor simulation/rapid assessment device for comprehensive atmospheric environment corrosion
CN103411876A (en) * 2013-08-16 2013-11-27 山东方圆建筑工程检测中心 Device for alkali resistance test on alkali-resistant glass fiber gridding cloth
CN104237115A (en) * 2014-10-11 2014-12-24 无锡鑫宏业特塑线缆有限公司 Constant temperature oil groove device
CN104535483B (en) * 2014-12-11 2016-11-02 练志伟 A kind of can the salt spray test device of constant temperature and humidity
CN106124389A (en) * 2016-06-28 2016-11-16 芜湖鸣人热能设备有限公司 The decay resistance test box of boiler pipe plate
CN112697687A (en) * 2020-12-10 2021-04-23 广东艾斯瑞仪器科技有限公司 Test box
CN112697687B (en) * 2020-12-10 2022-11-22 广东艾斯瑞仪器科技有限公司 Test box

Also Published As

Publication number Publication date
JP2010085144A (en) 2010-04-15

Similar Documents

Publication Publication Date Title
WO2010038343A1 (en) Device for accelerated atmospheric corrosion test
US8927289B2 (en) Atmospheric corrosion test procedure and its apparatus
JP2005282980A (en) Humidifier
JP2019178997A (en) In-situ observation device and observation method of atmospheric corrosion
JP3834630B2 (en) Real environment simulated atmospheric corrosion test equipment
CN101549337A (en) Coating method and coating apparatus
US20070051906A1 (en) Method and apparatus for determining the resistance of materials to light and corrosives
JP2007506969A5 (en)
JP2007139483A (en) Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP2003203626A (en) Manufacturing method and device of secondary battery electrode plate
JP2011069625A (en) Atmospheric corrosion testing device
JP2017133975A (en) Composite cycle tester
JP6771769B2 (en) Salt particle generator and corrosion acceleration tester
US6889179B2 (en) Method of simulating environmental exposure
CN217392878U (en) Small paint type air drying device
CN219201309U (en) Corrosion-resistant detection device for metal material
JP2007132912A (en) Protein microarray device
JP2831046B2 (en) Drying method of compact
CN108970931A (en) A kind of water paint spraying technique and its application
JPH08279484A (en) Method and system for etching semiconductor wafer
JPH06218308A (en) Coating method and coating device
JP2001237532A (en) Flux coating method
JP2001286785A (en) Spray tower
JP2001330602A (en) Aging testing method of cement-based building material, and aging testing apparatus used therein
JP2019215157A (en) Snowfall system for crystal snow

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09817387

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09817387

Country of ref document: EP

Kind code of ref document: A1