JP3668743B2 - Salt particle generator - Google Patents

Salt particle generator Download PDF

Info

Publication number
JP3668743B2
JP3668743B2 JP04197599A JP4197599A JP3668743B2 JP 3668743 B2 JP3668743 B2 JP 3668743B2 JP 04197599 A JP04197599 A JP 04197599A JP 4197599 A JP4197599 A JP 4197599A JP 3668743 B2 JP3668743 B2 JP 3668743B2
Authority
JP
Japan
Prior art keywords
salt
test piece
buffer space
generator
sec
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP04197599A
Other languages
Japanese (ja)
Other versions
JP2000241336A (en
Inventor
晃 田原
正弘 山本
俊明 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
National Institute for Materials Science
Original Assignee
Nippon Steel Corp
National Institute for Materials Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, National Institute for Materials Science filed Critical Nippon Steel Corp
Priority to JP04197599A priority Critical patent/JP3668743B2/en
Publication of JP2000241336A publication Critical patent/JP2000241336A/en
Application granted granted Critical
Publication of JP3668743B2 publication Critical patent/JP3668743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この出願の発明は、塩粒子発生装置に関するものである。さらに詳しくは、この出願の発明は、金属材料の腐食評価を行う腐食促進試験に有用な塩粒子発生装置に関するものである。
【0002】
【従来の技術とその課題】
従来より、金属材料の腐食量の推定や評価の際に必要な腐食促進試験装置として、JIS−Z2371において規定されている塩水噴霧試験装置が用いられてきている。
また、ISO−9227において規定されているCASS試験法においても、金属腐食の促進試験として塩水噴霧試験が規定されている。
【0003】
さらに、海塩による腐食促進試験法に用いる塩水噴霧試験装置として、表面処理鋼板の自動塩水噴霧試験装置が特開平09−178646号公報に開示されている。
しかしながら、これら従来の方法においては、腐食の原因である塩水を霧状にして試験片に噴霧するか、もしくは塩水を直接シャワー状にして試験片に吹き付けるため、試験片が常時濡れた状態にあり、実際に自然環境に置かれている材料の腐食条件とはかけ離れたものであった。
【0004】
一方、この出願の発明者らは、腐食の起こらない金の試験片を実際の海岸と塩水噴霧試験装置内に設置し、試験片上に付着する塩粒子の顕微鏡観察を試みた。試験片を実際の海岸に固定し、海から飛来し試験片上に付着した海塩粒子を走査電子顕微鏡によって観察した。
添付した図面の図1は、海岸で採取した海塩粒子の走査電子顕微鏡写真を示したものである。
【0005】
図1に示したように、実環境で採取した海塩粒子はそのサイズが約30μm程度と小さく、中心に塩の結晶が析出している。これに対し、従来の促進試験装置内で採取した塩粒子は、全体が濡れていて走査電子顕微鏡などでは観察不可能な大きな塩の固まりが形成されていた。
すなわち、従来の腐食促進試験装置においては、実際の環境と全く異なる塩粒子を付着させているため、腐食の状況が本質的に異なっており、そのため、腐食促進試験装置で評価した結果が実環境の結果と合致しないという問題点があった。
【0006】
そこで、この発明は、自然環境での海塩粒子の付着状況を再現できる腐食促進試験装置を提供することを課題とする。
【0007】
【課題を解決するための手段】
この出願の発明は、以上のとおりの課題を解決するものとして、腐食促進試験に用いる装置であって、塩水の補給器、流水発生器、緩衝空間、試験片保持槽、並びに送風機を備え、緩衝空間は、流水発生器と試験片保持槽の間に配設され、送風機が発生する風速をV(m・sec -1 )とし、緩衝空間の長さをL(m)とし、この両者の関係として、V/Lの値が0.2(sec -1 )以上2.5(sec -1 )以下の範囲とされていることを特徴とする塩粒子発生装置を提供する。
【0009】
【発明の実施の形態】
この出願の発明は、以上のとおりの特徴を有するものであるが、次にその実施の形態について説明する。
添付した図面の図2は、この発明の塩粒子発生装置の構成を例示したものである。
【0010】
図2に示したように、この装置は、塩水の補給器(1)、流水発生器(2)、緩衝空間(3)、試験片保持槽(4)、並びに送風機(5)から構成されている。
【0011】
塩水補給器(1)は、その機構、構造上は特に限定されるものではないが、流水発生器(2)に一定量の塩水を補給し続け、その排水を再利用する機構を持つことが望ましい。
また、流水発生器(2)は、その構造上において特に限定されるものではなく、一定流量の滝状の流水を発生させる、あるいは一定流量の噴水状等の流水を発生させ、それを落下させるものである。さらに、送風機(5)との組み合わせにより、少なくても50μm以下のサイズの塩水の細かな粒子を充分に発生させることができるものが望ましい。流量としては、多くても問題はないが、実用的には0.1l/分から10l/分の間が望ましい。
【0012】
また、緩衝空間(3)は、塩粒子が、流水発生器(2)から試験片保持槽(4)まで運ばれる間に、その粒子径によって選別される空間である。
試験片保持槽(4)は、その機構、構造上は特に限定されるものではないが、試験片を複数保持する場合には、試験片毎の塩粒子付着量が変化しないように配慮する必要があり、このために、試験片を回転させたり、位置を変えたりする機構が適宜に選択される。
【0013】
送風機(5)は、流水発生器(2)で発生させた流水に送風し、水の細かな粒子を発生させるために用いるものであり、構造上は特に限定されるものではないが、最低1(m/sec)以上の風速を発生させるものが望ましい。
さらに、この発明においては、送風機(5)により発生させる風速と、流水発生器(2)と試験片保持槽(4)との間の緩衝空間(3)の長さの関係を設定並びに変更できるようにすることが考慮される。
【0014】
流水発生器(2)により発生した塩粒子は、緩衝空間(3)の内部を飛来し、粒子径によって選別され、試験片保持槽(4)に到達する。緩衝空間(3)の長さをL(m)とし、風速をV(m・sec-1)とし、この両者の関係として、V/Lの値が0.2(sec-1)以上2.5(sec-1)以下の範囲において、より実環境に近い海塩が得られる。この範囲以下であると、塩粒子のサイズが大きく、例えば実施例1のAの写真に示したように、50μmを超える粒子が混ざり実際の大気環境と異なった状態になる。また、この範囲以上であると、塩粒子が小さくなりすぎ、かつその飛来量が少なくなり、実用的でなくなる。
【0015】
この発明は、上記の通りの構成によってこれまでにない新しい腐食促進試験の実現を可能にする塩粒子発生装置を提供するものであるが、その構成および作用効果の特徴について、さらに詳しく以下の実施例に沿って説明する。もちろんこの発明は以下の例によって限定されるものではない。
【0016】
【実施例】
実施例1
添付した図面の図2に例示した構成の装置を用いて、V/Lの値を0.1、1.0、3.0に設定し、溶液として人工海水を用い、室温で腐食しないAuの試験片に塩粒子を付着させた。
【0017】
添付した図面の図3は、AはV/L=3.0、BはV/L=1.0、CはV/L=0.1に設定し、この発明の装置によって、試験片に付着させた塩粒子の顕微鏡写真を例示したものである。
図3(B)が前記のとおりの望ましいV/Lの範囲での結果である。これに対し図3(A)はV/Lが前記の範囲以上の場合、また、図3(C)は範囲以下の場合である。
【0018】
添付した図面の図3(B)においては、図1に示した実際の海岸で試験片上に付着させた塩粒子と粒径がほぼ同等であり、かつその外観も極めて酷似している。これに対して、図3(A)では付着した塩粒子のサイズが大きく、かつその密度が高すぎる。また、図3(C)においては、塩粒子のサイズが小さく、かつその量も少ない。
【0019】
すなわち、この発明による装置を用いることによって、極めて大きな塩粒子から、実際の海岸での付着状況と非常に近い形の塩粒子、さらに微細な塩粒子まで任意に試験片上に付着させることが可能であることが確認された。
実施例2
NaCl水溶液を溶液として、実施例1と同様のこの発明の装置内にSUS304相当のステンレス鋼板を設置し、V/L=1.0の条件で塩粒子を付着させ、時間とともに変化する塩粒子量の測定を行った。塩粒子量の測定は試験片を蒸留水により洗い、その中に含まれるCl成分を化学分析して付着量を求めた。
【0020】
添付した図面の図4は、時間と付着する塩粒子量の関係を示したグラフである。
図4からも明らかなように、塩付着量は時間と比例関係にあり、この発明の装置を用いることにより、試験片表面への塩の付着量を時間により制御できることが確認された。
【0021】
【発明の効果】
以上詳しく説明したように、この出願の発明によって提供される塩粒子発生装置を用いることで、目的とする既知量の塩粒子を自然環境と同じ状態で試験片上に付着させることが可能になり屋外腐食の精度の良い促進試験ができるようになる。
【図面の簡単な説明】
【図1】海岸で採取した海塩粒子の電子顕微鏡写真を例示した図である。
【図2】この発明の塩粒子発生装置の構成を例示した構成概要図である。
【図3】この発明の装置によって、Au試験片に付着させた塩粒子の顕微鏡写真を例示した図である。AはV/L=3.0、BはV/L=1.0、CはV/L=0.1に設定した場合のそれぞれの結果である。
【図4】ステンレス鋼板を試験片として、時間と付着する塩粒子量の関係を例示した図である。
【符号の説明】
1 塩水補給器
2 流水発生器
3 緩衝空間
4 試験片保持槽
5 送風機
[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a salt particle generator. More specifically, the invention of this application relates to a salt particle generator useful for a corrosion acceleration test for evaluating the corrosion of a metal material.
[0002]
[Prior art and its problems]
2. Description of the Related Art Conventionally, a salt spray test apparatus defined in JIS-Z2371 has been used as a corrosion acceleration test apparatus necessary for estimating and evaluating the corrosion amount of metal materials.
Also in the CASS test method defined in ISO-9227, a salt spray test is defined as an accelerated test for metal corrosion.
[0003]
Furthermore, as a salt spray test apparatus used for a corrosion promotion test method using sea salt, an automatic salt spray test apparatus for surface-treated steel sheets is disclosed in Japanese Patent Application Laid-Open No. 09-178646.
However, in these conventional methods, salt water, which is the cause of corrosion, is atomized and sprayed on the test piece, or salt water is directly showered and sprayed on the test piece, so the test piece is always wet. This was far from the corrosion conditions of the materials that were actually placed in the natural environment.
[0004]
On the other hand, the inventors of this application installed a gold test piece which does not cause corrosion in an actual beach and a salt spray test apparatus, and attempted to observe salt particles adhering to the test piece under a microscope. The specimen was fixed on the actual coast, and the sea salt particles flying from the sea and adhering to the specimen were observed with a scanning electron microscope.
FIG. 1 of the accompanying drawings shows a scanning electron micrograph of sea salt particles collected on the coast.
[0005]
As shown in FIG. 1, sea salt particles collected in an actual environment have a small size of about 30 μm, and salt crystals are deposited at the center. On the other hand, the salt particles collected in the conventional accelerated test apparatus were soaked in the whole that a large salt lump that could not be observed with a scanning electron microscope or the like was formed.
That is, in the conventional corrosion acceleration test equipment, salt particles that are completely different from the actual environment are attached, so the corrosion situation is essentially different. Therefore, the result of evaluation with the corrosion acceleration test equipment is the actual environment. There was a problem that it did not agree with the result.
[0006]
Then, this invention makes it a subject to provide the corrosion acceleration | stimulation test apparatus which can reproduce the adhesion condition of the sea salt particle | grains in a natural environment.
[0007]
[Means for Solving the Problems]
The invention of this application, as to solve the problem as described above, includes an apparatus for use in accelerated corrosion tests, salt water supply device, water flow generator, the buffer space, the test piece holding tank, and a blower, a buffer space is arranged between the running water generator specimen holding tank, the wind speed blower occurs as V (m · sec -1), the length of the buffer space and L (m), the relationship between them The salt particle generator is characterized in that the value of V / L is in the range of 0.2 (sec −1 ) or more and 2.5 (sec −1 ) or less .
[0009]
DETAILED DESCRIPTION OF THE INVENTION
The invention of this application has the features as described above. Next, embodiments of the invention will be described.
FIG. 2 of the accompanying drawings illustrates the configuration of the salt particle generator of the present invention.
[0010]
As shown in FIG. 2, the apparatus, salt water supply device (1), running water generator (2), the buffer space (3), the test piece holding tank (4), and is composed of the blower (5) It is.
[0011]
The salt water replenisher (1) is not particularly limited in terms of its mechanism and structure, but has a mechanism for continuously replenishing a constant amount of salt water to the flowing water generator (2) and reusing the drainage. desirable.
Further, the flowing water generator (2) is not particularly limited in terms of its structure, and generates a constant flow of waterfall-like flowing water, or generates a constant flow of fountain-like flowing water and drops it. Is. Furthermore, it is desirable to be able to sufficiently generate fine particles of salt water having a size of 50 μm or less by combination with the blower (5). Although there is no problem with the flow rate as much as possible, practically it is preferably between 0.1 l / min and 10 l / min.
[0012]
The buffer space (3) is a space that is sorted by the particle diameter while the salt particles are transported from the flowing water generator (2) to the test piece holding tank (4).
The specimen holding tank (4) is not particularly limited in terms of its mechanism and structure, but when holding a plurality of specimens, it is necessary to consider that the amount of salt particles adhering to each specimen does not change. For this reason, a mechanism for rotating the test piece or changing the position is appropriately selected.
[0013]
The blower (5) is used to blow the flowing water generated by the flowing water generator (2) and generate fine particles of water, and is not particularly limited in structure, but at least 1 What generates a wind speed of (m / sec) or higher is desirable.
Furthermore, in this invention, the relationship between the wind speed generated by the blower (5) and the length of the buffer space (3) between the flowing water generator (2) and the test piece holding tank (4) can be set and changed. To be considered.
[0014]
The salt particles generated by the flowing water generator (2) fly inside the buffer space (3), are selected according to the particle diameter, and reach the test piece holding tank (4). The length of the buffer space (3) is L (m), the wind speed is V (m · sec −1 ), and the relationship between the two is that the value of V / L is 0.2 (sec −1 ) or more. Sea salt closer to the actual environment can be obtained within a range of 5 (sec -1 ) or less. If it is less than this range, the size of the salt particles is large. For example, as shown in the photograph of A of Example 1, particles exceeding 50 μm are mixed, resulting in a state different from the actual atmospheric environment. On the other hand, if it is above this range, the salt particles will be too small and the amount of flying will be small, making it impractical.
[0015]
The present invention provides a salt particle generator that enables the realization of a new corrosion acceleration test that has never been achieved with the above-described configuration. The configuration and features of the operation and effect thereof will be described in more detail below. A description will be given along an example. Of course, the present invention is not limited to the following examples.
[0016]
【Example】
Example 1
Using the apparatus illustrated in FIG. 2 of the accompanying drawings, the value of V / L is set to 0.1, 1.0, 3.0, artificial seawater is used as a solution, and Au that does not corrode at room temperature is used. Salt particles were adhered to the test piece.
[0017]
In FIG. 3 of the attached drawings, A is set to V / L = 3.0, B is set to V / L = 1.0, and C is set to V / L = 0.1. FIG. 2 illustrates a microphotograph of adhered salt particles. FIG.
FIG. 3B shows the result in the desired V / L range as described above. On the other hand, FIG. 3A shows the case where V / L is not less than the above range, and FIG.
[0018]
In FIG. 3B of the attached drawings, the particle diameter is almost the same as the salt particles deposited on the test piece on the actual coast shown in FIG. 1, and the appearance is very similar. On the other hand, in FIG. 3A, the size of the attached salt particles is large and the density is too high. In FIG. 3C, the size of the salt particles is small and the amount thereof is also small.
[0019]
In other words, by using the apparatus according to the present invention, it is possible to arbitrarily deposit a very large salt particle, a salt particle having a shape very close to the actual state of adhesion on the coast, and a fine salt particle on the test piece. It was confirmed that there was.
Example 2
A stainless steel plate equivalent to SUS304 was installed in the same apparatus of the present invention as in Example 1 using a NaCl aqueous solution as the solution, and salt particles were adhered under the condition of V / L = 1.0, and the amount of salt particles changing with time. Was measured. For the measurement of the amount of salt particles, the test piece was washed with distilled water and the Cl component contained therein was chemically analyzed to determine the amount of adhesion.
[0020]
FIG. 4 of the accompanying drawings is a graph showing the relationship between time and the amount of adhering salt particles.
As is clear from FIG. 4, the amount of salt attached is proportional to time, and it was confirmed that the amount of salt attached to the surface of the test piece can be controlled by time using the apparatus of the present invention.
[0021]
【The invention's effect】
As described above in detail, by using the salt particle generating apparatus provided by the invention of this application, it is possible to deposit on the specimen to a known amount of salt particles of interest in the same state as the natural environment, Accelerated test with high accuracy of outdoor corrosion can be performed.
[Brief description of the drawings]
FIG. 1 is a diagram illustrating an electron micrograph of sea salt particles collected on a coast.
FIG. 2 is a schematic configuration diagram illustrating the configuration of the salt particle generating device of the present invention.
FIG. 3 is a view illustrating a micrograph of salt particles attached to an Au test piece by the apparatus of the present invention. A is the result when V / L = 3.0, B is V / L = 1.0, and C is V / L = 0.1.
FIG. 4 is a diagram illustrating the relationship between time and the amount of adhering salt particles using a stainless steel plate as a test piece.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Salt water replenisher 2 Flowing water generator 3 Buffer space 4 Test piece holding tank 5 Blower

Claims (1)

腐食促進試験に用いる装置であって、塩水の補給器、流水発生器、緩衝空間、試験片保持槽、並びに送風機を備え、緩衝空間は、流水発生器と試験片保持槽の間に配設され、送風機が発生する風速をV(m・sec -1 )とし、緩衝空間の長さをL(m)とし、この両者の関係として、V/Lの値が0.2(sec -1 )以上2.5(sec -1 )以下の範囲とされていることを特徴とする塩粒子発生装置。An apparatus for use in accelerated corrosion tests, salt water supply device, water flow generator, the buffer space, the test piece holding tank, and equipped with a blower, the buffer space is arranged between the running water generator specimen holding tank The velocity of the air generated by the blower is V (m · sec −1 ), the length of the buffer space is L (m), and the relationship between the two is that the value of V / L is 0.2 (sec −1 ) or more. A salt particle generator characterized by being in a range of 2.5 (sec -1 ) or less .
JP04197599A 1999-02-19 1999-02-19 Salt particle generator Expired - Lifetime JP3668743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04197599A JP3668743B2 (en) 1999-02-19 1999-02-19 Salt particle generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04197599A JP3668743B2 (en) 1999-02-19 1999-02-19 Salt particle generator

Publications (2)

Publication Number Publication Date
JP2000241336A JP2000241336A (en) 2000-09-08
JP3668743B2 true JP3668743B2 (en) 2005-07-06

Family

ID=12623208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04197599A Expired - Lifetime JP3668743B2 (en) 1999-02-19 1999-02-19 Salt particle generator

Country Status (1)

Country Link
JP (1) JP3668743B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038343A1 (en) * 2008-09-30 2010-04-08 株式会社日立製作所 Device for accelerated atmospheric corrosion test

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4867303B2 (en) * 2005-11-16 2012-02-01 Jfeスチール株式会社 Method for evaluating corrosion resistance of metal material, metal material, and corrosion acceleration test apparatus for metal material
JP2007139483A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP5035450B2 (en) * 2011-06-08 2012-09-26 Jfeスチール株式会社 Method for evaluating corrosion resistance of metal materials for home appliances

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010038343A1 (en) * 2008-09-30 2010-04-08 株式会社日立製作所 Device for accelerated atmospheric corrosion test

Also Published As

Publication number Publication date
JP2000241336A (en) 2000-09-08

Similar Documents

Publication Publication Date Title
Yilbas et al. Self-cleaning of surfaces and water droplet mobility
Yan et al. Mathematical modeling of the formation of calcareous deposits on cathodically protected steel in seawater
Aldykewicz et al. The investigation of cerium as a cathodic inhibitor for aluminum‐copper alloys
May et al. The pre-impinger: a selective aerosol sampler
Chavarin Electrochemical investigations of the activation mechanism of aluminum
JP2013134162A (en) Atmospheric corrosion testing method and atmospheric corrosion testing apparatus
JP4867303B2 (en) Method for evaluating corrosion resistance of metal material, metal material, and corrosion acceleration test apparatus for metal material
John Particle-surface interactions: charge transfer, energy loss, resuspension, and deagglomeration
JP3668743B2 (en) Salt particle generator
JP5694303B2 (en) Electrodeposited nanostructure
El-Mahdy et al. Brass Corrosion under a single droplet of NaCl
JP2008070298A (en) Corrosion resistance testing method and evaluating method for steel material
Benabed et al. Resuspension of indoor particles due to human foot motion
JP3834630B2 (en) Real environment simulated atmospheric corrosion test equipment
Kautek et al. Multi‐method Analysis of the Metal/Electrolyte Interface: Scanning Force Microscopy (SFM), Quartz Microbalance Measurements (QMB), Fourier Transform Infrared Spectroscopy (FTIR) and Grazing Incidence X‐ray Diffractometry (GIXD) at a Polycrystalline Copper Electrode
JP4714832B2 (en) High-speed and high-precision sea salt particle generator
Maduka et al. Hydrodynamic effects of biofouling-induced surface roughness–Review and research gaps for shallow water offshore wind energy structures
Takeda et al. Corrosion behavior of thermally sprayed WC coating in Na2SO4 aqueous solution
JP2000314699A (en) Method for evaluating weather resistance of steel material
Alanyali et al. Research on the corrosion behavior of TiN-TiAlN multilayer coatings deposited by cathodic-arc ion plating
Fukami et al. Mechanism of oscillatory electrodeposition of zinc, revealed by microscopic inspection of dendritic deposits during the oscillation
JP3711389B2 (en) Sea salt particle adhesion measuring method and measuring device
JP3572310B2 (en) Method for determining the amount of sea salt particles
Johnson et al. Adhesion force and the character of surfaces immersed in seawater
JP2004340907A (en) Reproduction method and device of sea salt grain attachment by airbrush spray

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term