JP2000241336A - Salt particle-generating device - Google Patents

Salt particle-generating device

Info

Publication number
JP2000241336A
JP2000241336A JP11041975A JP4197599A JP2000241336A JP 2000241336 A JP2000241336 A JP 2000241336A JP 11041975 A JP11041975 A JP 11041975A JP 4197599 A JP4197599 A JP 4197599A JP 2000241336 A JP2000241336 A JP 2000241336A
Authority
JP
Japan
Prior art keywords
salt
running water
buffer space
water generator
generator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11041975A
Other languages
Japanese (ja)
Other versions
JP3668743B2 (en
Inventor
Akira Tawara
晃 田原
Masahiro Yamamoto
正弘 山本
Toshiaki Kodama
俊明 小玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Research Institute for Metals
Nippon Steel Corp
Original Assignee
National Research Institute for Metals
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Research Institute for Metals, Nippon Steel Corp filed Critical National Research Institute for Metals
Priority to JP04197599A priority Critical patent/JP3668743B2/en
Publication of JP2000241336A publication Critical patent/JP2000241336A/en
Application granted granted Critical
Publication of JP3668743B2 publication Critical patent/JP3668743B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a corrosion acceleration-testing device for reproducing the adhesion status of a sea salt particle under natural environment by arranging buffer space between a running water generator and a specimen retention bath. SOLUTION: Salt water replenishment equipment 1 preferably has a mechanism for continuing to replenish a fixed amount of salt water to a running water generator 2 and reutilizing the drain. The running water generator 2 generates a fixed flow of waterfall-like running water or a fixed flow of fountain-like running water before falling. Buffer space 3 is space that is screened by the particle diameter while a salt particle is carried from the running water generator 2 to a specimen retention bath 4. A blower 5 blows air to the running water being generated by the running water generator 2 to generate the fine particles of water. Sea salt closest to an actual environment can be obtained where the value of V/L ranges from 0.2 to 2.5 sec-1, where the length of the buffer space 3 and wind speed are set to L (m) and V (m.sec-1), respectively, thus allowing a known amount of salt particle to adhere onto a specimen in the same state as natural environment.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この出願の発明は、塩粒子発
生装置に関するものである。さらに詳しくは、この出願
の発明は、金属材料の腐食評価を行う腐食促進試験に有
用な塩粒子発生装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a salt particle generator. More specifically, the invention of this application relates to a salt particle generator useful for a corrosion promotion test for evaluating corrosion of a metal material.

【0002】[0002]

【従来の技術とその課題】従来より、金属材料の腐食量
の推定や評価の際に必要な腐食促進試験装置として、J
IS−Z2371において規定されている塩水噴霧試験
装置が用いられてきている。また、ISO−9227に
おいて規定されているCASS試験法においても、金属
腐食の促進試験として塩水噴霧試験が規定されている。
2. Description of the Related Art Conventionally, as a corrosion promotion test device required for estimating and evaluating the amount of corrosion of metal materials, J.
The salt spray test apparatus specified in IS-Z2371 has been used. Also, in the CASS test method specified in ISO-9227, a salt spray test is specified as a test for accelerating metal corrosion.

【0003】さらに、海塩による腐食促進試験法に用い
る塩水噴霧試験装置として、表面処理鋼板の自動塩水噴
霧試験装置が特開平09−178646号公報に開示さ
れている。しかしながら、これら従来の方法において
は、腐食の原因である塩水を霧状にして試験片に噴霧す
るか、もしくは塩水を直接シャワー状にして試験片に吹
き付けるため、試験片が常時濡れた状態にあり、実際に
自然環境に置かれている材料の腐食条件とはかけ離れた
ものであった。
[0003] Further, as a salt spray test apparatus used for a sea salt accelerated corrosion test, an automatic salt spray test apparatus for surface-treated steel sheets is disclosed in Japanese Patent Application Laid-Open No. 09-178646. However, in these conventional methods, the salt water, which causes corrosion, is atomized and sprayed on the test piece, or the salt water is directly showered and sprayed on the test piece, so that the test piece is always wet. However, it was far from the corrosion conditions of the materials actually placed in the natural environment.

【0004】一方、この出願の発明者らは、腐食の起こ
らない金の試験片を実際の海岸と塩水噴霧試験装置内に
設置し、試験片上に付着する塩粒子の顕微鏡観察を試み
た。試験片を実際の海岸に固定し、海から飛来し試験片
上に付着した海塩粒子を走査電子顕微鏡によって観察し
た。添付した図面の図1は、海岸で採取した海塩粒子の
走査電子顕微鏡写真を示したものである。
[0004] On the other hand, the inventors of the present application installed gold test pieces that do not corrode on actual shores and in a salt spray test apparatus, and tried microscopic observation of salt particles adhering to the test pieces. The test piece was fixed on an actual shore, and sea salt particles flying from the sea and adhering to the test piece were observed by a scanning electron microscope. FIG. 1 of the accompanying drawings shows a scanning electron micrograph of sea salt particles collected at the coast.

【0005】図1に示したように、実環境で採取した海
塩粒子はそのサイズが約30μm程度と小さく、中心に
塩の結晶が析出している。これに対し、従来の促進試験
装置内で採取した塩粒子は、全体が濡れていて走査電子
顕微鏡などでは観察不可能な大きな塩の固まりが形成さ
れていた。すなわち、従来の腐食促進試験装置において
は、実際の環境と全く異なる塩粒子を付着させているた
め、腐食の状況が本質的に異なっており、そのため、腐
食促進試験装置で評価した結果が実環境の結果と合致し
ないという問題点があった。
As shown in FIG. 1, sea salt particles collected in a real environment have a small size of about 30 μm, and salt crystals are deposited at the center. On the other hand, the salt particles collected in the conventional accelerated test apparatus were entirely wet and formed a large salt mass that could not be observed with a scanning electron microscope or the like. In other words, in the conventional corrosion promotion test apparatus, since the salt particles that are completely different from the actual environment are adhered, the corrosion situation is essentially different. There was a problem that the results did not match.

【0006】そこで、この発明は、自然環境での海塩粒
子の付着状況を再現できる腐食促進試験装置を提供する
ことを課題とする。
Accordingly, an object of the present invention is to provide a corrosion promotion test apparatus which can reproduce the state of adhesion of sea salt particles in a natural environment.

【0007】[0007]

【課題を解決するための手段】この出願の発明は、以上
のとおりの課題を解決するものとして、腐食促進試験に
用いる装置であって、塩水の補給器、流水発生器、緩衝
空間、試験片保持槽、並びに送風機を備え、流水発生器
と試験片保持槽の間に緩衝空間が配設されていることを
特徴とする塩粒子発生装置(請求項1)を提供する。
Means for Solving the Problems The present invention is directed to an apparatus for use in a corrosion promotion test, which solves the above-mentioned problems, and comprises a salt water replenisher, a running water generator, a buffer space, a test piece, and the like. A salt particle generator (Claim 1) comprising a holding tank and a blower, wherein a buffer space is provided between the flowing water generator and the test piece holding tank.

【0008】また、この出願の発明においては、送風機
が発生する風速をV(m・sec-1)とし、緩衝空間の
長さをL(m)とし、この両者の関係として、V/Lの
値が0.2(sec-1)以上2.5(sec-1)以下の
範囲とされていること(請求項2)等の態様の塩粒子発
生装置をも提供する。
In the invention of this application, the wind speed generated by the blower is V (m · sec −1 ), the length of the buffer space is L (m), and the relationship between the two is V / L. The present invention also provides an apparatus for generating salt particles having a value in the range of 0.2 (sec -1 ) or more and 2.5 (sec -1 ) or less (claim 2).

【0009】[0009]

【発明の実施の形態】この出願の発明は、以上のとおり
の特徴を有するものであるが、次にその実施の形態につ
いて説明する。添付した図面の図2は、この発明の塩粒
子発生装置の構成を例示したものである。
BEST MODE FOR CARRYING OUT THE INVENTION The invention of this application has the features as described above, and the embodiment will be described next. FIG. 2 of the accompanying drawings illustrates the configuration of the salt particle generator of the present invention.

【0010】図2に示したように、この装置は、塩水の
補給器(1)、流水発生器(2)、緩衝空間(3)、試
験片保持槽(4)、並びに送風機(5)から構成され、
流水発生器その長さによって任意の塩粒子の形、サイズ
を制御することができるようにしている。
As shown in FIG. 2, the apparatus comprises a salt water replenisher (1), a running water generator (2), a buffer space (3), a test piece holding tank (4), and a blower (5). Composed,
The shape and size of any salt particles can be controlled by the length of the running water generator.

【0011】塩水補給器(1)は、その機構、構造上は
特に限定されるものではないが、流水発生器(2)に一
定量の塩水を補給し続け、その排水を再利用する機構を
持つことが望ましい。また、流水発生器(2)は、その
構造上において特に限定されるものではなく、一定流量
の滝状の流水を発生させる、あるいは一定流量の噴水状
等の流水を発生させ、それを落下させるものである。さ
らに、送風機(5)との組み合わせにより、少なくても
50μm以下のサイズの塩水の細かな粒子を充分に発生
させることができるものが望ましい。流量としては、多
くても問題はないが、実用的には0.1l/分から10
l/分の間が望ましい。
Although the mechanism and structure of the salt water replenisher (1) are not particularly limited, a mechanism for continuously supplying a certain amount of salt water to the running water generator (2) and reusing the waste water is used. It is desirable to have. The structure of the flowing water generator (2) is not particularly limited in its structure. The flowing water generator (2) generates a constant flow of water flow like a waterfall, or generates a constant flow of water such as a fountain and drops it. Things. Further, it is desirable that the combination with the blower (5) can sufficiently generate fine particles of salt water having a size of at least 50 μm or less. Although there is no problem with the flow rate as much as possible, it is practically from 0.1 l / min to 10 l / min.
Preferably between 1 / min.

【0012】また、緩衝空間(3)は、塩粒子が、流水
発生器(2)から試験片保持槽(4)まで運ばれる間
に、その粒子径によって選別される空間である。試験片
保持槽(4)は、その機構、構造上は特に限定されるも
のではないが、試験片を複数保持する場合には、試験片
毎の塩粒子付着量が変化しないように配慮する必要があ
り、このために、試験片を回転させたり、位置を変えた
りする機構が適宜に選択される。
The buffer space (3) is a space in which salt particles are sorted by their particle size while being transported from the flowing water generator (2) to the test piece holding tank (4). The mechanism and structure of the test piece holding tank (4) are not particularly limited, but when holding a plurality of test pieces, care must be taken so that the amount of salt particles attached to each test piece does not change. For this purpose, a mechanism for rotating or changing the position of the test piece is appropriately selected.

【0013】送風機(5)は、流水発生器(2)で発生
させた流水に送風し、水の細かな粒子を発生させるため
に用いるものであり、構造上は特に限定されるものでは
ないが、最低1(m/sec)以上の風速を発生させる
ものが望ましい。さらに、この発明においては、送風機
(5)により発生させる風速と、流水発生器(2)と試
験片保持槽(4)との間の緩衝空間(3)の長さの関係
を設定並びに変更できるようにすることが考慮される。
The blower (5) blows the running water generated by the running water generator (2) to generate fine particles of water, and is not particularly limited in structure, but is used. It is desirable to generate a wind speed of at least 1 (m / sec) or more. Furthermore, in the present invention, the relationship between the wind speed generated by the blower (5) and the length of the buffer space (3) between the flowing water generator (2) and the test piece holding tank (4) can be set and changed. It is considered to be so.

【0014】流水発生器(2)により発生した塩粒子
は、緩衝空間(3)の内部を飛来し、粒子径によって選
別され、試験片保持槽(4)に到達する。緩衝空間
(3)の長さをL(m)とし、風速をV(m・se
-1)とし、この両者の関係として、V/Lの値が0.
2(sec-1)以上2.5(sec-1)以下の範囲にお
いて、より実環境に近い海塩が得られる。この範囲以下
であると、塩粒子のサイズが大きく、例えば実施例1の
Aの写真に示したように、50μmを超える粒子が混ざ
り実際の大気環境と異なった状態になる。また、この範
囲以上であると、塩粒子が小さくなりすぎ、かつその飛
来量が少なくなり、実用的でなくなる。
The salt particles generated by the flowing water generator (2) fly inside the buffer space (3), are sorted by particle diameter, and reach the test piece holding tank (4). The length of the buffer space (3) is L (m), and the wind speed is V (m
c -1 ), and the relationship between the two is that the value of V / L is 0.
In the range of 2 (sec -1 ) or more and 2.5 (sec -1 ) or less, sea salt closer to the actual environment can be obtained. Below this range, the size of the salt particles is large, and for example, as shown in the photograph of A of Example 1, particles exceeding 50 μm are mixed, resulting in a state different from the actual atmospheric environment. On the other hand, if it is more than this range, the salt particles become too small, and the amount of the particles is reduced, which is not practical.

【0015】この発明は、上記の通りの構成によってこ
れまでにない新しい腐食促進試験の実現を可能にする塩
粒子発生装置を提供するものであるが、その構成および
作用効果の特徴について、さらに詳しく以下の実施例に
沿って説明する。もちろんこの発明は以下の例によって
限定されるものではない。
The present invention provides a salt particle generator capable of realizing an unprecedented new corrosion acceleration test by the above-described configuration. The configuration and the features of the function and effect are further described in detail. Explanation will be given according to the following embodiments. Of course, the present invention is not limited by the following examples.

【0016】[0016]

【実施例】実施例1 添付した図面の図2に例示した構成の装置を用いて、V
/Lの値を0.1、1.0、3.0に設定し、溶液とし
て人工海水を用い、室温で腐食しないAuの試験片に塩
粒子を付着させた。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 Using a device having the configuration illustrated in FIG.
The values of / L were set to 0.1, 1.0, and 3.0, and artificial seawater was used as a solution, and salt particles were attached to Au test pieces that did not corrode at room temperature.

【0017】添付した図面の図3は、AはV/L=3.
0、BはV/L=1.0、CはV/L=0.1に設定
し、この発明の装置によって、試験片に付着させた塩粒
子の顕微鏡写真を例示したものである。図3(B)が前
記のとおりの望ましいV/Lの範囲での結果である。こ
れに対し図3(A)はV/Lが前記の範囲以上の場合、
また、図3(C)は範囲以下の場合である。
FIG. 3 of the accompanying drawings shows that A is V / L = 3.
0, B set V / L = 1.0, C set V / L = 0.1, and exemplifies a micrograph of salt particles adhered to a test piece by the apparatus of the present invention. FIG. 3B shows the result in the desirable V / L range as described above. On the other hand, FIG. 3A shows that when V / L is equal to or more than the above range,
FIG. 3C shows a case where the distance is smaller than the range.

【0018】添付した図面の図3(B)においては、図
1に示した実際の海岸で試験片上に付着させた塩粒子と
粒径がほぼ同等であり、かつその外観も極めて酷似して
いる。これに対して、図3(A)では付着した塩粒子の
サイズが大きく、かつその密度が高すぎる。また、図3
(C)においては、塩粒子のサイズが小さく、かつその
量も少ない。
In FIG. 3B of the attached drawing, the particle size is almost the same as that of the salt particles deposited on the test piece at the actual beach shown in FIG. 1, and the appearance is very similar. . On the other hand, in FIG. 3A, the size of the attached salt particles is large and the density is too high. FIG.
In (C), the size and the amount of the salt particles are small.

【0019】すなわち、この発明による装置を用いるこ
とによって、極めて大きな塩粒子から、実際の海岸での
付着状況と非常に近い形の塩粒子、さらに微細な塩粒子
まで任意に試験片上に付着させることが可能であること
が確認された。実施例2 NaCl水溶液を溶液として、実施例1と同様のこの発
明の装置内にSUS304相当のステンレス鋼板を設置
し、V/L=1.0の条件で塩粒子を付着させ、時間と
ともに変化する塩粒子量の測定を行った。塩粒子量の測
定は試験片を蒸留水により洗い、その中に含まれるCl
成分を化学分析して付着量を求めた。
That is, by using the apparatus according to the present invention, it is possible to arbitrarily attach a salt particle from a very large salt particle to a salt particle having a shape very similar to the actual adhesion condition on the coast, and even a fine salt particle onto a test piece. Has been confirmed to be possible. Example 2 Using an aqueous solution of NaCl as a solution, a stainless steel plate equivalent to SUS304 was installed in the same apparatus as in Example 1 and salt particles were adhered under the condition of V / L = 1.0 and changed with time. The amount of salt particles was measured. For the measurement of the amount of salt particles, the test piece was washed with distilled water, and the Cl contained therein was washed.
The components were chemically analyzed to determine the amount of adhesion.

【0020】添付した図面の図4は、時間と付着する塩
粒子量の関係を示したグラフである。図4からも明らか
なように、塩付着量は時間と比例関係にあり、この発明
の装置を用いることにより、試験片表面への塩の付着量
を時間により制御できることが確認された。
FIG. 4 of the accompanying drawings is a graph showing the relationship between time and the amount of attached salt particles. As is clear from FIG. 4, the amount of salt attached is proportional to time, and it was confirmed that the amount of salt attached to the test piece surface can be controlled by time by using the apparatus of the present invention.

【0021】[0021]

【発明の効果】以上詳しく説明したように、この出願の
発明によって提供される塩粒子発生器を用いることで、
目的とする既知量の塩粒子を自然環境と同じ状態で試験
片上に付着させることが可能になり。屋外腐食の精度の
良い促進試験ができるようになる。
As described in detail above, by using the salt particle generator provided by the invention of this application,
It becomes possible to deposit a desired amount of salt particles on a test piece in the same state as the natural environment. Accurate acceleration test of outdoor corrosion can be performed.

【図面の簡単な説明】[Brief description of the drawings]

【図1】海岸で採取した海塩粒子の電子顕微鏡写真を例
示した図である。
FIG. 1 is a diagram exemplifying an electron micrograph of sea salt particles collected at a coast.

【図2】この発明の塩粒子発生装置の構成を例示した構
成概要図である。
FIG. 2 is a schematic configuration diagram illustrating the configuration of a salt particle generator according to the present invention.

【図3】この発明の装置によって、Au試験片に付着さ
せた塩粒子の顕微鏡写真を例示した図である。AはV/
L=3.0、BはV/L=1.0、CはV/L=0.1
に設定した場合のそれぞれの結果である。
FIG. 3 is a diagram exemplifying a micrograph of salt particles adhered to an Au specimen by the apparatus of the present invention. A is V /
L = 3.0, B is V / L = 1.0, C is V / L = 0.1
These are the respective results when set to.

【図4】ステンレス鋼板を試験片として、時間と付着す
る塩粒子量の関係を例示した図である。
FIG. 4 is a diagram illustrating the relationship between time and the amount of attached salt particles using a stainless steel plate as a test piece.

【符号の説明】[Explanation of symbols]

1 塩水補給器 2 流水発生器 3 緩衝空間 4 試験片保持槽 5 送風機 DESCRIPTION OF SYMBOLS 1 Salt water replenisher 2 Running water generator 3 Buffer space 4 Test piece holding tank 5 Blower

フロントページの続き (72)発明者 山本 正弘 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 (72)発明者 小玉 俊明 茨城県つくば市千現1丁目2番1号 科学 技術庁金属材料技術研究所内 Fターム(参考) 2G050 AA01 BA02 CA03 DA01 EA05 EC01 Continuing from the front page (72) Inventor Masahiro Yamamoto 1-2-1, Sengen, Tsukuba, Ibaraki Prefectural Agency for Science and Technology Agency Metal Materials Research Laboratory (72) Inventor Toshiaki Kodama 1-2-1, Sengen, Tsukuba, Ibaraki Scientific Technology 2G050 AA01 BA02 CA03 DA01 EA05 EC01

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 腐食促進試験に用いる装置であって、塩
水の補給器、流水発生器、緩衝空間、試験片保持槽、並
びに送風機を備え、流水発生器と試験片保持槽の間に緩
衝空間が配設されていることを特徴とする塩粒子発生装
置。
An apparatus for use in an accelerated corrosion test, comprising a salt water replenisher, a running water generator, a buffer space, a test piece holding tank, and a blower, wherein a buffer space is provided between the flowing water generator and the test piece holding tank. Is provided, wherein the salt particle generator is provided.
【請求項2】 送風機が発生する風速をV(m・sec
-1)とし、緩衝空間の長さをL(m)とし、この両者の
関係として、V/Lの値が0.2(sec-1)以上2.
5(sec-1)以下の範囲とされている請求項1の塩粒
子発生装置。
2. The wind speed generated by the blower is V (m · sec).
-1 ), the length of the buffer space is L (m), and the relationship between the two is that the value of V / L is 0.2 (sec -1 ) or more.
The salt particle generator according to claim 1, wherein the range is 5 (sec -1 ) or less.
JP04197599A 1999-02-19 1999-02-19 Salt particle generator Expired - Lifetime JP3668743B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04197599A JP3668743B2 (en) 1999-02-19 1999-02-19 Salt particle generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04197599A JP3668743B2 (en) 1999-02-19 1999-02-19 Salt particle generator

Publications (2)

Publication Number Publication Date
JP2000241336A true JP2000241336A (en) 2000-09-08
JP3668743B2 JP3668743B2 (en) 2005-07-06

Family

ID=12623208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04197599A Expired - Lifetime JP3668743B2 (en) 1999-02-19 1999-02-19 Salt particle generator

Country Status (1)

Country Link
JP (1) JP3668743B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139484A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP2007139483A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP2011169918A (en) * 2011-06-08 2011-09-01 Jfe Steel Corp Corrosion resistance evaluation method for metal material, metal material, and device for testing corrosion acceleration of metal material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010085144A (en) * 2008-09-30 2010-04-15 Hitachi Ltd Testing equipment for testing acceleration of atmospheric corrosion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007139484A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP2007139483A (en) * 2005-11-16 2007-06-07 Jfe Steel Kk Corrosion resistance evaluation method of metal material, metal material, and corrosion promotion testing device of metal material
JP2011169918A (en) * 2011-06-08 2011-09-01 Jfe Steel Corp Corrosion resistance evaluation method for metal material, metal material, and device for testing corrosion acceleration of metal material

Also Published As

Publication number Publication date
JP3668743B2 (en) 2005-07-06

Similar Documents

Publication Publication Date Title
Zhong et al. Understanding how surface chemistry and topography enhance fog harvesting based on the superwetting surface with patterned hemispherical bulges
Chen et al. Bioinspired superhydrophilic-hydrophobic integrated surface with conical pattern-shape for self-driven fog collection
Yan et al. Mathematical modeling of the formation of calcareous deposits on cathodically protected steel in seawater
Palmer et al. Observations of particle capture on a cylindrical collector: Implications for particle accumulation and removal in aquatic systems
Fuentes et al. Laboratory-generated primary marine aerosol via bubble-bursting and atomization
Blanchard The production, distribution, and bacterial enrichment of the sea-salt aerosol
Sharma et al. Large-scale efficient water harvesting using bioinspired micro-patterned copper oxide nanoneedle surfaces and guided droplet transport
JP2013134162A (en) Atmospheric corrosion testing method and atmospheric corrosion testing apparatus
May et al. The pre-impinger: a selective aerosol sampler
Sun et al. Design and optimization of hybrid superhydrophobic–hydrophilic pattern surfaces for improving fog harvesting efficiency
JP2000241336A (en) Salt particle-generating device
JP3834630B2 (en) Real environment simulated atmospheric corrosion test equipment
Sasyo Study of the formation of precipitation by the aggregation of snow particles and the accretion of cloud droplets on snowflakes
Acuña et al. Particle capture mechanism of the pelagic tunicate Oikopleura vanhoefleni
JP4714832B2 (en) High-speed and high-precision sea salt particle generator
Mayer Particle capture in the crown of the ciliary suspension feeding polychaete Sabella penicillus: videotape recordings and interpretations
Lindfors et al. Meteorological variability of the wet and dry deposition of sulphur and nitrogen compounds over the Baltic Sea
Woodcock et al. Lava‐sea‐air contact areas as sources of sea‐salt particles in the atmosphere
JP6881229B2 (en) Corrosion test equipment and corrosion test method
CN207143329U (en) A kind of surface has the workpiece of high density nano diamond thin
Schmidt Models of particle dry deposition to a lake surface and some effects of surface microlayers
Elshennawy et al. Fog collection rate investigation for a hydrophobic surface and different inclinations of rectangular meshes
Wall et al. The crystallography of the spangle of hot dipped galvanized coatings on mild steel strip
Johnson et al. Adhesion force and the character of surfaces immersed in seawater
Tsai et al. Control of particle re-entrainment by wetting the exposed surface of dust samples

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041005

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050203

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080422

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090422

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100422

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110422

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term