JP2019178997A - In-situ observation device and observation method of atmospheric corrosion - Google Patents

In-situ observation device and observation method of atmospheric corrosion Download PDF

Info

Publication number
JP2019178997A
JP2019178997A JP2018069776A JP2018069776A JP2019178997A JP 2019178997 A JP2019178997 A JP 2019178997A JP 2018069776 A JP2018069776 A JP 2018069776A JP 2018069776 A JP2018069776 A JP 2018069776A JP 2019178997 A JP2019178997 A JP 2019178997A
Authority
JP
Japan
Prior art keywords
corrosion
observation
test
situ
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018069776A
Other languages
Japanese (ja)
Inventor
啓 三平
Satoshi Sampei
啓 三平
石丸 詠一朗
Eiichiro Ishimaru
詠一朗 石丸
透 松橋
Toru Matsuhashi
透 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Stainless Steel Corp
Original Assignee
Nippon Steel Stainless Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Stainless Steel Corp filed Critical Nippon Steel Stainless Steel Corp
Priority to JP2018069776A priority Critical patent/JP2019178997A/en
Publication of JP2019178997A publication Critical patent/JP2019178997A/en
Pending legal-status Critical Current

Links

Abstract

To provide an in-situ observation device and observation method of atmospheric corrosion capable of in-situ observing and evaluating the temporal change of the corrosion phenomenon of a metal in an atmospheric corrosion environment in a corrosion testing machine of high temperature and high humidity.SOLUTION: The observation device includes: a sealable test tank 1 in which a sample 4 made of a metal material is installed inside; an observation window 5 that is disposed on at least one of a top surface 1a and side surface 1b of the test tank 1 and is made of glass having a heating function; an air control device 2 that is connected to the test tank 1 and controls the temperature and humidity of the air in the test tank 1; and optical measuring means 3 for observing, via the observation window 5 from the upside of the test tank 1, the surface of the sample 4 on which a halide solution is dropped.SELECTED DRAWING: Figure 1

Description

本発明は、大気腐食のその場観察装置および観察方法に関し、特に、金属材料が大気環境に曝された際の腐食挙動を評価する、大気腐食のその場観察装置および観察方法に関する。   The present invention relates to an in-situ observation apparatus and observation method for atmospheric corrosion, and more particularly to an in-situ observation apparatus and observation method for atmospheric corrosion that evaluates corrosion behavior when a metal material is exposed to an atmospheric environment.

鋼板等の金属材料の耐食性の評価方法として、腐食試験機を用いた促進試験や大気暴露試験が広く適用されている。   As a method for evaluating the corrosion resistance of a metal material such as a steel plate, an accelerated test using a corrosion tester and an atmospheric exposure test are widely applied.

腐食試験機を用いた促進試験の一つとして複合サイクル腐食試験(Cyclic Corrosion Tester,CCT)がある。この複合サイクル腐食試験は、大気腐食を促進して再現する腐食試験である。具体的には、試験対象となる金属材料を試験装置内に設置し、塩水噴霧工程(もしくは浸漬工程)、乾燥工程、湿潤工程を付与することを1サイクルとし、このサイクルを繰り返し行う。これにより、実環境よりも腐食の進行を早め、短期間で金属材料の耐食性を評価することができる。そして、上記サイクルを繰り返した後、金属材料における腐食深さや腐食の広がりなどを測定することによって、金属材料の耐食性が評価される。腐食深さなどの測定に際しては、試験片である金属材料を腐食試験機から一旦取り出してから測定し、測定終了後、必要に応じて再度試験機内に設置され、引き続き試験が行われる。   One of the accelerated tests using a corrosion tester is a cyclic corrosion tester (CCT). This combined cycle corrosion test is a corrosion test that promotes and reproduces atmospheric corrosion. Specifically, a metal material to be tested is placed in a test apparatus, and a salt spray process (or dipping process), a drying process, and a wetting process are set as one cycle, and this cycle is repeated. Thereby, the progress of corrosion can be accelerated compared to the actual environment, and the corrosion resistance of the metal material can be evaluated in a short period of time. And after repeating the said cycle, the corrosion resistance of a metal material is evaluated by measuring the corrosion depth in a metal material, the spreading of corrosion, etc. When measuring the corrosion depth or the like, the metal material as a test piece is once taken out from the corrosion tester and then measured. After the measurement is completed, it is placed in the tester again as necessary, and the test is continued.

また近年では、実環境における飛来海塩を想定し、人口海水液滴を金属材料表面に形成し、恒温恒湿槽内で温度と湿度を変化させて乾燥と湿潤を繰り返す腐食試験も行われている(非特許文献1等、参照)。   Also, in recent years, assuming sea salt in the environment, artificial seawater droplets are formed on the surface of metal materials, and the corrosion test is repeated in which the temperature and humidity are changed in a thermostatic chamber. (See Non-Patent Document 1, etc.).

西田修司ほか:「大気環境におけるステンレス鋼の腐食挙動へ及ぼす結露量の影響」、第63回材料と環境討論会(2016)A−307.Shuji Nishida et al .: “Effect of condensation on the corrosion behavior of stainless steel in the atmospheric environment”, 63rd Materials and Environmental Discussion (2016) A-307.

乾湿繰り返し試験のような乾燥と湿潤を繰り返す腐食試験は、腐食試験の結果をより定量的、かつ的確に評価することができるものの、しかしその評価は、あくまでも腐食試験後に、腐食試験機から試験片を取り出して実施されるものであった。このように、腐食試験機から試験片を取り出して行われる測定では、腐食が発生した後の状態を知ることができるのみであり、腐食の発生からその後の広がり、深さ方向への進展、さらには腐食形態の変化など、腐食現象の経時的な変化を評価することが困難であった。   Corrosion tests that repeat drying and wetting, such as the repeated drying and wetting tests, can evaluate the results of corrosion tests more quantitatively and accurately. Was carried out. In this way, the measurement performed by removing the test piece from the corrosion tester can only know the state after the occurrence of corrosion, and the subsequent spread from the occurrence of corrosion, progress in the depth direction, It was difficult to evaluate changes over time in corrosion phenomena, such as changes in corrosion morphology.

さらに、乾湿繰り返し試験が行われる際の腐食試験機内は、乾燥雰囲気と、温度40〜60℃、相対湿度90%前後といった高温多湿雰囲気に繰り返しさらされるという、極めて過酷な環境である。このような環境下における試験機内の試験片を外部から観察しようとすると、視界不良によって正確な評価が困難となる場合があり、特に、高温多湿雰囲気の場合には結露によってその評価が極めて厳しいものとなる。   Furthermore, the inside of the corrosion tester when the dry / wet repeated test is performed is an extremely severe environment in which it is repeatedly exposed to a dry atmosphere and a high-temperature and high-humidity atmosphere such as a temperature of 40 to 60 ° C. and a relative humidity of about 90%. If you try to observe the test specimen inside the testing machine from the outside in such an environment, accurate evaluation may be difficult due to poor visibility, especially in high-temperature and high-humidity environments, where the evaluation is extremely severe due to condensation. It becomes.

本発明は、このような実情に鑑みてなされたものであり、大気腐食環境下における金属材料の腐食現象の経時変化をin−situで観察および評価することが可能な、大気腐食のその場観察装置および観察方法を提供することを課題とする。   The present invention has been made in view of such circumstances, and in-situ observation of atmospheric corrosion is possible in which the temporal change of the corrosion phenomenon of a metal material in an atmospheric corrosion environment can be observed and evaluated in-situ. It is an object to provide an apparatus and an observation method.

本発明の要旨は、以下のとおりである。   The gist of the present invention is as follows.

[1]金属材料からなる試料が内部に設置される密閉可能な試験槽と、
前記試験槽の上面または側面の少なくとも一方に設けられた加熱機能付きガラスからなる観察用窓と、
前記試験槽に接続され、前記試験槽内の空気の温度および湿度を制御する空気制御装置と、
前記試験槽の外側から前記観察用窓を介して、ハロゲン化物溶液が滴下された前記試料の表面を観察する光学系測定手段と、
を具備してなることを特徴とする大気腐食のその場観察装置。
[2]前記試験槽の下側には、前記試験槽内の空気の対流による振動を減衰させる除振台が配設されていることを特徴とする上記[1]に記載の大気腐食のその場観察装置。
[3]前記空気制御装置の制御可能範囲が、温度:15〜60℃、湿度:20〜90%であることを特徴とする上記[1]または[2]に記載の大気腐食のその場観察装置。
[4]前記空気制御装置の循環流量が、0.01〜3.00mであることを特徴とする上記[1]〜[3]のいずれか一項に記載の大気腐食のその場観察装置。
[1] A sealable test chamber in which a sample made of a metal material is installed,
An observation window made of glass with a heating function provided on at least one of an upper surface or a side surface of the test chamber;
An air control device connected to the test chamber for controlling the temperature and humidity of the air in the test chamber;
Optical system measurement means for observing the surface of the sample to which the halide solution has been dropped from the outside of the test tank through the observation window;
An in-situ observation apparatus for atmospheric corrosion, comprising:
[2] An anti-vibration table for attenuating vibration caused by convection of air in the test tank is disposed below the test tank. Field observation device.
[3] In-situ observation of atmospheric corrosion as described in [1] or [2] above, wherein the controllable range of the air control device is temperature: 15 to 60 ° C. and humidity: 20 to 90%. apparatus.
[4] The in-situ observation apparatus for atmospheric corrosion according to any one of [1] to [3] above, wherein a circulating flow rate of the air control device is 0.01 to 3.00 m 3. .

[5]金属材料からなる試料が内部に設置される密閉可能な試験槽と、
前記試験槽の上面または側面の少なくとも一方に設けられた光透過性材料からなる観察用窓と、
前記試験槽に接続され、前記試験槽内の空気の温度および湿度を制御する空気制御装置と、
前記試験槽の外側に配置された光学系測定手段
を具備してなる大気腐食その場観察装置を用いて、
前記光学系測定手段によって、前記観察用窓を介し、ハロゲン化物溶液が滴下された前記試料表面に生じている腐食をその場観察し、腐食の形状、液滴形状、析出塩の形状変化を測定することを特徴とする大気腐食のその場観察方法。
[5] A sealable test tank in which a sample made of a metal material is installed,
An observation window made of a light transmissive material provided on at least one of an upper surface or a side surface of the test chamber;
An air control device connected to the test chamber for controlling the temperature and humidity of the air in the test chamber;
Using an atmospheric corrosion in-situ observation device comprising an optical system measuring means arranged outside the test tank,
Through the observation window, the optical system measuring means observes the corrosion occurring on the surface of the sample to which the halide solution has been dropped in situ, and measures the shape of the corrosion, the shape of the droplet, and the shape change of the deposited salt. An in-situ observation method for atmospheric corrosion, characterized by:

本発明によれば、大気腐食環境下における金属の腐食現象の経時変化をin−situで観察および評価することが可能な、大気腐食のその場観察装置および観察方法を提供できる。さらに、本発明を採用することにより、金属材料が大気環境に曝された際の腐食挙動を、その場で観察することができるため、腐食の発生から進展に至るまでの腐食のメカニズムを解明する上で非常に有効である。   ADVANTAGE OF THE INVENTION According to this invention, the in-situ observation apparatus and observation method of atmospheric corrosion which can observe and evaluate the time-dependent change of the metal corrosion phenomenon in an atmospheric corrosion environment can be provided. Furthermore, by adopting the present invention, the corrosion behavior when a metal material is exposed to the atmospheric environment can be observed in-situ, so the mechanism of corrosion from the occurrence of corrosion to its development is elucidated. Very effective above.

本発明の大気腐食のその場観察装置の一例を説明するための概略側面図である。It is a schematic side view for demonstrating an example of the in-situ observation apparatus of the atmospheric corrosion of this invention. 本実施例で観察された大気腐食を示す図である。It is a figure which shows the atmospheric corrosion observed in the present Example.

以下、本発明に係る大気腐食のその場観察装置(以下、その場観察装置、もしくは観察装置と略して称する。)の一実施形態を、図面を参照しながら説明する。なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の厚さや寸法の比率を調整している。   Hereinafter, an embodiment of an in-situ observation apparatus for atmospheric corrosion according to the present invention (hereinafter, abbreviated as an in-situ observation apparatus or an observation apparatus) will be described with reference to the drawings. In all the drawings below, the thicknesses and dimensions of the components are adjusted to make the drawings easy to see.

図1に、本実施形態に係る大気腐食のその場観察装置100を示す。なお、図1は、大気腐食のその場観察装置100の構成を説明するための概略側面図である。
本実施形態に係る大気腐食のその場観察装置100は、金属材料からなる試料4が内部に設置される密閉可能な試験槽1と、試験槽1の上面1aまたは側面1bの少なくとも一方に設けられた加熱機能付きガラスからなる観察用窓5と、試験槽1の側面1bに接続され、試験槽1内の空気の温度および湿度を制御する空気制御装置2と、試験槽1の外側から観察用窓5を介して、ハロゲン化物溶液が滴下された試料4の表面を観察する光学系測定手段3と、を具備してなる。
以下、本実施形態に係るその場観察装置100の各構成要件について説明する。
FIG. 1 shows an in-situ observation apparatus 100 for atmospheric corrosion according to this embodiment. FIG. 1 is a schematic side view for explaining the configuration of an in-situ observation apparatus 100 for atmospheric corrosion.
The in-situ observation apparatus 100 for atmospheric corrosion according to the present embodiment is provided in at least one of a sealable test tank 1 in which a sample 4 made of a metal material is installed, and an upper surface 1a or a side surface 1b of the test tank 1. An observation window 5 made of glass with a heating function, an air control device 2 connected to the side surface 1b of the test chamber 1 for controlling the temperature and humidity of the air in the test chamber 1, and for observation from the outside of the test chamber 1 And an optical system measuring means 3 for observing the surface of the sample 4 to which the halide solution is dropped through the window 5.
Hereinafter, each component of the in-situ observation apparatus 100 according to the present embodiment will be described.

試験槽1は、密閉構造であり、その内部に金属材料からなる試料4が設置される。具体的には、試験槽1内に試料4を設置する試料台6が配設され、この試料台6上に試料4が設置される。試験槽1の材質は特に限定しないが、槽内部の状況を目視できるように、透明な石英ガラスや、アクリル樹脂、その他透明樹脂が好適である。   The test tank 1 has a sealed structure, and a sample 4 made of a metal material is installed therein. Specifically, a sample stage 6 on which the sample 4 is placed is disposed in the test tank 1, and the sample 4 is placed on the sample stage 6. Although the material of the test tank 1 is not specifically limited, Transparent quartz glass, an acrylic resin, and other transparent resins are suitable so that the situation inside the tank can be visually observed.

試験槽1の上面1aまたは側面1bの少なくとも一方には、観察用窓5が設けられており、後述する光学系測定手段3による試料4表面の観察が可能となっている。なお、図1では観察用窓5を試験槽1の上面1aに設けた場合を図示している。また、乾湿繰り返し腐食試験が行われる際の試験槽1内は、乾燥雰囲気と、高温多湿雰囲気に繰り返しさらされ、特に、高温多湿雰囲気の場合には槽内面に生じる結露によって腐食観察や腐食挙動の評価が厳しいものとなる。そのため、本実施形態では、観察用窓5は加熱機能付きガラスからなるものとする。   An observation window 5 is provided on at least one of the upper surface 1a or the side surface 1b of the test tank 1, and the surface of the sample 4 can be observed by the optical system measuring means 3 described later. FIG. 1 shows a case where the observation window 5 is provided on the upper surface 1 a of the test tank 1. Further, the inside of the test tank 1 when the dry and wet repeated corrosion test is performed is repeatedly exposed to a dry atmosphere and a high-temperature and high-humidity atmosphere. Evaluation of will be severe. Therefore, in this embodiment, the observation window 5 shall consist of glass with a heating function.

加熱機能付きガラスには、種々のタイプがあるが、本実施形態の観察用窓5としては、透明発熱層を有するガラスを用いることが好ましい。具体的には、2枚のガラス基材と、この2枚のガラス基材の少なくとも一方の内側の表面に設けられた透明発熱層と、ガラス基材の周辺部の上下または左右の対向する位置に、透明発熱層に接続されて1対で設けられた通電用電極とから構成された加熱機能付きガラスを採用することが好ましい。なお、結露防止の観点から、20℃以上の加熱が可能な加熱機能付きガラスを採用することが好ましい。   There are various types of glass with a heating function, but it is preferable to use a glass having a transparent heat generating layer as the observation window 5 of the present embodiment. Specifically, two glass base materials, a transparent heat generating layer provided on the inner surface of at least one of the two glass base materials, and upper and lower or left and right opposing positions of the peripheral portion of the glass base material In addition, it is preferable to employ a glass with a heating function that is constituted by a pair of energizing electrodes connected to the transparent heat generating layer. In addition, it is preferable to employ | adopt the glass with a heating function which can be heated at 20 degreeC or more from a viewpoint of dew condensation prevention.

観察用窓5の形状は特に限定せず、光学系測定手段3による観察視野を確保できるものであれば、平面視して略矩形や円形であってもよい。また、観察用窓5の厚みも特に限定しないが、屈折による観察像の歪み防止の観点から、0.3〜1.0mmのものを採用することが好ましい。   The shape of the observation window 5 is not particularly limited, and may be substantially rectangular or circular in plan view as long as the observation field of view by the optical system measuring unit 3 can be secured. Further, the thickness of the observation window 5 is not particularly limited, but it is preferable to adopt a thickness of 0.3 to 1.0 mm from the viewpoint of preventing distortion of the observation image due to refraction.

試験槽1の外側には、観察用窓5を介して、ハロゲン化物溶液が滴下された試料4の表面の腐食の発生および進展を観察するために、光学系測定手段3が配置される。光学系測定手段3の配置位置は、採用する測定手段によって適宜決定してよいが、例えば、図1に示すように、観察視野内に観察用窓5および試料4が入るように配置すればよい。なお、図1では光学系測定手段3を試験槽1の上方に設けた場合を図示している。また、光学系測定手段3を複数使用する場合には試験槽1側面に観察用窓5を設置することで、水平方向から試料4表面を観察してもよい。   An optical system measuring means 3 is arranged outside the test chamber 1 in order to observe the occurrence and progress of corrosion on the surface of the sample 4 to which the halide solution is dropped through the observation window 5. The arrangement position of the optical system measurement means 3 may be determined as appropriate depending on the measurement means employed. For example, as shown in FIG. 1, the optical system measurement means 3 may be arranged so that the observation window 5 and the sample 4 enter the observation field of view. . FIG. 1 shows a case where the optical system measuring means 3 is provided above the test tank 1. When a plurality of optical system measuring means 3 are used, the surface of the sample 4 may be observed from the horizontal direction by installing an observation window 5 on the side surface of the test tank 1.

光学系測定手段3の種類は特に限定されず、観察・測定の対象物である試料4表面の腐食状態を観察できるものであれば、任意のものを使用することができる。微小ピットや介在物等の腐食の発生要因となる微小欠陥に加え、腐食の発生やその後の進展状況、腐食の初期状態を詳細に観察するという観点からは、CCDやCMOSセンサーを備えたマイクロスコープカメラやレーザー顕微鏡を用いることが好ましい。   The type of the optical system measuring means 3 is not particularly limited, and any optical system measuring means 3 can be used as long as it can observe the corrosion state of the surface of the sample 4 that is an object to be observed and measured. Microscope equipped with CCD and CMOS sensor from the viewpoint of observing in detail the occurrence of corrosion, the subsequent progress, and the initial state of corrosion, in addition to micro defects that cause corrosion such as micro pits and inclusions It is preferable to use a camera or a laser microscope.

光学系測定手段3の数は特に限定されず、1つであってもよいが複数台とすることもできる。複数の光学系測定手段装置を用いる場合には、それぞれ同じ種類であってもよく、異なる種類のものであってもよい。また、複数の光学系測定手段用いる場合には、それぞれの測定手段で同じ位置を観察してもよいが、別の位置を観察することや、同じ位置を異なる角度から観察することもできる。   The number of optical system measuring means 3 is not particularly limited, and may be one, but may be a plurality. When using a plurality of optical system measuring means devices, they may be of the same type or different types. When a plurality of optical system measuring means are used, the same position may be observed by each measuring means, but different positions can be observed or the same position can be observed from different angles.

光学系測定手段3は、試料4表面に光を照射するための照明装置を備えていることが好ましい。照明装置を備えた光学系測定手段を用いることにより、観察装置100が置かれた環境(例えば、実験室等)の明るさにかかわらず、安定して観察を行うことができる。照明装置としては、小型で寿命の長い発光ダイオード(LED)を用いることが好ましい。なお、光学系測定手段3が照明装置を備えていない場合には、試験槽1内に別途、照明装置を設けることもできる。   The optical system measuring means 3 is preferably provided with an illumination device for irradiating the surface of the sample 4 with light. By using the optical system measuring means provided with the illumination device, it is possible to perform observation stably regardless of the brightness of the environment (for example, a laboratory) where the observation device 100 is placed. As the lighting device, it is preferable to use a light-emitting diode (LED) that is small and has a long lifetime. In addition, when the optical system measurement means 3 is not provided with an illuminating device, an illuminating device can be separately provided in the test tank 1.

光学系測定手段3による腐食挙動の経時観察は、動画の撮影と静止画の撮影のいずれの方法で行ってもよい。動画を撮影する場合には、観察期間全体を通して動画を撮影、記録することもできるが、所定の間隔で断続的に撮影することもできる。   The temporal observation of the corrosion behavior by the optical system measuring means 3 may be performed by either moving image shooting or still image shooting. When shooting a moving image, the moving image can be shot and recorded throughout the entire observation period, but can also be shot intermittently at a predetermined interval.

試験槽1内の空気の温度および湿度を制御する空気制御装置2が、遮熱配管を通じて、試験槽1側面に設けられた排気口10および吸気口11それぞれに接続されている。この排気口10及び吸気口11から試験槽1内の空気の排出と吸入が行われ、その流量や、温度、湿度等が空気制御装置2によって調整されている。空気制御装置2は、市販の装置を用いることができるが、試験槽1内の空気と湿度を個別に制御することができ、温度と湿度を組み合わせた種々の条件を連続的かつ速やかに変化させる機能を有する装置を用いることが好ましい。具体的には、空気制御装置2は、試験槽1内の温度および湿度を槽内に設けられた温湿度センサー(不図示)によってモニタリングし、試験槽1内の温度および湿度が所定値となるよう制御する。なお、空気制御装置2の温度および湿度の制御範囲は、大気腐食試験の条件によるが、温度:15〜60℃、湿度:20〜90%であることが好ましい。このような範囲の温度および湿度制御ができれば、一般的な大気腐食環境の温度、湿度を網羅して腐食試験を再現することができる。空気制御装置2として、例えば、関西オリオン株式会社製の「SPA04A-K-R」を好適に用いることができる。   An air control device 2 that controls the temperature and humidity of the air in the test chamber 1 is connected to each of the exhaust port 10 and the intake port 11 provided on the side surface of the test chamber 1 through a heat shield pipe. Air in the test tank 1 is discharged and sucked from the exhaust port 10 and the intake port 11, and the flow rate, temperature, humidity, and the like are adjusted by the air control device 2. Although the air control apparatus 2 can use a commercially available apparatus, the air and humidity in the test tank 1 can be controlled individually, and various conditions combining temperature and humidity are continuously and rapidly changed. It is preferable to use a device having a function. Specifically, the air control device 2 monitors the temperature and humidity in the test tank 1 with a temperature and humidity sensor (not shown) provided in the tank, and the temperature and humidity in the test tank 1 become predetermined values. Control as follows. In addition, although the temperature and humidity control range of the air control apparatus 2 depends on the conditions of the atmospheric corrosion test, it is preferable that the temperature is 15 to 60 ° C. and the humidity is 20 to 90%. If temperature and humidity control in such a range can be achieved, the corrosion test can be reproduced covering the temperature and humidity of a general atmospheric corrosion environment. As the air control device 2, for example, “SPA04A-K-R” manufactured by Kansai Orion Co., Ltd. can be suitably used.

また、実際に腐食挙動を観察する際は、試験槽1内の環境を乾燥状態と湿潤状態とを繰り返すため、試験槽1内の温度および湿度を速やかに切り替えることが望まれる。そのため、空気制御装置2の循環流量は0.01〜3.00mであることが好ましい。 Further, when actually observing the corrosion behavior, it is desirable to quickly switch the temperature and humidity in the test tank 1 in order to repeat the environment in the test tank 1 between a dry state and a wet state. Therefore, it is preferable that the circulation flow rate of the air control device 2 is 0.01 to 3.00 m 3 .

しかし、空気制御装置2の循環流量を高めれば乾燥状態と湿潤状態の切り替えを迅速に行うことができるが、一方で、試験槽1内の空気の対流が強まり、試験台6や試験槽1自体が振動してしまい、腐食観察が妨害されかねない。そのため、本実施形態では、試験槽1の下側に、除振台7が配設されることが好ましい。除振台7上に試験槽1を設置することで、試験槽1内の空気の対流によって生じる振動を除去することが可能となり、腐食挙動を観察および測定する際に、振動の影響による観察、測定精度の低下を低減することができる。   However, if the circulation flow rate of the air control device 2 is increased, the switching between the dry state and the wet state can be quickly performed. On the other hand, the convection of the air in the test tank 1 is strengthened, and the test table 6 and the test tank 1 itself. May vibrate and interfere with corrosion observation. Therefore, in this embodiment, it is preferable that the vibration isolation table 7 is disposed below the test tank 1. By installing the test tank 1 on the vibration isolation table 7, it becomes possible to remove vibration caused by air convection in the test tank 1, and when observing and measuring the corrosion behavior, A decrease in measurement accuracy can be reduced.

なお、本実施形態に係る大気腐食のその場観察装置100によって観察する対象の金属材料からなる試料4は、めっき皮膜や溶射皮膜が形成されたものであってもよい。また、金属材料の表面に、化成処理などの表面処理や、塗装が施されたものであってもよい。   Note that the sample 4 made of a metal material to be observed by the in-situ observation apparatus 100 for atmospheric corrosion according to the present embodiment may have a plating film or a sprayed film formed thereon. Further, the surface of the metal material may be subjected to surface treatment such as chemical conversion treatment or painting.

次に、図1に示した大気腐食のその場観察装置100を用いて行う腐食試験ならびに腐食観察方法について説明する。
本実施形態に係る大気腐食のその場観察方法は、まず予め、試料4表面にハロゲン化物溶液を滴下しておき、その後試験槽内に試料4を設置する。そして、所望の条件にて乾燥工程と湿潤工程を繰り返し行う大気腐食試験を実施しながら、腐食発生や進展等の腐食挙動を経時観察する。具体的には、大気腐食のその場観察装置100を用い、光学系測定手段3によって、観察用窓5を介して、試料4の表面に発生した腐食を観察する。
Next, a corrosion test and a corrosion observation method performed using the in-situ observation apparatus 100 for atmospheric corrosion shown in FIG. 1 will be described.
In the in-situ observation method for atmospheric corrosion according to this embodiment, a halide solution is first dropped on the surface of the sample 4 in advance, and then the sample 4 is placed in a test tank. Then, while performing an atmospheric corrosion test in which a drying process and a wetting process are repeatedly performed under desired conditions, corrosion behavior such as corrosion generation and progress is observed over time. Specifically, using the in-situ observation apparatus 100 for atmospheric corrosion, the optical system measuring means 3 observes the corrosion generated on the surface of the sample 4 through the observation window 5.

大気腐食試験の直前に、試料4表面にハロゲン化物溶液を滴下する。ハロゲン化物溶液は特に限定せず、人工海水を模擬したものや、5wt%のNaCl溶液を用いてもよい。また、試料4表面へのハロゲン化物溶液の滴下量も特に限定せず、複数の液滴を滴下してもよい。さらに。試料4表面に腐食の起点となる介在物の生成が確認できている場合には、この介在物上にハロゲン化物溶液を滴下し腐食試験を行うことで効率よく腐食挙動を観察、測定することができる。   Immediately before the atmospheric corrosion test, a halide solution is dropped on the surface of the sample 4. The halide solution is not particularly limited, and a simulated artificial seawater or a 5 wt% NaCl solution may be used. Further, the amount of the halide solution dropped onto the surface of the sample 4 is not particularly limited, and a plurality of droplets may be dropped. further. When the formation of inclusions that cause corrosion on the surface of Sample 4 has been confirmed, the corrosion behavior can be efficiently observed and measured by dropping a halide solution onto the inclusions and conducting a corrosion test. it can.

試料4表面にハロゲン化物溶液を滴下した後は、腐食に対する外部の影響を最小限にとどめる観点から、直ちに試験槽1内に設置することが望ましく、同観点から、試料4を試験槽1内に設置する際の試験槽1内の環境を予め、乾燥状態にしておくことが望ましい。なお、乾燥状態と湿潤状態の具体的な条件は、用いる試料4の鋼種や、ハロゲン化物溶液の濃度等によって適宜決定してよい。例えば、乾燥状態は、温度:35℃〜60℃±1℃、相対湿度:95%RH〜25%RH±10%としてよく、湿潤状態は、温度:50℃±1℃、相対湿度:95%RH以上としてよい。   After dripping the halide solution on the surface of the sample 4, it is desirable to immediately install it in the test tank 1 from the viewpoint of minimizing the external influence on the corrosion. From this viewpoint, the sample 4 is placed in the test tank 1. It is desirable that the environment in the test tank 1 for installation be in a dry state in advance. In addition, you may determine suitably the specific conditions of a dry state and a wet state with the steel grade of the sample 4 to be used, the density | concentration of a halide solution, etc. For example, the dry state may be temperature: 35 ° C.-60 ° C. ± 1 ° C., relative humidity: 95% RH-25% RH ± 10%, and the wet state may be temperature: 50 ° C. ± 1 ° C., relative humidity: 95%. It may be RH or higher.

実際には、試験槽1内の乾燥状態が経過するとともに、試料4表面上のハロゲン化物溶液は水分の蒸発によって濃度が高まっていく。それに伴い、液滴下でピット(孔)が発生し孔食が生じる。このピットはサイズが数十ミクロン程度と極微小であり、これまでの腐食試験では、その発生のタイミングや発生直後の状態などを正確に観察、測定することは困難であった。しかし、本実施形態に係る大気腐食のその場観察装置100を用いることで、ピットの発生や、その後の進展、孔食の状態変化等を正確に観察、測定することが可能となる。   Actually, as the dry state in the test chamber 1 elapses, the concentration of the halide solution on the surface of the sample 4 increases due to evaporation of moisture. Along with this, pits (holes) are generated under the droplets and pitting corrosion occurs. These pits are very small, about several tens of microns in size, and it has been difficult to accurately observe and measure the timing of the occurrence and the state immediately after the occurrence in corrosion tests so far. However, by using the atmospheric corrosion in-situ observation apparatus 100 according to the present embodiment, it is possible to accurately observe and measure the generation of pits, the subsequent progress, the state change of pitting corrosion, and the like.

また、乾燥状態下で発生したピットをさらに成長させ、孔食を進行させた状態を観察したい場合は、乾燥状態と湿潤状態と繰り返し行えばよい。その場合の、各状態での保持時間等も特に限定しないが、乾燥状態で2hr保持し、次に湿潤状態を2hr保持するといたサイクルで行ってもよい。   Moreover, when it is desired to further grow the pits generated in the dry state and observe the state where the pitting corrosion has progressed, the dry state and the wet state may be repeated. In this case, the holding time in each state is not particularly limited, but it may be performed in a cycle in which the state is maintained for 2 hours in a dry state and then maintained in the wet state for 2 hours.

その場観察したピットや液滴の形状などは光学系測定手段3に備えられる任意のソフトウエアでその大きさなどを解析することが出来る。また、後日に市販の画像解析ソフトを用いて同様の解析を行ってもよい。   The size of the pits and droplets observed in-situ can be analyzed by any software provided in the optical system measuring means 3. Further, the same analysis may be performed later using commercially available image analysis software.

供試材として、JISに準拠した2B仕上げを施したSUS430鋼板を準備した。ハロゲン化物溶液としてpH5.5に調整した5wt%のNaCl溶液をマイクロピペットによって5μl採取し、室温にてSUS430鋼板上に滴下した。なお、滴下した場所は予め生成が確認されていた介在物上とした。   As a test material, a SUS430 steel plate having a 2B finish in accordance with JIS was prepared. 5 μl of a 5 wt% NaCl solution adjusted to pH 5.5 as a halide solution was sampled with a micropipette and dropped onto a SUS430 steel plate at room temperature. In addition, the dripped place was made on the inclusion whose production | generation was confirmed previously.

NaCl溶液が滴下されたSUS430鋼板は滴下後すぐに、予め60℃、50%RH(乾燥状態)に保持された観察装置100内に設置した。設置後すぐに、光学系測定手段3としてハイロックス社製KH−8700を用い、倍率1000倍で連続観察および画像の記録を開始した。撮影開始を「0s」として、685s後まで乾燥状態における腐食挙動の観察を行った。   The SUS430 steel plate to which the NaCl solution was dropped was placed in the observation apparatus 100 that was held in advance at 60 ° C. and 50% RH (dry state) immediately after the dropping. Immediately after installation, KH-8700 manufactured by Hilox Co., Ltd. was used as the optical system measuring means 3, and continuous observation and image recording were started at a magnification of 1000 times. The start of photographing was set to “0 s”, and the corrosion behavior in the dry state was observed until 685 s.

<観察結果>
図2(a)〜(d)に腐食(孔食)の観察した結果を示す。なお、図2(a)〜(d)はすべて液滴越しに鋼板表面を撮影した画像である。
図2(a)に示すとおり、観察開始から285sまで孔食は発生せず、介在物のみが観察されたが、観察開始から290sで介在物の淵から孔食が発生していることを観察できた(図2(b))。さらに、観察開始から620sで孔食は成長し、ピットの淵からNaClの結晶が析出していることを確認した(図2(c))。さらに観察を進め、観察開始から685s(図2(d);観察終了)まで、析出したNaCl結晶は成長し続ける結果であった。
<Observation results>
2A to 2D show the observation results of corrosion (pitting corrosion). 2A to 2D are images obtained by photographing the surface of the steel plate through the droplets.
As shown in FIG. 2 (a), pitting corrosion did not occur from the start of observation to 285s, and only inclusions were observed, but it was observed that pitting corrosion was generated from the wrinkles of inclusions at 290s from the start of observation. (Fig. 2 (b)). Furthermore, pitting corrosion grew at 620 s from the start of observation, and it was confirmed that NaCl crystals were precipitated from the pits (FIG. 2C). Observation was further advanced, and the precipitated NaCl crystal continued to grow from the start of observation to 685 s (FIG. 2 (d); end of observation).

本発明を採用することにより、種々の大気腐食環境に応じて材料を適正に選定することが可能になり、また、各材料が使用可能な腐食環境を明確にできるなど、産業上の貢献が極めて顕著である。   By adopting the present invention, it is possible to appropriately select materials according to various atmospheric corrosive environments, and it is possible to clarify the corrosive environments in which each material can be used. It is remarkable.

1 ・・・試験槽
2 ・・・空気制御装置
3 ・・・光学系測定手段
4 ・・・試料(金属材料)
5 ・・・観察用窓
6 ・・・試料台
7 ・・・除振台
100 ・・・大気腐食のその場観察装置
DESCRIPTION OF SYMBOLS 1 ... Test tank 2 ... Air control apparatus 3 ... Optical system measurement means 4 ... Sample (metal material)
5 ... Observation window 6 ... Sample stage 7 ... Vibration isolation table 100 ... In-situ observation device for atmospheric corrosion

Claims (5)

金属材料からなる試料が内部に設置される密閉可能な試験槽と、
前記試験槽の上面または側面の少なくとも一方に設けられた加熱機能付きガラスからなる観察用窓と、
前記試験槽に接続され、前記試験槽内の空気の温度および湿度を制御する空気制御装置と、
前記試験槽の外側から前記観察用窓を介して、ハロゲン化物溶液が滴下された前記試料の表面を観察する光学系測定手段と、
を具備してなることを特徴とする大気腐食のその場観察装置。
A sealable test chamber in which a sample made of a metal material is installed;
An observation window made of glass with a heating function provided on at least one of an upper surface or a side surface of the test chamber;
An air control device connected to the test chamber for controlling the temperature and humidity of the air in the test chamber;
Optical system measurement means for observing the surface of the sample to which the halide solution has been dropped from the outside of the test tank through the observation window;
An in-situ observation apparatus for atmospheric corrosion, comprising:
前記試験槽の下側には、前記試験槽内の空気の対流による振動を減衰させる除振台が配設されていることを特徴とする請求項1に記載の大気腐食のその場観察装置。   The in-situ observation apparatus for atmospheric corrosion according to claim 1, wherein a vibration isolation table for attenuating vibration due to air convection in the test tank is disposed below the test tank. 前記空気制御装置の制御可能範囲が、温度:15〜60℃、湿度:20〜90%であることを特徴とする請求項1または2に記載の大気腐食のその場観察装置。   The in-situ observation apparatus for atmospheric corrosion according to claim 1 or 2, wherein a controllable range of the air control device is a temperature of 15 to 60 ° C and a humidity of 20 to 90%. 前記空気制御装置の循環流量が、0.01〜3.00mであることを特徴とする請求項1〜3のいずれか一項に記載の大気腐食のその場観察装置。 The circulation flow rate of the air control device, situ observation apparatus atmospheric corrosion according to any one of claims 1 to 3, characterized in that it is 0.01~3.00m 3. 金属材料からなる試料が内部に設置される密閉可能な試験槽と、
前記試験槽の上面または側面の少なくとも一方に設けられた光透過性材料からなる観察用窓と、
前記試験槽に接続され、前記試験槽内の空気の温度および湿度を制御する空気制御装置と、
前記試験槽の外側に配置された光学系測定手段
を具備してなる大気腐食その場観察装置を用いて、
前記光学系測定手段によって、前記観察用窓を介し、ハロゲン化物溶液が滴下された前記試料表面に生じている腐食をその場観察し、腐食の形状、液滴形状、析出塩の形状変化を測定することを特徴とする大気腐食のその場観察方法。
A sealable test chamber in which a sample made of a metal material is installed;
An observation window made of a light transmissive material provided on at least one of an upper surface or a side surface of the test chamber;
An air control device connected to the test chamber for controlling the temperature and humidity of the air in the test chamber;
Using an atmospheric corrosion in-situ observation device comprising an optical system measuring means arranged outside the test tank,
Through the observation window, the optical system measuring means observes the corrosion occurring on the surface of the sample to which the halide solution has been dropped in situ, and measures the shape of the corrosion, the shape of the droplet, and the shape change of the deposited salt. An in-situ observation method for atmospheric corrosion, characterized by:
JP2018069776A 2018-03-30 2018-03-30 In-situ observation device and observation method of atmospheric corrosion Pending JP2019178997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018069776A JP2019178997A (en) 2018-03-30 2018-03-30 In-situ observation device and observation method of atmospheric corrosion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018069776A JP2019178997A (en) 2018-03-30 2018-03-30 In-situ observation device and observation method of atmospheric corrosion

Publications (1)

Publication Number Publication Date
JP2019178997A true JP2019178997A (en) 2019-10-17

Family

ID=68278307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018069776A Pending JP2019178997A (en) 2018-03-30 2018-03-30 In-situ observation device and observation method of atmospheric corrosion

Country Status (1)

Country Link
JP (1) JP2019178997A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139892A (en) * 2020-02-28 2021-09-16 Jfeスチール株式会社 Material evaluation device, and material observation method
CN114295458A (en) * 2021-12-31 2022-04-08 西安稀有金属材料研究院有限公司 Method for researching in-situ corrosion behavior of metal material at atomic scale
JP7148100B1 (en) * 2021-09-03 2022-10-05 板橋理化工業株式会社 Corrosion test method and equipment
CN115629030A (en) * 2022-07-25 2023-01-20 中国长江三峡集团有限公司 Anchor cable dry-wet cycle corrosion test device and method
CN115855653A (en) * 2022-12-15 2023-03-28 太原理工大学 Corrosion electrochemistry testing arrangement of controllable temperature

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138337A (en) * 1990-09-29 1992-05-12 Idemitsu Kosan Co Ltd Apparatus for testing corrosion prevention and rust prevention
JPH09222390A (en) * 1996-02-19 1997-08-26 Etatsuku Eng Kk Environment tester with oscillator
JPH10317010A (en) * 1997-05-14 1998-12-02 Nippon Koshuha Steel Co Ltd Instrument for measuring shape of material to be heat-treated and method for measuring shape thereof
JPH11193939A (en) * 1997-12-26 1999-07-21 Hitachi Plant Eng & Constr Co Ltd Radiation type air-conditioning system
JP2005323509A (en) * 2004-05-12 2005-11-24 Inoue Keisuke Cell culture-observing device for measuring gene expression
JP2017213966A (en) * 2016-05-31 2017-12-07 大陽日酸株式会社 Support leg structure of universe environment testing device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04138337A (en) * 1990-09-29 1992-05-12 Idemitsu Kosan Co Ltd Apparatus for testing corrosion prevention and rust prevention
JPH09222390A (en) * 1996-02-19 1997-08-26 Etatsuku Eng Kk Environment tester with oscillator
JPH10317010A (en) * 1997-05-14 1998-12-02 Nippon Koshuha Steel Co Ltd Instrument for measuring shape of material to be heat-treated and method for measuring shape thereof
JPH11193939A (en) * 1997-12-26 1999-07-21 Hitachi Plant Eng & Constr Co Ltd Radiation type air-conditioning system
JP2005323509A (en) * 2004-05-12 2005-11-24 Inoue Keisuke Cell culture-observing device for measuring gene expression
JP2017213966A (en) * 2016-05-31 2017-12-07 大陽日酸株式会社 Support leg structure of universe environment testing device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021139892A (en) * 2020-02-28 2021-09-16 Jfeスチール株式会社 Material evaluation device, and material observation method
JP7180705B2 (en) 2020-02-28 2022-11-30 Jfeスチール株式会社 Material evaluation device and material observation method
JP7148100B1 (en) * 2021-09-03 2022-10-05 板橋理化工業株式会社 Corrosion test method and equipment
CN114295458A (en) * 2021-12-31 2022-04-08 西安稀有金属材料研究院有限公司 Method for researching in-situ corrosion behavior of metal material at atomic scale
CN114295458B (en) * 2021-12-31 2024-03-19 西安稀有金属材料研究院有限公司 Method for researching in-situ corrosion behavior of metal material by atomic scale
CN115629030A (en) * 2022-07-25 2023-01-20 中国长江三峡集团有限公司 Anchor cable dry-wet cycle corrosion test device and method
CN115855653A (en) * 2022-12-15 2023-03-28 太原理工大学 Corrosion electrochemistry testing arrangement of controllable temperature

Similar Documents

Publication Publication Date Title
JP2019178997A (en) In-situ observation device and observation method of atmospheric corrosion
JP6932888B2 (en) Integrated system for quantitative real-time monitoring of hydrogen-induced cracking in a simulated sour environment
JP7339643B2 (en) Systems and methods for testing the refractive power and thickness of ophthalmic lenses immersed in solutions
US9134222B1 (en) System and method for stress corrosion testing
KR20020034990A (en) Transient thermography measurement of a metal layer thickness
JP2016512959A5 (en)
CN201477055U (en) Stripe detection device
JP2010085144A (en) Testing equipment for testing acceleration of atmospheric corrosion
JP2005156537A5 (en)
JP6288063B2 (en) Dynamic observation method and dynamic observation apparatus
JP2014224761A (en) Method for measuring deformation behavior of steel material during impact fracture testing
Medgyes et al. Effect of water condensation on electrochemical migration in case of FR4 and polyimide substrates
JP6583479B2 (en) Method for evaluating optical properties of transparent substrate and transparent substrate
JP7180705B2 (en) Material evaluation device and material observation method
DE102013011149A1 (en) Measuring apparatus, method for inspecting plaque deposits on a plaque probe, incinerator and method of operating such an incinerator
JP2013076688A (en) Solder ball inspection device
CN107167557A (en) One kind visualization flue gas suction experimental provision and its application process
CN108896331B (en) Method for online detection of grease cleaning efficiency of cleaning equipment before coating
Nguyen et al. Full-scale experimental study of moisture condensation on the glazing surface: Condensation rate characterization
JP2016174581A (en) Microorganism detection device, microorganism detection program, and microorganism detection method
TW200746219A (en) Inspecting apparatus and inspecting method sample surface
KR100941270B1 (en) Device and method for corrosion test exhaust parts of vehicle
DK200601330A (en) Apparatus and method for identifying particles in milk
Ringermacher et al. Thermal Imaging NDT at General Electric
KR20200084154A (en) Tester for sensing quality of camera image in smoke and fog

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220303

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20220303

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20220316

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20220322

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20220422

C211 Notice of termination of reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C211

Effective date: 20220426

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220712

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220906

C28A Non-patent document cited

Free format text: JAPANESE INTERMEDIATE CODE: C2838

Effective date: 20220906

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20230404