WO2010035803A1 - 熱伝導率検出方法、並びに熱伝導率検出用センサ、熱伝導率検出装置及び監視システム - Google Patents
熱伝導率検出方法、並びに熱伝導率検出用センサ、熱伝導率検出装置及び監視システム Download PDFInfo
- Publication number
- WO2010035803A1 WO2010035803A1 PCT/JP2009/066685 JP2009066685W WO2010035803A1 WO 2010035803 A1 WO2010035803 A1 WO 2010035803A1 JP 2009066685 W JP2009066685 W JP 2009066685W WO 2010035803 A1 WO2010035803 A1 WO 2010035803A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- thermal conductivity
- sensor
- sensor body
- temperature
- detected
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/18—Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
Definitions
- the present invention relates to a method for detecting the thermal conductivity of a liquid or a gas, a thermal conductivity detection sensor used for carrying out the method, a thermal conductivity detection device including the thermal conductivity detection sensor, and the thermal conductivity.
- the present invention relates to a monitoring system that includes a rate detection device and monitors the state of an object to be detected.
- a thin wire heating method is known as a method for detecting the thermal conductivity of a liquid or gas as an object to be detected, and Patent Document 1 described below discloses the following thermal conductivity detection device.
- FIG. 15 is a schematic diagram showing the configuration of a thermal conductivity detection device that detects thermal conductivity by a thin wire heating method together with a block diagram of a control system and the like, in which 100 is a sensor for detecting thermal conductivity. is there.
- the sensor 100 has a cylindrical shape and a thin heater wire 101 having a diameter of about 10 ⁇ m is stretched on the center line of the heat-insulating container 100a so that the object to be detected is filled in the container 100a.
- a current of about 0.5 A is passed through the heater wire 101 from the power source 102 via the current control means 103 as a preheating for a predetermined time (about 10 seconds), which heats the heater wire 101. Heat the surrounding objects.
- a temperature sensor 110 composed of a thermocouple is disposed in the vicinity of the heater wire 101 in order to measure the temperature of the liquid to be detected, and the measured value of the temperature sensor 110 is given to the rising temperature calculation means 104.
- the rising temperature calculation means 104 is, for example, a rising temperature (a difference between a temperature after one second (t 1 ) and a temperature after several seconds (t 2 ) after the current is passed through the heater wire 101 ( ( ⁇ T 0 ) is calculated and the value is given to the reading means 106 for reading out the current value used for the main heating from the memory 107.
- the reading means 106 has a rising temperature region to which the rising temperature ( ⁇ T 0 ) given from the rising temperature calculation unit 104 belongs. And the current value I corresponding to the specified rising temperature region is read from the memory 107 and supplied to the current control means 103 described above.
- the current control means 103 allows the current of the current value I to flow through the heater wire 101 for a predetermined time, and the temperature sensor at t 1 and t 2 described above.
- the measured value 110 is given to the thermal conductivity calculating means 105.
- the following equation (1) is preset in the thermal conductivity calculating means 105, and the thermal conductivity calculating means 105 measures the temperature measurement values (T 1 , T 2 ) at t 1 and t 2 given from the temperature sensor 110. ) Is substituted into equation (1) to calculate the thermal conductivity ⁇ .
- q is a heat generation amount per unit time and unit length of the heater wire 101.
- the sensor 100 since the sensor 100 requires a detected object of at least several ml in order to detect the thermal conductivity, it has a relatively large size. However, when only a trace amount of less than 1 ml is available, there is a problem that the thermal conductivity of the liquid to be detected cannot be detected. In addition, since the size of the sensor 100 is relatively large as described above, there is a problem that a space in which the sensor 100 can be arranged is limited and the sensor 100 cannot be arranged at a required place.
- the temperature of the heater wire 101 is changing in order to measure the temperature of the heated heater wire 101 before convection is generated in the object to be detected. In this case, it is necessary to measure the temperature of the heater wire 101. However, if the length of the heater wire 101 is shortened to reduce the amount of the object to be detected, the time during which the unsteady state is maintained is shortened. It cannot be supported by speed devices. On the other hand, when a special instrument with a high measurement speed is used, the cost of the apparatus increases, and when the analysis is performed using the unsteady temperature, there is a problem that the analysis takes a long time.
- the present invention has been made in view of such circumstances, and it is possible to detect the thermal conductivity by suppressing the increase in the apparatus cost as much as possible even with a smaller amount of objects to be detected, Provided are a thermal conductivity detection method that can be installed in a narrower required place, a thermal conductivity detection sensor used for the implementation, and a thermal conductivity detection device including the thermal conductivity detection sensor.
- the present invention was completed by obtaining the knowledge that the temperature reaches a steady state where the temperature is substantially constant.
- the thermal conductivity detection method is a thermal conductivity detection sensor comprising a sensor body for heating an introduced object to be detected, in which an appropriate substance to be electrically heated is formed into a long shape.
- the sensor body is heated by the sensor body to obtain information on the temperature of the sensor body after a lapse of a certain time to obtain the temperature of the sensor body, and the temperature of the object to be detected is obtained using the obtained temperature.
- a thermal conductivity detection comprising a sensor body having an appropriate dimension of 6.9 mm or less in the longitudinal direction and an appropriate dimension of 26 ⁇ m or less in a predetermined direction perpendicular to the longitudinal direction
- a sensor is used to heat an object introduced into the thermal conductivity detection sensor with the sensor body, and after the object is heated, a predetermined time elapses until the temperature of the sensor body becomes substantially constant. After temperature Obtained, using the obtained temperature and obtaining the thermal conductivity of the object to be detected.
- the dimension in the longitudinal direction is an appropriate dimension of 6.9 mm or less, and the dimension in a predetermined direction perpendicular to the longitudinal direction is 26 ⁇ m or less.
- a thermal conductivity detection sensor including a sensor main body appropriately dimensioned is used, and an object to be detected such as a liquid or gas introduced into the thermal conductivity detection sensor is heated by the sensor main body.
- a small amount of several tens of ⁇ l or less is required.
- the thermal conductivity can be detected even for an object to be detected.
- the sensor body reaches a steady state in which the temperature of the sensor body is substantially constant before the object to be detected is heated and before convection is generated in the object to be detected.
- the above-mentioned predetermined time is the temperature of the sensor body after the object is heated after the object is heated in the sensor body and before the convection due to the heating occurs in the object to be detected. Is set to an appropriate time to reach a steady state.
- the thermal conductivity detection sensor can be further reduced, it can be installed in a narrower place.
- the thermal conductivity detection method according to the present invention has an appropriate dimension of about 1 ⁇ m or more and 6.9 mm or less in the longitudinal direction as the thermal conductivity detection sensor, if necessary, and is a predetermined perpendicular to the longitudinal direction. It is characterized by using a sensor body having a sensor body with an appropriate dimension of about 10 nm to 26 ⁇ m in the direction.
- the longitudinal direction has an appropriate dimension of about 1 ⁇ m to 6.9 mm, and the predetermined direction orthogonal to the longitudinal direction is about 10 nm to 26 ⁇ m.
- a sensor provided with a sensor body appropriately dimensioned is used.
- the approximately 1 ⁇ m includes at least 1 ⁇ m ⁇ 0.1 ⁇ m
- the approximately 10 nm includes at least 10 nm ⁇ 1 nm.
- a thickness in a predetermined direction orthogonal to the longitudinal direction is a plate having a thickness of about 10 nm to 26 ⁇ m and a length of about 1 ⁇ m to 6.9 mm, or orthogonal to the longitudinal direction.
- the thickness or diameter which is a dimension in a predetermined direction, can be a prismatic or cylindrical shape having a length of about 10 nm to 26 ⁇ m and a length of about 1 ⁇ m to 6.9 mm.
- the thickness refers to the deposition direction when the sensor body is produced by MEMS (Micro Electro Mechanical Systems) technology.
- the length of the sensor body in the longitudinal direction is less than about 1 ⁇ m, the amount of heat released from both sides of the sensor body becomes too large, which hinders detection of thermal conductivity, and the dimension in a predetermined direction orthogonal to the longitudinal direction of the sensor body is If it is less than about 10 nm, the required strength cannot be obtained.
- thermal conductivity detection sensor including the sensor body having the above-described dimensions, it is possible to obtain a temperature in a steady state before convection occurs in an object to be detected, and to detect thermal conductivity. It is possible to prevent troubles. Moreover, since it has a required intensity
- the thermal conductivity detection method obtains the temperature after the predetermined time has elapsed from the heating of the detected objects, if necessary, with respect to a plurality of predetermined detected objects.
- a relationship between each temperature and each thermal conductivity in a steady state is obtained in advance, and the temperature obtained for the target object to be detected is applied to the relationship, and the thermal conductivity of the target object is detected. It is characterized by calculating
- each temperature in a steady state is obtained by obtaining the temperature after the predetermined time has elapsed after heating the detection object.
- the thermal conductivity of each of the detected objects is determined by applying the temperature obtained for the object to be detected to the relationship.
- the thermal conductivity can be calculated with as little temperature data as possible, and the heat conduction
- the calculation of the rate can be simplified, and the thermal conductivity can be calculated in a shorter time for a plurality of types of objects to be detected.
- the thermal conductivity detection sensor includes a sensor main body formed by molding an appropriate substance to be electrically heated into a long shape, and the temperature of the sensor main body is increased after the object to be detected is heated. Information on the temperature of the sensor main body after a lapse of a predetermined time to reach a substantially constant state is obtained to obtain the temperature of the sensor main body, and using the obtained temperature, the heat conduction of the detection object
- a sensor for detecting a thermal conductivity wherein the sensor body has an appropriate dimension of about 1 ⁇ m to 6.9 mm in the longitudinal direction, and a predetermined direction perpendicular to the longitudinal direction is about 10 nm to 26 ⁇ m. It is characterized by being appropriately dimensioned as follows.
- the longitudinal direction has an appropriate dimension of about 1 ⁇ m to 6.9 mm, and the predetermined direction orthogonal to the longitudinal direction has an appropriate dimension of about 10 nm to 26 ⁇ m.
- the sensor main body is provided.
- a thickness in a predetermined direction orthogonal to the longitudinal direction is a plate having a thickness of about 10 nm to 26 ⁇ m and a length of about 1 ⁇ m to 6.9 mm, or orthogonal to the longitudinal direction.
- the thickness or diameter which is a dimension in a predetermined direction, can be a prism or cylinder having a length of about 10 nm to 26 ⁇ m and a length of about 1 ⁇ m to 6.9 mm.
- the thickness means the deposition direction when the sensor body is produced by the MEMS technology.
- the sensor body having such dimensions Since the sensor body having such dimensions is provided, a temperature in a steady state can be obtained before convection due to heating occurs in the detected object, and as in the previous case, a smaller amount of detected object can be obtained.
- a commercially available instrument with a measurement speed can be applied, and the detection of thermal conductivity is prevented from being hindered. Moreover, since it has required intensity
- the thermal conductivity detection sensor according to the present invention includes a predetermined substrate and a recess or an opening formed at an appropriate position of the substrate, as necessary. It is constructed in the opening.
- the sensor for detecting thermal conductivity includes a predetermined substrate and a recess or an opening formed at an appropriate position of the substrate, and the sensor main body is installed in the recess or the opening. .
- a liquid can be injected into the recess as an object to be detected, and the liquid can be brought into contact with the periphery of the sensor body.
- gas can be introduced into the periphery of the sensor body as an object to be detected through the opening, and the gas can be brought into contact with the sensor body.
- such a recess or opening and the sensor body can be formed by a MEMS technique such as etching a substrate. Therefore, even when the sensor main body has a minute size as described above, a plurality of thermal conductivity detection sensors including the sensor main body can be manufactured uniformly.
- the thermal conductivity detection sensor according to the present invention is characterized in that the dimension of the sensor body in the direction parallel to the thickness direction of the substrate is an appropriate dimension of about 10 nm to 26 ⁇ m.
- the dimension in the direction parallel to the thickness direction of the substrate of the sensor body is set to an appropriate dimension of about 10 nm to 26 ⁇ m.
- the length of the sensor body in the longitudinal direction is an appropriate dimension of approximately 1 ⁇ m or more and 6.9 mm or less, so that, as before, the temperature in the steady state before convection due to heating occurs in the object to be detected.
- the detection of thermal conductivity is prevented from being hindered.
- it since it has required intensity
- the thermal conductivity detection sensor according to the present invention may include a substrate on which a plurality of the recesses or openings and a plurality of sensor bodies installed in the recesses or openings are formed as required. It is characterized by being divided into a plurality of parts including a sensor main body installed in the opening.
- a plurality of the recesses or openings and a sensor main body erected in the recesses or openings are formed on a single substrate. It is configured by dividing into a plurality of parts including a sensor main body installed in the opening.
- the substrate may include an electrode portion communicating with one side of the sensor body and another electrode portion communicating with the other side of the sensor body.
- Each electrode part is connected to a lead wire for passing a current through the sensor body and another lead wire for measuring a voltage applied to the sensor body.
- the substrate described above is formed with an electrode portion communicating with one side of the sensor body and another electrode portion communicating with the other side of the sensor body, Connected to both electrode portions are a lead wire for passing a current through the sensor body and another lead wire for measuring a voltage applied to the sensor body.
- the thermal conductivity detection sensor is configured as a single chip. Therefore, the size of the thermal conductivity detection sensor can be reduced, and can be installed in a narrow place. Further, since the replacement work is easy in the one-chip thermal conductivity detection sensor, it is possible to quickly take measures in the event of a failure. On the other hand, in the case of a single chip, it is possible to easily manufacture a large number of sensors for detecting thermal conductivity with uniform performance.
- the thermal conductivity detection device includes a sensor main body formed by molding an appropriate substance to be heated and energized into a long shape, and the introduced detection object is heated by the sensor main body.
- a thermal conductivity detection sensor, and temperature acquisition means for acquiring information related to the temperature of the sensor body after a predetermined time has elapsed since heating by the sensor body, and obtaining the temperature of the sensor body;
- a thermal conductivity detector that calculates the thermal conductivity of the object to be detected using the measured temperature, including any one of the thermal conductivity detection sensors described above, and the temperature acquisition unit. Is configured to obtain a temperature after a lapse of a predetermined time to reach a steady state where the temperature of the sensor body is substantially constant after the object to be detected introduced into the thermal conductivity detection sensor is heated by the sensor body. It is characterized by being
- any one of the above-described thermal conductivity detection sensors and information related to the temperature of the sensor main body after a predetermined time has elapsed after being heated by the sensor main body are acquired.
- the thermal conductivity detection sensor can be further reduced, it can be installed in a narrower place.
- the thermal conductivity detection device may include a sensor for heating a plurality of types of predetermined detection objects after heating the detection objects as necessary.
- the relationship between the respective temperatures in the steady state and the respective thermal conductivities obtained by respectively obtaining the temperatures in the steady state of the main body is set, and the thermal conductivity calculating means is to be detected by the temperature acquiring means.
- the temperature obtained for the object is applied to the relationship to obtain the thermal conductivity of the object to be detected.
- the above-described thermal conductivity calculation means heats the detection objects and then detects the temperature in the steady state of the sensor body.
- the relationship between each temperature and each thermal conductivity in the steady state obtained by using each obtained temperature is set, and the thermal conductivity calculation means is detected by the temperature acquisition means.
- the steady-state temperature obtained for the object is applied to the relationship to determine the thermal conductivity of the object to be detected. Thereby, the thermal conductivity of the object to be detected can be obtained quickly while maintaining the required accuracy.
- the thermal conductivity of the object to be detected is calculated by performing computer analysis using the temperature of the sensor body after heating the object to be detected.
- the analysis can be simplified and the time required for the analysis can be shortened.
- a monitoring system is a monitoring system that monitors the state of an object to be detected. Any one of the thermal conductivity detection devices described above and the thermal conductivity detected by the thermal conductivity detection device. And an alarm output means for outputting an alarm signal based on a result of comparing the preset threshold with a preset threshold value.
- the monitoring system of the present invention includes any one of the above-described thermal conductivity detection devices and alarm output means, and the alarm output means is preset with the thermal conductivity detected by the thermal conductivity detection device. An alarm signal is output based on the result of comparison with the threshold value.
- the thermal conductivity detection device constituting the monitoring system can be reduced in size and installed in a narrower place, so that the thermal conductivity detection can be performed with little change in the design of the monitored area.
- a rate detector can be provided. Therefore, in addition to increasing the degree of freedom in designing the monitored area, it can be retrofitted to an existing monitored area.
- FIG. 1 It is a typical expansion exploded perspective view showing an example of 1 composition of a thermal conductivity detection device concerning the present invention. It is a principal part enlarged view of the sensor for thermal conductivity detection shown in FIG. It is explanatory drawing explaining an example of the manufacturing procedure of the recessed part and sensor main body in a sensor for thermal conductivity detection. It is explanatory drawing explaining the manufacturing method of the sensor for thermal conductivity detection. It is a graph which shows the relationship between the temperature of a sensor main body, and thermal conductivity. It is a graph which shows the result of having analyzed temporally the rise temperature at the time of making the detection object into water in the sensor for thermal conductivity detection which concerns on this invention with a computer. It is explanatory drawing explaining the conditions of computer analysis.
- FIG. 1 It is a typical perspective view which shows the principal part structural example of the thermal conductivity detection apparatus of FIG. It is a schematic diagram which shows the structure of the heat conductivity detection apparatus which detects heat conductivity by a thin wire
- FIG. 1 is a schematic enlarged exploded perspective view showing a configuration example of a thermal conductivity detection device according to the present invention, in which 2 is a thermal conductivity detection sensor.
- FIG. 2 is an enlarged view of a main part of the thermal conductivity detection sensor 2 shown in FIG. Note that the present embodiment is configured to detect the thermal conductivity of the liquid as the object to be detected.
- the thermal conductivity detection sensor 2 includes a silicon substrate 20, and a concave portion 24 for injecting an object to be detected is provided at an appropriate position of the substrate 20. It is formed.
- the concave portion 24 has an appropriate shape such as a square in plan view, and an appropriate substance to be electrically heated, such as an appropriate metal such as platinum (Pt) or an alloy containing platinum, or a semiconductor, is provided at a substantially central position of the concave portion 24.
- An appropriate metal such as platinum (Pt) or an alloy containing platinum, or a semiconductor, is provided at a substantially central position of the concave portion 24.
- a sensor main body 26 formed in the shape of a strip is erected.
- Strip-shaped electrode portions 21 and 21 extend from both sides of the sensor body 26 on the surface of the substrate 20.
- Pad portions 22, 22, 23, 23 that are paired between the electrode portions 21, 21 are provided at appropriate positions of the electrode portions 21, 21, respectively.
- a predetermined direct current is passed from the power supply unit 4 to the lead wires 15, 15 connected to the pair of pad units 22, 22 via the current control unit 5.
- the lead wires 16, 16 connected to the units 23, 23 are connected to the voltage measuring unit 6 that measures the voltage of the sensor body 26.
- the dimensions of the sensor body 26 described above are appropriate dimensions with a thickness of about 10 nm to about 5 ⁇ m and a length of about 1 ⁇ m to about 1 ⁇ m. Appropriate dimensions of 1 mm or less are preferred.
- the sensor body 26 may be columnar. In this case, it is preferable that the longitudinal direction has an appropriate dimension of about 1 ⁇ m or more and about 1 mm or less, and the predetermined direction orthogonal to the longitudinal direction has an appropriate dimension of about 10 nm or more and about 5 ⁇ m or less.
- the predetermined direction orthogonal to the longitudinal direction refers to the deposition direction when the sensor body 26 is manufactured by the MEMS technology, and is a thickness in the case of a plate shape or a prism shape, and a diameter in the case of a column shape. .
- the lower limit value of the width is the same as the lower limit value of the thickness
- the upper limit value of the width is the same as the upper limit value of the length.
- the dimension of the sensor body 26 in the longitudinal direction is less than about 1 ⁇ m, there arises a disadvantage that most of the heating amount flows from both sides of the sensor body 26 to the substrate 20 instead of the object to be detected.
- the dimension in the direction exceeds approximately 1 mm, it takes a long time for the sensor body 26 to reach a steady state, and there is a disadvantage that the steady state cannot be reached before convection occurs.
- the dimension in the predetermined direction orthogonal to the longitudinal direction of the sensor body 26 is less than about 10 nm, there is a disadvantage that the strength of the sensor body 26 is insufficient, and the dimension in the predetermined direction orthogonal to the longitudinal direction of the sensor body 26 is. If it exceeds approximately 5 ⁇ m, it takes a long time for the sensor body 26 to reach a steady state, and there is a disadvantage that the steady state cannot be reached before convection occurs.
- each dimension value of about 1 ⁇ m, about 1 mm, about 10 nm, and about 5 ⁇ m described above includes at least 1 ⁇ m ⁇ 0.1 ⁇ m, 1 mm ⁇ 0.1 mm, 10 nm ⁇ 1 nm, 5 ⁇ m ⁇ 0.5 ⁇ m, respectively.
- the thickness or diameter which is a dimension in a predetermined direction orthogonal to the longitudinal direction, is 26 ⁇ m or less and the length is 6.9 mm or less, it is described above.
- the knowledge that the requirement is satisfied was obtained. That is, if the dimension of the sensor body 26 is less than or equal to the upper limit value, the sensor body 26 reaches a steady state after the object to be detected is heated by the sensor body 26 and before convection due to the heating occurs in the object to be detected. be able to.
- a more preferable dimension of the sensor body 26 is an appropriate dimension in which the longitudinal direction is approximately 5 ⁇ m or more and approximately 50 ⁇ m or less, and a predetermined direction perpendicular to the longitudinal direction is approximately 30 nm or more and approximately 200 nm or less.
- the dimension of the sensor body 26 in the longitudinal direction is approximately 5 ⁇ m or more, there is an advantage that a recess is relatively easily produced by etching.
- the dimension of the sensor body 26 in the longitudinal direction is approximately 50 ⁇ m or less, a steady state is reached.
- the time required for the process is relatively short and the depth of the recess may be approximately 100 ⁇ m or less.
- the predetermined direction orthogonal to the longitudinal direction of the sensor body 26 is approximately 30 nm or more, there is an advantage that the strength is sufficient.
- the predetermined direction orthogonal to the longitudinal direction of the sensor body 26 is approximately 200 nm or less, the steady state
- the time required to reach is relatively short.
- the sensor body 26 having such a size range can be applied to both a liquid detection object and a gas detection object.
- the aspect ratio that is the ratio of the dimension in the predetermined direction orthogonal to the longitudinal direction of the sensor body 26 to the dimension in the longitudinal direction is preferably about 1:20 to about 1: 200. Further, an aspect ratio of about 1: 200 to about 1: 300 can be applied.
- the dimension of the recess 24 is a dimension in which the sensor body 26 is sufficiently immersed, and the dimension in which the temperature rise of the detection object does not reach the wall part of the recess 24.
- the dimension of the recess 24 is approximately 30 ⁇ m in length. It is 30 ⁇ m wide and can be approximately 30 ⁇ m deep.
- the volume of the recess 24 is 27 pl.
- the volume of the recess 24 can be about 1 pl.
- the above-described substrate 20 has an area of about a square with a side length of about 10 mm, for example.
- the shape of the substrate 20 is not limited to a square but may be a polygon or a circle.
- annular packing portion 27 (peripheral wall portion) formed of, for example, silicon rubber is fixed around the concave portion 24 of the substrate 20 while maintaining a watertight state with the substrate 20.
- the opening of the packing portion 27 is sealed with a sealing plate 28.
- a liquid hole 25 is opened at an appropriate position on the bottom of the recess 24 described above so as to penetrate the substrate 20, and an object to be detected is injected into the recess 24 through the liquid hole 25, or the recess The object to be detected in 24 is discharged.
- another hole different from the liquid hole 25 may be provided at the bottom of the recess 24 so that the detection object can be smoothly injected and discharged through the liquid hole 25.
- the object to be detected has a relatively large surface tension by exhausting from the inside of the recess 24 through the other hole.
- the injection operation into the recess 24 can be performed more smoothly.
- FIG. 3 is an explanatory diagram for explaining an example of a manufacturing procedure of the recess 24 and the sensor body 26 in the above-described thermal conductivity detection sensor 2.
- the resist layer on the SiO 2 film 31 32 is deposited.
- the resist layer 32 is exposed to a negative pattern corresponding to the sensor body 26 (see FIG. 2) using an exposure mask having a predetermined shape, and an unexposed resist layer is formed. By removing 32, a mask made of the resist layer 32 as shown in FIG. 3D is formed.
- a metal layer 33 made of, for example, platinum is deposited by an evaporation method or the like, and the resist layer 32 is removed by etching.
- the sensor main body precursor 26a is formed.
- a resist layer 34 is deposited on the SiO 2 film 31 and the sensor body precursor 26a, and a negative exposure corresponding to the above-described recess 24 (see FIG. 2) using a predetermined exposure mask.
- the resist layer 34 is exposed so as to form a simple pattern, and the unexposed resist layer 34 is removed, thereby forming a mask made of the resist layer 34 as shown in FIG.
- the portion exposed from the mask made of the resist layer 34 of the SiO 2 film 31 and the substrate 20 is etched in the thickness direction and the in-plane direction of the substrate 20, thereby After removing the SiO 2 film 31 and the substrate 20 around the body precursor 26a and immediately below the sensor body precursor 26a to a suitable depth to form the recess 24 and the sensor body 26, as shown in FIG.
- the resist layer 34 is removed.
- a plurality of such recesses 24 and sensor bodies 26 are provided on the substrate 20 as shown in FIG. 4, and as shown in FIG. 2 for each, the electrode portions 21, 21 and the pad portions 22, 22, 23, 23, etc. are formed. Then, by cutting the substrate 20 at an appropriate position, the substrate 20 is provided with the recess 24, the sensor main body 26, the electrode portions 21, 21 and the pad portions 22, 22, 23, 23 integrally provided with a plurality of heat conductions.
- the rate detection sensors 2, 2,... Are obtained.
- various methods such as a CVD (Chemical Vapor Deposition) method, a PVD (Physical Vapor Deposition) method, or an electroforming method can be used.
- a negative mask or a positive mask can be used.
- the thermal conductivity detection sensor 2 according to the present invention is manufactured using the MEMS (Micro Electro Mechanical Systems) technology, a plurality of uniform thermal conductivity detection sensors are obtained as much as possible. be able to.
- MEMS Micro Electro Mechanical Systems
- the thermal conductivity detection sensor 2 since the dimensions of the sensor body 26 and the recess 24 of the thermal conductivity detection sensor 2 are small, the thermal conductivity can be detected even with a very small amount of the object to be detected. As a result, the size of the thermal conductivity detection sensor 2 can be reduced, so that it can be easily installed in a narrower required place.
- the electrical resistance of the connection portion between the sensor body and the substrate is not constant, so that multiple thermal conductivity detections are possible. Even if the sensor main body and the substrate are connected under the same operating conditions in order to manufacture a sensor for use, the detection sensitivity of each obtained thermal conductivity detection sensor will vary greatly.
- the test result is transferred to the other thermal conductivity detection sensors 2,. 2, etc., and the test operation can be largely omitted.
- the sensor body 26 described above also functions as a temperature sensor for measuring temperature by a change in electrical resistance. As shown in FIG. 1, the current value flowing through the sensor body 26 and the voltage of the sensor body 26 are measured. The value is supplied from the current control unit 5 and the voltage measurement unit 6 to the calculation unit 7.
- the calculation unit 7 has a preset relationship between the electrical resistance of the sensor body 26 and the temperature.
- the calculation unit 7 calculates the sensor body 26 from the current value and the voltage value given from the current control unit 5 and the voltage measurement unit 6.
- the value of the electrical resistance is calculated, and the obtained value is applied to the relationship to calculate the temperature of the sensor body 26.
- the calculation unit 7 is preset with a relationship between the temperature of the sensor body 26 and the thermal conductivity as shown in FIG. 5, and the temperature of the sensor body 26 calculated as described above is applied to the relationship. To obtain the thermal conductivity of the object to be detected.
- FIG. 5 is a graph showing the relationship between the temperature of the sensor body 26 and the thermal conductivity.
- the vertical axis represents ⁇ ave ⁇ related to the dimensionless rise temperature, and the horizontal axis represents the dimensionless thermal conductivity ⁇ . Yes.
- ⁇ ave represents a dimensionless average temperature
- ⁇ ave ⁇ (T ave ⁇ T 0 ) / (q v b 2 / ⁇ s ) (2)
- q v represents the internal heating value per unit volume (W / m 3 )
- T ave is the average temperature of the sensor body 26 after heating
- T 0 is the initial temperature of the sensor body 26
- b is FIG.
- (thickness dimension of the sensor body 26) / 2 and ⁇ s represent the thermal conductivity of the sensor body 26, respectively.
- the graph shown in FIG. 5 shows the temperature rise when the sensor body 26 is heated with respect to a plurality of types of objects to be detected whose thermal conductivity is known from the following equations (3) to (12). It is created in advance by computer analysis using. Alternatively, the rising temperatures may be measured for a plurality of types of objects to be detected whose thermal conductivity is known, and each thermal conductivity may be plotted against each measured rising temperature.
- ⁇ represents the thermal diffusivity (m 2 / s)
- ⁇ represents the thermal conductivity (W / (m ⁇ K))
- s represents the sensor body
- f represents the object to be detected. Represents.
- the inventors of the present invention have newly proposed that the thermal conductivity detection sensor according to the present invention reaches a steady state within a very short time before convection occurs, from several milliseconds to several seconds or less. I got a good knowledge.
- the equation (3) can be set to zero, which can significantly reduce the time required for the analysis of each detected object.
- FIG. 6 is a graph showing a result of analysis over time by a computer of the rising temperature when the object to be detected is water in the thermal conductivity detection sensor according to the present invention, and the vertical axis indicates a dimensionless temperature.
- the horizontal axis indicates the dimensionless time.
- the solid line indicates the average temperature of the sensor body, and the broken line indicates the center temperature of the sensor body.
- the sensor body 26 has a thickness of about 10 nm to about 5 ⁇ m, a width of about 10 nm to about 5 ⁇ m, and a length of about 1 ⁇ m to about 1 mm. After that, a steady state is reached in approximately 0.01 milliseconds to 2 seconds.
- the current value of the sensor body 26 after an appropriate time from 0.01 millisecond to 2 seconds after the start of heating and before convection occurs in the object to be detected. And by measuring the voltage value, the steady state temperature can be detected.
- the unsteady-state temperature before reaching the steady-state is detected.
- the temperature detection in the unsteady state is applied to the thermal conductivity detection sensor according to the present invention, the unsteady state is maintained only for a very short time as described above.
- the device cannot be applied to the voltage measuring unit 6 (see FIG. 1).
- the voltage measuring unit 6 can be configured using a special device having a high measurement speed, when the analysis is performed using the temperature in the unsteady state in addition to the increase in the apparatus cost, Since the left term of equation (3) cannot be set to zero as in the state, a long time is required for the analysis.
- the temperature in the steady state can be measured before convection occurs in the object to be detected. Since it can be measured after an appropriate time from 0.01 milliseconds to 2 seconds after the start of heating to a sufficient time, a commercially available device can be applied to the voltage measuring unit 6, The cost of the apparatus can be reduced and the time required for the analysis can be greatly shortened. In addition, it can apply also to an electroconductive to-be-detected object by performing the insulation process previously about the part which contacts the to-be-detected object of the sensor 2 for thermal conductivity detection shown in FIG.
- the thickness, width or diameter of the sensor body needs to be 10 nm ⁇ 1 nm or more in order to obtain the required structural strength
- the lower limit of the thickness, width or diameter of the sensor body is 10 nm ⁇ 1 nm.
- the aspect ratio L which is a value obtained by dividing the length dimension of the sensor body by the thickness dimension of the sensor body, is preferably 300 or less due to the limitation of the structural strength of the sensor body as described above. This is because when the aspect ratio exceeds 300, the required structural strength cannot be obtained.
- the aspect ratio L is preferably 100 or more because of the limitation of heat loss from the sensor body to the substrate. This is because if the aspect ratio L is less than 100, heat loss from the sensor body to the substrate is large, which may hinder the detection of the thermal conductivity of the object to be detected.
- the lower limit value of the length of the sensor body is 1 ⁇ m ⁇ 0.1 ⁇ m based on the lower limit value of the thickness of the sensor body and the aspect ratio 100 described above.
- the aspect ratio of the sensor body In determining the lower limit of the length of the sensor body, it is preferable to set the aspect ratio of the sensor body to about 100 from the viewpoint of heat loss from the sensor body to the substrate, but in other cases, the aspect ratio of the sensor body can be set to an appropriate value from about 1:20 to about 1: 300 as described above.
- the upper limit dimension of the sensor body is determined as follows. That is, the upper limit dimension of the sensor body reaches a steady state where the temperature of the sensor body becomes substantially constant before convection due to heating occurs in the inspection object when the object to be detected is heated by the sensor body. It is necessary to satisfy the conditions.
- a time t c (hereinafter, also simply referred to as a time t c ) required from when the object to be detected is heated by the sensor body until natural convection is generated by the object to be detected is expressed by the following equation (13). Can be represented.
- Heating equivalent diameter d e is the next with a thickness ⁇ and width ⁇ of the sensor body (17) can be represented by the formula, likewise V / A can be represented by a following equation (18), The equation (15) can be expressed by the following equation (19).
- the dimensionless average temperature ⁇ ave of the sensor body can be expressed by the following equation (22).
- the Fourier number Fo is because the next (23), when the sensor body from the start of heating of the object to be detected is expressed using the time t t required to reach a steady state the following equation (24) It becomes.
- the detailed definition of the time t t is a time required for the dimensionless average temperature ⁇ ave of the sensor body to reach 99% of the steady-state temperature after the heating of the detection object is started.
- FIG. 8 and 9 are graphs showing the relationship between the aspect ratio of the sensor body, the Fourier number Fo, and the dimensionless average temperature ⁇ ave of the sensor body, and FIG. 8 shows the case where water is used as an object to be detected.
- FIG. 9 shows a case where air is used as an object to be detected.
- (a) shows a case where the sensor body has an aspect ratio of 100
- (b) shows a case where the sensor body has an aspect ratio of 200
- (c) shows a case where the sensor body has an aspect ratio of 300. Each is shown.
- Figure 10 is a graph showing the relationship between the aspect ratio L time Fourier number Fo t the sensor body required from the start of heating of the object to be detected to the sensor body reaches a steady state, the vertical axis represents the number of Fourier the fo t, the horizontal axis represents respectively the aspect ratio L of the sensor body.
- a circle indicates a case where the detected object is water, and a square mark indicates a case where the detected object is air. Shows the value of each Fourier number Fo t displayed in FIG. 10 in Table 1.
- dimensionless temperature ⁇ st (hereinafter also simply referred to as dimensionless temperature ⁇ st ) in a steady state where the temperature of the sensor body becomes substantially constant after the start of heating and the actual rise temperature ⁇ T is as follows. (25).
- Table 1 shows the value of the dimensionless temperature ⁇ st obtained by numerical analysis using the equation (25).
- the temperature rise ⁇ T of the sensor body is 3K.
- the following equation (26) is derived from the equation (25).
- This equation represents the relationship between the temperature rise of the sensor body and the heat generation amount.
- the heat generation amount per unit volume obtained by substituting the predetermined temperature rise ⁇ T of the sensor body into this equation, and the equation (13) Can be used to determine the time t c required from the time when the object to be detected is heated in the sensor body until the natural convection due to the heating occurs in the object to be detected.
- FIGS. 11 and 12 show the time t c required from the time when the object to be detected is heated by the sensor main body until the natural convection due to the heating is generated in the object to be detected, and the sensor after the heating of the object to be detected is started.
- the case 11 is the ratio detected is water
- FIG. 12 is the ratio detected is air
- Each case is shown.
- (a) shows a case where the sensor body has an aspect ratio of 100
- (b) shows a case where the sensor body has an aspect ratio of 200
- (c) shows a case where the sensor body has an aspect ratio of 300.
- the sensor body has a rising temperature ⁇ T of 3K and ⁇ is 10.
- the upper limit of the thickness dimension of the sensor body can be determined.
- the length l of the sensor body is obtained by the following equation (32).
- Table 1 shows the upper limit dimensions of the sensor body determined in this manner according to the aspect ratio of the sensor body.
- the upper limit value of the thickness dimension of the sensor body is 16 ⁇ m, and the upper limit value of the length dimension is 2.4 mm.
- the upper limit value of the thickness dimension of the sensor body is 26 ⁇ m, and the upper limit value of the length dimension is 6.9 mm.
- FIG. 13 is a block diagram showing an example of use according to the second embodiment of the present invention, and shows a case where the thermal conductivity detector according to the present invention is applied to a fuel cell drive system. In addition, in this embodiment, it is comprised so that the thermal conductivity of gas may be detected as a to-be-detected object.
- the fuel cell drive system is generated by, for example, a fuel cell 52 that generates power using hydrogen gas as a raw material, a tank 50 that stores hydrogen gas supplied to the fuel cell 52, and the fuel cell 52.
- a battery 53 for storing electric power and a motor 54 as a driving source are provided, and the driving operation of the motor 54 is controlled by a control device 51.
- One end of a gas supply pipe 58 is connected to the outlet side of the tank 50 through an electromagnetic valve 57, and the other end of the gas supply pipe 58 is connected to the fuel cell 52.
- the opening / closing operation of the electromagnetic valve 57 is controlled by the control device 51.
- the electromagnetic valve 57 is opened to an appropriate opening degree according to a command from the control device 51, the hydrogen gas in the tank 50 is converted into a fuel cell.
- the electromagnetic valve 57 is closed by a command from the control device 51, the supply of hydrogen gas into the fuel cell 52 is interrupted and the power generation is stopped.
- the electric power generated by the power generation of the fuel cell 52 is applied to the motor 54 via the contact 60, and the motor 54 is rotationally driven by the applied electric power.
- the contact 60 is also supplied with electric power from the battery 53, and the control device 51 controls the contact 60 so that when the motor 54 requires a large amount of power, such as when starting or accelerating, the fuel cell 52. Then, the electric power from the battery 53 is added to the electric power from the electric power and the motor 54 is given.
- the fuel cell 52 also supplies power to the battery 53, and the battery 53 stores the supplied power.
- the battery 53 is also supplied with electric power from the motor 54.
- the motor 54 generates power during deceleration or the like, and supplies the generated electric power to the battery 53 for storage there.
- the fuel cell 52 and the tank 50 described above are covered with cover members 59 and 59 disposed above, respectively, and when hydrogen gas leaks, the fuel cells 52 and the tank 50 are collected in the cover members 59 and 59. .
- the thermal conductivity detectors 1 and 1 are disposed inside the cover members 59 and 59, respectively, and the thermal conductivity detectors 1 and 1 detect the thermal conductivity of the surrounding gas at predetermined time intervals. Then, the detected thermal conductivity is given to the control device 51.
- FIG. 14 is a schematic perspective view showing a configuration example of a main part of the thermal conductivity detection device 1 of FIG. 13 so that ambient gas can easily enter and exit.
- the same reference numerals are given to the portions corresponding to the portions shown in FIG.
- the thermal conductivity detection device 1 includes a thermal conductivity detection sensor 2a. As shown in FIG. 14, an opening 29 penetrating the substrate 20 is provided at an appropriate position of the substrate 20 of the thermal conductivity detection sensor 2a by removing the bottom of the recess 24 as shown in FIG. There is a strip-shaped sensor main body 26 in the constricted portion of the opening 29.
- substrate 20 and the sensor main body 26 can be made the same as the dimension of the board
- thermal conductivity detection sensor 2 since ambient gas is easily introduced into the periphery of the sensor body 26 through the opening 29, as described above, the thermal conductivity detection sensor 2 at a predetermined time interval. By actuating, the ambient gas state can be detected over time. In addition, when hydrogen gas mixes in air
- the control device 51 (see FIG. 13) described above also functions as an alarm output means. That is, a threshold value of thermal conductivity is set in advance in the control device 51, and the control device 51 compares the detection values given from the thermal conductivity detection devices 1 and 1 with the threshold values, respectively. Is higher than the threshold value, it is determined that hydrogen gas has leaked, an alarm signal is output, and the alarm 55 is activated to output an alarm.
- the monitoring system which monitors the state of ambient atmosphere is comprised by the control apparatus 51 which functions also as the thermal conductivity detection apparatus 1 and an alarm output means at least.
- the thermal conductivity detection sensor 2a according to the present invention is smaller in size than the conventional one, so that it can be easily installed even in a very narrow space, and no useless space is generated.
- the fuel cell drive system can be easily made compact.
- the thermal conductivity detection device 1 can be easily repaired only by exchanging it with another thermal conductivity detection sensor 2a.
- the thermal conductivity detectors 1 and 1 are arranged in the cover members 59 and 59, respectively.
- the present invention is not limited to this, for example, the cover members 59 and 59 59, one end of a bifurcated introduction pipe is connected to introduce the gas in the cover members 59 and 59 into the introduction pipe, and the heat pipe is introduced into the other end of the introduction pipe.
- the conductivity detecting device 1 may be arranged. As a result, the number of installed thermal conductivity detectors 1 can be reduced as much as possible.
- the monitoring system that monitors the state of the ambient atmosphere has been described.
- the present invention is not limited to this, and the state of the monitoring target liquid may be monitored. Needless to say.
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
より少量の被検出物であっても装置コストの上昇を可及的に抑制して熱伝導率を検出することができ、また、より狭い所要の場所にも設置することができる熱伝導率検出方法、並びにその実施に使用する熱伝導率検出用センサ、及び該熱伝導率検出用センサを備える熱伝導率検出装置を提供する。 熱伝導率検出用センサ2は、基板20の表面に設けられた凹部24に、適宜の金属で形成してなるセンサ本体26を架設して構成してある。熱伝導率検出装置1の電流制御部5からセンサ本体26に所要の電流が通流され、凹部24内に注入された被検出物がセンサ本体26にて加熱されてからセンサ本体26の温度が定常状態に達する所定時間経過後に、電圧測定部6にて測定したセンサ本体26の電圧からセンサ本体26の定常状態における温度を測定し、該温度を用いて被検出物の熱伝導率を算出する。
Description
本発明は、液体又は気体の熱伝導率を検出する方法、並びに該方法の実施に使用する熱伝導率検出用センサ、該熱伝導率検出用センサを備える熱伝導率検出装置、及び該熱伝導率検出装置を備え、導入された被検出物の状態を監視する監視システムに関する。
被検出物たる液体又は気体の熱伝導率を検出する方法として細線加熱法が知られており、後述する特許文献1には次のような熱伝導率検出装置が開示されている。
図15は、細線加熱法によって熱伝導率を検出する熱伝導率検出装置の構成を制御系等のブロック図と共に示す模式図であり、図中、100は熱伝導率を検出するためのセンサである。
センサ100は、円筒状をなし断熱性の容器100aの中心線上に、直径が10μm程度の細いヒータ線101を張設してなり、容器100a内に被検出物を充填するようになっている。
ヒータ線101には電流制御手段103を介して電源102から、予備加熱として0.5A程度の電流が所定時間(10秒間程度)通流されるようになっており、これによってヒータ線101が加熱して周囲の被検出物に熱を与える。
ヒータ線101の近傍には被検出物液の温度を測定すべく、熱電対からなる温度センサ110が配設してあり、温度センサ110の測定値は上昇温度演算手段104に与えられるようになっている。そして、上昇温度演算手段104は、ヒータ線101に電流が通流されてから例えば1秒後(t1)の温度と、更に数秒経過後(t2)の温度との差である上昇温度(ΔT0)を演算してその値を、本加熱に用いる電流値をメモリ107から読み出す読出手段106に与える。
メモリ107には複数の上昇温度領域別にそれぞれ、本加熱に適用すべき電流値が登録してあり、読出手段106は上昇温度演算手段104から与えられた上昇温度(ΔT0)が属する上昇温度領域を特定し、特定した上昇温度領域に対応する電流値Iをメモリ107から読み出し、それを前述した電流制御手段103に与える。
電流制御手段103は、読出手段106から電流値Iが与えられると、当該電流値Iの電流をヒータ線101に所定時間通流するようになっており、前述したt1及びt2における温度センサ110の測定値が熱伝導率演算手段105に与えられる。
熱伝導率演算手段105には次の(1)式が予め設定されており、熱伝導率演算手段105は温度センサ110から与えられたt1及びt2における温度測定値(T1、T2)を(1)式に代入して熱伝導率λを演算する。但し、(1)式中、qはヒータ線101の単位時間及び単位長さ当たりの発熱量である。
λ=q・ln(t2/t1)2/4π(T2-T1) …(1)
しかしながら、このような従来の方法にあっては、センサ100が熱伝導率を検出するためには少なくとも数ml以上の被検出物を必要とする、比較的大きな寸法であるため、例えば被検出物が1ml未満の微量しか入手できない場合、当該被検出物液の熱伝導率を検出することができないという問題があった。また、このようにセンサ100の寸法が比較的大きいため、センサ100を配置し得る空間が制限され、所要の場所に配置することができないという問題もあった。
そのため、ヒータ線101及び容器100aの寸法をより小さくすることが考えられるが、そのようなヒータ線及び容器を均一に製造し、両者を組み立てることができる寸法には限度があった。
また、前述した細線加熱法にあっては、被検出物中に対流が発生する前に、加熱後のヒータ線101の温度を測定すべく、ヒータ線101の温度が変化している非定常状態において、ヒータ線101の温度を測定する必要があるが、被検出物の量を少なくするためにヒータ線101の長さを短くすると非定常状態が維持される時間が短くなるため、市販の測定速度の機器では対応できない。一方、測定速度が速い特殊な機器を用いた場合、装置コストが嵩むのに加え、非定常状態の温度を用いて解析を行う場合、解析に長時間を要するという問題もあった。
本発明は斯かる事情に鑑みてなされたものであって、より少量の被検出物であっても装置コストの上昇を可及的に抑制して熱伝導率を検出することができ、また、より狭い所要の場所にも設置することができる熱伝導率検出方法、並びにその実施に使用する熱伝導率検出用センサ、及び該熱伝導率検出用センサを備える熱伝導率検出装置を提供する。
本発明者らが鋭意検討した結果、微小サイズのセンサ本体を備える熱伝導率検出センサにあっては、当該センサ本体によって加熱された被検出物中で加熱による対流が発生する前に、センサ本体の温度が略一定となる定常状態に達するという知見を得て本発明を完成するに至った。
すなわち、(1)本発明に係る熱伝導率検出方法は、通電加熱する適宜の物質を長尺形状に成形してあり、導入された被検出物を加熱するセンサ本体を備える熱伝導率検出センサを用い、前記センサ本体によって被検出物を加熱してから一定時間経過後のセンサ本体の温度に係る情報を取得してセンサ本体の温度を得、得られた温度を用いて前記被検出物の熱伝導率を検出する方法において、長手方向の寸法が6.9mm以下の適宜寸法であり、長手方向と直交する所定方向の寸法が26μm以下の適宜寸法になしたセンサ本体を備える熱伝導率検出センサを用い、該熱伝導率検出センサに導入された被検出物を前記センサ本体にて加熱し、被検出物を加熱してからセンサ本体の温度が略一定となる定常状態に達する所定時間経過後の温度を得、得られた温度を用いて当該被検出物の熱伝導率を求めることを特徴とする。
本発明の熱伝導率検出方法にあっては、通電加熱する適宜の物質を用いて、長手方向の寸法が6.9mm以下の適宜寸法であり長手方向と直交する所定方向の寸法が26μm以下の適宜寸法になしたセンサ本体を備える熱伝導率検出センサを使用し、かかる熱伝導率検出センサに導入された液体又は気体といった被検出物を前記センサ本体によって加熱す
る。
る。
このように、長手方向の寸法が6.9mm以下の適宜寸法であり長手方向と直交する所定方向の寸法が26μm以下の適宜寸法になしたセンサ本体にあっては、数十μl以下の微量な被検出物であっても熱伝導率を検出することができる。
また、かかる寸法のセンサ本体にあっては、被検出物を加熱してから当該被検出物中に加熱による対流が発生する前に、センサ本体の温度が略一定となる定常状態に達する。
また、かかる寸法のセンサ本体にあっては、被検出物を加熱してから当該被検出物中に加熱による対流が発生する前に、センサ本体の温度が略一定となる定常状態に達する。
従って、熱伝導率検出センサに導入された被検出物を前記センサ本体にて加熱し、被検出物を加熱してからセンサ本体の温度が略一定となる定常状態に達する所定時間経過後の温度を得、得られた定常状態における温度を用いて当該被検出物の熱伝導率を求める。ここで、前述した所定時間は、センサ本体にて被検出物を加熱してから当該被検出物中に加熱による対流が発生する前であって、被検出物を加熱してからセンサ本体の温度が定常状態に達する適宜の時間に設定する。
これによって、より少量の被検出物であっても市販の測定速度の機器を適用することができ、装置コストの上昇を可及的に抑制して熱伝導率を検出することができる。
また、熱伝導率検出センサのサイズをより小さくすることができるため、より狭い場所にも設置することができる。
また、熱伝導率検出センサのサイズをより小さくすることができるため、より狭い場所にも設置することができる。
(2)また、本発明に係る熱伝導率検出方法は必要に応じて、前記熱伝導率検出センサとして、長手方向が略1μm以上6.9mm以下の適宜寸法であり、長手方向と直交する所定方向が略10nm以上26μm以下の適宜寸法になしたセンサ本体を備えるものを用いることを特徴とする。
本発明の熱伝導率検出方法にあっては、熱伝導率検出センサとして、長手方向が略1μm以上6.9mm以下の適宜寸法であり、長手方向と直交する所定方向が略10nm以上26μm以下の適宜寸法になしたセンサ本体を備えるものを用いる。ここで、前記略1μmには少なくとも1μm±0.1μmが含まれており、また前記略10nmには少なくとも10nm±1nmが含まれている。
かかるセンサ本体としては、例えば、長手方向と直交する所定方向の寸法である厚さが略10nm以上26μm以下、長さが略1μm以上6.9mm以下の板状に、又は、長手方向と直交する所定方向の寸法である厚さ若しくは直径が略10nm以上26μm以下、長さが略1μm以上6.9mm以下の角柱状若しくは円柱状になすことができる。ここで厚さとは、MEMS(Micro Electro Mechanical Systems)技術によりセンサ本体を作製する場合の堆積方向をいう。
センサ本体の長手方向の寸法が略1μm未満の場合、センサ本体の両側からの放熱量が大きくなり過ぎて熱伝導度の検出に支障を来たし、センサ本体の長手方向と直交する所定方向の寸法が略10nm未満の場合、所要の強度を得ることができない。
従って、上述した寸法のセンサ本体を備える熱伝導率検出センサを用いることによって、被検出物中に対流が発生する前に、定常状態における温度を得ることができるのに加え、熱伝導度の検出に支障を来たすことが防止される。また所要の強度を有するため、取り扱が容易になる。
(3)また、本発明に係る熱伝導率検出方法は必要に応じて、予め定めた複数種類の被検出物について、当該被検出物を加熱してから前記所定時間経過後の温度をそれぞれ得ることによって、定常状態における各温度と各熱伝導率との関係を予め求めておき、対象と
する被検出物について得られた前記温度を前記関係に適用して、当該被検出物の熱伝導率を求めることを特徴とする。
する被検出物について得られた前記温度を前記関係に適用して、当該被検出物の熱伝導率を求めることを特徴とする。
本発明の熱伝導率検出方法にあっては、予め定めた複数種類の被検出物について、当該被検出物を加熱してから前記所定時間経過後の温度を得ることによって、定常状態における各温度と各熱伝導率との関係を予め求めておき、対象とする被検出物について得られた前記温度を前記関係に適用して、当該被検出物の熱伝導率を求める。
このように、センサ本体によって被検出物を加熱してから、センサ本体の定常状態における温度を得るため、可及的に少ない温度データで熱伝導率の算出を行うことができる上に、熱伝導率の計算を単純化することができ、予め定めた複数種類の被検出物について、より短時間で熱伝導率の算出を行うことができる。
(4)一方、本発明に係る熱伝導率検出用センサは、通電加熱する適宜の物質を長尺形状に成形してなるセンサ本体を備え、被検出物を加熱してからセンサ本体の温度が略一定となる定常状態に達する所定時間経過後の当該センサ本体の温度に係る情報を取得してセンサ本体の温度を得るべくなしてあり、得られた温度を用いて前記被検出物の熱伝導率を検出するための熱伝導率検出用センサであって、前記センサ本体は、長手方向が略1μm以上6.9mm以下の適宜寸法であり、長手方向と直交する所定方向が略10nm以上26μm以下の適宜寸法になしてあることを特徴とする。
本発明の熱伝導率検出用センサにあっては、長手方向が略1μm以上6.9mm以下の適宜寸法であり、長手方向と直交する所定方向が略10nm以上26μm以下の適宜寸法になしてある前記センサ本体を備える。
かかるセンサ本体としては、例えば、長手方向と直交する所定方向の寸法である厚さが略10nm以上26μm以下、長さが略1μm以上6.9mm以下の板状に、又は、長手方向と直交する所定方向の寸法である厚さ若しくは直径が略略10nm以上26μm以下、長さが略1μm以上6.9mm以下の角柱若しくは円柱になすことができる。ここで厚さとは前同様、MEMS技術によりセンサ本体を作製する場合の堆積方向をいう。
このような寸法のセンサ本体を備えるため、被検出物中に加熱による対流が発生する前に定常状態における温度を得ることができるのに加え、前同様、より少量の被検出物であっても市販の測定速度の機器を適用することができ、熱伝導度の検出に支障を来たすことが防止される。また、所要の強度を有するため、容易に取り扱うことができる。
(5)また、本発明に係る熱伝導率検出用センサは必要に応じて、所定の基板と、該基板の適宜位置に形成した凹部又は開口部とを具備し、前記センサ本体は前記凹部又は開口部に架設してあることを特徴とする。
本発明の熱伝導率検出用センサにあっては、所定の基板と、該基板の適宜位置に形成した凹部又は開口部とを具備し、前記センサ本体は前記凹部又は開口部に架設してある。
凹部にセンサ本体を架設した熱伝導率検出用センサにあっては、被検出物として液体を前記凹部に注入させ、センサ本体の周囲に当該液体を接触させることができる。
また、開口部にセンサ本体を架設した熱伝導率検出用センサにあっては、開口部を通して被検出物として気体をセンサ本体の周囲に導入し、当該気体をセンサ本体に接触させることができる。
一方、このような凹部又は開口部及びセンサ本体は、基板をエッチングするといったMEMS技術によって形成することができる。従って、前述したようにセンサ本体を微小寸法になす場合であっても、当該センサ本体を備える複数の熱伝導率検出用センサを均一に製造することができる。
(6)本発明に係る熱伝導率検出用センサは必要に応じて、前記センサ本体の基板の厚さ方向と平行な方向の寸法が略10nm以上26μm以下の適宜寸法になしてあることを特徴とする。
本発明の熱伝導率検出用センサにあっては、センサ本体の基板の厚さ方向と平行な方向の寸法が略10nm以上26μm以下の適宜寸法になしてある。前述したようにセンサ本体の長手方向の寸法は、略1μm以上6.9mm以下の適宜寸法になしてあり、これによって前同様、被検出物中に加熱による対流が発生する前に定常状態における温度を得ることができるのに加え、熱伝導度の検出に支障を来たすことが防止される。また、所要の強度を有するため、容易に取り扱うことができる。
(7)更に、本発明に係る熱伝導率検出用センサは必要に応じて、前記凹部又は開口部と該凹部又は開口部に架設したセンサ本体とが複数形成された基板を、任意の凹部又は開口部に架設したセンサ本体を含む複数の部分に分割してなることを特徴とする。
本発明の熱伝導率検出用センサにあっては、一枚の基板に前記凹部又は開口部と該凹部又は開口部に架設したセンサ本体とが複数形成されており、かかる基板を任意の凹部又は開口部に架設したセンサ本体を含む複数の部分に分割することによって構成されている。
これによって、同一条件で製造された複数の熱伝導率検出用センサが得られるため、検出感度が略均一な熱伝導率検出用センサを得ることができる。従って、それらの一つについて検定を行うことによって、その検定結果を他の熱伝導率検出用センサにも適用することができ、熱伝導率検出用センサの検定操作を可及的に省略することができる。
(8)また、本発明に係る熱伝導率検出用センサは必要に応じて、前記基板には、センサ本体の一側に連通する電極部及び前記センサ本体の他側に連通する他の電極部がそれぞれ形成してあり、両電極部にはセンサ本体に電流を通流させるためのリード線、及びセンサ本体に印加された電圧を測定するための他のリード線がそれぞれ接続してあることを特徴とする。
本発明の熱伝導率検出用センサにあっては、前述した基板に、センサ本体の一側に連通する電極部及び前記センサ本体の他側に連通する他の電極部がそれぞれ形成してあり、両電極部にはセンサ本体に電流を通流させるためのリード線、及びセンサ本体に印加された電圧を測定するための他のリード線がそれぞれ接続してある。これによって、熱伝導率検出用センサはワンチップに構成される。従って、熱伝導率検出用センサのサイズを小さくすることができ、狭小な箇所にも設置することができる。また、ワンチップの熱伝導率検出用センサにあっては交換作業が容易であるので、故障の際の処置を迅速に行うことができる。
一方、ワンチップの場合、均質な性能の熱伝導率検出用センサを多数製造することも容易に実施することができる。
一方、ワンチップの場合、均質な性能の熱伝導率検出用センサを多数製造することも容易に実施することができる。
(9)一方、本発明に係る熱伝導率検出装置は、通電加熱する適宜の物質を長尺形状に成形してなるセンサ本体を具備し、導入された被検出物を前記センサ本体によって加熱すべくなしてある熱伝導率検出用センサと、前記センサ本体にて加熱してから一定時間経過後の当該センサ本体の温度に係る情報を取得してセンサ本体の温度を得る温度取得手段と
、得られた温度を用いて前記被検出物の熱伝導率を算出する熱伝導率算出手段とを備える熱伝導率検出装置において、前述したいずれかの熱伝導率検出用センサを備え、前記温度取得手段は、該熱伝導率検出センサに導入された被検出物を前記センサ本体にて加熱してからセンサ本体の温度が略一定となる定常状態に達する所定時間経過後の温度を得るようになしてあることを特徴とする。
、得られた温度を用いて前記被検出物の熱伝導率を算出する熱伝導率算出手段とを備える熱伝導率検出装置において、前述したいずれかの熱伝導率検出用センサを備え、前記温度取得手段は、該熱伝導率検出センサに導入された被検出物を前記センサ本体にて加熱してからセンサ本体の温度が略一定となる定常状態に達する所定時間経過後の温度を得るようになしてあることを特徴とする。
本発明の熱伝導率検出装置にあっては、前述したいずれかの熱伝導率検出用センサと、センサ本体にて加熱してから所定時間経過後のセンサ本体の温度に係る情報を取得してセンサ本体の温度を得る温度取得手段と、得られた温度を用いて前記被検出物の熱伝導率を算出する熱伝導率算出手段とを備えており、温度取得手段は、該熱伝導率検出センサに導入された被検出物を前記センサ本体にて加熱してからセンサ本体の温度が略一定となる定常状態に達する所定時間経過後の温度を得るようになしてある。
これによって、前同様、より少量の被検出物であっても市販の測定速度の機器を適用することができ、装置コストの上昇を可及的に抑制して熱伝導率を検出することができる。
また、熱伝導率検出センサのサイズをより小さくすることができるため、より狭い場所にも設置することができる。
また、熱伝導率検出センサのサイズをより小さくすることができるため、より狭い場所にも設置することができる。
(10)また、本発明に係る熱伝導率検出装置は必要に応じて、前記熱伝導率算出手段には、予め定めた複数種類の被検出物について、当該被検出物を加熱してからセンサ本体の定常状態における温度をそれぞれ得ることによって求められた定常状態における各温度と各熱伝導率との関係が設定してあり、熱伝導率算出手段は、前記温度取得手段によって対象とする被検出物について得られた前記温度を前記関係に適用して、当該被検出物の熱伝導率を求めるようになしてあることを特徴とする。
本発明の熱伝導率検出装置にあっては、前述した熱伝導率算出手段には、予め定めた複数種類の被検出物について、当該被検出物を加熱してからセンサ本体の定常状態における温度を得、得られた各温度を用いることによって求められた定常状態における各温度と各熱伝導率との関係が設定してあり、熱伝導率算出手段は、温度取得手段によって対象とする被検出物について得られた定常状態における温度を前記関係に適用して、当該被検出物の熱伝導率を求める。
これによって、対象とする被検出物の熱伝導率を、所要の精度を維持して迅速に得ることができる。
これによって、対象とする被検出物の熱伝導率を、所要の精度を維持して迅速に得ることができる。
一方、予め定めた複数種類の被検出物にあっては、当該被検出物を加熱してからセンサ本体の温度を用いてコンピュータ解析を行うことによって当該被検出物の熱伝導率を算出することができるが、各センサ本体の定常状態における温度を用いるため、解析を単純化することができ、解析に要する時間を短縮することができる。
(11)本発明に係る監視システムは、導入された被検出物の状態を監視する監視システムにおいて、前述したいずれかの熱伝導率検出装置と、該熱伝導率検出装置が検出した熱伝導率と予め設定された閾値とを比較した結果に基づいて、警報信号を出力する警報出力手段とを備えることを特徴とする。
本発明の監視システムにあっては、前述したいずれかの熱伝導率検出装置と、警報出力手段とを備え、警報出力手段は、前記熱伝導率検出装置が検出した熱伝導率と予め設定された閾値とを比較した結果に基づいて、警報信号を出力するようになしてある。
前述したように監視システムを構成する熱伝導率検出装置はそのサイズをより小さくすることができ、より狭い場所にも設置することができるため、被監視領域の設計を殆ど変
更することなく熱伝導率検出装置を配設することができる。従って、被監視領域の設計の自由度が増すのに加え、既存の被監視領域にも後付けすることができる。
更することなく熱伝導率検出装置を配設することができる。従って、被監視領域の設計の自由度が増すのに加え、既存の被監視領域にも後付けすることができる。
1 熱伝導率検出装置
2 熱伝導率検出用センサ
5 電流制御部
6 電圧測定部
7 演算部
15 リード線
16 リード線
20 基板
21 電極部
24 凹部
25 液孔
26 センサ本体
27 パッキン部
28 封止板
2 熱伝導率検出用センサ
5 電流制御部
6 電圧測定部
7 演算部
15 リード線
16 リード線
20 基板
21 電極部
24 凹部
25 液孔
26 センサ本体
27 パッキン部
28 封止板
(本発明の第1の実施形態)
図1は、本発明に係る熱伝導率検出用装置の一構成例を示す模式的拡大分解斜視図であり、図中、2は熱伝導率検出用センサである。また、図2は図1に示した熱伝導率検出用センサ2の要部拡大図である。なお、本実施形態にあっては、被検出物として液体の熱伝導率を検出すべく構成してある。
図1は、本発明に係る熱伝導率検出用装置の一構成例を示す模式的拡大分解斜視図であり、図中、2は熱伝導率検出用センサである。また、図2は図1に示した熱伝導率検出用センサ2の要部拡大図である。なお、本実施形態にあっては、被検出物として液体の熱伝導率を検出すべく構成してある。
図1及び図2に示したように、熱伝導率検出用センサ2は、シリコン製の基板20を備えており、該基板20の適宜位置には、被検出物を注入するための凹部24が形成してある。
凹部24は平面視が四角形といった適宜の形状をなしており、凹部24の略中央位置に、白金(Pt)又は白金を含有する合金といった適宜の金属、又は半導体等、通電加熱する適宜の物質を短冊板状に成形してなるセンサ本体26が架設してある。
基板20の表面であって前記センサ本体26の両側部からはそれぞれ、帯状の電極部21,21が延設してある。両電極部21,21の適宜位置には、両電極部21,21間において互いに対をなすパッド部22,22、23,23がそれぞれ設けてあり、各パッド部22,22、23,23にはそれぞれリード線15,15、16,16の一端が接続してある。そして、一対のパッド部22,22に接続されたリード線15,15には、電流制御部5を介して電源部4から所定の直流電流が通流されるようになっており、他対のパッド部23,23に接続されたリード線16,16は、センサ本体26の電圧を測定する電圧測定部6に接続されている。
ここで、前述したセンサ本体26の寸法は、センサ本体26が図2に示したような板状の場合、厚さが略10nm以上略5μm以下の適宜寸法であり、長さが略1μm以上略1mm以下の適宜寸法が好適である。
また、センサ本体26は柱状でもよい。この場合、長手方向が略1μm以上略1mm以下の適宜寸法であり、長手方向と直交する所定方向が略10nm以上略5μm以下の適宜寸法であるのが好適である。
また、センサ本体26は柱状でもよい。この場合、長手方向が略1μm以上略1mm以下の適宜寸法であり、長手方向と直交する所定方向が略10nm以上略5μm以下の適宜寸法であるのが好適である。
ここで、長手方向と直交する所定方向とは、MEMS技術によりセンサ本体26を作製する場合の堆積方向を言い、板状又は角柱状の場合は厚さであり、円柱状の場合は直径である。なお、センサ本体26が板状又は角柱状である場合、幅の下限値は厚さの下限値と同じであり、幅の上限値は長さの上限値と同じである。
センサ本体26の長手方向の寸法が略1μm未満の場合は、加熱量の大部分が被検出物ではなくてセンサ本体26の両側から基板20へ流れてしまうという不都合が生じ、センサ本体26の長手方向の寸法が略1mmを越える場合は、センサ本体26が定常状態に達するのに長時間を要し、対流が発生する前に定常状態に達することができないという不都合が生じる。また、センサ本体26の長手方向と直交する所定方向の寸法が略10nm未満の場合は、センサ本体26の強度が不足するという不都合が生じ、センサ本体26の長手方向と直交する所定方向の寸法が略5μmを越える場合は、センサ本体26が定常状態に達するのに長時間を要し、対流が発生する前に定常状態に達することができないという不都合が生じる。
なお、前述した略1μm、略1mm、略10nm、略5μmの各寸法値はそれぞれ、少なくとも1μm±0.1μm、1mm±0.1mm、10nm±1nm、5μm±0.5μmを含んでいる。
更に、センサ本体26の寸法の上限値について検討したところ後述するように、長手方向と直交する所定方向の寸法である厚さ又は直径が26μm以下、長さが6.9mm以下であれば前述した要件を満足するという知見を得た。すなわち、センサ本体26の寸法がこの上限値以下であれば、センサ本体26によって被検出物を加熱してから、当該被検出物に加熱による対流が発生する前にセンサ本体26が定常状態に達することができる。
また、更に好適なセンサ本体26の寸法は、長手方向が略5μm以上略50μm以下の適宜寸法であり、長手方向と直交する所定方向が略30nm以上略200nm以下の適宜寸法である。
また、更に好適なセンサ本体26の寸法は、長手方向が略5μm以上略50μm以下の適宜寸法であり、長手方向と直交する所定方向が略30nm以上略200nm以下の適宜寸法である。
センサ本体26の長手方向の寸法が略5μm以上の場合、エッチングによる凹部の作製が比較的容易であるという利点があり、センサ本体26の長手方向の寸法が略50μm以下の場合、定常状態に達するまでに要する時間が比較的短く、かつ、凹部の深さも略100μm以下でよいという利点がある。また、センサ本体26の長手方向と直交する所定方向が略30nm以上の場合、強度が十分であるという利点があり、センサ本体26の長手方向と直交する所定方向が略200nm以下の場合、定常状態に達するまでに要する時間が比較的短いという利点がある。一方、かかる寸法範囲のセンサ本体26にあっては、液体の被検出物にも、気体の被検出物にも適用することができる。
一方、センサ本体26の長手方向と直交する所定方向の寸法と長手方向の寸法との比であるアスペクト比は、1:20程度から1:200程度が好適である。更に、アスペクト比は1:200程度から1:300程度も適用することができる。
ところで、凹部24の寸法は、センサ本体26が十分に浸漬される寸法であり、かつ,被検出物の温度上昇が凹部24の壁部に到達しない寸法になす。例えば、センサ本体26の寸法が、略50nmの厚さであり、略0.5μmの幅であり、略5μmの長さである場合、凹部24の寸法は、略30μmの長さであり、略30μmの幅であり、略30μmの深さになすことができる。ここに示した各寸法例の場合、凹部24の体積は27plである。また、センサ本体26の寸法を、10nmの厚さであり、10nmの幅であり、1μmの長さになした場合、凹部24の体積は1pl程度になすことができる。
センサ本体26及び凹部24が上述した寸法であることより、前述した基板20は、例えば一辺の長さが略10mmの正方形程度の面積を有していれば十分である。なお、基板20の形状は正方形に限らず、多角形又は円形等であってもよいことはいうまでもない。
ところで、図2に示したように、基板20の凹部24の周囲には、例えばシリコンゴムによって成形した環状のパッキン部27(周壁部)が基板20との間で水密状態を保った状態で固定してあり、該パッキン部27の開口は封止板28によって封止されている。
一方、前述した凹部24の底部の適宜位置には液孔25が、基板20を貫通する様態で開設してあり、該液孔25を介して凹部24内へ被検出物を注入し、又は凹部24内の被検出物を排出させるようになっている。
なお、凹部24の底部に、液孔25とは異なる他の孔を開設しておき、液孔25を介した被検出物の注入・排出を円滑になすようにしてもよい。また、液孔25を介して被検出物を注入するのと平行して、かかる他の孔を介して凹部24内から排気することによって
、表面張力が相対的に大きな被検出物であっても、凹部24内への注入作業をより円滑に行うことができる。
、表面張力が相対的に大きな被検出物であっても、凹部24内への注入作業をより円滑に行うことができる。
図3は、前述した熱伝導率検出用センサ2における凹部24及びセンサ本体26の製造手順の一例を説明する説明図である。
図3(a)に示した如く、シリコン製の基板20の表面を熱酸化させることによってSiO2膜31を形成した後、図3(b)に示した如く、このSiO2膜31にレジスト層32を堆積させる。
図3(c)に示した如く、所定形状の露光用マスクを用いて、センサ本体26(図2参照)に対応するネガディブなパターンになるようにレジスト層32を露光し、未露光のレジスト層32を除去することによって、図3(d)に示した如きレジスト層32からなるマスクを形成する。
次に、図3(e)に示した如く、蒸着法等によって例えば白金からなる金属層33を堆積させ、エッチングにてレジスト層32を除去することによって、図3(f)に示した如く、センサ本体前駆部26aを形成する。
図3(g)に示した如く、SiO2膜31及びセンサ本体前駆部26a上にレジスト層34を堆積させ、所定の露光用マスクを用いて前述した凹部24(図2参照)に対応するネガディブなパターンになるようにレジスト層34を露光し、未露光のレジスト層34を除去することによって、図3(h)に示した如きレジスト層34からなるマスクを形成する。
そして、図3(i)に示した如く、SiO2膜31及び基板20の前記レジスト層34からなるマスクから露出した部分を、厚さ方向及び基板20の面内方向へエッチングすることによって、センサ本体前駆部26aの周囲及びセンサ本体前駆部26aの直下のSiO2膜31及び基板20を適宜深さまで除去し、凹部24及びセンサ本体26を形成した後、図3(j)に示した如く、レジスト層34を除去する。
このような凹部24及びセンサ本体26は、図4に示したように基板20上に複数設けておき、またそれぞれについて図2に示したように、電極部21,21及びパッド部22,22、23,23等を形成しておく。そして、基板20を適宜の位置で切断することによって、基板20に凹部24及びセンサ本体26並びに電極部21,21及びパッド部22,22、23,23を一体的に設けてなる複数の熱伝導率検出用センサ2,2,…を得る。
なお、成膜工程にあっては、CVD(Chemical Vapor Deposition)法、PVD(Physical Vapor Deposition)法又は電鋳法等、膜厚に応じて種々の方法を用いることができる。この場合、ネガティブ型のマスク又はポジティブ型のマスクを用いることができる。
このように、本発明に係る熱伝導率検出用センサ2にあってはMEMS(Micro Electro Mechanical Systems)技術を用いて作製するため、可及的に均一な複数の熱伝導率検出用センサを得ることができる。
また、熱伝導率検出用センサ2のセンサ本体26及び凹部24の寸法が小さいため、微量の被検出物であっても熱伝導率を検出することができる。これによって熱伝導率検出用センサ2の寸法も小さくすることができるため、より狭い所要の場所にも容易に設置する
ことができる。
ことができる。
ところで、予め製造したセンサ本体と基板上に設けた電極部とをボンディング技術を用いて接続させた場合、センサ本体と基板との接続部分の電気抵抗が一定ではないので、複数の熱伝導率検出用センサを製造すべく同様の操作条件でセンサ本体と基板とを接続したとしても、得られた各熱伝導率検出用センサの検出感度に大きなバラツキが生じてしまう。
しかしながら、前述したように基板20にセンサ本体26並びに電極部21,21及びパッド部22,22、23,23を一体的に設けた場合、上述したような問題が生じず、同じ条件で製造された複数の熱伝導率検出用センサ2,2,…に生じる検出感度のバラツキを可及的に低減することができる。
従って、同じロットの熱伝導率検出用センサ2,2,…にあっては、代表の熱伝導率検出用センサ2を検定することによって、その検定結果を他の熱伝導率検出用センサ2,2,…に適用することができ、検定操作を大幅に省略することができる。
一方、前述したセンサ本体26は、電気抵抗の変化によって温度を測定する温度センサとしても機能しており、図1に示したように、センサ本体26に通流する電流値及びセンサ本体26の電圧値は、電流制御部5及び電圧測定部6から演算部7に与えられるようになっている。
演算部7にはセンサ本体26の電気抵抗と温度との関係が予め設定してあり、演算部7は、電流制御部5及び電圧測定部6から与えられた電流値及び電圧値からセンサ本体26の電気抵抗の値を算出し、得られた値を前記関係に適用してセンサ本体26の温度を算出する。
更に、演算部7には、図5に示した如きセンサ本体26の温度と熱伝導率との関係が予め設定されており、前述した如く算出したセンサ本体26の温度を前記関係に適用することによって、当該被検出物の熱伝導率を求める。
図5は、センサ本体26の温度と熱伝導率との関係を示すグラフであり、縦軸は無次元の上昇温度に係るΘaveΛを、横軸は無次元熱伝導率Λをそれぞれ示している。
ここで、Θaveは無次元平均温度を表しており、次の(2)式が成立する。
ΘaveΛ=(Tave-T0)/(qvb2/λs) …(2)
但し、qvは単位体積当たりの内部発熱量(W/m3)を表しており、Taveは加熱後のセンサ本体26の平均温度、T0はセンサ本体26の初期温度、bは図7に示すように(センサ本体26の厚さ寸法)/2、λsはセンサ本体26の熱伝導率をそれぞれ表している。
但し、qvは単位体積当たりの内部発熱量(W/m3)を表しており、Taveは加熱後のセンサ本体26の平均温度、T0はセンサ本体26の初期温度、bは図7に示すように(センサ本体26の厚さ寸法)/2、λsはセンサ本体26の熱伝導率をそれぞれ表している。
図5から明らかな如く、上昇温度と熱伝導率との間には1対1の関係が存在しており、センサ本体26の上昇温度を図5に示したグラフに適用することによって、当該被検出物の熱伝導率を求めることができる。
ところで、このような図5に示したグラフは、熱伝導率が既知の複数種類の被検出物について、センサ本体26を加熱した際の温度上昇を、次の(3)式から(12)式を用いたコンピュータ解析によって予め作成してある。また、熱伝導率が既知の複数種類の被検出物について上昇温度をそれぞれ測定し、測定した各上昇温度に対して各熱伝導率をプロ
ットしてもよい。
ットしてもよい。
なお、αは熱拡散率(m2/s)を表しており、λは熱伝導率(W/(m・K))を表しており、sはセンサ本体を、またfは被検出物を表している。
一方で本発明者らは、次に示すように本発明に係る熱伝導率検出用センサが、数ミリ秒から数秒以下と、対流が発生する前の極短い時間内に定常状態に達するという新たな知見を得た。
一方で本発明者らは、次に示すように本発明に係る熱伝導率検出用センサが、数ミリ秒から数秒以下と、対流が発生する前の極短い時間内に定常状態に達するという新たな知見を得た。
そのため、この定常状態に達すると考えられる時間を予め設定しておき、加熱を開始してから設定時間経過後に上昇温度を測定し、得られた上昇温度を用いることにより、前記(3)式の左項を零とすることができ、これによって各被検出物毎の解析に要する時間を大幅に短縮することができたのである。
図6は、本発明に係る熱伝導率検出用センサおいて、被検出物を水とした場合の上昇温度をコンピュータによって経時的に解析した結果を示すグラフであり、縦軸は無次元の温度を、横軸は無次元の時間をそれぞれ示している。なお、実線はセンサ本体の平均温度を、破線はセンサ本体の中心温度を示している。
かかる解析も前記(3)式から(12)式を用い、有限要素法に従って行った。
かかる解析も前記(3)式から(12)式を用い、有限要素法に従って行った。
具体的には、当該解析は図7に示したように、センサ本体26の形状を幅方向の寸法たるXs=10、長さ方向の寸法たるZs=100とし、解析領域RをXf=220、Yf=220とし、Λ=117.65、A=175.71とし、また、X方向及びY方向の最小要素サイズを0.5、Z方向の最小要素サイズを2.5として総要素数91430の系について行った。
図6から明らかな如く、センサ本体の平均温度及び中心温度はいずれの場合も加熱開始とともに急上昇するが、上昇の程度は時間の経過とともに減少し、F0=20000から30000で略定常状態に達していた。
センサ本体26の厚さが50nmの場合、F0=30000の実時間は0.128ミリ秒(ms)であり、かかる短時間内に定常状態に達していることが分かる。
センサ本体26の厚さが50nmの場合、F0=30000の実時間は0.128ミリ秒(ms)であり、かかる短時間内に定常状態に達していることが分かる。
本発明に係るセンサ本体26にあっては、厚さが略10nm以上略5μm以下であり、幅が略略10nm以上略5μm以下であり、長さが略1μm以上略1mm以下であるので、加熱開始後略0.01ミリ秒から2秒までの時間で定常状態となる。
従って、センサ本体26の寸法に応じて、加熱を開始してから0.01ミリ秒から2秒までの適宜時間後と、被検出物中に対流が発生する前に、センサ本体26の電流値及び電圧値を測定することによって、定常状態の温度を検出することができる。
ところで、前述した細線加熱法にあっては、定常状態の温度を検出できるようになる前に被検出物中に対流が発生してしまうため、定常状態に達する前の非定常状態の温度を検出しているのであるが、かかる非定常状態における温度検出を本発明に係る熱伝導率検出用センサに適用した場合、前述した如く非定常状態が極めて短い時間しか維持されないため、市販の測定速度の機器では電圧測定部6(図1参照)に適用することができない。また、測定速度が速い特殊な機器を用いて電圧測定部6を構成することができたとしても、装置コストが嵩むのに加え、非定常状態の温度を用いて解析を行う場合、前述した定常状態でのように(3)式の左項を零とすることができないため、解析に長時間を要していた。
これに対して本発明に係る熱伝導率検出用センサ2にあっては前述した如く、被検出物中に対流が発生する前に定常状態の温度を測定することができ、また、前述したように加熱を開始してから0.01ミリ秒から2秒までの適宜時間後と、十分な時間をおいて測定することができるため、市販の機器を電圧測定部6に適用することができ、装置コストを廉価にすることができる上に、解析に要する時間を大幅に短縮することができる。
なお、図2に示した熱伝導率検出用センサ2の被検出物と接触する部分に対して、予め絶縁処理を施しておくことによって、導電性の被検出物にも適用することができる。
なお、図2に示した熱伝導率検出用センサ2の被検出物と接触する部分に対して、予め絶縁処理を施しておくことによって、導電性の被検出物にも適用することができる。
次に、本発明に係るセンサ本体の寸法範囲を更に検討した結果について説明する。
センサ本体の厚さ及び幅又は直径は、所要の構造強度を得るために10nm±1nm以上の寸法が必要であるので、センサ本体の厚さ及び幅又は直径の下限値は10nm±1nmである。
センサ本体の厚さ及び幅又は直径は、所要の構造強度を得るために10nm±1nm以上の寸法が必要であるので、センサ本体の厚さ及び幅又は直径の下限値は10nm±1nmである。
また、センサ本体の長さ寸法をセンサ本体の厚さ寸法で除した値であるアスペクト比Lは、前述したようにセンサ本体の構造強度の制限より300以下であることが好ましい。アスペクト比が300を超えた場合、所要の構造強度を得ることができないからである。一方、センサ本体から基板への熱損失の制限よりアスペクト比Lは100以上であることが好ましい。アスペクト比Lは100未満である場合、センサ本体から基板への熱損失が大きく、被検出物の熱伝導率の検出に支障を来たす虞があるからである。
従って、センサ本体の長さの下限値は、前述したセンサ本体の厚さの下限値及びアスペクト比100より、1μm±0.1μmである。
なお、センサ本体の長さの下限値を定めるに当たっては、前述したセンサ本体から基板への熱損失の観点よりセンサ本体のアスペクト比を100程度に設定するのが好適であるが、これ以外の場合にあっては、センサ本体のアスペクト比は前述したように1:20程度から1:300程度までの適宜の値に設定することができる。
一方、センサ本体の上限寸法は次のようにして定める。
すなわち、センサ本体の上限寸法は、当該センサ本体にて被検出物を加熱した場合、被検査物中に加熱による対流が発生する前に、センサ本体の温度が略一定となる定常状態に達するという条件を満足することが必要である。
すなわち、センサ本体の上限寸法は、当該センサ本体にて被検出物を加熱した場合、被検査物中に加熱による対流が発生する前に、センサ本体の温度が略一定となる定常状態に達するという条件を満足することが必要である。
センサ本体にて被検出物を加熱してから当該被検出物に加熱による自然対流が発生するまでに要する時間tc(以後、単に時間tcともいう。)は、次の(13)式によって表すことができる。
これを、長手方向に直交する方向の断面形状が矩形であるセンサ本体に適用する場合、センサ本体の加熱相当直径deを用いる。加熱相当直径deは、センサ本体の厚さδ及び幅εδを用いた次の(17)式で表すことができ、同様にV/Aは次の(18)式で表すことができるので、前記(15)式は次の(19)式で表すことができる。
一方、前記(14)式は次の(20)式のように表すことができるので、センサ本体の厚さの半分の値b(b=δ/2)を代表寸法とするフーリエ数Foc(以後、単にフーリエ数Focともいう。)と前記(14)式で表されるFoc´との関係は次の(21)式のようになる。
次に、センサ本体の温度変化、及び被検出物の加熱を開始してからセンサ本体が定常状態に達するまでに要する時間について説明する。
センサ本体の無次元平均温度Θaveは次の(22)式で表すことができる。
センサ本体の無次元平均温度Θaveは次の(22)式で表すことができる。
一方、フーリエ数Foは次の(23)式であるので、被検出物の加熱を開始してからセンサ本体が定常状態に達するまでに要する時間ttを用いて表すと次の(24)式となる。なお、時間ttの詳細な定義は、被検出物の加熱を開始してから、センサ本体の無次元平均温度Θaveが定常状態の温度の99%に達するまでに要する時間とする。
図8及び図9は、センサ本体のアスペクト比とフーリエ数Foとセンサ本体の無次元平均温度Θaveとの関係を示すグラフであり、図8は、被検出物として水を用いた場合を、図9は被検出物として空気を用いた場合をそれぞれ示している。なお、両図中、(a)はセンサ本体のアスペクト比が100の場合を、(b)はセンサ本体のアスペクト比が200の場合を、(c)はセンサ本体のアスペクト比が300の場合をそれぞれ示している。
これらの結果より、被検出物の加熱を開始してからセンサ本体が定常状態に達するまでに要する時間のフーリエ数Fot(以後、単にフーリエ数Fotともいう。)とアスペクト比Lとの関係は次のようである。
図10は被検出物の加熱を開始してからセンサ本体が定常状態に達するまでに要する時間のフーリエ数Fotとセンサ本体のアスペクト比Lとの関係を示すグラフであり、縦軸はフーリエ数Fotを、横軸はセンサ本体のアスペクト比Lをそれぞれ示している。なお、図中、丸印は被検出物が水である場合を、四角印は被検出物が空気である場合を示している。
この図10に表示された各フーリエ数Fotの値を表1に示す。
この図10に表示された各フーリエ数Fotの値を表1に示す。
ところで、加熱を開始してからセンサ本体の温度が略一定となる定常状態における無次元温度Θst(以後、単に無次元温度Θstともいう。)と、実際の上昇温度ΔTとの関係は次の(25)式で表すことができる。
この(25)式を用いた数値解析によって得られた無次元温度Θstの値を表1に示す。なお、(25)式中のセンサ本体の上昇温度ΔTは3Kとした。
一方、前記(25)式より、次の(26)式が導かれる。
一方、前記(25)式より、次の(26)式が導かれる。
本式はセンサ本体の温度上昇と発熱量との関係を表しており、予め定めたセンサ本体の上昇温度ΔTを本式に代入して得た単位体積当たりの発熱量、及び前記(13)式を用いて、センサ本体にて被検出物を加熱してから当該被検出物に加熱による自然対流が発生するまでに要する時間tcを求めることができる。
図11及び図12は、センサ本体にて被検出物を加熱してから当該被検出物に加熱による自然対流が発生するまでに要する時間tcと、被検出物の加熱を開始してからセンサ本体が定常状態に達するまでに要する時間ttとをセンサ本体の厚さ寸法に対してプロットしたグラフであり、図11は比検出物が水の場合を、また図12は比検出物が空気の場合をそれぞれ示している。なお、両図中、(a)はセンサ本体のアスペクト比が100の場合を、(b)はセンサ本体のアスペクト比が200の場合を、(c)はセンサ本体のアスペクト比が300の場合をそれぞれ示している。また、センサ本体の上昇温度ΔTは3Kであり、εは10である。
これらの図11及び図12から明らかな如く、各アスペクト比において、時間tcに係るグラフと時間ttに係るグラフとの交点より短い時間領域において、時間tt以上の所定時間経過したときにおけるセンサ本体の温度を得ることによって、センサ本体にて被検出物を加熱してから当該被検出物に加熱による自然対流が発生する前に、センサ本体の温度が略一定となる定常状態における温度を得ることができる。
かかる条件の限界は、時間tt=時間tcであるので、Fot=Focとなる。
すなわち、前記(21)式及び(24)式より、次の(27)式が導かれる。本式に前記(13)式及び(25)式を代入すると次の(28)式及び(29)式を得ることができ、(29)式に前記(26)式を代入すると次の(30)式、当該(30)式から導かれる(31)式が得られる。
これによって、センサ本体の厚さ寸法の上限値を定めることができる。
一方、センサ本体の長さ寸法lは次の(32)式によって求められる。
一方、センサ本体の長さ寸法lは次の(32)式によって求められる。
l=Lδ …(32)
このようにして、センサ本体のアスペクト比の別に定めたセンサ本体の上限寸法を表1に示す。
このようにして、センサ本体のアスペクト比の別に定めたセンサ本体の上限寸法を表1に示す。
表1より明らかなように、被検出物が水の場合、センサ本体の厚さ寸法の上限値は16μmであり、長さ寸法の上限値は2.4mmである。一方、被検出物が空気の場合、センサ本体の厚さ寸法の上限値は26μmであり、長さ寸法の上限値は6.9mmである。
(本発明の第2の実施形態)
図13は本発明の第2の実施形態に係る使用例を示すブロック図であり、本発明に係る熱伝導率検出装置を燃料電池駆動システムに適用した場合を示している。なお、本実施形態にあっては、被検出物として気体の熱伝導率を検出すべく構成してある。
図13は本発明の第2の実施形態に係る使用例を示すブロック図であり、本発明に係る熱伝導率検出装置を燃料電池駆動システムに適用した場合を示している。なお、本実施形態にあっては、被検出物として気体の熱伝導率を検出すべく構成してある。
図13に示した如く、燃料電池駆動システムは、例えば水素ガスを原料として発電を行う燃料電池52と、該燃料電池52へ供給する水素ガスを貯蔵するタンク50と、燃料電池52によって発電された電力を蓄えるバッテリ53と、駆動源たるモータ54とを設けて構成されており、モータ54の駆動動作は制御装置51によって制御されるようになっている。
前述したタンク50の出側には電磁弁57を介してガス供給管58の一端が接続してあり、ガス供給管58の他端は燃料電池52に連結してある。電磁弁57の開閉動作は前記制御装置51によって制御されるようになっており、制御装置51の指令によって電磁弁57が適宜の開度まで開されると、タンク50内の水素ガスが燃料電池52内へ供給されて発電が開始され、制御装置51の指令によって電磁弁57が閉されると、燃料電池52内への水素ガスの供給が遮断されて発電が停止される。
燃料電池52の発電によって生じた電力は、接点60を介してモータ54に与えられるようになっており、モータ54は与えられた電力によって回転駆動する。前記接点60にはバッテリ53からも電力が与えられるようになっており、制御装置51は接点60を制御して、モータ54の始動時又は加速時等、大電力を必要する場合、燃料電池52からの電力にバッテリ53からの電力を加えてモータ54に与えさせる。
また、燃料電池52はバッテリ53にも電力を与えるようになっており、バッテリ53は与えられた電力を蓄える。このバッテリ53にはまたモータ54からも電力が与えられるようになっており、モータ54は減速時等に発電を行い、発生した電力をバッテリ53に与えてそこに蓄えさせる。
一方、前述した燃料電池52及びタンク50はそれぞれ上方に配設したカバー部材59,59で覆ってあり、水素ガスが漏出した場合、カバー部材59,59内に捕集されるようになっている。両カバー部材59,59の内部にはそれぞれ、熱伝導率検出装置1,1が配設してあり、熱伝導率検出装置1,1は、所定の時間間隔で周囲ガスの熱伝導率を検出し、検出した熱伝導率を制御装置51へ与えるようになっている。
図14は、図13の熱伝導率検出装置1の要部構成例を示す模式的斜視図であり、周囲ガスが容易に出入りし得るようになしてある。なお、図中、図2に示した部分に対応する部分には同じ番号が付してある。
熱伝導率検出装置1は、熱伝導率検出用センサ2aを具備している。図14に示したように、熱伝導率検出用センサ2aの基板20の適宜位置には、図2に示した如き凹部24の底部を除去することによって基板20を貫通する開口部29が設けてあり、該開口部29の括れ部には短冊板状のセンサ本体26が架設してある。なお、基板20及びセンサ本体26の寸法は、図2に示した熱伝導率検出用センサ2に係る基板20及びセンサ本体26の寸法と同じにすることができる。
このような熱伝導率検出用センサ2にあっては、開口部29を通して周囲ガスがセンサ本体26の周囲に容易に導入されるので、前述した如く所定の時間間隔で熱伝導率検出用センサ2を作動させることによって、周囲ガスの状態を経時的に検出することができる。なお、大気中に水素ガスが混入した場合、熱伝導率は相対的に上昇する。
前述した制御装置51(図13参照)は警報出力手段としても機能している。即ち、制御装置51には熱伝導率の閾値が予め設定されており、制御装置51は、熱伝導率検出装置1,1から与えられた検出値をそれぞれ閾値と比較し、いずれかの検出値が閾値より高かった場合、水素ガスが漏出したと判断して警報信号を出力し、警報器55を作動させて警報を出力させる。
このように、少なくとも熱伝導率検出装置1及び警報出力手段としても機能する制御装置51によって周囲雰囲気の状態を監視する監視システムが構成されている。
このように、少なくとも熱伝導率検出装置1及び警報出力手段としても機能する制御装置51によって周囲雰囲気の状態を監視する監視システムが構成されている。
本発明に係る熱伝導率検出用センサ2aにあってはその寸法が従来のものに比べて小さいため、非常に狭いスペースであっても容易に設置することができ、無駄な空間が生じないため、燃料電池駆動システムのコンパクト化にも容易に対応することができる。
一方、前述した如くMEMS技術を用いて可及的に均一な複数の熱伝導率検出用センサ2a,2a,…を製造することができるため、熱伝導率検出用センサ2aが故障した場合であっても、他の熱伝導率検出用センサ2aに交換するだけで、熱伝導率検出装置1を容易に修復することができる。
なお、本実施の形態にあっては、カバー部材59,59内に熱伝導率検出装置1,1をそれぞれ配置するようになしてあるが、本発明はこれに限らず、例えばカバー部材59,59に二股状になした導入管の一端部をそれぞれ接続しておき、カバー部材59,59内の気体を導入管内へ導入するようになすとともに、この導入管の他端部側内に前記熱伝導率検出装置1を配設しておく構成になしてもよい。これによって、熱伝導率検出装置1の設置数を可及的に少なくすることができる。
また、本実施の形態では、周囲雰囲気の状態を監視するようになした監視システムについて説明したが、本発明はこれに限らず、監視対象液の状態を監視するようになしてもよいことはいうまでもない。
Claims (11)
- 通電加熱する適宜の物質を長尺形状に成形してあり、導入された被検出物を加熱するセンサ本体を備える熱伝導率検出センサを用い、前記センサ本体によって被検出物を加熱してから一定時間経過後のセンサ本体の温度に係る情報を取得してセンサ本体の温度を得、得られた温度を用いて前記被検出物の熱伝導率を検出する方法において、
長手方向の寸法が6.9mm以下の適宜寸法であり、長手方向と直交する所定方向の寸法が26μm以下の適宜寸法になしたセンサ本体を備える熱伝導率検出センサを用い、
該熱伝導率検出センサに導入された被検出物を前記センサ本体にて加熱し、被検出物を加熱してからセンサ本体の温度が略一定となる定常状態に達する所定時間経過後の温度を得、得られた温度を用いて当該被検出物の熱伝導率を求める
ことを特徴とする熱伝導率検出方法。 - 前記熱伝導率検出センサとして、長手方向が略1μm以上6.9mm以下の適宜寸法であり、長手方向と直交する所定方向が略10nm以上26μm以下の適宜寸法になしたセンサ本体を備えるものを用いる請求項1又は2記載の熱伝導率検出方法。
- 予め定めた複数種類の被検出物について、当該被検出物を加熱してから前記所定時間経過後の温度をそれぞれ得ることによって、定常状態における各温度と各熱伝導率との関係を予め求めておき、
対象とする被検出物について得られた前記温度を前記関係に適用して、当該被検出物の熱伝導率を求める請求項1又は2記載の熱伝導率検出方法。 - 通電加熱する適宜の物質を長尺形状に成形してなるセンサ本体を備え、被検出物を加熱してからセンサ本体の温度が略一定となる定常状態に達する所定時間経過後の当該センサ本体の温度に係る情報を取得してセンサ本体の温度を得るべくなしてあり、得られた温度を用いて前記被検出物の熱伝導率を検出するための熱伝導率検出用センサであって、
前記センサ本体は、長手方向が略1μm以上6.9mm以下の適宜寸法であり、長手方向と直交する所定方向が略10nm以上26μm以下の適宜寸法になしてあることを特徴とする熱伝導率検出用センサ。 - 所定の基板と、該基板の適宜位置に形成した凹部又は開口部とを具備し、前記センサ本体は前記凹部又は開口部に架設してある請求項4記載の熱伝導率検出用センサ。
- 前記センサ本体の基板の厚さ方向と平行な方向の寸法が略10nm以上26μm以下の適宜寸法になしてある請求項5記載の熱伝導率検出用センサ。
- 前記凹部又は開口部と該凹部又は開口部に架設したセンサ本体とが複数形成された基板を、任意の凹部又は開口部に架設したセンサ本体を含む複数の部分に分割してなる請求項5又は6記載の熱伝導率検出用センサ。
- 前記基板には、センサ本体の一側に連通する電極部及び前記センサ本体の他側に連通する他の電極部がそれぞれ形成してあり、両電極部にはセンサ本体に電流を通流させるためのリード線、及びセンサ本体に印加された電圧を測定するための他のリード線がそれぞれ接続してある請求項5から7のいずれかに記載の熱伝導率検出用センサ。
- 通電加熱する適宜の物質を長尺形状に成形してなるセンサ本体を具備し、導入された被検出物を前記センサ本体によって加熱すべくなしてある熱伝導率検出用センサと、前記センサ本体にて加熱してから一定時間経過後の当該センサ本体の温度に係る情報を取得してセンサ本体の温度を得る温度取得手段と、得られた温度を用いて前記被検出物の熱伝導率
を算出する熱伝導率算出手段とを備える熱伝導率検出装置において、
請求項4から8のいずれかに記載の熱伝導率検出用センサを備え、
前記温度取得手段は、該熱伝導率検出センサに導入された被検出物を前記センサ本体にて加熱してからセンサ本体の温度が略一定となる定常状態に達する所定時間経過後の温度を得るようになしてある
ことを特徴とする熱伝導率検出装置。 - 前記熱伝導率算出手段には、予め定めた複数種類の被検出物について、当該被検出物を加熱してから前記所定時間経過後の温度をそれぞれ得ることによって求められた定常状態における各温度と各熱伝導率との関係が設定してあり、
熱伝導率算出手段は、前記温度取得手段によって対象とする被検出物について得られた前記温度を前記関係に適用して、当該被検出物の熱伝導率を求めるようになしてある
請求項9記載の熱伝導率検出装置。 - 導入された被検出物の状態を監視する監視システムにおいて、
請求項9又は10記載の熱伝導率検出装置と、該熱伝導率検出装置が検出した熱伝導率と予め設定された閾値とを比較した結果に基づいて、警報信号を出力する警報出力手段とを備えることを特徴とする監視システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010530877A JPWO2010035803A1 (ja) | 2008-09-26 | 2009-09-25 | 熱伝導率検出方法、並びに熱伝導率検出用センサ、熱伝導率検出装置及び監視システム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-248076 | 2008-09-26 | ||
JP2008248076 | 2008-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010035803A1 true WO2010035803A1 (ja) | 2010-04-01 |
Family
ID=42059798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/066685 WO2010035803A1 (ja) | 2008-09-26 | 2009-09-25 | 熱伝導率検出方法、並びに熱伝導率検出用センサ、熱伝導率検出装置及び監視システム |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2010035803A1 (ja) |
WO (1) | WO2010035803A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113758965A (zh) * | 2021-09-08 | 2021-12-07 | 东软睿驰汽车技术(沈阳)有限公司 | 保温材料保温性能的评价方法、装置和电子设备 |
US11454598B2 (en) | 2016-03-07 | 2022-09-27 | Shimadzu Corporation | Thermal conductivity detector |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007155502A (ja) * | 2005-12-05 | 2007-06-21 | Ricoh Co Ltd | 検出器 |
JP2008040940A (ja) * | 2006-08-09 | 2008-02-21 | Yazaki Corp | 火災検出装置及び火災検出方法 |
JP2008224496A (ja) * | 2007-03-14 | 2008-09-25 | Osaka Univ | 熱物性測定装置、および熱物性測定方法 |
-
2009
- 2009-09-25 WO PCT/JP2009/066685 patent/WO2010035803A1/ja active Application Filing
- 2009-09-25 JP JP2010530877A patent/JPWO2010035803A1/ja not_active Withdrawn
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007155502A (ja) * | 2005-12-05 | 2007-06-21 | Ricoh Co Ltd | 検出器 |
JP2008040940A (ja) * | 2006-08-09 | 2008-02-21 | Yazaki Corp | 火災検出装置及び火災検出方法 |
JP2008224496A (ja) * | 2007-03-14 | 2008-09-25 | Osaka Univ | 熱物性測定装置、および熱物性測定方法 |
Non-Patent Citations (3)
Title |
---|
"29th Japan Symposium On Thermophysical Properties", 8 October 2008, article KYOSUKE INADA ET AL.: "MES Sensor ni yoru Gokubiryo Ekitai no Netsudendoritsu Sokuteiho ni Kansuru Kenkyu", pages: 281 - 283 * |
"Dai 46 Kai National Heat Transfer Symposium of Japan Koen Ronbunshu (CD-ROM)", 14 July 2009, article TOSHIYUKI TANAKA ET AL.: "Microbeam Sensor ni yoru Gokubiryu Sample no Netsudendoritsu Sokuteiho -Riron Kaiseki ni yoru Kento" * |
KYOSUKE INADA ET AL.: "Microbeam Sensor ni yoru Gokubiryo Ekitai no Netsudendo Sokuteiho ni Kansuru Kaiseki", NETSU BUSSEI, vol. 23, no. 2, 31 May 2009 (2009-05-31), pages 98 - 104 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11454598B2 (en) | 2016-03-07 | 2022-09-27 | Shimadzu Corporation | Thermal conductivity detector |
CN113758965A (zh) * | 2021-09-08 | 2021-12-07 | 东软睿驰汽车技术(沈阳)有限公司 | 保温材料保温性能的评价方法、装置和电子设备 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2010035803A1 (ja) | 2012-02-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11169102B2 (en) | Method and measurement device for ascertaining the thermal conductivity of a fluid | |
Resnik et al. | Experimental study of heat-treated thin film Ti/Pt heater and temperature sensor properties on a Si microfluidic platform | |
US10533883B2 (en) | Thermal, flow measuring device with diagnostic function | |
EP1837645A2 (en) | Thermal conductivity sensor | |
JP4385021B2 (ja) | 分析器中の測定セルを温度制御するためのデバイス、および分析器に交換可能に挿入することができる測定セル | |
JP2006021156A (ja) | マイクロ反応器及びその製造方法 | |
WO2017213118A1 (ja) | 露点測定方法及び露点測定装置 | |
JPH11326252A (ja) | 微細孔を有する蒸発表面付き熱蒸気センサ― | |
TW201628080A (zh) | 矽濃度或蝕刻選擇比的測量方法及測量裝置 | |
WO2010035803A1 (ja) | 熱伝導率検出方法、並びに熱伝導率検出用センサ、熱伝導率検出装置及び監視システム | |
JP2007225612A (ja) | レベル・センサおよびその作動方法、およびその製造方法およびその使用法 | |
WO2010008068A1 (ja) | 超音波探傷装置 | |
JPH06129918A (ja) | 熱交換器効率のモニタ装置 | |
JP2006208257A (ja) | 熱伝達特性測定方法および装置 | |
JP2855654B2 (ja) | 局部腐食のモニタリング方法 | |
JP2009266743A (ja) | 燃料電池用水蒸気センサの異常検出装置、燃料電池用水蒸気センサ、及び燃料電池システム | |
Thompson et al. | Absence of Marangoni convection at Marangoni numbers above 27,000 during water evaporation | |
Conteau et al. | Detection of liquid water in PEM fuel cells' channels: design and validation of a microsensor | |
JPH1026594A (ja) | 熱分析用素子及びその製造方法 | |
Gardner et al. | Thermal conductivity sensor with isolating membrane holes | |
RU51229U1 (ru) | Устройство для контроля удельного объемного электрического сопротивления композиционных электропроводящих материалов | |
RU177514U1 (ru) | Термоанемометрический датчик расхода жидкостей и газов | |
Pagonis et al. | Novel microfluidic flow sensor based on a microchannel capped by porous silicon | |
KR20120015687A (ko) | 미세구조유체의 동적 열전도도 측정장치 및 방법 | |
Begot et al. | Design and Validation of a 2 kW‐Fuel Cell Test Bench for Subfreezing Studies |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09816217 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010530877 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09816217 Country of ref document: EP Kind code of ref document: A1 |