WO2010035461A1 - Method for manufacturing laminated ceramic electronic component - Google Patents

Method for manufacturing laminated ceramic electronic component Download PDF

Info

Publication number
WO2010035461A1
WO2010035461A1 PCT/JP2009/004806 JP2009004806W WO2010035461A1 WO 2010035461 A1 WO2010035461 A1 WO 2010035461A1 JP 2009004806 W JP2009004806 W JP 2009004806W WO 2010035461 A1 WO2010035461 A1 WO 2010035461A1
Authority
WO
WIPO (PCT)
Prior art keywords
internal electrode
ceramic
electrode pattern
paste
green sheet
Prior art date
Application number
PCT/JP2009/004806
Other languages
French (fr)
Japanese (ja)
Inventor
藤岡真人
戸上敬
吉川宣弘
中村一郎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2010530727A priority Critical patent/JP5083409B2/en
Publication of WO2010035461A1 publication Critical patent/WO2010035461A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics

Definitions

  • the present invention relates to a method of manufacturing a multilayer ceramic electronic component manufactured by forming a ceramic green sheet by applying a ceramic slurry and forming an internal electrode pattern by applying an internal electrode paste in a predetermined pattern. About.
  • a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrode layers are alternately stacked forms a ceramic green sheet by coating a ceramic slurry on a carrier film, for example, An internal electrode paste is applied (printed) on a ceramic green sheet to form an internal electrode pattern, and then the sheets punched into a predetermined pattern are sequentially stacked to form a laminate, which is then fired.
  • a carrier film for example, An internal electrode paste is applied (printed) on a ceramic green sheet to form an internal electrode pattern, and then the sheets punched into a predetermined pattern are sequentially stacked to form a laminate, which is then fired.
  • a ceramic green obtained by forming an internal electrode pattern on a ceramic green sheet formed by printing a ceramic slurry formed on a carrier film, and further forming a ceramic green sheet and an internal electrode pattern thereon in order.
  • a method of improving production efficiency by shortening the time required for the lamination process by stacking composite laminates obtained by punching a sheet and a minority unit laminate of internal electrode patterns has been proposed (see Patent Document 1).
  • the lower internal electrode pattern and the binder of the ceramic green sheet are caused by the solvent of the ceramic slurry printed as the upper layer.
  • a so-called sheet attack to be melted is generated, and the accuracy of the internal electrode pattern is lowered, and a short circuit failure due to a pinhole or the like generated in the ceramic green sheet occurs.
  • the sheet attack occurs when the internal electrode paste is applied on the ceramic green sheet depending on the combination of the binder and the internal electrode paste contained in the ceramic green sheet.
  • a ceramic green sheet is formed using a ceramic slurry containing a curable resin, and the curable resin in the ceramic green sheet is cured before applying the internal electrode paste.
  • Patent Document 2 a technique for suppressing and preventing the binder in the ceramic green sheet from dissolving in the internal electrode paste has been proposed (see Patent Document 2).
  • the cured ceramic green sheet is less susceptible to attack by the internal electrode paste, but when this method is applied to the method disclosed in Patent Document 1, the ceramic green sheet itself is cured. Therefore, there is a problem in that the interlayer adhesion becomes insufficient and causes delamination.
  • the present invention solves the above-mentioned problems, and suppresses and prevents attacks to the internal electrode pattern by a ceramic green sheet (ceramic slurry) formed as an upper layer of the internal electrode pattern without curing the ceramic green sheet.
  • a ceramic green sheet ceramic slurry
  • a method for manufacturing a multilayer ceramic electronic component of the present invention includes: A method for producing a multilayer ceramic electronic component having a structure in which a ceramic layer and an internal electrode are laminated, and the internal electrodes are disposed so as to face each other through the ceramic layer, (a) applying a ceramic slurry containing a binder, a solvent and a ceramic raw material on a substrate, and drying to form a ceramic green sheet; (b) On the ceramic green sheet, an internal electrode paste containing a binder and a conductive component is applied and dried to form an internal electrode pattern; (c) applying a resin paste containing a solvent that does not dissolve the binder contained in the ceramic green sheet and the internal electrode pattern and a curable resin on the ceramic green sheet and the internal electrode pattern; (d) curing the curable resin in the resin paste to form a cured resin layer; (e) applying the ceramic slurry on the cured resin layer and drying to form a ceramic green sheet; (f) providing
  • the method for producing a multilayer ceramic electronic component of the present invention is as follows.
  • a method of manufacturing a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are disposed so as to face each other through the ceramic layers (a) providing an internal electrode paste containing a binder and a conductive component on a substrate, and drying to form an internal electrode pattern; (b) applying a resin paste containing a solvent that does not dissolve the binder contained in the internal electrode paste and a curable resin on the internal electrode pattern and the surrounding substrate; and (c) curing the curable resin in the resin paste to form a cured resin layer; (d) applying a ceramic slurry containing a binder, a solvent and a ceramic raw material on the cured resin layer and drying to form a ceramic green sheet; (e) applying the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern; (f) applying a resin paste containing a solvent that does not dissolve
  • the method for producing a multilayer ceramic electronic component of the present invention is formed on the substrate through the steps (a) to (f) of claim 1 or the steps (a) to (h) of claim 2.
  • the binder contained in the ceramic green sheet and the internal electrode pattern is soluble in an organic solvent, insoluble in an aqueous solvent, and the curable resin contained in the resin paste is soluble in an aqueous solvent.
  • the solvent contained in the resin paste is preferably an aqueous solvent.
  • a step-absorbing ceramic paste is applied to a region around the formed internal electrode pattern to eliminate the step between the internal electrode pattern and the surrounding area. It is preferable to include a step of forming a step absorption layer by drying.
  • the step absorption is performed around the region where the internal electrode pattern is to be formed, so as to eliminate the step between the internal electrode pattern formed thereafter and the surrounding area.
  • the ceramic electrode paste is applied and dried to form a step absorption layer, and then the internal electrode pattern is preferably formed by applying and drying the internal electrode paste in a region where the step absorption layer is not formed. .
  • the curable resin contained in the resin paste is a photocurable resin.
  • the thickness of the cured resin layer formed by curing the resin paste is preferably 0.03 to 0.20 ⁇ m.
  • the ratio of the ceramic powder in the cured resin layer formed by curing the resin paste is less than the critical particle volume fraction, It is desirable to use a ceramic powder.
  • the method for manufacturing a multilayer ceramic electronic component of the present invention includes the steps (a) to (f) as described above, and performs the steps (c) to (f) at least once. After applying the ceramic slurry on the substrate and drying it to form a ceramic green sheet, applying the internal electrode paste on it and drying to form the internal electrode pattern, the ceramic green sheet and the internal electrode A resin paste containing a solvent that does not dissolve the binder contained in the ceramic green sheet and the internal electrode pattern and a curable resin is applied on the pattern, and cured to form a cured resin layer, and then the ceramic resin is formed on the cured resin layer.
  • a ceramic green sheet is formed by applying and drying a rally, and an internal electrode paste is applied to the ceramic green sheet and dried to form an internal electrode pattern. Since the step of forming a down and to perform one or more times, the cured resin layer, the internal electrode pattern it becomes possible to prevent from being attack by a ceramic slurry applied thereon. As a result, it becomes possible to manufacture a multilayer ceramic electronic component having a highly accurate internal electrode.
  • the present invention is characterized in that a ceramic slurry is applied on a base material, an internal electrode paste is applied, and a plurality of layers including a ceramic green sheet and an internal electrode pattern formed thereon are provided on the base material.
  • a curable resin paste using a solvent that does not dissolve the binder of the ceramic green sheet and the internal electrode pattern is applied and cured from above the ceramic green sheet and the internal electrode pattern.
  • the ceramic slurry is applied and dried to form a ceramic green sheet, so that the ceramic green sheet and the internal electrode pattern can be effectively attacked by the ceramic slurry without curing the ceramic green sheet. It is possible to prevent , Without or cause delamination, and it is possible to efficiently produce a multilayer ceramic electronic device, such as a multilayer ceramic capacitor having a high internal electrode accuracy.
  • the resin paste is applied onto the resin paste after it is cured (crosslinked), the resin paste is dissolved in the uncured state of the resin paste as a solvent for the upper ceramic slurry. Even if such a solvent is used, the cured resin layer does not dissolve in the solvent, so the degree of freedom in selecting the resin paste and the solvent used for the ceramic slurry to be printed on the cured resin layer Can be significantly improved.
  • the cured resin layer is interposed between the internal electrode paste and the ceramic slurry (the edge is cut by the cured resin layer), the internal electrode paste contains in relation to the solvent and binder contained in the ceramic slurry. The type of binder is not restricted. Therefore, also in this respect, the free path for material selection is improved.
  • the application of the ceramic slurry includes a case where the ceramic slurry is formed into a sheet by a coater method or a doctor blade method, or a case where the ceramic slurry is printed into a sheet by a gravure printing method. It is a broad concept.
  • Examples of the method for applying the internal electrode paste include a method in which the internal electrode paste is printed on a ceramic green sheet by a screen printing method or the like, and various other methods can be used. Is possible.
  • the method for manufacturing a multilayer ceramic electronic component according to the present invention includes the steps (a) to (h), and the steps (e) to (h) are performed once.
  • the internal electrode pattern is formed on the base material, and a solvent that does not dissolve the binder contained in the internal electrode paste and a curable resin are further formed on the base electrode pattern and the surrounding base material.
  • a resin paste containing is applied and cured to form a cured resin layer.
  • a ceramic slurry is applied on the cured resin layer and dried to form a ceramic green sheet.
  • the internal electrode pattern is formed and cured in the same manner. Since the formation of the resin layer and the formation of the ceramic green sheet are performed, the same specific effects as those in the case of the above invention of claim 1 can be obtained.
  • a laminate process is formed by forming an unsintered laminate that becomes a multilayer ceramic electronic component element after firing.
  • the multilayer ceramic electronic component can be efficiently manufactured by reducing the time required for the process.
  • the binder contained in the ceramic green sheet and the internal electrode pattern is soluble in an organic solvent and insoluble in an aqueous solvent.
  • the curable resin contained in the resin paste is soluble in an aqueous solvent.
  • an aqueous solvent is used as the solvent contained in the resin paste, it becomes possible to prevent the binder contained in the ceramic green sheet and the internal electrode pattern from being dissolved, and to improve the electrical characteristics of the product. It is possible to prevent the particles directly in the ceramic green sheet and the internal electrode pattern that are directly affected from rearranging (filling disorder), and to obtain a multilayer ceramic electronic component having excellent electrical characteristics.
  • the step absorption layer is formed by applying a step absorbing ceramic paste to the area around the internal electrode pattern, thereby eliminating the step and preventing the occurrence of delamination. It becomes possible to obtain a monolithic ceramic electronic component having high performance. If a step absorption layer is provided, the number of materials used increases, so in the conventional technology, in order to avoid sheet attack, etc., selection of the solvent used for the ceramic slurry and internal electrode paste Although the width is reduced, in the present invention, the cured resin layer that does not dissolve in any solvent is interposed at a predetermined position as described above, and functions to prevent sheet attack. Can be kept high.
  • a step absorbing ceramic paste is applied and dried around the region where the internal electrode pattern is to be formed to form a step absorbing layer, and then the internal electrode pattern is formed. Similar effects can be obtained even when the internal electrode pattern is formed by applying and drying the internal electrode paste to the power region.
  • thermosetting resin can be used as a resin material for forming the cured resin layer.
  • a photocurable resin as the curable resin contained in the resin paste.
  • both the electrical characteristic failure caused by sheet attack and the structural defect caused by delamination can be efficiently suppressed, which is preferable.
  • the thickness of the cured resin layer is less than 0.03 ⁇ m, the effect of preventing sheet attack becomes insufficient, and when it exceeds 0.20 ⁇ m, delamination tends to occur.
  • the resin paste a resin paste containing a ceramic powder at a ratio such that the ratio of the ceramic powder in the cured resin layer is equal to or less than the critical particle volume fraction is used, that is, the cured resin layer contains the ceramic powder.
  • the firing step it becomes possible to diffuse the ceramic powder in the cured resin layer to the lower and upper ceramic green sheets, and to firmly bond the lower and upper ceramic green sheets, such as delamination. The occurrence of structural defects can be prevented more reliably.
  • FIG. 1 is a diagram showing a configuration of a multilayer ceramic capacitor manufactured by a method according to an embodiment of the present invention.
  • the multilayer ceramic capacitor includes a multilayer ceramic element (multilayer ceramic electronic component element) 51 in which a plurality of internal electrodes 53 a and 53 b are stacked via a ceramic layer 52.
  • the internal electrodes 53a and 53b facing each other are alternately drawn out to the opposite end faces 54a and 54b of the multilayer ceramic element 51 and connected to the external electrodes 55a and 55b formed on the end faces. ing.
  • Example 1 a first dielectric green sheet (ceramic green sheet), a first internal electrode pattern, a cured resin layer, and a second dielectric green sheet (ceramic green sheet) are formed on a base material (support film).
  • a base material support film
  • ⁇ Production of multilayer ceramic capacitor> The ceramic slurry prepared as described above was applied by a coater method, and a first dielectric green sheet (ceramic green sheet) having a thickness of 1.2 ⁇ m was formed on a substrate (support film) 1 as shown in FIG. 2a was formed. Then, drying was performed at 80 ° C. for 5 minutes.
  • Ni electrode paste internal electrode paste
  • An internal electrode pattern 3a having a thickness of 0.5 ⁇ m was formed.
  • the internal electrode paste used was Ni powder as a conductive component, dihydroterpineol acetate as a solvent, and ethyl cellulose as a binder. In each of the following examples and comparative examples, the same internal electrode paste as in Example 1 is used.
  • a UV curable resin, a solvent (water + isopropyl alcohol (IPA)), and a binder (acrylic type) are covered so as to cover the first dielectric green sheet 2a and the first internal electrode pattern 3a formed thereon.
  • UV curable acrylic resin examples include UV curable urethane acrylate, UV curable polyester acrylate, UV curable urethane resin, UV curable epoxy acrylate, Examples thereof include UV curable imide acrylate.
  • a ceramic slurry is applied onto the cured resin layer 4 by a coater method to form a second dielectric green sheet (ceramic green sheet) 2b having a thickness of 1.2 ⁇ m, and the condition for 5 minutes at 80 ° C. And dried.
  • a Ni electrode paste is applied on the second dielectric green sheet 2b by screen printing and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern 3b having a thickness of 0.5 ⁇ m. did.
  • a composite laminate 10 having two layers of dielectric green sheets 2a and 2b and two layers of internal electrode patterns 3a and 3b was obtained.
  • the composite laminate 10 includes one cured resin layer 4.
  • the resulting composite laminate 10 is stacked with 300 sheets while being peeled from the substrate (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa.
  • An unfired laminated body to be a multilayer ceramic electronic component element) was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. to obtain a multilayer ceramic element 51 (FIG. 1).
  • the above-mentioned cured resin layer decomposes
  • a multilayer ceramic capacitor according to the example of the present invention (sample 1 of the example) having a structure as shown in FIG. 1 is applied to the multilayer ceramic element by applying and baking a conductive paste for forming an external electrode. To 5) were obtained.
  • Comparative Multilayer Ceramic Capacitor (Comparative Example 1)
  • a multilayer ceramic capacitor was produced without providing a step of forming a cured resin layer, which is an essential constituent element of the present invention.
  • Ni electrode paste which is an internal electrode paste
  • a Ni electrode paste is applied on the dried first dielectric green sheet by screen printing, and dried under conditions of 60 ° C. for 5 minutes.
  • a first internal electrode pattern having a thickness of 0.5 ⁇ m was formed.
  • the ceramic slurry is applied by a coater method to form a second dielectric green sheet having a thickness of 1.2 ⁇ m on the first internal electrode pattern formed on the first dielectric green sheet. Then, drying was performed for 5 minutes.
  • 300 sheets are stacked while peeling the obtained composite laminate from the base material (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa to become a laminated ceramic element after firing. An unfired laminate was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and fired at 1200 ° C. to obtain a multilayer ceramic element. Then, a multilayer ceramic capacitor (Comparative Example 1) having a structure as shown in FIG. 1 was obtained by applying a conductive paste for forming external electrodes to this multilayer ceramic element and baking it.
  • Comparative Multilayer Ceramic Capacitor (Comparative Example 2)
  • the process of curing the ceramic green sheet is not provided while the process of providing the cured resin layer, which is an essential component of the present invention, is not provided. After that, a multilayer ceramic capacitor was produced. A description will be given below.
  • the ceramic slurry S1 was prepared by putting 900 parts by volume of the mixture into a ball mill together with 600 parts by volume of zirconia cobblestone having a diameter of 1 mm and performing wet mixing for 24 hours.
  • the ceramic slurry S1 produced as described above is applied by a coater method to form a first dielectric green sheet having a thickness of 1.2 ⁇ m on the base material (support film), and the condition is 80 ° C. for 5 minutes. Drying was performed. Then, the dried first dielectric green sheet was heat-treated at 150 ° C. for 10 minutes to cure the first dielectric green sheet.
  • Ni electrode paste which is an internal electrode paste
  • a Ni electrode paste is applied on the cured first dielectric green sheet by a screen printing method, and dried under conditions of 60 ° C. for 5 minutes to obtain a thickness of 0.5 ⁇ m.
  • a first internal electrode pattern was formed.
  • the ceramic slurry S2 is applied by a coater method to form a second dielectric green sheet having a thickness of 1.2 ⁇ m on the first internal electrode pattern formed on the first dielectric green sheet. Drying was performed at 5 ° C. for 5 minutes.
  • Ni electrode paste is applied on the second dielectric green sheet by screen printing, and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern having a thickness of 0.5 ⁇ m.
  • a composite laminate having two layers of dielectric green sheets and two layers of internal electrode patterns was obtained.
  • this composite laminated body is not provided with the cured resin layer. 300 sheets are stacked while peeling the obtained composite laminate from the base material (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa to become a laminated ceramic element after firing. An unfired laminate was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. to obtain a multilayer ceramic element.
  • the multilayer ceramic capacitor of Comparative Example 2 was obtained by applying a conductive paste for forming external electrodes to this multilayer ceramic element and baking it.
  • the structure of the multilayer ceramic capacitor of Comparative Example 2 is the same as that of the multilayer ceramic capacitor of Comparative Example 1.
  • Example 1 (samples 1 to 5) and the multilayer ceramic capacitors of Comparative Examples 1 and 2 manufactured as described above, the electrical property defect rate and the structural defect occurrence rate were investigated. It was.
  • the short circuit occurrence rate is suppressed by suppressing the sheet attack.
  • the fluidity at the time of pressure bonding is poor, and the delamination generation rate is increased due to a decrease in interlayer adhesion.
  • Example 1 shows that the characteristics of the multilayer ceramic capacitor of Example 1 (Samples 1 to 5 of the Example) can be significantly improved as compared with the multilayer ceramic capacitors of Comparative Examples 1 and 2.
  • the short-circuit defect occurrence rate is 2% or less, and the delamination occurrence rate is 3 % Or less.
  • the thickness of the cured resin layer is in the range of 0.03 to 0.2 ⁇ m. It turns out to be desirable.
  • Example 2 a first internal electrode pattern is first formed on a substrate (support film), and a cured resin layer, a first dielectric green sheet (ceramic green sheet), and a second internal electrode are sequentially formed thereon.
  • a multilayer laminate is formed by laminating a pattern, a cured resin layer, and a second dielectric green sheet (ceramic green sheet), and a multilayer ceramic capacitor is manufactured through a process of laminating a predetermined number of this multilayer laminate.
  • 60 parts by volume of the obtained ceramic raw material 30 parts by volume of a highly polymerized polyvinyl butyral as a binder, 10 parts by volume of dioctyl phthalate as a plasticizer, and 900 parts by volume of a toluene / ethanol (50/50) mixture as a solvent, was put into a ball mill together with 600 parts by volume of zirconia cobblestone having a diameter of 1 mm, and wet mixing was performed for 24 hours to obtain a ceramic slurry.
  • an internal electrode paste (Ni paste) is printed in a predetermined pattern on a base material (support film) 1 by a screen printing method, dried at 60 ° C. for 5 minutes, and a thickness of 0.5 ⁇ m.
  • a first internal electrode pattern 3a was formed.
  • a UV curable composition including a UV curable resin, a solvent (water + isopropyl alcohol (IPA)), and a binder (acrylic monomer + photoinitiator) on the substrate 1 and the first internal electrode pattern 3a.
  • the resin solution is applied to a predetermined thickness (0.01 ⁇ m, 0.03 ⁇ m, 0.10 ⁇ m, 0.20 ⁇ m, 0.22 ⁇ m) to form a UV curable resin layer, and irradiated with ultraviolet rays for 5 minutes.
  • the UV curable resin layer was cured to form the first cured resin layer 4a.
  • the ceramic slurry prepared as described above is applied onto the first cured resin layer 4a by a coater method, and the first dielectric having a thickness of 1.2 ⁇ m is formed on the entire surface of the UV curable resin layer.
  • the green sheet 2a was formed and dried under conditions of 80 ° C. and 5 minutes.
  • Ni electrode paste as an internal electrode paste is applied on the dried first dielectric green sheet 2a by a screen printing method and dried under conditions of 60 ° C. for 5 minutes to obtain a thickness of 0.5 ⁇ m.
  • the second internal electrode pattern 3b was formed.
  • a UV curable resin a solvent (water + isopropyl alcohol (IPA)), a binder (acrylic monomer + light) so as to cover the second internal electrode pattern 3b and the first dielectric green sheet 2a around the second internal electrode pattern 3b.
  • a UV curable resin solution containing an initiator to a predetermined thickness (0.01 ⁇ m, 0.03 ⁇ m, 0.10 ⁇ m, 0.20 ⁇ m, 0.22 ⁇ m), and a UV curable resin layer
  • the UV curable resin layer was cured by irradiating ultraviolet rays for 5 minutes to form the second cured resin layer 4b.
  • the composite laminate 10 includes two layers of cured resin layers 4a and 4b.
  • 300 layers of the composite laminate 10 thus obtained are stacked while being peeled from the substrate (support film) 1 using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa, so that a laminated ceramic element after firing. An unfired laminate was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and fired at 1200 ° C. to obtain a multilayer ceramic element.
  • the above-mentioned cured resin layer is decomposed
  • the short-circuit defect occurrence rate and the delamination occurrence rate are both 3% or less. I was able to.
  • the short-circuit defect occurrence rate is as low as 3%, but the delamination occurrence rate is as high as 17%.
  • the first internal electrode pattern and the first dielectric green sheet are formed between the first dielectric green sheet and the second dielectric green sheet after the thermal decomposition of the cured resin layer in the degreasing process. It is considered that a void layer is generated between the dielectric green sheets and between the second internal electrode pattern and the second dielectric green sheet.
  • the thickness of the cured resin layer be in the range of 0.03 to 0.2 ⁇ m in order to keep the short-circuit defect occurrence rate and delamination occurrence rate below 3%. I understand that.
  • a step absorbing dielectric paste is applied between the first internal electrode patterns 3a and between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes, Multilayer ceramic capacitors (Samples 11 to 15 in Examples) were produced in the same manner as in Example 1 except that the step absorbing layer)) 20 was formed.
  • the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
  • the step absorbing dielectric paste includes the same ceramic material as the ceramic slurry used to form the first and second dielectric green sheets, dihydroterpineol acetate as the solvent, and polyvinyl butyral as the binder.
  • the containing paste was used.
  • the characteristic was investigated by the method similar to the case of the said Example 1.
  • FIG. The results are shown in Table 3.
  • Example 3 As described above, the step absorbing dielectric paste is applied between the first internal electrode patterns and between the second internal electrode patterns, so that the whole is made uniform at the time of pressure bonding. It becomes possible to crimp. As a result, as shown in Table 3, it is possible to further improve the characteristics as compared with the case of Example 1.
  • the thickness of the cured resin layer is set to a range of 0.03 to 0.2 ⁇ m. It was confirmed that it was desirable to do.
  • a step absorbing dielectric paste is applied between the first internal electrode patterns 3a and between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes, Multilayer ceramic capacitors (Samples 16 to 20 in Examples) were produced in the same manner as in Example 2 except that the step absorption layer)) 20 was formed.
  • the parts denoted by the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
  • a comparative multilayer ceramic capacitor (Comparative Example 6) was produced in the same manner as in Example 4 except that the step of providing the first and second cured resin layers was not provided.
  • the step absorbing dielectric paste the same one as used in Example 3 was used.
  • Example 4 Even under the conditions of Example 4, by setting the thickness of the cured resin layer in the range of 0.03 to 0.2 ⁇ m, the short-circuit defect occurrence rate is suppressed to 3% or less, and the delamination occurrence rate is suppressed to 2% or less. It was confirmed that it would be possible.
  • thermosetting resin solution containing a thermosetting resin, a solvent (water + isopropyl alcohol (IPA)), and a binder (acrylic monomer) instead of the UV curable resin solution to form the cured resin layer.
  • a multilayer ceramic capacitor (Samples 21 to 25 in Examples) was produced in the same manner as in Example 1 except that the curing condition was changed to 120 ° C. for 5 minutes.
  • thermosetting resin which can be used in this invention, a thermosetting acrylic resin, a thermosetting epoxy resin, a thermosetting urethane acrylate, a thermosetting polyester acrylate, a thermosetting urethane resin, heat
  • thermosetting resin examples thereof include a curable urea resin and a thermosetting melamine resin.
  • thermosetting resin solution when used to form the cured resin layer, the UV curable resin solution was used due to the expansion of the base material in the heating step for curing the resin. Although the characteristics were slightly lower than in the case, it was confirmed that the effect similar to that in Example 1 was obtained.
  • Example 5 Even under the conditions of Example 5, by setting the thickness of the cured resin layer in the range of 0.03 to 0.2 ⁇ m, the short-circuit defect occurrence rate is suppressed to 3% or less, and the delamination occurrence rate is suppressed to 4% or less. It was confirmed that it would be possible.
  • Example 6 in the configuration of Sample 4 of Example 1, ceramic powder having the same composition as the ceramic powder constituting the ceramic green sheet was contained in a predetermined range as the resin paste for forming the cured resin layer. A multilayer ceramic capacitor was produced using a resin paste.
  • the resin paste includes a UV curable resin, a solvent (water + isopropyl alcohol (IPA)), a binder (acrylic monomer + photoinitiator), and further a ceramic green sheet.
  • IPA water + isopropyl alcohol
  • a binder acrylic monomer + photoinitiator
  • a ceramic green sheet Using a resin paste containing ceramic powder having the same composition as the ceramic powder to be formed in the range shown in Table 6 (a range in which the volume fraction in the formed protective resin layer is 0.1 vol% to 60 vol%) Thus, a multilayer ceramic capacitor was produced.
  • the value of the volume fraction of the ceramic powder in the protective resin layer in Table 6 indicates the volume ratio of the ceramic powder to the protective resin layer containing the ceramic powder.
  • the critical particle volume fraction (CPVC) of the ceramic powder in a protective resin layer will be about 50 vol%.
  • Example 6 When a resin paste containing ceramic powder is used and a cured resin layer containing ceramic powder is formed at a predetermined ratio as in Example 6, the ceramic green sheets of the lower layer and the upper layer are formed in the firing step. The ceramic powder in the cured resin layer diffuses and the lower and upper ceramic green sheets are firmly bonded. As a result, it is possible to more reliably prevent the occurrence of structural defects such as delamination and manufacture a highly reliable multilayer ceramic electronic component.
  • the content ratio of the ceramic powder in the protective resin layer exceeds the critical particle volume fraction (CPVC)
  • CPVC critical particle volume fraction
  • the multilayer ceramic capacitor has been described as an example. It is possible to apply.
  • the present invention is not limited to the above embodiment in other points as well, but relates to the number of laminated ceramic layers and internal electrodes, a specific pattern of internal electrodes, a constituent material of the ceramic layers and internal electrodes, and the like. Various applications and modifications can be made within the scope of the invention.
  • the ceramic green sheet is not cured, the attack to the internal electrode pattern by the upper layer ceramic slurry or the like is suppressed and prevented, and the delamination is not caused and the reliability is high.
  • a multilayer ceramic electronic component having internal electrodes can be efficiently manufactured, and a high degree of freedom in selecting materials such as ceramic green sheets and internal electrode pastes can be maintained. Therefore, the present invention can be widely applied to the fields of various multilayer ceramic electronic components having a structure in which a ceramic layer and internal electrodes are laminated, including a multilayer ceramic capacitor.
  • Base material support film
  • First dielectric green sheet (ceramic green sheet) 2b
  • Second dielectric green sheet (ceramic green sheet) 3a 1st internal electrode pattern 3b
  • 2nd internal electrode pattern Cured resin layer 4a 1st cured resin layer 4b 2nd cured resin layer
  • Composite laminated body 20 Step absorption dielectric pattern (step absorption layer) 51 Multilayer Ceramic Element (Multilayer Ceramic Electronic Component Element) 52 Ceramic layers 53a, 53b Internal electrodes 54a, 54b End faces of the multilayer ceramic element 55a, 55b External electrodes

Abstract

A laminated ceramic electronic component provided with a highly-reliable internal electrode can be manufactured without causing delamination by suppressing and preventing an attack on an internal electrode pattern by ceramic slurry of an upper layer and the like. Ceramic slurry is applied onto a base material (1) and dried to form a ceramic green sheet (2a), an internal electrode paste is applied thereonto and dried to form an internal electrode pattern (3a), a resin paste using a solvent which does not dissolve binders contained in the ceramic green sheet and the internal electrode pattern is applied thereonto and cured to form a cured resin layer (4), and thereafter the formation of the ceramic green sheet (2b) and the formation of an internal electrode pattern (3b) are performed in the same manner to form a composite laminated body (10). A step for superposing the composite laminated bodies (10) thus formed is repeated to form an unbaked laminated body which becomes a laminated ceramic electronic component element after being baked.

Description

積層セラミック電子部品の製造方法Manufacturing method of multilayer ceramic electronic component
 本発明は、セラミックスラリーを塗布することによってセラミックグリーンシートを形成し、内部電極ペーストを所定のパターンで塗布することにより内部電極パターンを形成する工程を経て製造される、積層セラミック電子部品の製造方法に関する。 The present invention relates to a method of manufacturing a multilayer ceramic electronic component manufactured by forming a ceramic green sheet by applying a ceramic slurry and forming an internal electrode pattern by applying an internal electrode paste in a predetermined pattern. About.
 積層セラミックコンデンサのように、セラミック層と内部電極層とが交互に積層された構造を有する積層セラミック電子部品は、例えば、キャリアフィルム上にセラミックスラリーを塗工してセラミックグリーンシートを形成し、さらにセラミックグリーンシート上に内部電極ペーストを付与(印刷)して内部電極パターンを形成した後、所定パターンに打ち抜いたシートを順次積み重ねて積層体を形成し、これを焼成する工程を経て製造されるのが一般的である。
 しかしながら、電子部品の薄層化、大容量化につれて、セラミックグリーンシートの積層枚数が増加し、積層工程に要する時間が長くなって、生産性が低下するに至っている。
A multilayer ceramic electronic component having a structure in which ceramic layers and internal electrode layers are alternately stacked, such as a multilayer ceramic capacitor, forms a ceramic green sheet by coating a ceramic slurry on a carrier film, for example, An internal electrode paste is applied (printed) on a ceramic green sheet to form an internal electrode pattern, and then the sheets punched into a predetermined pattern are sequentially stacked to form a laminate, which is then fired. Is common.
However, as electronic components become thinner and larger in capacity, the number of laminated ceramic green sheets increases, the time required for the lamination process becomes longer, and productivity is reduced.
 そこで、キャリアフィルム上に形成したセラミックスラリーを印刷して形成したセラミックグリーンシート上に内部電極パターンを形成し、さらにその上にセラミックグリーンシート、内部電極パターンを順に形成することにより得られる、セラミックグリーンシートと内部電極パターンの少数単位積層体を打ち抜いた複合積層体を積み重ねることにより、積層工程に要する時間を短くして生産効率を向上させる方法が提案されている(特許文献1参照)。 Therefore, a ceramic green obtained by forming an internal electrode pattern on a ceramic green sheet formed by printing a ceramic slurry formed on a carrier film, and further forming a ceramic green sheet and an internal electrode pattern thereon in order. A method of improving production efficiency by shortening the time required for the lamination process by stacking composite laminates obtained by punching a sheet and a minority unit laminate of internal electrode patterns has been proposed (see Patent Document 1).
 しかしながら、上述のように内部電極パターンの上にさらにセラミックスラリーを印刷してセラミックグリーンシートを形成する方法の場合、上層として印刷したセラミックスラリーの溶剤によって下層の内部電極パターンやセラミックグリーンシートのバインダーが溶解される、いわゆるシートアタックを生じ、内部電極パターンの精度低下や、セラミックグリーンシートに生じるピンホールなどに起因するショート不良などが発生するという問題点がある。 However, in the case of the method of forming the ceramic green sheet by further printing the ceramic slurry on the internal electrode pattern as described above, the lower internal electrode pattern and the binder of the ceramic green sheet are caused by the solvent of the ceramic slurry printed as the upper layer. There is a problem that a so-called sheet attack to be melted is generated, and the accuracy of the internal electrode pattern is lowered, and a short circuit failure due to a pinhole or the like generated in the ceramic green sheet occurs.
 また、シートアタックは、セラミックグリーンシートに含まれるバインダーと内部電極ペーストとの組み合わせによっては、セラミックグリーンシート上に内部電極ペーストを付与する際にも発生する。そして、この場合のシートアタックを防止する技術として、硬化性樹脂を含有させたセラミックスラリーを用いてセラミックグリーンシートを形成し、内部電極ペーストを付与する前にセラミックグリーンシート中の硬化性樹脂を硬化させることにより、セラミックグリーンシート中のバインダーが内部電極ペーストに溶解してしまうことを抑制、防止する技術が提案されている(特許文献2参照)。 Also, the sheet attack occurs when the internal electrode paste is applied on the ceramic green sheet depending on the combination of the binder and the internal electrode paste contained in the ceramic green sheet. As a technique for preventing sheet attack in this case, a ceramic green sheet is formed using a ceramic slurry containing a curable resin, and the curable resin in the ceramic green sheet is cured before applying the internal electrode paste. Thus, a technique for suppressing and preventing the binder in the ceramic green sheet from dissolving in the internal electrode paste has been proposed (see Patent Document 2).
 この方法の場合、硬化したセラミックグリーンシートが、内部電極ペーストによるアタックを受けにくくなるものの、上述の特許文献1に開示されている方法にこの方法を応用した場合、セラミックグリーンシート自体が硬化した状態で積層されることになるため、層間密着力が不十分になり、デラミネーションの原因となるという問題点がある。 In the case of this method, the cured ceramic green sheet is less susceptible to attack by the internal electrode paste, but when this method is applied to the method disclosed in Patent Document 1, the ceramic green sheet itself is cured. Therefore, there is a problem in that the interlayer adhesion becomes insufficient and causes delamination.
特開平8-250370号公報JP-A-8-250370 特開2006-66852号公報JP 2006-66852 A
 本発明は、上記課題を解決するものであり、セラミックグリーンシートを硬化させることなく、内部電極パターンの上層として形成されるセラミックグリーンシート(セラミックスラリー)などによる内部電極パターンへのアタックを抑制、防止して、信頼性の高い内部電極を備えた積層セラミック電子部品を確実に製造することが可能で、しかも、セラミックグリーンシートや内部電極ペーストなどの構成材料(例えば、溶剤やバインダーの種類など)を選択するにあたっての自由度の高い積層セラミック電子部品の製造方法を提供することを目的とする。 The present invention solves the above-mentioned problems, and suppresses and prevents attacks to the internal electrode pattern by a ceramic green sheet (ceramic slurry) formed as an upper layer of the internal electrode pattern without curing the ceramic green sheet. In addition, it is possible to reliably manufacture multilayer ceramic electronic components equipped with highly reliable internal electrodes, and to use components such as ceramic green sheets and internal electrode paste (for example, types of solvents and binders) It is an object of the present invention to provide a method for manufacturing a multilayer ceramic electronic component having a high degree of freedom in selection.
 上記課題を解決するため、本発明(請求項1)の積層セラミック電子部品の製造方法は、
 セラミック層と内部電極が積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
 (a)基材上に、バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
 (b)前記セラミックグリーンシート上に、バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
 (c)前記セラミックグリーンシートおよび前記内部電極パターン上に、前記セラミックグリーンシートおよび前記内部電極パターンに含まれる前記バインダーを溶解しない溶剤と硬化性樹脂とを含む樹脂ペーストを塗布する工程と、
 (d)前記樹脂ペースト中の前記硬化性樹脂を硬化させて硬化樹脂層を形成する工程と、
 (e)前記硬化樹脂層上に、前記セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
 (f)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程とを備え、
 前記(c)~(f)の工程を1回以上行うことを特徴としている。
In order to solve the above problems, a method for manufacturing a multilayer ceramic electronic component of the present invention (Claim 1) includes:
A method for producing a multilayer ceramic electronic component having a structure in which a ceramic layer and an internal electrode are laminated, and the internal electrodes are disposed so as to face each other through the ceramic layer,
(a) applying a ceramic slurry containing a binder, a solvent and a ceramic raw material on a substrate, and drying to form a ceramic green sheet;
(b) On the ceramic green sheet, an internal electrode paste containing a binder and a conductive component is applied and dried to form an internal electrode pattern;
(c) applying a resin paste containing a solvent that does not dissolve the binder contained in the ceramic green sheet and the internal electrode pattern and a curable resin on the ceramic green sheet and the internal electrode pattern;
(d) curing the curable resin in the resin paste to form a cured resin layer;
(e) applying the ceramic slurry on the cured resin layer and drying to form a ceramic green sheet;
(f) providing the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
The steps (c) to (f) are performed once or more.
 また、本発明(請求項2)の積層セラミック電子部品の製造方法は、
 セラミック層と内部電極が交互に積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
 (a)基材上に、バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
 (b)前記内部電極パターンおよびその周囲の前記基材上に、前記内部電極ペーストに含まれる前記バインダーを溶解しない溶剤と硬化性樹脂とを含む樹脂ペーストを塗布する工程と、
 (c)前記樹脂ペースト中の前記硬化性樹脂を硬化させて硬化樹脂層を形成する工程と、
 (d)前記硬化樹脂層上に、バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
 (e)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
 (f)前記セラミックグリーンシート上および前記内部電極パターン上に、前記セラミックグリーンシートおよび前記内部電極パターンに含まれる前記バインダーを溶解しない溶剤と硬化性樹脂とを含む樹脂ペーストを塗布する工程と、
 (g)前記樹脂ペーストを硬化させて硬化樹脂層を形成する工程と、
 (h)前記硬化樹脂層上にバインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程とを備え、
 前記(e)~(h)の工程を1回以上行うことを特徴としている。
Moreover, the method for producing a multilayer ceramic electronic component of the present invention (Claim 2) is as follows.
A method of manufacturing a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are disposed so as to face each other through the ceramic layers,
(a) providing an internal electrode paste containing a binder and a conductive component on a substrate, and drying to form an internal electrode pattern;
(b) applying a resin paste containing a solvent that does not dissolve the binder contained in the internal electrode paste and a curable resin on the internal electrode pattern and the surrounding substrate; and
(c) curing the curable resin in the resin paste to form a cured resin layer;
(d) applying a ceramic slurry containing a binder, a solvent and a ceramic raw material on the cured resin layer and drying to form a ceramic green sheet;
(e) applying the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
(f) applying a resin paste containing a solvent that does not dissolve the binder contained in the ceramic green sheet and the internal electrode pattern and a curable resin on the ceramic green sheet and the internal electrode pattern;
(g) curing the resin paste to form a cured resin layer;
(h) applying a ceramic slurry containing a binder, a solvent, and a ceramic raw material on the cured resin layer, and drying to form a ceramic green sheet;
The steps (e) to (h) are performed once or more.
 本発明の積層セラミック電子部品の製造方法は、前記基材上に、請求項1の(a)~(f)の工程、または、請求項2の(a)~(h)の工程を経て形成される、複数層のセラミックグリーンシートおよび複数層の内部電極パターンを備えた複合積層体を積み重ねる工程を繰り返して、焼成後に積層セラミック電子部品素子となる未焼成の積層体を形成する工程を備えていることを特徴としている。 The method for producing a multilayer ceramic electronic component of the present invention is formed on the substrate through the steps (a) to (f) of claim 1 or the steps (a) to (h) of claim 2. A step of stacking a composite laminate including a plurality of layers of ceramic green sheets and a plurality of layers of internal electrode patterns, and a step of forming an unsintered laminate that becomes a multilayer ceramic electronic component element after firing. It is characterized by being.
 また、前記セラミックグリーンシートおよび内部電極パターン中に含まれるバインダーは有機系溶剤に可溶であって、水系溶剤に不溶であり、かつ、前記樹脂ペーストに含まれる硬化性樹脂は水系溶剤に可溶な樹脂であり、かつ、前記樹脂ペーストに含まれる溶剤は水系溶剤であることが好ましい。 The binder contained in the ceramic green sheet and the internal electrode pattern is soluble in an organic solvent, insoluble in an aqueous solvent, and the curable resin contained in the resin paste is soluble in an aqueous solvent. And the solvent contained in the resin paste is preferably an aqueous solvent.
 また、前記内部電極パターンを形成する工程の後で、形成された前記内部電極パターンの周囲の領域に、前記内部電極パターンとその周囲との段差を解消するための段差吸収用セラミックペーストを塗布、乾燥して段差吸収層を形成する工程を備えていることが好ましい。 In addition, after the step of forming the internal electrode pattern, a step-absorbing ceramic paste is applied to a region around the formed internal electrode pattern to eliminate the step between the internal electrode pattern and the surrounding area. It is preferable to include a step of forming a step absorption layer by drying.
 また、前記内部電極パターンを形成する工程の前に、前記内部電極パターンが形成されるべき領域の周囲に、その後に形成される前記内部電極パターンとその周囲との段差を解消するための段差吸収用セラミックペーストを塗布、乾燥して段差吸収層を形成し、その後、前記段差吸収層が形成されていない領域に前記内部電極ペーストを付与、乾燥することにより前記内部電極パターンを形成することが好ましい。 Further, before the step of forming the internal electrode pattern, the step absorption is performed around the region where the internal electrode pattern is to be formed, so as to eliminate the step between the internal electrode pattern formed thereafter and the surrounding area. The ceramic electrode paste is applied and dried to form a step absorption layer, and then the internal electrode pattern is preferably formed by applying and drying the internal electrode paste in a region where the step absorption layer is not formed. .
 また、前記樹脂ペーストに含まれる前記硬化性樹脂が光硬化性樹脂であることが好ましい。 Moreover, it is preferable that the curable resin contained in the resin paste is a photocurable resin.
 前記樹脂ペーストを硬化させることにより形成される硬化樹脂層の厚さが0.03~0.20μmであることが好ましい。 The thickness of the cured resin layer formed by curing the resin paste is preferably 0.03 to 0.20 μm.
 また、前記硬化樹脂層の形成に用いられる前記樹脂ペーストとして、該樹脂ペーストが硬化することにより形成される前記硬化樹脂層におけるセラミック粉末の割合が臨界粒子体積分率以下となるような割合で、セラミック粉末を含有しているものを用いることが望ましい。 Further, as the resin paste used for forming the cured resin layer, the ratio of the ceramic powder in the cured resin layer formed by curing the resin paste is less than the critical particle volume fraction, It is desirable to use a ceramic powder.
 本発明(請求項1)の積層セラミック電子部品の製造方法は、上述のように、(a)~(f)の工程を備え、かつ、(c)~(f)の工程を1回以上行うようにしており、基材上にセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成し、その上に内部電極ペーストを付与、乾燥させて内部電極パターンを形成した後、セラミックグリーンシートおよび内部電極パターン上に、セラミックグリーンシートおよび内部電極パターンに含まれるバインダーを溶解しない溶剤と硬化性樹脂とを含む樹脂ペーストを塗布し、硬化させて硬化樹脂層を形成した後、硬化樹脂層上に、セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成し、このセラミックグリーンシート上に、内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程を1回以上行うようにしているので、硬化樹脂層により、その上に塗布されるセラミックスラリーにより内部電極パターンがアタックされることを阻止することが可能になる。その結果、精度の高い内部電極を備えた積層セラミック電子部品を製造することが可能になる。 The method for manufacturing a multilayer ceramic electronic component of the present invention (Claim 1) includes the steps (a) to (f) as described above, and performs the steps (c) to (f) at least once. After applying the ceramic slurry on the substrate and drying it to form a ceramic green sheet, applying the internal electrode paste on it and drying to form the internal electrode pattern, the ceramic green sheet and the internal electrode A resin paste containing a solvent that does not dissolve the binder contained in the ceramic green sheet and the internal electrode pattern and a curable resin is applied on the pattern, and cured to form a cured resin layer, and then the ceramic resin is formed on the cured resin layer. A ceramic green sheet is formed by applying and drying a rally, and an internal electrode paste is applied to the ceramic green sheet and dried to form an internal electrode pattern. Since the step of forming a down and to perform one or more times, the cured resin layer, the internal electrode pattern it becomes possible to prevent from being attack by a ceramic slurry applied thereon. As a result, it becomes possible to manufacture a multilayer ceramic electronic component having a highly accurate internal electrode.
 すなわち、本発明の特徴は、基材上に、セラミックスラリーを塗布し、内部電極ペーストを付与して、基材上にセラミックグリーンシートとその上に形成された内部電極パターンを備えた層を複数有する複合積層体を形成するにあたり、セラミックグリーンシートおよび内部電極パターンの上から該セラミックグリーンシートおよび内部電極パターンのバインダーを溶解しない溶剤を用いた硬化性樹脂ペーストを塗布して硬化させ、しかる後にその上に、セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成するようにしているので、セラミックグリーンシートを硬化させることなく、該セラミックグリーンシートおよび内部電極パターンへのセラミックスラリーによるシートアタックを効果的に防止することが可能になり、デラミネーションを引き起こしたりすることがなく、かつ、精度の高い内部電極を備えた積層セラミックコンデンサなどの積層セラミック電子部品を効率よく製造することが可能になる。 That is, the present invention is characterized in that a ceramic slurry is applied on a base material, an internal electrode paste is applied, and a plurality of layers including a ceramic green sheet and an internal electrode pattern formed thereon are provided on the base material. In forming the composite laminate having, a curable resin paste using a solvent that does not dissolve the binder of the ceramic green sheet and the internal electrode pattern is applied and cured from above the ceramic green sheet and the internal electrode pattern. The ceramic slurry is applied and dried to form a ceramic green sheet, so that the ceramic green sheet and the internal electrode pattern can be effectively attacked by the ceramic slurry without curing the ceramic green sheet. It is possible to prevent , Without or cause delamination, and it is possible to efficiently produce a multilayer ceramic electronic device, such as a multilayer ceramic capacitor having a high internal electrode accuracy.
 また、樹脂ペーストを硬化(架橋)させた後、その上にセラミックスラリーを塗布するようにしているため、上層のセラミックスラリーの溶剤として、樹脂ペーストが未硬化の状態では、樹脂ペーストを溶解してしまうような溶剤を使用したとしても、硬化樹脂層は溶剤に溶けることがないため、樹脂ペーストの選定や、硬化樹脂層上に印刷されることになるセラミックスラリーに使用する溶剤の選定の自由度を格段に向上させることが可能になる。
 また、内部電極ペーストとセラミックスラリーとの間には硬化樹脂層が介在する(硬化樹脂層により縁が切られる)ため、セラミックスラリーが含有する溶剤やバインダーとの関係で、内部電極ペーストが含有するバインダーの種類が制約されることもなくなる。したがって、この点でも材料の選択の自由道が向上する。
In addition, since the ceramic paste is applied onto the resin paste after it is cured (crosslinked), the resin paste is dissolved in the uncured state of the resin paste as a solvent for the upper ceramic slurry. Even if such a solvent is used, the cured resin layer does not dissolve in the solvent, so the degree of freedom in selecting the resin paste and the solvent used for the ceramic slurry to be printed on the cured resin layer Can be significantly improved.
In addition, since the cured resin layer is interposed between the internal electrode paste and the ceramic slurry (the edge is cut by the cured resin layer), the internal electrode paste contains in relation to the solvent and binder contained in the ceramic slurry. The type of binder is not restricted. Therefore, also in this respect, the free path for material selection is improved.
 なお、本発明において、セラミックスラリーを塗布するとは、コータ法や、ドクターブレード法などによりセラミックスラリーをシート状に成形する場合や、グラビア印刷法などによりセラミックスラリーをシート状に印刷する場合などを含む広い概念である。 In the present invention, the application of the ceramic slurry includes a case where the ceramic slurry is formed into a sheet by a coater method or a doctor blade method, or a case where the ceramic slurry is printed into a sheet by a gravure printing method. It is a broad concept.
 また、内部電極ペーストを付与する方法としては、例えば、スクリーン印刷法などにより内部電極ペーストをセラミックグリーンシート上に印刷して付着させる方法などが例示されるが、その他の種々の方法を用いることが可能である。 Examples of the method for applying the internal electrode paste include a method in which the internal electrode paste is printed on a ceramic green sheet by a screen printing method or the like, and various other methods can be used. Is possible.
 また、本発明(請求項2)の積層セラミック電子部品の製造方法は、上述のように、(a)~(h)の工程を備え、かつ、(e)~(h)の工程を1回以上行うようにしており、基材上に、内部電極パターンを形成し、さらに この内部電極パターンおよびその周囲の基材上に、内部電極ペーストに含まれるバインダーを溶解しない溶剤と硬化性樹脂とを含む樹脂ペーストを塗布、硬化させて硬化樹脂層を形成し、この硬化樹脂層の上に、セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成した後、同様にして内部電極パターンの形成、硬化樹脂層の形成、セラミックグリーンシートの形成を行うようにしているので、上述の請求項1の発明の場合と同様の特有の作用効果を得ることができる。 In addition, as described above, the method for manufacturing a multilayer ceramic electronic component according to the present invention includes the steps (a) to (h), and the steps (e) to (h) are performed once. The internal electrode pattern is formed on the base material, and a solvent that does not dissolve the binder contained in the internal electrode paste and a curable resin are further formed on the base electrode pattern and the surrounding base material. A resin paste containing is applied and cured to form a cured resin layer. A ceramic slurry is applied on the cured resin layer and dried to form a ceramic green sheet. Then, the internal electrode pattern is formed and cured in the same manner. Since the formation of the resin layer and the formation of the ceramic green sheet are performed, the same specific effects as those in the case of the above invention of claim 1 can be obtained.
 また、複数層のセラミックグリーンシートおよび複数層の内部電極パターンを備えた複合積層体を積み重ねる工程を繰り返して、焼成後に積層セラミック電子部品素子となる未焼成の積層体を形成することにより、積層工程に要する時間を減らして効率よく積層セラミック電子部品を製造することが可能になる。 Also, by repeating the process of stacking a composite laminate comprising a plurality of layers of ceramic green sheets and a plurality of layers of internal electrode patterns, a laminate process is formed by forming an unsintered laminate that becomes a multilayer ceramic electronic component element after firing. The multilayer ceramic electronic component can be efficiently manufactured by reducing the time required for the process.
 セラミックグリーンシートおよび内部電極パターン中に含まれるバインダーとして、有機系溶剤に可溶であって、水系溶剤に不溶のものを用い、樹脂ペーストに含まれる硬化性樹脂として、水系溶剤に可溶のものを用いるとともに、樹脂ペーストに含まれる溶剤として、水系溶剤を用いるようにした場合、セラミックグリーンシートおよび内部電極パターンに含まれるバインダーを溶かさないようにすることが可能になり、製品の電気的特性に直接影響する、セラミックグリーンシートおよび内部電極パターン中の粒子が再配列(充填の乱れ)を起こすことを防止して、電気的特性に優れた積層セラミック電子部品を得ることが可能になる。 The binder contained in the ceramic green sheet and the internal electrode pattern is soluble in an organic solvent and insoluble in an aqueous solvent. The curable resin contained in the resin paste is soluble in an aqueous solvent. In addition, when an aqueous solvent is used as the solvent contained in the resin paste, it becomes possible to prevent the binder contained in the ceramic green sheet and the internal electrode pattern from being dissolved, and to improve the electrical characteristics of the product. It is possible to prevent the particles directly in the ceramic green sheet and the internal electrode pattern that are directly affected from rearranging (filling disorder), and to obtain a multilayer ceramic electronic component having excellent electrical characteristics.
 また、内部電極パターンを形成した後、内部電極パターンの周囲の領域に、段差吸収用セラミックペーストを塗布して段差吸収層を形成することにより、段差を解消して、層間剥離などの生じにくい信頼性の高い積層セラミック電子部品を得ることが可能になる。なお、段差吸収層を配設するようにした場合、使用材料の種類が増えることになるため、従来の技術では、シートアタック回避などのため、セラミックスラリーや内部電極ペーストに用いられる溶剤の選定の幅が狭くなるが、本発明においては、いずれの溶剤にも溶解しない硬化樹脂層が上述のように所定の位置に介在して、シートアタックを防止する機能を果たすため、溶剤選定の自由度を高く維持することができる。 Also, after forming the internal electrode pattern, the step absorption layer is formed by applying a step absorbing ceramic paste to the area around the internal electrode pattern, thereby eliminating the step and preventing the occurrence of delamination. It becomes possible to obtain a monolithic ceramic electronic component having high performance. If a step absorption layer is provided, the number of materials used increases, so in the conventional technology, in order to avoid sheet attack, etc., selection of the solvent used for the ceramic slurry and internal electrode paste Although the width is reduced, in the present invention, the cured resin layer that does not dissolve in any solvent is interposed at a predetermined position as described above, and functions to prevent sheet attack. Can be kept high.
 また、内部電極パターンを形成する前に、内部電極パターンが形成されるべき領域の周囲に、段差吸収用セラミックペーストを塗布、乾燥して段差吸収層を形成し、その後、内部電極パターンを形成すべき領域に内部電極ペーストを付与、乾燥することにより内部電極パターンを形成するようにした場合にも、同様の作用効果を得ることが可能である。 Further, before forming the internal electrode pattern, a step absorbing ceramic paste is applied and dried around the region where the internal electrode pattern is to be formed to form a step absorbing layer, and then the internal electrode pattern is formed. Similar effects can be obtained even when the internal electrode pattern is formed by applying and drying the internal electrode paste to the power region.
 また、本発明においては硬化樹脂層を形成するための樹脂材料として、熱硬化性樹脂を用いることも可能ではあるが、樹脂ペーストに含まれる硬化性樹脂として光硬化性樹脂を用いることにより、熱硬化性樹脂を用いて加熱硬化させるようにした場合に比べて、基材が加熱されて膨張することによる、寸法精度や形状精度の低下を防止することが可能になり、本発明をより実効あらしめることができる。 In the present invention, a thermosetting resin can be used as a resin material for forming the cured resin layer. However, by using a photocurable resin as the curable resin contained in the resin paste, Compared with the case where heat curing is performed using a curable resin, it is possible to prevent a decrease in dimensional accuracy and shape accuracy due to the base material being heated and expanded, and the present invention is more effective. It can be tightened.
 また、樹脂ペーストを硬化させることにより形成される硬化樹脂層の厚さを0.03~0.20μmとすることにより、シートアタックに起因する電気特性不良と、デラミネーションに起因する構造欠陥の双方を効率よく抑制することができるようになり、好ましい。
 なお、硬化樹脂層の厚さが0.03μm未満になると、シートアタックを防止する作用が不十分になり、0.20μmを超えるとデラミネーションが生じやすくなる傾向がある。
In addition, by setting the thickness of the cured resin layer formed by curing the resin paste to 0.03 to 0.20 μm, both the electrical characteristic failure caused by sheet attack and the structural defect caused by delamination Can be efficiently suppressed, which is preferable.
When the thickness of the cured resin layer is less than 0.03 μm, the effect of preventing sheet attack becomes insufficient, and when it exceeds 0.20 μm, delamination tends to occur.
 また、樹脂ペーストとして、硬化樹脂層におけるセラミック粉末の割合が臨界粒子体積分率以下となるような割合で、セラミック粉末を含有しているものを用いる、すなわち、硬化樹脂層にセラミック粉末を含有させるようにした場合、焼成工程において、下層と上層のセラミックグリーンシートに硬化樹脂層中のセラミック粉末を拡散させて、下層と上層のセラミックグリーンシートを強固に結合させることが可能になり、デラミネーションなどの構造欠陥の発生をさらに確実に防止することができる。 Further, as the resin paste, a resin paste containing a ceramic powder at a ratio such that the ratio of the ceramic powder in the cured resin layer is equal to or less than the critical particle volume fraction is used, that is, the cured resin layer contains the ceramic powder. In such a case, in the firing step, it becomes possible to diffuse the ceramic powder in the cured resin layer to the lower and upper ceramic green sheets, and to firmly bond the lower and upper ceramic green sheets, such as delamination. The occurrence of structural defects can be prevented more reliably.
本発明の積層セラミック電子部品の製造方法により製造された積層セラミックコンデンサの一例を示す断面図である。It is sectional drawing which shows an example of the multilayer ceramic capacitor manufactured by the manufacturing method of the multilayer ceramic electronic component of this invention. 本発明の実施例1の積層コイル部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated coil component of Example 1 of this invention. 本発明の実施例2の積層コイル部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated coil component of Example 2 of this invention. 本発明の実施例3の積層コイル部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated coil component of Example 3 of this invention. 本発明の実施例4の積層コイル部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated coil component of Example 4 of this invention.
 以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。 Hereinafter, the features of the present invention will be described in more detail with reference to examples of the present invention.
 この実施例1では、代表的な積層セラミック電子部品の一つである、積層セラミックコンデンサを製造する場合を例にとって説明する。図1は、本発明の一実施例にかかる方法により製造される積層セラミックコンデンサの構成を示す図である。 In Example 1, a case where a multilayer ceramic capacitor, which is one of typical multilayer ceramic electronic components, is manufactured will be described as an example. FIG. 1 is a diagram showing a configuration of a multilayer ceramic capacitor manufactured by a method according to an embodiment of the present invention.
 図1に示すように、この積層セラミックコンデンサは、積層セラミック素子(積層セラミック電子部品素子)51中に、セラミック層52を介して、複数の内部電極53a,53bが積層され、かつ、セラミック層52を介して互いに対向する内部電極53a,53bが交互に積層セラミック素子51の逆側の端面54a,54bに引き出されて、該端面に形成された外部電極55a,55bに接続された構造を有している。 As shown in FIG. 1, the multilayer ceramic capacitor includes a multilayer ceramic element (multilayer ceramic electronic component element) 51 in which a plurality of internal electrodes 53 a and 53 b are stacked via a ceramic layer 52. The internal electrodes 53a and 53b facing each other are alternately drawn out to the opposite end faces 54a and 54b of the multilayer ceramic element 51 and connected to the external electrodes 55a and 55b formed on the end faces. ing.
 なお、この実施例1では、基材(支持フィルム)上に、第1誘電体グリーンシート(セラミックグリーンシート)、第1内部電極パターン、硬化樹脂層、第2誘電体グリーンシート(セラミックグリーンシート)、第2内部電極パターンを順次積層して、複合積層体を形成し、この複合積層体を所定数だけ積層する工程を経て積層セラミックコンデンサを製造する場合について説明する。 In Example 1, a first dielectric green sheet (ceramic green sheet), a first internal electrode pattern, a cured resin layer, and a second dielectric green sheet (ceramic green sheet) are formed on a base material (support film). A case will be described in which a multilayer ceramic capacitor is manufactured through a process of sequentially laminating the second internal electrode patterns to form a composite laminate, and laminating a predetermined number of this composite laminate.
 (1)本発明の実施例1にかかる積層セラミックコンデンサの作製
 <セラミックスラリーの調製>
 炭酸バリウム(BaCO3)および酸化チタン(TiO2)を1:1のモル比となるように秤量した。そして、Dy、Mgなどで変性し、ボールミルを用いて湿式混合し、脱水した後、乾燥させた。この乾燥粉末を、温度1000℃で2時間仮焼した後、乾式粉砕することにより、セラミック原料を得た。得られたセラミック原料60体積部と、バインダーとしてポリビニルブチラールの高重合品30体積部と、可塑剤としてフタル酸ジオクチル10体積部と、溶剤としてトルエン/エタノール(50/50)の混合物900体積部とを、直径1mmのジルコニア製玉石600体積部とともに、ボールミルに投入し、24時間湿式混合を行って、セラミックスラリーを調製した。
(1) Production of monolithic ceramic capacitor according to Example 1 of the present invention <Preparation of ceramic slurry>
Barium carbonate (BaCO 3 ) and titanium oxide (TiO 2 ) were weighed to a molar ratio of 1: 1. Then, it was denatured with Dy, Mg, etc., wet-mixed using a ball mill, dehydrated, and dried. The dried powder was calcined at a temperature of 1000 ° C. for 2 hours, and then dry pulverized to obtain a ceramic raw material. 60 parts by volume of the obtained ceramic raw material, 30 parts by volume of a highly polymerized polyvinyl butyral as a binder, 10 parts by volume of dioctyl phthalate as a plasticizer, and 900 parts by volume of a toluene / ethanol (50/50) mixture as a solvent, Was put into a ball mill together with 600 parts by volume of zirconia cobblestone having a diameter of 1 mm, and wet mixing was performed for 24 hours to prepare a ceramic slurry.
 <積層セラミックコンデンサの作製>
 上述のようにして調製したセラミックスラリーをコータ法により塗布して、図2に示すように、基材(支持フィルム)1上に厚さ1.2μmの第1誘電体グリーンシート(セラミックグリーンシート)2aを形成した。それから、80℃、5分間の条件で乾燥を行った。
<Production of multilayer ceramic capacitor>
The ceramic slurry prepared as described above was applied by a coater method, and a first dielectric green sheet (ceramic green sheet) having a thickness of 1.2 μm was formed on a substrate (support film) 1 as shown in FIG. 2a was formed. Then, drying was performed at 80 ° C. for 5 minutes.
 その後、乾燥させた第1誘電体グリーンシート2a上に、内部電極ペーストであるNi電極ペースト(内部電極ペースト)をスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第1内部電極パターン3aを形成した。 Thereafter, on the dried first dielectric green sheet 2a, an Ni electrode paste (internal electrode paste) that is an internal electrode paste is applied by screen printing, and dried at 60 ° C. for 5 minutes, A first internal electrode pattern 3a having a thickness of 0.5 μm was formed.
 なお、内部電極ペーストとしては、導電成分としてNi粉末を、溶剤としてジヒドロターピネオールアセテートを、バインダーとしてエチルセルロースを含むものを用いた。なお、以下の各実施例、比較例とも内部電極ペーストとしてはこの実施例1と同じものを用いている。 The internal electrode paste used was Ni powder as a conductive component, dihydroterpineol acetate as a solvent, and ethyl cellulose as a binder. In each of the following examples and comparative examples, the same internal electrode paste as in Example 1 is used.
 次に、第1誘電体グリーンシート2aと、その上に形成した第1内部電極パターン3aを覆うように、UV硬化性樹脂と、溶媒(水+イソプロピルアルコール(IPA))と、バインダ(アクリル系モノマー+光開始剤)とを含むUV硬化性樹脂溶液を所定の厚さ(0.01μm、0.03μm、0.10μm、0.20μm、0.22μm)になるように塗布し、UV硬化性樹脂層を形成し、5分間紫外線を照射することによりUV硬化性樹脂層を硬化させて、硬化樹脂層4を形成した。
 なお、本発明において用いることが可能な光硬化性樹脂の好ましい例としては、UV硬化性アクリル樹脂、UV硬化性ウレタンアクリレート、UV硬化性ポリエステルアクリレート、UV硬化性ウレタン樹脂、UV硬化性エポキシアクリレート、UV硬化性イミドアクリレートなどが例示される。
Next, a UV curable resin, a solvent (water + isopropyl alcohol (IPA)), and a binder (acrylic type) are covered so as to cover the first dielectric green sheet 2a and the first internal electrode pattern 3a formed thereon. A UV curable resin solution containing a monomer and a photoinitiator) to a predetermined thickness (0.01 μm, 0.03 μm, 0.10 μm, 0.20 μm, 0.22 μm), and UV curable A resin layer was formed, and the cured resin layer 4 was formed by curing the UV curable resin layer by irradiating ultraviolet rays for 5 minutes.
In addition, as a preferable example of the photocurable resin that can be used in the present invention, UV curable acrylic resin, UV curable urethane acrylate, UV curable polyester acrylate, UV curable urethane resin, UV curable epoxy acrylate, Examples thereof include UV curable imide acrylate.
 それから、硬化樹脂層4の上に、セラミックスラリーをコータ法により塗布して、厚さ1.2μmの第2誘電体グリーンシート(セラミックグリーンシート)2bを形成し、80℃で、5分間の条件で乾燥を行った。 Then, a ceramic slurry is applied onto the cured resin layer 4 by a coater method to form a second dielectric green sheet (ceramic green sheet) 2b having a thickness of 1.2 μm, and the condition for 5 minutes at 80 ° C. And dried.
 次に、第2誘電体グリーンシート2b上に、スクリーン印刷法によりNi電極ペーストを塗布し、60℃で5分間の条件で乾燥して、厚さ0.5μmの第2内部電極パターン3bを形成した。そして、これにより2層の誘電体グリーンシート2a,2bと、2層の内部電極パターン3a,3bを有する複合積層体10を得た。なお、この複合積層体10は、1層の硬化樹脂層4を備えている。 Next, a Ni electrode paste is applied on the second dielectric green sheet 2b by screen printing and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern 3b having a thickness of 0.5 μm. did. Thus, a composite laminate 10 having two layers of dielectric green sheets 2a and 2b and two layers of internal electrode patterns 3a and 3b was obtained. The composite laminate 10 includes one cured resin layer 4.
 得られた複合積層体10を連続剥離・積層機を用いて基材(支持フィルム)から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子(積層セラミック電子部品素子)となる未焼成の積層体を作製した。 The resulting composite laminate 10 is stacked with 300 sheets while being peeled from the substrate (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa. An unfired laminated body to be a multilayer ceramic electronic component element) was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、1200℃で焼成して、積層セラミック素子51(図1)を得た。なお、上述の硬化樹脂層は、この焼成工程で分解、燃焼して消失する。 Then, the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. to obtain a multilayer ceramic element 51 (FIG. 1). In addition, the above-mentioned cured resin layer decomposes | disassembles in this baking process, burns, and lose | disappears.
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、図1に示すような構造を有する、本発明の実施例にかかる積層セラミックコンデンサ(実施例の試料1~5)を得た。 Then, a multilayer ceramic capacitor according to the example of the present invention (sample 1 of the example) having a structure as shown in FIG. 1 is applied to the multilayer ceramic element by applying and baking a conductive paste for forming an external electrode. To 5) were obtained.
 (2)比較用の積層セラミックコンデンサ(比較例1)の作製
 この比較例1では、本発明の必須の構成要件である硬化樹脂層を形成する工程を設けることなく積層セラミックコンデンサを作製した。
 <セラミックスラリーの調製>
 この比較例1でも、上記実施例1の場合と同様の方法で調製された同じ組成のセラミックスラリーを用意した。
(2) Production of Comparative Multilayer Ceramic Capacitor (Comparative Example 1) In Comparative Example 1, a multilayer ceramic capacitor was produced without providing a step of forming a cured resin layer, which is an essential constituent element of the present invention.
<Preparation of ceramic slurry>
Also in Comparative Example 1, a ceramic slurry having the same composition prepared by the same method as in Example 1 was prepared.
 <積層セラミックコンデンサの作製>
 上記のセラミックスラリーをコータ法により塗布して、基材(支持フィルム)上に厚さ1.2μmの第1誘電体グリーンシートを形成し、80℃、5分間の条件で乾燥を行った。
<Production of multilayer ceramic capacitor>
The above ceramic slurry was applied by a coater method to form a first dielectric green sheet having a thickness of 1.2 μm on a base material (support film), and dried at 80 ° C. for 5 minutes.
 その後、乾燥させた第1誘電体グリーンシート上に、内部電極ペーストであるNi電極ペースト(内部電極ペースト)をスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第1内部電極パターンを形成した。 Thereafter, a Ni electrode paste (internal electrode paste), which is an internal electrode paste, is applied on the dried first dielectric green sheet by screen printing, and dried under conditions of 60 ° C. for 5 minutes. A first internal electrode pattern having a thickness of 0.5 μm was formed.
 次に、上記セラミックスラリーをコータ法により塗布して、第1誘電体グリーンシート上に形成した第1内部電極パターン上に、厚さ1.2μmの第2誘電体グリーンシートを形成し、80℃で、5分間の条件で乾燥を行った。 Next, the ceramic slurry is applied by a coater method to form a second dielectric green sheet having a thickness of 1.2 μm on the first internal electrode pattern formed on the first dielectric green sheet. Then, drying was performed for 5 minutes.
 それから、第2誘電体グリーンシート上に、スクリーン印刷法によりNi電極ペーストを塗布し、60℃で5分間の条件で乾燥して、厚さ0.5μmの第2内部電極パターンを形成した。そして、これにより2層の誘電体グリーンシートと、2層の内部電極パターンを有する複合積層体を得た。なお、この複合積層体は、硬化樹脂層を備えていない。 Then, a Ni electrode paste was applied by screen printing on the second dielectric green sheet and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern having a thickness of 0.5 μm. Thus, a composite laminate having two layers of dielectric green sheets and two layers of internal electrode patterns was obtained. In addition, this composite laminated body is not provided with the cured resin layer.
 得られた複合積層体を連続剥離・積層機を用いて基材(支持フィルム)から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子となる未焼成の積層体を作製した。 300 sheets are stacked while peeling the obtained composite laminate from the base material (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa to become a laminated ceramic element after firing. An unfired laminate was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、1200℃で焼成して、積層セラミック素子を得た。
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、図1に示すような構造を有する積層セラミックコンデンサ(比較例1)を得た。
The obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and fired at 1200 ° C. to obtain a multilayer ceramic element.
Then, a multilayer ceramic capacitor (Comparative Example 1) having a structure as shown in FIG. 1 was obtained by applying a conductive paste for forming external electrodes to this multilayer ceramic element and baking it.
 (3)比較用の積層セラミックコンデンサ(比較例2)の作製
 この比較例2では、本発明の必須の構成要件である硬化樹脂層を設ける工程を設けない一方で、セラミックグリーンシートを硬化させる工程を経て積層セラミックコンデンサを作製した。以下、説明を行う。
(3) Production of Comparative Multilayer Ceramic Capacitor (Comparative Example 2) In Comparative Example 2, the process of curing the ceramic green sheet is not provided while the process of providing the cured resin layer, which is an essential component of the present invention, is not provided. After that, a multilayer ceramic capacitor was produced. A description will be given below.
 <セラミックスラリーの調製>
 まず、炭酸バリウム(BaCO3)および酸化チタン(TiO2)を1:1のモル比となるように秤量した。これをDy、Mgなどで変性し、ボールミルを用いて湿式混合し、脱水した後、乾燥させた。この乾燥粉末を、温度1000℃で2時間仮焼した後、乾式粉砕することにより、セラミック原料を得た。得られたセラミック原料60体積部と、バインダーとしてポリビニルブチラールの高重合品30体積部と、ポリビニルブチラールの硬化剤としてトリレンジイソシアネート(TDI)10体積部と、溶剤としてトルエン/エタノール(50/50)の混合物900体積部とを、直径1mmのジルコニア製玉石600体積部とともに、ボールミルに投入し、24時間湿式混合を行って、セラミックスラリーS1を調製した。
<Preparation of ceramic slurry>
First, barium carbonate (BaCO 3 ) and titanium oxide (TiO 2 ) were weighed so as to have a molar ratio of 1: 1. This was modified with Dy, Mg, etc., wet-mixed using a ball mill, dehydrated, and dried. The dried powder was calcined at a temperature of 1000 ° C. for 2 hours, and then dry pulverized to obtain a ceramic raw material. 60 parts by volume of the obtained ceramic raw material, 30 parts by volume of a highly polymerized polyvinyl butyral as a binder, 10 parts by volume of tolylene diisocyanate (TDI) as a curing agent for polyvinyl butyral, and toluene / ethanol (50/50) as a solvent The ceramic slurry S1 was prepared by putting 900 parts by volume of the mixture into a ball mill together with 600 parts by volume of zirconia cobblestone having a diameter of 1 mm and performing wet mixing for 24 hours.
 また、炭酸バリウム(BaCO3)および酸化チタン(TiO2)を1:1のモル比となるように秤量した。これに、Dy、Mgなどで変性して、ボールミルを用いて湿式混合し、脱水した後、乾燥させた。この乾燥粉末を、温度1000℃で2時間仮焼した後、乾式粉砕することにより、セラミック原料を得た。得られたセラミック原料60体積部と、バインダーとしてポリビニルブチラールの高重合品30体積部と、可塑剤としてフタル酸ジオクチル10体積部と、溶剤としてトルエン/エタノール(50/50)の混合物900体積部とを、直径1mmのジルコニア製玉石600体積部とともに、ボールミルに投入し、24時間湿式混合を行って、セラミックスラリーS2を調製した。このセラミックスラリーS2は、上記実施例1の積層セラミックコンデンサを製造するのに用いたセラミックスラリーと同じものである。 Further, barium carbonate (BaCO 3) and titanium oxide (TiO 2) 1: were weighed so that a molar ratio. This was modified with Dy, Mg, etc., wet-mixed using a ball mill, dehydrated, and dried. The dried powder was calcined at a temperature of 1000 ° C. for 2 hours, and then dry pulverized to obtain a ceramic raw material. 60 parts by volume of the obtained ceramic raw material, 30 parts by volume of a highly polymerized polyvinyl butyral as a binder, 10 parts by volume of dioctyl phthalate as a plasticizer, and 900 parts by volume of a toluene / ethanol (50/50) mixture as a solvent, Was put into a ball mill together with 600 parts by volume of zirconia cobblestone having a diameter of 1 mm, and wet mixing was performed for 24 hours to prepare ceramic slurry S2. This ceramic slurry S2 is the same as the ceramic slurry used to manufacture the multilayer ceramic capacitor of Example 1 above.
 <積層セラミックコンデンサの作製>
 上述のようにして作製したセラミックスラリーS1をコータ法により塗布して、基材(支持フィルム)上に厚さ1.2μmの第1誘電体グリーンシートを形成し、80℃、5分間の条件で乾燥を行った。
 それから、乾燥させた第1誘電体グリーンシートを、150℃で10分間熱処理することにより、第1誘電体グリーンシートを硬化させた。
<Production of multilayer ceramic capacitor>
The ceramic slurry S1 produced as described above is applied by a coater method to form a first dielectric green sheet having a thickness of 1.2 μm on the base material (support film), and the condition is 80 ° C. for 5 minutes. Drying was performed.
Then, the dried first dielectric green sheet was heat-treated at 150 ° C. for 10 minutes to cure the first dielectric green sheet.
 その後、硬化させた第1誘電体グリーンシート上に、内部電極ペーストであるNi電極ペーストをスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第1内部電極パターンを形成した。 Thereafter, a Ni electrode paste, which is an internal electrode paste, is applied on the cured first dielectric green sheet by a screen printing method, and dried under conditions of 60 ° C. for 5 minutes to obtain a thickness of 0.5 μm. A first internal electrode pattern was formed.
 次に、上記セラミックスラリーS2をコータ法により塗布して、第1誘電体グリーンシート上に形成した第1内部電極パターン上に、厚さ1.2μmの第2誘電体グリーンシートを形成し、80℃、5分間の条件で乾燥を行った。 Next, the ceramic slurry S2 is applied by a coater method to form a second dielectric green sheet having a thickness of 1.2 μm on the first internal electrode pattern formed on the first dielectric green sheet. Drying was performed at 5 ° C. for 5 minutes.
 それから、第2誘電体グリーンシート上に、スクリーン印刷法によりNi電極ペーストを塗布し、60℃で5分間の条件で乾燥して、厚さ0.5μmの第2内部電極パターンを形成することにより、2層の誘電体グリーンシートと2層の内部電極パターンを有する複合積層体を得た。なお、この複合積層体は、硬化樹脂層を備えていない。
 得られた複合積層体を連続剥離・積層機を用いて基材(支持フィルム)から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子となる未焼成の積層体を作製した。
Then, Ni electrode paste is applied on the second dielectric green sheet by screen printing, and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern having a thickness of 0.5 μm. A composite laminate having two layers of dielectric green sheets and two layers of internal electrode patterns was obtained. In addition, this composite laminated body is not provided with the cured resin layer.
300 sheets are stacked while peeling the obtained composite laminate from the base material (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa to become a laminated ceramic element after firing. An unfired laminate was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、1200℃で焼成して、積層セラミック素子を得た。 The obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. to obtain a multilayer ceramic element.
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、比較例2の積層セラミックコンデンサを得た。なお、この比較例2の積層セラミックコンデンサの構造は、上記比較例1の積層セラミックコンデンサと同じである。 Then, the multilayer ceramic capacitor of Comparative Example 2 was obtained by applying a conductive paste for forming external electrodes to this multilayer ceramic element and baking it. The structure of the multilayer ceramic capacitor of Comparative Example 2 is the same as that of the multilayer ceramic capacitor of Comparative Example 1.
 (4)特性の評価
 上述のようにして作製した実施例1の積層セラミックコンデンサ(試料1~5)と比較例1および2の積層セラミックコンデンサについて、電気特性不良率と、構造欠陥発生率を調べた。
(4) Evaluation of characteristics For the multilayer ceramic capacitor of Example 1 (samples 1 to 5) and the multilayer ceramic capacitors of Comparative Examples 1 and 2 manufactured as described above, the electrical property defect rate and the structural defect occurrence rate were investigated. It was.
 なお、電気特性不良率は、上記実施例1の試料1~5と、比較例1および2の試料について、ショート不良の発生率を調べ(n=100)、これを電気特性不良率とした。
 また、構造欠陥発生率は、上記実施例1の試料1~5および比較例1および2の試料について、デラミネーションの発生率を調べ(n=100)、これを電気特性不良率とした。
 その結果を表1に示す。
As for the electrical property defect rate, the occurrence rate of short-circuit failure was examined for the samples 1 to 5 of Example 1 and the samples of Comparative Examples 1 and 2 (n = 100), and this was defined as the electrical property defect rate.
As for the structural defect occurrence rate, the occurrence rate of delamination was examined for the samples 1 to 5 of Example 1 and the samples of Comparative Examples 1 and 2 (n = 100), and this was defined as the electrical property defect rate.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、誘電体シートを硬化させることなく、また、硬化樹脂層を設けるようにしていない比較例1の積層セラミックコンデンサの場合、誘電体シートどうしの接合力は損なわれないことからデラミネーション発生率は低いが、シートアタックを防止することができないためショート不良発生率が高くなることが確認された。 As shown in Table 1, in the case of the multilayer ceramic capacitor of Comparative Example 1 in which the dielectric sheet is not cured and the cured resin layer is not provided, the bonding force between the dielectric sheets is not impaired. Although the delamination occurrence rate is low, it has been confirmed that the occurrence of a short circuit failure is high because sheet attack cannot be prevented.
 また、硬化樹脂層を設けないことは比較例1と同じであるが、第1誘電体シートを硬化させるようにした比較例2の積層セラミックコンデンサの場合、シートアタックを抑制してショート不良発生率を低減することはできるが、第1誘電体シートを硬化させているので、圧着時の流動性に乏しく、層間密着力が低下することに起因して、デラミネーション発生率が増大した。 In addition, in the case of the multilayer ceramic capacitor of Comparative Example 2 in which the first dielectric sheet is cured, the short circuit occurrence rate is suppressed by suppressing the sheet attack. However, since the first dielectric sheet is cured, the fluidity at the time of pressure bonding is poor, and the delamination generation rate is increased due to a decrease in interlayer adhesion.
 これに対し、実施例1の積層セラミックコンデンサ(実施例の試料1~5)の場合、比較例1および2の積層セラミックコンデンサに比べて、特性を大幅に改善できることが確認された。 On the other hand, it was confirmed that the characteristics of the multilayer ceramic capacitor of Example 1 (Samples 1 to 5 of the Example) can be significantly improved as compared with the multilayer ceramic capacitors of Comparative Examples 1 and 2.
 特に、実施例の試料2~4のように、硬化樹脂層を設けるとともに、その厚さを0.03~0.20μmとした場合、ショート不良発生率を2%以下、デラミネーション発生率を3%以下にすることができた。 In particular, when the cured resin layer is provided and the thickness is set to 0.03 to 0.20 μm as in Samples 2 to 4 of the example, the short-circuit defect occurrence rate is 2% or less, and the delamination occurrence rate is 3 % Or less.
 一方、硬化樹脂層の厚さを0.01μmとした実施例の試料1の場合、デラミネーション発生率は2%と低いが、ショート不良発生率が13%と高くなることが確認された。これは、硬化樹脂層の厚さがシートアタックを十分に防止することが可能な厚さを有していないことによるものである。 On the other hand, in the case of Sample 1 of the example in which the thickness of the cured resin layer was 0.01 μm, it was confirmed that the delamination occurrence rate was as low as 2%, but the short-circuit defect occurrence rate was as high as 13%. This is because the thickness of the cured resin layer does not have a thickness that can sufficiently prevent sheet attack.
 また、硬化樹脂層の厚さを0.22μmとした実施例の試料5の場合、ショート不良発生率は2%と低いが、デラミネーション発生率が15%と高くなることが確認された。これは、硬化樹脂層が0.20μmを超えると、脱脂工程での硬化樹脂層の熱分解後に、第1誘電体グリーンシートと第2誘電体グリーンシートの間、および第1内部電極パターンと第2誘電体グリーンシートの間に空隙層が発生することによるものと考えられる。 Further, in the case of Sample 5 of the example in which the thickness of the cured resin layer was 0.22 μm, it was confirmed that the short-circuit defect occurrence rate was as low as 2%, but the delamination occurrence rate was as high as 15%. This is because when the cured resin layer exceeds 0.20 μm, after the thermal decomposition of the cured resin layer in the degreasing step, between the first dielectric green sheet and the second dielectric green sheet and between the first internal electrode pattern and the first It is considered that a void layer is generated between the two dielectric green sheets.
 したがって、この実施例1の条件では、ショート不良発生率を2%以下、デラミネーション発生率を3%以下におさえるためには、硬化樹脂層の厚さを0.03~0.2μmの範囲とすることが望ましいことが分かる。 Therefore, under the conditions of Example 1, in order to keep the short-circuit defect occurrence rate at 2% or less and the delamination occurrence rate at 3% or less, the thickness of the cured resin layer is in the range of 0.03 to 0.2 μm. It turns out to be desirable.
 この実施例2では、基材(支持フィルム)上に、まず第1内部電極パターンを形成し、その上に順次、硬化樹脂層、第1誘電体グリーンシート(セラミックグリーンシート)、第2内部電極パターン、硬化樹脂層、第2誘電体グリーンシート(セラミックグリーンシート)を積層して複合積層体を形成し、この複合積層体を所定枚数積層する工程を経て積層セラミックコンデンサを製造する場合について説明する。なお、この実施例2の場合にも、上記実施例1の場合と同様に、図1に示すような構造を有する積層セラミックコンデンサを製造した。
 以下説明を行う。
In Example 2, a first internal electrode pattern is first formed on a substrate (support film), and a cured resin layer, a first dielectric green sheet (ceramic green sheet), and a second internal electrode are sequentially formed thereon. A case will be described in which a multilayer laminate is formed by laminating a pattern, a cured resin layer, and a second dielectric green sheet (ceramic green sheet), and a multilayer ceramic capacitor is manufactured through a process of laminating a predetermined number of this multilayer laminate. . Also in the case of Example 2, a multilayer ceramic capacitor having a structure as shown in FIG.
A description will be given below.
 (1)本発明の実施例2にかかる積層セラミックコンデンサの作製
 <セラミックスラリーの調製>
 炭酸バリウム(BaCO3)および酸化チタン(TiO2)を1:1のモル比となるように秤量した。これに、Dy、Mgなどで変性して、ボールミルを用いて湿式混合し、脱水した後、乾燥させた。この乾燥粉末を、温度1000℃で2時間仮焼した後、乾式粉砕することにより、セラミック原料を得た。得られたセラミック原料60体積部と、バインダーとしてポリビニルブチラールの高重合品30体積部と、可塑剤としてフタル酸ジオクチル10体積部と、溶剤としてトルエン/エタノール(50/50)の混合物900体積部とを、直径1mmのジルコニア製玉石600体積部とともに、ボールミルに投入し、24時間湿式混合を行って、セラミックスラリーを得た。
(1) Production of multilayer ceramic capacitor according to Example 2 of the present invention <Preparation of ceramic slurry>
Barium carbonate (BaCO 3 ) and titanium oxide (TiO 2 ) were weighed to a molar ratio of 1: 1. This was modified with Dy, Mg, etc., wet-mixed using a ball mill, dehydrated, and dried. The dried powder was calcined at a temperature of 1000 ° C. for 2 hours, and then dry pulverized to obtain a ceramic raw material. 60 parts by volume of the obtained ceramic raw material, 30 parts by volume of a highly polymerized polyvinyl butyral as a binder, 10 parts by volume of dioctyl phthalate as a plasticizer, and 900 parts by volume of a toluene / ethanol (50/50) mixture as a solvent, Was put into a ball mill together with 600 parts by volume of zirconia cobblestone having a diameter of 1 mm, and wet mixing was performed for 24 hours to obtain a ceramic slurry.
 <積層セラミックコンデンサの作製>
 図3に示すように、基材(支持フィルム)1上に、スクリーン印刷法により、所定パターンで内部電極ペースト(Niペースト)を印刷し、60℃で5分間乾燥して厚さ0.5μmの第1内部電極パターン3aを形成した。 
<Production of multilayer ceramic capacitor>
As shown in FIG. 3, an internal electrode paste (Ni paste) is printed in a predetermined pattern on a base material (support film) 1 by a screen printing method, dried at 60 ° C. for 5 minutes, and a thickness of 0.5 μm. A first internal electrode pattern 3a was formed.
 それから、基材1上および第1内部電極パターン3a上に、UV硬化性樹脂と、溶媒(水+イソプロピルアルコール(IPA))と、バインダ(アクリル系モノマー+光開始剤)とを含むUV硬化性樹脂溶液を所定の厚さ(0.01μm、0.03μm、0.10μm、0.20μm、0.22μm)になるように塗布してUV硬化性樹脂層を形成し、5分間紫外線を照射することでUV硬化性樹脂層を硬化させて、第1硬化樹脂層4aを形成した。 Then, a UV curable composition including a UV curable resin, a solvent (water + isopropyl alcohol (IPA)), and a binder (acrylic monomer + photoinitiator) on the substrate 1 and the first internal electrode pattern 3a. The resin solution is applied to a predetermined thickness (0.01 μm, 0.03 μm, 0.10 μm, 0.20 μm, 0.22 μm) to form a UV curable resin layer, and irradiated with ultraviolet rays for 5 minutes. Thus, the UV curable resin layer was cured to form the first cured resin layer 4a.
 次に、この第1硬化樹脂層4a上に、上述のようにして作製したセラミックスラリーを、コータ法により塗布して、UV硬化性樹脂層の全面に、厚さ1.2μmの第1誘電体グリーンシート2aを形成し、80℃、5分間の条件で乾燥を行った。 Next, the ceramic slurry prepared as described above is applied onto the first cured resin layer 4a by a coater method, and the first dielectric having a thickness of 1.2 μm is formed on the entire surface of the UV curable resin layer. The green sheet 2a was formed and dried under conditions of 80 ° C. and 5 minutes.
 その後、乾燥させた第1誘電体グリーンシート2a上に、内部電極ペーストであるNi電極ペーストをスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第2内部電極パターン3bを形成した。 Thereafter, a Ni electrode paste as an internal electrode paste is applied on the dried first dielectric green sheet 2a by a screen printing method and dried under conditions of 60 ° C. for 5 minutes to obtain a thickness of 0.5 μm. The second internal electrode pattern 3b was formed.
 次に、第2内部電極パターン3bとその周囲の第1誘電体グリーンシート2aを覆うように、UV硬化性樹脂と、溶媒(水+イソプロピルアルコール(IPA))と、バインダー(アクリル系モノマー+光開始剤)とを含むUV硬化性樹脂溶液を所定の厚さ(0.01μm、0.03μm、0.10μm、0.20μm、0.22μm)になるように塗布して、UV硬化性樹脂層を形成し、5分間紫外線を照射することでUV硬化性樹脂層を硬化させて、第2硬化樹脂層4bを形成した。 Next, a UV curable resin, a solvent (water + isopropyl alcohol (IPA)), a binder (acrylic monomer + light) so as to cover the second internal electrode pattern 3b and the first dielectric green sheet 2a around the second internal electrode pattern 3b. A UV curable resin solution containing an initiator) to a predetermined thickness (0.01 μm, 0.03 μm, 0.10 μm, 0.20 μm, 0.22 μm), and a UV curable resin layer The UV curable resin layer was cured by irradiating ultraviolet rays for 5 minutes to form the second cured resin layer 4b.
 それから、第2硬化樹脂層4bの上に、上記のセラミックスラリーをコータ法により塗布し、80℃、5分間の条件で乾燥を行って、厚さ1.2μmの第2誘電体グリーンシート2bを形成することにより、2層の誘電体グリーンシート2a,2bと2層の内部電極パターン3a,3bを有する複合積層体10を得た。なお、この複合積層体10は、2層の硬化樹脂層4a,4bを備えている。 Then, the above ceramic slurry is applied onto the second cured resin layer 4b by a coater method and dried under the conditions of 80 ° C. for 5 minutes to obtain a second dielectric green sheet 2b having a thickness of 1.2 μm. By forming, a composite laminate 10 having two layers of dielectric green sheets 2a and 2b and two layers of internal electrode patterns 3a and 3b was obtained. The composite laminate 10 includes two layers of cured resin layers 4a and 4b.
 得られた複合積層体10を連続剥離・積層機を用いて基材(支持フィルム)1から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子となる未焼成の積層体を作製した。 300 layers of the composite laminate 10 thus obtained are stacked while being peeled from the substrate (support film) 1 using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa, so that a laminated ceramic element after firing. An unfired laminate was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、1200℃で焼成して、積層セラミック素子を得た。
 なお、上述の硬化樹脂層は、この焼成工程で分解、燃焼して消失する。
The obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and fired at 1200 ° C. to obtain a multilayer ceramic element.
In addition, the above-mentioned cured resin layer is decomposed | disassembled and combusted by this baking process, and lose | disappears.
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、本発明の実施例2にかかる積層セラミックコンデンサ(実施例の試料6~10)を得た。この積層セラミックコンデンサの構造は、図1に示した、上記実施例1のものと同じである。 Then, a conductive paste for forming an external electrode was applied to this multilayer ceramic element and baked to obtain multilayer ceramic capacitors (Samples 6 to 10 of Examples) according to Example 2 of the present invention. The structure of this multilayer ceramic capacitor is the same as that of the first embodiment shown in FIG.
 (2)比較用の積層セラミックコンデンサ(比較例3)の作製
 上記の第1および第2の硬化樹脂層を設ける工程を備えていないことを除いて、実施例2の場合と同様の方法で比較用の積層セラミックコンデンサ(比較例3)を作製した。
(2) Production of a multilayer ceramic capacitor for comparison (Comparative Example 3) A comparison is made in the same manner as in Example 2 except that it does not include the step of providing the first and second cured resin layers. A multilayer ceramic capacitor (Comparative Example 3) was prepared.
 (3)特性の評価
 上述のようにして作製した実施例2の積層セラミックコンデンサ(試料6~10)と比較例3の積層セラミックコンデンサについて、電気特性不良率と、構造欠陥発生率を調べた。
(3) Evaluation of characteristics For the multilayer ceramic capacitor of Example 2 (samples 6 to 10) and the multilayer ceramic capacitor of Comparative Example 3 manufactured as described above, the electrical property defect rate and the structural defect occurrence rate were examined.
 なお、電気特性不良率は、上記実施例2の各試料および比較例3の試料について、ショート不良の発生率を調べ(n=100)、これを電気特性不良率とした。 The electrical property defect rate was determined as the electrical property defect rate by examining the occurrence rate of short-circuit defects for each sample of Example 2 and the sample of Comparative Example 3 (n = 100).
 また、構造欠陥発生率は、上記実施例2の各試料および比較例3の試料について、デラミネーションの発生率を調べ(n=100)、これを構造欠陥発生率とした。
 その結果を表2に示す。
Further, the structural defect occurrence rate was examined for the delamination occurrence rate for each sample of Example 2 and the sample of Comparative Example 3 (n = 100), and this was defined as the structural defect occurrence rate.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 硬化樹脂層を設けるようにしていない比較例3の積層セラミックコンデンサの場合、デラミネーション発生率は低いが、シートアタックを阻止することができないため、ショート不良発生率が高くなることが確認された。 In the case of the multilayer ceramic capacitor of Comparative Example 3 in which the cured resin layer was not provided, it was confirmed that although the delamination occurrence rate is low, the sheet attack cannot be prevented, so the short failure occurrence rate is increased.
 これに対し、実施例2の積層セラミックコンデンサ(実施例の試料6~10)の場合、比較例3の積層セラミックコンデンサに比べて、特性を改善できることが確認された。 In contrast, it was confirmed that the characteristics of the multilayer ceramic capacitor of Example 2 (Samples 6 to 10 of Example) can be improved as compared with the multilayer ceramic capacitor of Comparative Example 3.
 特に、実施例の試料7~9のように、硬化樹脂層を設けるとともに、その厚さを0.03~0.20μmとした場合、ショート不良発生率およびデラミネーション発生率をいずれも3%以下にすることができた。 In particular, when the cured resin layer is provided and the thickness is set to 0.03 to 0.20 μm as in Samples 7 to 9 of the examples, the short-circuit defect occurrence rate and the delamination occurrence rate are both 3% or less. I was able to.
 ただし、硬化樹脂層の厚さを0.01μmとした実施例の試料6の場合、デラミネーション発生率は2%と低いが、ショート不良発生率が14%と高くなることが確認された。これは、硬化樹脂層の厚さがシートアタックを十分に防止するのに必要な厚さを有していないことによるものと考えられる。 However, in the case of Sample 6 of the example in which the thickness of the cured resin layer was 0.01 μm, it was confirmed that the delamination occurrence rate was as low as 2%, but the short-circuit defect occurrence rate was as high as 14%. This is presumably because the thickness of the cured resin layer does not have a thickness necessary to sufficiently prevent sheet attack.
 また、硬化樹脂層の厚さを0.22μmとした実施例の試料10の場合、ショート不良発生率は3%と低いが、デラミネーション発生率が17%と高くなることが確認された。これは、硬化樹脂層が0.20μmを超えると、脱脂工程での硬化樹脂層の熱分解後に、第1誘電体グリーンシートと第2誘電体グリーンシートの間、第1内部電極パターンと第1誘電体グリーンシートの間、および第2内部電極パターンと第2誘電体グリーンシートの間に空隙層が発生することによるものと考えられる。 Further, in the case of the sample 10 of the example in which the thickness of the cured resin layer was 0.22 μm, it was confirmed that the short-circuit defect occurrence rate is as low as 3%, but the delamination occurrence rate is as high as 17%. This is because, when the cured resin layer exceeds 0.20 μm, the first internal electrode pattern and the first dielectric green sheet are formed between the first dielectric green sheet and the second dielectric green sheet after the thermal decomposition of the cured resin layer in the degreasing process. It is considered that a void layer is generated between the dielectric green sheets and between the second internal electrode pattern and the second dielectric green sheet.
 したがって、この実施例2の条件では、ショート不良発生率およびデラミネーション発生率を3%以下におさえるためには、硬化樹脂層の厚さを0.03~0.2μmの範囲とすることが望ましいことが分かる。 Therefore, under the conditions of Example 2, it is desirable that the thickness of the cured resin layer be in the range of 0.03 to 0.2 μm in order to keep the short-circuit defect occurrence rate and delamination occurrence rate below 3%. I understand that.
 図4に示すように、第1内部電極パターン3a間、および第2内部電極パターン3b間に、段差吸収用誘電体ペーストを塗布し、60℃で5分間乾燥して段差吸収用誘電体パターン(段差吸収層))20を形成した以外は、実施例1と同様にして積層セラミックコンデンサ(実施例の試料11~15)を作製した。
 なお、図4において、図2と同一符号を付した部分は同一または相当する部分を示す。
As shown in FIG. 4, a step absorbing dielectric paste is applied between the first internal electrode patterns 3a and between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes, Multilayer ceramic capacitors (Samples 11 to 15 in Examples) were produced in the same manner as in Example 1 except that the step absorbing layer)) 20 was formed.
In FIG. 4, the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
 また、第1内部電極パターン間、および第2内部電極パターン間に、段差吸収用誘電体ペーストを塗布し、60℃で5分間乾燥して段差吸収用誘電体パターンを形成した以外は、上記実施例1における比較例1および2の場合と同様の方法で比較例4および5の積層セラミックコンデンサを作製した。 Further, the above steps were performed except that a step absorbing dielectric paste was applied between the first internal electrode patterns and between the second internal electrode patterns and dried at 60 ° C. for 5 minutes to form a step absorbing dielectric pattern. The multilayer ceramic capacitors of Comparative Examples 4 and 5 were produced in the same manner as in Comparative Examples 1 and 2 in Example 1.
 なお、段差吸収用誘電体ペーストとしては、第1および第2誘電体グリーンシートを形成するのに用いたセラミックスラリーと同一のセラミック材料を含むとともに、溶剤としてジヒドロターピネオールアセテートを、バインダーとしてポリビニルブチラールを含むペーストを用いた。
 そして、この実施例3で作製した実施例の試料について、上記実施例1の場合と同様の方法でその特性を調べた。その結果を表3に示す。
The step absorbing dielectric paste includes the same ceramic material as the ceramic slurry used to form the first and second dielectric green sheets, dihydroterpineol acetate as the solvent, and polyvinyl butyral as the binder. The containing paste was used.
And about the sample of the Example produced in this Example 3, the characteristic was investigated by the method similar to the case of the said Example 1. FIG. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この実施例3の場合、上述のように、第1内部電極パターン間、および第2内部電極パターン間に、段差吸収用誘電体ペーストを塗布するようにしていることから、圧着時に全体を均一に圧着することが可能になる。その結果、表3に示すように、実施例1の場合よりも、さらに特性を改善することが可能になる。 In the case of this Example 3, as described above, the step absorbing dielectric paste is applied between the first internal electrode patterns and between the second internal electrode patterns, so that the whole is made uniform at the time of pressure bonding. It becomes possible to crimp. As a result, as shown in Table 3, it is possible to further improve the characteristics as compared with the case of Example 1.
 また、この実施例3の条件でも、ショート不良発生率を2%以下、デラミネーション発生率を3%以下に抑えるためには、硬化樹脂層の厚さを0.03~0.2μmの範囲とすることが望ましいことが確認された。 Further, even in the conditions of Example 3, in order to suppress the short-circuit defect occurrence rate to 2% or less and the delamination occurrence rate to 3% or less, the thickness of the cured resin layer is set to a range of 0.03 to 0.2 μm. It was confirmed that it was desirable to do.
 図5に示すように、第1内部電極パターン3a間、および第2内部電極パターン3b間に、段差吸収用誘電体ペーストを塗布し、60℃で5分間乾燥して段差吸収用誘電体パターン(段差吸収層))20を形成した以外は、実施例2と同様にして積層セラミックコンデンサ(実施例の試料16~20)を作製した。
 なお、図5において、図3と同一符号を付した部分は同一または相当する部分を示す。
As shown in FIG. 5, a step absorbing dielectric paste is applied between the first internal electrode patterns 3a and between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes, Multilayer ceramic capacitors (Samples 16 to 20 in Examples) were produced in the same manner as in Example 2 except that the step absorption layer)) 20 was formed.
In FIG. 5, the parts denoted by the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
 また、第1および第2の硬化樹脂層を設ける工程を備えていないことを除いて、この実施例4の場合と同様の方法で比較用の積層セラミックコンデンサ(比較例6)を作製した。
 なお、段差吸収用誘電体ペーストとしては、上記実施例3で用いたものと同じものを用いた。
Further, a comparative multilayer ceramic capacitor (Comparative Example 6) was produced in the same manner as in Example 4 except that the step of providing the first and second cured resin layers was not provided.
As the step absorbing dielectric paste, the same one as used in Example 3 was used.
 そして、この実施例4で作製した実施例の試料16~20および比較例6の試料について、上記実施例1の場合と同様の方法でその特性を調べた。その結果を表4に示す。 Then, the characteristics of the samples 16 to 20 of the example produced in Example 4 and the sample of Comparative Example 6 were examined by the same method as in Example 1 above. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、この実施例4の場合、上述のように、第1内部電極パターン間、および第2内部電極パターン間に、段差吸収用誘電体ペーストを塗布するようにしていることから、圧着時に全体を均一に圧着することが可能になるため、実施例1の場合よりも、さらに特性が向上する傾向があることが確認された。 As shown in Table 4, in the case of this Example 4, as described above, the step absorbing dielectric paste is applied between the first internal electrode patterns and between the second internal electrode patterns. It was confirmed that the characteristics tend to be further improved as compared with the case of Example 1 because it becomes possible to uniformly crimp the whole during the crimping.
 また、この実施例4の条件でも、硬化樹脂層の厚さを0.03~0.2μmの範囲とすることにより、ショート不良発生率を3%以下、デラミネーション発生率を2%以下に抑えることが可能になることが確認された。 Even under the conditions of Example 4, by setting the thickness of the cured resin layer in the range of 0.03 to 0.2 μm, the short-circuit defect occurrence rate is suppressed to 3% or less, and the delamination occurrence rate is suppressed to 2% or less. It was confirmed that it would be possible.
 硬化樹脂層を形成するのに、UV硬化性樹脂溶液の代わりに、熱硬化性樹脂と、溶剤(水+イソプロピルアルコール(IPA))と、バインダ(アクリル系モノマー)とを含む熱硬化性樹脂溶液を用い、硬化条件を120℃で5分間とした以外は、実施例1と同様にして積層セラミックコンデンサ(実施例の試料21~25)を作製した。 A thermosetting resin solution containing a thermosetting resin, a solvent (water + isopropyl alcohol (IPA)), and a binder (acrylic monomer) instead of the UV curable resin solution to form the cured resin layer. A multilayer ceramic capacitor (Samples 21 to 25 in Examples) was produced in the same manner as in Example 1 except that the curing condition was changed to 120 ° C. for 5 minutes.
 なお、本発明において用いることが可能な熱硬化性樹脂の好ましい例としては熱硬化性アクリル樹脂、熱硬化性エポキシ樹脂、熱硬化性ウレタンアクリレート、熱硬化性ポリエステルアクリレート、熱硬化性ウレタン樹脂、熱硬化性ユリア樹脂、熱硬化性メラミン樹脂などが例示される。 In addition, as a preferable example of the thermosetting resin which can be used in this invention, a thermosetting acrylic resin, a thermosetting epoxy resin, a thermosetting urethane acrylate, a thermosetting polyester acrylate, a thermosetting urethane resin, heat | fever Examples thereof include a curable urea resin and a thermosetting melamine resin.
 また、実施例1における比較例1,2と同様の方法で比較例7および8の積層セラミックコンデンサを作製した。すなわち、この比較例7および8は、実施例1における比較例1,2とは、ロットは異なるが同じものである。 Also, multilayer ceramic capacitors of Comparative Examples 7 and 8 were produced in the same manner as in Comparative Examples 1 and 2 in Example 1. That is, Comparative Examples 7 and 8 are the same as Comparative Examples 1 and 2 in Example 1, although the lots are different.
 そして、この実施例5で作製した実施例の試料21~25および比較例7,8の試料について、上記実施例1の場合と同様の方法でその特性を調べた。その結果を表5に示す。 The characteristics of the samples 21 to 25 and the samples of comparative examples 7 and 8 produced in this example 5 were examined in the same manner as in the case of the above example 1. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示す通り、硬化樹脂層を形成するのに、熱硬化性樹脂溶液を用いた場合、樹脂を硬化させるための加熱工程での基材の膨張などにより、UV硬化性樹脂溶液を用いた場合よりもわずかに特性が低下したが、それでも、実施例1の場合に準じる効果が得られることが確認された。 As shown in Table 5, when the thermosetting resin solution was used to form the cured resin layer, the UV curable resin solution was used due to the expansion of the base material in the heating step for curing the resin. Although the characteristics were slightly lower than in the case, it was confirmed that the effect similar to that in Example 1 was obtained.
 また、この実施例5の条件でも、硬化樹脂層の厚さを0.03~0.2μmの範囲とすることにより、ショート不良発生率を3%以下、デラミネーション発生率を4%以下に抑えることが可能になることが確認された。 Even under the conditions of Example 5, by setting the thickness of the cured resin layer in the range of 0.03 to 0.2 μm, the short-circuit defect occurrence rate is suppressed to 3% or less, and the delamination occurrence rate is suppressed to 4% or less. It was confirmed that it would be possible.
 この実施例6では、実施例1の試料4の構成において、硬化樹脂層を形成するための樹脂ペーストとして、セラミックグリーンシートを構成するセラミック粉末と同じ組成のセラミック粉末を所定の範囲で含有させた樹脂ペーストを用いて積層セラミックコンデンサを作製した。 In Example 6, in the configuration of Sample 4 of Example 1, ceramic powder having the same composition as the ceramic powder constituting the ceramic green sheet was contained in a predetermined range as the resin paste for forming the cured resin layer. A multilayer ceramic capacitor was produced using a resin paste.
 すなわち、この実施例7では、樹脂ペーストとして、UV硬化性樹脂と、溶媒(水+イソプロピルアルコール(IPA))と、バインダ(アクリル系モノマー+光開始剤)とを含み、さらに、セラミックグリーンシートを構成するセラミック粉末と同じ組成のセラミック粉末を、表6に示す範囲(形成される保護樹脂層中の体積分率が0.1vol%~60vol%となるような範囲)で含有する樹脂ペーストを用いて積層セラミックコンデンサを作製した。 That is, in Example 7, the resin paste includes a UV curable resin, a solvent (water + isopropyl alcohol (IPA)), a binder (acrylic monomer + photoinitiator), and further a ceramic green sheet. Using a resin paste containing ceramic powder having the same composition as the ceramic powder to be formed in the range shown in Table 6 (a range in which the volume fraction in the formed protective resin layer is 0.1 vol% to 60 vol%) Thus, a multilayer ceramic capacitor was produced.
 表6の保護樹脂層中のセラミック粉末の上記体積分率の値は、セラミック粉末を含む保護樹脂層に対するセラミック粉末の体積割合を示すものである。
 なお、この実施例6の条件では、保護樹脂層中のセラミック粉末の臨界粒子体積分率(CPVC)は約50vol%となる。
The value of the volume fraction of the ceramic powder in the protective resin layer in Table 6 indicates the volume ratio of the ceramic powder to the protective resin layer containing the ceramic powder.
In addition, on the conditions of this Example 6, the critical particle volume fraction (CPVC) of the ceramic powder in a protective resin layer will be about 50 vol%.
 この実施例6で作製した試料26~29について、上記実施例1の場合と同様の方法でその特性を調べた。その結果を表6に併せて示す。なお、表6には、実施例1の試料4についての特性を併せて示す。 The characteristics of the samples 26 to 29 produced in Example 6 were examined in the same manner as in Example 1 above. The results are also shown in Table 6. Table 6 also shows the characteristics of the sample 4 of Example 1.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に示すように、セラミック粉末を0.1vol%~50vol%の範囲(すなわち、臨界粒子体積分率(CPVC)以下の範囲)で含有する保護樹脂層を形成した試料26~28の場合、ショート不良率および構造欠陥発生率はいずれも1%と低く、特性の良好な積層セラミックコンデンサが得られることが確認された。
 ただし、セラミック粉末を60vol%(すなわち、臨界粒子体積分率(CPVC)を超える割合)の割合で含有する保護樹脂層を形成した試料29の場合、構造欠陥発生率は1%と低かったが、ショート不良率が10%と、試料26~28に比べていくらか高くなることが確認された。
As shown in Table 6, in the case of samples 26 to 28 in which a protective resin layer containing ceramic powder in a range of 0.1 vol% to 50 vol% (that is, a range of critical particle volume fraction (CPVC) or less) was formed, Both the short-circuit defect rate and the structural defect occurrence rate were as low as 1%, and it was confirmed that a multilayer ceramic capacitor having good characteristics was obtained.
However, in the case of the sample 29 in which the protective resin layer containing the ceramic powder at a ratio of 60 vol% (that is, the ratio exceeding the critical particle volume fraction (CPVC)) was formed, the structural defect occurrence rate was as low as 1%. It was confirmed that the short-circuit defect rate was 10%, which was somewhat higher than those of samples 26 to 28.
 この実施例6のように、セラミック粉末を含有する樹脂ペーストを用い、所定の割合でセラミック粉末を含有する硬化樹脂層を形成するようにした場合、焼成工程において、下層と上層のセラミックグリーンシートに硬化樹脂層中のセラミック粉末が拡散し、下層と上層のセラミックグリーンシートが強固に結合する。その結果、デラミネーションなどの構造欠陥の発生をさらに確実に防止して、信頼性の高い積層セラミック電子部品を製造することができる。 When a resin paste containing ceramic powder is used and a cured resin layer containing ceramic powder is formed at a predetermined ratio as in Example 6, the ceramic green sheets of the lower layer and the upper layer are formed in the firing step. The ceramic powder in the cured resin layer diffuses and the lower and upper ceramic green sheets are firmly bonded. As a result, it is possible to more reliably prevent the occurrence of structural defects such as delamination and manufacture a highly reliable multilayer ceramic electronic component.
 なお、保護樹脂層中のセラミック粉末の含有割合が、臨界粒子体積分率(CPVC)を超えると、セラミック粒子間に樹脂が存在しない領域が形成されてしまうため、あまり好ましくない。すなわち、樹脂が存在しない領域が形成されると、該領域が空隙となり、硬化樹脂層の上に塗布されたセラミックスラリー中の溶剤がこの空隙を通って下層のセラミックグリーンシートや内部電極層をアタックすることになる。したがって、本発明において、樹脂ペースト中のセラミック粉末の含有割合は、形成される硬化樹脂層におけるセラミック粉末の割合が臨界粒子体積分率(CPVC)以下となるような割合とすることが好ましい。 It should be noted that if the content ratio of the ceramic powder in the protective resin layer exceeds the critical particle volume fraction (CPVC), a region where no resin exists between the ceramic particles is formed, which is not preferable. That is, when a region where no resin is present is formed, the region becomes a void, and the solvent in the ceramic slurry applied on the cured resin layer passes through the void to attack the ceramic green sheet and the internal electrode layer below. Will do. Therefore, in the present invention, the content ratio of the ceramic powder in the resin paste is preferably set such that the ratio of the ceramic powder in the formed cured resin layer is equal to or less than the critical particle volume fraction (CPVC).
 なお、上記実施例では、積層セラミックコンデンサを例にとって説明したが、本願発明は、積層インダクタ、積層LC複合部品など、セラミック層と内部電極とが積層された構造を有する種々の積層セラミック電子部品に適用することが可能である。 In the above-described embodiment, the multilayer ceramic capacitor has been described as an example. It is possible to apply.
 本発明は、さらにその他の点においても、上記実施例に限定されるものではなく、セラミック層および内部電極の積層数、内部電極の具体的なパターン、セラミック層および内部電極の構成材料などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiment in other points as well, but relates to the number of laminated ceramic layers and internal electrodes, a specific pattern of internal electrodes, a constituent material of the ceramic layers and internal electrodes, and the like. Various applications and modifications can be made within the scope of the invention.
 上述のように、本発明によれば、セラミックグリーンシートを硬化させることなく、上層のセラミックスラリーなどによる内部電極パターンへのアタックを抑制、防止して、層間剥離を招くことなく、信頼性の高い内部電極を備えた積層セラミック電子部品を効率よく製造することが可能になるとともに、セラミックグリーンシートや内部電極ペーストなどの材料を選択するにあたっての自由度を高く維持することができる。
 したがって、本願発明は、積層セラミックコンデンサをはじめとする、セラミック層と内部電極とが積層された構造を有する種々の積層セラミック電子部品の分野に広く適用することができる。
As described above, according to the present invention, the ceramic green sheet is not cured, the attack to the internal electrode pattern by the upper layer ceramic slurry or the like is suppressed and prevented, and the delamination is not caused and the reliability is high. A multilayer ceramic electronic component having internal electrodes can be efficiently manufactured, and a high degree of freedom in selecting materials such as ceramic green sheets and internal electrode pastes can be maintained.
Therefore, the present invention can be widely applied to the fields of various multilayer ceramic electronic components having a structure in which a ceramic layer and internal electrodes are laminated, including a multilayer ceramic capacitor.
 1        基材(支持フィルム)
 2a       第1誘電体グリーンシート(セラミックグリーンシート)
 2b       第2誘電体グリーンシート(セラミックグリーンシート)
 3a       第1内部電極パターン
 3b       第2内部電極パターン
 4        硬化樹脂層
 4a       第1硬化樹脂層
 4b       第2硬化樹脂層
 10       複合積層体  
 20       段差吸収用誘電体パターン(段差吸収層)
 51       積層セラミック素子(積層セラミック電子部品素子)
 52       セラミック層
 53a,53b  内部電極
 54a,54b  積層セラミック素子の端面
 55a,55b  外部電極
1 Base material (support film)
2a First dielectric green sheet (ceramic green sheet)
2b Second dielectric green sheet (ceramic green sheet)
3a 1st internal electrode pattern 3b 2nd internal electrode pattern 4 Cured resin layer 4a 1st cured resin layer 4b 2nd cured resin layer 10 Composite laminated body
20 Step absorption dielectric pattern (step absorption layer)
51 Multilayer Ceramic Element (Multilayer Ceramic Electronic Component Element)
52 Ceramic layers 53a, 53b Internal electrodes 54a, 54b End faces of the multilayer ceramic element 55a, 55b External electrodes

Claims (9)

  1.  セラミック層と内部電極が積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
     (a)基材上に、バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
     (b)前記セラミックグリーンシート上に、バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
     (c)前記セラミックグリーンシートおよび前記内部電極パターン上に、前記セラミックグリーンシートおよび前記内部電極パターンに含まれる前記バインダーを溶解しない溶剤と硬化性樹脂とを含む樹脂ペーストを塗布する工程と、
     (d)前記樹脂ペースト中の前記硬化性樹脂を硬化させて硬化樹脂層を形成する工程と、
     (e)前記硬化樹脂層上に、前記セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
     (f)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程とを備え、
     前記(c)~(f)の工程を1回以上行うことを特徴とする積層セラミック電子部品の製造方法。
    A method for producing a multilayer ceramic electronic component having a structure in which a ceramic layer and an internal electrode are laminated, and the internal electrodes are disposed so as to face each other through the ceramic layer,
    (a) applying a ceramic slurry containing a binder, a solvent and a ceramic raw material on a substrate, and drying to form a ceramic green sheet;
    (b) On the ceramic green sheet, an internal electrode paste containing a binder and a conductive component is applied and dried to form an internal electrode pattern;
    (c) applying a resin paste containing a solvent that does not dissolve the binder contained in the ceramic green sheet and the internal electrode pattern and a curable resin on the ceramic green sheet and the internal electrode pattern;
    (d) curing the curable resin in the resin paste to form a cured resin layer;
    (e) applying the ceramic slurry on the cured resin layer and drying to form a ceramic green sheet;
    (f) providing the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
    A method of manufacturing a multilayer ceramic electronic component, wherein the steps (c) to (f) are performed once or more.
  2.  セラミック層と内部電極が交互に積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
     (a)基材上に、バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
     (b)前記内部電極パターンおよびその周囲の前記基材上に、前記内部電極ペーストに含まれる前記バインダーを溶解しない溶剤と硬化性樹脂とを含む樹脂ペーストを塗布する工程と、
     (c)前記樹脂ペースト中の前記硬化性樹脂を硬化させて硬化樹脂層を形成する工程と、
     (d)前記硬化樹脂層上に、バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
     (e)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
     (f)前記セラミックグリーンシート上および前記内部電極パターン上に、前記セラミックグリーンシートおよび前記内部電極パターンに含まれる前記バインダーを溶解しない溶剤と硬化性樹脂とを含む樹脂ペーストを塗布する工程と、
     (g)前記樹脂ペーストを硬化させて硬化樹脂層を形成する工程と、
     (h)前記硬化樹脂層上にバインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程とを備え、
     前記(e)~(h)の工程を1回以上行うことを特徴とする積層セラミック電子部品の製造方法。
    A method of manufacturing a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are disposed so as to face each other through the ceramic layers,
    (a) providing an internal electrode paste containing a binder and a conductive component on a substrate, and drying to form an internal electrode pattern;
    (b) applying a resin paste containing a solvent that does not dissolve the binder contained in the internal electrode paste and a curable resin on the internal electrode pattern and the surrounding substrate; and
    (c) curing the curable resin in the resin paste to form a cured resin layer;
    (d) applying a ceramic slurry containing a binder, a solvent and a ceramic raw material on the cured resin layer, and drying to form a ceramic green sheet;
    (e) applying the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
    (f) Applying a resin paste containing a solvent that does not dissolve the binder contained in the ceramic green sheet and the internal electrode pattern and a curable resin on the ceramic green sheet and the internal electrode pattern;
    (g) curing the resin paste to form a cured resin layer;
    (h) applying a ceramic slurry containing a binder, a solvent and a ceramic raw material on the cured resin layer, and drying to form a ceramic green sheet;
    A method for producing a multilayer ceramic electronic component, wherein the steps (e) to (h) are performed once or more.
  3.  前記基材上に、請求項1の(a)~(f)の工程、または、請求項2の(a)~(h)の工程を経て形成される、複数層のセラミックグリーンシートおよび複数層の内部電極パターンを備えた複合積層体を積み重ねる工程を繰り返して、焼成後に積層セラミック電子部品素子となる未焼成の積層体を形成する工程を備えていることを特徴とする請求項1または2記載の積層セラミック電子部品の製造方法。 A plurality of ceramic green sheets and a plurality of layers formed on the substrate through the steps (a) to (f) of claim 1 or the steps (a) to (h) of claim 2. 3. The method of stacking a composite laminate having the internal electrode pattern is formed to form an unsintered laminate that becomes a multilayer ceramic electronic component element after firing. Manufacturing method for multilayer ceramic electronic components.
  4.  前記セラミックグリーンシートおよび内部電極パターン中に含まれるバインダーは有機系溶剤に可溶であって、水系溶剤に不溶であり、かつ、
     前記樹脂ペーストに含まれる硬化性樹脂は水系溶剤に可溶な樹脂であり、かつ、前記樹脂ペーストに含まれる溶剤は水系溶剤であること
     を特徴とする請求項1~3のいずれかに記載の積層セラミック電子部品の製造方法。
    The binder contained in the ceramic green sheet and the internal electrode pattern is soluble in an organic solvent, insoluble in an aqueous solvent, and
    The curable resin contained in the resin paste is a resin that is soluble in an aqueous solvent, and the solvent contained in the resin paste is an aqueous solvent. Manufacturing method of multilayer ceramic electronic component.
  5.  前記内部電極パターンを形成する工程の後で、形成された前記内部電極パターンの周囲の領域に、前記内部電極パターンとその周囲との段差を解消するための段差吸収用セラミックペーストを塗布、乾燥して段差吸収層を形成する工程を備えていることを特徴とする請求項1~4のいずれかに記載の積層セラミック電子部品の製造方法。 After the step of forming the internal electrode pattern, a step absorbing ceramic paste for eliminating the step between the internal electrode pattern and the surrounding area is applied to the region around the formed internal electrode pattern and dried. The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 4, further comprising a step of forming a step absorption layer.
  6.  前記内部電極パターンを形成する工程の前に、前記内部電極パターンが形成されるべき領域の周囲に、その後に形成される前記内部電極パターンとその周囲との段差を解消するための段差吸収用セラミックペーストを塗布、乾燥して段差吸収層を形成し、その後、前記段差吸収層が形成されていない領域に前記内部電極ペーストを付与、乾燥することにより前記内部電極パターンを形成することを特徴とする請求項1~4のいずれかに記載の積層セラミック電子部品の製造方法。 Before the step of forming the internal electrode pattern, a step-absorbing ceramic for eliminating a step between the internal electrode pattern to be formed and the surrounding area around the region where the internal electrode pattern is to be formed A step absorbing layer is formed by applying and drying a paste, and then the internal electrode pattern is formed by applying and drying the internal electrode paste in a region where the step absorbing layer is not formed. The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 4.
  7.  前記樹脂ペーストに含まれる前記硬化性樹脂が光硬化性樹脂であることを特徴とする請求項1~6のいずれかに記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 6, wherein the curable resin contained in the resin paste is a photocurable resin.
  8.  前記樹脂ペーストを硬化させることにより形成される硬化樹脂層の厚さが0.03~0.20μmであることを特徴とする請求項1~7のいずれかに記載の積層セラミック電子部品の製造方法。 8. The method for producing a multilayer ceramic electronic component according to claim 1, wherein the thickness of the cured resin layer formed by curing the resin paste is 0.03 to 0.20 μm. .
  9.  前記硬化樹脂層の形成に用いられる前記樹脂ペーストが、該樹脂ペーストが硬化することにより形成される前記硬化樹脂層におけるセラミック粉末の割合が臨界粒子体積分率以下となるような割合で、セラミック粉末を含有していることを特徴とする請求項1~8のいずれかに記載の積層セラミック電子部品の製造方法。 The resin paste used for forming the cured resin layer is a ceramic powder in such a ratio that the ratio of the ceramic powder in the cured resin layer formed by curing the resin paste is equal to or less than the critical particle volume fraction. The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 8, wherein the multilayer ceramic electronic component is contained.
PCT/JP2009/004806 2008-09-29 2009-09-24 Method for manufacturing laminated ceramic electronic component WO2010035461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010530727A JP5083409B2 (en) 2008-09-29 2009-09-24 Manufacturing method of multilayer ceramic electronic component

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2008-249726 2008-09-29
JP2008249726 2008-09-29
JP2009-091770 2009-04-06
JP2009091770 2009-04-06

Publications (1)

Publication Number Publication Date
WO2010035461A1 true WO2010035461A1 (en) 2010-04-01

Family

ID=42059474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004806 WO2010035461A1 (en) 2008-09-29 2009-09-24 Method for manufacturing laminated ceramic electronic component

Country Status (2)

Country Link
JP (1) JP5083409B2 (en)
WO (1) WO2010035461A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122947A1 (en) * 2009-04-20 2010-10-28 株式会社村田製作所 Method for manufacturing laminated ceramic electronic components
GB2492327A (en) * 2011-06-24 2013-01-02 Bae Systems Plc Cured Dielectric Capacitor
US9257231B2 (en) 2011-06-24 2016-02-09 Bae Systems Plc High energy capacitors
JPWO2014104061A1 (en) * 2012-12-28 2017-01-12 株式会社村田製作所 Multilayer ceramic electronic component and method of manufacturing the multilayer ceramic electronic component
JP2018129196A (en) * 2017-02-08 2018-08-16 日本特殊陶業株式会社 Method of manufacturing ceramic heater
WO2023090312A1 (en) * 2021-11-19 2023-05-25 株式会社村田製作所 Laminated sheet manufacturing method, laminated electronic component manufacturing method, and laminated sheet

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258815A (en) * 1988-08-24 1990-02-28 Matsushita Electric Ind Co Ltd Manufacture of ceramic electronic component
JPH08250370A (en) * 1995-03-14 1996-09-27 Toshiba Corp Manufacture of multilayered ceramic capacitor
JP2004296884A (en) * 2003-03-27 2004-10-21 Tdk Corp Sheet for manufacturing laminated component and manufacturing method of laminated component
JP2006066852A (en) * 2004-07-27 2006-03-09 Tdk Corp Method for manufacturing multilayer electronic component
JP2006073743A (en) * 2004-09-01 2006-03-16 Tdk Corp Manufacturing method for laminated electronic part
JP2008519461A (en) * 2004-11-03 2008-06-05 シン,ユ−ソン Multilayer ceramic chip and method for forming multilayer ceramic capacitor
JP2009029134A (en) * 2007-07-27 2009-02-12 Ngk Insulators Ltd Laminated ceramic molding, calcinated ceramic body, manufacturing method for laminated ceramic molding and method of manufacturing calcinated ceramic body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127117A (en) * 2000-10-30 2002-05-08 Kyocera Corp Method for manufacturing green sheet and method for manufacturing electronic component

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0258815A (en) * 1988-08-24 1990-02-28 Matsushita Electric Ind Co Ltd Manufacture of ceramic electronic component
JPH08250370A (en) * 1995-03-14 1996-09-27 Toshiba Corp Manufacture of multilayered ceramic capacitor
JP2004296884A (en) * 2003-03-27 2004-10-21 Tdk Corp Sheet for manufacturing laminated component and manufacturing method of laminated component
JP2006066852A (en) * 2004-07-27 2006-03-09 Tdk Corp Method for manufacturing multilayer electronic component
JP2006073743A (en) * 2004-09-01 2006-03-16 Tdk Corp Manufacturing method for laminated electronic part
JP2008519461A (en) * 2004-11-03 2008-06-05 シン,ユ−ソン Multilayer ceramic chip and method for forming multilayer ceramic capacitor
JP2009029134A (en) * 2007-07-27 2009-02-12 Ngk Insulators Ltd Laminated ceramic molding, calcinated ceramic body, manufacturing method for laminated ceramic molding and method of manufacturing calcinated ceramic body

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010122947A1 (en) * 2009-04-20 2010-10-28 株式会社村田製作所 Method for manufacturing laminated ceramic electronic components
GB2492327A (en) * 2011-06-24 2013-01-02 Bae Systems Plc Cured Dielectric Capacitor
US9257231B2 (en) 2011-06-24 2016-02-09 Bae Systems Plc High energy capacitors
GB2492327B (en) * 2011-06-24 2017-01-11 Bae Systems Plc High energy capacitors
JPWO2014104061A1 (en) * 2012-12-28 2017-01-12 株式会社村田製作所 Multilayer ceramic electronic component and method of manufacturing the multilayer ceramic electronic component
US9905364B2 (en) 2012-12-28 2018-02-27 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and method for manufacturing multilayer ceramic electronic component
JP2018129196A (en) * 2017-02-08 2018-08-16 日本特殊陶業株式会社 Method of manufacturing ceramic heater
WO2023090312A1 (en) * 2021-11-19 2023-05-25 株式会社村田製作所 Laminated sheet manufacturing method, laminated electronic component manufacturing method, and laminated sheet

Also Published As

Publication number Publication date
JPWO2010035461A1 (en) 2012-02-16
JP5083409B2 (en) 2012-11-28

Similar Documents

Publication Publication Date Title
JP5083409B2 (en) Manufacturing method of multilayer ceramic electronic component
US20190392991A1 (en) Electronic component and method of producing electronic component
JP2011204849A (en) Method of manufacturing laminated ceramic electronic component
JP4968411B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH09106925A (en) Method of manufacturing layered ceramic capacitor
JP4788752B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2001044071A (en) Manufacture of ceramic electronic component
JP2003059759A (en) Multilayer ceramic electronic component and its manufacturing method
JP5035471B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3521774B2 (en) Manufacturing method of multilayer ceramic capacitor
JP3496184B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH07297074A (en) Multilayered ceramic electronic component
JP2001217140A (en) Laminated electronic component and manufacturing method thereof
JPH0236512A (en) Manufacture of laminated ceramic electronic component
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JP3196713B2 (en) Manufacturing method of ceramic electronic components
JP4303020B2 (en) Manufacturing method of laminated parts
KR20010075728A (en) Electronic device of ceramic
JP2005297339A (en) Method for manufacturing multi-layer ceramic sheet and method for manufacturing ceramic electronic component
JP3538348B2 (en) Manufacturing method of ceramic electronic components
JPH11168024A (en) Manufacture of laminated ceramic electronic component
JP2688644B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH07211577A (en) Manufacture of laminated ceramic capacitor
JPH07335475A (en) Manufacture of layered ceramic capacitor
JPH09139321A (en) Ceramic green sheet and manufacture of ceramic electronic component using it

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09815883

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010530727

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09815883

Country of ref document: EP

Kind code of ref document: A1