WO2010122947A1 - Method for manufacturing laminated ceramic electronic components - Google Patents

Method for manufacturing laminated ceramic electronic components Download PDF

Info

Publication number
WO2010122947A1
WO2010122947A1 PCT/JP2010/056781 JP2010056781W WO2010122947A1 WO 2010122947 A1 WO2010122947 A1 WO 2010122947A1 JP 2010056781 W JP2010056781 W JP 2010056781W WO 2010122947 A1 WO2010122947 A1 WO 2010122947A1
Authority
WO
WIPO (PCT)
Prior art keywords
ceramic
internal electrode
electrode pattern
green sheet
sheet
Prior art date
Application number
PCT/JP2010/056781
Other languages
French (fr)
Japanese (ja)
Inventor
藤岡真人
戸上敬
吉川宣弘
中村一郎
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to JP2011510303A priority Critical patent/JP5035471B2/en
Publication of WO2010122947A1 publication Critical patent/WO2010122947A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/005Electrodes
    • H01G4/008Selection of materials
    • H01G4/0085Fried electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/018Dielectrics
    • H01G4/06Solid dielectrics
    • H01G4/08Inorganic dielectrics
    • H01G4/12Ceramic dielectrics
    • H01G4/1209Ceramic dielectrics characterised by the ceramic dielectric material

Definitions

  • the present invention relates to a method of manufacturing a multilayer ceramic electronic component manufactured by forming a ceramic green sheet by applying a ceramic slurry and forming an internal electrode pattern by applying an internal electrode paste in a predetermined pattern. About.
  • a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrode layers are alternately stacked forms a ceramic green sheet by coating a ceramic slurry on a carrier film, for example, An internal electrode paste is applied (printed) on a ceramic green sheet to form an internal electrode pattern, and then the sheets punched into a predetermined pattern are sequentially stacked to form a laminate, which is then fired.
  • a carrier film for example, An internal electrode paste is applied (printed) on a ceramic green sheet to form an internal electrode pattern, and then the sheets punched into a predetermined pattern are sequentially stacked to form a laminate, which is then fired.
  • the internal electrode pattern is formed on the ceramic green sheet formed by printing the ceramic slurry formed on the carrier film, and the formation of the green sheet and the internal electrode pattern by further printing the ceramic slurry thereon. Proposing a method to improve production efficiency by shortening the time required for the lamination process by forming a minority unit laminate of ceramic green sheets and internal electrode patterns by stacking and stacking composite laminates punched from this (See Patent Document 1).
  • the sheet attack occurs when the internal electrode paste is applied on the ceramic green sheet depending on the combination of the organic binder contained in the ceramic green sheet and the internal electrode paste.
  • a ceramic green sheet is formed using a ceramic slurry containing a curable resin, and the curable resin in the ceramic green sheet is cured before applying the internal electrode paste.
  • Patent Document 2 there has been proposed a method for manufacturing a multilayer electronic component that suppresses or prevents the organic binder in the ceramic green sheet from dissolving in the internal electrode paste.
  • the cured ceramic green sheet is less susceptible to attack by the internal electrode paste, but when this method is applied to the method disclosed in Patent Document 1, the ceramic green sheet itself is cured. Therefore, there are problems such as insufficient adhesion between layers, causing delamination, and causing cracks in the lamination process.
  • the present invention solves the above-described problems, and suppresses and prevents internal electrode patterns and attacks on the ceramic green sheet when a ceramic slurry is applied to form a ceramic green sheet, thereby providing desired characteristics.
  • it is possible to reliably manufacture highly reliable multilayer ceramic electronic parts, and in addition to selecting constituent materials such as ceramic green sheets and internal electrode paste (for example, types of solvents and organic binders)
  • An object of the present invention is to provide a method for manufacturing a multilayer ceramic electronic component having a high degree of freedom.
  • a method for manufacturing a multilayer ceramic electronic component of the present invention includes: A method for producing a multilayer ceramic electronic component having a structure in which a ceramic layer and an internal electrode are laminated, and the internal electrodes are disposed so as to face each other through the ceramic layer, (a) A step of applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on a substrate and drying to form a ceramic green sheet; (b) On the ceramic green sheet, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern; (c) disposing a resin sheet that does not dissolve in the solvent contained in the ceramic slurry used in the step (d) on the ceramic green sheet and the internal electrode pattern; (d) applying the ceramic slurry on the resin sheet and drying to form a ceramic green sheet; (e) providing the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern; The steps (c) to (e) are performed
  • step (c) “arranging a resin sheet that does not dissolve in the solvent contained in the ceramic slurry” means a resin sheet that has been formed into a sheet shape in advance, and the solvent contained in the ceramic slurry. This means that a material that does not substantially dissolve is disposed.
  • the method for manufacturing the multilayer ceramic electronic component of the present invention includes: A method of manufacturing a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are disposed so as to face each other through the ceramic layers, (a) On the substrate, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern; (b) A resin sheet that does not dissolve in the solvent contained in the ceramic slurry used in the step (c) is disposed so as to cover a predetermined region on the internal electrode pattern and the surrounding substrate.
  • Process (c) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the resin sheet, and drying to form a ceramic green sheet; (d) applying the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern; (e) disposing a resin sheet that does not dissolve in a solvent contained in the ceramic slurry used in the step (f) on the ceramic green sheet and the internal electrode pattern; (f) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the resin sheet, and drying to form a ceramic green sheet;
  • the steps (d) to (f) are performed once or more.
  • “arranging a resin sheet that does not dissolve in the solvent contained in the ceramic slurry” means a resin sheet previously formed into a sheet shape, This means that a substance that does not substantially dissolve in the contained solvent is disposed.
  • the method for producing a multilayer ceramic electronic component of the present invention comprises the steps (a) to (e) of claim 1 or the steps (a) to (f) of claim 2 on the substrate.
  • a step between the internal electrode pattern and the periphery thereof is formed in a region around the formed internal electrode pattern.
  • a step-absorbing layer is formed by applying and drying a step-absorbing layer ceramic paste to eliminate the step-absorbing layer.
  • the step absorption is performed around the region where the internal electrode pattern is to be formed, so as to eliminate the step between the internal electrode pattern formed thereafter and the surrounding area. Applying and drying a ceramic paste for layer to form a step absorption layer, and then applying the internal electrode paste to a region where the step absorption layer is not formed and drying to form the internal electrode pattern It is a feature.
  • the resin sheet has a thickness of 0.02 to 0.20 ⁇ m.
  • the multilayer ceramic electronic component manufacturing method of the present invention (Claims 1 and 2) is, as described above, on the internal electrode pattern or the internal electrode pattern and the ceramic via the resin sheet that does not dissolve in the solvent contained in the ceramic slurry. Since the ceramic slurry is applied on the green sheet, the sheet attack by the ceramic slurry is surely suppressed and prevented, and a reliable multilayer ceramic electronic component having desired characteristics is reliably manufactured. It becomes possible. That is, the present invention forms a resin layer by disposing a resin sheet that does not dissolve in the solvent contained in the ceramic slurry on the internal electrode pattern, or on the internal electrode pattern and the ceramic green sheet. Since the ceramic green sheet is formed by applying and drying the ceramic slurry, it is possible to prevent the ceramic slurry from coming into direct contact with the internal electrode pattern and the ceramic green sheet, thereby reliably suppressing sheet attack. It becomes possible to prevent.
  • the ceramic slurry is applied on the resin sheet that does not dissolve in the solvent contained in the ceramic slurry, the degree of freedom in selecting the solvent used for the ceramic slurry can be greatly improved.
  • the type of the organic binder contained in the internal electrode paste is limited by the relationship with the solvent and organic binder contained in the ceramic slurry. None will happen. Therefore, also in this respect, the degree of freedom in material selection is improved. Further, even when the surface of the internal electrode pattern is uneven, a ceramic green sheet serving as a ceramic layer is formed by applying ceramic slurry on a resin sheet disposed so as to cover the internal electrode pattern.
  • the application of the ceramic slurry includes a case where the ceramic slurry is formed into a sheet by a coater method or a doctor blade method, or a case where the ceramic slurry is printed into a sheet by a gravure printing method. It is a broad concept.
  • Examples of the method of applying the internal electrode paste include a method of printing and attaching the internal electrode paste on the ceramic green sheet by a screen printing method or the like.
  • the present invention is not limited to this, and various other methods can be used.
  • a resin sheet disposed so as to cover a predetermined region on the internal electrode pattern and the surrounding substrate in the step (b), a resin sheet disposed so as to cover a predetermined region on the internal electrode pattern and the surrounding substrate, and the step (e)
  • the step absorption layer is formed by applying the ceramic paste for the step absorption layer to the region around the internal electrode pattern, thereby eliminating the step and preventing delamination.
  • a highly reliable multilayer ceramic electronic component can be obtained. If a step absorption layer is provided, the number of materials used increases, so in the conventional technology, the solvent used in the ceramic slurry and the internal electrode paste and the organic system are used in order to avoid sheet attack. Although the selection range of the binder is narrowed, in the present invention, the resin sheet is interposed at a predetermined position as described above and functions to prevent sheet attack, so that the degree of freedom in selecting the solvent is kept high. Can do.
  • the step-absorbing layer ceramic paste preferably has a component that hardly dissolves the organic binder contained in the internal electrode pattern, but only contacts the internal electrode pattern at its peripheral edge. It ’s not a very strict requirement.
  • the internal electrode paste applied to the region where the step absorption layer is not formed is such that the component hardly dissolves the organic binder contained in the step absorption layer. Since the paste only touches the step absorption layer at the peripheral edge thereof, it is not a very strict requirement.
  • the thickness of the resin sheet 0.02 to 0.20 ⁇ m, it becomes possible to efficiently suppress both the electrical characteristic failure caused by the sheet attack and the structural defect caused by delamination. ,preferable.
  • the thickness of the resin sheet is less than 0.02 ⁇ m, the effect of preventing sheet attack becomes insufficient, and when it exceeds 0.20 ⁇ m, delamination tends to occur.
  • the lower and upper ceramic green sheets in the resin sheet It is possible to diffuse the ceramic powder and firmly bond the lower layer and the upper layer ceramic green sheets, and more reliably prevent the occurrence of structural defects such as delamination.
  • FIG. 1 is a diagram showing a configuration of a multilayer ceramic capacitor manufactured by a method according to an embodiment of the present invention.
  • the multilayer ceramic capacitor includes a multilayer ceramic element (multilayer ceramic electronic component element) 51 in which a plurality of internal electrodes 53 a and 53 b are stacked via a ceramic layer 52.
  • the internal electrodes 53a and 53b facing each other are alternately drawn out to the end faces 54a and 54b on different sides of the multilayer ceramic element 51 and connected to the external electrodes 55a and 55b formed on the end faces. ing.
  • Example 1 the first dielectric green sheet (ceramic green sheet), the first internal electrode pattern, the resin sheet (resin layer), and the second dielectric green sheet (ceramic) are formed on the base material (support film).
  • a multilayer ceramic capacitor is manufactured through a process of sequentially stacking a green sheet) and a second internal electrode pattern to form a composite laminate and laminating a predetermined number of the composite laminate will be described.
  • Example 1 of the present invention Barium carbonate (BaCO 3 ) and titanium oxide (TiO 2 ) were weighed so as to have a molar ratio of 1: 1. Then, it was denatured with Dy, Mg, etc., wet-mixed using a ball mill, dehydrated, and dried. The dried powder was calcined at a temperature of 1000 ° C. for 2 hours, and then dry pulverized to obtain a ceramic raw material.
  • BaCO 3 barium carbonate
  • TiO 2 titanium oxide
  • an internal electrode paste for forming an internal electrode pattern a paste containing Ni powder as a conductive component, dihydroterpineol acetate as a solvent, and ethyl cellulose as an organic binder was used.
  • the same internal electrode paste as used here was used as the internal electrode paste for forming the internal electrode pattern.
  • a resin sheet a polyvinyl alcohol aqueous solution obtained by dissolving polyvinyl alcohol having a high hydroxyl content and a high degree of polymerization in water is applied and dried on a carrier film (base material), and the thickness as shown in Table 1 is obtained. Resin sheets made of polyvinyl alcohol resin having (0.01 ⁇ m, 0.02 ⁇ m, 0.10 ⁇ m, 0.20 ⁇ m, 0.22 ⁇ m) were prepared. In addition, this resin sheet is a resin sheet which does not melt
  • solvent Toluene / ethanol (volume ratio: 50/50)
  • the ceramic slurry prepared as described above was applied by a coater method, and a first dielectric green sheet (ceramic green sheet) having a thickness of 1.2 ⁇ m was formed on a substrate (support film) 1 as shown in FIG. 2a was formed. Then, drying was performed at 80 ° C. for 5 minutes.
  • the internal electrode paste (Ni electrode paste) prepared as described above is applied on the dried first dielectric green sheet 2a by the screen printing method, and is dried at 60 ° C. for 5 minutes.
  • the first internal electrode pattern 3a having a thickness of 0.5 ⁇ m was formed.
  • the resin sheet 4 made of the polyvinyl alcohol resin prepared as described above was disposed so as to cover the first dielectric green sheet 2a and the first internal electrode pattern 3a formed thereon.
  • the resin sheet was disposed by thermally transferring the resin sheet formed on the carrier film (base material) to form a resin layer.
  • the ceramic slurry is applied onto the resin sheet (resin layer) 4 by a coater method to form a second dielectric green sheet (ceramic green sheet) 2b having a thickness of 1.2 ⁇ m. Drying was performed for 5 minutes.
  • the composite laminate 10 includes a single layer resin sheet 4.
  • the resulting composite laminate 10 is stacked with 300 sheets while being peeled from the substrate (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa.
  • An unfired laminated body to be a multilayer ceramic electronic component element) was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element 51 (FIG. 1).
  • the above-mentioned resin sheet 4 is decomposed
  • a multilayer ceramic capacitor according to the example of the present invention (sample 1 of the example) having a structure as shown in FIG. 1 is applied to the multilayer ceramic element by applying and baking a conductive paste for forming an external electrode. To 5) were obtained.
  • Comparative Multilayer Ceramic Capacitor (Comparative Example 1)
  • a comparative example without passing through a step of forming a resin layer by disposing a resin sheet which is an essential constituent element of the present invention.
  • 1 monolithic ceramic capacitor was produced according to the procedure described below. First, a ceramic slurry having the same composition prepared by the same method as in Example 1 was prepared.
  • this ceramic slurry was applied by a coater method to form a first dielectric green sheet having a thickness of 1.2 ⁇ m on the base material (support film), and dried at 80 ° C. for 5 minutes.
  • Ni electrode paste which is an internal electrode paste
  • a Ni electrode paste is applied on the dried first dielectric green sheet by screen printing, and dried under conditions of 60 ° C. for 5 minutes.
  • a first internal electrode pattern having a thickness of 0.5 ⁇ m was formed.
  • the ceramic slurry is applied by a coater method to form a second dielectric green sheet having a thickness of 1.2 ⁇ m on the first internal electrode pattern formed on the first dielectric green sheet. Then, drying was performed for 5 minutes.
  • 300 sheets are stacked while peeling the obtained composite laminate from the base material (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa to become a laminated ceramic element after firing. An unfired laminate was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element. Then, a multilayer ceramic capacitor (Comparative Example 1) having a structure as shown in FIG. 1 was obtained by applying a conductive paste for forming external electrodes to this multilayer ceramic element and baking it.
  • the delamination occurrence rate was 0% in the samples 1 to 4 of the example, but it was confirmed that the rate of the delamination was slightly higher at 5% in the sample 5. If the resin sheet (resin layer) exceeds 0.20 ⁇ m, the first dielectric green sheet and the second dielectric green sheet and the first internal electrode after thermal decomposition of the resin sheet (resin layer) in the degreasing step This is probably because a void layer is generated between the pattern for use and the second dielectric green sheet.
  • the ceramic slurry is applied on the first dielectric green sheet 2a and the first internal electrode pattern 3a through the resin sheet (resin layer) 4 to form the second dielectric green sheet 2b.
  • the thickness of the resin sheet (resin layer) is particularly preferably in the range of 0.02 to 0.20 ⁇ m under the above conditions.
  • Example 2 a first internal electrode pattern is first formed on a base material (support film), and then a resin sheet (resin layer), a first dielectric green sheet (ceramic green sheet), a first (2) A multilayer laminate is formed by laminating an internal electrode pattern, a resin sheet (resin layer), and a second dielectric green sheet (ceramic green sheet). The case of manufacturing will be described. In the case of Example 2, a multilayer ceramic capacitor having a structure as shown in FIG. 1 was manufactured in the same manner as in Example 1 above. A description will be given below.
  • Example 2 (a) a ceramic slurry for forming a ceramic green sheet; As the internal electrode paste for forming the internal electrode pattern (b) and the resin sheet for forming the resin layer (c), the same one as used in Example 1 was used.
  • an internal electrode paste is formed on a base material (support film) 1 by a screen printing method so as to form a predetermined pattern.
  • Ni electrode paste was printed and dried at 60 ° C. for 5 minutes to form a first internal electrode pattern 3 a having a thickness of 0.5 ⁇ m.
  • the resin sheet was disposed by thermal transfer to form the first resin layer 4a.
  • the ceramic slurry prepared as described above is applied onto the first resin layer (resin sheet) 4a by a coater method, and a thickness of 1. is applied to the entire surface of the first resin layer (resin sheet) 4a.
  • a 2 ⁇ m first dielectric green sheet 2a was formed and dried at 80 ° C. for 5 minutes.
  • Ni electrode paste as an internal electrode paste is applied on the dried first dielectric green sheet 2a by a screen printing method and dried under conditions of 60 ° C. for 5 minutes to obtain a thickness of 0.5 ⁇ m.
  • the second internal electrode pattern 3b was formed.
  • a resin sheet was disposed by thermal transfer so as to cover the second internal electrode pattern 3b and the surrounding first dielectric green sheet 2a, thereby forming a second resin layer 4b.
  • the ceramic slurry is applied onto the second resin layer (resin sheet) 4b by a coater method, and dried at 80 ° C. for 5 minutes to obtain a second dielectric green having a thickness of 1.2 ⁇ m.
  • a composite laminate 10 having two layers of dielectric green sheets 2a and 2b and two layers of internal electrode patterns 3a and 3b was obtained.
  • the composite laminate 10 includes two resin layers (resin sheets) 4a and 4b.
  • 300 layers of the composite laminate 10 thus obtained are stacked while being peeled from the substrate (support film) 1 using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa, so that a laminated ceramic element after firing. An unfired laminate was produced.
  • the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element.
  • the first and second resin layers (resin sheets) described above are dissociated and burnt in this firing step and disappear.
  • Example 2 Production of a multilayer ceramic capacitor for comparison (Comparative Example 2) The same as in Example 2 except that it does not include a step of providing the first and second resin layers (resin sheets). A multilayer ceramic capacitor for comparison (Comparative Example 2) was produced by the method.
  • the thickness of the resin layer (resin sheet) is as thin as 0.01 ⁇ m, the short-circuit defect occurrence rate is a little as high as 7%.
  • the thickness of the resin layer (resin sheet) is 0.02 to 0.22 ⁇ m, the occurrence rate of short-circuit defects can be suppressed to 2% or less.
  • the delamination occurrence rate was 0% in the samples 11 to 14 of the example, but it was confirmed that it was somewhat higher in the sample 15 to 5%. This is because when the thickness of the resin layer (resin sheet) exceeds 0.20 ⁇ m, the first dielectric green sheet and the second dielectric green sheet are separated after the thermal decomposition of the resin layer (resin sheet) in the degreasing step. It is considered that void layers are generated between the internal electrode pattern and the first dielectric green sheet and between the second internal electrode pattern and the second dielectric green sheet.
  • Example 3 after forming the first internal electrode pattern 3a, a step absorbing layer dielectric paste is applied between the first internal electrode patterns 3a, and after forming the second internal electrode pattern 3b.
  • a step absorbing layer dielectric paste was applied between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes to form a step absorbing dielectric pattern (step absorbing layer) 20 as in Example 1.
  • multilayer ceramic capacitors of Samples 21 to 25 (Table 3) corresponding to Samples 1 to 5 of Example 1 were produced.
  • the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
  • step absorption layer dielectric paste was applied between the first internal electrode patterns and between the second internal electrode patterns and dried at 60 ° C. for 5 minutes to form the step absorption dielectric pattern.
  • a multilayer ceramic capacitor of Comparative Example 3 was produced in the same manner as in Comparative Example 1 of Example 1.
  • the step absorbing layer dielectric paste includes the same ceramic material as the ceramic slurry used to form the first and second dielectric green sheets, dihydroterpineol acetate as the solvent, and polyvinyl butyral as the binder. A paste containing was used.
  • the characteristics of the samples 21 to 25 of the example produced in Example 3 and the sample of Comparative Example 3 were examined by the same method as in Example 1 above. The results are shown in Table 3.
  • the step absorption layer 20 was provided, so that the shape accuracy of the product could be improved.
  • Example 4 As shown in FIG. 5, after forming the first internal electrode pattern 3a, a step absorbing layer dielectric paste is applied between the first internal electrode patterns 3a, and after forming the second internal electrode pattern 3b.
  • Example 2 except that the step absorbing layer dielectric paste was applied between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes to form the step absorbing dielectric pattern (step absorbing layer) 20.
  • multilayer ceramic capacitors of Samples 31 to 35 (Table 4) corresponding to Samples 11 to 15 of Example 2 were produced.
  • the parts denoted by the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
  • a comparative multilayer ceramic capacitor (Comparative Example 4) was produced in the same manner as in Example 2 except that the step of providing the first and second resin layers (resin sheets) was not provided. .
  • the dielectric paste for the step absorption layer the same one as used in Example 3 was used.
  • the step absorption layer 20 was provided, so that the shape accuracy of the product could be improved.
  • the step absorption layer may be disposed in the area where the internal electrode pattern is not formed after the internal electrode pattern is formed, or the step absorption layer is formed in advance and the step absorption layer is formed.
  • the internal electrode pattern may be formed in a region that is not, and the same effect can be obtained in any case.
  • Example 5 in the configuration of Sample 2 of Example 1, a resin sheet containing ceramic powder having the same composition as the ceramic powder constituting the ceramic green sheet is used as the resin sheet for forming the resin layer. Thus, a multilayer ceramic capacitor was produced.
  • Example 5 as the resin sheet, a resin sheet containing and dispersing ceramic powder in the range shown in Table 5 (a range in which the volume fraction of the resin sheet is 0.1 vol% to 60 vol%) is used. Thus, multilayer ceramic capacitors (Samples 41 to 44 in Table 5 were produced.
  • the value of the volume fraction of the ceramic powder of the resin sheet in Table 5 indicates the volume ratio of the ceramic powder to the resin sheet containing the ceramic powder.
  • the critical particle volume fraction (CPVC) of the ceramic powder in a resin sheet will be about 50 vol%.
  • the ceramic in the resin sheet (resin layer) is formed on the lower and upper ceramic green sheets in the firing step.
  • the powder diffuses and the lower and upper ceramic green sheets are firmly bonded.
  • it is possible to more reliably prevent the occurrence of structural defects such as delamination and manufacture a highly reliable multilayer ceramic electronic component.
  • the content ratio of the ceramic powder in the resin sheet (resin layer) exceeds the critical particle volume fraction (CPVC)
  • CPVC critical particle volume fraction
  • a region in which no resin exists between the ceramic particles is formed, which is not preferable. That is, when a region where no resin is present is formed, the region becomes a void, and the solvent in the ceramic slurry applied on the resin sheet (resin layer) passes through this void to form a ceramic green sheet or internal electrode in the lower layer. You will attack the layer. Therefore, in this invention, it is preferable to make the content rate of the ceramic powder in a resin sheet into a ratio which becomes below a critical particle volume fraction (CPVC).
  • the multilayer ceramic capacitor has been described as an example.
  • the present invention is applicable to various multilayer ceramic electronic components having a structure in which a ceramic layer and an internal electrode are stacked, such as a multilayer inductor and a multilayer LC composite component. It is possible to apply.
  • the present invention is not limited to the above embodiment in other points as well, but relates to the number of laminated ceramic layers and internal electrodes, a specific pattern of internal electrodes, a constituent material of the ceramic layers and internal electrodes, and the like. Various applications and modifications can be made within the scope of the invention.
  • Base material (support film) 2a First dielectric green sheet (ceramic green sheet) 2b Second dielectric green sheet (ceramic green sheet) 3a First internal electrode pattern 3b Second internal electrode pattern 4 Resin sheet (resin layer) 4a First resin layer (resin sheet) 4b Second resin layer (resin sheet) 10 Composite laminate 20 Step absorption dielectric pattern (step absorption layer) 51 Multilayer Ceramic Element (Multilayer Ceramic Electronic Component Element) 52 Ceramic layers 53a, 53b Internal electrodes 54a, 54b End faces of the multilayer ceramic element 55a, 55b External electrodes

Abstract

Provided is a method for manufacturing laminated ceramic electronic components, said method inhibiting and preventing sheet-attack from occurring when internal electrode patterns are formed and when ceramic green sheets are coated with ceramic slurry to form ceramic green sheets. A substrate (1) is coated with ceramic slurry and then dried to form a ceramic green sheet (2a), on top of which an internal electrode paste is applied and dried to form an internal electrode pattern (3a). Provided on top of that is a resin sheet that does not dissolve in solvents included in the ceramic green sheet and internal electrode pattern. Subsequently another ceramic green sheet (2b) and internal electrode pattern (3b) are formed in the same way, forming a composite laminate (10). By repeating a step of layering composite laminates (10) formed as described above, an unfired laminate can be created that becomes a laminated ceramic electronic component element after firing.

Description

積層セラミック電子部品の製造方法Manufacturing method of multilayer ceramic electronic component
 本発明は、セラミックスラリーを塗布することによってセラミックグリーンシートを形成し、内部電極ペーストを所定のパターンで塗布することにより内部電極パターンを形成する工程を経て製造される、積層セラミック電子部品の製造方法に関する。 The present invention relates to a method of manufacturing a multilayer ceramic electronic component manufactured by forming a ceramic green sheet by applying a ceramic slurry and forming an internal electrode pattern by applying an internal electrode paste in a predetermined pattern. About.
 積層セラミックコンデンサのように、セラミック層と内部電極層とが交互に積層された構造を有する積層セラミック電子部品は、例えば、キャリアフィルム上にセラミックスラリーを塗工してセラミックグリーンシートを形成し、さらにセラミックグリーンシート上に内部電極ペーストを付与(印刷)して内部電極パターンを形成した後、所定パターンに打ち抜いたシートを順次積み重ねて積層体を形成し、これを焼成する工程を経て製造されるのが一般的である。
 しかしながら、電子部品の薄層化、高特性化につれて、セラミックグリーンシートの積層枚数が増加し、積層工程に要する時間が長くなって、生産性が低下するに至っている。
A multilayer ceramic electronic component having a structure in which ceramic layers and internal electrode layers are alternately stacked, such as a multilayer ceramic capacitor, forms a ceramic green sheet by coating a ceramic slurry on a carrier film, for example, An internal electrode paste is applied (printed) on a ceramic green sheet to form an internal electrode pattern, and then the sheets punched into a predetermined pattern are sequentially stacked to form a laminate, which is then fired. Is common.
However, as electronic components become thinner and have higher characteristics, the number of laminated ceramic green sheets increases, the time required for the lamination process becomes longer, and productivity is reduced.
 そこで、キャリアフィルム上に形成したセラミックスラリーを印刷して形成したセラミックグリーンシート上に内部電極パターンを形成し、さらにその上にセラミックスラリーを印刷することによるグリーンシートの形成、内部電極パターンの形成を順に行うことにより、セラミックグリーンシートと内部電極パターンの少数単位積層体を形成し、これを打ち抜いた複合積層体を積み重ねることにより、積層工程に要する時間を短くして生産効率を向上させる方法が提案されている(特許文献1参照)。 Therefore, the internal electrode pattern is formed on the ceramic green sheet formed by printing the ceramic slurry formed on the carrier film, and the formation of the green sheet and the internal electrode pattern by further printing the ceramic slurry thereon. Proposing a method to improve production efficiency by shortening the time required for the lamination process by forming a minority unit laminate of ceramic green sheets and internal electrode patterns by stacking and stacking composite laminates punched from this (See Patent Document 1).
 しかしながら、上述のように内部電極パターンの上にさらにセラミックスラリーを印刷してセラミックグリーンシートを形成する方法の場合、上層として印刷したセラミックスラリーの溶剤によって下層の内部電極パターンやセラミックグリーンシート中の有機系バインダーが溶解される、いわゆるシートアタックが生じ、内部電極パターンの精度低下や、セラミックグリーンシートに生じるピンホールに起因するショート不良などが発生するという問題点がある。 However, as described above, in the method of forming a ceramic green sheet by further printing a ceramic slurry on the internal electrode pattern, organic solvent in the lower internal electrode pattern or ceramic green sheet is formed by the solvent of the ceramic slurry printed as the upper layer. There is a problem that a so-called sheet attack occurs in which the system binder is dissolved, resulting in a decrease in accuracy of the internal electrode pattern and a short circuit failure due to a pinhole generated in the ceramic green sheet.
 また、シートアタックは、セラミックグリーンシートに含まれる有機系バインダーと内部電極ペーストとの組み合わせによっては、セラミックグリーンシート上に内部電極ペーストを付与する際にも発生する。そして、この場合のシートアタックを防止する技術として、硬化性樹脂を含有させたセラミックスラリーを用いてセラミックグリーンシートを形成し、内部電極ペーストを付与する前にセラミックグリーンシート中の硬化性樹脂を硬化させることにより、セラミックグリーンシート中の有機系バインダーが内部電極ペーストに溶解してしまうことを抑制、防止するようにした積層型電子部品の製造方法が提案されている(特許文献2参照)。 Also, the sheet attack occurs when the internal electrode paste is applied on the ceramic green sheet depending on the combination of the organic binder contained in the ceramic green sheet and the internal electrode paste. As a technique for preventing sheet attack in this case, a ceramic green sheet is formed using a ceramic slurry containing a curable resin, and the curable resin in the ceramic green sheet is cured before applying the internal electrode paste. Thus, there has been proposed a method for manufacturing a multilayer electronic component that suppresses or prevents the organic binder in the ceramic green sheet from dissolving in the internal electrode paste (see Patent Document 2).
 この方法の場合、硬化したセラミックグリーンシートが、内部電極ペーストによるアタックを受けにくくなるものの、上述の特許文献1に開示されている方法にこの方法を応用した場合、セラミックグリーンシート自体が硬化した状態で積層されることになるため、層間密着力が不十分になり、デラミネーションの原因となったり、積層工程で割れを生じたりするなどの問題点がある。 In the case of this method, the cured ceramic green sheet is less susceptible to attack by the internal electrode paste, but when this method is applied to the method disclosed in Patent Document 1, the ceramic green sheet itself is cured. Therefore, there are problems such as insufficient adhesion between layers, causing delamination, and causing cracks in the lamination process.
特開平8-250370号公報JP-A-8-250370 特開2006-66852号公報JP 2006-66852 A
 本発明は、上記課題を解決するものであり、セラミックスラリーを塗布してセラミックグリーンシートを形成する際に、内部電極パターンやセラミックグリーンシートへのアタックを抑制、防止して、所望の特性を備えた、信頼性の高い積層セラミック電子部品を確実に製造することが可能で、しかも、セラミックグリーンシートや内部電極ペーストなどの構成材料(例えば、溶剤や有機系バインダーの種類など)を選択するにあたっての自由度の高い積層セラミック電子部品の製造方法を提供することを目的とする。 The present invention solves the above-described problems, and suppresses and prevents internal electrode patterns and attacks on the ceramic green sheet when a ceramic slurry is applied to form a ceramic green sheet, thereby providing desired characteristics. In addition, it is possible to reliably manufacture highly reliable multilayer ceramic electronic parts, and in addition to selecting constituent materials such as ceramic green sheets and internal electrode paste (for example, types of solvents and organic binders) An object of the present invention is to provide a method for manufacturing a multilayer ceramic electronic component having a high degree of freedom.
 上記課題を解決するため、本発明(請求項1)の積層セラミック電子部品の製造方法は、
 セラミック層と内部電極が積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
 (a)基材上に、有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
 (b)前記セラミックグリーンシート上に、有機系バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
 (c)前記セラミックグリーンシートおよび前記内部電極パターン上に、下記(d)の工程で用いられるセラミックスラリーに含まれる溶剤に溶解しない樹脂シートを配設する工程と、
 (d)前記樹脂シート上に、前記セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
 (e)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程とを備え、
 前記(c)~(e)の工程を1回以上行うことを特徴としている。
 なお、前記(c)の工程において、「セラミックスラリーに含まれる溶剤に溶解しない樹脂シートを配設する」とは、予めシート状に成形された樹脂シートであって、セラミックスラリーに含まれる溶剤に実質的に溶解しないものを配設することを意味する。
In order to solve the above problems, a method for manufacturing a multilayer ceramic electronic component of the present invention (Claim 1) includes:
A method for producing a multilayer ceramic electronic component having a structure in which a ceramic layer and an internal electrode are laminated, and the internal electrodes are disposed so as to face each other through the ceramic layer,
(a) A step of applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on a substrate and drying to form a ceramic green sheet;
(b) On the ceramic green sheet, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern;
(c) disposing a resin sheet that does not dissolve in the solvent contained in the ceramic slurry used in the step (d) on the ceramic green sheet and the internal electrode pattern;
(d) applying the ceramic slurry on the resin sheet and drying to form a ceramic green sheet;
(e) providing the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
The steps (c) to (e) are performed once or more.
In the step (c), “arranging a resin sheet that does not dissolve in the solvent contained in the ceramic slurry” means a resin sheet that has been formed into a sheet shape in advance, and the solvent contained in the ceramic slurry. This means that a material that does not substantially dissolve is disposed.
 また、本発明の積層セラミック電子部品の製造方法は、
 セラミック層と内部電極が交互に積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
 (a)基材上に、有機系バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
 (b)前記内部電極パターン上および、その周囲の前記基材上の所定の領域を覆うように、下記(c)の工程で用いられるセラミックスラリーに含まれる溶剤に溶解しない樹脂シートを配設する工程と、
 (c)前記樹脂シート上に、有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
 (d)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
 (e)前記セラミックグリーンシート上および前記内部電極パターン上に、下記(f)の工程で用いられるセラミックスラリーに含まれる溶剤に溶解しない樹脂シートを配設する工程と、
 (f)前記樹脂シート上に有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程とを備え、
 前記(d)~(f)の工程を1回以上行うことを特徴としている。
 なお、前記(b),(e)の工程において、「セラミックスラリーに含まれる溶剤に溶解しない樹脂シートを配設する」とは、予めシート状に成形された樹脂シートであって、セラミックスラリーに含まれる溶剤に実質的に溶解しないものを配設することを意味する。
In addition, the method for manufacturing the multilayer ceramic electronic component of the present invention includes:
A method of manufacturing a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are disposed so as to face each other through the ceramic layers,
(a) On the substrate, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern;
(b) A resin sheet that does not dissolve in the solvent contained in the ceramic slurry used in the step (c) is disposed so as to cover a predetermined region on the internal electrode pattern and the surrounding substrate. Process,
(c) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the resin sheet, and drying to form a ceramic green sheet;
(d) applying the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
(e) disposing a resin sheet that does not dissolve in a solvent contained in the ceramic slurry used in the step (f) on the ceramic green sheet and the internal electrode pattern;
(f) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the resin sheet, and drying to form a ceramic green sheet;
The steps (d) to (f) are performed once or more.
In the steps (b) and (e), “arranging a resin sheet that does not dissolve in the solvent contained in the ceramic slurry” means a resin sheet previously formed into a sheet shape, This means that a substance that does not substantially dissolve in the contained solvent is disposed.
 また、本発明の積層セラミック電子部品の製造方法は、前記基材上に、請求項1の(a)~(e)の工程、または、請求項2の(a)~(f)の工程を経て形成される、複数層のセラミックグリーンシートと複数層の内部電極パターンとを備えた複合積層体を積み重ねる工程を繰り返して、焼成後に積層セラミック電子部品素子となる未焼成の積層体を形成する工程を備えていることを特徴としている。 The method for producing a multilayer ceramic electronic component of the present invention comprises the steps (a) to (e) of claim 1 or the steps (a) to (f) of claim 2 on the substrate. A step of stacking a composite laminate including a plurality of layers of ceramic green sheets and a plurality of layers of internal electrode patterns, and forming an unsintered laminate that becomes a multilayer ceramic electronic component element after firing. It is characterized by having.
 また、本発明の積層セラミック電子部品の製造方法は、前記内部電極パターンを形成する工程の後で、形成された前記内部電極パターンの周囲の領域に、前記内部電極パターンとその周囲との段差を解消するための段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成する工程を備えていることを特徴としている。 Further, in the method for manufacturing a multilayer ceramic electronic component of the present invention, after the step of forming the internal electrode pattern, a step between the internal electrode pattern and the periphery thereof is formed in a region around the formed internal electrode pattern. A step-absorbing layer is formed by applying and drying a step-absorbing layer ceramic paste to eliminate the step-absorbing layer.
 また、前記内部電極パターンを形成する工程の前に、前記内部電極パターンが形成されるべき領域の周囲に、その後に形成される前記内部電極パターンとその周囲との段差を解消するための段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成し、その後、前記段差吸収層が形成されていない領域に前記内部電極ペーストを付与、乾燥することにより前記内部電極パターンを形成することを特徴としている。 Further, before the step of forming the internal electrode pattern, the step absorption is performed around the region where the internal electrode pattern is to be formed, so as to eliminate the step between the internal electrode pattern formed thereafter and the surrounding area. Applying and drying a ceramic paste for layer to form a step absorption layer, and then applying the internal electrode paste to a region where the step absorption layer is not formed and drying to form the internal electrode pattern It is a feature.
 また、本発明の積層セラミック電子部品の製造方法においては、前記樹脂シートの厚みが、0.02~0.20μmであることが望ましい。 In the method for manufacturing a multilayer ceramic electronic component of the present invention, it is desirable that the resin sheet has a thickness of 0.02 to 0.20 μm.
 また、前記樹脂シートとして、セラミック粉末を臨界粒子体積分率以下となるような割合で含有しているものを用いることが望ましい。 In addition, it is desirable to use a resin sheet containing ceramic powder at a ratio that is less than or equal to the critical particle volume fraction.
 本発明(請求項1および2)の積層セラミック電子部品の製造方法は、上述のように、セラミックスラリーに含まれる溶剤に溶解しない樹脂シートを介して、内部電極パターン上、または内部電極パターンおよびセラミックグリーンシート上に、セラミックスラリーを塗布するようにしているので、セラミックスラリーによるシートアタックを確実に抑制、防止して、所望の特性を備えた、信頼性の高い積層セラミック電子部品を確実に製造することが可能になる。
 すなわち、本発明は、内部電極パターン上、または内部電極パターンおよびセラミックグリーンシート上に、セラミックスラリーに含まれる溶剤に溶解しない樹脂シートを配設して樹脂層を形成し、しかる後にその上に、セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成するようにしているので、セラミックスラリーを直接に内部電極パターンおよびセラミックグリーンシートに接触させないようにすることが可能になり、シートアタックを確実に抑制、防止することが可能になる。
The multilayer ceramic electronic component manufacturing method of the present invention (Claims 1 and 2) is, as described above, on the internal electrode pattern or the internal electrode pattern and the ceramic via the resin sheet that does not dissolve in the solvent contained in the ceramic slurry. Since the ceramic slurry is applied on the green sheet, the sheet attack by the ceramic slurry is surely suppressed and prevented, and a reliable multilayer ceramic electronic component having desired characteristics is reliably manufactured. It becomes possible.
That is, the present invention forms a resin layer by disposing a resin sheet that does not dissolve in the solvent contained in the ceramic slurry on the internal electrode pattern, or on the internal electrode pattern and the ceramic green sheet. Since the ceramic green sheet is formed by applying and drying the ceramic slurry, it is possible to prevent the ceramic slurry from coming into direct contact with the internal electrode pattern and the ceramic green sheet, thereby reliably suppressing sheet attack. It becomes possible to prevent.
 また、セラミックグリーンシートを硬化させることを必要とせずに、セラミックグリーンシートおよび内部電極パターンへのセラミックスラリーによるシートアタックを効果的に防止することが可能になるため、デラミネーションを引き起こすことなく、精度の高い内部電極を備えた積層セラミック電子部品を効率よく製造することが可能になる。 In addition, it is possible to effectively prevent sheet attack due to ceramic slurry to the ceramic green sheet and internal electrode pattern without requiring curing of the ceramic green sheet, so that accuracy is not caused without causing delamination. It is possible to efficiently manufacture a monolithic ceramic electronic component having a high internal electrode.
 また、セラミックスラリーに含まれる溶剤に溶解しない樹脂シートの上にセラミックスラリーを塗布するようにしているため、セラミックスラリーに使用する溶剤の選定の自由度を格段に向上させることが可能になる。 Further, since the ceramic slurry is applied on the resin sheet that does not dissolve in the solvent contained in the ceramic slurry, the degree of freedom in selecting the solvent used for the ceramic slurry can be greatly improved.
 また、内部電極ペーストとセラミックスラリーとの間には樹脂シートが介在するため、セラミックスラリーが含有する溶剤や有機系バインダーとの関係で、内部電極ペーストが含有する有機系バインダーの種類が制約されることもなくなる。したがって、この点でも材料の選択の自由度が向上する。
 また、内部電極パターンの表面に凹凸がある場合にも、内部電極パターンを覆うように配設された樹脂シート上にセラミックスラリーを塗布してセラミック層となるセラミックグリーンシートを形成するようにしているため、内部電極パターン上に直接セラミックスラリーを塗布してセラミックグリーンシートを形成する場合のように、内部電極パターンの表面の凹凸に影響されて、内部電極パターンの表面の凸部に対応する部分においてセラミックグリーンシートの厚みが薄くなるようなことがないため、ショート不良の発生を抑制して、信頼性の高い積層セラミック電子部品を得ることが可能になる。
In addition, since a resin sheet is interposed between the internal electrode paste and the ceramic slurry, the type of the organic binder contained in the internal electrode paste is limited by the relationship with the solvent and organic binder contained in the ceramic slurry. Nothing will happen. Therefore, also in this respect, the degree of freedom in material selection is improved.
Further, even when the surface of the internal electrode pattern is uneven, a ceramic green sheet serving as a ceramic layer is formed by applying ceramic slurry on a resin sheet disposed so as to cover the internal electrode pattern. Therefore, as in the case of forming a ceramic green sheet by directly applying a ceramic slurry on the internal electrode pattern, it is affected by the unevenness of the surface of the internal electrode pattern, and in the portion corresponding to the convex part of the surface of the internal electrode pattern Since the thickness of the ceramic green sheet is not reduced, it is possible to suppress the occurrence of short circuit failure and obtain a highly reliable multilayer ceramic electronic component.
 なお、本発明において、セラミックスラリーを塗布するとは、コータ法や、ドクターブレード法などによりセラミックスラリーをシート状に成形する場合や、グラビア印刷法などによりセラミックスラリーをシート状に印刷する場合などを含む広い概念である。 In the present invention, the application of the ceramic slurry includes a case where the ceramic slurry is formed into a sheet by a coater method or a doctor blade method, or a case where the ceramic slurry is printed into a sheet by a gravure printing method. It is a broad concept.
 また、内部電極ペーストを付与する方法としては、例えば、スクリーン印刷法などにより内部電極ペーストをセラミックグリーンシート上に印刷して付着させる方法などが例示されるが、内部電極ペーストを付与する方法はこれに限らず、その他の種々の方法を用いることが可能である。 Examples of the method of applying the internal electrode paste include a method of printing and attaching the internal electrode paste on the ceramic green sheet by a screen printing method or the like. The present invention is not limited to this, and various other methods can be used.
 なお、請求項2の発明においては、(b)の工程で、内部電極パターン上および、その周囲の基材上の所定の領域を覆うように配設される樹脂シートと、(e)の工程で、セラミックグリーンシート上および内部電極パターン上に配設される樹脂シートとして、異なる樹脂シートを用いることも可能ではあるが、通常は、同じ樹脂シートを用いることが、製造工程を簡略化することができて望ましい。 In the invention of claim 2, in the step (b), a resin sheet disposed so as to cover a predetermined region on the internal electrode pattern and the surrounding substrate, and the step (e) However, it is possible to use different resin sheets as the resin sheets disposed on the ceramic green sheet and on the internal electrode pattern, but usually using the same resin sheet simplifies the manufacturing process. This is desirable.
 また、複数層のセラミックグリーンシートおよび複数層の内部電極パターンを備えた複合積層体を積み重ねる工程を繰り返して、焼成後に積層セラミック電子部品素子となる未焼成の積層体を形成するようにした場合、積層工程に要する時間を減らして効率よく積層セラミック電子部品を製造することが可能になる。 In addition, by repeating the process of stacking a composite laminate including a plurality of layers of ceramic green sheets and a plurality of layers of internal electrode patterns, and forming an unfired laminate that becomes a multilayer ceramic electronic component element after firing, It becomes possible to efficiently manufacture a multilayer ceramic electronic component by reducing the time required for the lamination process.
 また、内部電極パターンを形成した後、内部電極パターンの周囲の領域に、段差吸収層用セラミックペーストを塗布して段差吸収層を形成することにより、段差を解消して、層間剥離などの生じにくい信頼性の高い積層セラミック電子部品を得ることが可能になる。なお、段差吸収層を配設するようにした場合、使用材料の種類が増えることになるため、従来の技術では、シートアタック回避などのため、セラミックスラリーや内部電極ペーストに用いられる溶剤や有機系バインダーの選定の幅が狭くなるが、本発明においては、樹脂シートが上述のように所定の位置に介在して、シートアタックを防止する機能を果たすため、溶剤選定の自由度を高く維持することができる。
 なお、段差吸収層用セラミックペーストは、その成分が、内部電極パターンに含まれる有機系バインダーを溶解しにくいものであることが望ましいが、内部電極パターンとはその周縁部で接するだけであることから、それほど厳密な要件となるものでない。
In addition, after forming the internal electrode pattern, the step absorption layer is formed by applying the ceramic paste for the step absorption layer to the region around the internal electrode pattern, thereby eliminating the step and preventing delamination. A highly reliable multilayer ceramic electronic component can be obtained. If a step absorption layer is provided, the number of materials used increases, so in the conventional technology, the solvent used in the ceramic slurry and the internal electrode paste and the organic system are used in order to avoid sheet attack. Although the selection range of the binder is narrowed, in the present invention, the resin sheet is interposed at a predetermined position as described above and functions to prevent sheet attack, so that the degree of freedom in selecting the solvent is kept high. Can do.
The step-absorbing layer ceramic paste preferably has a component that hardly dissolves the organic binder contained in the internal electrode pattern, but only contacts the internal electrode pattern at its peripheral edge. It ’s not a very strict requirement.
 また、内部電極パターンを形成する前に、内部電極パターンが形成されるべき領域の周囲に、段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成し、その後、内部電極パターンを形成すべき領域に内部電極ペーストを付与、乾燥することにより内部電極パターンを形成するようにした場合にも、同様の作用効果を得ることが可能である。
 なお、この場合、段差吸収層の形成されていない領域に付与される内部電極ペーストは、その成分が、段差吸収層に含まれる有機系バインダーを溶解しにくいものであることが望ましいが、内部電極ペーストはその周縁部において段差吸収層に接するだけであることから、それほど厳密な要件となるものでない。
Also, before forming the internal electrode pattern, apply the step absorbing layer ceramic paste around the area where the internal electrode pattern is to be formed and dry to form the step absorbing layer, and then form the internal electrode pattern Similar effects can be obtained even when the internal electrode pattern is formed by applying and drying the internal electrode paste to the region to be formed.
In this case, it is desirable that the internal electrode paste applied to the region where the step absorption layer is not formed is such that the component hardly dissolves the organic binder contained in the step absorption layer. Since the paste only touches the step absorption layer at the peripheral edge thereof, it is not a very strict requirement.
 また、樹脂シートの厚さを0.02~0.20μmとすることにより、シートアタックに起因する電気特性不良と、デラミネーションに起因する構造欠陥の双方を効率よく抑制することができるようになり、好ましい。
 なお、樹脂シートの厚さが0.02μm未満になると、シートアタックを防止する作用が不十分になり、0.20μmを超えるとデラミネーションが生じやすくなる傾向がある。
In addition, by setting the thickness of the resin sheet to 0.02 to 0.20 μm, it becomes possible to efficiently suppress both the electrical characteristic failure caused by the sheet attack and the structural defect caused by delamination. ,preferable.
When the thickness of the resin sheet is less than 0.02 μm, the effect of preventing sheet attack becomes insufficient, and when it exceeds 0.20 μm, delamination tends to occur.
 また、樹脂シートとして、臨界粒子体積分率以下となるような割合で、セラミック粉末を含有しているものを用いるようにした場合、焼成工程において、下層と上層のセラミックグリーンシートに樹脂シート中のセラミック粉末を拡散させて、下層と上層のセラミックグリーンシートを強固に結合させることが可能になり、デラミネーションなどの構造欠陥の発生をさらに確実に防止することができる。 In addition, when a resin sheet containing a ceramic powder is used at a ratio that is equal to or less than the critical particle volume fraction, in the firing step, the lower and upper ceramic green sheets in the resin sheet It is possible to diffuse the ceramic powder and firmly bond the lower layer and the upper layer ceramic green sheets, and more reliably prevent the occurrence of structural defects such as delamination.
本発明の積層セラミック電子部品の製造方法により製造された積層セラミックコンデンサの一例を示す断面図である。It is sectional drawing which shows an example of the multilayer ceramic capacitor manufactured by the manufacturing method of the multilayer ceramic electronic component of this invention. 本発明の実施例1の積層セラミック電子部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated ceramic electronic component of Example 1 of this invention. 本発明の実施例2の積層セラミック電子部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated ceramic electronic component of Example 2 of this invention. 本発明の実施例3の積層セラミック電子部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated ceramic electronic component of Example 3 of this invention. 本発明の実施例4の積層セラミック電子部品の製造方法の一工程で形成した複合積層体を示す断面図である。It is sectional drawing which shows the composite laminated body formed at 1 process of the manufacturing method of the laminated ceramic electronic component of Example 4 of this invention.
 以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。 Hereinafter, the features of the present invention will be described in more detail with reference to examples of the present invention.
 この実施例1では、代表的な積層セラミック電子部品の一つである、積層セラミックコンデンサを製造する場合を例にとって説明する。図1は、本発明の一実施例にかかる方法により製造される積層セラミックコンデンサの構成を示す図である。
 図1に示すように、この積層セラミックコンデンサは、積層セラミック素子(積層セラミック電子部品素子)51中に、セラミック層52を介して、複数の内部電極53a,53bが積層され、かつ、セラミック層52を介して互いに対向する内部電極53a,53bが交互に積層セラミック素子51の異なる側の端面54a,54bに引き出されて、該端面に形成された外部電極55a,55bに接続された構造を有している。
In Example 1, a case where a multilayer ceramic capacitor, which is one of typical multilayer ceramic electronic components, is manufactured will be described as an example. FIG. 1 is a diagram showing a configuration of a multilayer ceramic capacitor manufactured by a method according to an embodiment of the present invention.
As shown in FIG. 1, the multilayer ceramic capacitor includes a multilayer ceramic element (multilayer ceramic electronic component element) 51 in which a plurality of internal electrodes 53 a and 53 b are stacked via a ceramic layer 52. The internal electrodes 53a and 53b facing each other are alternately drawn out to the end faces 54a and 54b on different sides of the multilayer ceramic element 51 and connected to the external electrodes 55a and 55b formed on the end faces. ing.
 なお、この実施例1では、基材(支持フィルム)上に、第1誘電体グリーンシート(セラミックグリーンシート)、第1内部電極パターン、樹脂シート(樹脂層)、第2誘電体グリーンシート(セラミックグリーンシート)、第2内部電極パターンを順次積層して、複合積層体を形成し、この複合積層体を所定数だけ積層する工程を経て積層セラミックコンデンサを製造する場合について説明する。 In Example 1, the first dielectric green sheet (ceramic green sheet), the first internal electrode pattern, the resin sheet (resin layer), and the second dielectric green sheet (ceramic) are formed on the base material (support film). A case where a multilayer ceramic capacitor is manufactured through a process of sequentially stacking a green sheet) and a second internal electrode pattern to form a composite laminate and laminating a predetermined number of the composite laminate will be described.
 (1)本発明の実施例1にかかる積層セラミックコンデンサの作製
 炭酸バリウム(BaCO3)および酸化チタン(TiO2)を1:1のモル比となるように秤量した。そして、Dy、Mgなどで変性し、ボールミルを用いて湿式混合し、脱水した後、乾燥させた。この乾燥粉末を、温度1000℃で2時間仮焼した後、乾式粉砕することにより、セラミック原料を得た。得られたセラミック原料60体積部と、有機系バインダーとしてポリビニルブチラールの高重合品30体積部と、可塑剤としてフタル酸ジオクチル10体積部と、溶剤としてトルエン/エタノール(体積比:50/50)の混合物900体積部とを、直径1mmのジルコニア製玉石600体積部とともに、ボールミルに投入し、24時間湿式混合を行って、セラミックスラリーを調製した。
 なお、以下の各実施例、比較例ともセラミックグリーンシートを作製するためのセラミックスラリーとしては、ここで作製したセラミックスラリーと同じものを用いた。
(1) Production of monolithic ceramic capacitor according to Example 1 of the present invention Barium carbonate (BaCO 3 ) and titanium oxide (TiO 2 ) were weighed so as to have a molar ratio of 1: 1. Then, it was denatured with Dy, Mg, etc., wet-mixed using a ball mill, dehydrated, and dried. The dried powder was calcined at a temperature of 1000 ° C. for 2 hours, and then dry pulverized to obtain a ceramic raw material. 60 parts by volume of the obtained ceramic raw material, 30 parts by volume of a highly polymerized polyvinyl butyral as an organic binder, 10 parts by volume of dioctyl phthalate as a plasticizer, and toluene / ethanol (volume ratio: 50/50) as a solvent 900 parts by volume of the mixture was placed in a ball mill together with 600 parts by volume of zirconia cobblestone having a diameter of 1 mm, and wet mixing was performed for 24 hours to prepare a ceramic slurry.
In each of the following Examples and Comparative Examples, the same ceramic slurry produced here was used as the ceramic slurry for producing the ceramic green sheet.
 また、内部電極パターンを形成するための内部電極ペーストとして、導電成分としてNi粉末を、溶剤としてジヒドロターピネオールアセテートを、有機系バインダーとしてエチルセルロースを含むものを用いた。
 なお、以下の各実施例、比較例とも、内部電極パターンを形成するための内部電極ペーストとしては、ここで作製した内部電極ペーストと同じものを用いている。
Further, as an internal electrode paste for forming an internal electrode pattern, a paste containing Ni powder as a conductive component, dihydroterpineol acetate as a solvent, and ethyl cellulose as an organic binder was used.
In each of the following examples and comparative examples, the same internal electrode paste as used here was used as the internal electrode paste for forming the internal electrode pattern.
 また、樹脂シートとして、高水酸基量・高重合度のポリビニルアルコールを水に溶解して得たポリビニルアルコール水溶液を、キャリアフィルム(基材)上に塗布・乾燥して、表1に示すような厚み(0.01μm、0.02μm、0.10μm、0.20μm、0.22μm)を有する、ポリビニルアルコール樹脂からなる樹脂シートを作製した。
 なお、この樹脂シートは、上記のセラミックグリーンシートの作製に用いられるセラミックスラリーに含まれる溶剤(トルエン/エタノール(体積比:50/50))に溶解しない樹脂シートである。
Further, as a resin sheet, a polyvinyl alcohol aqueous solution obtained by dissolving polyvinyl alcohol having a high hydroxyl content and a high degree of polymerization in water is applied and dried on a carrier film (base material), and the thickness as shown in Table 1 is obtained. Resin sheets made of polyvinyl alcohol resin having (0.01 μm, 0.02 μm, 0.10 μm, 0.20 μm, 0.22 μm) were prepared.
In addition, this resin sheet is a resin sheet which does not melt | dissolve in the solvent (Toluene / ethanol (volume ratio: 50/50)) contained in the ceramic slurry used for preparation of said ceramic green sheet.
 上述のようにして調製したセラミックスラリーをコータ法により塗布して、図2に示すように、基材(支持フィルム)1上に厚さ1.2μmの第1誘電体グリーンシート(セラミックグリーンシート)2aを形成した。それから、80℃、5分間の条件で乾燥を行った。 The ceramic slurry prepared as described above was applied by a coater method, and a first dielectric green sheet (ceramic green sheet) having a thickness of 1.2 μm was formed on a substrate (support film) 1 as shown in FIG. 2a was formed. Then, drying was performed at 80 ° C. for 5 minutes.
 その後、乾燥させた第1誘電体グリーンシート2a上に、上述のようにして調製した内部電極ペースト(Ni電極ペースト)をスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第1内部電極パターン3aを形成した。 Thereafter, the internal electrode paste (Ni electrode paste) prepared as described above is applied on the dried first dielectric green sheet 2a by the screen printing method, and is dried at 60 ° C. for 5 minutes. Thus, the first internal electrode pattern 3a having a thickness of 0.5 μm was formed.
 次に、第1誘電体グリーンシート2aと、その上に形成した第1内部電極パターン3aを覆うように、上述のようにして作製したポリビニルアルコール樹脂からなる樹脂シート4を配設した。なお、この実施例1では、キャリアフィルム(基材)上に形成した樹脂シートを熱転写することにより樹脂シートを配設して、樹脂層を形成した。 Next, the resin sheet 4 made of the polyvinyl alcohol resin prepared as described above was disposed so as to cover the first dielectric green sheet 2a and the first internal electrode pattern 3a formed thereon. In Example 1, the resin sheet was disposed by thermally transferring the resin sheet formed on the carrier film (base material) to form a resin layer.
 それから、樹脂シート(樹脂層)4の上に、上記セラミックスラリーをコータ法により塗布して、厚さ1.2μmの第2誘電体グリーンシート(セラミックグリーンシート)2bを形成し、80℃で、5分間の条件で乾燥を行った。 Then, the ceramic slurry is applied onto the resin sheet (resin layer) 4 by a coater method to form a second dielectric green sheet (ceramic green sheet) 2b having a thickness of 1.2 μm. Drying was performed for 5 minutes.
 次に、第2誘電体グリーンシート2b上に、スクリーン印刷法によりNi電極ペーストを塗布し、60℃で5分間の条件で乾燥して、厚さ0.5μmの第2内部電極パターン3bを形成した。そして、これにより2層の誘電体グリーンシート2a,2bと、2層の内部電極パターン3a,3bを有する複合積層体10を得た。なお、この複合積層体10は、1層の樹脂シート4を備えている。 Next, a Ni electrode paste is applied on the second dielectric green sheet 2b by screen printing and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern 3b having a thickness of 0.5 μm. did. Thus, a composite laminate 10 having two layers of dielectric green sheets 2a and 2b and two layers of internal electrode patterns 3a and 3b was obtained. The composite laminate 10 includes a single layer resin sheet 4.
 得られた複合積層体10を連続剥離・積層機を用いて基材(支持フィルム)から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子(積層セラミック電子部品素子)となる未焼成の積層体を作製した。 The resulting composite laminate 10 is stacked with 300 sheets while being peeled from the substrate (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa. An unfired laminated body to be a multilayer ceramic electronic component element) was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、還元雰囲気中において1200℃で焼成して、積層セラミック素子51(図1)を得た。なお、上述の樹脂シート4は、この焼成工程で分解、燃焼して消失する。 Then, the obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element 51 (FIG. 1). In addition, the above-mentioned resin sheet 4 is decomposed | disassembled and combusted by this baking process, and lose | disappears.
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、図1に示すような構造を有する、本発明の実施例にかかる積層セラミックコンデンサ(実施例の試料1~5)を得た。 Then, a multilayer ceramic capacitor according to the example of the present invention (sample 1 of the example) having a structure as shown in FIG. 1 is applied to the multilayer ceramic element by applying and baking a conductive paste for forming an external electrode. To 5) were obtained.
 (2)比較用の積層セラミックコンデンサ(比較例1)の作製
 比較のため、本発明の必須の構成要件である樹脂シートを配設することにより樹脂層を形成する工程を経ることなく、比較例1の積層セラミックコンデンサを以下に説明する手順で作製した。
 まず、上記実施例1の場合と同様の方法で調製された同じ組成のセラミックスラリーを用意した。
(2) Production of Comparative Multilayer Ceramic Capacitor (Comparative Example 1) For comparison, a comparative example without passing through a step of forming a resin layer by disposing a resin sheet which is an essential constituent element of the present invention. 1 monolithic ceramic capacitor was produced according to the procedure described below.
First, a ceramic slurry having the same composition prepared by the same method as in Example 1 was prepared.
 それから、このセラミックスラリーをコータ法により塗布して、基材(支持フィルム)上に厚さ1.2μmの第1誘電体グリーンシートを形成し、80℃、5分間の条件で乾燥を行った。 Then, this ceramic slurry was applied by a coater method to form a first dielectric green sheet having a thickness of 1.2 μm on the base material (support film), and dried at 80 ° C. for 5 minutes.
 その後、乾燥させた第1誘電体グリーンシート上に、内部電極ペーストであるNi電極ペースト(内部電極ペースト)をスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第1内部電極パターンを形成した。 Thereafter, a Ni electrode paste (internal electrode paste), which is an internal electrode paste, is applied on the dried first dielectric green sheet by screen printing, and dried under conditions of 60 ° C. for 5 minutes. A first internal electrode pattern having a thickness of 0.5 μm was formed.
 次に、上記セラミックスラリーをコータ法により塗布して、第1誘電体グリーンシート上に形成した第1内部電極パターン上に、厚さ1.2μmの第2誘電体グリーンシートを形成し、80℃で、5分間の条件で乾燥を行った。 Next, the ceramic slurry is applied by a coater method to form a second dielectric green sheet having a thickness of 1.2 μm on the first internal electrode pattern formed on the first dielectric green sheet. Then, drying was performed for 5 minutes.
 それから、第2誘電体グリーンシート上に、スクリーン印刷法によりNi電極ペーストを塗布し、60℃で5分間の条件で乾燥して、厚さ0.5μmの第2内部電極パターンを形成した。そして、これにより2層の誘電体グリーンシートと、2層の内部電極パターンを有する複合積層体を得た。なお、この複合積層体は、樹脂シートを配設する工程を経て形成される樹脂層を備えていない。 Then, a Ni electrode paste was applied by screen printing on the second dielectric green sheet and dried at 60 ° C. for 5 minutes to form a second internal electrode pattern having a thickness of 0.5 μm. Thus, a composite laminate having two layers of dielectric green sheets and two layers of internal electrode patterns was obtained. In addition, this composite laminated body is not provided with the resin layer formed through the process of arrange | positioning a resin sheet.
 得られた複合積層体を連続剥離・積層機を用いて基材(支持フィルム)から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子となる未焼成の積層体を作製した。 300 sheets are stacked while peeling the obtained composite laminate from the base material (support film) using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa to become a laminated ceramic element after firing. An unfired laminate was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、還元雰囲気中において1200℃で焼成して、積層セラミック素子を得た。
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、図1に示すような構造を有する積層セラミックコンデンサ(比較例1)を得た。
The obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element.
Then, a multilayer ceramic capacitor (Comparative Example 1) having a structure as shown in FIG. 1 was obtained by applying a conductive paste for forming external electrodes to this multilayer ceramic element and baking it.
 (3)特性の評価
 上述のようにして作製した実施例1の積層セラミックコンデンサ(試料1~5)と比較例1の積層セラミックコンデンサについて、電気特性不良率と、構造欠陥発生率を調べた。
(3) Evaluation of characteristics For the multilayer ceramic capacitor of Example 1 (samples 1 to 5) and the multilayer ceramic capacitor of Comparative Example 1 manufactured as described above, the electrical property defect rate and the structural defect occurrence rate were examined.
 なお、電気特性不良率は、上記実施例1の試料1~5と、比較例1の試料について、ショート不良発生率を調べ(n=100)、これを電気特性不良率とした。
 また、構造欠陥発生率は、上記実施例1の試料1~5および比較例1の試料について、デラミネーション発生率を調べ(n=100)、これを構造欠陥発生率とした。
 その結果を表1に示す。
As for the electrical characteristic failure rate, the occurrence rate of short-circuit failure was examined for samples 1 to 5 of Example 1 and the sample of Comparative Example 1 (n = 100), and this was taken as the electrical property failure rate.
As for the structural defect occurrence rate, the delamination occurrence rate was examined for the samples 1 to 5 of Example 1 and the sample of Comparative Example 1 (n = 100), and this was used as the structural defect occurrence rate.
The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、製造工程で樹脂シートを設けるようにしていない比較例1の積層セラミックコンデンサの場合、デラミネーション発生率は低いが、ショート不良発生率が高くなることが確認された。これは、誘電体シートどうしの接合力は損なわれないことからデラミネーション発生率は低いものの、製造工程でセラミックスラリーが直接に内部電極パターンやセラミックグリーンシートに接触することから、セラミックスラリー中の溶剤によるアタックを受け、ショート不良を発生したものと考えられる。なお、この比較例1の場合、ショート不良発生率は100%であった。 As shown in Table 1, in the case of the multilayer ceramic capacitor of Comparative Example 1 in which the resin sheet was not provided in the manufacturing process, it was confirmed that although the delamination occurrence rate was low, the short failure occurrence rate was high. This is because the delamination rate is low because the bonding force between the dielectric sheets is not impaired, but since the ceramic slurry directly contacts the internal electrode pattern and the ceramic green sheet in the manufacturing process, the solvent in the ceramic slurry It is probable that a short-circuit defect occurred due to the attack. In the case of Comparative Example 1, the incidence of short circuit failure was 100%.
 これに対し、実施例1の積層セラミックコンデンサ(実施例の試料1~5)の場合、比較例1の積層セラミックコンデンサに比べて、特性を大幅に改善できることが確認された。 On the other hand, it was confirmed that the characteristics of the multilayer ceramic capacitor of Example 1 (Samples 1 to 5 of the Example) can be significantly improved as compared with the multilayer ceramic capacitor of Comparative Example 1.
 すなわち、実施例の試料1の場合、樹脂シート(樹脂層)の厚みが0.01μmと薄いため、ショート不良発生率が7%と少し高くなっているが、実施例の試料2~5のように、樹脂シート(樹脂層)の厚みを0.02~0.22μmとした場合には、ショート不良発生率を2%以下に抑えられることが確認された。 That is, in the case of sample 1 of the example, since the thickness of the resin sheet (resin layer) is as thin as 0.01 μm, the incidence of short-circuit failure is a little high at 7%, but as in samples 2 to 5 of the example In addition, it was confirmed that when the thickness of the resin sheet (resin layer) is 0.02 to 0.22 μm, the occurrence rate of short-circuit defects can be suppressed to 2% or less.
 また、デラミネーション発生率については、実施例の試料1~4では0%であったが、試料5では5%といくらか高くなることが確認された。これは、樹脂シート(樹脂層)が0.20μmを超えると、脱脂工程での樹脂シート(樹脂層)の熱分解後に第1誘電体グリーンシートと第2誘電体グリーンシート間および第1内部電極用パターンと第2誘電体グリーンシート間に空隙層が発生するためと考えられる。 Further, the delamination occurrence rate was 0% in the samples 1 to 4 of the example, but it was confirmed that the rate of the delamination was slightly higher at 5% in the sample 5. If the resin sheet (resin layer) exceeds 0.20 μm, the first dielectric green sheet and the second dielectric green sheet and the first internal electrode after thermal decomposition of the resin sheet (resin layer) in the degreasing step This is probably because a void layer is generated between the pattern for use and the second dielectric green sheet.
 上記の結果より、樹脂シート(樹脂層)4を介して、第1誘電体グリーンシート2aおよび第1内部電極用パターン3a上にセラミックスラリーを塗布して第2誘電体グリーンシート2bを形成することにより、電気特性不良率および構造欠陥発生率の低い積層セラミックコンデンサを効率よく製造できることが確認できた。
 また、樹脂シート(樹脂層)の厚みとしては、上記条件下では、0.02~0.20μmの範囲が特に好ましいことが確認された。
From the above results, the ceramic slurry is applied on the first dielectric green sheet 2a and the first internal electrode pattern 3a through the resin sheet (resin layer) 4 to form the second dielectric green sheet 2b. Thus, it was confirmed that a multilayer ceramic capacitor having a low electrical property defect rate and a low structural defect occurrence rate can be efficiently manufactured.
Further, it was confirmed that the thickness of the resin sheet (resin layer) is particularly preferably in the range of 0.02 to 0.20 μm under the above conditions.
 この実施例2では、基材(支持フィルム)上に、まず第1内部電極パターンを形成し、その上に順次、樹脂シート(樹脂層)、第1誘電体グリーンシート(セラミックグリーンシート)、第2内部電極パターン、樹脂シート(樹脂層)、第2誘電体グリーンシート(セラミックグリーンシート)を積層して複合積層体を形成し、この複合積層体を所定枚数積層する工程を経て積層セラミックコンデンサを製造する場合について説明する。なお、この実施例2の場合でも、上記実施例1の場合と同様に、図1に示すような構造を有する積層セラミックコンデンサを製造した。以下説明を行う。 In Example 2, a first internal electrode pattern is first formed on a base material (support film), and then a resin sheet (resin layer), a first dielectric green sheet (ceramic green sheet), a first (2) A multilayer laminate is formed by laminating an internal electrode pattern, a resin sheet (resin layer), and a second dielectric green sheet (ceramic green sheet). The case of manufacturing will be described. In the case of Example 2, a multilayer ceramic capacitor having a structure as shown in FIG. 1 was manufactured in the same manner as in Example 1 above. A description will be given below.
 この実施例2では、
 (a)セラミックグリーンシートを形成するためのセラミックスラリー、
 (b)内部電極パターンを形成するための内部電極ペースト、および
 (c)樹脂層を形成するための樹脂シート
 として、上述の実施例1で用いたものと同じものを用いた。
In this Example 2,
(a) a ceramic slurry for forming a ceramic green sheet;
As the internal electrode paste for forming the internal electrode pattern (b) and the resin sheet for forming the resin layer (c), the same one as used in Example 1 was used.
 (1)本発明の実施例2にかかる積層セラミックコンデンサの作製
 まず、図3に示すように、基材(支持フィルム)1上に、スクリーン印刷法により、所定パターンとなるように、内部電極ペースト(Ni電極ペースト)を印刷し、60℃で5分間乾燥して厚さ0.5μmの第1内部電極パターン3aを形成した。 
(1) Production of Multilayer Ceramic Capacitor According to Example 2 of the Present Invention First, as shown in FIG. 3, an internal electrode paste is formed on a base material (support film) 1 by a screen printing method so as to form a predetermined pattern. (Ni electrode paste) was printed and dried at 60 ° C. for 5 minutes to form a first internal electrode pattern 3 a having a thickness of 0.5 μm.
 それから、基材1上および第1内部電極パターン3a上に、上記実施例1の場合と同様に、熱転写することにより樹脂シートを配設して、第1樹脂層4aを形成した。 Then, on the base material 1 and the first internal electrode pattern 3a, as in the case of Example 1, the resin sheet was disposed by thermal transfer to form the first resin layer 4a.
 次に、この第1樹脂層(樹脂シート)4a上に、上述のようにして作製したセラミックスラリーをコータ法により塗布して、第1樹脂層(樹脂シート)4aの全面に、厚さ1.2μmの第1誘電体グリーンシート2aを形成し、80℃、5分間の条件で乾燥を行った。 Next, the ceramic slurry prepared as described above is applied onto the first resin layer (resin sheet) 4a by a coater method, and a thickness of 1. is applied to the entire surface of the first resin layer (resin sheet) 4a. A 2 μm first dielectric green sheet 2a was formed and dried at 80 ° C. for 5 minutes.
 その後、乾燥させた第1誘電体グリーンシート2a上に、内部電極ペーストであるNi電極ペーストをスクリーン印刷法により塗布し、60℃、5分間の条件で乾燥を行うことにより、厚さ0.5μmの第2内部電極パターン3bを形成した。 Thereafter, a Ni electrode paste as an internal electrode paste is applied on the dried first dielectric green sheet 2a by a screen printing method and dried under conditions of 60 ° C. for 5 minutes to obtain a thickness of 0.5 μm. The second internal electrode pattern 3b was formed.
 次に、第2内部電極パターン3bとその周囲の第1誘電体グリーンシート2aを覆うように、熱転写により樹脂シートを配設して、第2樹脂層4bを形成した。 Next, a resin sheet was disposed by thermal transfer so as to cover the second internal electrode pattern 3b and the surrounding first dielectric green sheet 2a, thereby forming a second resin layer 4b.
 それから、第2樹脂層(樹脂シート)4bの上に、上記のセラミックスラリーをコータ法により塗布し、80℃、5分間の条件で乾燥を行って、厚さ1.2μmの第2誘電体グリーンシート2bを形成することにより、2層の誘電体グリーンシート2a,2bと2層の内部電極パターン3a,3bを有する複合積層体10を得た。なお、この複合積層体10は、2層の樹脂層(樹脂シート)4a,4bを備えている。 Then, the ceramic slurry is applied onto the second resin layer (resin sheet) 4b by a coater method, and dried at 80 ° C. for 5 minutes to obtain a second dielectric green having a thickness of 1.2 μm. By forming the sheet 2b, a composite laminate 10 having two layers of dielectric green sheets 2a and 2b and two layers of internal electrode patterns 3a and 3b was obtained. The composite laminate 10 includes two resin layers (resin sheets) 4a and 4b.
 得られた複合積層体10を連続剥離・積層機を用いて基材(支持フィルム)1から剥離させながら300枚積み重ね、50℃、100MPaの条件で1分間圧着することにより、焼成後に積層セラミック素子となる未焼成の積層体を作製した。 300 layers of the composite laminate 10 thus obtained are stacked while being peeled from the substrate (support film) 1 using a continuous peeling and laminating machine, and pressed for 1 minute under the conditions of 50 ° C. and 100 MPa, so that a laminated ceramic element after firing. An unfired laminate was produced.
 そして、得られた積層体をチップ状にカットし、500℃の窒素雰囲気中において脱脂した後、還元雰囲気中において1200℃で焼成して、積層セラミック素子を得た。
 なお、上述の第1および第2の樹脂層(樹脂シート)は、この焼成工程で分解、燃焼して消失する。
The obtained laminate was cut into chips, degreased in a nitrogen atmosphere at 500 ° C., and then fired at 1200 ° C. in a reducing atmosphere to obtain a multilayer ceramic element.
The first and second resin layers (resin sheets) described above are dissociated and burnt in this firing step and disappear.
 それから、この積層セラミック素子に、外部電極形成用の導電性ペーストを塗布し、焼き付けることにより、本発明の実施例2にかかる積層セラミックコンデンサ(実施例の試料11~15)を得た。この積層セラミックコンデンサの構造は、図1に示した上記実施例1のものと同じである。 Then, a conductive paste for forming an external electrode was applied to this multilayer ceramic element and baked to obtain multilayer ceramic capacitors (Samples 11 to 15 of Examples) according to Example 2 of the present invention. The structure of this multilayer ceramic capacitor is the same as that of the first embodiment shown in FIG.
 (2)比較用の積層セラミックコンデンサ(比較例2)の作製
 上記の第1および第2の樹脂層(樹脂シート)を設ける工程を備えていないことを除いて、実施例2の場合と同様の方法で比較用の積層セラミックコンデンサ(比較例2)を作製した。
(2) Production of a multilayer ceramic capacitor for comparison (Comparative Example 2) The same as in Example 2 except that it does not include a step of providing the first and second resin layers (resin sheets). A multilayer ceramic capacitor for comparison (Comparative Example 2) was produced by the method.
 (3)特性の評価
 上述のようにして作製した実施例2の積層セラミックコンデンサ(試料11~15)と比較例2の積層セラミックコンデンサについて、上記実施例1の場合と同様の方法で、電気特性不良率と、構造欠陥発生率を調べた。
 その結果を表2に示す。
(3) Evaluation of characteristics The electrical characteristics of the multilayer ceramic capacitor of Example 2 (samples 11 to 15) and the multilayer ceramic capacitor of Comparative Example 2 manufactured as described above were obtained in the same manner as in Example 1 above. The defect rate and the structural defect occurrence rate were examined.
The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 製造工程で樹脂層(樹脂シート)を設けるようにしていない比較例2の積層セラミックコンデンサの場合、デラミネーション発生率は低いが、シートアタックを阻止することができないため、ショート不良発生率が高くなることが確認された。なお、この比較例2の場合、ショート不良発生率は100%であった。 In the case of the multilayer ceramic capacitor of Comparative Example 2 in which the resin layer (resin sheet) is not provided in the manufacturing process, the delamination occurrence rate is low, but the sheet attack cannot be prevented, so the short failure occurrence rate is high. It was confirmed. In the case of Comparative Example 2, the incidence of short circuit failure was 100%.
 これに対し、実施例2の積層セラミックコンデンサ(実施例の試料11~15)の場合、比較例2の積層セラミックコンデンサに比べて、特性を改善できることが確認された。 On the other hand, it was confirmed that the characteristics of the multilayer ceramic capacitor of Example 2 (Samples 11 to 15 of Example) can be improved as compared with the multilayer ceramic capacitor of Comparative Example 2.
 すなわち、実施例の試料11の場合、樹脂層(樹脂シート)の厚みが0.01μmと薄いため、ショート不良発生率が7%と少し高くなっているが、実施例の試料12~15のように、樹脂層(樹脂シート)の厚みを0.02~0.22μmとした場合には、ショート不良発生率を2%以下に抑えられることが確認された。 That is, in the case of the sample 11 of the example, since the thickness of the resin layer (resin sheet) is as thin as 0.01 μm, the short-circuit defect occurrence rate is a little as high as 7%. In addition, it was confirmed that when the thickness of the resin layer (resin sheet) is 0.02 to 0.22 μm, the occurrence rate of short-circuit defects can be suppressed to 2% or less.
 また、デラミネーション発生率については、実施例の試料11~14では0%であったが、試料15では5%といくらか高くなることが確認された。これは、樹脂層(樹脂シート)の厚みが0.20μmを超えると、脱脂工程での樹脂層(樹脂シート)の熱分解後に第1誘電体グリーンシートと第2誘電体グリーンシート間、第1内部電極用パターンと第1誘電体グリーンシート間、第2内部電極パターンと第2誘電体グリーンシート間に空隙層が発生するためと考えられる。 Further, the delamination occurrence rate was 0% in the samples 11 to 14 of the example, but it was confirmed that it was somewhat higher in the sample 15 to 5%. This is because when the thickness of the resin layer (resin sheet) exceeds 0.20 μm, the first dielectric green sheet and the second dielectric green sheet are separated after the thermal decomposition of the resin layer (resin sheet) in the degreasing step. It is considered that void layers are generated between the internal electrode pattern and the first dielectric green sheet and between the second internal electrode pattern and the second dielectric green sheet.
 上記の結果より、この実施例2の構成の場合にも、樹脂層(樹脂シート)を介してセラミックペーストを塗布して誘電体グリーンシートを形成することにより、電気特性不良率および構造欠陥発生率の低い積層セラミックコンデンサを効率よく製造できることが確認できた。
 また、樹脂層(樹脂シート)の厚みとしては、上記条件下では、0.02~0.20μmの範囲が特に好ましいことが確認された。
From the above results, even in the case of the configuration of this Example 2, by applying a ceramic paste through a resin layer (resin sheet) to form a dielectric green sheet, an electrical property defect rate and a structural defect occurrence rate It was confirmed that a multilayer ceramic capacitor having a low thickness could be manufactured efficiently.
Further, it was confirmed that the thickness of the resin layer (resin sheet) is particularly preferably in the range of 0.02 to 0.20 μm under the above conditions.
 この実施例3では、図4に示すように、第1内部電極パターン3aの形成後に第1内部電極パターン3a間に段差吸収層用誘電体ペーストを塗布し、第2内部電極パターン3bの形成後に、第2内部電極パターン3b間に段差吸収層用誘電体ペーストを塗布し、60℃で5分間乾燥して段差吸収用誘電体パターン(段差吸収層)20を形成した以外は、実施例1と同様にして、実施例1の試料1~5に対応する試料21~25(表3)の積層セラミックコンデンサを作製した。
 なお、図4において、図2と同一符号を付した部分は同一または相当する部分を示す。
In Example 3, as shown in FIG. 4, after forming the first internal electrode pattern 3a, a step absorbing layer dielectric paste is applied between the first internal electrode patterns 3a, and after forming the second internal electrode pattern 3b. A step absorbing layer dielectric paste was applied between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes to form a step absorbing dielectric pattern (step absorbing layer) 20 as in Example 1. Similarly, multilayer ceramic capacitors of Samples 21 to 25 (Table 3) corresponding to Samples 1 to 5 of Example 1 were produced.
In FIG. 4, the parts denoted by the same reference numerals as those in FIG. 2 indicate the same or corresponding parts.
 また、第1内部電極パターン間、および第2内部電極パターン間に、段差吸収層用誘電体ペーストを塗布し、60℃で5分間乾燥して段差吸収用誘電体パターンを形成した以外は、上記実施例1における比較例1の場合と同様の方法で比較例3の積層セラミックコンデンサを作製した。 In addition, except that the step absorption layer dielectric paste was applied between the first internal electrode patterns and between the second internal electrode patterns and dried at 60 ° C. for 5 minutes to form the step absorption dielectric pattern. A multilayer ceramic capacitor of Comparative Example 3 was produced in the same manner as in Comparative Example 1 of Example 1.
 なお、段差吸収層用誘電体ペーストとしては、第1および第2誘電体グリーンシートを形成するのに用いたセラミックスラリーと同一のセラミック材料を含むとともに、溶剤としてジヒドロターピネオールアセテートを、バインダーとしてポリビニルブチラールを含むペーストを用いた。
 そして、この実施例3で作製した実施例の試料21~25および比較例3の試料について、上記実施例1の場合と同様の方法でその特性を調べた。その結果を表3に示す。
The step absorbing layer dielectric paste includes the same ceramic material as the ceramic slurry used to form the first and second dielectric green sheets, dihydroterpineol acetate as the solvent, and polyvinyl butyral as the binder. A paste containing was used.
The characteristics of the samples 21 to 25 of the example produced in Example 3 and the sample of Comparative Example 3 were examined by the same method as in Example 1 above. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に示すように、この実施例3の試料21~25についても、上記実施例1の試料1~5の場合と同様の特性が得られることが確認された。しかし、比較例3の積層セラミックコンデンサにおいては、実施例1の比較例1の場合と同様に、シートアタックの影響でショート不良の発生を防止することができなかった。 As shown in Table 3, it was confirmed that the same characteristics as those of Samples 1 to 5 of Example 1 were obtained for Samples 21 to 25 of Example 3. However, in the multilayer ceramic capacitor of Comparative Example 3, as in the case of Comparative Example 1 of Example 1, it was not possible to prevent the occurrence of short circuit failure due to the influence of sheet attack.
 また、この実施例3の試料21~25においては、段差吸収層20を設けるようにしていることから、製品の形状精度を向上させることができた。 Further, in the samples 21 to 25 of Example 3, the step absorption layer 20 was provided, so that the shape accuracy of the product could be improved.
 この実施例4では、図5に示すように、第1内部電極パターン3aの形成後に第1内部電極パターン3a間に段差吸収層用誘電体ペーストを塗布し、第2内部電極パターン3bの形成後に、第2内部電極パターン3b間に段差吸収層用誘電体ペーストを塗布し、60℃で5分間乾燥して段差吸収用誘電体パターン(段差吸収層)20を形成した以外は、実施例2と同様にして、実施例2の試料11~15に対応する試料31~35(表4)の積層セラミックコンデンサを作製した。
 なお、図5において、図3と同一符号を付した部分は同一または相当する部分を示す。
In Example 4, as shown in FIG. 5, after forming the first internal electrode pattern 3a, a step absorbing layer dielectric paste is applied between the first internal electrode patterns 3a, and after forming the second internal electrode pattern 3b. Example 2 except that the step absorbing layer dielectric paste was applied between the second internal electrode patterns 3b and dried at 60 ° C. for 5 minutes to form the step absorbing dielectric pattern (step absorbing layer) 20. Similarly, multilayer ceramic capacitors of Samples 31 to 35 (Table 4) corresponding to Samples 11 to 15 of Example 2 were produced.
In FIG. 5, the parts denoted by the same reference numerals as those in FIG. 3 indicate the same or corresponding parts.
 また、第1および第2の樹脂層(樹脂シート)を設ける工程を備えていないことを除いて、実施例2の場合と同様の方法で比較用の積層セラミックコンデンサ(比較例4)を作製した。
 なお、段差吸収層用誘電体ペーストとしては、上記実施例3で用いたものと同じものを用いた。
Further, a comparative multilayer ceramic capacitor (Comparative Example 4) was produced in the same manner as in Example 2 except that the step of providing the first and second resin layers (resin sheets) was not provided. .
In addition, as the dielectric paste for the step absorption layer, the same one as used in Example 3 was used.
 そして、この実施例4で作製した実施例の試料31~35および比較例4の試料について、上記実施例2の場合と同様の方法でその特性を調べた。その結果を表4に示す。 Then, the characteristics of the samples 31 to 35 of the example prepared in Example 4 and the sample of Comparative Example 4 were examined by the same method as in Example 2. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、この実施例4の試料31~35についても、上記実施例2の試料11~15の場合と同様の特性が得られることが確認された。しかし、比較例4の積層セラミックコンデンサにおいては、実施例2の比較例2の場合と同様に、シートアタックの影響でショート不良の発生を防止することができなかった。 As shown in Table 4, it was confirmed that the same characteristics as those of Samples 11 to 15 of Example 2 were obtained for Samples 31 to 35 of Example 4. However, in the multilayer ceramic capacitor of Comparative Example 4, as in the case of Comparative Example 2 of Example 2, it was not possible to prevent occurrence of a short circuit due to the influence of sheet attack.
 また、この実施例4の試料31~35においても、段差吸収層20を設けるようにしていることから、製品の形状精度を向上させることができた。 In the samples 31 to 35 of Example 4, the step absorption layer 20 was provided, so that the shape accuracy of the product could be improved.
 なお、段差吸収層は、内部電極パターンを形成した後に、内部電極パターン未形成領域に配設するようにしてもよく、また、先に段差吸収層を形成しておき、段差吸収層の形成されていない領域に内部電極パターンを形成するようにしてもよく、いずれの場合にも同様の効果を得ることができる。 The step absorption layer may be disposed in the area where the internal electrode pattern is not formed after the internal electrode pattern is formed, or the step absorption layer is formed in advance and the step absorption layer is formed. The internal electrode pattern may be formed in a region that is not, and the same effect can be obtained in any case.
 この実施例5では、実施例1の試料2の構成において、上記樹脂層を形成するための樹脂シートとして、セラミックグリーンシートを構成するセラミック粉末と同じ組成のセラミック粉末を含有させた樹脂シートを用いて積層セラミックコンデンサを作製した。 In Example 5, in the configuration of Sample 2 of Example 1, a resin sheet containing ceramic powder having the same composition as the ceramic powder constituting the ceramic green sheet is used as the resin sheet for forming the resin layer. Thus, a multilayer ceramic capacitor was produced.
 すなわち、この実施例5では、樹脂シートとして、セラミック粉末を表5に示す範囲(樹脂シートの体積分率が0.1vol%~60vol%となるような範囲)で含有、分散させた樹脂シートを用いて、積層セラミックコンデンサ(表5の試料41~44を作製した。 That is, in Example 5, as the resin sheet, a resin sheet containing and dispersing ceramic powder in the range shown in Table 5 (a range in which the volume fraction of the resin sheet is 0.1 vol% to 60 vol%) is used. Thus, multilayer ceramic capacitors (Samples 41 to 44 in Table 5 were produced.
 表5の樹脂シートのセラミック粉末の体積分率の値は、セラミック粉末を含む樹脂シートに対するセラミック粉末の体積割合を示すものである。
 なお、この実施例5の条件では、樹脂シート中のセラミック粉末の臨界粒子体積分率(CPVC)は約50vol%となる。
The value of the volume fraction of the ceramic powder of the resin sheet in Table 5 indicates the volume ratio of the ceramic powder to the resin sheet containing the ceramic powder.
In addition, on the conditions of this Example 5, the critical particle volume fraction (CPVC) of the ceramic powder in a resin sheet will be about 50 vol%.
 この実施例5で作製した試料41~44について、上記実施例1の場合と同様の方法でその特性を調べた。その結果を表5に併せて示す。なお、表5には、実施例1の試料2についての特性を併せて示す。 The characteristics of Samples 41 to 44 produced in Example 5 were examined by the same method as in Example 1 above. The results are also shown in Table 5. Table 5 also shows the characteristics of the sample 2 of Example 1.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表5に示すように、セラミック粉末を0.1vol%~50vol%の範囲(すなわち、臨界粒子体積分率(CPVC)以下の範囲)で含有する樹脂シートを用いた試料41~43の場合、ショート不良率は1%と低く、かつ、構造欠陥発生率は0%と、特性の良好な積層セラミックコンデンサが得られることが確認された。
 ただし、セラミック粉末を60vol%(すなわち、臨界粒子体積分率(CPVC)を超える割合)の割合で含有する樹脂シートを用いた試料44の場合、構造欠陥発生率は0%であったが、ショート不良率が10%と、試料41~43に比べていくらか高くなることが確認された。
As shown in Table 5, in the case of samples 41 to 43 using a resin sheet containing ceramic powder in the range of 0.1 vol% to 50 vol% (that is, the range of critical particle volume fraction (CPVC) or less), short The defect rate was as low as 1%, and the structural defect occurrence rate was 0%, confirming that a multilayer ceramic capacitor with good characteristics was obtained.
However, in the case of the sample 44 using the resin sheet containing the ceramic powder at 60 vol% (that is, the ratio exceeding the critical particle volume fraction (CPVC)), the structural defect occurrence rate was 0%, but the short It was confirmed that the defect rate was 10%, which was somewhat higher than those of samples 41 to 43.
 この実施例5のように、セラミック粉末を含有する樹脂シートを用いて、樹脂層を形成するようにした場合、焼成工程において、下層と上層のセラミックグリーンシートに樹脂シート(樹脂層)中のセラミック粉末が拡散し、下層と上層のセラミックグリーンシートが強固に結合する。その結果、デラミネーションなどの構造欠陥の発生をさらに確実に防止して、信頼性の高い積層セラミック電子部品を製造することができる。 When the resin layer is formed using a resin sheet containing ceramic powder as in Example 5, the ceramic in the resin sheet (resin layer) is formed on the lower and upper ceramic green sheets in the firing step. The powder diffuses and the lower and upper ceramic green sheets are firmly bonded. As a result, it is possible to more reliably prevent the occurrence of structural defects such as delamination and manufacture a highly reliable multilayer ceramic electronic component.
 なお、樹脂シート(樹脂層)中のセラミック粉末の含有割合が、臨界粒子体積分率(CPVC)を超えると、セラミック粒子間に樹脂が存在しない領域が形成されてしまうため、あまり好ましくない。すなわち、樹脂が存在しない領域が形成されると、該領域が空隙となり、樹脂シート(樹脂層)の上に塗布されたセラミックスラリー中の溶剤がこの空隙を通って下層のセラミックグリーンシートや内部電極層をアタックすることになる。したがって、本発明において、樹脂シート中のセラミック粉末の含有割合は、臨界粒子体積分率(CPVC)以下となるような割合とすることが好ましい。 In addition, when the content ratio of the ceramic powder in the resin sheet (resin layer) exceeds the critical particle volume fraction (CPVC), a region in which no resin exists between the ceramic particles is formed, which is not preferable. That is, when a region where no resin is present is formed, the region becomes a void, and the solvent in the ceramic slurry applied on the resin sheet (resin layer) passes through this void to form a ceramic green sheet or internal electrode in the lower layer. You will attack the layer. Therefore, in this invention, it is preferable to make the content rate of the ceramic powder in a resin sheet into a ratio which becomes below a critical particle volume fraction (CPVC).
 なお、上記実施例では、積層セラミックコンデンサを例にとって説明したが、本発明は、積層インダクタ、積層LC複合部品など、セラミック層と内部電極とが積層された構造を有する種々の積層セラミック電子部品に適用することが可能である。 In the above embodiment, the multilayer ceramic capacitor has been described as an example. However, the present invention is applicable to various multilayer ceramic electronic components having a structure in which a ceramic layer and an internal electrode are stacked, such as a multilayer inductor and a multilayer LC composite component. It is possible to apply.
 本発明は、さらにその他の点においても、上記実施例に限定されるものではなく、セラミック層および内部電極の積層数、内部電極の具体的なパターン、セラミック層および内部電極の構成材料などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。 The present invention is not limited to the above embodiment in other points as well, but relates to the number of laminated ceramic layers and internal electrodes, a specific pattern of internal electrodes, a constituent material of the ceramic layers and internal electrodes, and the like. Various applications and modifications can be made within the scope of the invention.
 1        基材(支持フィルム)
 2a       第1誘電体グリーンシート(セラミックグリーンシート)
 2b       第2誘電体グリーンシート(セラミックグリーンシート)
 3a       第1内部電極パターン
 3b       第2内部電極パターン
 4        樹脂シート(樹脂層)
 4a       第1樹脂層(樹脂シート)
 4b       第2樹脂層(樹脂シート)
 10       複合積層体 
 20       段差吸収用誘電体パターン(段差吸収層)
 51       積層セラミック素子(積層セラミック電子部品素子)
 52       セラミック層
 53a,53b  内部電極
 54a,54b  積層セラミック素子の端面
 55a,55b  外部電極
1 Base material (support film)
2a First dielectric green sheet (ceramic green sheet)
2b Second dielectric green sheet (ceramic green sheet)
3a First internal electrode pattern 3b Second internal electrode pattern 4 Resin sheet (resin layer)
4a First resin layer (resin sheet)
4b Second resin layer (resin sheet)
10 Composite laminate
20 Step absorption dielectric pattern (step absorption layer)
51 Multilayer Ceramic Element (Multilayer Ceramic Electronic Component Element)
52 Ceramic layers 53a, 53b Internal electrodes 54a, 54b End faces of the multilayer ceramic element 55a, 55b External electrodes

Claims (7)

  1.  セラミック層と内部電極が積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
     (a)基材上に、有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
     (b)前記セラミックグリーンシート上に、有機系バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
     (c)前記セラミックグリーンシートおよび前記内部電極パターン上に、下記(d)の工程で用いられるセラミックスラリーに含まれる溶剤に溶解しない樹脂シートを配設する工程と、
     (d)前記樹脂シート上に、前記セラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
     (e)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程とを備え、
     前記(c)~(e)の工程を1回以上行うことを特徴とする積層セラミック電子部品の製造方法。
    A method for producing a multilayer ceramic electronic component having a structure in which a ceramic layer and an internal electrode are laminated, and the internal electrodes are disposed so as to face each other through the ceramic layer,
    (a) A step of applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on a substrate and drying to form a ceramic green sheet;
    (b) On the ceramic green sheet, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern;
    (c) disposing a resin sheet that does not dissolve in the solvent contained in the ceramic slurry used in the step (d) on the ceramic green sheet and the internal electrode pattern;
    (d) applying the ceramic slurry on the resin sheet and drying to form a ceramic green sheet;
    (e) providing the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
    A method for producing a multilayer ceramic electronic component, wherein the steps (c) to (e) are performed once or more.
  2.  セラミック層と内部電極が交互に積層され、セラミック層を介して内部電極が互いに対向するように配設された構造を有する積層セラミック電子部品の製造方法であって、
     (a)基材上に、有機系バインダーと導電成分とを含む内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
     (b)前記内部電極パターン上および、その周囲の前記基材上の所定の領域を覆うように、下記(c)の工程で用いられるセラミックスラリーに含まれる溶剤に溶解しない樹脂シートを配設する工程と、
     (c)前記樹脂シート上に、有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程と、
     (d)前記セラミックグリーンシート上に、前記内部電極ペーストを付与、乾燥して内部電極パターンを形成する工程と、
     (e)前記セラミックグリーンシート上および前記内部電極パターン上に、下記(f)の工程で用いられるセラミックスラリーに含まれる溶剤に溶解しない樹脂シートを配設する工程と、
     (f)前記樹脂シート上に有機系バインダーと溶剤とセラミック原料とを含むセラミックスラリーを塗布、乾燥してセラミックグリーンシートを形成する工程とを備え、
     前記(d)~(f)の工程を1回以上行うことを特徴とする積層セラミック電子部品の製造方法。
    A method of manufacturing a multilayer ceramic electronic component having a structure in which ceramic layers and internal electrodes are alternately stacked, and the internal electrodes are disposed so as to face each other through the ceramic layers,
    (a) On the substrate, an internal electrode paste containing an organic binder and a conductive component is applied and dried to form an internal electrode pattern;
    (b) A resin sheet that does not dissolve in the solvent contained in the ceramic slurry used in the step (c) is disposed so as to cover a predetermined region on the internal electrode pattern and the surrounding substrate. Process,
    (c) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the resin sheet, and drying to form a ceramic green sheet;
    (d) applying the internal electrode paste on the ceramic green sheet and drying to form an internal electrode pattern;
    (e) disposing a resin sheet that does not dissolve in a solvent contained in the ceramic slurry used in the step (f) on the ceramic green sheet and the internal electrode pattern;
    (f) applying a ceramic slurry containing an organic binder, a solvent and a ceramic raw material on the resin sheet, and drying to form a ceramic green sheet;
    A method for producing a multilayer ceramic electronic component, wherein the steps (d) to (f) are performed once or more.
  3.  前記基材上に、請求項1の(a)~(e)の工程、または、請求項2の(a)~(f)の工程を経て形成される、複数層のセラミックグリーンシートと複数層の内部電極パターンとを備えた複合積層体を積み重ねる工程を繰り返して、焼成後に積層セラミック電子部品素子となる未焼成の積層体を形成する工程を備えていることを特徴とする請求項1または2記載の積層セラミック電子部品の製造方法。 A plurality of ceramic green sheets and a plurality of layers formed on the substrate through the steps (a) to (e) of claim 1 or the steps (a) to (f) of claim 2. 3. A step of repeating a step of stacking a composite laminate including the internal electrode pattern and forming an unfired laminate that becomes a multilayer ceramic electronic component element after firing is provided. The manufacturing method of the multilayer ceramic electronic component of description.
  4.  前記内部電極パターンを形成する工程の後で、形成された前記内部電極パターンの周囲の領域に、前記内部電極パターンとその周囲との段差を解消するための段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成する工程を備えていることを特徴とする請求項1~3のいずれかに記載の積層セラミック電子部品の製造方法。 After the step of forming the internal electrode pattern, a step-absorbing layer ceramic paste for eliminating the step between the internal electrode pattern and the surrounding area is applied to the area around the formed internal electrode pattern and dried. The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 3, further comprising a step of forming a step absorption layer.
  5.  前記内部電極パターンを形成する工程の前に、前記内部電極パターンが形成されるべき領域の周囲に、その後に形成される前記内部電極パターンとその周囲との段差を解消するための段差吸収層用セラミックペーストを塗布、乾燥して段差吸収層を形成し、その後、前記段差吸収層が形成されていない領域に前記内部電極ペーストを付与、乾燥することにより前記内部電極パターンを形成することを特徴とする請求項1~3のいずれかに記載の積層セラミック電子部品の製造方法。 Before the step of forming the internal electrode pattern, for the step absorption layer for eliminating the step between the internal electrode pattern to be formed and the surrounding area around the region where the internal electrode pattern is to be formed Applying and drying a ceramic paste to form a step absorption layer, and then applying the internal electrode paste to a region where the step absorption layer is not formed and drying to form the internal electrode pattern. The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 3.
  6.  前記樹脂シートの厚みが、0.02~0.20μmであることを特徴とする請求項1~5のいずれかに記載の積層セラミック電子部品の製造方法。 6. The method for producing a multilayer ceramic electronic component according to claim 1, wherein the resin sheet has a thickness of 0.02 to 0.20 μm.
  7.  前記樹脂シートが、臨界粒子体積分率以下となるような割合で、セラミック粉末を含有していることを特徴とする請求項1~6のいずれかに記載の積層セラミック電子部品の製造方法。 The method for producing a multilayer ceramic electronic component according to any one of claims 1 to 6, wherein the resin sheet contains a ceramic powder in a proportion such that the critical particle volume fraction or less.
PCT/JP2010/056781 2009-04-20 2010-04-15 Method for manufacturing laminated ceramic electronic components WO2010122947A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011510303A JP5035471B2 (en) 2009-04-20 2010-04-15 Manufacturing method of multilayer ceramic electronic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-101991 2009-04-20
JP2009101991 2009-04-20

Publications (1)

Publication Number Publication Date
WO2010122947A1 true WO2010122947A1 (en) 2010-10-28

Family

ID=43011064

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/056781 WO2010122947A1 (en) 2009-04-20 2010-04-15 Method for manufacturing laminated ceramic electronic components

Country Status (2)

Country Link
JP (1) JP5035471B2 (en)
WO (1) WO2010122947A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127117A (en) * 2000-10-30 2002-05-08 Kyocera Corp Method for manufacturing green sheet and method for manufacturing electronic component
JP2007234829A (en) * 2006-02-28 2007-09-13 Tdk Corp Method for manufacturing laminated ceramic electronic component
WO2010035461A1 (en) * 2008-09-29 2010-04-01 株式会社村田製作所 Method for manufacturing laminated ceramic electronic component

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08250370A (en) * 1995-03-14 1996-09-27 Toshiba Corp Manufacture of multilayered ceramic capacitor
JPH11238646A (en) * 1997-12-03 1999-08-31 Tdk Corp Laminated ceramic electronic part and manufacture thereof
JP4556999B2 (en) * 2003-02-24 2010-10-06 株式会社村田製作所 Method for manufacturing ceramic electronic component and gravure printing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002127117A (en) * 2000-10-30 2002-05-08 Kyocera Corp Method for manufacturing green sheet and method for manufacturing electronic component
JP2007234829A (en) * 2006-02-28 2007-09-13 Tdk Corp Method for manufacturing laminated ceramic electronic component
WO2010035461A1 (en) * 2008-09-29 2010-04-01 株式会社村田製作所 Method for manufacturing laminated ceramic electronic component

Also Published As

Publication number Publication date
JP5035471B2 (en) 2012-09-26
JPWO2010122947A1 (en) 2012-10-25

Similar Documents

Publication Publication Date Title
KR101141442B1 (en) Conductive paste compositon for inner electrode and method of manufactuaring multilayer ceramic capacitor using thesame
JP5083409B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2011211033A (en) Method of manufacturing laminated ceramic electronic component
JP5540450B2 (en) Conductive paste composition for internal electrode, multilayer ceramic electronic component using the same, and manufacturing method thereof
JP4968411B2 (en) Manufacturing method of multilayer ceramic electronic component
JP2011204849A (en) Method of manufacturing laminated ceramic electronic component
JPH09106925A (en) Method of manufacturing layered ceramic capacitor
JP2001044071A (en) Manufacture of ceramic electronic component
JP3603655B2 (en) Conductive paste and method for manufacturing ceramic electronic component using the same
JP5035471B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0786083A (en) Manufacture of multilayered ceramic capacitor
JP2002343674A (en) Manufacturing method of laminated ceramic capacitor
JP2003059759A (en) Multilayer ceramic electronic component and its manufacturing method
WO2016152990A1 (en) Electronic component
JP2005303029A (en) Method of manufacturing laminated ceramic electronic part
JP3196713B2 (en) Manufacturing method of ceramic electronic components
JP2987995B2 (en) Internal electrode paste and multilayer ceramic capacitor using the same
JP2010040628A (en) Laminated type ceramic electronic component manufacturing method
JPH07297074A (en) Multilayered ceramic electronic component
JP2005297339A (en) Method for manufacturing multi-layer ceramic sheet and method for manufacturing ceramic electronic component
JPH0236512A (en) Manufacture of laminated ceramic electronic component
JP2000173858A (en) Manufacture of laminated ceramic electronic part
JPH02126619A (en) Green sheet for laminated porcelain capacitor
JPH02117115A (en) Manufacture of laminated ceramic capacitor
JPH07211577A (en) Manufacture of laminated ceramic capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10767004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011510303

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10767004

Country of ref document: EP

Kind code of ref document: A1