WO2010034906A2 - Actionneur electrique qui integre deux onduleurs de tension controles en courant alimentant une machine electrique et qui est reconfigurable en presence d'un defaut - Google Patents

Actionneur electrique qui integre deux onduleurs de tension controles en courant alimentant une machine electrique et qui est reconfigurable en presence d'un defaut Download PDF

Info

Publication number
WO2010034906A2
WO2010034906A2 PCT/FR2009/001126 FR2009001126W WO2010034906A2 WO 2010034906 A2 WO2010034906 A2 WO 2010034906A2 FR 2009001126 W FR2009001126 W FR 2009001126W WO 2010034906 A2 WO2010034906 A2 WO 2010034906A2
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
inverter
bus
machine
connecting member
Prior art date
Application number
PCT/FR2009/001126
Other languages
English (en)
Other versions
WO2010034906A3 (fr
Inventor
Pierre-Yves Liegeois
François-Noël Leynaert
Farid Meibody-Tabar
Serge Lionel Pierfederici
Babak Nahid Mobarakeh
Original Assignee
Messier-Bugatti
Institut National Polytechnique De Lorraine
Centre National De La Recherche Scientifique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Messier-Bugatti, Institut National Polytechnique De Lorraine, Centre National De La Recherche Scientifique filed Critical Messier-Bugatti
Priority to BRPI0919080-5A priority Critical patent/BRPI0919080B1/pt
Priority to EP09748362A priority patent/EP2327133A2/fr
Priority to CN200980138098.4A priority patent/CN102165666B/zh
Priority to US13/119,625 priority patent/US8604733B2/en
Priority to CA2738051A priority patent/CA2738051C/fr
Publication of WO2010034906A2 publication Critical patent/WO2010034906A2/fr
Publication of WO2010034906A3 publication Critical patent/WO2010034906A3/fr

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/493Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode the static converters being arranged for operation in parallel
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • H02M7/53873Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current with digital control
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/08Arrangements for controlling the speed or torque of a single motor
    • H02P6/085Arrangements for controlling the speed or torque of a single motor in a bridge configuration

Definitions

  • Electric actuator which integrates two voltage inverters controlled by current supplying an electrical machine and which is reconfigurable in the presence of a defect
  • the invention relates to an electric actuator intended to equip an aircraft to control equipment of this aircraft.
  • control systems actually used in the aeronautical field are hydraulic: they include a hydraulic actuator type jack, and a hydraulic network interposed between the cylinder and a control member.
  • the network then comprises two separate and independent hydraulic circuits: in the event of failure of one of the circuits, for example due to a leak, the other circuit remains available to control the hydraulic actuator.
  • actuators whose motors are electrical machines, in particular synchronous type permanent magnets, which can be enslaved in speed, position or effort, while being sufficiently light.
  • the speed variation of these machines requires the variation of the frequency of the current or of the voltage applied to them, which requires the integration of a static converter, to vary this command according to the control variables.
  • this converter may consist of a non-controlled diode rectifier or a controlled rectifier, associated with inverter.
  • this type of inverter comprises arms each carrying two controlled switches, or transistors that can lock in an open or closed state. When one of these transistors is in fault, the steering is significantly complicated by the fact that the intensity of the current flowing through the arms remaining valid can no longer be controlled.
  • the power supply network may be a single three-phase network sufficiently secure to be considered reliable.
  • the object of the invention is to propose an actuator arrangement having an optimum level of availability, particularly with respect to a failure of a controlled switch of the inverter which is often a transistor, and that can be used with the different architectures of power supply network possible.
  • the subject of the invention is an electric actuator, comprising a polyphase electrical machine, at least one connecting member to a power supply network, a first and a second bus connected in parallel between the machine and each connection, the first and the second bus respectively comprising a first and a second inverter for controlling this frequency machine, each inverter having several arms each provided with two controlled switches, each phase of the machine being continuously connected to the two switches of an arm the first inverter on the one hand, and the two switches of an arm of the second inverter on the other hand, and controlled means of connection and disconnection interposed between the buses and each connecting member.
  • the actuator can be controlled to feed the machine via one or both of its buses, which offers several possibilities of reconfiguration either in normal operation, or in case of a fault appearing at the level of a power supply network, an inverter or a rectifier, or more generally at a bus, or at a winding of the electric machine.
  • the controlled connection means make it possible to completely isolate an inverter from the power supply network or networks in order to configure the star machine with a central node, which makes it possible to control the current in each winding.
  • connection means further enable the actuator to be powered in normal operation with one or more electrical networks, so that the actuator can be used with the various configurations of the actuator. power supply network possible.
  • I / invention also relates to an actuator as defined above, wherein the controlled connection and disconnection means comprise a first contactor interposed between a connecting member to a single network and the first bus, and a second contactor interposed between this same connection member and the second bus.
  • the invention also relates to an actuator as defined above, comprising a first and a second connecting member for supplying the actuator from two separate power supply networks, and wherein the controlled connection and disconnection means comprise a first contactor connecting the first bus to the first connecting member and a second contactor connecting the second bus to the second connecting member.
  • the invention also relates to an actuator as defined above, comprising a first and a second connecting member for supplying said actuator with two separate supply networks, and wherein the controlled connection and disconnection means comprise a first contactor connected to the first bus, a second contactor connected to the second bus, and a two-position switch for connecting the first and the second contactor, either to the first connecting member or to the second connecting member.
  • the invention also relates to an actuator as defined above, comprising a first and a second connecting member for supplying said actuator with two separate power supply networks, and wherein the controlled connection and disconnection means comprise a first switch three-position, connected to the first bus and the first and second connecting member, and a second three-position switch connected to the second bus and the first and second connecting member.
  • the invention also relates to an actuator as defined above, comprising an electrical storage member and a two-position switch which are interposed between the connecting member and the inverter of one of the buses, this storage member having a terminal connected to the connection member and to the inverter and a terminal connected to the two-position switch to be connected either to the connection member for recharging or to the inverter in order to feed it or charge.
  • the invention also relates to an actuator as defined above, comprising a multiple switch connected to the two switches of each arm of one of the inverters, this switch being able to occupy an open position in which these arms are isolated from each other or a closed position in which these arms are electrically connected to each other.
  • FIG. 1 is a diagram of a first embodiment of the invention in which the actuator comprises connection means including two contactors connecting it to a single power supply network;
  • FIG. 2 is a diagram of a variant of the first embodiment of the invention in which the actuator is equipped with additional triple switches;
  • FIG. 3 is a diagram of a second embodiment of the invention in which the actuator comprises connection means including two contactors connecting it to two electrical networks each supplying an inverter of this actuator;
  • FIG. 4 is a diagram of a variant of the second embodiment of the invention in which the actuator is equipped with additional triple switches;
  • FIG. 5 is a diagram of a third embodiment of the invention in which the actuator comprises connection means including two contactors and a controlled switch for selectively connecting each inverter to one or the other of two separate power grids;
  • FIG. 6 is a diagram of a variant of the third embodiment of the invention in which the actuator is equipped with additional triple switches;
  • FIG. 7 is a diagram of a fourth embodiment of the invention in which the actuator comprises connection means including two contactors in the form of controlled switches for selectively connecting each inverter to one or the other of two separate power grids;
  • FIG. 8 is a diagram of a variant of the fourth embodiment of the invention in which the actuator is equipped with additional triple switches;
  • FIG. 9 is a diagram of a fifth embodiment of the invention in which the actuator comprises an electrical energy storage member and connection means including two contactors connecting it to a single electrical network;
  • FIG. 10 is a diagram of a sixth embodiment of the invention in which the actuator comprises an electrical energy storage member and connection means including a contactor in the form of a controlled switch connecting it to a single electrical network;
  • FIG. 11 is a diagram of a variant of the sixth embodiment of the invention in which the actuator is provided with additional triple switches.
  • the actuator according to the invention comprises a three-phase electrical machine 101, including three windings 102, 103, 104, as well as a first and a second separate bus 106 and 107. These buses convert the alternating current of the network, having a fixed or variable frequency, in an alternating current of variable frequency which is injected into the synchronous machine to drive it in frequency.
  • the first bus 106 successively comprises a rectifier 108, a filter 109 of LC type, that is to say having an inductance and a capacitance, and a three-phase inverter 111.
  • the three-phase inverter comprises three arms 112, 113, 114 each provided with two controlled switches denoted respectively 112a, 112b, 113a, 113b, 114a, 114b.
  • the second bus 107 also comprises successively a rectifier 128, a filter 129 of the LC type, and a three-phase inverter 131.
  • the three-phase inverter also has three arms 132, 133, 134 each provided with two controlled switches, denoted respectively 132a, 132b, 133a, 133b, 134a, 134b.
  • Each winding of the machine is connected to an arm of each inverter, one of its ends being directly connected to the two switches of an arm of the first inverter 111, and the other end being directly connected to the two switches of an arm the second inverter 131.
  • the coil 102 thus has a first end connected to the two switches 112a and 112b of the arm 112 of the first inverter 111, and a second end connected to the two switches 132a and 132b of the arm 132 of the second inverter 131.
  • the coil 103 is connected to the arms 113 and 133
  • the coil 104 is connected to the arms 114 and 134.
  • the actuator also comprises a first contactor 136 by which the first rectifier 108 is connected to the single three-phase electrical network 146, and a second contactor 137 by which the second rectifier 128 is connected to the three-phase network 146, by means of a connecting member 143.
  • the term "contactor” denotes a controlled switch with breaking capacity. It can be a mechanical switch type contactor or circuit breaker, or a bidirectional type electronic switch current and voltage.
  • This assembly which constitutes a non-isolated series redundant actuator architecture is controlled by a control unit identified by 138, connected to the contactors and to each controlled switch of the first and second inverters.
  • the windings of the synchronous machine can be powered either jointly by the two buses 106 and 107, or by only one of these two buses.
  • the machine is powered by its two buses, the switches 136 and 137 are both closed, and the switches of the two inverters 111 and 131 are controlled to apply to the coils 102, 103 and 104 a frequency voltage and variable amplitude and controlled.
  • the machine is powered by a voltage that can be doubled since the voltage applied to it is the difference of the voltages applied by the two inverters.
  • This voltage becomes double if the arm controls of the two inverters are complementary and if the DC bus voltages have the same values.
  • this makes it possible to run it up to twice as fast, ie to optimize its operation.
  • the machine is powered by only one of its buses, the electrical losses are reduced because only one bus is operated dynamically.
  • One of the contactors 136 or 137 is then kept open and the corresponding inverter 111 or 131 is controlled to keep its switches closed so as to configure the windings of the machine 101 star.
  • the other contactor 137 or 136 is kept closed, and the switches of the inverter 131, 111 corresponding to this other contactor are dynamically controlled to apply to the coils 102, 103 and 104 a voltage of variable frequency and amplitude and controlled.
  • the machine In the event of a bus failure, for example at a switch of the inverter which is dynamically controlled, the machine is reconfigured by the control to adopt another mode of operation allowing it to deliver a mechanical torque despite this failure.
  • the machine can be powered by the two inverters, or by a single inverter.
  • the desired torque can be generated while minimizing Joule losses.
  • the waveforms are derived from the form of the vacuum electromotive forces, the rotor position and the desired constant torque, so as to control the intensity of the current injected into the valid phases. It should be noted that this reconfiguration also allows to counteract a phase fault at the synchronous machine, that is to say a failure due to the rupture of one of its windings leading to the cancellation of the current in a phase of the electric machine.
  • the machine is configured in a star configuration, a number of situations that can be distinguished.
  • the switch 132a of the second inverter 131 locks in an open state
  • the switch 137 is driven in opening to disconnect the entire second bus 107 of the three-phase electrical network, and the switches 132b, 133b and 134b are piloted to be continuously closed.
  • the switch 132a locks in a closed state
  • the switch 137 is controlled in opening to disconnect the second bus 107, and the switches 133a, 134a are controlled to be continuously closed.
  • the windings 102, 103 and 104 of the machine 101 are configured in a star.
  • the first contactor 136 is for its part kept closed, to power the machine 101 via the first bus 106.
  • the first inverter 111 is then controlled to apply to these windings voltages having a frequency and an amplitude conditioned by the servocontrol.
  • the connections between the two buses are made only via the electric machine.
  • the machine is then reconfigured in a star, having its central node at a floating potential since it is completely disconnected from the network.
  • the sum of the currents flowing through the windings of the machine is then zero, which gives rise to a nominal operation of this machine making it possible in particular to control the intensity of the current injected into it.
  • the detection of faults is ensured by measuring the direction of the current passing through one or the other of the phases of the synchronous machine and by measuring the potential at one of these phases.
  • the actuator is equipped with additional means of reconfiguration, as in the variant constituted by the actuator 200 of FIG.
  • This actuator 200 includes all the members of that of Figure 1, these bodies bearing numerical references corresponding to those of the actuator 100 but increased by one hundred.
  • this actuator 200 includes a first triple controlled switch 271 which is connected to each arm 212, 213, 214 of the first inverter 211, and a second triple switch 272 which is connected to each arm 232, 233 and 234 of the second inverter 231.
  • These components 271 and 272 are advantageously bidirectional type contactors or static normally closed.
  • the switch 271 can occupy an open position, as in FIG. 2, in which the three arms of the first inverter are isolated from each other when this first inverter supplies the machine 201. It can also occupy a closed position , in which it connects to each other the three arms 212, 213 and 214, to configure the three windings 202, 203 and 204 star, without having to drive the controlled switches of the first inverter.
  • This triple switch 271 is advantageously coupled to the contactor 236 for disconnecting the first bus 206, so that when the contactor 236 for connecting the first bus 206 is closed, the triple switch 271 is open, and vice versa.
  • an opening of the contactor 236 causes the closing of the triple switch 271, which has the effect of electrically isolating the whole of the first bus, and to configure as a star the windings of the machine 201, by inhibiting (blocking) the transistors of the first inverter 211.
  • the second triple switch 272 holds the arms 232, 233 and 234 isolated from each other when open, and connects them to each other when closed, in order to configure the star machine 201. It is advantageously coupled to the second contactor 237, according to a coupling similar to that of the first triple switch.
  • This variant of FIG. 2 further improves the availability of the actuator because it makes it possible to configure the star machine with a central node, even when this reconfiguration can not be obtained by driving the faulty inverter, such a situation can example when two switches of the same arm of the inverter are blocked in the open position.
  • the actuator which is represented in FIG. 3 under reference 300, is powered by two separate three-phase electrical networks.
  • This actuator 300 comprises all the members of the actuator 100 of FIG. 1, these members bearing numerical references corresponding to those of the actuator 100 plus a value of two hundred.
  • the actuator 300 comprises at its input two connecting members, identified by 343 and 344 and located respectively at its first bus 306 and its second bus 307, to which are connected respectively a first and a second three-phase power supply network, identified by 346 and 347.
  • the first contactor 336 connects the rectifier 308 of the first bus 306 to the first connection member 343, the second contactor 337 connecting the rectifier 328 of the second bus 307 to the second connection member 344.
  • the first bus 306 is thus powered by the first electrical network.
  • three-phase 346, and the second bus 307 is powered by the second three-phase electrical network 347.
  • the operation is similar to that of the actuator 100 of FIG. 1: in the event of a fault detected on one of the buses, this bus can be disconnected and controlled to configure the star machine, with a node with zero potential, this machine is then powered by the other inverter, not defective.
  • FIG. 4 shows an actuator 400 which is a variant of the actuator of FIG. 3. It comprises all the members of the actuator 300 of FIG. 3, these members bearing numerical references corresponding to those of FIG. 300 actuator, increased by one hundred.
  • This actuator 400 of FIG. 4 is a variant of the same type as that of the actuator 200 of FIG. 2. It also comprises a first and a second triple switch, 471 and 472, respectively connected to the first and the second bus 406. and 407, and respectively coupled to the contactors 436 and 437 associated with these buses.
  • these triple switches make it possible to reconfigure the phases of the star machine 401 without having to drive either the first or the second inverter.
  • the actuator is powered by a first and a second three-phase electrical network, while including means for supplying each of its two buses either with one or the other. of these networks.
  • This actuator 500 which is represented in FIG. 5 has a general structure of the same type as that of the actuator 300 of FIG. 3. It comprises all the members of the actuator 300 of FIG. 3, these members carrying corresponding numerical references. to those of the actuator 300, but increased by two hundred.
  • This other actuator comprises two input connection members 543, 544, which are connected to the two three-phase networks 546 and 547.
  • the two contactors 536 and 537 respectively connected to the first and second rectifiers, are connected to the two connection members 543, 544 via an additional two-position switch, marked by 539, and which is controlled by the control unit 538.
  • This switch 539 is advantageously a contactor type 3PDTCO.
  • This switch can occupy either a first position, as in FIG. 5, in which it electrically connects the first connection member 543 to the first contactor 536, or a second position in which it electrically connects the second connection member 544 to the second contactor 537. .
  • the switch 539 can occupy the first position: the first contactor 536 is then closed, and the second contactor 537 is open, the switches of the second inverter being controlled to configure the windings of the star machine.
  • the machine 501 is then configured as a star by being powered from the first three-phase electrical network 546, via the first bus 506.
  • the first contactor 536 is opened and the first inverter is controlled to close its switches, then the second contactor 537 is closed.
  • the machine is thus again configured as a star powered from the first three-phase network 546, but via its second bus 507.
  • the switch 539 is switched to its second position, which allows to feed the machine from the second three-phase network 547 via the second bus 507.
  • Both 536 and 537 contactors can be closed to power the machine via both inverters.
  • the switch 539 then makes it possible to connect the actuator to either the network 546 or to the network 547.
  • the switch 539 makes it possible to connect the actuator to the other network.
  • contactor 536 or 537 associated with the faulty inverter is opened and the faulty inverter is controlled to configure the coils of the electric star machine. In this case, the machine is powered by one of the two networks selected by positioning the switch 539, and via the non-faulty inverter by closing the contactor 536, 537 associated therewith.
  • the actuator is provided with additional triple switches to ensure a star setting without having to intervene on either the first or the second inverter.
  • This variant corresponds to the actuator 600 of FIG. 6.
  • This actuator 600 comprises all the members of the actuator 500 of FIG. 5, these members carrying numerical references corresponding to those of the actuator 500, increased by the value 100 .
  • This actuator 600 of FIG. 6 is a variant of the same type as the variants 200 and 400 of FIGS. 2 and 4. It also comprises a first and a second triple switch 671 and 672 respectively connected to the first and the second bus 606. and 607, and respectively coupled to the contactors 636 and 637 of these buses.
  • the actuator is powered by a first and a second electrical network.
  • This actuator 700 has a general structure of the same type as the actuator 300 of FIG. 3.
  • This actuator 700 comprises all the members of the actuator 300 of FIG. 3, these members carrying numerical references corresponding to those of the actuator. 300, increased by four hundred.
  • the first and second contactors, designated by 736 and 737 are here three-position switches, instead of being simple controlled switches as in the actuator 300.
  • These components 736 and 737 are advantageously 3PDTCO type contactors. .
  • This switch can occupy a first position, as in FIG. 7, where it connects the first contactor 736 to the first connection member 743. It can occupy a second position in which it connects the contactor 736 to the second connection member 744, as well as a third position in which it completely isolates the first contactor 736 from the electrical network.
  • This switch is thus able to supply the first bus 706 from the first three-phase electrical network 746 when it is in the first position of FIG. 7. When it is in the second position, it supplies this first bus 706 from the second network.
  • the second switch which has the same general structure is also able to supply the second bus, from the first or second network, or disconnect from these networks.
  • This actuator 700 has the same advantages as the actuator 500 since it can be driven to power each bus 706, 707, or from the first 746 electrical network, or from the second electrical network 747.
  • the actuator is provided with two triple switches, similarly to the actuators 200, 400 and 600 of FIGS. 2, 4 and 6.
  • the first and second triple switches, 871 and 872, also make it possible to reconfigure the star machine without having to act on either the first or the second inverter.
  • the triple switches are not coupled to the bus contactors because these contactors are three-position switches. But the triple switch and the contactor associated with each bus are controlled jointly by the control unit 838.
  • one of the buses of the actuator comprises a battery associated with a switch, in order to be able to be recharged by the three-phase power supply network, or to power the machine, depending on the position occupied by this switch.
  • This actuator 900 comprises the same members as the actuator 100 of FIG. 1, these members bearing the same numerical references as for the actuator 100, but increased by the value eight hundred. However, it is a battery 951 and a switch 952 which are interposed between the rectifier 928 and the inverter 931 of the second bus 907, instead of an LC filter as in the actuator 100.
  • the battery of this actuator 900 is integrated in its second bus 907, where it replaces the LC filter being interposed between the rectifier 928 and the inverter 931.
  • This battery 951 has its first terminal connected to the rectifier 928 and the inverter 931 , and its second terminal connected to a two-position switch 952.
  • This switch 952 can occupy a first position in which it connects the second terminal of the battery to the rectifier for charging. It can occupy a second position in which it connects the second terminal of the battery to the second inverter 931, to supply the machine 901 from the battery and via this inverter 931.
  • the two switches 936 and 937 can be closed, and the switch 952 placed in the first position.
  • the battery 951 is then recharged by the three-phase network, the second inverter 931 being isolated from the network because the switch 952 is in the first position.
  • These components 936 and 937 are advantageously 3PDTCO type contactors.
  • the second inverter 931 is controlled to close its switches so as to configure the phases of the star machine 901, this machine being supplied by the network via the first inverter 911.
  • the first contactor 936 is controlled in opening, and the first inverter 911 is controlled to configure the phases of the star machine 901.
  • the switch 952 is then controlled by the control unit 938 to move into its second position while the second inverter 931 is driven to power the electric machine 901.
  • the machine is powered from the battery 951, via the second inverter 931, while its phases are star-shaped, with a floating potential central node, because of the opening of the first contactor 936 and the closing of the switches of the first inverter 911.
  • the battery can also be operated in regeneration mode: when the machine operates in generator mode instead of engine, the battery can be loaded by the machine instead of by the network.
  • the battery can also be used to limit the maximum power absorbed by the actuator: when the actuator absorbs its maximum power only occasionally, the battery can be charged when this actuator absorbs only a low electrical power, and it can be used when the actuator needs maximum electrical power.
  • the actuator is also equipped with a battery, but its buses are connected to the supply network not via two contactors, but via a single two-position switch. .
  • This actuator 1000 comprises the same members as the actuator 900 of Figure 9, which are identified by numerals corresponding to those of the actuator 900, increased by the value one hundred. However, it is here a two-position switch 1056 which is interposed between its connection member and the buses, instead of the two controlled switches included in the actuator 900.
  • the two buses are connected to the single connection member 1043 not by two independent contactors, but by a two-position switch marked 1056.
  • This component 1056 is advantageously a contactor 3PDTCO type.
  • This switch comprises a first terminal connected to the first rectifier 1008 of the first bus 1006, a second terminal connected to the second rectifier 1028 of the second bus 1007, and a third terminal connected to the supply terminal 1043 of the three-phase network 1046.
  • This switch can occupy a first position in which it connects the first rectifier 1008 to the connection member 1043 to supply the electrical machine 1001 from the three-phase network 1046 and via the first bus 1006, for example in normal operation. It can also occupy a second position in which it connects the second rectifier 1028 to the connection member 1043. If the switch 1052 of the battery 1051 is in its first position, the latter is charged by the electrical network 1046, via the rectifier 1028. This configuration allows in particular to ensure the charging of the battery 1051 when the actuator is not requested.
  • the switch 1052 is advantageously a contactor type 3PDTCO.
  • the switch 1056 is controlled by the unit 1038 to move to the second position, and the switches of the first inverter 1011 are controlled in closing, which has the effect of configuring the phases of the star machine 1001, with a floating potential central node.
  • the switch 1052 can then be placed in its second position by the control 1038, which also drives the second inverter to feed the electrical machine 1001, which is thus fed from the battery.
  • the battery can also be operated in regeneration mode, similarly to the fifth embodiment. It also makes it possible to limit the maximum power demanded by the actuator to the supply networks.
  • FIG. 11 shows a variant of the actuator 1000 of FIG. 10.
  • This actuator 1100 is a variant of the same type as those of FIGS. 4, 6, 8 and 10.
  • the actuator is also provided with a first and second triple switches, 1171 and 1172 respectively connected to its first and second buses 1106 and 1107.
  • these triple switches make it possible to reconfigure the phases of the star machine 1101, without having to drive either the first or the second inverter. But these triple switches are here independent, ie controlled directly by the control unit 1138.
  • the battery can also be operated in regeneration mode, similarly to the fifth and sixth embodiments. It also makes it possible to limit the maximum power demanded by the actuator to the supply networks. It will be noted that in the fifth and sixth embodiments as well as in this latter variant, the battery can also be charged through the machine and the inverter associated with this battery, both with the machine stopped and rotation, which makes it possible to do without a rectifier.
  • the actuator is equipped with an electric battery, but it may be a supercapacitor or the like. More generally, any electrical storage device can be used in this context.
  • the invention which has been presented in the context of actuators provided with synchronous electrical machines is equally applicable to actuators provided with asynchronous electrical machines.
  • the invention applies to actuators with polyphase electrical machines that can be powered by two converters making it possible to produce a series-type power supply architecture with two connection paths to the same electrical source or to two electrical sources. distinct.
  • the power supply network or networks may be of the three-phase alternating type, as in the case of the examples which have been described, but these networks may also be of the single-phase alternating type or other type, rectifiers that can be simple diode rectifiers or controlled rectifiers, as in the examples that have been described.
  • the power supply networks can also be DC networks, in which case the buses do not have to be equipped with rectifiers.

Abstract

L'invention concerne un actionneur comportant une machine électrique. L'actionneur électrique (100), comporte une machine polyphasée (101), au moins un organe de raccordement (143) pour alimenter cet actionneur par au moins un réseau (146) délivrant un courant alternatif, un premier et un second bus (106, 107) montés en parallèle entre chaque organe de raccordement (143) et la machine (101) pour la piloter en fréquence. Chaque onduleur (111, 131) comporte plusieurs bras pourvus chacun de deux interrupteurs commandés, chaque phase de la machine (101) étant reliée aux deux interrupteurs d'un bras du premier onduleur (111) d'une part, et aux deux interrupteurs d'un bras du second onduleur (131) d'autre part. Il comporte en outre des moyens commandés de connexion et de déconnexion interposés entre chaque bus (106, 107) et chaque organe de raccordement. L'invention s'applique aux actionneurs utilisés dans l'aéronautique.

Description

Actionneur électrique qui intègre deux onduleurs de tension contrôlés en courant alimentant une machine électrique et qui est reconfigurable en présence d'un défaut
L'invention concerne un actionneur électrique destiné à équiper un aéronef pour commander un équipement de cet aéronef.
ARRIERE PLAN DE L'INVENTION Dans le domaine aéronautique, on attend d'un système de commande d'un équipement, qu'il soit continûment disponible. Cela signifie qu'en cas de défaillance de l'un des composants de ce système, ce système de commande doit être capable de fonctionner, par exemple dans un mode dégradé, pour manoeuvrer l'équipement malgré la défaillance. Ainsi, lorsqu'une défaillance est détectée en vol, le système peut encore fonctionner.
Dans ce cadre, les systèmes de commande effectivement utilisés dans le domaine aéronautique sont hydrauliques : ils comprennent un actionneur hydraulique de type vérin, et un réseau hydraulique interposé entre ce vérin et un organe de commande.
Le réseau comporte alors deux circuits hydrauliques distincts et indépendants : en cas de défaillance de l'un des circuits, par exemple du fait d'une fuite, l'autre circuit reste disponible pour commander l' actionneur hydraulique .
L'évolution actuelle de l'aéronautique conduit à remplacer les systèmes de commande hydrauliques par des systèmes de commande électriques.
Dans ce cadre, il a été choisi d'utiliser des actionneurs dont les moteurs sont des machines électriques, notamment du type synchrones à aimants permanents, qui peuvent être asservies en vitesse, en position ou bien en effort, tout en étant suffisamment légères. La variation de vitesse de ces machines nécessite la variation de la fréquence du courant ou de la tension qui leur est appliquée, ce qui nécessite d'intégrer un convertisseur statique, pour faire varier cette commande conformément aux variables de commande. Lorsque la source électrique est monophasée, triphasée ou polyphasée, ce convertisseur peut être constitué d'un redresseur non commandé à diode ou un redresseur commandé, associé à onduleur. Cependant, ce type d'onduleur comporte des bras portant chacun deux interrupteurs commandés, ou transistors qui peuvent se bloquer dans un état ouvert ou fermé. Lorsque l'un de ces transistors est en défaut, le pilotage est significativement compliqué par le fait que l'intensité du courant transitant dans les bras restant valides ne peut alors plus être contrôlée.
En ce qui concerne l'alimentation électrique, différentes solutions sont envisagées : le réseau électrique d'alimentation peut être un réseau triphasé unique suffisamment sécurisé pour être considéré comme fiable.
Il est également envisagé de prévoir deux réseaux triphasés distincts, de façon analogue au cas des systèmes à commande hydraulique. Les deux réseaux peuvent alors être soit électriquement isolés, soit non isolés.
Dans le cas où les deux réseaux triphasés sont isolés, le neutre de l'un est indépendant du neutre de l'autre, et dans le cas où il ne sont pas électriquement isolés, leurs neutres sont soit au même potentiel soit connectés à l'aide d'éléments inductifs ou/et résistifs. OBJET DE L'INVENTION
Le but de l'invention est de proposer un agencement d'actionneur ayant un niveau de disponibilité optimal notamment vis à vis d'une défaillance d'un interrupteur commandé de l'onduleur qui est souvent un transistor, et qui soit utilisable avec les différentes architectures de réseau d'alimentation électrique possibles. RESUME DE L'INVENTION
A cet effet, l'invention a pour objet un actionneur électrique, comportant une machine électrique polyphasée, au moins un organe de raccordement à un réseau d'alimentation électrique, un premier et un second bus montés en parallèle entre la machine et chaque organe de raccordement, le premier et le second bus comportant respectivement un premier et un second onduleur pour piloter cette machine en fréquence, chaque onduleur comportant plusieurs bras pourvus chacun de deux interrupteurs commandés, chaque phase de la machine étant continuellement reliée aux deux interrupteurs d'un bras du premier onduleur d'une part, et aux deux interrupteurs d'un bras du second onduleur d'autre part, ainsi que des moyens commandés de connexion et de déconnexion interposés entre les bus et chaque organe de raccordement.
Avec cette architecture, l' actionneur peut être piloté pour alimenter la machine via l'un et/ou l'autre de ses bus, ce qui offre plusieurs possibilités de reconfiguration soit en fonctionnement normal, soit en cas de défaut apparaissant au niveau d'un réseau d'alimentation électrique, d'un onduleur ou d'un redresseur, ou bien plus généralement au niveau d'un bus, ou encore au niveau d'un bobinage de la machine électrique.
Les moyens de connexion commandés permettent d'isoler complètement un onduleur du ou des réseaux d'alimentation, pour configurer la machine en étoile avec un noeud central, ce qui permet de contrôler le courant dans chaque bobinage.
Ces moyens de connexion permettent de plus d'alimenter l' actionneur en fonctionnement normal avec un ou plusieurs réseaux électriques, de sorte que l' actionneur est utilisable avec les différentes configurations de réseau d'alimentation électrique possibles.
I/ invention concerne également un actionneur tel que défini ci-dessus, dans lequel les moyens commandés de connexion et de déconnexion comportent un premier contacteur interposé entre un organe de raccordement à un réseau unique et le premier bus, ainsi qu'un second contacteur interposé entre ce même organe de raccordement et le second bus .
L'invention concerne également un actionneur tel que défini ci-dessus, comportant un premier et un second organe de raccordement pour alimenter l' actionneur depuis deux réseaux d'alimentation distincts, et dans lequel les moyens commandés de connexion et de déconnexion comprennent un premier contacteur reliant le premier bus au premier organe de raccordement et un second contacteur reliant le second bus au second organe de raccordement.
L' invention concerne également un actionneur tel que défini ci-dessus, comportant un premier et un second organe de raccordement pour alimenter cet actionneur avec deux réseaux d'alimentation distincts, et dans lequel les moyens commandés de connexion et de déconnexion comprennent un premier contacteur relié au premier bus, un second contacteur relié au second bus, et un commutateur à deux positions, pour relier le premier et le second contacteur, soit au premier organe de raccordement, soit au second organe de raccordement .
L' invention concerne également un actionneur tel que défini ci-dessus, comportant un premier et un second organe de raccordement pour alimenter cet actionneur avec deux réseaux d'alimentation distincts, et dans lequel les moyens de connexion et de déconnexion commandés comprennent un premier commutateur à trois positions, relié au premier bus ainsi qu'au premier et au second organe de raccordement, et un second commutateur à trois positions relié au second bus ainsi qu'au premier et au second organe de raccordement. L' invention concerne également un actionneur tel que défini ci-dessus, comportant un organe de stockage électrique et un commutateur à deux positions qui sont interposés entre l'organe de raccordement et l'onduleur de l'un des bus, cet organe de stockage électrique ayant une borne reliée à l'organe de raccordement et à l'onduleur et une borne reliée à l'interrupteur à deux positions pour être connectée soit à l'organe de raccordement afin d'être rechargée, soit à l'onduleur afin de l'alimenter ou de se charger.
L' invention concerne également un actionneur tel que défini ci-dessus, comportant un interrupteur multiple relié aux deux interrupteurs de chaque bras de l'un des onduleurs, cet interrupteur pouvant occuper une position ouverte dans laquelle ces bras sont isolés les uns des autres ou une position fermée dans laquelle ces bras sont électriquement reliés les uns aux autres. BREVE DESCRIPTION DES FIGURES
La figure 1 est un schéma d'un premier mode de réalisation de l'invention dans lequel l' actionneur comprend des moyens de connexion incluant deux contacteurs le reliant à un réseau d'alimentation électrique unique ;
La figure 2 est un schéma d'une variante du premier mode de réalisation de l'invention dans laquelle l' actionneur est équipé d'interrupteurs triples additionnels ;
La figure 3 est un schéma d'un second mode de réalisation de l'invention dans lequel l' actionneur comprend des moyens de connexion incluant deux contacteurs le reliant à deux réseaux électriques alimentant chacun un onduleur de cet actionneur ;
La figure 4 est un schéma d'une variante du second mode de réalisation de l'invention dans laquelle l' actionneur est équipé d'interrupteurs triples additionnels ; La figure 5 est un schéma d'un troisième mode de réalisation de l'invention dans lequel l'actionneur comprend des moyens de connexion incluant deux contacteurs et un commutateur commandés pour relier sélectivement chaque onduleur à l'un ou à l'autre de deux réseaux électriques distincts ;
La figure 6 est un schéma d'une variante du troisième mode de réalisation de l'invention dans lequel l'actionneur est équipé d'interrupteurs triples additionnels ;
La figure 7 est un schéma d'un quatrième mode de réalisation de l'invention dans lequel l'actionneur comprend des moyens de connexion incluant deux contacteurs sous forme de commutateurs commandés pour relier sélectivement chaque onduleur à l'un ou l'autre de deux réseaux électriques distincts ;
La figure 8 est un schéma d'une variante du quatrième mode de réalisation de l'invention dans lequel l'actionneur est équipé d'interrupteurs triples additionnels ;
La figure 9 est un schéma d'un cinquième mode de réalisation de l'invention dans lequel l'actionneur comporte un organe de stockage d'énergie électrique et des moyens de connexion incluant deux contacteurs le reliant à un réseau électrique unique ;
La figure 10 est un schéma d'un sixième mode de réalisation de l'invention dans lequel l'actionneur comporte un organe de stockage d'énergie électrique et des moyens de connexion incluant un contacteur sous forme d'un commutateur commandé le reliant à un réseau électrique unique ;
La figure 11 est un schéma d'une variante du sixième mode de réalisation de l'invention dans lequel l'actionneur est pourvu d'interrupteurs triples additionnels. DESCRIPTION DETAILLEE DE L'INVENTION
L'actionneur selon l'invention, repéré par 100 dans la figure 1, comprend une machine électrique triphasée 101, incluant trois bobinages 102, 103, 104, ainsi qu'un premier et un second bus distincts 106 et 107. Ces bus convertissent le courant alternatif du réseau, ayant une fréquence fixe ou variable, en un courant alternatif de fréquence variable qui est injecté dans la machine synchrone pour la piloter en fréquence. Le premier bus 106 comprend successivement un redresseur 108, un filtre 109 de type LC, c'est à dire comportant une inductance et une capacité, et un onduleur 111 triphasé. L'onduleur triphasé comporte trois bras 112, 113, 114 pourvus chacun de deux interrupteurs commandés notés respectivement 112a, 112b, 113a, 113b, 114a, 114b.
Le second bus 107 comprend lui aussi successivement un redresseur 128, un filtre 129 de type LC, et un onduleur triphasé 131. L'onduleur triphasé comporte lui aussi trois bras 132, 133, 134 pourvus chacun de deux interrupteurs commandés, notés respectivement 132a, 132b, 133a, 133b, 134a, 134b.
Chaque bobinage de la machine est relié à un bras de chaque onduleur, l'une de ses extrémités étant directement reliée aux deux interrupteurs d'un bras du premier onduleur 111, et l'autre extrémité étant directement reliée aux deux interrupteurs d'un bras du second onduleur 131.
Le bobinage 102 a ainsi une première extrémité reliée aux deux interrupteurs 112a et 112b du bras 112 du premier onduleur 111, et une seconde extrémité reliée aux deux interrupteurs 132a et 132b du bras 132 du second onduleur 131. De manière analogue, le bobinage 103 est relié aux bras 113 et 133, et le bobinage 104 est relié aux bras 114 et 134.
L'actionneur comporte également un premier contacteur 136 par lequel le premier redresseur 108 est relié au réseau électrique triphasé unique 146, et un second contacteur 137 par lequel le second redresseur 128 est relié au réseau triphasé 146, au moyen d'un organe de raccordement 143. Dans la description de ce mode de réalisation et des autres modes de réalisation de l'invention, le terme contacteur désigne un interrupteur commandé avec pouvoir de coupure. Il peut s'agir d'un interrupteur mécanique de type contacteur ou disjoncteur, ou bien d'un interrupteur électronique de type bidirectionnel en courant et en tension.
Cet ensemble qui constitue une architecture d'actionneur à redondance série non-isolée est piloté par une unité de commande repérée par 138, reliée aux contacteurs et à chaque interrupteur commandé du premier et du second onduleur.
En fonctionnement normal, les bobinages de la machine synchrone peuvent être alimentés soit conjointement par les deux bus 106 et 107, soit par un seul de ces deux bus . Lorsqu'en fonctionnement normal, la machine est alimentée par ses deux bus, les contacteurs 136 et 137 sont tous deux fermés, et les interrupteurs des deux onduleurs 111 et 131 sont pilotés pour appliquer aux bobines 102, 103 et 104 une tension de fréquence et d'amplitude variables et pilotées.
Dans cette configuration, la machine est alimentée par une tension qui peut être doublée puisque la tension qui lui est appliquée vaut la différence des tensions appliquées par les deux onduleurs. Cette tension devient double si les commandes des bras des deux onduleurs sont complémentaires et si les tensions continues au niveau des bus ont les mêmes valeurs. Comparé au cas où la machine triphasée est alimentée avec un seul onduleur, ceci permet de la faire tourner jusqu'à deux fois plus vite, c'est à dire d'en optimiser le fonctionnement. Lorsqu'en fonctionnement normal, la machine est alimentée par un seul de ses bus, les pertes électriques sont réduites du fait qu'un seul des bus est exploité de manière dynamique. L'un des contacteurs 136 ou 137 est alors maintenu ouvert et l'onduleur correspondant 111 ou 131 est commandé pour maintenir ses interrupteurs fermés de manière à configurer les bobinages de la machine 101 en étoile. L'autre contacteur 137 ou 136 est maintenu fermé, et les interrupteurs de l'onduleur 131, 111 correspondant à cet autre contacteur sont pilotés dynamiquement pour appliquer aux bobines 102, 103 et 104 une tension de fréquence et d'amplitude variables et pilotées.
En cas de défaillance d'un bus, par exemple au niveau d'un interrupteur de l'onduleur qui est commandé de façon dynamique, la machine est reconfigurée par la commande pour adopter un autre mode de fonctionnement lui permettant de délivrer un couple mécanique malgré cette défaillance .
Dans cet autre mode de fonctionnement la machine peut être alimentée par les deux onduleurs, ou par un seul onduleur.
En cas de défaillance due à un interrupteur bloqué dans un état ouvert, on peut ainsi fermer ou maintenir fermés les deux contacteurs 136 et 137, inhiber les interrupteurs des bras connectés à la phase portant l'interrupteur défectueux pour les ouvrir, ce qui annule le courant dans cette phase.
En imposant aux courants des deux phases restantes des formes d'onde appropriées, on peut générer le couple voulu tout en minimisant les pertes Joule. Dans ce cas, les formes d'ondes sont déduites de la forme des forces électromotrices à vide, de la position du rotor et du couple constant souhaité, de manière à contrôler l'intensité du courant injecté dans les phases valides. II faut noter que cette reconfiguration permet aussi de contrecarrer un défaut de phase au niveau de la machine synchrone, c'est à dire une défaillance due à la rupture de l'un de ses bobinages conduisant à l'annulation du courant dans une phase de la machine électrique. Lorsqu'on décide d'alimenter la machine par un seul onduleur lorsqu'un interrupteur est détecté défaillant, on configure la machine en étoile, plusieurs situations pouvant être distinguées.
Par exemple, si l'interrupteur 132a du second onduleur 131 se bloque dans un état ouvert, alors le contacteur 137 est piloté en ouverture pour déconnecter l'ensemble du second bus 107 du réseau électrique triphasé, et les interrupteurs 132b, 133b et 134b sont pilotés pour être continûment fermés. Si l'interrupteur 132a se bloque dans un état fermé, alors le contacteur 137 est piloté en ouverture pour déconnecter le second bus 107, et les interrupteurs 133a, 134a sont pilotés pour être continûment fermés.
Dans une situation comme dans l'autre, les bobinages 102, 103 et 104 de la machine 101 sont configurés en étoile. Le premier contacteur 136 est quant à lui maintenu fermé, pour alimenter la machine 101 via le premier bus 106. Le premier onduleur 111 est alors piloté pour appliquer à ces bobinages des tensions ayant une fréquence et une amplitude conditionnées par l'asservissement.
Ainsi, grâce à la possibilité de déconnecter complètement un bus du réseau d'alimentation, les connexions entre les deux bus se font uniquement via la machine électrique. La machine est alors reconfigurée en étoile, en ayant son noeud central à un potentiel flottant puisqu'il est complètement déconnecté du réseau. La somme des courants traversant les bobinages de la machine est alors nulle, ce qui donne lieu à un fonctionnement nominal de cette machine permettant en particulier de contrôler l'intensité du courant injecté dans celle-ci. La détection de défauts est assurée par mesure du sens du courant traversant l'une ou l'autre des phases de la machine synchrone et en mesurant le potentiel à l'une de ces phases . Avantageusement, l'actionneur est équipé de moyens supplémentaires de reconfiguration, comme dans la variante que constitue l'actionneur 200 de la figure 2.
Cet actionneur 200 comporte tous les organes de celui de la figure 1, ces organes portant des références numériques correspondant à celles de l'actionneur 100 mais augmentées de la valeur cent.
Additionnellement, cet actionneur 200 comporte un premier interrupteur triple commandé 271 qui est relié à chaque bras 212, 213, 214 du premier onduleur 211, et un second interrupteur triple 272 qui est relié à chaque bras 232, 233 et 234 du second onduleur 231. Ces composants 271 et 272 sont avantageusement de type contacteurs ou statiques bidirectionnels normalement fermés.
L'interrupteur 271 peut occuper une position ouverte, comme dans la figure 2, dans laquelle les trois bras du premier onduleur sont isolés l'un de l'autre, lorsque ce premier onduleur alimente la machine 201. Il peut également occuper une position fermée, dans laquelle il relie les uns aux autres les trois bras 212, 213 et 214, pour configurer les trois bobinages 202, 203 et 204 en étoile, sans devoir piloter les interrupteurs commandés du premier onduleur.
Cet interrupteur triple 271 est avantageusement couplé au contacteur 236 de déconnexion du premier bus 206, de telle manière que lorsque ce contacteur 236 de connexion du premier bus 206 est fermé, l'interrupteur triple 271 est ouvert, et réciproquement. Ainsi, une ouverture du contacteur 236, provoque la fermeture de l'interrupteur triple 271, ce qui a pour effet d'isoler électriquement l'ensemble du premier bus, et de configurer en étoile les bobinages de la machine 201, en inhibant (bloquant) les transistors du premier onduleur 211.
Le second interrupteur triple 272 maintient les bras 232, 233 et 234 isolés les uns des autres lorsqu'il est ouvert, et il les relie les uns aux autres lorsqu'il est fermé, afin de configurer la machine 201 en étoile. Il est avantageusement couplé au second contacteur 237, selon un couplage analogue à celui du premier interrupteur triple.
Cette variante de la figure 2 améliore encore la disponibilité de 1 'actionneur, car elle permet de configurer la machine en étoile avec un noeud central, y compris lorsque cette reconfiguration ne peut être obtenue en pilotant l'onduleur défectueux, une telle situation peut par exemple se présenter lorsque deux interrupteurs d'un même bras de l'onduleur sont bloqués en position ouverte.
Selon un second mode de réalisation, l' actionneur qui est représenté en figure 3 sous la référence 300, est alimenté par deux réseaux électriques triphasés distincts. Cet actionneur 300 comporte tous les organes de l' actionneur 100 de la figure 1, ces organes portant des références numériques correspondant à celles de l' actionneur 100 augmentées de la valeur deux cent.
L 'actionneur 300 comporte en entrée deux organes de raccordement, repérés par 343 et 344 et situés respectivement au niveau de son premier bus 306 et de son second bus 307, auxquels sont branchés respectivement un premier et un second réseau d'alimentation électrique triphasés, repérés par 346 et 347.
Le premier contacteur 336 relie le redresseur 308 du premier bus 306 au premier organe de raccordement 343, le second contacteur 337 reliant le redresseur 328 du second bus 307 au second organe de raccordement 344. Le premier bus 306 est ainsi alimenté par le premier réseau électrique triphasé 346, et le second bus 307 est alimenté par le second réseau électrique triphasé 347. Le fonctionnement est similaire à celui de l'actionneur 100 de la figure 1 : en cas de défaut détecté sur l'un des bus, celui-ci peut être déconnecté et piloté pour configurer la machine en étoile, avec un noeud à potentiel nul, cette machine étant alors alimentée par l'autre onduleur, non défectueux.
Dans la figure 4, on a représenté un actionneur 400 qui est une variante de l'actionneur de la figure 3. Il comporte tous les organes de l'actionneur 300 de la figure 3, ces organes portant des références numériques correspondant à celles de l'actionneur 300, augmentées de la valeur cent.
Cet actionneur 400 de la figure 4 est une variante du même type que celle de l'actionneur 200 de la figure 2. II comprend lui aussi un premier et un second interrupteur triple, 471 et 472, connectés respectivement au premier et au second bus 406 et 407, et couplés respectivement aux contacteurs 436 et 437 associés à ces bus.
Comme dans le cas de la figure 2, ces interrupteurs triples permettent de reconfigurer les phases de la machine 401 en étoile, sans devoir piloter ni le premier ni le second onduleur.
Dans un troisième mode de réalisation de l'invention, l'actionneur est alimenté par un premier et un second réseau électrique triphasés, tout en comprenant des moyens permettant d'alimenter chacun de ses deux bus soit avec l'un soit avec l'autre de ces réseaux.
Cet actionneur 500 qui est représenté en figure 5 a une structure générale du même type que celle de l'actionneur 300 de la figure 3. Il comporte tous les organes de l'actionneur 300 de la figure 3, ces organes portant des références numériques correspondant à celles de l'actionneur 300, mais augmentées de la valeur deux cent.
Cet autre actionneur comporte deux organes de raccordement en entrée 543, 544, qui sont reliés aux deux réseaux triphasés 546 et 547. Les deux contacteurs 536 et 537, connectés respectivement au premier et au second redresseur, sont reliés aux deux organes de raccordement 543, 544 par l'intermédiaire d'un commutateur à deux positions additionnel, repéré par 539, et qui est piloté par l'unité de commande 538. Ce commutateur 539 est avantageusement un contacteur de type 3PDTCO.
Ce commutateur peut occuper soit une première position, comme dans la figure 5, dans laquelle il relie électriquement le premier organe de raccordement 543 au premier contacteur 536, soit une seconde position dans laquelle il relie électriquement le second organe de raccordement 544 au second contacteur 537.
En fonctionnement normal, le commutateur 539 peut occuper la première position : le premier contacteur 536 est alors fermé, et le second contacteur 537 est ouvert, les interrupteurs du second onduleur étant pilotés pour configurer les bobinages de la machine en étoile. La machine 501 est alors configurée en étoile en étant alimentée depuis le premier réseau électrique triphasé 546, via le premier bus 506.
Partant de cette situation, en cas d'apparition d'un défaut sur le premier bus 506, le premier contacteur 536 est ouvert et le premier onduleur est piloté pour fermer ses interrupteurs, puis le second contacteur 537 est fermé. La machine est ainsi à nouveau configurée en étoile en étant alimentée depuis le premier réseau triphasé 546, mais via son second bus 507.
Si maintenant, dans cette situation, un défaut intervient sur le premier réseau d'alimentation 546, le commutateur 539 est basculé vers sa seconde position, ce qui permet d'alimenter la machine depuis le second réseau triphasé 547, via le second bus 507.
D'autres modes de fonctionnement normal sont également possibles. Les deux contacteurs 536 et 537 peuvent être fermés de manière à alimenter la machine via les deux onduleurs. Le commutateur 539 permet alors de connecter l'actionneur soit au réseau 546, soit au réseau 547. En cas de défaut d'un réseau, le commutateur 539 permet de connecteur l'actionneur à l'autre réseau. En cas de défaut d'un onduleur, le contacteur 536 ou 537 associé à l'onduleur défectueux est ouvert et l'onduleur défectueux est piloté pour configurer les bobines de la machine électrique en étoile. Dans ce cas, la machine est alimentée par l'un des deux réseaux sélectionné en positionnant le commutateur 539, et via l'onduleur non défectueux en fermant le contacteur 536, 537 qui lui est associé.
En variante, l'actionneur est pourvu d'interrupteurs triples additionnels pour assurer une mise en étoile sans devoir intervenir ni sur le premier ni sur le second onduleur.
Cette variante correspond à l'actionneur 600 de la figure 6. Cet actionneur 600 comporte tous les organes de l'actionneur 500 de la figure 5, ces organes portant des références numériques correspondant à celles de l'actionneur 500, augmentées de la valeur cent.
Cet actionneur 600 de la figure 6 est une variante du même type que les variantes 200 et 400 des figures 2 et 4. Il comprend lui aussi un premier et un second interrupteurs triples, 671 et 672, connectés respectivement au premier et au second bus 606 et 607, et couplés respectivement aux contacteurs 636 et 637 de ces bus.
Comme dans les cas des actionneurs 200 et 400, ces interrupteurs triples permettent de reconfigurer les phases de la machine 601 en étoile, sans devoir piloter ni le premier ni le second onduleur.
Selon un quatrième mode de réalisation correspondant à l'actionneur 700 de la figure 7, l'actionneur est alimenté par un premier et un second réseau électrique triphasés, tout en comprenant deux interrupteurs à trois positions permettant d'alimenter chacun de ses deux onduleurs soit avec l'un soit avec l'autre de ces réseaux.
Cet actionneur 700 a une structure générale du même type que l' actionneur 300 de la figure 3. Cet actionneur 700 comporte tous les organes de l' actionneur 300 de la figure 3, ces organes portant des références numériques correspondant à celles de 1 ' actionneur 300, augmentées de la valeur quatre cent. Cependant, le premier et le second contacteur, repérés par 736 et 737 sont ici des commutateurs à trois positions, au lieu d'être des interrupteurs commandés simples comme dans l' actionneur 300. Ces composants 736 et 737 sont avantageusement des contacteurs de type 3PDTCO. Ce commutateur peut occuper une première position, comme dans la figure 7, où il relie le premier contacteur 736 au premier organe de raccordement 743. Il peut occuper une seconde position dans laquelle il relie le contacteur 736 au second organe de raccordement 744, ainsi qu'une troisième position dans laquelle il isole complètement le premier contacteur 736 du réseau électrique.
Ce commutateur est ainsi apte à alimenter le premier bus 706 depuis le premier réseau électrique triphasé 746 lorsqu'il est dans la première position de la figure 7. Lorsqu'il est dans la seconde position, il alimente ce premier bus 706 depuis le second réseau électrique triphasé
747. Lorsqu'il est dans la troisième position, le premier bus est déconnecté des deux réseaux électriques 746 et 747.
Le second commutateur qui a la même structure générale est ainsi lui aussi capable d'alimenter le second bus, depuis le premier ou depuis le second réseau, ou de le déconnecter de ces réseaux.
Cet actionneur 700 possède les mêmes avantages que l' actionneur 500 puisqu'il peut être piloté pour alimenter électriquement chaque bus 706, 707, soit depuis le premier réseau électrique 746, soit depuis le second réseau électrique 747.
Dans une variante correspondant à l'actionneur 800 de la figure 8, l'actionneur est pourvu de deux interrupteurs triples, de façon analogue aux actionneurs 200, 400 et 600 des figures 2, 4, et 6.
Le premier et le second interrupteur triple, 871 et 872, permettent là aussi de reconfigurer la machine en étoile sans devoir agir ni sur le premier ni sur le second onduleur.
Ici, les interrupteurs triples ne sont pas couplés aux contacteurs des bus du fait que ces contacteurs sont des commutateurs à trois positions. Mais l'interrupteur triple et le contacteur associés à chaque bus sont pilotés conjointement par l'unité de commande 838.
Selon un cinquième mode de réalisation représenté en figure 9, l'un des bus de l'actionneur comporte une batterie associée à un commutateur, pour pouvoir soit être rechargée par le réseau d'alimentation électrique triphasé, soit alimenter la machine, selon la position occupée par ce commutateur.
Cet actionneur 900 comporte les mêmes organes que l'actionneur 100 de la figure 1, ces organes portant les mêmes références numériques que pour l'actionneur 100, mais augmentées de la valeur huit-cent. Cependant, c'est une batterie 951 et un interrupteur 952 qui sont interposés entre le redresseur 928 et l'onduleur 931 du second bus 907, au lieu d'un filtre LC comme dans l'actionneur 100.
La batterie de cet actionneur 900 est intégrée à son second bus 907, où elle remplace le filtre LC en étant interposée entre le redresseur 928 et l'onduleur 931. Cette batterie 951 a sa première borne reliée au redresseur 928 et à l'onduleur 931, et sa seconde borne reliée à un commutateur 952 à deux positions. Ce commutateur 952 peut occuper une première position dans laquelle il relie la seconde borne de la batterie au redresseur pour la charger. Il peut occuper une seconde position dans laquelle il relie la seconde borne de la batterie au second onduleur 931, pour alimenter la machine 901 depuis la batterie et via cet onduleur 931.
En fonctionnement normal, les deux contacteurs 936 et 937 peuvent être fermés, et le commutateur 952 placé dans la première position. La batterie 951 est alors rechargée par le réseau triphasé, le second onduleur 931 étant quant à lui isolé du réseau du fait que le commutateur 952 est dans la première position. Ces composants 936 et 937 sont avantageusement des contacteurs de type 3PDTCO.
Dans ce cas, le second onduleur 931 est piloté pour fermer ses interrupteurs de manière à configurer les phases de la machine 901 en étoile, cette machine étant alimentée par le réseau, via le premier onduleur 911.
En cas de dysfonctionnement du premier bus 906, le premier contacteur 936 est commandé en ouverture, et le premier onduleur 911 est piloté pour configurer les phases de la machine 901 en étoile. Le commutateur 952 est ensuite piloté par l'unité de commande 938 pour passer dans sa seconde position alors que le second onduleur 931 est piloté pour alimenter la machine électrique 901. Dans cette situation, la machine est donc alimentée depuis la batterie 951, via le second onduleur 931, alors que ses phases sont mises en étoile, avec un nœud central à potentiel flottant, du fait de l'ouverture du premier contacteur 936 et de la fermeture des interrupteurs du premier onduleur 911.
Dans ce cinquième mode de réalisation, la batterie peut en outre être exploitée en mode régénération : lorsque la machine fonctionne en mode générateur au lieu de moteur, la batterie peut être chargée par la machine au lieu de l'être par le réseau. La batterie peut aussi être exploitée pour limiter la puissance maximale absorbée par l ' actionneur : lorsque l'actionneur n'absorbe sa puissance maximale que ponctuellement, la batterie peut être chargée lorsque cet actionneur absorbe seulement une faible puissance électrique, et elle peut être utilisée lorsque l'actionneur a besoin d'une puissance électrique maximale.
Selon un sixième mode de réalisation représenté en figure 10, l'actionneur est également équipé d'une batterie, mais ses bus sont reliés au réseau d'alimentation non pas par l'intermédiaire de deux contacteur, mais via un unique commutateur à deux positions.
Cet actionneur 1000 comporte les mêmes organes que l'actionneur 900 de la figure 9, qui sont repérés par des références numériques correspondant à celles de l'actionneur 900, augmentées de la valeur cent. Cependant, c'est ici un commutateur à deux position 1056 qui est interposé entre son organe de raccordement et les bus, au lieu des deux interrupteurs commandés que comporte l'actionneur 900.
Dans cet actionneur 1000, les deux bus sont reliés à l'unique organe de raccordement 1043 non pas par deux contacteurs indépendants, mais par un commutateur à deux positions repéré par 1056. Ce composant 1056 est avantageusement un contacteur de type 3PDTCO.
Ce commutateur comporte une première borne reliée au premier redresseur 1008 du premier bus 1006, une deuxième borne reliée au second redresseur 1028 du second bus 1007, et une troisième borne reliée à la borne 1043 d'alimentation du réseau triphasé 1046.
Ce commutateur peut occuper une première position dans laquelle il relie le premier redresseur 1008 à l'organe de raccordement 1043 pour alimenter la machine électrique 1001 depuis le réseau triphasé 1046 et via le premier bus 1006, par exemple en fonctionnement normal. II peut également occuper une seconde position dans laquelle il relie le second redresseur 1028 à l'organe de raccordement 1043. Si le commutateur 1052 de la batterie 1051 est dans sa première position, celle-ci est chargée par le réseau électrique 1046, via le redresseur 1028. Cette configuration permet notamment d'assurer la charge de la batterie 1051 lorsque l'actionneur n'est pas sollicité. Le commutateur 1052 est avantageusement un contacteur de type 3PDTCO. Partant d'une situation de fonctionnement normal, si un défaut est détecté sur le premier bus, le commutateur 1056 est commandé par l'unité 1038 pour passer dans la seconde position, et les interrupteurs du premier onduleur 1011 sont commandés en fermeture, ce qui a pour effet de configurer les phases de la machine 1001 en étoile, avec un nœud central à potentiel flottant.
Le commutateur 1052 peut alors être placé dans sa seconde position par la commande 1038, qui pilote alors aussi le second onduleur pour qu'il alimente la machine électrique 1001, qui est ainsi alimentée depuis la batterie.
Dans ce sixième mode de réalisation, la batterie peut aussi être exploitée en mode régénération, de façon analogue au cinquième mode de réalisation. Elle permet également de limiter la puissance maximale demandée par l'actionneur aux réseaux d'alimentation.
Dans la figure 11, on a représenté une variante de l'actionneur 1000 de la figure 10. Cet actionneur 1100 est une variante du même type que celles des figures 4, 6 8 et 10. L'actionneur est là aussi pourvu d'un premier et d'un second interrupteurs triples, 1171 et 1172, connectés respectivement à son premier et à son second bus 1106 et 1107.
Comme dans le cas des figures 2, 4, 6 et 8, ces interrupteurs triples permettent de reconfigurer les phases de la machine 1101 en étoile, sans devoir piloter ni le premier ni le second onduleur. Mais ces interrupteurs triples sont ici indépendants, c'est à dire pilotés directement par l'unité de commande 1138. Dans cette variante, la batterie peut aussi être exploitée en mode régénération, de façon analogue au cinquième et au sixième mode de réalisation. Elle permet également de limiter la puissance maximale demandée par l'actionneur aux réseaux d'alimentation. On notera que dans le cinquième et le sixième mode de réalisation ainsi que dans cette dernière variante, la batterie peut aussi être chargée à travers la machine et l'onduleur associé à cette batterie, aussi bien avec la machine à l'arrêt qu'en rotation, ce qui permet de se passer d'un redresseur.
D'autre part, dans le cinquième et le sixième mode de réalisation et sa variante, l'actionneur est équipé d'une batterie électrique, mais il peut aussi bien s'agir d'un supercondensateur ou autre. D'une façon plus générale, tout organe de stockage électrique peut être utilisé dans ce cadre.
Il faut encore noter que l'invention qui a été présentée dans le cadre d' actionneurs pourvus de machines électriques synchrones s'applique aussi bien aux actionneurs pourvus de machines électriques asynchrones. D'une façon générale, l'invention s'applique aux actionneurs à machines électriques polyphasées pouvant être alimentées par deux convertisseurs permettant de réaliser une architecture d'alimentation de type série avec deux voies de connexion à une même source électrique ou à deux sources électriques distinctes.
Le ou les réseaux électriques d'alimentation peuvent être du type alternatif triphasé, comme dans le cas des exemples qui ont été décrits, mais ces réseaux peuvent aussi être du type alternatif monophasé ou autre, les redresseurs pouvant quant à eux être des redresseurs simples à diode ou bien des redresseurs commandés, comme dans les exemples qui ont été décrits.
Enfin, les réseaux d'alimentation électrique peuvent également être des réseaux à courant continus, auquel cas, les bus n'ont pas à être équipés de redresseurs.

Claims

REVENDICATIONS
1. Actionneur électrique (100-1100), comportant une machine électrique polyphasée (101-1101) , au moins un organe de raccordement (143-1143, 344-844) à un réseau d'alimentation électrique (146-1146, 347-847), un premier et un second bus (106-1106, 107-1107) montés en parallèle entre la machine (101-1101) et chaque organe de raccordement (143-1143, 344-844), le premier et le second bus (106-1106, 107-1107) comportant respectivement un premier et un second onduleur (111-1111, 131-1131) pour piloter cette machine (101-1101) en fréquence, chaque onduleur (111-1111, 131-1131) comportant plusieurs bras pourvus chacun de deux interrupteurs commandés, chaque phase de la machine (101-1101) étant reliée aux deux interrupteurs d'un bras du premier onduleur (111-1111) d'une part, et aux deux interrupteurs d'un bras du second onduleur (131-1131) d'autre part, ainsi que des moyens commandés de connexion et de déconnexion interposés entre les bus (106-1106, 107-1107) et chaque organe de raccordement .
2. Actionneur (100, 200) selon la revendication 1, dans lequel les moyens commandés de connexion et de déconnexion (143, 243) comportent un premier contacteur
(136, 236) interposé entre un organe de raccordement (143, 243) à un réseau unique et le premier bus (106, 206) , ainsi qu'un second contacteur (137, 237) interposé entre ce même organe de raccordement (143, 243) et le second bus (107, 207) .
3. Actionneur (300-800) selon la revendication 1, comportant un premier et un second organe de raccordement
(343-843, 344-844) pour alimenter l' actionneur depuis deux réseaux d'alimentation distincts, et dans lequel les moyens commandés de connexion et de déconnexion comprennent un premier contacteur (336-836) reliant le premier bus (306- 806) au premier organe de raccordement (343-843) et un second contacteur (337-837) reliant le second bus (307-807) au second organe de raccordement (344-844) .
4. Actionneur (500-600) selon la revendication 1, comportant un premier et un second organe de raccordement
(543-643, 544-644) pour alimenter cet actionneur avec deux réseaux d'alimentation distincts, et dans lequel les moyens commandés de connexion et de déconnexion comprennent un premier contacteur (536-636) relié au premier bus (506- 606), un second contacteur (537-637) relié au second bus
(507-607), et un commutateur à deux positions (539-639), pour relier le premier et le second contacteur (536-636, 537-637), soit au premier organe de raccordement (543-643), soit au second organe de raccordement (544-644).
5. Actionneur (700-800) selon la revendication 1, comportant un premier et un second organe de raccordement
(743-843, 744-844) p'our alimenter cet actionneur avec deux réseaux d'alimentation distincts, et dans lequel les moyens de connexion et de déconnexion commandés comprennent un premier commutateur à trois positions (736-836) , relié au premier bus (706-806) ainsi qu'au premier et au second organe de raccordement (743-843, 744-844), et un second commutateur à trois positions (737-837) relié au second bus
(707-807) ainsi qu'au premier et au second organe de raccordement (743-843, 744-844) .
6. Actionneur (900-1100) selon la revendication 1 ou 6, comportant un organe de stockage électrique (951- 1151) et un commutateur à deux positions (952-1152) qui sont interposés entre l'organe de raccordement (943-1143) et l'onduleur (931-1131) de l'un des bus (907-1107), cet organe de stockage électrique (951-1151) ayant une borne reliée à l'organe de raccordement (943-1143) et à l'onduleur (931-1131) et une borne reliée à l'interrupteur à deux positions (952-1152) pour être connectée soit à l'organe de raccordement (943-1143) afin d'être rechargée, soit à l'onduleur (931-1131) afin de l'alimenter ou de se charger.
7. Actionneur (200, 400, 600, 800, 1100) selon l'une des revendications précédentes, comportant un interrupteur multiple (271-1171, 272-1172) relié aux deux interrupteurs de chaque bras de l'un des onduleurs, cet interrupteur (271-1171, 272-1172) pouvant occuper une position ouverte dans laquelle ces bras sont isolés les uns des autres ou une position fermée dans laquelle ces bras sont électriquement reliés les uns aux autres.
PCT/FR2009/001126 2008-09-24 2009-09-23 Actionneur electrique qui integre deux onduleurs de tension controles en courant alimentant une machine electrique et qui est reconfigurable en presence d'un defaut WO2010034906A2 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0919080-5A BRPI0919080B1 (pt) 2008-09-24 2009-09-23 Acionador elétrico
EP09748362A EP2327133A2 (fr) 2008-09-24 2009-09-23 Actionneur electrique qui integre deux onduleurs de tension controles en courant alimentant une machine electrique et qui est reconfigurable en presence d'un defaut
CN200980138098.4A CN102165666B (zh) 2008-09-24 2009-09-23 为电机供电并在存在故障时可重新配置的包含两个电流控制的电压逆变器的电执行机构
US13/119,625 US8604733B2 (en) 2008-09-24 2009-09-23 Electric actuator including two current-controlled voltage inverters powering an electrical machine, and reconfigurable in the presence of a defect
CA2738051A CA2738051C (fr) 2008-09-24 2009-09-23 Actionneur electrique qui integre deux onduleurs de tension controles en courant alimentant une machine electrique et qui est reconfigurable en presence d'un defaut

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0805240 2008-09-24
FR0805240A FR2936380B1 (fr) 2008-09-24 2008-09-24 Actionneur electrique qui integre deux onduleurs de tension controles en courant alimentant une machine electrique et qui est reconfigurable en presence d'un defaut

Publications (2)

Publication Number Publication Date
WO2010034906A2 true WO2010034906A2 (fr) 2010-04-01
WO2010034906A3 WO2010034906A3 (fr) 2010-05-20

Family

ID=40568651

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/001126 WO2010034906A2 (fr) 2008-09-24 2009-09-23 Actionneur electrique qui integre deux onduleurs de tension controles en courant alimentant une machine electrique et qui est reconfigurable en presence d'un defaut

Country Status (7)

Country Link
US (1) US8604733B2 (fr)
EP (1) EP2327133A2 (fr)
CN (1) CN102165666B (fr)
BR (1) BRPI0919080B1 (fr)
CA (1) CA2738051C (fr)
FR (1) FR2936380B1 (fr)
WO (1) WO2010034906A2 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961361A1 (fr) * 2010-06-14 2011-12-16 Hispano Suiza Sa Onduleur de tension et procede de commande d’un tel onduleur
WO2012059368A3 (fr) * 2010-11-05 2012-12-20 Lti Drives Gmbh Circuit d'entraînement d'un moteur à pas à pas apte à fonctionner en régime de secours

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027716B3 (de) * 2006-06-15 2008-01-24 Lenze Drive Systems Gmbh Ansteuerung mit Wechselrichtern bei geringen Schaltverlusten
MX2012013342A (es) * 2010-05-19 2013-05-22 Ephaugh Inc Metodo y sistema para mover material.
US8427092B2 (en) 2010-10-18 2013-04-23 Hamilton Sundstrand Corporation High voltage DC electric power generating system with permanent magnet generator protection
JP5638416B2 (ja) * 2011-02-18 2014-12-10 株式会社マキタ 電動工具
US8878468B2 (en) * 2011-04-29 2014-11-04 Pratt & Whitney Canada Corp. Electric machine assembly with fail-safe arrangement
CN103066860A (zh) * 2011-10-20 2013-04-24 苏州能健电气有限公司 用于风电交流变桨系统的交流驱动器
CN102355043A (zh) * 2011-10-24 2012-02-15 北京国电四维清洁能源技术有限公司 冗余设计多变频电源联合供电装置
EP2595310A1 (fr) * 2011-11-18 2013-05-22 Hamilton Sundstrand Corporation Système de génération d'alimentation électrique CC haute tension avec protection du générateur à aimant permanent
WO2013076161A2 (fr) * 2011-11-22 2013-05-30 Sagem Defense Securite Actionneur doté d'un moteur multiphasé et procédé pour commander cet actionneur
DE102012200804A1 (de) * 2012-01-20 2013-07-25 Continental Automotive Gmbh Bordnetz und Verfahren zum Betreiben eines Bordnetzes
DE102012101156A1 (de) * 2012-02-14 2013-08-14 Lti Drives Gmbh Netzeinspeisevorrichtung, Energieeinspeisesystem sowie Verfahren zum Betrieb einer Netzeinspeisevorrichtung
CN103580553A (zh) * 2012-07-31 2014-02-12 施耐德东芝换流器欧洲公司 运动与控制系统
ITMI20122053A1 (it) * 2012-11-30 2014-05-31 Mavel Srl Macchina elettrica comprendente un motore elettrico a corrente alternata ed un inverter
CN104052373B (zh) * 2013-03-14 2017-04-12 通用电气公司 电机故障保护系统和方法
CN103280838B (zh) * 2013-05-29 2015-11-25 浙江大学 一种基于开绕组结构的风力发电高压直流并网系统及其控制方法
FR3009145B1 (fr) 2013-07-24 2017-06-09 Thales Sa Baie modulaire d'onduleurs et son procede de pilotage pour un ensemble de machines electriques depourvues de capteurs de position
JP2015027255A (ja) * 2013-07-26 2015-02-05 サムソン エレクトロ−メカニックス カンパニーリミテッド. 並列構造電力装置およびその制御方法
FR3009453B1 (fr) * 2013-08-05 2017-07-07 Hispano-Suiza Circuit de distribution d’electricite avec interrupteurs alimentant au moins deux charges par deux sources.
DE102013220727A1 (de) * 2013-10-14 2015-04-16 Schmidhauser Ag Steuergerät
JP6387225B2 (ja) * 2013-11-05 2018-09-05 ナブテスコ株式会社 航空機用配電システム
AT515243A1 (de) * 2013-12-19 2015-07-15 Schneider Electric Power Drives Gmbh Verfahren zur Ansteuerung parallel geschalteter Inverter
KR101566621B1 (ko) * 2014-06-16 2015-11-05 엘에스산전 주식회사 긴급 상황 발생 대응을 위한 인버터 운전 제어 시스템
KR20160004764A (ko) * 2014-07-04 2016-01-13 삼성전자주식회사 고장 허용 제어 시스템
WO2016065012A1 (fr) * 2014-10-22 2016-04-28 Otis Elevator Company Convertisseur d'énergie npc de type t à trois niveaux
JP6426465B2 (ja) * 2014-12-25 2018-11-21 株式会社デンソー 電力変換装置
JP2016181949A (ja) * 2015-03-23 2016-10-13 株式会社日本自動車部品総合研究所 電力変換装置
EP3353882A4 (fr) * 2015-09-22 2019-05-08 Services Petroliers Schlumberger Onduleur à tolérance de défaillance ou système redresseur commandé
KR20170051813A (ko) * 2015-11-02 2017-05-12 현대자동차주식회사 모터 제어 방법 및 시스템
DE102016202195A1 (de) * 2016-02-12 2017-08-17 Siemens Aktiengesellschaft Verfahren zum Antrieb eines Luftfahrzeugs und Luftfahrzeug
JP6666174B2 (ja) * 2016-03-10 2020-03-13 株式会社Soken 電力変換装置
DE112019000824T5 (de) * 2018-02-15 2020-10-29 Nidec Corporation Leistungsumwandlungsvorrichtung, Antriebsvorrichtung und Servolenkungsvorrichtung
JP7123616B2 (ja) * 2018-05-08 2022-08-23 東芝キヤリア株式会社 モータ駆動装置
TWI693769B (zh) * 2018-11-28 2020-05-11 緯創資通股份有限公司 供電系統、電子裝置及其供電方法
KR20220020972A (ko) * 2019-07-18 2022-02-21 각코호진 호세이다이가쿠 회전기 시스템
JP7280796B2 (ja) * 2019-10-04 2023-05-24 日立Astemo株式会社 モータ駆動装置
FR3108219B1 (fr) * 2020-03-16 2023-08-25 Alstom Transp Tech Circuit d’entraînement de traction et procédé de pilotage d’un tel circuit
KR20230072819A (ko) * 2021-11-18 2023-05-25 현대자동차주식회사 모터의 구동 시스템 및 제어방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082629A1 (fr) * 2001-04-09 2002-10-17 Alexander Stoev Entrainement direct redondant a accumulation d'energie electrocinetique
FR2844401A1 (fr) * 2002-09-05 2004-03-12 Electricite De France Procede et installation pour l'alimentation electrique d'une zone d'activite avec deux sources independantes et issues d'un reseau de distribution.
EP1494343A2 (fr) * 2003-07-04 2005-01-05 ABB Oy Convertisseur de fréquence et entraínement pour un moteur éléctrique
EP1513251A2 (fr) * 2003-07-25 2005-03-09 Loher GmbH Procédé et dispositif de commande d'une machine à courant alternatif à double alimentation en particulier dans une éolienne
US20050162877A1 (en) * 2004-01-27 2005-07-28 General Electric Company Transfer circuit topology for redundant power generator regulators and inverting DC drives
US20070114958A1 (en) * 2005-11-21 2007-05-24 Serrano Mark A Automatic transfer switch apparatus
US20080218114A1 (en) * 2005-10-27 2008-09-11 Airbus France Mixed Device for Controlling Power Transfer Between Two Cores of a Direct Current Network and Supplying an Alternating Current Motor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4426611A (en) * 1982-04-28 1984-01-17 General Electric Company Twelve pulse load commutated inverter drive system
US6222285B1 (en) * 1999-09-07 2001-04-24 Shop Vac Corporation Intelligent switch control circuit
US7098619B2 (en) * 2004-01-28 2006-08-29 Stridsberg Innovation Ab Actuator and movement linkage system
EP2008860B1 (fr) * 2007-06-25 2015-06-17 Mazda Motor Corporation Contrôle pour véhicule hybride
EP2008853B1 (fr) * 2007-06-25 2010-09-15 Mazda Motor Corporation Véhicule hybride
CN101123352B (zh) * 2007-08-30 2010-09-29 中国科学院电工研究所 风力发电系统的背靠背变流器及其环流控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002082629A1 (fr) * 2001-04-09 2002-10-17 Alexander Stoev Entrainement direct redondant a accumulation d'energie electrocinetique
FR2844401A1 (fr) * 2002-09-05 2004-03-12 Electricite De France Procede et installation pour l'alimentation electrique d'une zone d'activite avec deux sources independantes et issues d'un reseau de distribution.
EP1494343A2 (fr) * 2003-07-04 2005-01-05 ABB Oy Convertisseur de fréquence et entraínement pour un moteur éléctrique
EP1513251A2 (fr) * 2003-07-25 2005-03-09 Loher GmbH Procédé et dispositif de commande d'une machine à courant alternatif à double alimentation en particulier dans une éolienne
US20050162877A1 (en) * 2004-01-27 2005-07-28 General Electric Company Transfer circuit topology for redundant power generator regulators and inverting DC drives
US20080218114A1 (en) * 2005-10-27 2008-09-11 Airbus France Mixed Device for Controlling Power Transfer Between Two Cores of a Direct Current Network and Supplying an Alternating Current Motor
US20070114958A1 (en) * 2005-11-21 2007-05-24 Serrano Mark A Automatic transfer switch apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2961361A1 (fr) * 2010-06-14 2011-12-16 Hispano Suiza Sa Onduleur de tension et procede de commande d’un tel onduleur
WO2011157916A1 (fr) * 2010-06-14 2011-12-22 Hispano - Suiza Onduleur de tension et procede de commande d'un tel onduleur
CN102939714A (zh) * 2010-06-14 2013-02-20 伊斯帕诺-絮扎公司 电压逆变器和控制这种逆变器的方法
JP2013529055A (ja) * 2010-06-14 2013-07-11 イスパノ・シユイザ 電圧インバータおよびそのようなインバータの制御方法
US8743573B2 (en) 2010-06-14 2014-06-03 Hispano Suiza Voltage inverter and method of controlling such an inverter
WO2012059368A3 (fr) * 2010-11-05 2012-12-20 Lti Drives Gmbh Circuit d'entraînement d'un moteur à pas à pas apte à fonctionner en régime de secours
CN103370873A (zh) * 2010-11-05 2013-10-23 路特艾电机有限责任公司 能够在应急模式下操作的变桨距电机驱动电路
US9024563B2 (en) 2010-11-05 2015-05-05 Lti Reenergy Gmbh Pitch motor drive circuit which can operate in emergency mode

Also Published As

Publication number Publication date
BRPI0919080B1 (pt) 2019-07-30
CA2738051A1 (fr) 2010-04-01
FR2936380B1 (fr) 2010-10-29
EP2327133A2 (fr) 2011-06-01
FR2936380A1 (fr) 2010-03-26
CN102165666B (zh) 2014-12-31
BRPI0919080A2 (pt) 2015-12-15
US8604733B2 (en) 2013-12-10
CN102165666A (zh) 2011-08-24
US20110181219A1 (en) 2011-07-28
WO2010034906A3 (fr) 2010-05-20
CA2738051C (fr) 2015-12-29

Similar Documents

Publication Publication Date Title
CA2738051C (fr) Actionneur electrique qui integre deux onduleurs de tension controles en courant alimentant une machine electrique et qui est reconfigurable en presence d'un defaut
EP2580860B1 (fr) Onduleur de tension et procede de commande d'un tel onduleur
EP2079148B1 (fr) Circuit electrique
FR3039313B1 (fr) Dispositif reconfigurable de stockage d'energie par effet capacitif, systeme d'alimentation et vehicule electrique integrant ce dispositif
WO2008087270A2 (fr) Alimentation a deux onduleurs en serie pour actionneur electromecanique polyphase
WO2011076742A2 (fr) Onduleur reconfigurable, a tolerance de pannes, pour l'alimentation d'un moteur polyphase synchrone a aimants permanents, et ensemble desdits onduleur et moteur
EP3053236A1 (fr) Procédé de décharge d'au moins une unité de stockage d'énergie électrique, notamment un condensateur, d'un circuit électrique
WO2014128401A2 (fr) Architecture électrique pour la conversion d'une tension continue en une tension alternative, et réciproquement
EP2470427A2 (fr) Reseau electrique d'un aeronef et procede de fonctionnement du reseau electrique
FR2908939A1 (fr) Dispositif de commande pour assurer la regulation en tension d'un bus d'alimentation.
EP2794343B1 (fr) Procede d'echange d'energie electrique entre un reseau electrique vehiculant une grandeur electrique continue ou alternative et une unite de stockage d'energie electrique pour vehicule hybride ou electrique
FR2987946A1 (fr) Procede de decharge d'au moins un condensateur d'un circuit electrique
WO2009125013A2 (fr) Reseau electrique d'un aeronef
WO2019016449A1 (fr) Dispositif de contrôle de flux de puissance pour contrôler la répartition des courants dans un réseau maillé
FR2685830A1 (fr) Installation d'alimentation comportant aux moins deux charges et leurs alimentations sans coupure respectives et procede de remplacement d'une alimentation par l'autre.
EP3888217A1 (fr) Système intégrant une solution de reconfiguration de connexion d'un dispositif de contrôle de flux de puissance dans un réseau maillé
EP3031110B1 (fr) Circuit de distribution d'electricite avec interrupteurs alimentant des charges par un nombre sélectionnable de sources
WO2023156731A1 (fr) Architecture d'alimentation electrique a batteries
FR2956533A1 (fr) Installation electrique comprenant des moyens generateurs de courant continu comportant au moins un module photovoltaique
FR2988927A1 (fr) Procede de decharge d'au moins une unite de stockage d'energie electrique, notamment un condensateur, d'un circuit electrique

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980138098.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09748362

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009748362

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2738051

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13119625

Country of ref document: US

ENP Entry into the national phase

Ref document number: PI0919080

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110324