WO2023156731A1 - Architecture d'alimentation electrique a batteries - Google Patents
Architecture d'alimentation electrique a batteries Download PDFInfo
- Publication number
- WO2023156731A1 WO2023156731A1 PCT/FR2023/050198 FR2023050198W WO2023156731A1 WO 2023156731 A1 WO2023156731 A1 WO 2023156731A1 FR 2023050198 W FR2023050198 W FR 2023050198W WO 2023156731 A1 WO2023156731 A1 WO 2023156731A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- modules
- switching
- power
- module
- battery
- Prior art date
Links
- 238000011144 upstream manufacturing Methods 0.000 claims description 5
- 239000004065 semiconductor Substances 0.000 claims description 3
- 230000008901 benefit Effects 0.000 description 5
- 238000009826 distribution Methods 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 2
- 238000010616 electrical installation Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0024—Parallel/serial switching of connection of batteries to charge or load circuit
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/19—Switching between serial connection and parallel connection of battery modules
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L58/00—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
- B60L58/10—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
- B60L58/18—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
- B60L58/21—Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J1/00—Circuit arrangements for dc mains or dc distribution networks
- H02J1/06—Two-wire systems
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0029—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
- H02J7/0031—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits using battery or load disconnect circuits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L2200/00—Type of vehicles
- B60L2200/10—Air crafts
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/40—The network being an on-board power network, i.e. within a vehicle
- H02J2310/44—The network being an on-board power network, i.e. within a vehicle for aircrafts
Definitions
- This disclosure relates to the field of electrical generation and electrical power distribution circuits for aircraft.
- These distribution circuits distribute electrical power from internal sources, such as generators or batteries, or from external sources, such as power units or a park group, to payloads or other enclosures. distribution of the aircraft and to protect said sources against short circuits in particular.
- Li-lon battery modules comprising a plurality of Li-ion cells and grouped together in battery packs associated with a management and protection including electronic cards, switching devices and fuses.
- the battery module 2 comprises cells 1 .
- the choice of arrangement of cells 1 to build this battery module 2 is given by the voltage level requirement (number of cells in series knowing that for a given chemistry cell voltage is defined and known), power and energy (number of cells in parallel).
- Controllable power switching devices 3, 4 such as resettable circuit breakers, in particular of the SSPC type, switches or contactors make it possible to connect the battery module 2 to the aircraft DC network through a connector 7 while permanent connections to a device load 5 and a permanent bus (hot bus in English) with one or more equipment 6 to be powered on standby through a current limiter are present upstream of the power switching devices.
- a fuse 8 protects the line connecting a pole of the battery module to the aircraft DC network.
- the present application proposes an architecture in which the battery pack is broken down into several battery modules that can be connected in series or in parallel or even in an adaptable manner in series or in parallel according to the needs.
- the present disclosure proposes a battery power supply device for an electrical power supply system for aircraft comprising a battery pack provided with at least two battery modules connected to a direct current electrical network. through a positive line, a negative line and power switching devices, for which each module comprises at least one switch device suitable for isolating said module from said network or connect said module to the network upstream of said power switches, the device comprising a control device for said switch devices configured to control the switching of said switch devices in order to select the module or modules to be connected to the network or different connection configurations of said modules to the network , the control device being able to be configured to control the switching of the switch devices so as to balance the current supplied by the battery pack between the different configurations as a function of the powers requested according to the different flight phases of the aircraft.
- the switch devices not being intended to switch power can be sized solely according to the current which passes through them and not to the need to be able to cut off said current or to cut off a current such as a short-circuit current and the selection can be modified throughout the flight of the aircraft. This also makes it possible to optimize the dimensioning of the power cables of the electrical network of the aircraft.
- the power supply device may comprise for each module a plurality of switch devices for which said configurations comprise: a series configuration for which at least two modules are connected in series to said positive line and negative line, a parallel configuration for which said modules are connected in parallel to said positive line and negative line, a configuration for which only one of said modules is connected to said positive line and negative line.
- the control device is advantageously adapted to control the switching of the switch devices to allow at least one selection of a maximum network voltage in the take-off phase of the aircraft, of an intermediate network voltage in the ascent phase of the aircraft and a reduced network voltage in the cruise flight phase of the aircraft.
- the control device is advantageously configured to control the switching of the power switching devices so as to cut off the power before switching said switch devices to change configuration, switch said switch devices to reduced or zero power and restore the power. once the switch devices have been switched to a new configuration.
- the switch device(s) are preferably semiconductor relays or not.
- FIG. 1 shows traditional battery architecture
- FIG. 2 shows a first embodiment of a battery architecture according to the present disclosure
- FIG. 3 shows a second embodiment of a battery architecture according to the present disclosure in a parallel configuration
- FIG. 4 shows the second embodiment of a battery architecture according to the present disclosure in serial configuration
- FIG. 5 shows a third embodiment of a battery architecture according to the present disclosure comprising three battery modules;
- FIG. 6 shows a table corresponding to the voltages/power of an architecture according to demand with three or four modules.
- FIG. 2 shows a simplified embodiment for which two battery modules 21, 22 constituting a battery pack are each provided with a switch device 10a, 10b upstream of the power switching member 3 on a first line connected to a DC DC network of the aircraft by a connection device 7.
- the DC network can have power sources other than the battery pack 21, 22.
- a second power switching device 4 makes it possible to isolate the battery pack from the negative line of the DC network so that the power switching devices 3 and 4 galvanically isolate the battery pack from the network in the event of a fault.
- These switching or cut-off devices must be able to provide protection and isolation in the event of a short-circuit downstream of the battery pack so as not to propagate the electrical fault to the aircraft wiring. They must therefore have a high breaking capacity corresponding to the short-circuit current of the battery pack, typically a few hundred Amps.
- the power switching elements can in particular be of the SSPC type.
- the battery modules 21, 22 are connected together or isolated via switch devices 10a, 10b which may or may not be semiconductor relays, SSPC devices or switches for example. These switch devices are arranged upstream of the power switches, that is to say on the module side as opposed to the DC network side with respect to the power switches.
- the switching devices have no breaking capacity of the short-circuit current of the modules and they connect the modules to no-load before the connection of the battery pack to the so-called DC DC network of the aircraft by means of the closing of the power switching elements 3, 4.
- the switch devices do not perform no protection of the pack against short-circuits and it can therefore be relays of small dimensions and with a breaking capacity just sufficient to cut off the supply of the permanent bus 5, 6, a few Amps for example.
- the battery modules 21, 22 can be used independently or connected in parallel for additional current.
- the switching of the switch devices is managed by a control device 9 configured to control the switching of said switch devices according to the desired configuration, offline modules, single module or modules in parallel.
- the control device 9 comprises a bus 9a for controlling the switch devices 10a, 10b.
- double switch devices can be used to manage a change of configuration between a paralleling of the modules or a serialization of the modules which makes it possible to use each module 21, 22 alone, to increase the available power by placing the modules 21, 22 in parallel in the case of FIG. 3 or allows an increase in the output voltage of the battery pack by placing the modules 21, 22 in series in the case of the figure 4.
- switch devices 1 1, 12a, 12b, 13a, 13b 14 are used. These switch devices are here also controlled by a control device 9 through a control bus 9a.
- the first module 21 comprises a first switch device 11 on its positive pole, a second switch device 12a and a third switch device 12b on its negative pole.
- the first switch device 11 connects the positive pole of the first module to the positive line P connecting the battery modules to the network or cuts this connection.
- the second switch device 12a connects the negative pole of the first module 21 to the negative line connecting the battery modules to the network or cuts this connection.
- the third switch device 12b connects the negative pole of the first module 21 to the positive pole of the second module 22 through the fourth switch device 13a or cuts this connection (a single switch replacing the switches 12b and 13a can also be used).
- the second module 21 comprises a fourth switch device 13a on its positive pole, a fifth switch device 13b and a sixth switch device 14 on its negative pole.
- the fourth switch device 13a connects the positive pole of the second module 22 to the negative pole of the first module 21 through the third switch device 12b as seen above.
- the fifth switch device 13b connects the positive pole of the second module to the positive line P connecting the battery modules to the network or cuts this connection.
- the sixth switch device 14 connects the negative pole of the second module 22 to the negative line connecting the battery modules to the network or cuts this connection.
- the assembly with six switch devices described makes it possible to pass from a mono-module configuration where each module can be used separately to a parallel module configuration or a series module configuration.
- the switch devices 1 1, 12b, 13a and 14 are closed so as to put the two modules 21 and 22 in series.
- the series configuration has the advantage of making it possible to increase the available power compared to a single module without additional current and therefore without impact on the sizing of the wiring which can be calibrated at the nominal current of a module in the case where the parallel configuration is not used.
- the device as provided in Figures 3 and 4 thus makes it possible: to switch from operation on a single module to operation on the two modules in series, which makes it possible to raise the voltage of the battery to meet the needs specific power supply such as engine starting or a "boost" of electrical machines while remaining compatible with the electrical installation (cable gauges); to switch between a high-capacity power supply device with paralleling of the modules to a high-power device without increasing the current with the modules in series.
- the configuration changes are made after the power has been cut off by means of the power switching elements 3 and/or 4 which are sized according to the maximum power to be cut off and according to the short-circuit current of the modules. This makes it possible to optimize the design of the switch devices and to reduce their mass and their size since they are actuated only when the current passing through them is zero or greatly reduced.
- the control device 9 controls the power switches to do this to isolate the modules and cut off the power before switching the switch devices, then put the modules back into service and restore the power supply after said switching.
- the switch devices can be solid state relay type switches, such as SSPC modules for example.
- the control device 9 is configured to control the switching of said switch devices between the various configurations: one module, two modules in series, two modules in parallel.
- FIG. 5 shows a power supply device with three modules 21, 22, 23 and a switching module 15 provided with a plurality of switch devices These switch devices are here also controlled by a control device 9 through a control bus 9a.
- the switch devices grouped together in the module 15 are wired so as to be able to connect the battery modules to the network either separately, or in series two by two or all three in series or in parallel two by two or all three in parallel.
- the table in Figure 6 shows a voltage table 30 on the abscissa / power 33 on the ordinate with the rounded resultant currents 32 according to flight phases 31.
- This table shows that it is possible to smooth the current by organizing the modules according to one arrangement, a box module 32c, two modules in series, box 32b and three modules in series box 32c while providing the powers necessary for the flight phases of the aircraft: takeoff, climb and cruise.
- the power supply device makes it possible to obtain significantly different power profiles necessary for the different flight phases.
- the power required for takeoff is 90 kW and the chosen voltage is 800 V.
- the power is 70 kW
- the chosen voltage is 540 V.
- the power In stabilized flight in cruise the power is 30 kW and the chosen voltage is 270 V.
- the current rounded to unity is respectively 1 13 A, 130 A and 1 1 1 A.
- the current is therefore smoothed around 100 A to 140 A for all of the consuming flight phases, which makes it possible to optimize the mass of the wiring.
- a configuration for example with four 250 V modules making it possible to obtain a voltage of 1000 V in the take-off phase makes it possible to further reduce the current required to 90 A for a maximum power delivered whereas for a voltage of 270 V, the current would be 333 A which would require very large cable sections.
- the device also has the advantage of being able to reduce the network voltage in the stabilized flight phase at high altitude, which is favorable because the breakdown voltage is reached more quickly with altitude, which means that, for example, a voltage low in altitude will be preferred.
- Such a Power/voltage adaptation also makes it possible to take full advantage of the power cable gauges installed in aircraft and not to have to oversize them knowing that the mass of large cables is quickly significant in the mass balance of an aircraft such as an airplane.
- switch devices at the module level makes it possible to isolate a module which would be detected faulty, broken down or out of order among n modules and to continue to use the energy stored in the n-1 modules, in reduced or degraded mode to ensure end of flight for example.
- the configuration change operations between single module, series modules and parallel modules can be carried out after disconnecting the modules by means of the power switching elements, the modules being reconnected after the configuration change.
- the control device 9 is for example a computer provided for example with an FPGA or a processor provided with a non-volatile memory containing a program for controlling said switching elements and switch devices, a memory sharp, digital outputs for controlling the switching devices and switching devices and optionally provided with sensors and inputs for monitoring the state of the switching devices and switching devices.
- the invention can be applied in particular to power supply systems for avionic systems or aircraft engine systems.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Transportation (AREA)
- Mechanical Engineering (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Direct Current Feeding And Distribution (AREA)
Abstract
Dispositif dalimentation par batterie dun systme de fourniture dnergie lectrique pour aronefs comportant au moins deux modules de batteries (21, 22) relis un rseau lectrique continu au travers dune ligne positive (P), dune ligne ngative (N) et dorganes de commutation de puissance (3, 4), pour lequel chaque module comporte au moins un dispositif interrupteur (10a, 10b) adapt isoler ledit module dudit rseau ou connecter ledit module au rseau.
Description
Description
Titre : ARCHITECTURE D’ALIMENTATION ELECTRIQUE A BATTERIES
Domaine technique
[0001] La présente divulgation concerne le domaine de la génération électrique et des circuits de distribution d’énergie électrique pour aéronefs. Ces circuits de distribution permettent de distribuer la puissance électrique provenant de sources internes, par exemple des générateurs ou des batteries, ou de sources externes, telles que des unités de puissance ou un groupe de parc, vers des charges utiles ou vers d’autres boîtiers de distribution de l’aéronef et de protéger lesdites sources contre des courts-circuits notamment.
[0002] Avec l’évolution des technologies de chimie de stockage d’énergie et l’usage plus important de l’énergie électrique à bord des aéronefs, les batteries prennent une place de plus en plus importante dans les systèmes électriques embarqués.
Technique antérieure
[0003] Il est connu d’utiliser pour la génération d’électricité dans les aéronefs des modules de batteries lithium-ion (Li-lon) comportant une pluralité de cellules Li-ion et regroupés dans des packs de batteries associés à un dispositif de gestion et de protection comprenant des cartes électroniques, des organes de commutation et des fusibles.
[0004] Au niveau de l’architecture d’un module de batterie Li-ion, des organes de commutation de puissance permettent de protéger le module et de l’isoler.
[0005] En général, l’architecture des systèmes batteries Li-lon est telle que décrite en figure 1 .
[0006] Le module de batterie 2 comporte des cellules 1 . Le choix d’arrangement des cellules 1 pour construire ce module de batterie 2 est donné par le besoin de niveau de tension (nombre de cellules en série sachant que pour une chimie donnée
la tension cellule est définie et connue), de puissance et d’énergie (nombre de cellules en parallèle).
[0007] Pour réaliser ces arrangements ce sont des chaines de cellules en série S qui sont mises en parallèle en quantité P ou inversement pour obtenir la tension et la capacité en Ampère-heure attendue. Des organes de commutation de puissance commandables 3, 4 comme des disjoncteurs réarmables, notamment de type SSPC, commutateurs ou contacteurs permettent de raccorder le module de batterie 2 au réseau continu avion au travers d’un connecteur 7 tandis que des connexions permanentes vers un dispositif de charge 5 et un bus permanent (hot bus en anglais) avec un ou plusieurs équipements 6 à alimenter en veille au travers d’un limiteur de courant sont présents en amont des organes de commutation de puissance. Un fusible 8 protège la ligne raccordant un pôle du module de batterie au réseau continu aéronef.
Problème technique
[0008] Dans certains cas, ces arrangements peuvent être ajustés soit de façon statique auquel cas la configuration est figée, soit de façon matricielle ce qui introduit toutefois une complexité et un nombre de nœud de commutation important qui est surdimensionné pour le besoin réel qui ne requière pas l’ensemble des combinaisons possibles.
Exposé de l’invention
[0009] Au vu de l’art antérieur la présente demande propose une architecture ou le pack batterie est décomposé en plusieurs modules batterie connectables en série ou en parallèle ou encore de manière adaptable en série ou en parallèle selon les besoins.
[0010] Pour ce faire, la présente divulgation propose un dispositif d’alimentation électrique par batterie d’un système de fourniture d’énergie électrique pour aéronefs comportant un pack batterie pourvu d’au moins deux modules de batteries reliés à un réseau électrique continu au travers d’une ligne positive, d’une ligne négative et d’organes de commutation de puissance, pour lequel chaque module comporte au moins un dispositif interrupteur adapté à isoler ledit module dudit réseau ou
connecter ledit module au réseau en amont desdits commutateurs de puissance, le dispositif comportant un dispositif de pilotage desdits dispositifs interrupteurs configuré pour piloter les commutations desdits dispositifs interrupteurs afin de sélectionner le ou les modules à connecter au réseau ou différentes configurations de raccordement desdits modules au réseau, le dispositif de pilotage pouvant être configuré pour piloter la commutation des dispositifs interrupteurs en sorte équilibrer le courant fourni par le pack batterie entre les différentes configurations en fonction des puissances demandées selon les différentes phases de vol de l’aéronef.
[0011] Ceci permet d’avoir un dispositif d’alimentation modulaire. De plus les dispositifs interrupteurs n’étant pas destinés à commuter de la puissance peuvent être dimensionnés uniquement en fonction du courant qui les traverse et non de la nécessité de pouvoir couper ledit courant ou couper un courant tel qu’un courant de court-circuit et la sélection peut être modifiée au long du vol de l’aéronef. Ceci permet aussi d’optimiser le dimensionnement des câbles de puissance du réseau électrique de l’aéronef.
[0012] Les caractéristiques exposées dans les paragraphes suivants correspondent à des modes de réalisation pouvant être mis en oeuvre indépendamment les uns des autres ou en combinaison les uns avec les autres:
[0013] Le dispositif d’alimentation électrique peut comporter pour chaque module une pluralité de dispositifs interrupteurs pour lequel lesdites configurations comportent : une configuration série pour laquelle au moins deux modules sont raccordés en série auxdites ligne positive et ligne négative, une configuration parallèle pour laquelle lesdits modules sont reliés en parallèle auxdites ligne positive et ligne négative, une configuration pour laquelle un seul parmi lesdits modules est raccordé auxdites ligne positive et ligne négative.
Ceci permet d’adapter la configuration à la demande en tension ou en capacité de fourniture de courant.
[0014] Le dispositif de pilotage est avantageusement adapté à piloter la commutation des dispositifs interrupteurs pour permettre au moins une sélection d’une tension réseau maximale en phase de décollage de l’aéronef, d’une tension réseau intermédiaire en phase de montée de l’aéronef et d’une tension réseau réduite en phase de vol de croisière de l’aéronef.
[0015] Le dispositif de pilotage est avantageusement configuré pour piloter la commutation des organes de commutation de puissance en sorte de couper la puissance avant une commutation desdits dispositifs interrupteurs pour changer de configuration, commuter lesdits dispositifs interrupteurs à puissance réduite ou nulle et rétablir la puissance une fois les dispositifs interrupteurs commutés dans une nouvelle configuration.
[0016] Ceci permet de conserver des dispositifs interrupteurs de petite dimension, le courant qu’ils doivent couper étant nul ou très réduit.
[0017] Le ou les dispositifs interrupteurs sont préférablement des relais semi- conducteurs ou non.
Brève description des dessins
[0018] D’autres caractéristiques, détails et avantages de l’invention apparaîtront à la lecture de la description détaillée ci-après d’exemples de réalisation non limitatifs, et à l’analyse des dessins annexés, sur lesquels :
[0019] [Fig. 1 ] montre une architecture batterie traditionnelle;
[0020] [Fig. 2] montre un premier mode de réalisation d’une architecture batterie selon la présente divulgation;
[0021] [Fig. 3] montre un deuxième mode de réalisation d’une architecture batterie selon la présente divulgation selon une configuration parallèle;
[0022] [Fig. 4] montre le deuxième mode de réalisation d’une architecture batterie selon la présente divulgation en configuration série ;
[0023] [Fig. 5] montre un troisième mode de réalisation d’une architecture batterie selon la présente divulgation comportant trois modules de batterie ;
[0024] [FIG. 6] montre un tableau correspondant aux tensions/puissance d’une architecture selon la demande avec trois ou quatre modules.
Description des modes de réalisation
[0025] Les dessins et la description ci-après contiennent des éléments pouvant non seulement servir à mieux faire comprendre la présente invention, mais aussi contribuer à sa définition, le cas échéant.
[0026] La présente divulgation comme représentée aux figures 2 à 4 propose une architecture ou un pack batterie est décomposé en plusieurs modules batterie 21 , 22.
[0027] La figure 2 représente un mode de réalisation simplifié pour lequel deux modules de batteries 21 , 22 constituant un pack batterie sont chacun pourvu d’un dispositif interrupteur 10a, 10b en amont de l’organe de commutation de puissance 3 sur une première ligne raccordée à un réseau continu DC de l’aéronef par un dispositif de connexion 7. Le réseau continu peut disposer d’autres sources de puissance que le pack batterie 21 , 22. Un second organe de commutation de puissance 4 permet d’isoler le pack batterie de la ligne négative du réseau DC de sorte que les organes de commutation de puissance 3 et 4 isolent galvaniquement le pack batterie du réseau en cas de défaut. Ces organes de commutation ou de coupure doivent pouvoir assurer la protection et l’isolement en cas de court-circuit à l’aval du pack batterie pour ne pas propager le défaut électrique au câblage avion. Ils doivent donc avoir un pouvoir de coupure élevé correspondant au courant de court-circuit du pack batterie, typiquement quelques centaines d’Ampères.
[0028] Les organes de commutation de puissance peuvent notamment être de type SSPC.
[0029] Les modules de batterie 21 , 22 sont connectés ensemble ou isolés via les dispositifs interrupteurs 10a, 10b qui peuvent être des relais semi-conducteurs ou non, des dispositifs SSPC ou des commutateurs par exemple. Ces dispositifs interrupteurs sont disposés en amont des commutateurs de puissance c’est à dire côté module en opposition au côté réseau continu par rapport aux commutateurs de puissance. Les dispositifs interrupteurs n’ont pas de pouvoir de coupure du
courant de court-circuit des modules et ils connectent les modules à vide avant le raccordement du pack batterie au réseau continu dit DC de l’aéronef au moyen de la fermeture des organes de commutation de puissance 3, 4. Ainsi les dispositifs interrupteurs ne réalisent aucune protection du pack contre les courts-circuits et ce peut donc être des relais de petites dimensions et avec un pouvoir de coupure juste suffisant pour couper l’alimentation du bus permanent 5, 6, quelques Ampères par exemple.
[0030] Dans le mode de réalisation de la figure 2, les modules de batterie 21 , 22 peuvent être utilisés indépendamment ou connectés en parallèle pour un surcroît de courant.
[0031] La commutation des dispositifs interrupteurs est gérée par un dispositif de pilotage 9 configuré pour piloter les commutations desdits dispositifs interrupteurs en fonction de la configuration souhaitée, modules hors ligne, module simple ou modules en parallèle. Le dispositif de pilotage 9 comporte un bus 9a de commande des dispositifs interrupteurs 10a, 10b.
[0032] Selon les figures 3 et 4, des dispositifs interrupteurs doubles peuvent être utilisés pour gérer un changement de configuration entre une mise en parallèle des modules ou une mise en série des modules ce qui permet d’utiliser chaque module 21 , 22 seul, d’accroître la puissance disponible par la mise en parallèle des modules 21 , 22 dans le cas de la figure 3 ou permet une élévation de la tension de sortie du pack batterie par une mise en série des modules 21 , 22 dans le cas de la figure 4.
[0033] Pour ce faire six dispositifs interrupteurs 1 1 , 12a, 12b, 13a, 13b 14 sont utilisés. Ces dispositifs interrupteurs sont ici aussi pilotés par un dispositif de pilotage 9 au travers d’un bus de commande 9a.
[0034] Le premier module 21 comporte un premier dispositif interrupteur 1 1 sur son pôle positif, un deuxième dispositif interrupteur 12a et un troisième dispositif interrupteur 12b sur son pôle négatif.
[0035] Le premier dispositif interrupteur 1 1 relie le pôle positif du premier module à la ligne positive P reliant les modules batterie au réseau ou coupe cette liaison.
[0036] Le deuxième dispositif interrupteur 12a relie le pôle négatif du premier module 21 à la ligne négative reliant les modules batterie au réseau ou coupe cette liaison.
[0037] Le troisième dispositif interrupteur 12b relie le pôle négatif du premier module 21 au pôle positif du deuxième module 22 au travers du quatrième dispositif interrupteur 13a ou coupe cette liaison (un interrupteur unique remplaçant les interrupteurs 12b et 13a peut être aussi utilisé).
[0038] Le deuxième module 21 comporte un quatrième dispositif interrupteur 13a sur son pôle positif, un cinquième dispositif interrupteur 13b et un sixième dispositif interrupteur 14 sur son pôle négatif.
[0039] Le quatrième dispositif interrupteur 13a relie le pôle positif du deuxième module 22 au pôle négatif du premier module 21 au travers du troisième dispositif interrupteur 12b comme vu ci-dessus.
[0040] Le cinquième dispositif interrupteur 13b relie le pôle positif du deuxième module à la ligne positive P reliant les modules batterie au réseau ou coupe cette liaison.
[0041] Le sixième dispositif interrupteur 14 relie le pôle négatif du deuxième module 22 à la ligne négative reliant les modules batterie au réseau ou coupe cette liaison.
[0042] Le montage à six dispositifs interrupteurs décrit permet de passer d’une configuration mono module ou chaque module peut être utilisé séparément à une configuration modules en parallèle ou une configuration modules en série.
[0043] Dans la configuration de la figure 3 pour laquelle les dispositifs interrupteurs 1 1 , 12a, 13b et 14 sont fermés alors que les dispositifs interrupteurs 12b, 13a sont ouverts, les modules 21 , 22 sont mis en parallèle pour bénéficier de toute la capacité en courant de l’ensemble des modules batterie.
[0044] Dans la configuration de la figure 4, les dispositifs interrupteurs 1 1 , 12b, 13a et 14 sont fermés en sorte de mettre en série les deux modules 21 et 22.
[0045] La configuration série a pour avantage de permettre d’augmenter la puissance disponible par rapport à un module seul sans surcroît de courant et donc sans impact sur le dimensionnement du câblage qui peut être calibré au nominal de courant d’un module dans le cas où l’on n’utilise pas la configuration parallèle.
[0046] Il est aussi possible en coupant les interrupteurs 14, 13b et 13a de n’utiliser que le module 21 de même, en coupant les interrupteurs 11 12a et 12b il est possible de n’utiliser que le module 22.
[0047] Le dispositif tel que prévu aux figures 3 et 4 permet ainsi : de passer d’un fonctionnement sur un seul module à un fonctionnement sur les deux modules en série ce qui permet de monter la tension de la batterie pour répondre à des besoins d’alimentation électrique spécifique comme un démarrage moteur ou un « boost » de machines électriques tout en restant compatible de l’installation électrique (gauges de câbles) ; de commuter entre un dispositif d’alimentation électrique de forte capacité avec mise en parallèle des modules à un dispositif de forte puissance sans accroissement du courant avec les modules en série.
[0048] Pour conserver des dispositifs interrupteurs de dimensions réduites, les changements de configuration se font après coupure de la puissance au moyen des organes de commutation de puissance 3 et/ou 4 qui sont dimensionnés en fonction de la puissance maximale à couper et en fonction du courant de court-circuit des modules. Ceci permet d’optimiser la conception des dispositifs interrupteurs et de réduire leur masse et leur encombrement puisqu’ils sont actionnés seulement lorsque le courant les traversant est nul ou fortement réduit. Le dispositif de pilotage 9 pilote pour ce faire les commutateurs de puissance pour isoler les modules et couper la puissance avant une commutation des dispositifs interrupteurs puis remettre les modules en service et rétablir la fourniture de puissance après ladite commutation.
[0049] Le dispositifs interrupteurs peuvent être des interrupteurs de type relais à l’état solide, comme des modules SSPC par exemple.
[0050] Dans le cas du dispositif des figures 3 et 4, le dispositif de pilotage 9 est configuré pour piloter les commutations desdits dispositifs interrupteurs entre les diverses configurations : un module, deux modules en série, deux modules en parallèle.
[0051] Le principe décrit peut être étendu au-delà des 2 modules présentés précédemment à un nombre de modules plus important ce qui permet de moduler de façon plus fine la fourniture de la puissance tout en conservant un courant relativement stable.
[0052] La figure 5 montre un dispositif d’alimentation à trois modules 21 , 22, 23 et un module de commutation 15 pourvu d’une pluralité de dispositifs interrupteurs Ces dispositifs interrupteurs sont ici aussi pilotés par un dispositif de pilotage 9 au travers d’un bus de commande 9a. Les dispositifs interrupteurs regroupés dans le module 15 sont câblés en sorte de pouvoir raccorder les modules de batterie au réseau soit séparément, soit en série deux par deux soit les trois en série soit en parallèle deux par deux ou les trois en parallèle.
[0053] Le tableau de la figure 6 représente un tableau tension 30 en abscisse / puissance 33 en ordonnée avec les courants résultants arrondis 32 selon des phases de vol 31. Ce tableau montre qu’il est possible de lisser le courant en organisant les modules selon un arrangement un module case 32c, deux modules en série, case 32b et trois modules en série case 32c tout en offrant les puissances nécessaires aux phases de vol de l’aéronef : décollage, montée et croisière. Ainsi, pour une installation électrique capable de transiter un courant donné, le dispositif d’alimentation permet d’obtenir des profils de puissance significativement différents nécessaires pour les différentes phases de vol. Selon cet exemple, dans le cas du décollage, la puissance nécessaire au décollage est de 90 kW et la tension choisie est de 800 V. En phase de montée la puissance est de 70 kW, la tension choisie est de 540 V. En vol stabilisé en croisière la puissance est de 30 kW et la tension choisie est de 270 V. Pour ces puissances et ces tensions, le courant arrondi à l’unité est respectivement de 1 13 A, 130 A et 1 1 1 A. Selon cet exemple, le courant est donc lissé autour de 100 A à 140 A pour l’ensemble des phases de vol consommatrices ce qui permet d’optimiser la masse du câblage.
[0054] De même, une configuration, par exemple avec quatre modules de 250 V permettant d’obtenir une tension de 1000 V en phase de décollage permet de réduire encore le courant nécessaire à 90 A pour une puissance délivrée maximale alors que pour une tension de 270 V, le courant serait de 333 A ce qui imposerait des sections de câbles très importante.
[0055] Le dispositif a aussi pour avantage de pouvoir diminuer la tension réseau en phase de vol stabilisé à haute altitude ce qui est favorable du fait que la tension de claquage est plus rapidement atteinte avec l’altitude ce qui fait que par exemple une tension basse en altitude sera préférée.
[0056] Une telle adaptation Puissance/tension permet également de tirer complètement profit des gauges de câbles de puissance installés dans les aéronefs et de ne pas avoir à les surdimensionner sachant que la masse de gros câbles est rapidement significatif dans le bilan de masse d’un aéronef tel qu’un avion.
[0057] Par ailleurs, le fait d’avoir des dispositifs interrupteurs au niveau des modules permet d’isoler un module qui serait détecté défaillant, en panne ou hors d’usage parmi n modules et de continuer d’utiliser l’énergie stockée dans les n-1 modules, en mode réduit ou dégradé pour assurer une fin de vol par exemple.
[0058] Comme dit plus haut, pour conserver des dispositifs interrupteurs de faible masse et encombrement les opérations de changement de configuration entre simple module, modules série et modules parallèle peuvent être réalisées après déconnexion des modules au moyen des organes de commutation de puissance, les modules étant reconnectés après le changement de configuration.
[0059] Le dispositif de pilotage 9 est par exemple un calculateur pourvu par exemple d’un FPGA ou d’un processeur muni d’une mémoire non volatile renfermant un programme de pilotage desdits organes de commutation et des dispositifs interrupteurs, d’une mémoire vive, de sorties numériques de pilotages des organes de commutation et des dispositifs interrupteurs et éventuellement pourvu de capteurs et d’entrées de surveillance de l’état des dispositifs interrupteurs et organes de commutation.
Application industrielle
[0060] L’invention peut trouver à s’appliquer notamment aux systèmes d’alimentation électrique de systèmes avioniques ou de systèmes moteurs avions.
[0061] L’invention ne se limite pas aux exemples décrits ci-avant, seulement à titre d’exemple, mais elle englobe toutes les variantes que pourra envisager l’homme de l’art dans le cadre de la protection recherchée.
Claims
[Revendication 1] Dispositif d’alimentation par batterie d’un système de fourniture d’énergie électrique pour aéronefs comportant un pack batterie comportant au moins deux modules de batteries (21 , 22, 23) reliés à un réseau électrique continu au travers d’une ligne positive (P), d’une ligne négative (N) et d’organes de commutation de puissance (3, 4), et pour lequel chaque module comporte au moins un dispositif interrupteur (10a, 10b, 1 1 , 12a, 12b, 13a, 13b, 14, 15), adapté à isoler ledit module dudit réseau ou connecter ledit module au réseau, en amont desdits commutateurs de puissance, caractérisé en ce qu’il comporte un dispositif de pilotage (9) desdits dispositifs interrupteurs, configuré pour piloter les commutations desdits dispositifs interrupteurs afin de sélectionner le ou les modules à connecter au réseau ou différentes configurations de raccordement desdits modules au réseau, ledit dispositif de pilotage (9) étant configuré pour piloter la commutation des dispositifs interrupteurs (10a, 10b, 1 1 , 12a, 12b, 13a, 13b, 14, 15) en sorte équilibrer le courant fourni par le pack batterie entre les différentes configurations en fonction des puissances demandées selon les différentes phases de vol de l’aéronef.
[Revendication 2] Dispositif d’alimentation par batterie selon la revendication 1 comportant pour chaque module une pluralité de dispositifs interrupteurs (1 1 , 12a, 12b, 13a, 13b, 14) pour lequel lesdites configurations comportent :
- une configuration série pour laquelle au moins deux modules (21 , 22, 23) sont raccordés en série auxdites ligne positive et ligne négative,
- une configuration parallèle pour laquelle lesdits modules (21 , 22) sont reliés en parallèle auxdites ligne positive et ligne négative,
- une configuration pour laquelle un seul parmi lesdits modules (21 , 22) est raccordé auxdites ligne positive et ligne négative.
[Revendication 3] Dispositif d’alimentation par batterie selon la revendication 1 ou 2 comportant au moins trois modules et pour lequel le dispositif de pilotage est adapté à piloter la commutation des dispositifs interrupteurs pour permettre au moins une sélection d’une tension réseau maximale en phase de décollage de
l’aéronef, d’une tension réseau intermédiaire en phase de montée de l’aéronef et d’une tension réseau réduite en phase de vol de croisière de l’aéronef.
[Revendication 4] Dispositif d’alimentation par batterie selon la revendication 3 pour lequel ledit dispositif de pilotage (9) est configuré pour piloter la commutation des organes de commutation de puissance (3, 4) en sorte de couper la puissance avant une commutation desdits dispositifs interrupteurs pour changer de configuration, commuter lesdits dispositifs interrupteurs à puissance réduite ou nulle et rétablir la puissance une fois les dispositifs interrupteurs commutés dans une nouvelle configuration. [Revendication 5] Dispositif d’alimentation par batterie selon l’une quelconque des revendications précédentes pour lequel le ou les dispositifs interrupteurs (10a, 10b, 11 , 12a, 12b, 13a, 13b, 14, 15) sont des relais semi-conducteurs ou non.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FRFR2201370 | 2022-02-16 | ||
FR2201370A FR3132802B1 (fr) | 2022-02-16 | 2022-02-16 | Architecture d’alimentation electrique a batteries |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023156731A1 true WO2023156731A1 (fr) | 2023-08-24 |
Family
ID=81328610
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2023/050198 WO2023156731A1 (fr) | 2022-02-16 | 2023-02-14 | Architecture d'alimentation electrique a batteries |
Country Status (2)
Country | Link |
---|---|
FR (1) | FR3132802B1 (fr) |
WO (1) | WO2023156731A1 (fr) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120119573A1 (en) * | 2010-11-17 | 2012-05-17 | Andy Turudic | Ultra High Efficiency Transmission, with Grid Tied Energy Storage Capability, for a Wind Turbine or a Fuel Cell or Battery Powered Electric Vehicle |
US20200042062A1 (en) * | 2018-08-03 | 2020-02-06 | Ge Aviation Systems Llc | Dynamically configurable energy storage unit |
US20210020998A1 (en) * | 2018-03-19 | 2021-01-21 | EVchip Energy Ltd. | Power pack and power pack circuitry |
-
2022
- 2022-02-16 FR FR2201370A patent/FR3132802B1/fr active Active
-
2023
- 2023-02-14 WO PCT/FR2023/050198 patent/WO2023156731A1/fr active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120119573A1 (en) * | 2010-11-17 | 2012-05-17 | Andy Turudic | Ultra High Efficiency Transmission, with Grid Tied Energy Storage Capability, for a Wind Turbine or a Fuel Cell or Battery Powered Electric Vehicle |
US20210020998A1 (en) * | 2018-03-19 | 2021-01-21 | EVchip Energy Ltd. | Power pack and power pack circuitry |
US20200042062A1 (en) * | 2018-08-03 | 2020-02-06 | Ge Aviation Systems Llc | Dynamically configurable energy storage unit |
Also Published As
Publication number | Publication date |
---|---|
FR3132802B1 (fr) | 2024-06-21 |
FR3132802A1 (fr) | 2023-08-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0734111B1 (fr) | Station d'énergie photovoltaique haute tension à stockage personnalisé | |
EP3959139A1 (fr) | Réseau d'alimentation en énergie électrique pour aéronef | |
EP2076952A1 (fr) | Systeme de generation, conversion, distribution et demarrage electrique a bord d'un aeronef | |
FR2911442A1 (fr) | Systeme et procede d'alimentation en puissance pour les actionneurs a bord d'un aeronef | |
EP3276774B1 (fr) | Architecture électrique a doublé réseau électrique secondaire pour le démarrage des moteurs d'un aéronef | |
EP4061718A1 (fr) | Architecture électrique pour un aéronef à propulsion hybride thermique/électrique et aéronef bimoteurs comprenant une telle architecture | |
WO2022148926A1 (fr) | Aeronef a source d'energie hybride | |
EP3925890B1 (fr) | Architecture électrique d'un aéronef | |
WO2021089948A1 (fr) | Architecture propulsive hybride et aéronef comportant une telle architecture | |
WO2023156731A1 (fr) | Architecture d'alimentation electrique a batteries | |
FR2931801A1 (fr) | Systeme et procede d'alimentation d'une charge electrique d'un aeronef | |
EP3917835B1 (fr) | Système de propulsion d'aéronef | |
FR2936220A1 (fr) | Systeme et procede de distribution electrique d'un aeronef | |
FR3073099B1 (fr) | Boitier de distribution electrique et de concentration de donnees pour aeronef. | |
EP4038716A1 (fr) | Chargeur electrique pour equipement de maintenance aeronautique | |
FR2936661A1 (fr) | Architecture de reseau electrique pour milieux confines incorporant des sources d'energie electrique. | |
FR3145146A1 (fr) | Aéronef à source d’énergie hybride et à jonction électromécanique de distribution et de protection | |
WO2023131755A1 (fr) | Convertisseur dc/dc pour un reseau electrique propulsif d'aeronef | |
FR2936221A1 (fr) | Systeme et procede de distribution electrique a bord d'un aeronef | |
EP4430715A1 (fr) | Booster de courant de court-circuit dc | |
FR3145145A1 (fr) | Aéronef à source d’énergie hybride et à jonction électromécanique de distribution et de protection | |
EP3418202A1 (fr) | Boitier de distribution électrique intégrant les fonctions de disjonction, de délestage et de conversion pour aéronef | |
WO2023135396A1 (fr) | Procede de pilotage et protection d'un reseau de distribution electrique pour charges propulsives d'aeronef | |
WO2023126610A1 (fr) | Système de propulsion électrique pour un aéronef | |
FR3095415A1 (fr) | Système propulsif pour aéronef multi-rotor avec réseau d’unités de stockage d’énergie électrique reconfigurable |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23709463 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023709463 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023709463 Country of ref document: EP Effective date: 20240916 |