WO2010032829A1 - Method for manufacturing semiconductor light-emitting element and semiconductor light-emitting element - Google Patents

Method for manufacturing semiconductor light-emitting element and semiconductor light-emitting element Download PDF

Info

Publication number
WO2010032829A1
WO2010032829A1 PCT/JP2009/066375 JP2009066375W WO2010032829A1 WO 2010032829 A1 WO2010032829 A1 WO 2010032829A1 JP 2009066375 W JP2009066375 W JP 2009066375W WO 2010032829 A1 WO2010032829 A1 WO 2010032829A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
conductivity type
light emitting
semiconductor light
substrate
Prior art date
Application number
PCT/JP2009/066375
Other languages
French (fr)
Japanese (ja)
Inventor
秀善 堀江
崇 深田
英隆 天内
Original Assignee
三菱化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱化学株式会社 filed Critical 三菱化学株式会社
Priority to JP2010529814A priority Critical patent/JPWO2010032829A1/en
Publication of WO2010032829A1 publication Critical patent/WO2010032829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the present invention relates to a method for manufacturing a semiconductor light emitting device and a semiconductor light emitting device. More specifically, the present invention relates to a method for manufacturing a semiconductor light emitting device that is excellent in light extraction efficiency and that reduces damage on the back surface of a crystal growth substrate, and a semiconductor light emitting device.
  • a light emitting source in which three color phosphors of a blue phosphor, a green phosphor and a red phosphor are combined with a light emitting element has been studied.
  • a light emitting element that emits near-ultraviolet light is used as the light emitting element.
  • the blue phosphor, the green phosphor, and the red phosphor are excited by near-ultraviolet light emitted from the light emitting element, and wavelength-convert the near-ultraviolet light into blue light, green light, and red light, respectively.
  • White light with high color rendering properties can be obtained by mixing three colors of light obtained by wavelength conversion.
  • a flip chip mount structure flip chip structure
  • a predetermined semiconductor layer is deposited on a substrate, an n-side electrode and a p-side electrode for current injection are formed on the opposite side of the substrate, and light extraction is mainly performed on the substrate side or the substrate side surface where no electrode is formed. The direction. For this reason, since the light emitted from the light emitting element is not blocked and the electrode can be used as a light reflecting surface, the light extraction efficiency is improved.
  • the substrate may be processed by polishing or the like from the back surface to form a light extraction surface after forming a laminated structure of semiconductor layers by crystal growth.
  • Processing such as polishing is usually performed by mechanical processing such as polishing, dicing, or blasting, and various etching processes such as dry etching or photo-electrochemical etching.
  • mechanical treatment and etching treatment may cause physical or chemical damage to the back surface of the substrate, and thus the crystal state of the substrate may be deteriorated. Deterioration of the crystal state increases the optical loss of the substrate and decreases the light extraction effect, so that characteristics such as the total radiant flux are degraded.
  • a light-emitting element with less deterioration of the crystal state of the substrate is required. Note that the increase in the optical loss is remarkable especially at a wavelength of 430 nm or less, and therefore, in a light-emitting element having a center wavelength of 430 nm or less, there is a great demand for eliminating the deterioration of the crystal state.
  • a desired light-emitting element structure is epitaxially grown on a conductive substrate, and one electrode is formed on the substrate.
  • a structure of a so-called vertical conduction type light emitting element in which a current flows in the epitaxial growth direction by forming one electrode.
  • the crystal plane presented in the thinning process becomes an electrode formation surface, and therefore it is necessary to avoid an increase in contact resistance in this portion. Accordingly, even when a so-called vertical conduction type light emitting element is used, it is necessary to recover physical or chemical damage caused by mechanical processing or etching processing on the back surface of the substrate, as in the case of the flip chip type light emitting element.
  • the GaN single crystal substrate has a problem that the substrate surface is particularly damaged when the mechanical treatment or the etching treatment is performed, compared to the sapphire substrate.
  • Patent Document 1 discloses a technique of performing chemical mechanical polishing (chemical mechanical polishing or CMP) on the back surface of a GaN substrate after performing the mechanical polishing.
  • Patent Document 2 discloses a method of polishing a group III-V nitride semiconductor with a slurry containing a substance having a sufficient chemical potential for breaking an ionic bond of molecules constituting the group III-V nitride semiconductor. It is disclosed.
  • Patent Document 3 as a technique for removing damage on the N-side surface of a GaN substrate, an aqueous solution of a base (for example, KOH or NaOH) or an aqueous solution of an acid (for example, HF, H 2 SO 4 or H 3 PO 4 ).
  • a technique for mild etching at a temperature below the boiling point of an aqueous solution is disclosed.
  • blue-violet light, purple light having a shape processing step for polishing a crystal growth substrate such as GaN from the back surface and a processing surface finishing step for finishing by dry etching such as RIE or ICP.
  • a manufacturing method useful for a light-emitting diode having a short emission wavelength such as ultraviolet light is disclosed.
  • a method such as a method for removing damage by CMP requires a preparatory step such as attaching a wafer containing a semiconductor light emitting element to a dedicated jig, which is troublesome.
  • CMP requires several hours, resulting in high cost, it is not necessarily preferable in the manufacturing process.
  • the damage on the back surface of the substrate has not been sufficiently reduced.
  • the back surface of the substrate is processed to a practical level. An effective way to do this has not been found.
  • An object of the present invention is to provide a light emitting device that improves the quality of the back surface of a substrate damaged by polishing or the like, increases light extraction efficiency, and can withstand higher output and higher efficiency, and a method for manufacturing the same. There is.
  • the gist of the present invention resides in the following [1] to [26].
  • [1] A method of manufacturing a semiconductor light emitting device in which a semiconductor layer is laminated on a crystal growth surface of a substrate
  • (B) A method of manufacturing a semiconductor light emitting device, comprising a step of forming a crystal quality improving layer on the back surface of the substrate.
  • (A) The method for manufacturing a semiconductor light-emitting element according to [1], including a step of processing a back surface of the crystal growth substrate.
  • (C) The method for producing a semiconductor light-emitting device according to [1] or [2], including a step of removing the crystal quality improving layer.
  • step (B) includes forming the crystal quality improving layer using a gas species containing at least ammonia as a nitrogen raw material.
  • step (B) includes forming the crystal quality improving layer using a gas species containing at least N 2 O as an oxygen source.
  • the step (B) includes forming the crystal quality improving layer so that the concentration of hydrogen atoms is 1 ⁇ 10 21 atoms / cm 3 or more and 1 ⁇ 10 22 atoms / cm 3 or less.
  • step (B) includes forming the crystal quality improving layer by a plasma CVD method.
  • step (B) includes forming the crystal quality improving layer by a plasma CVD method.
  • the substrate is a nitride or an oxide.
  • the crystal quality improving layer contains one or more of nitride, oxide, and oxynitride.
  • the nitride, oxide, or oxynitride contains any one or more elements of B, Al, Si, Ti, V, Cr, Mo, Hf, Ta, and W.
  • the semiconductor layer includes a buffer layer, a first conductivity type semiconductor layer including a first conductivity type cladding layer, an active layer structure, and a second conductivity type semiconductor layer including a second conductivity type cladding layer in this order.
  • the semiconductor light emitting device has a first conductivity type side electrode and a second conductivity type side electrode for injecting current into the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively.
  • the semiconductor light emitting device includes a first conductivity type side electrode and a second conductivity type side electrode for injecting current into the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively.
  • [13] or [14] having the vertical conduction type structure in which one of the first conductivity type side electrode and the second conductivity type side electrode is disposed on the semiconductor layer and the other is disposed in contact with the substrate surface.
  • a semiconductor light emitting device [17] The semiconductor light emitting device according to any one of [13] to [16], wherein the first conductive semiconductor layer, the active layer structure, and the second conductive semiconductor layer are nitride semiconductors.
  • the semiconductor light emitting device according to [13] to [20], wherein the substrate is a nitride or an oxide.
  • the crystal quality improving layer includes one or more of nitride, oxide, and oxynitride.
  • the nitride, oxide, or oxynitride contains any one or more elements of B, Al, Si, Ti, V, Cr, Mo, Hf, Ta, and W.
  • the semiconductor light emitting device according to any one of [13] to [21], wherein the crystal quality improving layer includes an element that exhibits a termination effect.
  • the semiconductor light-emitting element of [24], wherein the element that exhibits the termination effect is one or more of Si, Ge, Se, S, Al, P, and As.
  • the present invention by forming a crystal quality improving layer on the back side of the substrate, the crystallinity of the substrate is improved, the crystal state is less deteriorated, the optical loss is less, and the semiconductor can withstand higher output and higher efficiency.
  • a light-emitting element can be provided.
  • the method for manufacturing a light-emitting element according to the present invention can be carried out in a short time with little effort such as preparation, so that manufacturing costs can be reduced.
  • physical or chemical damage due to processing of a substrate is caused by light having a light emission wavelength of less than 470 nm (blue light, blue violet light, violet light, near ultraviolet light).
  • Ultraviolet light, etc. is relatively easy to absorb.
  • this absorption is significant in violet light, near ultraviolet light, and ultraviolet light having a center wavelength of 430 nm or less.
  • the effect in the present invention is particularly remarkable when the emission wavelength and the center wavelength are present.
  • the expression “stacked” or “overlapping” refers to the state in which objects are in direct contact with each other, as long as they do not depart from the spirit of the present invention. It may also refer to a spatially overlapping state when projected.
  • the expression “above (below)” is not limited to the state in which objects are in direct contact with each other being placed above (below) the other, so long as it does not depart from the spirit of the present invention. Even if they are not in contact with each other, they may be used in a state where one is arranged above (below) the other.
  • the expression “after (before, before)” means that even if an event occurs immediately after (before) another event, a third event is Even if it occurs after sandwiching (front), it is used for both.
  • the expression “in contact with” means that “the object and the object are not in direct contact” as long as they conform to the gist of the present invention. Even if it is in indirect contact via the third member ”,“ the part in which the object is in direct contact with the part in indirect contact through the third member is mixed In some cases, it means “if you are doing”.
  • thin film crystal growth means so-called MOCVD (Metal-Organic-Chemical-Vapor-Deposition), MBE (Molecular-Beam Epitaxy), plasma-assisted MBE, PLD (Pulsed-Laser-Deposition), PED (Pulsed-Electron-Deposition), Formation of thin film layers, amorphous layers, microcrystals, polycrystals, single crystals, or their laminated structures in crystal growth apparatuses such as PSD (Pulsed Sputtering Deposition), VPE (Vapor Phase Epitaxy), LPE (Liquid Phase Epitaxy)
  • the carrier activation treatment by plasma treatment or the like it is described as thin film crystal growth.
  • the preferable aspect of this invention is: (A) processing the back surface of the substrate, and (B) forming a crystal quality improving layer on the back surface of the substrate.
  • a more preferred embodiment of the present invention is (A) a step of processing the back surface of the substrate; (B) forming a crystal quality improving layer on the back surface of the substrate; and (C) removing the crystal quality improving layer.
  • a step of stacking a semiconductor layer may be provided before or after the steps (A) to (C).
  • substrate processed by the said (A) process can also be provided arbitrarily.
  • a preferred embodiment of the present invention will be described as an example, and will be described in detail in the order of steps.
  • Step of Laminating Semiconductor Layer the step of laminating the semiconductor layer can be appropriately provided before or after the steps (A) to (C). Provide in front.
  • a substrate 21 is prepared, and a buffer layer 22, a first conductivity type cladding layer 24, an active layer structure 25 and a second conductivity type cladding layer 26 are sequentially formed on the surface by thin film crystal growth.
  • the MOCVD method is desirably used for forming these thin film crystal layers.
  • the MBE method, the PLD method, the PED method, the PSD method, the VPE method, the LPE method, and the like can also be used to form the entire thin film crystal layer or a part of the thin film crystal layer.
  • thin film crystal growth includes heat treatment after the growth of the thin film crystal layer.
  • the second conductivity type side electrode 27 As shown in FIG. That is, it is desirable that the formation of the second conductivity type side electrode 27 in the planned second current injection region 35 is performed earlier than the formation of the first conductivity type side electrode 28.
  • the p-type electrode is formed after various processes are performed on the surface of the p-type cladding layer exposed on the surface when the second conductivity type is p-type as a desirable form, this is compared with GaN-based materials. This is because the hole concentration in the p-type cladding layer having a low effective activation rate is lowered by process damage. For this reason, it is desirable that the second conductivity type side electrode 27 is formed prior to other process steps (for example, a first conductivity type side electrode forming step described later) after the thin film crystal growth.
  • the process damage to the second conductivity type semiconductor layer can be reduced.
  • Various film formation techniques such as sputtering, vacuum deposition, and plating can be applied to the formation of the second conductivity type side electrode 27.
  • a lift-off method using a photolithography technique or a metal A place-selective vapor deposition using a mask or the like can be used as appropriate.
  • the second conductivity type side electrode 27 After forming the second conductivity type side electrode 27, as shown in FIG. 2, a part of the first conductivity type cladding layer 24 is exposed. In this step, it is preferable that the second conductivity type cladding layer 26, the active layer structure 25, and further part of the first conductivity type cladding layer 24 are removed by etching. The purpose of this etching is to expose the semiconductor layer in which the first conductivity type side electrode, which will be described later, injects carriers of the first conductivity type, so that another layer such as a clad layer is formed from two layers on the thin film crystal layer. If there is a contact layer, or if there is a contact layer, it may be etched including that layer.
  • the etching uses a known dry etching by a plasma etching method using Cl 2 or the like using a nitride such as SiN x , an oxide such as SiO x , or an oxynitride such as SiO x N y as an etching mask. be able to.
  • the first conductivity type side electrode 28 is formed.
  • the electrode material when the first conductivity type is n-type, it is desirable that a material selected from Ti, Al, Ag and Mo, or all of them be included as constituent elements.
  • Various film formation techniques such as sputtering, vacuum evaporation, plating, etc. can be applied to the film formation of the electrode material. In order to obtain an electrode shape, a lift-off method using a photolithography technique, a metal mask, or the like was used. Site selective vapor deposition or the like can be used as appropriate.
  • the first conductivity type side electrode 28 is formed in contact with the first conductivity type clad layer 24.
  • the first conductivity type side contact layer is formed, it can be formed in contact with the first conductivity type side contact layer.
  • the step of stacking the semiconductors has been described in an example of the method for manufacturing the semiconductor light emitting device having the flip-chip type structure.
  • [1-2-1] Mechanical Processing can be used for mechanical processing such as polishing, dicing, and blasting.
  • polishing is performed according to the following procedure.
  • a protective film such as a resist is formed on the surface on which the semiconductors are stacked, and is attached to the wafer attaching plate of the polishing apparatus using wax.
  • the back surface of the substrate is polished by a polishing disk using a slurry such as diamond having a diameter of about 0.1 to 50 ⁇ m.
  • the substrate can be appropriately processed to a desired thickness and roughness.
  • the wafer is removed from the wafer attaching plate of the polishing apparatus and cleaned, and the wax and protective film at the time of attaching are removed and dried.
  • a surface layer on the back surface of the substrate is cut with a dicer, so that roughening or various shapes can be formed on the back surface of the substrate. Further, it is possible to form a dividing groove for separating the light emitting elements.
  • the blade used for cutting can be selected as appropriate, and the amount of biting into the back surface of the substrate can be set as appropriate.
  • Blasting is a method in which fine particle powder is sprayed onto the back surface of the substrate at a high pressure to scrape the surface layer on the back surface of the substrate.
  • the fine particle powder is preferably a compound that does not have an undesirable chemical effect on the back surface of the substrate, and usually alumina, silicon carbide, or the like can be used.
  • the particle diameter of the fine particle powder is usually about 10 to 100 ⁇ m.
  • the blast pressure is usually about 0.3 to 0.7 MPa.
  • the irradiation time is usually about 5 to 20 seconds.
  • the type, particle diameter, blast pressure, and irradiation time of the fine particle powder can be appropriately set depending on the target substrate thickness or the degree of roughening.
  • Etching treatment can be used in place of the mechanical treatment, but can also be performed after the mechanical treatment. That is, in the semiconductor light emitting device of the present invention, before the formation of the crystal quality improving layer in the step (B), in order to reduce physical damage on the back surface of the substrate to some extent and perform more precise processing, The step of reducing the unevenness of the surface by etching can be arbitrarily provided.
  • etching either dry etching or wet etching may be used, but dry etching using reactive ion etching (RIE) or photoelectrochemical etching is preferable. RIE is preferable for processing the back surface of the substrate more precisely.
  • RIE reactive ion etching
  • a CCP type apparatus that is a capacitively coupled plasma excitation method or an ICP type apparatus that is an inductively coupled plasma excitation method may be used.
  • the plasma excitation method can be selected as appropriate.
  • a dry process using an ICP type apparatus that can excite a plasma species having a high plasma density and a high reactivity. Etching is preferred.
  • the source gas that is the source of the plasma species used for dry etching can be appropriately selected depending on the target material to be processed.
  • a gas species containing Cl as a constituent element is used.
  • a configuration in which Cl 2 gas is included in a plurality of mixed gases is preferable.
  • the gas species containing Cl as a constituent element include CCl 4 , CF 2 Cl 2 , SiCl 4 , and SiF 2 Cl 2 .
  • a mixed gas of Cl 2 and Ar can be given as an example of a configuration in which Cl 2 gas is contained in a plurality of mixed gases. These configurations may be further combined.
  • wet etching is suitable for processing the back surface of the substrate more precisely.
  • an etchant can be selected as appropriate depending on a target substrate.
  • a method such as photoelectrochemical etching can be used.
  • Photoelectrochemical etching is a method of performing etching using, for example, KOH, HCl, HF, or the like while irradiating light having energy greater than or equal to a band gap such as ultraviolet (UV).
  • a substrate is prepared through a process of cutting out from a bulk crystal with a wire saw or the like.
  • the surface on which the semiconductors are stacked is usually prepared so as to ensure sufficient crystal quality.
  • various processing damages at the time of substrate production often remain on the back surface of the substrate. That is, even if the substrate is not processed for the purpose of obtaining the light extraction effect from the substrate described above or for the purpose of thinning the substrate, damage is often present on the back surface. Therefore, even when such a substrate is prepared as it is, since processing such as cutting is performed, it is assumed that step (A) is included in the present invention.
  • step (A) when a substrate is manufactured as a product, there are cases where various processing damages are completely removed not only on the surface on which the semiconductor is laminated but also on the back surface of the substrate. In this case, there is no room for the crystal quality improvement effect expected by the present invention, and such processing is not included in the “processing” defined in step (A).
  • the crystal quality improving layer refers to a layer having at least one of the following functions (a) and (b).
  • (A) Function for improving crystallinity on back surface of substrate (b) Function for recovering damage caused by processing treatment Further, the crystal quality improving layer can further function as (c) a protective layer during the process.
  • the crystal quality improvement layer is not particularly limited as long as it has at least one of the functions (a) and (b), but the crystal quality improvement mechanism may be, for example, as shown below.
  • the composition ratio of Ga and N is determined by measuring XPS after thinning the SiNx layer suitable for analysis. , Ga and N bonding states can be confirmed.
  • the mechanism of the improvement effect of the crystal quality improvement layer is not limited.
  • the object of the present invention can be achieved by appropriately selecting the material of the crystal quality improvement layer as follows.
  • an element having a high vapor pressure may be desorbed from the elements constituting the substrate due to the above-described processing.
  • a nitride substrate such as GaN or AlN
  • nitrogen escape occurs from the back surface of the substrate, which may cause quality damage.
  • the crystal quality improving layer is preferably supplied by activating the element having a high vapor pressure among the elements composing the substrate by a method such as plasma.
  • a method such as plasma.
  • the crystal quality improving layer itself contains nitrogen
  • relatively active nitrogen is supplied to the backside of the substrate, so that the nitrogen backdrop caused by various element manufacturing processes occurs against the backside of the substrate. It is thought that it will be the source of all nitrogen, suppress the deviation from the microscopic stoichiometric composition, and improve its crystallinity.
  • this improvement in crystallinity is expected regardless of the location against various damages that are unintentionally introduced not only on the back surface of the substrate but also on the side walls and surface of the device structure during the light emitting device fabrication process.
  • the effect is that the PL (Photo Luminescence) emission intensity of the substrate or the thin film crystal layer formed thereon is improved, the EL (Electro Luminescence) emission intensity of the thin film crystal layer emitted from the substrate side, the carrier concentration Prominent in improvement.
  • the crystal quality improving layer itself can also function as a protective layer during the process.
  • the crystal quality improving layer when the substrate is a nitride, in order for the crystal quality improving layer to play the above role, the crystal quality improving layer preferably contains nitrogen and hydrogen. It is preferable to form by supplying both relatively active nitrogen and hydrogen as raw materials. From this point of view, the material of the crystal quality improving layer can be appropriately changed according to the substrate, and usually preferably contains a nitride, an oxide, or an oxynitride. B, Al, Si, Ti, V It is further preferable to contain a nitride, oxide, or oxynitride containing one or more elements of any one of Cr, Mo, Hf, Ta, and W.
  • nitrides, oxides, and oxynitrides examples include AlN x , AlO x N y , SiN x , SiO x N y , TiN x , TiO x N y , CrN x , and CrO x N y. be able to. Of these, SiN x and SiO x N y are very preferable. Note that x and y are arbitrary positive numbers.
  • the crystal quality improving layer contains nitride or oxynitride
  • the supply source of nitrogen is formed as a layer, for example, compared with a case where a method of supplementing nitrogen depletion by applying ammonia treatment to the surface of the thin film crystal layer is applied to the back surface of the substrate, It is considered that the function of improving the crystallinity of the back surface of the substrate stably over a long period can be maintained.
  • a crystal quality improving layer containing the oxide is formed, thereby improving the crystallinity of the back surface of the substrate as an oxygen supply source. It is considered possible.
  • hexagonal crystals such as GaN the proportion of elements with high vapor pressure exposed on the outermost surface differs depending on the crystal plane, but the effect of forming a crystal quality improvement layer is It is considered that the higher the vapor pressure element is exposed on the outermost surface, the larger.
  • the crystal quality improvement effect is larger as the crystal plane has a higher ratio of nitrogen, which is an element having a high vapor pressure, exposed to the outermost surface. Therefore, the effect is expected in the order of c-plane, m-plane, and c + -plane.
  • the substrate is formed by termination of dangling bonds (unbonded hands) existing at high density on the outermost surface to be processed by the above processing or the like. It is also considered that the optical loss of the substrate is reduced. In such a case, it is preferable that the crystal quality improving layer contains an element that significantly exhibits a termination effect. Examples of the element that exhibits the termination effect include Si, Ge, Se, S, Al, P, and As. Of these, Si, Ge, Se, and S are preferable, and Si is more preferable.
  • the crystal quality improving layer contains the element as a simple substance
  • the element itself that exhibits the termination effect also has a certain amount of dangling bonds, and the dangling bonds on the substrate side existing on the processed substrate surface It is preferable that it is easy to combine. Therefore, in the case of a single element, the effect is considered to be exhibited to some extent whether it is polycrystalline or single crystal, but amorphous is most preferable.
  • a quality improvement layer containing an element that exhibits a termination effect is expected to be effective regardless of the crystal plane of the substrate.
  • various film formation methods such as plasma CVD, ion plating, ion assisted vapor deposition, and ion beam sputtering are used. It is possible to use it.
  • plasma CVD plasma CVD
  • ion plating ion assisted vapor deposition
  • ion beam sputtering ion beam sputtering. It is possible to use it.
  • nitride or oxynitride is used for the crystal quality improvement layer will be described in detail.
  • the raw material for forming the crystal quality improving layer it is preferable to use a gas species containing at least ammonia as the nitrogen raw material, and it is preferable to use a gas species containing at least N 2 O as the oxygen raw material.
  • various film forming methods such as a plasma CVD method, an ion plating method, an ion assist vapor deposition method, and an ion beam sputtering method can be used.
  • a method that can be supplied as a relatively active raw material during the formation of the crystal quality improving layer is preferred.
  • the active raw material is used generically to mean that the raw material itself is radicalized, plasmaized, ionized, or atomized in some cases, and is not in a molecular, chemically stable state. ing.
  • the plasma CVD method it is desirable to form SiN x using ammonia (NH 3 ) as a source gas.
  • NH 3 ammonia
  • NH 3 is turned into plasma, and a crystal quality improving layer is formed while supplying relatively active nitrogen and hydrogen.
  • the ion-assisted deposition method it is possible to produce SiN x by forming NH 3 or the like into plasma using an ion gun while depositing a Si raw material.
  • SiN x can be produced by sputtering NH 3 or the like with an ion gun while sputtering a Si target with Ar or N 2 .
  • RF sputtering method for example, it is possible to produce SiN x while sputtering a SiN x target with Ar or N 2 and supplying N 2 and H 2 separately by plasma using an ion gun.
  • the plasma CVD method is most preferable. This is because the step coverage is good as compared with other film forming methods and the stress control in the film is easy, so that it is convenient to cover a desired portion of the light emitting element structure.
  • a film containing nitrogen and relatively little hydrogen may be a reactive sputtering method in which N 2 gas is introduced, a Si target is sputtered with Ar or the like, and a SiN x film is formed in N 2 or Ar plasma. Although it can be formed, there is almost no effect of improving the quality of the back surface of the substrate, ie, suppressing the optical loss of the back surface of the substrate.
  • the concentration of hydrogen atoms is high.
  • active nitrogen which is considered to have an effect of suppressing the optical loss on the back surface of the substrate, is taken into the substrate and the quality improvement layer, so that active hydrogen derived from NH 3 is also taken at the same time.
  • the direct effect of active hydrogen is not always clear, but it cleans the backside of the substrate contaminated by various processes, terminates dangling bonds on the backside of the substrate, and reduces excessive internal stress in the film There seems to be an effect.
  • N 2 and H 2 are also independently supplied.
  • concentration of hydrogen atoms in the SiN x film was measured. As a result, even when the film forming conditions were changed, the concentration of hydrogen atoms was always 1 ⁇ 10 21 atoms / cm 3 or more and 1 ⁇ 10 22 atoms / cm 3 or less.
  • the concentration of hydrogen atoms in the crystal quality improving layer is not particularly limited, but is preferably in the range of 1 ⁇ 10 21 atoms / cm 3 or more and 1 ⁇ 10 22 atoms / cm 3 or less, more preferably 2 ⁇ 10 21 atoms / cm 3. cm 3 or more in the range of 7 ⁇ 10 21 atoms / cm 3 or less. Most preferably, it is in the range of 3 ⁇ 10 21 atoms / cm 3 or more and 5 ⁇ 10 21 atoms / cm 3 or less.
  • the concentration of nitrogen atoms in the crystal quality improving layer is not particularly limited, but is preferably in the range of 30 atomic% to 60 atomic%, more preferably in the range of 40 atomic% to 50 atomic%.
  • the hydrogen atom concentration in the film is measured by SIMS (Secondary Ion Mass Spectroscopy), the nitrogen atom concentration is measured by XPS (X-ray Photoelectron Spectroscopy), and the measurement error is ⁇ 20% in the case of SIMS. In the case of XPS, it is considered to be about ⁇ 30%. In any method, low energy ion milling is used in combination, the profile in the depth direction of the film is measured, and the concentration is obtained from these results.
  • the characteristics of the SiN x film that can be used as the crystal quality improving layer also appear in its refractive index.
  • both relatively active nitrogen and hydrogen were supplied as raw materials to form a SiN x film that could be used as a crystal quality improving layer.
  • the experiment was repeated under various manufacturing methods and film forming conditions, and the refractive index of the SiN x film was measured.
  • the refractive index was 1.80 or more and 2.00 or less at a wavelength of 405 nm, and 1.75 or more and 1.95 or less at a wavelength of 633 nm.
  • NH 3 which is one of the raw materials, is turned into plasma and contains both relatively active nitrogen and hydrogen.
  • this relatively active hydrogen was used as the raw material during film formation, It is considered that hydrogen is taken into the SiN x film and the film has a lower refractive index than when no active hydrogen is contained.
  • the x film does not function as a crystal quality improving layer, such a film was repeatedly tested in various film forming methods and film forming conditions, and the refractive index of the formed SiN x film was measured.
  • the refractive index of the SiN x film was greater than 2.00 and less than or equal to 2.15 at a wavelength of 405 nm, and greater than 1.95 and less than or equal to 2.10 at a wavelength of 633 nm.
  • the refractive index of the crystal quality improving layer is not particularly limited to the following numbers, but preferably the refractive index at a wavelength of 405 nm is 1.80 or more and 2.00 or less, and is refracted at a wavelength of 633 nm.
  • the rate is 1.75 or more and 1.95 or less.
  • the formation temperature of the crystal quality improving layer is not particularly limited, but the lower limit is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and most preferably 250 ° C. or higher. Moreover, the upper limit is preferably 450 ° C. or lower, more preferably 400 ° C. or lower, and most preferably 350 ° C. or lower. This is because if the temperature is too low, it is difficult to induce the necessary reaction, while if the temperature is too high, side reactions that are not expected are excessive. [1-4] (C) Step of removing the crystal quality improving layer
  • the semiconductor light emitting device can be put into practical use while the crystal quality improving layer is formed on the back surface of the substrate.
  • the crystal quality on the back surface of the substrate is improved even when the quality improving layer is removed. Accordingly, a step of removing the crystal quality improving layer can be further provided.
  • the crystal quality improving layer is not transparent or when the extraction efficiency deteriorates due to the difference in refractive index between the substrate and the crystal quality improving layer, it is preferable to remove the crystal quality improving layer.
  • the removal of the crystal quality improvement layer may be all or a part, and can be appropriately set in consideration of functions other than the crystal quality improvement function (insulation, function as a protective film, etc.).
  • the method for removing the crystal quality improving layer is not particularly limited, but an etching technique such as dry etching or wet etching can be selected depending on the material of the selected crystal quality improving layer.
  • wet etching using a hydrofluoric acid aqueous solution or a mixed solution of a hydrofluoric acid aqueous solution and an ammonium fluoride aqueous solution is suitable.
  • the substrate 21 is scratched by a diamond scribe at a position where the inter-device separation groove 13 is formed, and a laser scribe is performed. Ablation of a part of the substrate material by, for example, is performed.
  • the light emitting element is divided into individual devices in a braking process, and is preferably mounted on the submount with a solder material or the like.
  • the semiconductor light emitting device of the present invention is a semiconductor light emitting device in which a semiconductor layer is laminated on a crystal growth surface of a substrate, and a crystal quality improving layer is provided on a part or all of the back surface of the substrate. It is an essential requirement that the crystal quality improving layer is once formed or partly or entirely removed. That is, the present invention corresponds to a semiconductor light emitting device having a history of forming a crystal quality improving layer on the back surface after processing the back surface of the substrate.
  • the crystal quality improving layer refers to a layer having at least one of the following functions (a) or (b).
  • (A) Function of improving crystallinity on back surface of substrate (b) Function of recovering damage caused by processing, etc.
  • it has the characteristics of the crystal quality improving layer described in [1-3] above.
  • a semiconductor light-emitting element (hereinafter simply referred to as a light-emitting element) according to an embodiment of the present invention is laminated on a substrate 21 and one surface of the substrate 21, as shown in FIG.
  • a compound semiconductor thin film crystal layer (hereinafter also simply referred to as a thin film crystal layer).
  • the compound semiconductor thin film crystal layer is composed of the buffer layer 22, the first conductivity type semiconductor layer including the first conductivity type cladding layer 24, the active layer structure 25, and the second conductivity type semiconductor layer including the second conductivity type cladding layer 26.
  • the layers are laminated in this order from the 21st side.
  • the present invention is characterized by having the crystal quality improving layer 30 on the back surface of the substrate 21, that is, on a part or all of the surface opposite to the thin film crystal layer.
  • the crystal quality improving layer 30 may be partially or wholly removed after formation. Even when all of them are removed, as described above, a remarkable crystal quality improvement effect is achieved, so that it can be said to be a separate invention different from the conventional semiconductor light emitting device.
  • a second conductivity type side electrode 27 for current injection is disposed on a part of the surface of the second conductivity type cladding layer 26, and the second conductivity type cladding layer 26 and the second conductivity type side electrode 27 are in contact with each other.
  • the part which becomes this becomes the 2nd current injection area
  • a part of the compound semiconductor thin film crystal layer is removed from the second conductivity type clad layer 24 side to the middle of the first conductivity type clad layer 24 in the thickness direction, and is exposed to the removed portion.
  • a first conductivity type side electrode 28 for current injection is disposed in contact with the conductivity type cladding layer 24. A portion where the first conductivity type cladding layer 24 and the first conductivity type side electrode 28 are in contact with each other serves as a first current injection region 36 for injecting a current into the first conductivity type semiconductor layer.
  • the second conductivity type side electrode 27 and the first conductivity type side electrode 28 are arranged opposite to the buffer layer 22 and on the same side, and the light emitting element 10 is flip-chip type.
  • the light emitting element 10 is configured.
  • the second conductivity type side electrode 27 and the first conductivity type side electrode 28 are respectively connected to the metal layer 41 on the submount 40 via the metal solder 42.
  • the first conductivity type side electrode 28 and the second conductivity type side electrode 27 do not spatially overlap each other. This means that the shadow does not overlap when the first conductivity type side electrode 28 and the second conductivity type side electrode 27 are projected onto the substrate surface as shown in FIG.
  • at least a portion of the second conductivity type semiconductor layer other than the contact portion with the second conductivity type side electrode 27 may be covered with an insulating film.
  • a part of the buffer layer 22 a portion excluding the first current injection region 36 of the first conductivity type semiconductor layer, the active layer structure 25, and a second current injection region 35 of the second conductivity type semiconductor layer.
  • the portion except for is covered with an insulating film 31. That is, at least a part of the sidewall of the compound semiconductor thin film crystal layer having the buffer layer 22, the first conductivity type semiconductor layer, the active layer structure 25, and the second conductivity type semiconductor layer is covered with the insulating film 31.
  • the insulating film 31 is made of mounting solder, conductive paste material, etc. “between the second conductivity type side electrode and the first conductivity type side electrode”, “active layer structure, etc. It also has a function of preventing an unintended short circuit from occurring around the side wall of the thin film crystal layer.
  • the insulating film 31 only needs to have at least a portion covering the second conductivity type semiconductor layer as described above.
  • the second conductivity type side electrode 27 is further connected to the second conductivity type semiconductor layer. The entire opposing surface is in contact with the second conductivity type semiconductor layer, and a part of the second conductivity type side electrode 27 arranged in contact with the second conductivity type semiconductor layer in this way is also the insulating film 31. Covering.
  • Such a structure can be obtained by forming the insulating film 31 after forming the second conductivity type side electrode 27 on the second conductivity type cladding layer 26.
  • the first conductivity type side electrode 28 is in contact with the first conductivity type semiconductor layer only at a part of the surface facing the first conductivity type semiconductor layer. A part of the insulating film 31 is interposed between the mold side electrode 28. Such a structure can be obtained by forming the first conductivity type side electrode after forming the insulating film 31 on the first conductivity type cladding layer 24.
  • the light emitting element 10 can be manufactured through a process with less process damage.
  • the insulating film 31 is arranged in consideration of process damage, heat dissipation when flip chip mounting is performed, insulation, and the like.
  • the portion of the buffer layer 22 that is not covered with the insulating film 31 is preferably an undoped layer that is not doped. If the exposed portion is a highly insulating material, there is no fear of a short circuit due to the wraparound of the solder, and the light emitting element is highly reliable.
  • the substrate 21 is preferably optically approximately transparent to the emission wavelength of the light emitting element 10, but the material and the like are not particularly limited.
  • substantially transparent means that there is no absorption with respect to the emission wavelength, or even if there is absorption, the light output is not reduced by 50% or more due to the absorption of the substrate 21.
  • the substrate 21 is preferably electrically insulating when the light emitting element 10 is a flip chip type. This is because when the light emitting element 10 is mounted, even if a solder material or the like adheres to the periphery of the substrate 21, current injection into the light emitting element 10 is not affected. On the other hand, when the light emitting element 10 is a vertical conduction type described later, the substrate 21 preferably has conductivity (FIG. 5).
  • sapphire Al 2 O 3
  • SiC GaN
  • LiGaO 2 LiAlO 3
  • ZnO ScAlMgO 4
  • NdGaO 3 and MgO are selected.
  • nitrides and oxides are preferred as the crystal quality improvement effect is easily expected.
  • GaN and AlN are preferred, and GaN is more preferred. Since GaN has an overwhelmingly higher refractive index than sapphire and the like, it is easy to influence the improvement of light extraction efficiency from the substrate according to the present invention, which is very preferable.
  • the substrate 21 may be subjected to chemical etching, heat treatment, or the like in advance in order to manufacture the light emitting element 10 using a crystal growth technique such as MOCVD or MBE.
  • a crystal growth technique such as MOCVD or MBE.
  • the surface of the substrate 21 on which the buffer layer 22 is laminated is intentionally processed so that the penetration generated at the interface between the thin film crystal layer and the substrate 21 is achieved. It is also possible not to introduce the transition near the active layer of the light emitting device.
  • the thickness of the substrate 21 is usually 100 ⁇ m or more and 3000 ⁇ m or less.
  • the thickness of the substrate 21 may be thick unlike the conventional one.
  • the area of the side wall is effectively increased compared to a light-emitting element having a thin substrate, so that even if the total radiant flux is the same, light extraction is possible.
  • the effect can be functioned effectively. That is, it is preferable to expect an effect of improving the crystal quality of the substrate side wall because the amount of light extraction from the side wall can be increased.
  • the thickness of the substrate 21 is preferably 150 ⁇ m or more, and more preferably 250 ⁇ m or more.
  • the substrate 21 of the present invention has the crystal quality improving layer 30 on the surface opposite to the surface on which the thin film crystal is grown, that is, a part or all of the back surface, or the crystal quality improving layer is once formed. After that, it is essential that a part or the whole is removed.
  • the crystal quality improving layer 30 may be further formed on the side wall of the substrate.
  • the crystal quality improving layer 30 those having the characteristics of the crystal quality improving layer described in [1-3] are preferable.
  • the buffer layer 22 mainly grows a thin film crystal on the substrate 21 and suppresses transition, alleviates imperfection of the substrate crystal, and reduces various mismatches between the substrate crystal and a desired thin film crystal layer. Formed for the purpose of thin film crystal growth.
  • the buffer layer 22 is formed by thin film crystal growth. When an InAlGaN-based material, InAlBGaN-based material, InGaN-based material, AlGaN-based material, GaN-based material or the like, which is a desirable form in the present invention, is grown on a different substrate.
  • the buffer layer 22 is particularly important because the lattice constant matching with the substrate 21 is not necessarily ensured.
  • a low temperature growth AlN layer near 600 ° C. is used as the buffer layer 22 or a low temperature growth GaN layer formed near 500 ° C. Can also be used.
  • the buffer layer 22 is important even when a material such as GaN, AlGaN, InGaN, or AlInGaN is grown on the GaN substrate.
  • AlN, GaN, AlGaN, InAlGaN, InAlBGaN or the like grown at a high temperature of about 800 ° C. to 1000 ° C. can be used as the buffer layer 22.
  • These layers are generally thin and about 5 to 40 nm.
  • the buffer layer 22 does not necessarily have to be a single layer, but is grown on the GaN buffer layer 22 grown at a low temperature at a temperature of about 1000 ° C. without doping to improve the crystallinity. You may make it have about several micrometers of layers. Actually, it is normal to have such a thick film buffer layer, and the thickness is about 0.5 to 7 ⁇ m.
  • the buffer layer 22 may be doped with Si or the like, or may be formed by stacking a doped layer and an undoped layer in the buffer layer.
  • a lateral growth technique which is a kind of so-called microchannel epitaxy can also be used, and thereby the density of threading transition generated between a substrate such as sapphire and an InAlGaN-based material. Can be significantly reduced.
  • a first conductivity type cladding layer 24 is present in contact with the buffer layer 22 as shown in FIG.
  • the first conductivity type clad layer 24 functions together with the second conductivity type clad layer 26 described later to the active layer structure 25 described later to efficiently inject carriers and suppress overflow from the active layer structure.
  • it has a function for realizing light emission in the quantum well layer with high efficiency.
  • it contributes to confinement of light in the vicinity of the active layer structure, and has a function for realizing light emission in the quantum well layer with high efficiency.
  • the first conductivity type semiconductor layer includes a layer doped to the first conductivity type, in addition to the above-mentioned layer having a cladding function, for improving the function of the device like a contact layer or for manufacturing reasons.
  • the entire first conductivity type semiconductor layer may be considered as the first conductivity type cladding layer 24, and in that case, the contact layer and the like can also be regarded as a part of the first conductivity type cladding layer 24. .
  • the first conductivity type cladding layer 24 is a material having a refractive index smaller than an average refractive index of an active layer structure 25 described later and a material larger than an average band gap of the active layer structure 25 described later. It is desirable to consist of Furthermore, the first conductivity type clad layer 24 is generally made of a material that forms a so-called type I band lineup, particularly in relation to the barrier layer in the active layer structure 25. Under such guidelines, the material of the first conductivity type cladding layer 24 is appropriately selected in view of the substrate 21, the buffer layer 22, the active layer structure 25, and the like prepared for realizing a desired emission wavelength. can do.
  • the first conductivity type cladding layer 24 when c + plane GaN is used as the substrate 21 and GaN grown at a high temperature is used as the buffer layer 22, a GaN-based material, an AlGaN-based material, an AlGaInN-based material, an InAlBGaN-based material is used as the first conductivity type cladding layer 24.
  • a multilayer structure thereof can be used.
  • the carrier concentration of the first conductivity type cladding layer 24 is preferably 1 ⁇ 10 17 cm ⁇ 3 or more as a lower limit, more preferably 5 ⁇ 10 17 cm ⁇ 3 or more, and most preferably 1 ⁇ 10 18 cm ⁇ 3 or more. .
  • the upper limit is preferably 5 ⁇ 10 19 cm ⁇ 3 or less, more preferably 1 ⁇ 10 19 cm ⁇ 3 or less, and most preferably 7 ⁇ 10 18 cm ⁇ 3 or less.
  • Si is most desirable as a dopant.
  • the thickness of the first conductivity type cladding layer 24 can be appropriately selected, and is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 4 ⁇ m or more. Moreover, it is 10 micrometers or less normally, Preferably it is 8 micrometers or less, More preferably, it is 7 micrometers or less. If the first conductivity type clad layer 24 is too thick, the crystal quality of the thin film crystal layer is degraded. If the first conductivity type cladding layer 24 is too thin, carriers cannot be sufficiently confined in the active layer structure.
  • the structure of the first conductivity type cladding layer 24 shows the first conductivity type cladding layer 24 composed of a single layer in the example of FIG. 4, but the first conductivity type cladding layer 24 is composed of two or more layers. It may be. In this case, for example, a GaN-based material and an AlGaN-based material, an InAlGaN-based material, or an InAlBGaN-based material can be used.
  • the entire first conductivity type cladding layer 24 may be a superlattice structure as a laminated structure of different materials. Furthermore, it is possible to change the carrier concentration in the first conductivity type cladding layer 24.
  • the carrier concentration can be intentionally increased to reduce the contact resistance with the electrode.
  • a part of the first conductivity type cladding layer 24 is etched, and exposed side walls, etched portions, etc. of the first conductivity type cladding layer 24 are in contact with a first conductivity type side electrode 27 described later.
  • a structure that is entirely covered with the insulating film 31 except for the first current injection region 36 to be realized is desirable.
  • a different layer may exist as necessary as the first conductivity type semiconductor layer.
  • a contact layer for facilitating carrier injection may be included in the connection portion with the electrode.
  • Each layer may be divided into a plurality of layers having different compositions or formation conditions.
  • An active layer structure 25 is formed on the first conductivity type cladding layer 24.
  • the active layer structure 25 emits light by recombination of electrons and holes (or holes and electrons) injected from the first conductivity type cladding layer 24 and the second conductivity type cladding layer 26 described later.
  • B W + 1 is satisfied. It is desirable.
  • first conductivity type clad layer, active layer structure, second conductivity type clad layer It is desirable for high output to be formed as “barrier layer, quantum well layer, barrier layer” or “barrier layer, quantum well layer, barrier layer, quantum well layer, barrier layer”.
  • the layer thickness is as thin as the de Broglie wavelength.
  • a layer that is separated while controlling the coupling between the quantum well layers is a barrier layer.
  • the barrier layer exists for separation of the cladding layer and the quantum well layer.
  • the cladding layer is made of AlGaN and the quantum well layer is made of InGaN, a form in which a barrier layer made of GaN exists between them is desirable.
  • the clad layer is made of InAlGaN having the widest band gap and the quantum well layer is made of InAlGaN having the narrowest band gap
  • InAlGaN having an intermediate band gap can be used for the barrier layer.
  • the difference in the band gap between the cladding layer and the quantum well layer is larger than the difference in the band gap between the barrier layer and the quantum well layer, and considering the efficiency of carrier injection into the quantum well layer,
  • the quantum well layer is preferably not directly adjacent to the cladding layer.
  • Quantum well layer should not be intentionally doped.
  • the barrier layer is preferably doped with an n-type dopant, particularly Si.
  • Mg which is a p-type dopant, easily diffuses in the device, and it is important to suppress the diffusion of Mg during high output operation. Therefore, Si is effective, and it is desirable that the barrier layer is doped with Si.
  • the second conductivity type cladding layer 26 efficiently injects carriers into the above-described active layer structure 25 together with the above-described first conductivity type cladding layer 24, and also suppresses overflow from the active layer structure 25, It has a function for realizing light emission in the quantum well layer with high efficiency. In addition, it contributes to confinement of light in the vicinity of the active layer structure, and has a function for realizing light emission in the quantum well layer with high efficiency.
  • the second conductivity type semiconductor layer includes a layer doped to the second conductivity type in addition to the above-mentioned layer having a cladding function, for the purpose of improving the function of the device or for manufacturing reasons, like a contact layer.
  • the entire second conductivity type semiconductor layer may be considered as the second conductivity type cladding layer 26, and in this case, the contact layer and the like can also be regarded as a part of the second conductivity type cladding layer 26. .
  • the second conductivity type cladding layer 26 is a material having a refractive index smaller than the average refractive index of the active layer structure 25 described above, and a material larger than the average band gap of the active layer structure 25 described above. It is desirable to consist of Further, the second conductivity type clad layer 26 is generally made of a material that forms a so-called type I band lineup, particularly in relation to the barrier layer in the active layer structure 25. Under such guidelines, the material of the second conductivity type cladding layer 26 is appropriately selected in view of the substrate 21, the buffer layer 22, the active layer structure 25, and the like prepared for realizing a desired emission wavelength. can do.
  • a GaN-based material, an AlGaN-based material, an AlGaInN-based material, an AlGaBInN-based material, or the like is used as the second conductivity type cladding layer 26.
  • a laminated structure of the above materials may be used.
  • the first conductivity type cladding layer 24 and the second conductivity type cladding layer 26 can be made of the same material.
  • the lower limit of the carrier concentration of the second conductivity type cladding layer is preferably 1 ⁇ 10 17 cm ⁇ 3 or more, more preferably 4 ⁇ 10 17 cm ⁇ 3 or more, and further preferably 5 ⁇ 10 17 cm ⁇ 3 or more.
  • ⁇ 10 17 cm ⁇ 3 or more is most preferable.
  • Mg is most desirable as the dopant when the second conductivity type is p-type.
  • the structure of the second conductivity type cladding layer 26 is an example of a single layer formed in the example of FIG. 4, but the second conductivity type cladding layer 26 is composed of two or more layers. May be. In this case, for example, a GaN-based material and an AlGaN-based material can be used.
  • the entire second conductivity type cladding layer 26 may be a superlattice structure made of a laminated structure of different materials. Furthermore, it is possible to change the carrier concentration in the second conductivity type cladding layer 26.
  • the crystallinity of p-type GaN, p-type AlGaN, and p-type AlInGaN is n-type GaN, n It does not reach each of type AlGaN and n-type AlInGaN. Therefore, in device fabrication, it is desirable to implement a p-type cladding layer with poor crystallinity after crystal growth of the active layer structure 25. From this viewpoint, the first conductivity type is n-type and the second conductivity type is p. The type is desirable.
  • the thickness of the p-type cladding layer with poor crystallinity (this corresponds to the second conductivity type cladding layer 26 in a desirable form) be thin to some extent. However, when it is extremely thin, the carrier injection efficiency is lowered, and therefore there is an optimum value.
  • the thickness of the second-conductivity-type-side cladding layer 26 can be selected as appropriate, but is preferably 0.05 ⁇ m to 0.3 ⁇ m, and most preferably 0.1 ⁇ m to 0.2 ⁇ m.
  • the carrier concentration can be intentionally increased to reduce the contact resistance with the electrode.
  • the exposed side walls of the second conductivity type cladding layer 26 are all covered with an insulating film 31 except for a second current injection region 35 that realizes contact with a second conductivity type side electrode 27 described later. It is desirable.
  • a different layer may be present as necessary as the second conductivity type semiconductor layer.
  • a contact layer for facilitating carrier injection may be included in a portion in contact with the electrode.
  • Each layer may be divided into a plurality of layers having different compositions or formation conditions.
  • the surface of the second conductivity type semiconductor layer may contain at least Mg and H.
  • the second conductivity type side electrode 27 realizes a good ohmic contact with the second conductivity type nitride compound semiconductor, and when it is flip-chip mounted, it adheres well to the submount 40 by a solder material or the like. Is realized.
  • the material can be selected as appropriate, and the second conductivity type side electrode 27 may be a single layer or a plurality of layers. In general, in order to achieve a plurality of purposes required for an electrode, a plurality of layer structures are usually employed.
  • the second conductivity type is p-type and the second conductivity type side electrode 27 side of the second conductivity type side cladding layer 26 is GaN
  • Ni, Pt are used as materials constituting the second conductivity type side electrode 27.
  • Pd, Mo, Au, or a material containing two or more elements thereof is preferable.
  • This electrode may have a multilayer structure, and at least one layer is formed of a material containing the above element, and preferably each layer is made of a material containing the above element and having different constituent components (type and / or ratio).
  • the electrode constituent material is preferably a single metal or an alloy.
  • the second conductivity type side electrode 27 may be in contact with any layer of the thin film crystal layer as long as the second conductivity type carrier can be injected. For example, when the second conductivity type side contact layer is provided, the second conductivity type side electrode 27 is in contact therewith. Formed as follows. ⁇ First conductivity type side electrode> The first conductivity type side electrode 28 achieves good ohmic contact with the first conductivity type nitride compound semiconductor, and when it is flip-chip mounted, it adheres well to the submount 40 or the like using a solder material or the like. For this purpose, materials can be selected as appropriate.
  • the first conductivity type side electrode 28 may be a single layer or a plurality of layers. In general, in order to achieve a plurality of purposes required for an electrode, a plurality of layer structures are usually employed.
  • the n-side electrode is preferably Ti, Al, Ag, Mo, or a material containing two or more elements thereof.
  • This electrode may have a multilayer structure, and at least one layer is formed of a material containing the above element, and preferably each layer is made of a material containing the above element and having different constituent components (type and / or ratio).
  • the electrode constituent material is preferably a single metal or an alloy. These are because the absolute value of the work function of these metals is small.
  • the first conductivity type side electrode 28 is formed in an area larger than the size of the first current injection region 36, and the first conductivity type side electrode 28 and the second conductivity type side electrode 27 are spatially separated. It is desirable that there is no overlap. This is because when the light-emitting element 10 is flip-chip mounted with solder or the like, the second conductivity type side electrode 27 and the first conductivity are secured while securing a sufficient area to ensure sufficient adhesion with the submount 40 or the like. This is important in order to ensure a sufficient distance to prevent an unintended short circuit due to a solder material or the like between the mold side electrode 28 and the like.
  • the first conductivity type side electrode 28 may be in contact with any layer of the thin film crystal layer as long as the first conductivity type carrier can be injected. For example, when the first conductivity type side contact layer is provided, the first conductivity type side electrode 28 is in contact therewith. Formed as follows. In addition, as described above, physical or chemical damage due to the processing of the substrate is particularly caused by light having a relatively short wavelength with an emission wavelength of less than 470 nm (blue light, blue violet light, purple light, near ultraviolet light, ultraviolet light). Etc.) are relatively easy to absorb. In particular, as described above, this absorption is significant in violet light, near ultraviolet light, and ultraviolet light having a center wavelength of 430 nm or less.
  • the effect of the present invention is remarkable when the light emitting element 10 has such a light emission wavelength.
  • the submount 40 has a metal layer, and has both functions of current injection and heat dissipation to the light-emitting element 10 that is flip-chip mounted.
  • the base material of the submount 40 is preferably one of metal, AlN, SiC, diamond, BN, and CuW. These materials are preferable because they have excellent heat dissipation and can efficiently suppress the problem of heat generation that is unavoidable for the high-power light-emitting element 10.
  • Al 2 O 3 , Si, glass and the like are also inexpensive and are widely used as a base material for the submount 40.
  • the submount base material is selected from metals, it is desirable to cover the periphery with a dielectric material having etching resistance.
  • the light emitting element 10 is bonded to the metal layer on the submount 40 by various solder materials and paste materials.
  • various solder materials and paste materials In order to ensure sufficient heat dissipation for the high-output operation of the light-emitting element 10 and the high-efficiency light emission, it is particularly desirable to bond with metal solder.
  • the metal solder include In, InAg, PbSn, SnAg, AuSn, AuGe, and AuSi. These solders are stable and can be appropriately selected in light of the operating temperature environment.
  • a light-emitting element includes a substrate 21 and a compound semiconductor thin film crystal layer laminated on one of the substrates 21 as shown in FIG. (Hereinafter also simply referred to as a thin film crystal layer).
  • the compound semiconductor thin film crystal layer includes a buffer layer 22, a first conductivity type semiconductor layer including a first conductivity type cladding layer 24, an active layer structure 25, a second conductivity type semiconductor layer including a second conductivity type cladding layer 26, and a contact.
  • the layer 23 is configured by being laminated in this order from the substrate 21 side.
  • a second conductivity type side electrode 27 for current injection is disposed on a part of the surface of the contact layer 23, and a portion where the contact layer 23 and the second conductivity type side electrode 27 are in contact with each other is the second conductivity type.
  • a second current injection region 35 for injecting a current into the semiconductor layer is formed.
  • a crystal quality improving layer 30 is disposed on the surface opposite to the thin film crystal layer of the substrate 21, that is, the back surface, and the first conductivity type side electrode 28 is disposed thereon. If the crystal quality improving layer 30 has conductivity, it may remain, but if it has an insulating property such as SiO x or SiN x , after formation, before the first conductivity type side electrode 28 is disposed.
  • the crystal quality improving layer 30 In the case of forming the crystal quality improving layer 30 in a part of the light emitting element 10 having the vertical conduction type structure, or removing the part thereof, as shown in FIG. It is preferable to dispose the crystal quality good layer 30 in a region corresponding to the region immediately below the electrode 27. This is due to the following mechanism. In the light emitting device 10 of FIG. 6, the crystal quality improving layer 30 is disposed in a region corresponding to the region immediately below the second conductivity type side electrode 27, and portions other than the region corresponding to the region immediately below the second conductivity type side electrode 27 are formed. The crystal quality improving layer 30 is not formed or removed.
  • the holes from the second conductivity type side electrode 27 and the electrons from the first conductivity type side electrode 28 are difficult to be injected into the active layer structure 36S existing immediately below the second conductivity type side electrode 27,
  • the active layer structure 36S hardly emits light.
  • the light emitted from the active layer structure 36S is shielded by the second conductivity type side electrode and is a part where it is difficult to expect the light extraction effect. Therefore, it is a disadvantage for the light emitting device 10 that the part is difficult to emit light. It is considered difficult.
  • the holes from the second conductivity type side electrode 27 and the first conductivity type side electrode 28 Since electrons are injected into the region 37, the current is concentrated. Therefore, in the structure of FIG. 6, light from the active layer structure 37 can be extracted efficiently.
  • the light emitting element 10 is a so-called vertical conduction type.
  • the light emitting device 10 is configured.
  • the vertical conduction type light emitting element can take out the first conductivity type side electrode and the second conductivity type side electrode from above and below, and etches a part of the laminated semiconductor layer to provide the first conductivity type side electrode. Therefore, the manufacturing process can be simplified.
  • the member described in [2-1] flip chip type structure
  • the first conductivity type side electrode is provided on the rear surface of the substrate
  • the substrate 21 and the buffer layer 22 usually need to be of the first conductivity type.
  • the substrate 21 and the buffer layer 22 are preferably doped with an n-type dopant. .
  • the crystal quality improving layer of the present invention exhibits its effect by being formed on the processed substrate back surface.
  • a laser lift-off method It can also be used as a pretreatment for forming an electrode on the surface of the thin film crystal layer after peeling off the substrate.
  • the thin film crystal layer can be mounted on a supporting metal substrate and used to reduce optical loss on the light extraction surface side when a vertical conduction type device is formed.
  • Example 1 A c + plane GaN substrate is prepared in which the surface on which the semiconductor is laminated is secured so as to ensure sufficient crystal quality, and the processing damage at the time of substrate creation remains on the back surface of the substrate. An epitaxial layer having an LED structure was formed. Next, a p-side electrode was formed by a lift-off method, and an alloying process was performed to complete the p-side electrode. Next, an n-GaN layer for partially forming an n-side electrode was exposed by dry etching. Next, an n-side electrode patterned by a lift-off method was formed.
  • a resist layer was formed as a protective film on the surface on which the epitaxial layer was formed, and was attached to the wafer attaching plate of the polishing apparatus using wax.
  • the back surface of the substrate was polished with a copper polishing machine using a diamond slurry having a weight average particle diameter of 3 ⁇ m.
  • the wafer was removed from the wafer attaching plate of the polishing apparatus and cleaned, and the wax and protective film at the time of attaching were removed and dried.
  • the substrate thickness after polishing was 303 ⁇ m.
  • the emission peak wavelength was measured and found to be 415.3 nm. When the partial radiant flux at the time of injecting the current of 50 mA was measured, it was 1.75 mW.
  • a crystal quality improving layer made of SiN x was formed (deposited) on the c-plane (back surface) of the GaN substrate by plasma CVD.
  • the substrate heating temperature at this time was 200 ° C.
  • the SiN x deposition conditions were a SiH 4 flow rate of 5 sccm, an NH 3 flow rate of 13 sccm, and an N 2 flow rate of 225 sccm, a pressure of 45 Pa, and an RF power of 250 W.
  • the film formation time was 17 minutes and 36 seconds.
  • the crystal quality improving layer was removed by immersing in a solution having a ratio of 49% by weight of hydrogen fluoride containing hydrofluoric acid and 40% by weight of ammonium fluoride in a ratio of 1: 5 (weight ratio) for 30 minutes. Thereafter, when the partial radiant flux was measured, an increase of 24.8% was confirmed compared to before the formation of the crystal quality improvement layer (after the back surface polishing), and the improvement effect when the crystal quality improvement layer was formed was almost maintained. As a result.
  • Example 2 A semiconductor light emitting device was fabricated in the same manner as in Example 1 except that the substrate thickness after polishing was 404 ⁇ m and the conditions for forming the epitaxial layer were changed, and the partial radiant flux was measured to be 1.72 mW. The emission peak wavelength was measured and found to be 398.8 nm. A crystal quality improving layer made of SiN x was formed and removed by the same method as in Example 1. When the partial radiant flux at this time was measured, an increase of 11.1% was confirmed as compared with that before forming the crystal quality improving layer.
  • Example 3 A semiconductor light-emitting device was prepared in the same manner as in Example 2, and the partial radiant flux was measured to be 1.73 mW. Moreover, it was 400.8 nm when the light emission peak wavelength was measured.
  • a crystal quality improving layer made of SiN x was formed by plasma CVD under the following conditions. That is, the substrate heating temperature was 200 ° C., the SiH 4 flow rate was 5 sccm, the NH 3 flow rate was 50 sccm, the N 2 flow rate was 100 sccm, the pressure was adjusted to 45 Pa, and the RF power was 250 W. The film formation time was 17 minutes and 36 seconds. When the partial radiant flux after the formation of the crystal quality improvement layer was measured in the same manner as before the formation, an increase of 9.8% was confirmed as compared with that before the formation of the crystal quality improvement layer made of SiN x .
  • Example 4 A c + -plane GaN substrate is prepared in which the surface on which the semiconductors are laminated is secured to ensure sufficient crystal quality, and the processing damage at the time of substrate fabrication remains on the back surface of the substrate. An epitaxial layer having an LED structure was formed. Next, a p-side electrode was formed by a lift-off method, and an alloying process was performed to complete the p-side electrode. Next, an n-GaN layer for partially forming an n-side electrode was exposed by dry etching.
  • an n-side electrode patterned by a lift-off method was formed.
  • the back surface of the substrate was completed as it was without polishing the back surface of the purchased c + -plane GaN substrate.
  • the emission peak wavelength was measured and found to be 415.3 nm.
  • the partial radiant flux was measured when a current of 50 mA was injected at this time, it was 1.92 mW.
  • a crystal quality improving layer made of SiN x was formed (deposited) on the c-plane (back surface) of the GaN substrate by plasma CVD.
  • the substrate heating temperature at this time was 300 ° C.
  • the SiN x deposition conditions were a SiH 4 flow rate of 4 sccm, a NH 3 flow rate of 12 sccm, a N 2 flow rate of 220 sccm, a pressure of 45 Pa, and an RF power of 250 W.
  • the film formation time was 17 minutes and 36 seconds.
  • the crystal quality improving layer was removed by immersing in a solution having a ratio of 49% by weight of hydrogen fluoride containing hydrofluoric acid and 40% by weight of ammonium fluoride in a ratio of 1: 5 (weight ratio) for 5 minutes. Later, when the partial radiant flux was measured, an increase of 9.8% was confirmed compared to before the formation of the crystal quality improvement layer (after back surface polishing), and the improvement effect when the crystal quality improvement layer was formed was almost maintained. As a result.
  • Example 1 A semiconductor light-emitting device was prepared in the same manner as in Example 2, and the partial radiant flux was measured to be 1.72 mW. The emission peak wavelength was measured and found to be 398.8 nm. Next, it was exposed to NH 3 plasma in a plasma CVD apparatus under the following conditions. That is, the substrate heating temperature was 200 ° C., the NH 3 flow rate was 100 sccm, the pressure was 45 Pa, and the RF power was 100 W. The treatment time was 5 minutes.
  • Example 2 A semiconductor was prepared in the same manner as in Example 1 except that a c + -plane GaN substrate prepared so that sufficient crystal quality was secured on both the semiconductor lamination surface and the substrate back surface was not polished. A light emitting device was prepared and an SiN x layer was formed. The partial radiant flux before the formation of the SiN x layer was measured. Moreover, when the light emission peak wavelength was measured, it was 413.5 nm.

Abstract

A semiconductor light-emitting element, wherein the crystallinity of a substrate is improved, thereby suppressing optical loss and deterioration in the state of crystals.  As a result, the semiconductor light-emitting element can endure increases in output and efficiency. A method for manufacturing a semiconductor light-emitting element wherein a semiconductor layer is arranged on a crystal growth surface of a substrate, said method being characterized by having a step wherein a crystal quality-improving layer is formed on the back surface of the substrate.

Description

半導体発光素子の製造方法および半導体発光素子Semiconductor light emitting device manufacturing method and semiconductor light emitting device
 本発明は、半導体発光素子の製造方法および半導体発光素子に関する。 
 さらに詳しくは、本発明は、結晶成長基板の裏面のダメージの軽減された、光取り出し効率に優れた半導体発光素子の製造方法および半導体発光素子に関する。
The present invention relates to a method for manufacturing a semiconductor light emitting device and a semiconductor light emitting device.
More specifically, the present invention relates to a method for manufacturing a semiconductor light emitting device that is excellent in light extraction efficiency and that reduces damage on the back surface of a crystal growth substrate, and a semiconductor light emitting device.
 近年、GaN、AlGaN、InGaNなどの窒化ガリウム系化合物半導体を用いた半導体発光素子(以下、単に発光素子と称することがある。)の開発が盛んに行なわれている。 
 また最近では、青色光を発する発光素子とこれによって励起される黄色蛍光体とを組み合わせた発光源が、白色光を発する照明装置の光源として実用化されている。しかし、この発光源は、発光素子から発せられた青色光と黄色蛍光体から発せられる黄色光との混色によって白色光を得るものであるため、演色性があまり高くない。 
In recent years, development of semiconductor light emitting devices (hereinafter sometimes simply referred to as light emitting devices) using gallium nitride-based compound semiconductors such as GaN, AlGaN, and InGaN has been actively conducted.
Recently, a light emitting source that combines a light emitting element that emits blue light and a yellow phosphor that is excited by the light emitting element has been put into practical use as a light source of an illumination device that emits white light. However, since the light source obtains white light by mixing the blue light emitted from the light emitting element and the yellow light emitted from the yellow phosphor, the color rendering property is not so high.
 そこで、より演色性の高い白色照明を得るため、青色蛍光体、緑色蛍光体および赤色蛍光体の3色の蛍光体を発光素子と組み合わせた発光源が検討されている。この発光源では、発光素子として、例えば近紫外光を発する発光素子が用いられる。青色蛍光体、緑色蛍光体および赤色蛍光体は、発光素子から発せられた近紫外光によって励起され、近紫外光をそれぞれ青色光、緑色光および赤色光に波長変換する。波長変換によって得られた3色の光が混色されることによって、演色性の高い白色光が得られる。  Therefore, in order to obtain white illumination with higher color rendering properties, a light emitting source in which three color phosphors of a blue phosphor, a green phosphor and a red phosphor are combined with a light emitting element has been studied. In this light emitting source, for example, a light emitting element that emits near-ultraviolet light is used as the light emitting element. The blue phosphor, the green phosphor, and the red phosphor are excited by near-ultraviolet light emitted from the light emitting element, and wavelength-convert the near-ultraviolet light into blue light, green light, and red light, respectively. White light with high color rendering properties can be obtained by mixing three colors of light obtained by wavelength conversion.
 しかし、一般に、近紫外光を発する発光素子は青色光を発する発光素子よりも発光効率が低い。そのため、近紫外光を発する発光素子には、さらなる高出力化および高効率化が求められている。 
 発光素子の高出力化および高効率化に有効な構造として、フリップチップマウント構造(フリップチップ型構造)が知られている。この構造では、基板上に所定の半導体層を堆積し、基板と反対側に電流注入用のn側電極およびp側電極を形成し、電極が形成されていない基板側または基板側面を主たる光取り出し方向とする。このため、発光素子から出る光が遮られず、また電極を光の反射面として使用可能であるために、光の取り出し効率が向上する。 
However, in general, a light emitting element that emits near-ultraviolet light has lower luminous efficiency than a light emitting element that emits blue light. Therefore, light emitting elements that emit near-ultraviolet light are required to have higher output and higher efficiency.
A flip chip mount structure (flip chip structure) is known as an effective structure for increasing the output and efficiency of a light emitting element. In this structure, a predetermined semiconductor layer is deposited on a substrate, an n-side electrode and a p-side electrode for current injection are formed on the opposite side of the substrate, and light extraction is mainly performed on the substrate side or the substrate side surface where no electrode is formed. The direction. For this reason, since the light emitted from the light emitting element is not blocked and the electrode can be used as a light reflecting surface, the light extraction efficiency is improved.
 このようなフリップチップ型構造を有する発光素子において、基板は、結晶成長により半導体層の積層構造を形成した後、裏面から研磨などにより加工され、光取り出し面とすることがある。この研磨などの加工は、通常、研磨、ダイシング、またはブラスト処理などの機械的処理や、ドライエッチング、光電気化学エッチング(Photo-electrochemical etching)などの各種エッチング処理により実施される。しかしながら、このような機械的処理やエッチング処理は、基板裏面に物理的または化学的ダメージを与えうるために、基板の結晶状態が劣化することがある。結晶状態の劣化は、基板の光学損失を増大し、光取り出し効果を減少させるため、全放射束などの特性が低下する。従って、基板の結晶状態の劣化が少ない発光素子が求められる。なお、前記光学損失の増大は、特に中心波長が430nm以下の波長において顕著であるため、中心波長が430nm以下の発光素子においては、結晶状態の劣化を解消する要求は特に大きい。 In a light-emitting element having such a flip-chip structure, the substrate may be processed by polishing or the like from the back surface to form a light extraction surface after forming a laminated structure of semiconductor layers by crystal growth. Processing such as polishing is usually performed by mechanical processing such as polishing, dicing, or blasting, and various etching processes such as dry etching or photo-electrochemical etching. However, such mechanical treatment and etching treatment may cause physical or chemical damage to the back surface of the substrate, and thus the crystal state of the substrate may be deteriorated. Deterioration of the crystal state increases the optical loss of the substrate and decreases the light extraction effect, so that characteristics such as the total radiant flux are degraded. Therefore, a light-emitting element with less deterioration of the crystal state of the substrate is required. Note that the increase in the optical loss is remarkable especially at a wavelength of 430 nm or less, and therefore, in a light-emitting element having a center wavelength of 430 nm or less, there is a great demand for eliminating the deterioration of the crystal state.
 また、発光素子の高出力化、高効率化を進めるために、導電性を有する基板の上に所望の発光素子構造をエピタキシャル成長し、基板に一方の電極を形成し、当該エピタキシャル成長層に対してさらに一方の電極を形成する事で、エピタキシャル成長方向に電流を流す、いわゆる上下導通型の発光素子の構造が提案されている。
 このような上下導通型の構造においては、基板の厚みが過度に厚い場合には、発光素子の通過抵抗が増加することとなる。さらには上下導通型の発光素子構造においては、薄膜化プロセスに披瀝した結晶面が電極形成面となるため、この部分の接触抵抗の増加を避ける必要がある。従って、いわゆる上下導通型の発光素子の構成をとった場合においても、フリップチップ型の発光素子と同様に、基板裏面の機械処理やエッチング処理による物理的または化学的ダメージを回復させる必要がある。
In order to increase the output and efficiency of the light-emitting element, a desired light-emitting element structure is epitaxially grown on a conductive substrate, and one electrode is formed on the substrate. There has been proposed a structure of a so-called vertical conduction type light emitting element in which a current flows in the epitaxial growth direction by forming one electrode.
In such a vertical conduction type structure, when the thickness of the substrate is excessively large, the passage resistance of the light emitting element increases. Further, in the vertical conduction type light-emitting element structure, the crystal plane presented in the thinning process becomes an electrode formation surface, and therefore it is necessary to avoid an increase in contact resistance in this portion. Accordingly, even when a so-called vertical conduction type light emitting element is used, it is necessary to recover physical or chemical damage caused by mechanical processing or etching processing on the back surface of the substrate, as in the case of the flip chip type light emitting element.
 前述の様に、近年の高出力化および高効率化に耐え得る発光素子を提供する上で、かかる結晶状態の劣化が少ないことは極めて重要である。
 一方、従来のサファイア基板上に形成していた窒化ガリウム系化合物半導体発光素子における格子不整合や熱膨張率の問題を解消すべく、単結晶GaNなどの窒化物基板上に発光素子を形成する技術が開発されている。しかしながら、GaN単結晶基板においては、前記機械処理やエッチング処理を行った場合、サファイア基板と比較して、特に基板表面のダメージが大きいという問題があった。
As described above, in providing a light emitting device that can withstand the recent increase in output and efficiency, it is extremely important that the deterioration of the crystal state is small.
On the other hand, a technology for forming a light emitting device on a single crystal GaN or other nitride substrate to solve the problems of lattice mismatch and thermal expansion coefficient in a conventional gallium nitride compound semiconductor light emitting device formed on a sapphire substrate. Has been developed. However, the GaN single crystal substrate has a problem that the substrate surface is particularly damaged when the mechanical treatment or the etching treatment is performed, compared to the sapphire substrate.
 これに対して、例えば特許文献1では、GaN基板の裏面に、前記機械的研磨処理を施した後に、化学機械研磨処理(ケミカルメカニカルポリッシング又はCMP)を行う技術が開示されている。
 また、特許文献2では、III-V族窒化物半導体を構成する分子のイオン性結合を切断するための十分な化学ポテンシャルを有する物質を含むスラリーでIII-V族窒化物半導体を研磨する方法が開示されている。
On the other hand, for example, Patent Document 1 discloses a technique of performing chemical mechanical polishing (chemical mechanical polishing or CMP) on the back surface of a GaN substrate after performing the mechanical polishing.
Patent Document 2 discloses a method of polishing a group III-V nitride semiconductor with a slurry containing a substance having a sufficient chemical potential for breaking an ionic bond of molecules constituting the group III-V nitride semiconductor. It is disclosed.
 また、特許文献3では、GaN基板のN側表面のダメージを除去する技術として、塩基(例えばKOHまたはNaOH)の水溶液または酸(例えばHF,HSOまたはHPO)の水溶液中で、水溶液の沸点未満の温度にてマイルドエッチングする技術が開示されている。
 また、特許文献4では、GaN等の結晶成長基板を裏面から研磨などの処理をする形状加工工程と、RIEやICPなどによるドライエッチングなどにより仕上げ処理する加工面仕上工程を有する、青紫光、紫光、紫外光などの発光波長の短い発光ダイオードに有用な製造方法が開示されている。
In Patent Document 3, as a technique for removing damage on the N-side surface of a GaN substrate, an aqueous solution of a base (for example, KOH or NaOH) or an aqueous solution of an acid (for example, HF, H 2 SO 4 or H 3 PO 4 ). A technique for mild etching at a temperature below the boiling point of an aqueous solution is disclosed.
Further, in Patent Document 4, blue-violet light, purple light having a shape processing step for polishing a crystal growth substrate such as GaN from the back surface and a processing surface finishing step for finishing by dry etching such as RIE or ICP. A manufacturing method useful for a light-emitting diode having a short emission wavelength such as ultraviolet light is disclosed.
国際公開WO2005/099057パンフレットInternational Publication WO2005 / 099057 Pamphlet 日本国特開2008-98199号公報Japanese Unexamined Patent Publication No. 2008-98199 日本国特開2004-530306号公報Japanese Unexamined Patent Publication No. 2004-530306 日本国特開2005-302804号公報Japanese Unexamined Patent Publication No. 2005-302804
 しかしながら、CMPによるダメージ除去の方法などの方法は、半導体発光素子を内在するウエハーを専用の治具に貼り付ける等の前準備が必要であって手間がかかる。また、CMPの実施は数時間を要するため、結果として高コストとなるため、製造工程上は必ずしも好ましくない。
 また、ドライエッチングなどにより加工面仕上げを施した場合であっても、基板裏面のダメージを十分に軽減させるには至っていなかった。特に、GaN基板からの光取り出し効率を十分に確保したいフリップチップ型構造や、導電性基板の接触抵抗の増加を抑制したい上下導通型構造を有する発光素子として、実用に耐える程度に基板裏面を処理する有効な方法は見出せていなかった。 
However, a method such as a method for removing damage by CMP requires a preparatory step such as attaching a wafer containing a semiconductor light emitting element to a dedicated jig, which is troublesome. In addition, since CMP requires several hours, resulting in high cost, it is not necessarily preferable in the manufacturing process.
Further, even when the processed surface is finished by dry etching or the like, the damage on the back surface of the substrate has not been sufficiently reduced. In particular, as a light-emitting device with a flip chip type structure for ensuring sufficient light extraction efficiency from a GaN substrate and a vertical conduction type structure for suppressing an increase in contact resistance of a conductive substrate, the back surface of the substrate is processed to a practical level. An effective way to do this has not been found.
 本発明の目的は、研磨等によりダメージを受けた基板裏面の品質改善を図り、光取り出し効率を高め、さらなる高出力化および高効率化に耐え得るようにする発光素子およびその製造方法を提供することにある。 An object of the present invention is to provide a light emitting device that improves the quality of the back surface of a substrate damaged by polishing or the like, increases light extraction efficiency, and can withstand higher output and higher efficiency, and a method for manufacturing the same. There is.
 上記目的を達成するため、本発明の要旨は以下の〔1〕~〔26〕に存する。
〔1〕基板の結晶成長面の上に半導体層が積層された半導体発光素子の製造方法であって、
(B)前記基板の裏面に結晶品質改善層を形成させる工程を有する
ことを特徴とする半導体発光素子の製造方法。
〔2〕前記(B)工程の前に、
(A)前記結晶成長基板の裏面を加工する工程を有する
前記〔1〕の半導体発光素子の製造方法。
〔3〕前記(B)工程の後に、
(C)前記結晶品質改善層を除去する工程を有する
前記〔1〕または〔2〕の半導体発光素子の製造方法。
〔4〕前記(B)工程は、窒素原料として少なくともアンモニアを含有するガス種を用いて前記結晶品質改善層を形成することを含む
前記〔1〕~〔3〕の半導体発光素子の製造方法。 
〔5〕前記(B)工程は、酸素原料として少なくともNOを含有するガス種を用いて前記結晶品質改善層を形成することを含む
前記〔1〕~〔4〕の半導体発光素子の製造方法。 
〔6〕前記(B)工程は、水素原子の濃度が1×1021atoms/cm3以上1×1022atoms/cm3以下となるように前記結晶品質改善層を形成することを含む
前記〔1〕~〔5〕の半導体発光素子の製造方法。 
〔7〕前記(B)工程は、プラズマCVD法によって前記結晶品質改善層を形成することを含む
前記〔1〕~〔6〕の半導体発光素子の製造方法。 
〔8〕前記基板が、窒化物または酸化物である
前記〔1〕~〔7〕の半導体発光素子の製造方法。
〔9〕前記結晶品質改善層は、窒化物、酸化物、酸窒化物のいずれか1以上を含む
前記〔1〕~〔8〕の半導体発光素子の製造方法。 
〔10〕前記窒化物、酸化物、酸窒化物は、B、Al、Si、Ti、V、Cr、Mo、Hf、Ta、またはWのいずれか1種またはそれ以上の元素を含む
前記〔9〕の半導体発光素子の製造方法。
〔11〕前記結晶品質改善層は、終端効果を発現する元素を含む
前記〔1〕~〔8〕の半導体発光素子の製造方法。
〔12〕前記終端効果を発現する元素が、Si、Ge、Se、S、Al、P、Asのいずれか1種以上である
前記〔11〕の半導体発光素子の製造方法。
〔13〕基板の結晶成長面の上に半導体層が積層された半導体発光素子であって、
前記基板の裏面に結晶品質改善層を有する
ことを特徴とする半導体発光素子。
〔14〕前記半導体層が、バッファ層、第一導電型クラッド層を含む第一導電型半導体層、活性層構造、および第二導電型クラッド層を含む第二導電型半導体層がこの順番に積層されたものである
前記〔13〕の半導体発光素子。
〔15〕前記半導体発光素子が、前記第一導電型半導体層および前記第二導電型半導体層にそれぞれ電流を注入するための第一導電型側電極および第二導電型側電極を有し、前記第一導電型側電極および第二導電型側電極が共に、前記バッファ層に対峙して、かつ同じ側に配置されているフリップチップ型構造を有する
前記〔13〕または〔14〕の半導体発光素子。
〔16〕前記半導体発光素子が、前記第一導電型半導体層および前記第二導電型半導体層にそれぞれ電流を注入するための第一導電型側電極および第二導電型側電極を有し、前記第一導電型側電極および第二導電型側電極の一方が前記半導体層上に配置され、他方が前記基板面上に接して配置されている上下導通型構造を有する
前記〔13〕または〔14〕の半導体発光素子。
〔17〕前記第一導電型半導体層、前記活性層構造および前記第二導電型半導体層は窒化物半導体である
前記〔13〕~〔16〕の半導体発光素子。 
〔18〕前記窒化物半導体は、In、Ga、AlおよびBの少なくとも1種の元素を含有する
前記〔17〕の半導体発光素子。 
〔19〕前記活性層構造内から発せられる光の中心波長λ(nm)が下記式を満たす
前記〔13〕~〔18〕に記載の半導体発光素子。 
300(nm)≦λ≦430(nm) 
〔20〕前記結晶品質改善層における水素原子の濃度が1×1021atoms/cm3以上1×1022atoms/cm3以下である
前記〔13〕~〔19〕の半導体発光素子。
〔21〕前記基板が窒化物または酸化物である
前記〔13〕~〔20〕の半導体発光素子。
〔22〕前記結晶品質改善層は、窒化物、酸化物、酸窒化物のいずれか1以上を含む
前記〔13〕~〔21〕の半導体発光素子。 
〔23〕前記窒化物、酸化物、酸窒化物は、B、Al、Si、Ti、V、Cr、Mo、Hf、Ta、またはWのいずれか1種またはそれ以上の元素を含む
前記〔22〕の半導体発光素子。 
〔24〕前記結晶品質改善層は、終端効果を発現する元素を含む
前記〔13〕~〔21〕の半導体発光素子。 
〔25〕前記終端効果を発現する元素が、Si、Ge、Se、S、Al、P、Asのいずれか1種以上である
前記〔24〕の半導体発光素子。
〔26〕前記結晶品質改善層が除去された
前記〔13〕~〔25〕の半導体発光素子。 
In order to achieve the above object, the gist of the present invention resides in the following [1] to [26].
[1] A method of manufacturing a semiconductor light emitting device in which a semiconductor layer is laminated on a crystal growth surface of a substrate,
(B) A method of manufacturing a semiconductor light emitting device, comprising a step of forming a crystal quality improving layer on the back surface of the substrate.
[2] Before the step (B),
(A) The method for manufacturing a semiconductor light-emitting element according to [1], including a step of processing a back surface of the crystal growth substrate.
[3] After the step (B),
(C) The method for producing a semiconductor light-emitting device according to [1] or [2], including a step of removing the crystal quality improving layer.
[4] The method for manufacturing a semiconductor light emitting device according to [1] to [3], wherein the step (B) includes forming the crystal quality improving layer using a gas species containing at least ammonia as a nitrogen raw material.
[5] The manufacturing of the semiconductor light emitting device according to [1] to [4], wherein the step (B) includes forming the crystal quality improving layer using a gas species containing at least N 2 O as an oxygen source. Method.
[6] The step (B) includes forming the crystal quality improving layer so that the concentration of hydrogen atoms is 1 × 10 21 atoms / cm 3 or more and 1 × 10 22 atoms / cm 3 or less. [1] to [5] A method for producing a semiconductor light emitting device.
[7] The method for manufacturing a semiconductor light-emitting element according to [1] to [6], wherein the step (B) includes forming the crystal quality improving layer by a plasma CVD method.
[8] The method for manufacturing a semiconductor light emitting element according to the above [1] to [7], wherein the substrate is a nitride or an oxide.
[9] The method for manufacturing a semiconductor light emitting element according to the above [1] to [8], wherein the crystal quality improving layer contains one or more of nitride, oxide, and oxynitride.
[10] The nitride, oxide, or oxynitride contains any one or more elements of B, Al, Si, Ti, V, Cr, Mo, Hf, Ta, and W. [9 ] The manufacturing method of the semiconductor light-emitting device of.
[11] The method for manufacturing a semiconductor light-emitting element according to any one of [1] to [8], wherein the crystal quality improving layer includes an element that exhibits a termination effect.
[12] The method for producing a semiconductor light-emitting element according to [11], wherein the element that exhibits the termination effect is one or more of Si, Ge, Se, S, Al, P, and As.
[13] A semiconductor light emitting device in which a semiconductor layer is laminated on a crystal growth surface of a substrate,
A semiconductor light emitting device comprising a crystal quality improving layer on a back surface of the substrate.
[14] The semiconductor layer includes a buffer layer, a first conductivity type semiconductor layer including a first conductivity type cladding layer, an active layer structure, and a second conductivity type semiconductor layer including a second conductivity type cladding layer in this order. [13] The semiconductor light emitting device according to [13].
[15] The semiconductor light emitting device has a first conductivity type side electrode and a second conductivity type side electrode for injecting current into the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively. The semiconductor light emitting device according to [13] or [14], wherein the first conductivity type side electrode and the second conductivity type side electrode both have a flip chip type structure facing the buffer layer and disposed on the same side .
[16] The semiconductor light emitting device includes a first conductivity type side electrode and a second conductivity type side electrode for injecting current into the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively. [13] or [14] having the vertical conduction type structure in which one of the first conductivity type side electrode and the second conductivity type side electrode is disposed on the semiconductor layer and the other is disposed in contact with the substrate surface. ] A semiconductor light emitting device.
[17] The semiconductor light emitting device according to any one of [13] to [16], wherein the first conductive semiconductor layer, the active layer structure, and the second conductive semiconductor layer are nitride semiconductors.
[18] The semiconductor light emitting element according to the above [17], wherein the nitride semiconductor contains at least one element of In, Ga, Al, and B.
[19] The semiconductor light emitting device according to [13] to [18], wherein a central wavelength λ (nm) of light emitted from the active layer structure satisfies the following formula.
300 (nm) ≦ λ ≦ 430 (nm)
[20] The semiconductor light-emitting device according to any one of [13] to [19], wherein the concentration of hydrogen atoms in the crystal quality improving layer is 1 × 10 21 atoms / cm 3 or more and 1 × 10 22 atoms / cm 3 or less.
[21] The semiconductor light emitting device according to [13] to [20], wherein the substrate is a nitride or an oxide.
[22] The semiconductor light-emitting device according to any one of [13] to [21], wherein the crystal quality improving layer includes one or more of nitride, oxide, and oxynitride.
[23] The nitride, oxide, or oxynitride contains any one or more elements of B, Al, Si, Ti, V, Cr, Mo, Hf, Ta, and W. [22 ] A semiconductor light emitting device.
[24] The semiconductor light emitting device according to any one of [13] to [21], wherein the crystal quality improving layer includes an element that exhibits a termination effect.
[25] The semiconductor light-emitting element of [24], wherein the element that exhibits the termination effect is one or more of Si, Ge, Se, S, Al, P, and As.
[26] The semiconductor light emitting device of [13] to [25], wherein the crystal quality improving layer is removed.
 本発明によれば、基板裏面に結晶品質改善層を形成することで、基板の結晶性を向上し、結晶状態の劣化が少なく、光学損失の少ない、高出力化および高効率化に耐え得る半導体発光素子を提供することができる。また、導電性基板においては接触抵抗の少ない、高出力化および高効率化に耐え得る半導体発光素子を提供することができる。
 よって、本発明の発光素子は、特に、前記フリップチップ型構造や上下導通型構造を有する発光素子において特に有用である。 
According to the present invention, by forming a crystal quality improving layer on the back side of the substrate, the crystallinity of the substrate is improved, the crystal state is less deteriorated, the optical loss is less, and the semiconductor can withstand higher output and higher efficiency. A light-emitting element can be provided. In addition, it is possible to provide a semiconductor light emitting element that can withstand high output and high efficiency with low contact resistance in a conductive substrate.
Therefore, the light-emitting element of the present invention is particularly useful in the light-emitting element having the flip-chip structure or the vertical conduction structure.
 また、本発明の発光素子の製造方法は、前準備などの手間が少なく短時間で実施できるため、製造コストを低減することができる。
 また、特許文献4に記載される様に、基板の加工による物理的または化学的ダメージは、発光波長が470nm未満の比較的短い波長の光(青色光、青紫色光、紫色光、近紫外光、紫外光など)を比較的吸収しやすくする。特に、前述のように、中心波長が430nm以下の紫色光、近紫外光、紫外光においてこの吸収は顕著である。本発明における効果は、特にこのような発光波長や中心波長を有する場合において顕著である。
In addition, the method for manufacturing a light-emitting element according to the present invention can be carried out in a short time with little effort such as preparation, so that manufacturing costs can be reduced.
In addition, as described in Patent Document 4, physical or chemical damage due to processing of a substrate is caused by light having a light emission wavelength of less than 470 nm (blue light, blue violet light, violet light, near ultraviolet light). , Ultraviolet light, etc.) is relatively easy to absorb. In particular, as described above, this absorption is significant in violet light, near ultraviolet light, and ultraviolet light having a center wavelength of 430 nm or less. The effect in the present invention is particularly remarkable when the emission wavelength and the center wavelength are present.
本発明の一実施形態による発光素子の製造方法の一例を説明する断面図である。It is sectional drawing explaining an example of the manufacturing method of the light emitting element by one Embodiment of this invention. 本発明の一実施形態による発光素子の製造方法の一例を説明する断面図である。It is sectional drawing explaining an example of the manufacturing method of the light emitting element by one Embodiment of this invention. 本発明の一実施形態による発光素子の製造方法の一例を説明する断面図である。It is sectional drawing explaining an example of the manufacturing method of the light emitting element by one Embodiment of this invention. 本発明の一実施形態(フリップチップ型構造)による発光素子の断面図である。It is sectional drawing of the light emitting element by one Embodiment (flip chip type structure) of this invention. 本発明の一実施形態(上下導通型構造)による発光素子の断面図である。It is sectional drawing of the light emitting element by one Embodiment (vertical conduction type structure) of this invention. 本発明の一実施形態(上下導通型構造)による発光素子の断面図である。It is sectional drawing of the light emitting element by one Embodiment (vertical conduction type structure) of this invention.
 以下、本発明を詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、その要旨の範囲内であれば種々に変更して実施することができる。
 本明細書において、「積層」または「重なる」の表現は、もの同士が直接接触している状態に加え、本発明の趣旨を逸脱しない限りにおいて、互いに接触していなくても、一方を他方に投影した際に空間的に重なる状態をも指す場合がある。また、「~の上(~の下)」の表現も、もの同士が直接接触して一方が他方の上(下)に配置されている状態に加え、本発明の趣旨を逸脱しない限りにおいて、互いに接触していなくても、一方が他方の上(下)に配置されている状態にも使用する場合がある。さらに、「~の後(前、先)」との表現は、ある事象が別の事象の直後(前)に発生する場合にも、ある事象が別の事象との間に第三の事象を挟んだ後(前)発生する場合にも、どちらにも使用する。また、「接する」の表現は、「物と物が直接的に接触している場合」に加えて、本発明の趣旨に適合する限りにおいて、「物と物が直接的には接触していなくても、第三の部材を介して間接的に接している場合」、「物と物が直接的に接触している部分と、第三の部材を介して間接的に接している部分が混在している場合」などを指す場合もある。
Hereinafter, the present invention will be described in detail. However, the present invention is not limited to the following embodiments, and various modifications can be made without departing from the scope of the invention.
In this specification, the expression “stacked” or “overlapping” refers to the state in which objects are in direct contact with each other, as long as they do not depart from the spirit of the present invention. It may also refer to a spatially overlapping state when projected. In addition, the expression “above (below)” is not limited to the state in which objects are in direct contact with each other being placed above (below) the other, so long as it does not depart from the spirit of the present invention. Even if they are not in contact with each other, they may be used in a state where one is arranged above (below) the other. Furthermore, the expression “after (before, before)” means that even if an event occurs immediately after (before) another event, a third event is Even if it occurs after sandwiching (front), it is used for both. In addition to the expression “when the object is in direct contact”, the expression “in contact with” means that “the object and the object are not in direct contact” as long as they conform to the gist of the present invention. Even if it is in indirect contact via the third member ”,“ the part in which the object is in direct contact with the part in indirect contact through the third member is mixed In some cases, it means “if you are doing”.
 さらに、本発明において、「薄膜結晶成長」とは、いわゆる、MOCVD(Metal Organic Chemical Vapor Deposition)、MBE(Molecular Beam Epitaxy)、プラズマアシストMBE、PLD(Pulsed Laser Deposition)、PED(Pulsed Electron Deposition)、PSD(Pulsed sputtering Deposition)、VPE(Vapor Phase Epitaxy)、LPE(Liquid Phase Epitaxy)法等の結晶成長装置内における薄膜層、アモルファス層、微結晶、多結晶、単結晶、あるいはそれらの積層構造の形成に加えて、その後の薄膜層の熱処理、プラズマ処理等によるキャリアの活性化処理等も含めて薄膜結晶成長と記載する。  Furthermore, in the present invention, “thin film crystal growth” means so-called MOCVD (Metal-Organic-Chemical-Vapor-Deposition), MBE (Molecular-Beam Epitaxy), plasma-assisted MBE, PLD (Pulsed-Laser-Deposition), PED (Pulsed-Electron-Deposition), Formation of thin film layers, amorphous layers, microcrystals, polycrystals, single crystals, or their laminated structures in crystal growth apparatuses such as PSD (Pulsed Sputtering Deposition), VPE (Vapor Phase Epitaxy), LPE (Liquid Phase Epitaxy) In addition to the heat treatment of the thin film layer, the carrier activation treatment by plasma treatment or the like, it is described as thin film crystal growth.
 [1]半導体発光素子の製造方法
 本発明の半導体発光素子の製造方法は、前述の通り、 
 (B)基板の裏面に結晶品質改善層を形成させる工程
を有することを必須要件とする。
 従来の機械処理にCMPやRIEなどの処理を加えて表面の凹凸を小さくする方法とは全く異なり、基板の結晶品質を改善する物質を形成することにより、基板の結晶性を向上し、結晶状態の劣化が少なく、光学損失の少ない、または、導電性基板においては接触抵抗の少ない、高出力化および高効率化に耐え得る半導体発光素子を得ることができる。
[1] Method for Manufacturing Semiconductor Light-Emitting Element The method for manufacturing a semiconductor light-emitting element of the present invention is as described above.
(B) It is essential to have a step of forming a crystal quality improving layer on the back surface of the substrate.
Unlike conventional methods of reducing surface irregularities by adding CMP or RIE to mechanical processing, by forming a substance that improves the crystal quality of the substrate, the crystallinity of the substrate is improved and the crystalline state is improved. Thus, it is possible to obtain a semiconductor light-emitting element that can withstand high output and high efficiency with little degradation of the optical loss, low optical loss, or low contact resistance in a conductive substrate.
 また、本発明の好ましい態様は、
(A)基板の裏面を加工する工程、および
(B)前記基板の裏面に結晶品質改善層を形成させる工程
を有する。
 また、本発明の更に好ましい態様は、
(A)基板の裏面を加工する工程、
(B)前記基板の裏面に結晶品質改善層を形成させる工程、および
(C)前記結晶品質改善層を除去する工程
を有する。
Moreover, the preferable aspect of this invention is:
(A) processing the back surface of the substrate, and (B) forming a crystal quality improving layer on the back surface of the substrate.
Further, a more preferred embodiment of the present invention is
(A) a step of processing the back surface of the substrate;
(B) forming a crystal quality improving layer on the back surface of the substrate; and (C) removing the crystal quality improving layer.
また、本発明の好ましい態様として、前記(A)~(C)工程の前後または間に、半導体層を積層する工程を設けて良い。また、前記(B)工程の前に、前記(A)工程で処理された基板の裏面をエッチングする工程を任意に設けることもできる。
 以下、本発明の好ましい態様を例に挙げて、工程順に沿って詳述する。 
 [1-1] 半導体層を積層する工程
本発明において、半導体層を積層する工程は、前記(A)~(C)工程の前後または間に適宜設けることができるが、通常(A)工程の前に設ける。
Further, as a preferred embodiment of the present invention, a step of stacking a semiconductor layer may be provided before or after the steps (A) to (C). Moreover, before the said (B) process, the process of etching the back surface of the board | substrate processed by the said (A) process can also be provided arbitrarily.
Hereinafter, a preferred embodiment of the present invention will be described as an example, and will be described in detail in the order of steps.
[1-1] Step of Laminating Semiconductor Layer In the present invention, the step of laminating the semiconductor layer can be appropriately provided before or after the steps (A) to (C). Provide in front.
 以下、半導体を積層する工程の1例を、フリップチップ構造を有する半導体発光素子において説明する。図1に示すように、まず基板21を用意し、その表面にバッファ層22、第一導電型クラッド層24、活性層構造25および第二導電型クラッド層26を薄膜結晶成長により順次成膜する。これらの薄膜結晶層の形成には、MOCVD法が望ましく用いられる。しかし、MBE法、PLD法、PED法、PSD法、VPE法、LPE法なども全部の薄膜結晶層、あるいは一部の薄膜結晶層を形成するために用いることが可能である。これらの層構成は、素子の目的等に合わせて適宜変更が可能である。また、薄膜結晶層の形成後には、絶縁膜の形成など、各種の処理を実施してもかまわない。なお、本明細書では、薄膜結晶層の成長後の熱処理等も含めて、「薄膜結晶成長」と記載している。  Hereinafter, an example of a process of stacking semiconductors will be described in the case of a semiconductor light emitting device having a flip chip structure. As shown in FIG. 1, first, a substrate 21 is prepared, and a buffer layer 22, a first conductivity type cladding layer 24, an active layer structure 25 and a second conductivity type cladding layer 26 are sequentially formed on the surface by thin film crystal growth. . The MOCVD method is desirably used for forming these thin film crystal layers. However, the MBE method, the PLD method, the PED method, the PSD method, the VPE method, the LPE method, and the like can also be used to form the entire thin film crystal layer or a part of the thin film crystal layer. These layer configurations can be appropriately changed according to the purpose of the element. Further, after the formation of the thin film crystal layer, various treatments such as formation of an insulating film may be performed. In this specification, the term “thin film crystal growth” includes heat treatment after the growth of the thin film crystal layer.
 薄膜結晶層成長の後、図1に示すように、第二導電型側電極27を形成することが好ましい。即ち、予定されている第二電流注入領域35に対する第二導電型側電極27の形成が、第一導電型側電極28の形成よりも、早く実施されることが望ましい。これは、望ましい形態として第二導電型がp型である場合において、表面に露出しているp型クラッド層の表面に対して各種プロセスを経た後にp側電極を形成すると、GaN系材料では比較的活性化率の劣るp型クラッド層中の正孔濃度をプロセスダメージによって低下させてしまうからである。このため、薄膜結晶成長の後には第二導電型側電極27の形成が他のプロセス工程(たとえば後述する第一導電型側電極形成工程など)よりも先に実施されることが望ましい。  After the thin film crystal layer growth, it is preferable to form the second conductivity type side electrode 27 as shown in FIG. That is, it is desirable that the formation of the second conductivity type side electrode 27 in the planned second current injection region 35 is performed earlier than the formation of the first conductivity type side electrode 28. When the p-type electrode is formed after various processes are performed on the surface of the p-type cladding layer exposed on the surface when the second conductivity type is p-type as a desirable form, this is compared with GaN-based materials. This is because the hole concentration in the p-type cladding layer having a low effective activation rate is lowered by process damage. For this reason, it is desirable that the second conductivity type side electrode 27 is formed prior to other process steps (for example, a first conductivity type side electrode forming step described later) after the thin film crystal growth.
 また、第二導電型側電極27が形成される層が、第二導電型コンタクト層である場合にも同様に、第二導電型半導体層に対してのプロセスダメージを低減することができる。 
 第二導電型側電極27の形成には、スパッタ、真空蒸着、メッキ等種々の成膜技術を適応可能であり、所望の形状とするためには、フォトリソグラフィー技術を用いたリフトオフ法や、メタルマスク等を用いた場所選択的な蒸着等を適宜使用可能である。 
Similarly, when the layer on which the second conductivity type side electrode 27 is formed is the second conductivity type contact layer, the process damage to the second conductivity type semiconductor layer can be reduced.
Various film formation techniques such as sputtering, vacuum deposition, and plating can be applied to the formation of the second conductivity type side electrode 27. In order to obtain a desired shape, a lift-off method using a photolithography technique or a metal A place-selective vapor deposition using a mask or the like can be used as appropriate.
 第二導電型側電極27を形成した後、図2に示すように、第一導電型クラッド層24の一部を露出させる。この工程は、第二導電型クラッド層26、活性層構造25、さらには第一導電型クラッド層24の一部をエッチングにより除去することが好ましい。このエッチングは、後述する第一導電型側電極が第一導電型のキャリアを注入する半導体層を露出することが目的であるので、薄膜結晶層に他の層、たとえば、クラッド層が2層からなる場合や、あるいはコンタクト層がある場合には、その層を含んでエッチングしてもかまわない。  After forming the second conductivity type side electrode 27, as shown in FIG. 2, a part of the first conductivity type cladding layer 24 is exposed. In this step, it is preferable that the second conductivity type cladding layer 26, the active layer structure 25, and further part of the first conductivity type cladding layer 24 are removed by etching. The purpose of this etching is to expose the semiconductor layer in which the first conductivity type side electrode, which will be described later, injects carriers of the first conductivity type, so that another layer such as a clad layer is formed from two layers on the thin film crystal layer. If there is a contact layer, or if there is a contact layer, it may be etched including that layer.
 前記エッチングは、SiNxのような窒化物やSiOx等の酸化物、SiOxy等の酸窒化物をエッチングマスクとして、Cl2等を用いたプラズマエッチング法による公知のドライエッチングを使用することができる。
 次に、図3に示すように、第一導電型側電極28を形成する。
 電極材料としては、第一導電型がn型であるとすると、Ti、Al、AgおよびMoのいずれかから選択される材料、またはすべてを構成元素として含むことが望ましい。電極材料の成膜には、スパッタ、真空蒸着、メッキ等種々の成膜技術を適応可能であり、電極形状とするためには、フォトリソグラフィー技術を用いたリフトオフ法や、メタルマスク等を用いた場所選択的な蒸着等を適宜使用可能である。 
The etching uses a known dry etching by a plasma etching method using Cl 2 or the like using a nitride such as SiN x , an oxide such as SiO x , or an oxynitride such as SiO x N y as an etching mask. be able to.
Next, as shown in FIG. 3, the first conductivity type side electrode 28 is formed.
As the electrode material, when the first conductivity type is n-type, it is desirable that a material selected from Ti, Al, Ag and Mo, or all of them be included as constituent elements. Various film formation techniques such as sputtering, vacuum evaporation, plating, etc. can be applied to the film formation of the electrode material. In order to obtain an electrode shape, a lift-off method using a photolithography technique, a metal mask, or the like was used. Site selective vapor deposition or the like can be used as appropriate.
 第一導電型側電極28は、この例では、第一導電型クラッド層24に接して形成されるが、第一導電型側コンタクト層が形成されるときはそれに接するように形成することができる。 
 以上、半導体を積層する工程を、フリップチップ型構造を有する半導体発光素子の製造方法の一例において説明したが、半導体を積層する工程は、半導体発光素子の構造により適宜異なることはいうまでもない。
In this example, the first conductivity type side electrode 28 is formed in contact with the first conductivity type clad layer 24. However, when the first conductivity type side contact layer is formed, it can be formed in contact with the first conductivity type side contact layer. .
As described above, the step of stacking the semiconductors has been described in an example of the method for manufacturing the semiconductor light emitting device having the flip-chip type structure.
 [1-2](A)基板の裏面を加工する工程
 次に、基板からの光取り出し効果を得る目的で、または基板を薄くする目的で、前記半導体を積層した面と反対側の基板面(裏面)を、研磨処理、ダイシング、またはブラスト処理などの機械的処理や、ドライエッチング、光電気化学エッチングなどの各種エッチング処理により加工する。
[1-2] (A) Step of processing the back surface of the substrate Next, for the purpose of obtaining the light extraction effect from the substrate or for the purpose of thinning the substrate, the substrate surface opposite to the surface on which the semiconductor is laminated ( The back surface is processed by mechanical processing such as polishing, dicing, or blasting, and various etching processes such as dry etching and photoelectrochemical etching.
 [1-2-1]機械的処理
 研磨処理、ダイシング、ブラスト処理などの機械的処理は、公知の方法を用いることができる。
 例えば、研磨処理の場合は以下の手順で研磨する。半導体を積層した面に、レジストなどの保護膜を形成し、研磨装置のウエハー貼り付け板にワックスを用いて貼り付ける。次に、直径0.1~50μm程度のダイヤモンドなどのスラリーを用いて、研磨盤により、基板の裏面を研磨する。この際に、適宜基板を所望の厚み、粗さに加工することができる。その後、研磨装置のウエハー貼り付け板からウエハーを外して洗浄し、貼り付け時のワックスや保護膜を除去し、乾燥させる。
[1-2-1] Mechanical Processing Known methods can be used for mechanical processing such as polishing, dicing, and blasting.
For example, in the case of a polishing process, polishing is performed according to the following procedure. A protective film such as a resist is formed on the surface on which the semiconductors are stacked, and is attached to the wafer attaching plate of the polishing apparatus using wax. Next, the back surface of the substrate is polished by a polishing disk using a slurry such as diamond having a diameter of about 0.1 to 50 μm. At this time, the substrate can be appropriately processed to a desired thickness and roughness. Thereafter, the wafer is removed from the wafer attaching plate of the polishing apparatus and cleaned, and the wax and protective film at the time of attaching are removed and dried.
 ダイシングの場合は、基板裏面の表層をダイサーにより切り込むことにより、基板裏面に粗面化や各種の形状を形成(texturing)することができる。また、個々の発光素子に分離するための割溝を形成することもできる。この場合、切断に用いるブレードを適宜選定し、基板裏面への食い込み量を適宜設定することができる。
 ブラスト処理は、微粒子粉体を基板裏面に高圧で吹き付け、基板裏面の表層を削る方法である。微粒子粉体は、基板裏面が、望ましくない化学的な影響を受けない化合物などが好ましく、通常アルミナ、炭化珪素などを用いることができる。微粒子粉体の粒子径は、通常10以上100μm程度である。ブラスト圧力は通常0.3~0.7MPa程度である。照射時間は通常5~20秒程度である。前記微粒子粉体の種類、粒子径、ブラスト圧力、および照射時間は、目標とする基板厚み、または粗面化の程度により適宜設定することができる。
In the case of dicing, a surface layer on the back surface of the substrate is cut with a dicer, so that roughening or various shapes can be formed on the back surface of the substrate. Further, it is possible to form a dividing groove for separating the light emitting elements. In this case, the blade used for cutting can be selected as appropriate, and the amount of biting into the back surface of the substrate can be set as appropriate.
Blasting is a method in which fine particle powder is sprayed onto the back surface of the substrate at a high pressure to scrape the surface layer on the back surface of the substrate. The fine particle powder is preferably a compound that does not have an undesirable chemical effect on the back surface of the substrate, and usually alumina, silicon carbide, or the like can be used. The particle diameter of the fine particle powder is usually about 10 to 100 μm. The blast pressure is usually about 0.3 to 0.7 MPa. The irradiation time is usually about 5 to 20 seconds. The type, particle diameter, blast pressure, and irradiation time of the fine particle powder can be appropriately set depending on the target substrate thickness or the degree of roughening.
 [1-2-2]エッチング処理
 エッチング処理は、前記機械的処理の代わりに用いることができるが、前記機械的処理を行った後で実施することもできる。即ち、本発明の半導体発光素子においては、(B)工程における結晶品質改善層形成前に、予め基板裏面の物理的ダメージをある程度軽減させ、より精密な加工を行うために、前記加工工程の後に、エッチングにより表面の凹凸を小さくする工程を任意に設けることができる。
[1-2-2] Etching Treatment Etching treatment can be used in place of the mechanical treatment, but can also be performed after the mechanical treatment. That is, in the semiconductor light emitting device of the present invention, before the formation of the crystal quality improving layer in the step (B), in order to reduce physical damage on the back surface of the substrate to some extent and perform more precise processing, The step of reducing the unevenness of the surface by etching can be arbitrarily provided.
 エッチングは、ドライエッチング、ウェットエッチングのいずれを用いても良いが、反応性イオンエッチング(RIE)などを用いたドライエッチングや、光電気化学エッチングが好適である。
 RIEは、より精密な基板裏面の加工を行う上で好ましい。RIEを行う際には、容量結合性のプラズマ励起方法であるCCP型の装置、誘導結合性のプラズマ励起方法であるICP型の装置のいずれを用いてもよい。プラズマ励起方法は適宜選択可能であるが、GaNやサファイア等の比較的硬質な基板材料を加工する際には、プラズマ密度が高く、反応性に富むプラズマ種を励起可能な、ICP型装置によるドライエッチングが好ましい。
As the etching, either dry etching or wet etching may be used, but dry etching using reactive ion etching (RIE) or photoelectrochemical etching is preferable.
RIE is preferable for processing the back surface of the substrate more precisely. When performing RIE, either a CCP type apparatus that is a capacitively coupled plasma excitation method or an ICP type apparatus that is an inductively coupled plasma excitation method may be used. The plasma excitation method can be selected as appropriate. However, when processing a relatively hard substrate material such as GaN or sapphire, a dry process using an ICP type apparatus that can excite a plasma species having a high plasma density and a high reactivity. Etching is preferred.
 ドライエッチングに使用するプラズマ種の元となる原料ガスは、加工したい対象材料によって適宜選択が可能であるが、例えばGaN基板を加工する場合には、Clを構成元素として含むガス種を用いるか、複数の混合ガスの中にClガスを含む構成とする事が好ましい。Clを構成元素として含むガス種としてはCCl、CFCl、SiCl,SiFClなどを挙げることができる。複数の混合ガスの中にClガスを含む構成の例としてはClとArの混合ガスなどを挙げることができる。また、これらの構成をさらに複合してもよい。 The source gas that is the source of the plasma species used for dry etching can be appropriately selected depending on the target material to be processed. For example, when processing a GaN substrate, a gas species containing Cl as a constituent element is used. A configuration in which Cl 2 gas is included in a plurality of mixed gases is preferable. Examples of the gas species containing Cl as a constituent element include CCl 4 , CF 2 Cl 2 , SiCl 4 , and SiF 2 Cl 2 . As an example of a configuration in which Cl 2 gas is contained in a plurality of mixed gases, a mixed gas of Cl 2 and Ar can be given. These configurations may be further combined.
 ウェットエッチングは、さらに精密な基板裏面の加工を行うために好適である。ウェットエッチングは、対象となる基板によって適宜エッチャントを選択する事が可能であるが、例えばGaN等のN面を粗面加工する場合には、光電気化学エッチングなどの手法を用いることができる。光電気化学エッチングは、例えばKOH、HCl、HFなどを用いて、紫外線(UV)などのバンドギャップ以上のエネルギーを有する光を照射しながらエッチングを行う方法である。 Wet etching is suitable for processing the back surface of the substrate more precisely. For wet etching, an etchant can be selected as appropriate depending on a target substrate. For example, when an N surface such as GaN is roughened, a method such as photoelectrochemical etching can be used. Photoelectrochemical etching is a method of performing etching using, for example, KOH, HCl, HF, or the like while irradiating light having energy greater than or equal to a band gap such as ultraviolet (UV).
 [1-2-3]基板準備時における加工
 なお、一般に基板は、バルク結晶からワイヤーソーなどで切り出す工程を経て準備される。この切り出し工程において、通常、半導体を積層する面は十分な結晶品質が確保されるように準備される。これに対して、基板裏面は基板作成時の各種加工ダメージが残存したままになっていることが多い。すなわち、基板は、前述の基板からの光取り出し効果を得る目的で、または基板を薄くする目的で加工をしなくとも、その裏面にはダメージが内在していることが多い。したがって、このような基板をそのまま準備する場合も、切り出しなどの加工を行っているため、本発明においては(A)工程が含まれているとする。
 ただし、基板を製品として製造する場合、半導体を積層する面だけでなく、基板裏面においても各種加工ダメージを完全に除去する処理を行うことがある。この場合は、本発明が期待する結晶品質改善効果の余地がなく、かかる処理は(A)工程に定義する「加工」には含まれない。
[1-2-3] Processing at the time of substrate preparation Generally, a substrate is prepared through a process of cutting out from a bulk crystal with a wire saw or the like. In this cutting-out process, the surface on which the semiconductors are stacked is usually prepared so as to ensure sufficient crystal quality. On the other hand, various processing damages at the time of substrate production often remain on the back surface of the substrate. That is, even if the substrate is not processed for the purpose of obtaining the light extraction effect from the substrate described above or for the purpose of thinning the substrate, damage is often present on the back surface. Therefore, even when such a substrate is prepared as it is, since processing such as cutting is performed, it is assumed that step (A) is included in the present invention.
However, when a substrate is manufactured as a product, there are cases where various processing damages are completely removed not only on the surface on which the semiconductor is laminated but also on the back surface of the substrate. In this case, there is no room for the crystal quality improvement effect expected by the present invention, and such processing is not included in the “processing” defined in step (A).
 [1-3](B)前記基板の裏面に結晶品質改善層を形成させる工程
 次に、基板の裏面に結晶品質改善層を形成させる。結晶品質改善層とは、少なくとも以下の(a)又は(b)のいずれかの機能を備える層をいう。
(a)基板裏面の結晶性の向上機能
(b)加工処理などによるダメージを回復させる機能
 また、結晶品質改善層は、更に(c)プロセス途上における保護層としての機能、も果たすことができる。
 結晶品質改善層は、少なくとも上記(a)または(b)のいずれかの機能を有するものであれば特に限定はないが、その結晶品質改善メカニズムは、例えば以下に示されるものが考えられる。
(i)基板のダメージの原因の一つであるミクロにみた化学量論的組成とのズレを抑制し、その結晶性を改善する。
(ii)ダメージを受けた基板裏面を構成する元素のダングリングボンド(未結合手)を終端させることで(終端効果)、結晶品質改善効果を発現する。
 例えば、このような基板裏面の化学量論的組成の状態や、ダングリングボンドの終端状態は、XPS(X線光電子分光法;X-ray photoelectron spectroscopy)により確認することができる。例えば、基板がGaNであって、結晶品質改善層として薄膜のSiNxを当該基板裏面に形成した場合などは、SiNx層を分析に適した薄さにした後にXPSを測定するとGaとNの組成比、GaやNの結合状態を確認することができる。
[1-3] (B) Step of forming a crystal quality improving layer on the back surface of the substrate Next, a crystal quality improving layer is formed on the back surface of the substrate. The crystal quality improving layer refers to a layer having at least one of the following functions (a) and (b).
(A) Function for improving crystallinity on back surface of substrate (b) Function for recovering damage caused by processing treatment Further, the crystal quality improving layer can further function as (c) a protective layer during the process.
The crystal quality improvement layer is not particularly limited as long as it has at least one of the functions (a) and (b), but the crystal quality improvement mechanism may be, for example, as shown below.
(I) Suppressing the deviation from the microscopic stoichiometric composition, which is one of the causes of substrate damage, and improving its crystallinity.
(Ii) Terminating the dangling bonds (unbonded hands) of the elements constituting the damaged back surface of the substrate (termination effect), and exhibiting the crystal quality improvement effect.
For example, the stoichiometric composition state of the back surface of the substrate and the dangling bond termination state can be confirmed by XPS (X-ray photoelectron spectroscopy; X-ray photoelectron spectroscopy). For example, when the substrate is GaN and a thin SiNx film is formed as the crystal quality improving layer on the back surface of the substrate, the composition ratio of Ga and N is determined by measuring XPS after thinning the SiNx layer suitable for analysis. , Ga and N bonding states can be confirmed.
 この結晶品質改善層の改善効果のメカニズムに限定はないが、例えば以下の様に、結晶品質改善層の材質を適宜選択することで、本発明の目的を達成することができる。
 [1-3-1]窒化物、酸化物、酸窒化物を含む品質改善層
 基板は、前記加工処理などにより、基板を構成する元素の中で蒸気圧の高い元素が脱離することがある。例えば、GaNやAlNなどの窒化物基板の裏面に加工処理などを施した場合は、基板裏面から窒素抜けが生じ、これが品質ダメージの原因となることがある。
The mechanism of the improvement effect of the crystal quality improvement layer is not limited. For example, the object of the present invention can be achieved by appropriately selecting the material of the crystal quality improvement layer as follows.
[1-3-1] Quality Improvement Layer Containing Nitride, Oxide, Oxynitride In the substrate, an element having a high vapor pressure may be desorbed from the elements constituting the substrate due to the above-described processing. . For example, when processing or the like is performed on the back surface of a nitride substrate such as GaN or AlN, nitrogen escape occurs from the back surface of the substrate, which may cause quality damage.
 そこで、結晶品質改善層としては、その形成時において、基板を構成する元素の中で蒸気圧の高い元素をプラズマ化するなどの方法で活性化して、供給する事が好ましいと考えられる。
 例えば、結晶品質改善層は、それ自体が窒素を含有する場合には、比較的活性な窒素が基板裏面に供給されるため、さまざまな素子作製工程に起因する窒素抜けが生じた基板裏面に対しての窒素供給源となり、ミクロにみた化学量論的組成とのズレを抑制し、その結晶性を改善すると考えられる。さらには、この結晶性の改善は、基板裏面のみならず、発光素子作製途上で、素子構造の側壁、表面などに意図せず導入される各種のダメージに対して、場所を問わずに期待され、その効果は、基板またはその上に形成された薄膜結晶層のPL(Photo Luminescence)発光強度の改善、基板側から出射される薄膜結晶層のEL(Electro Luminescence)発光強度の改善、キャリア濃度の改善等に顕著に現れる。また、結晶品質改善層は、それそのものがプロセス途上における保護層としての機能も果たすことができる。
Therefore, it is considered that the crystal quality improving layer is preferably supplied by activating the element having a high vapor pressure among the elements composing the substrate by a method such as plasma.
For example, when the crystal quality improving layer itself contains nitrogen, relatively active nitrogen is supplied to the backside of the substrate, so that the nitrogen backdrop caused by various element manufacturing processes occurs against the backside of the substrate. It is thought that it will be the source of all nitrogen, suppress the deviation from the microscopic stoichiometric composition, and improve its crystallinity. Furthermore, this improvement in crystallinity is expected regardless of the location against various damages that are unintentionally introduced not only on the back surface of the substrate but also on the side walls and surface of the device structure during the light emitting device fabrication process. The effect is that the PL (Photo Luminescence) emission intensity of the substrate or the thin film crystal layer formed thereon is improved, the EL (Electro Luminescence) emission intensity of the thin film crystal layer emitted from the substrate side, the carrier concentration Prominent in improvement. The crystal quality improving layer itself can also function as a protective layer during the process.
 例えば基板が窒化物である場合、結晶品質改善層が上記のような役割を果たすためには、結晶品質改善層は、窒素および水素を含有していることが好ましく、結晶品質改善層の形成時に原料として比較的活性な窒素と水素を、共に供給して形成する事が好ましい。
 このような観点から、結晶品質改善層の材料は、基板に応じて適宜変更することができ、通常窒化物、酸化物、酸窒化物を含むことが好ましく、B、Al、Si、Ti、V、Cr、Mo、Hf、Ta、またはWのいずれか1種またはそれ以上の元素を含む窒化物、酸化物、酸窒化物を含むことが更に好ましい。このような、窒化物、酸化物、酸窒化物としては、AlNx、AlOxy、SiNx、SiOxy、TiNx、TiOxy、CrNx、CrOxyなどを挙げることができる。中でもSiNxやSiOxyは非常に好ましい。なお、x、yは任意の正数を示す。
For example, when the substrate is a nitride, in order for the crystal quality improving layer to play the above role, the crystal quality improving layer preferably contains nitrogen and hydrogen. It is preferable to form by supplying both relatively active nitrogen and hydrogen as raw materials.
From this point of view, the material of the crystal quality improving layer can be appropriately changed according to the substrate, and usually preferably contains a nitride, an oxide, or an oxynitride. B, Al, Si, Ti, V It is further preferable to contain a nitride, oxide, or oxynitride containing one or more elements of any one of Cr, Mo, Hf, Ta, and W. Examples of such nitrides, oxides, and oxynitrides include AlN x , AlO x N y , SiN x , SiO x N y , TiN x , TiO x N y , CrN x , and CrO x N y. be able to. Of these, SiN x and SiO x N y are very preferable. Note that x and y are arbitrary positive numbers.
 上記のように、例えば結晶品質改善層が窒化物や酸窒化物を含む場合は、窒素抜けの生じた基板裏面に対して窒素の供給源となり、基板裏面の結晶性を向上させることができると考えられる。しかも、窒素の供給源が層として形成されているので、例えば薄膜結晶層の表面にアンモニア処理を施すことなどによって窒素抜けを補うようにする方法を基板裏面に応用した場合と比較しても、長期間にわたって安定して基板裏面の結晶性を向上させる機能を維持することができると考えられる。 As described above, for example, when the crystal quality improving layer contains nitride or oxynitride, it becomes a supply source of nitrogen to the backside of the substrate from which nitrogen loss has occurred, and the crystallinity of the backside of the substrate can be improved. Conceivable. Moreover, since the supply source of nitrogen is formed as a layer, for example, compared with a case where a method of supplementing nitrogen depletion by applying ammonia treatment to the surface of the thin film crystal layer is applied to the back surface of the substrate, It is considered that the function of improving the crystallinity of the back surface of the substrate stably over a long period can be maintained.
 同様に、基板にAlやLiAlOなどの酸化物を用いた場合は、例えば酸化物を含む結晶品質改善層を形成することにより、酸素の供給源として基板裏面の結晶性を向上させることができると考えられる。
 なお、GaNなどの六方晶においては、その結晶面によって、構成元素の中で蒸気圧の高い元素が最表面に露出する割合が異なるが、結晶品質改善層を形成する効果は、構成元素の中で蒸気圧の高い元素が最表面に露出しているほど、大きいと考えられる。例えば、GaN基板を用いた場合、蒸気圧の高い元素である窒素が最表面に露出している割合が大きい結晶面ほど結晶品質改善効果が大きい。従って、c-面、m面、c+面の順にその効果が期待されるものと考えられる。
Similarly, when an oxide such as Al 2 O 3 or LiAlO 3 is used for the substrate, for example, a crystal quality improving layer containing the oxide is formed, thereby improving the crystallinity of the back surface of the substrate as an oxygen supply source. It is considered possible.
In hexagonal crystals such as GaN, the proportion of elements with high vapor pressure exposed on the outermost surface differs depending on the crystal plane, but the effect of forming a crystal quality improvement layer is It is considered that the higher the vapor pressure element is exposed on the outermost surface, the larger. For example, when a GaN substrate is used, the crystal quality improvement effect is larger as the crystal plane has a higher ratio of nitrogen, which is an element having a high vapor pressure, exposed to the outermost surface. Therefore, the effect is expected in the order of c-plane, m-plane, and c + -plane.
 [1-3-2]終端効果を発現する元素を含む品質改善層
 また、基板は、前記加工処理などにより、被加工最表面に高密度に存在するダングリングボンド(未結合手)の終端によって、基板の光学損失等が低減しているとも考えられる。このような場合には、結晶品質改善層としては、終端効果が顕著に発現する元素が含まれている事が好ましい。終端効果を発現する元素としては、Si、Ge、Se、S、Al、P、Asなどを挙げることができる。中でもSi、Ge、Se、Sが好ましく、Siは更に好ましい。
[1-3-2] Quality improvement layer containing an element exhibiting a termination effect In addition, the substrate is formed by termination of dangling bonds (unbonded hands) existing at high density on the outermost surface to be processed by the above processing or the like. It is also considered that the optical loss of the substrate is reduced. In such a case, it is preferable that the crystal quality improving layer contains an element that significantly exhibits a termination effect. Examples of the element that exhibits the termination effect include Si, Ge, Se, S, Al, P, and As. Of these, Si, Ge, Se, and S are preferable, and Si is more preferable.
 結晶品質改善層が、前記元素を単体として含む場合には、終端効果を発現する元素そのものもある程度のダングリングボンドを有していて、加工された基板表面に存在する基板側のダングリングボンドと結合しやすい形態となっていることが好ましい。従って、元素単体である場合には、多結晶であっても、単結晶であってもその効果はある程度発現すると考えられるが、アモルファスであることが最も好ましい。 When the crystal quality improving layer contains the element as a simple substance, the element itself that exhibits the termination effect also has a certain amount of dangling bonds, and the dangling bonds on the substrate side existing on the processed substrate surface It is preferable that it is easy to combine. Therefore, in the case of a single element, the effect is considered to be exhibited to some extent whether it is polycrystalline or single crystal, but amorphous is most preferable.
 終端効果を発現する元素を含む品質改善層は、基板の結晶面に関係なくその効果が期待されると考えられる。
 [1-3-3]結晶品質改善層の形成方法
 結晶品質改善層を形成するためには、プラズマCVD法、イオンプレーティング法、イオンアシスト蒸着法、イオンビームスパッタ法などの各種成膜方法を使用する事が可能である。以下、窒化物または酸窒化物を結晶品質改善層に用いる場合について詳述する。
A quality improvement layer containing an element that exhibits a termination effect is expected to be effective regardless of the crystal plane of the substrate.
[1-3-3] Method for Forming Crystal Quality Improvement Layer In order to form the crystal quality improvement layer, various film formation methods such as plasma CVD, ion plating, ion assisted vapor deposition, and ion beam sputtering are used. It is possible to use it. Hereinafter, the case where nitride or oxynitride is used for the crystal quality improvement layer will be described in detail.
 結晶品質改善層を形成する際の原料は、窒素原料としては、少なくともアンモニアを含有するガス種を用いることが好ましく、酸素原料としては、少なくともNOを含有するガス種を用いることが好ましい。
 結晶品質改善層は、プラズマCVD法、イオンプレーティング法、イオンアシスト蒸着法、イオンビームスパッタ法などの各種成膜方法を使用する事が可能である。結晶品質改善層の形成時に比較的活性な原料として供給しうる方法が好ましい。 
As the raw material for forming the crystal quality improving layer, it is preferable to use a gas species containing at least ammonia as the nitrogen raw material, and it is preferable to use a gas species containing at least N 2 O as the oxygen raw material.
For the crystal quality improving layer, various film forming methods such as a plasma CVD method, an ion plating method, an ion assist vapor deposition method, and an ion beam sputtering method can be used. A method that can be supplied as a relatively active raw material during the formation of the crystal quality improving layer is preferred.
 本明細書中における活性な原料とは、原料そのものが、ラジカル化、プラズマ化、イオン化、場合によっては原子状化しており、分子状の、化学的に安定な状況でないことを総称して使用している。
 たとえば、プラズマCVD法では、アンモニア(NH3)を原料ガスとして用い、SiNxを形成する事が望ましい。ここでは、NH3はプラズマ化され、比較的活性な窒素と水素を供給しつつ結晶品質改善層が形成される。また、イオンアシスト蒸着法においてもSi原料を蒸着しつつ、イオン銃によってNH3等をプラズマ化してSiNxを作製する事が可能である。イオンビームスパッタ法においては、たとえばSiターゲットをArやN2でスパッタしつつイオン銃によってNH3等をプラズマ化してSiNxを作製する事が可能である。また、RFスパッタ法においても、たとえばSiNxターゲットをArやN2でスパッタしつつイオン銃によってN2とH2を独立にプラズマ化して供給しつつ、SiNxを作製する事も可能である。 
In the present specification, the active raw material is used generically to mean that the raw material itself is radicalized, plasmaized, ionized, or atomized in some cases, and is not in a molecular, chemically stable state. ing.
For example, in the plasma CVD method, it is desirable to form SiN x using ammonia (NH 3 ) as a source gas. Here, NH 3 is turned into plasma, and a crystal quality improving layer is formed while supplying relatively active nitrogen and hydrogen. Further, in the ion-assisted deposition method, it is possible to produce SiN x by forming NH 3 or the like into plasma using an ion gun while depositing a Si raw material. In the ion beam sputtering method, for example, SiN x can be produced by sputtering NH 3 or the like with an ion gun while sputtering a Si target with Ar or N 2 . Also in the RF sputtering method, for example, it is possible to produce SiN x while sputtering a SiN x target with Ar or N 2 and supplying N 2 and H 2 separately by plasma using an ion gun.
 これらの、比較的活性な窒素と水素を共に原料として供給しつつ結晶品質改善層を形成する方法の中でも、プラズマCVD法は最も好ましい。これは他の成膜方法に比較してステップカバレッジも良好であって、かつ、膜中のストレス制御も容易なため、発光素子構造の所望の部分を被覆するのに好都合であるからである。 
 なお、窒素を含有し比較的水素が少ない膜は、N2ガスを導入し、SiターゲットをAr等でスパッタして、N2あるいはArプラズマ中でSiNx膜を形成する反応性スパッタ法などでも形成することができるが、基板裏面の品質を改善する効果、すなわち、基板裏面の光学損失を抑制するなどの効果はほとんどない。一方、NH3等を原料として導入してプラズマCVD法などで作成した膜、H2とN2プラズマを独立に供給して形成した膜では、水素原子の濃度が高くなっている。これは、基板裏面の光学損失を抑制する効果を奏すると考えられる活性な窒素が基板や品質改善層に取り込まれることにより、NH3由来の活性な水素も同時に取り込まれることに起因する。活性な水素の直接的な効果は必ずしも明らかではないが、各種プロセスによって汚染された基板裏面をクリーニングする効果、基板裏面に存在するダングリングボンドを終端する効果、膜の過度な内部応力を低減する効果などがあると思われる。
Among these methods of forming the crystal quality improving layer while supplying both relatively active nitrogen and hydrogen as raw materials, the plasma CVD method is most preferable. This is because the step coverage is good as compared with other film forming methods and the stress control in the film is easy, so that it is convenient to cover a desired portion of the light emitting element structure.
A film containing nitrogen and relatively little hydrogen may be a reactive sputtering method in which N 2 gas is introduced, a Si target is sputtered with Ar or the like, and a SiN x film is formed in N 2 or Ar plasma. Although it can be formed, there is almost no effect of improving the quality of the back surface of the substrate, ie, suppressing the optical loss of the back surface of the substrate. On the other hand, in the film formed by introducing NH 3 or the like as a raw material by a plasma CVD method or the like, and formed by independently supplying H 2 and N 2 plasma, the concentration of hydrogen atoms is high. This is because active nitrogen, which is considered to have an effect of suppressing the optical loss on the back surface of the substrate, is taken into the substrate and the quality improvement layer, so that active hydrogen derived from NH 3 is also taken at the same time. The direct effect of active hydrogen is not always clear, but it cleans the backside of the substrate contaminated by various processes, terminates dangling bonds on the backside of the substrate, and reduces excessive internal stress in the film There seems to be an effect.
 本発明者らの実験によれば、比較的活性な窒素と水素のいずれかを原料として供給しない方法、例えば、N2ガスを導入し、SiターゲットをArガスでスパッタする、反応性スパッタ法などにおいては、さまざまな成膜方法、成膜条件において実験を繰り返し、成膜されたSiNx膜の水素原子の濃度を測定したところ、いずれの膜からも1020atoms/cm3オーダーの水素しか検出されなかった。これは、成膜環境中に残留している水分に由来する水素と考えられる。 According to the experiments of the present inventors, a method in which either of relatively active nitrogen and hydrogen is not supplied as a raw material, for example, a reactive sputtering method in which N 2 gas is introduced and a Si target is sputtered with Ar gas, etc. In the experiment, the experiment was repeated with various film formation methods and conditions, and the concentration of hydrogen atoms in the formed SiN x film was measured. As a result, only hydrogen of the order of 10 20 atoms / cm 3 was detected from any film. Was not. This is considered to be hydrogen derived from moisture remaining in the film forming environment.
 一方、比較的活性な窒素と水素を共に原料として供給する、例えば、NH3等を原料として導入するプラズマCVD法によって成膜されたSiNx膜においても、また、N2とH2を独立にプラズマ化して供給し成膜したSiNx膜においても、さまざまな成膜条件において実験を繰り返し、SiNx膜の水素原子の濃度を測定した。この結果、成膜条件を変化させても、水素原子の濃度は常に、1×1021atoms/cm3以上であって、かつ、1×1022atoms/cm3以下であった。これは原料のひとつであるNH3、あるいはH2とN2がプラズマ化され、その中に比較的活性な窒素と水素を共に含んでおり、この比較的活性な水素が成膜中に原料として使用された証として、当該SiNx膜中に取り込まれたものと考えられる。  On the other hand, in a SiN x film formed by a plasma CVD method in which relatively active nitrogen and hydrogen are supplied as raw materials, for example, NH 3 or the like is introduced as a raw material, N 2 and H 2 are also independently supplied. Experiments were repeated under various film forming conditions for the SiN x film that was supplied in plasma and deposited, and the concentration of hydrogen atoms in the SiN x film was measured. As a result, even when the film forming conditions were changed, the concentration of hydrogen atoms was always 1 × 10 21 atoms / cm 3 or more and 1 × 10 22 atoms / cm 3 or less. This is because NH 3 , which is one of the raw materials, or H 2 and N 2 is turned into plasma and contains both relatively active nitrogen and hydrogen, and this relatively active hydrogen is used as a raw material during film formation. As a proof of use, it is considered that it was incorporated into the SiN x film.
 よって、結晶品質改善層における水素原子の濃度は特に限定されないが、好ましくは1×1021atoms/cm3以上、1×1022atoms/cm3以下の範囲、より好ましくは2×1021atoms/cm3以上、7×1021atoms/cm3以下の範囲である。最も好ましくは3×1021atoms/cm3以上、5×1021atoms/cm3以下の範囲である。水素原子と同様、結晶品質改善層における窒素原子の濃度も特に限定されないが、好ましくは30atomic%以上、60atomic%以下の範囲、より好ましくは40atomic%以上、50atomic%以下の範囲である。  Accordingly, the concentration of hydrogen atoms in the crystal quality improving layer is not particularly limited, but is preferably in the range of 1 × 10 21 atoms / cm 3 or more and 1 × 10 22 atoms / cm 3 or less, more preferably 2 × 10 21 atoms / cm 3. cm 3 or more in the range of 7 × 10 21 atoms / cm 3 or less. Most preferably, it is in the range of 3 × 10 21 atoms / cm 3 or more and 5 × 10 21 atoms / cm 3 or less. Similar to hydrogen atoms, the concentration of nitrogen atoms in the crystal quality improving layer is not particularly limited, but is preferably in the range of 30 atomic% to 60 atomic%, more preferably in the range of 40 atomic% to 50 atomic%.
 なお、膜中の水素原子の濃度はSIMS(Secondary Ion Mass Spectroscopy)、窒素原子の濃度は、XPS(X-ray Photoelectron Spectroscopy)で測定しており、その測定誤差は、SIMSの場合、±20%程度、XPSの場合、±30%程度と考えられる。いずれの方法でも、低エネルギーのイオンミリングを併用し、膜の深さ方向に対するプロファイルを測定し、これらの結果から濃度を得ている。 The hydrogen atom concentration in the film is measured by SIMS (Secondary Ion Mass Spectroscopy), the nitrogen atom concentration is measured by XPS (X-ray Photoelectron Spectroscopy), and the measurement error is ± 20% in the case of SIMS. In the case of XPS, it is considered to be about ± 30%. In any method, low energy ion milling is used in combination, the profile in the depth direction of the film is measured, and the concentration is obtained from these results.
 この膜中の水素原子の濃度等に違いによって、結晶品質改善層として使用可能なSiNx膜の特徴はその屈折率にも現れる。先ず、比較的活性な窒素と水素を共に原料として供給し、結晶品質改善層として使用可能なSiNx膜を形成した。具体的には、NH3を原料として導入するプラズマCVD法などによって成膜する際に、さまざまな、製造方法、成膜条件において実験を繰り返し、SiNx膜の屈折率を測定した。この結果、製造条件、成膜条件を変化させても、屈折率は、405nmの波長において1.80以上2.00以下、633nmの波長において1.75以上1.95以下であった。これは原料のひとつであるNH3がプラズマ化され、その中に比較的活性な窒素と水素を共に含んでおり、この比較的活性な水素が成膜中に原料として使用された証として、当該SiNx膜中に水素が取り込まれ、活性な水素を含まない場合に比較して低屈折率をもつ膜になっているものと考えられる。  Depending on the concentration of hydrogen atoms in the film, the characteristics of the SiN x film that can be used as the crystal quality improving layer also appear in its refractive index. First, both relatively active nitrogen and hydrogen were supplied as raw materials to form a SiN x film that could be used as a crystal quality improving layer. Specifically, when forming a film by a plasma CVD method using NH 3 as a raw material, the experiment was repeated under various manufacturing methods and film forming conditions, and the refractive index of the SiN x film was measured. As a result, even when the manufacturing conditions and film forming conditions were changed, the refractive index was 1.80 or more and 2.00 or less at a wavelength of 405 nm, and 1.75 or more and 1.95 or less at a wavelength of 633 nm. This is because NH 3, which is one of the raw materials, is turned into plasma and contains both relatively active nitrogen and hydrogen. As evidence that this relatively active hydrogen was used as the raw material during film formation, It is considered that hydrogen is taken into the SiN x film and the film has a lower refractive index than when no active hydrogen is contained.
 一方、前記のとおり、比較的活性な窒素と水素のいずれかを原料として供給しない方法、例えば、N2ガスを導入し、SiターゲットをArガスでスパッタする、反応性スパッタ法などにおいて形成したSiNx膜は結晶品質改善層としては機能しないが、このような膜を、さまざまな成膜方法、成膜条件において実験を繰り返し、成膜されたSiNx膜の屈折率を測定した。この結果、SiNx膜の屈折率は405nmの波長においては、2.00より大きく2.15以下、633nmの波長においては1.95より大きく2.10以下であった。  On the other hand, as described above, SiN formed in a method in which either of relatively active nitrogen and hydrogen is not supplied as a raw material, for example, reactive sputtering, in which N 2 gas is introduced and Si target is sputtered with Ar gas. Although the x film does not function as a crystal quality improving layer, such a film was repeatedly tested in various film forming methods and film forming conditions, and the refractive index of the formed SiN x film was measured. As a result, the refractive index of the SiN x film was greater than 2.00 and less than or equal to 2.15 at a wavelength of 405 nm, and greater than 1.95 and less than or equal to 2.10 at a wavelength of 633 nm.
 よって、結晶品質改善層の屈折率は、特に以下の数字に限定はされないが、好ましくは405nmの波長における屈折率が1.80以上2.00以下であって、また633nmの波長においては、屈折率が1.75以上1.95以下である。 Therefore, the refractive index of the crystal quality improving layer is not particularly limited to the following numbers, but preferably the refractive index at a wavelength of 405 nm is 1.80 or more and 2.00 or less, and is refracted at a wavelength of 633 nm. The rate is 1.75 or more and 1.95 or less.
 結晶品質改善層の形成温度は特に限定されないが、その下限は、150℃以上が好ましく、200℃以上がより好ましく、250℃以上が最も好ましい。また、その上限は450℃以下が好ましく、400℃以下がより好ましく、350度以下が最も好ましい。これは、温度が低すぎると必要な反応が誘起されにくくなり、一方で温度が高すぎると期待しない副次的な反応が過剰となるためである。
 [1-4](C)前記結晶品質改善層を除去する工程
 本発明においては、基板裏面に結晶品質改善層を形成させたまま、半導体発光素子を実用に供することができるが、一旦前記結晶品質改善層を形成すると、これを除去した場合でも基板裏面の結晶品質は改善される。したがって、結晶品質改善層を除去する工程をさらに設けることができる。結晶品質改善層が透明でない場合や、基板と結晶品質改善層との間の屈折率差により取り出し効率が悪化する場合は、結晶品質改善層は除去する方が好ましい。
The formation temperature of the crystal quality improving layer is not particularly limited, but the lower limit is preferably 150 ° C. or higher, more preferably 200 ° C. or higher, and most preferably 250 ° C. or higher. Moreover, the upper limit is preferably 450 ° C. or lower, more preferably 400 ° C. or lower, and most preferably 350 ° C. or lower. This is because if the temperature is too low, it is difficult to induce the necessary reaction, while if the temperature is too high, side reactions that are not expected are excessive.
[1-4] (C) Step of removing the crystal quality improving layer In the present invention, the semiconductor light emitting device can be put into practical use while the crystal quality improving layer is formed on the back surface of the substrate. When the quality improving layer is formed, the crystal quality on the back surface of the substrate is improved even when the quality improving layer is removed. Accordingly, a step of removing the crystal quality improving layer can be further provided. When the crystal quality improving layer is not transparent or when the extraction efficiency deteriorates due to the difference in refractive index between the substrate and the crystal quality improving layer, it is preferable to remove the crystal quality improving layer.
 結晶品質改善層の除去は、全部であっても一部であっても良く、結晶品質改善機能以外の機能(絶縁性、保護膜としての機能など)を考慮しつつ、適宜設定されうる。
 結晶品質改善層の除去方法は、特に限定はないが、選択された結晶品質改善層の材質によって、ドライエッチング、ウェットエッチング等のエッチング手法が選択可能である。
 例えば、SiNxの結晶品質改善層においては、フッ酸水溶液または、フッ酸水溶液およびフッ化アンモニウム水溶液の混合溶液を用いたウェットエッチングが好適である。
The removal of the crystal quality improvement layer may be all or a part, and can be appropriately set in consideration of functions other than the crystal quality improvement function (insulation, function as a protective film, etc.).
The method for removing the crystal quality improving layer is not particularly limited, but an etching technique such as dry etching or wet etching can be selected depending on the material of the selected crystal quality improving layer.
For example, in the SiNx crystal quality improving layer, wet etching using a hydrofluoric acid aqueous solution or a mixed solution of a hydrofluoric acid aqueous solution and an ammonium fluoride aqueous solution is suitable.
 [1-5] 発光素子分離工程
 次に、各発光素子を1つ1つ分離するために、装置間分離溝13が形成された位置で、基板21に対してダイヤモンドスクライブによる傷入れ、レーザスクライブによる基板材料の一部のアブレーションなどが実施される。 
 傷入れ(スクライブ)が終了した後には、発光素子はブレーキング工程において個々の装置に分割され、好ましくはハンダ材料等によってサブマウントに搭載される。 
[1-5] Light-Emitting Element Separation Step Next, in order to separate each light-emitting element one by one, the substrate 21 is scratched by a diamond scribe at a position where the inter-device separation groove 13 is formed, and a laser scribe is performed. Ablation of a part of the substrate material by, for example, is performed.
After completion of the scribing, the light emitting element is divided into individual devices in a braking process, and is preferably mounted on the submount with a solder material or the like.
 [2]半導体発光素子
 本発明の半導体発光素子は、基板の結晶成長面の上に半導体層が積層された半導体発光素子であって、前記基板の裏面の一部または全部に結晶品質改善層を有するか、結晶品質改善層が一旦形成された後、一部または全部が除去されたものであることを必須要件とする。即ち、本発明は、基板裏面を加工した後に、当該裏面を結晶品質改善層が形成された経歴をもつ半導体発光素子が該当する。本発明が前記の要件を有することにより、基板の結晶性を向上し、結晶状態の劣化が少なく、光学損失の少ない、または、導電性基板においては接触抵抗の少ない、高出力化および高効率化に耐え得る特性を有することができる。 なお、結晶品質改善層とは、少なくとも以下の(a)または(b)のいずれかの機能を備える層をいう。
(a)基板裏面の結晶性の向上機能
(b)加工処理などによるダメージを回復させる機能
 好ましくは、前記[1-3]に記載の結晶品質改善層の特徴を有するものである。
[2] Semiconductor light emitting device The semiconductor light emitting device of the present invention is a semiconductor light emitting device in which a semiconductor layer is laminated on a crystal growth surface of a substrate, and a crystal quality improving layer is provided on a part or all of the back surface of the substrate. It is an essential requirement that the crystal quality improving layer is once formed or partly or entirely removed. That is, the present invention corresponds to a semiconductor light emitting device having a history of forming a crystal quality improving layer on the back surface after processing the back surface of the substrate. Since the present invention has the above-mentioned requirements, the crystallinity of the substrate is improved, the crystal state is less deteriorated, the optical loss is reduced, or the contact resistance is reduced in the conductive substrate, and the output is increased and the efficiency is increased. It can have the characteristics that can withstand The crystal quality improving layer refers to a layer having at least one of the following functions (a) or (b).
(A) Function of improving crystallinity on back surface of substrate (b) Function of recovering damage caused by processing, etc. Preferably, it has the characteristics of the crystal quality improving layer described in [1-3] above.
 以下、本発明の半導体発光素子について、好ましい態様を例に挙げて詳述する。なお、本発明の半導体発光素子は、以下の態様に限定されるものでなく、本発明の要旨を変更しない範囲における改良型をその範囲に含むものとする。
 [2-1]フリップチップ構造を有する半導体発光素子
 本発明の一実施形態による半導体発光素子(以下、単に発光素子という)は、図4に示すように、基板21と、基板21の片面に積層された化合物半導体薄膜結晶層(以下、単に薄膜結晶層ともいう)とを有する。化合物半導体薄膜結晶層は、バッファ層22、第一導電型クラッド層24を含む第一導電型半導体層、活性層構造25、および第二導電型クラッド層26を含む第二導電型半導体層が基板21側からこの順番に積層されて構成されている。本発明においては基板21の裏面、即ち前記薄膜結晶層と反対側の面の一部または全部に結晶品質改善層30を有することが特徴である。なお、結晶品質改善層30は、形成後、一部または全部が除去されていてもよい。なお、全部が除去されている場合であっても、前述の様に、顕著な結晶品質改善効果が奏されているため、従来の半導体発光素子とは異なる別個の発明といえる。
Hereinafter, the semiconductor light emitting device of the present invention will be described in detail by taking preferred embodiments as examples. In addition, the semiconductor light-emitting device of this invention is not limited to the following aspects, The improved type in the range which does not change the summary of this invention shall be included in the range.
[2-1] Semiconductor Light-Emitting Element Having Flip Chip Structure A semiconductor light-emitting element (hereinafter simply referred to as a light-emitting element) according to an embodiment of the present invention is laminated on a substrate 21 and one surface of the substrate 21, as shown in FIG. A compound semiconductor thin film crystal layer (hereinafter also simply referred to as a thin film crystal layer). The compound semiconductor thin film crystal layer is composed of the buffer layer 22, the first conductivity type semiconductor layer including the first conductivity type cladding layer 24, the active layer structure 25, and the second conductivity type semiconductor layer including the second conductivity type cladding layer 26. The layers are laminated in this order from the 21st side. The present invention is characterized by having the crystal quality improving layer 30 on the back surface of the substrate 21, that is, on a part or all of the surface opposite to the thin film crystal layer. The crystal quality improving layer 30 may be partially or wholly removed after formation. Even when all of them are removed, as described above, a remarkable crystal quality improvement effect is achieved, so that it can be said to be a separate invention different from the conventional semiconductor light emitting device.
 第二導電型クラッド層26の表面の一部に、電流注入用の第二導電型側電極27が配置されており、第二導電型クラッド層26と第二導電型側電極27の接触している部分が、第二導電型半導体層に電流を注入する第二電流注入領域35となっている。また、化合物半導体薄膜結晶層の一部が、その厚さ方向において第二導電型クラッド層24側から第一導電型クラッド層24の途中まで除去されており、除去された箇所に露出する第一導電型クラッド層24に接して、電流注入用の第一導電型側電極28が配置されている。第一導電型クラッド層24と第一導電型側電極28の接触している部分が、第一導電型半導体層に電流を注入する第一電流注入領域36となっている。  A second conductivity type side electrode 27 for current injection is disposed on a part of the surface of the second conductivity type cladding layer 26, and the second conductivity type cladding layer 26 and the second conductivity type side electrode 27 are in contact with each other. The part which becomes this becomes the 2nd current injection area | region 35 which inject | pours an electric current into a 2nd conductivity type semiconductor layer. In addition, a part of the compound semiconductor thin film crystal layer is removed from the second conductivity type clad layer 24 side to the middle of the first conductivity type clad layer 24 in the thickness direction, and is exposed to the removed portion. A first conductivity type side electrode 28 for current injection is disposed in contact with the conductivity type cladding layer 24. A portion where the first conductivity type cladding layer 24 and the first conductivity type side electrode 28 are in contact with each other serves as a first current injection region 36 for injecting a current into the first conductivity type semiconductor layer.
 第二導電型側電極27および第一導電型側電極28が上記のように配置されることによって、両者はバッファ層22に対峙して、かつ同じ側に配置され、発光素子10はフリップチップ型の発光素子10として構成されている。 
 第二導電型側電極27および第一導電型側電極28は、サブマウント40上の金属層41に、金属ハンダ42を介してそれぞれ接続されている。 
By arranging the second conductivity type side electrode 27 and the first conductivity type side electrode 28 as described above, both are arranged opposite to the buffer layer 22 and on the same side, and the light emitting element 10 is flip-chip type. The light emitting element 10 is configured.
The second conductivity type side electrode 27 and the first conductivity type side electrode 28 are respectively connected to the metal layer 41 on the submount 40 via the metal solder 42.
 第一導電型側電極28および前記第二導電型側電極27は、互いに空間的に重なりを有していない。これは、図4に示すように、第一導電型側電極28および第二導電型側電極27を基板面に対して投影したときに、影が重ならないことを意味する。 
 化合物半導体薄膜結晶層は、少なくとも第二導電型半導体層の第二導電型側電極27との接触部を除く部分が、絶縁膜によって覆われていてもよい。図4に示す例では、バッファ層22の一部、第一導電型半導体層の第一電流注入領域36を除く部分、活性層構造25、および第二導電型半導体層の第二電流注入領域35を除く部分が、絶縁膜31によって覆われている。つまり、バッファ層22、第一導電型半導体層、活性層構造25および第二導電型半導体層を有する化合物半導体薄膜結晶層の側壁の少なくとも一部が絶縁膜31で覆われている。 
The first conductivity type side electrode 28 and the second conductivity type side electrode 27 do not spatially overlap each other. This means that the shadow does not overlap when the first conductivity type side electrode 28 and the second conductivity type side electrode 27 are projected onto the substrate surface as shown in FIG.
In the compound semiconductor thin film crystal layer, at least a portion of the second conductivity type semiconductor layer other than the contact portion with the second conductivity type side electrode 27 may be covered with an insulating film. In the example shown in FIG. 4, a part of the buffer layer 22, a portion excluding the first current injection region 36 of the first conductivity type semiconductor layer, the active layer structure 25, and a second current injection region 35 of the second conductivity type semiconductor layer. The portion except for is covered with an insulating film 31. That is, at least a part of the sidewall of the compound semiconductor thin film crystal layer having the buffer layer 22, the first conductivity type semiconductor layer, the active layer structure 25, and the second conductivity type semiconductor layer is covered with the insulating film 31.
 絶縁膜31は、発光素子をフリップチップマウントした際に、マウント用のハンダや導電性ペースト材等が、「第二導電型側電極と第一導電型側電極の間」、「活性層構造などの薄膜結晶層の側壁」等に回りこんで、意図しない短絡が発生しないようにする機能をも有する。
 絶縁膜31は上記のように少なくとも第二導電型半導体層を覆っている部分を有していればよいが、本形態ではさらに、第二導電型側電極27は第二導電型半導体層との対向面全体が第二導電型半導体層と接しており、かつ、このようにして第二導電型半導体層と接して配置された第二導電型側電極27の一部をも、絶縁膜31は覆っている。このような構造は、第二導電型クラッド層26上に第二導電型側電極27を形成した後に、絶縁膜31を形成することによって得ることができる。
When the light emitting element is flip-chip mounted, the insulating film 31 is made of mounting solder, conductive paste material, etc. “between the second conductivity type side electrode and the first conductivity type side electrode”, “active layer structure, etc. It also has a function of preventing an unintended short circuit from occurring around the side wall of the thin film crystal layer.
The insulating film 31 only needs to have at least a portion covering the second conductivity type semiconductor layer as described above. In this embodiment, the second conductivity type side electrode 27 is further connected to the second conductivity type semiconductor layer. The entire opposing surface is in contact with the second conductivity type semiconductor layer, and a part of the second conductivity type side electrode 27 arranged in contact with the second conductivity type semiconductor layer in this way is also the insulating film 31. Covering. Such a structure can be obtained by forming the insulating film 31 after forming the second conductivity type side electrode 27 on the second conductivity type cladding layer 26.
 さらに本形態では、第一導電型側電極28は、第一導電型半導体層との対向面の一部のみが第一導電型半導体層と接しており、第一導電型半導体層と第一導電型側電極28との間に絶縁膜31の一部が介在している。このような構造は、第一導電型クラッド層24上に絶縁膜31を形成した後に、第一導電型側電極を形成することによって得ることができる。  Furthermore, in this embodiment, the first conductivity type side electrode 28 is in contact with the first conductivity type semiconductor layer only at a part of the surface facing the first conductivity type semiconductor layer. A part of the insulating film 31 is interposed between the mold side electrode 28. Such a structure can be obtained by forming the first conductivity type side electrode after forming the insulating film 31 on the first conductivity type cladding layer 24.
 絶縁膜と各電極とのこのような位置関係により、プロセスダメージの少ない工程により発光素子10を製造することが可能である。本形態では、以上のように、プロセスダメージ、フリップチップマウントを実施した際の放熱性、絶縁性等が総合的に考慮された絶縁膜31の配置となっている。 
 絶縁膜31で覆われていないバッファ層22の部分は、ドーピングされていないアンドープ層であることが好ましい。露出している部分が絶縁性の高い材料であれば、ハンダの回り込みによる短絡等のおそれがなく、信頼性の高い発光素子となる。 
With such a positional relationship between the insulating film and each electrode, the light emitting element 10 can be manufactured through a process with less process damage. In the present embodiment, as described above, the insulating film 31 is arranged in consideration of process damage, heat dissipation when flip chip mounting is performed, insulation, and the like.
The portion of the buffer layer 22 that is not covered with the insulating film 31 is preferably an undoped layer that is not doped. If the exposed portion is a highly insulating material, there is no fear of a short circuit due to the wraparound of the solder, and the light emitting element is highly reliable.
 以下に、装置を構成する各部材と構造についてさらに詳細に説明する。 
 <基板> 
 基板21は、光学的に発光素子10の発光波長に対しておおよそ透明であれば好ましいが、材料等は特に限定されない。ここでおおよそ透明とは、発光波長に対する吸収が無いか、あるいは、吸収が存在しても、その基板21の吸収によって光出力が50%以上低減しないものである。
Below, each member and structure which comprise an apparatus are demonstrated in detail.
<Board>
The substrate 21 is preferably optically approximately transparent to the emission wavelength of the light emitting element 10, but the material and the like are not particularly limited. Here, “substantially transparent” means that there is no absorption with respect to the emission wavelength, or even if there is absorption, the light output is not reduced by 50% or more due to the absorption of the substrate 21.
 基板21は、発光素子10がフリップチップ型の場合は、電気的には絶縁性であることが好ましい。これは、発光素子10をマウントした際に、たとえハンダ材などが基板21の周辺に付着しても、発光素子10への電流注入には影響を与えないからである。一方、発光素子10が後述する上下導通型の場合は、基板21は導電性を有することが好ましい(図5)。 The substrate 21 is preferably electrically insulating when the light emitting element 10 is a flip chip type. This is because when the light emitting element 10 is mounted, even if a solder material or the like adheres to the periphery of the substrate 21, current injection into the light emitting element 10 is not affected. On the other hand, when the light emitting element 10 is a vertical conduction type described later, the substrate 21 preferably has conductivity (FIG. 5).
 具体的な材料としては、例えばInAlGaN系発光材料またはInAlBGaN系材料をその上に薄膜結晶成長させるためには、サファイア(Al)、SiC、GaN、LiGaO2、LiAlO、ZnO、ScAlMgO4、NdGaO3、およびMgOから選ばれることが望ましい。本発明において、結晶品質改善効果を期待しやすいものとしては窒化物、酸化物が好ましく、窒化物の中では、GaNやAlNが好ましく、GaNが更に好ましい。GaNは屈折率がサファイア等と比較して圧倒的に大きいため、本発明により基板からの光の取り出し効率向上に影響しやすく、非常に好ましい。  As specific materials, for example, in order to grow a thin film crystal on an InAlGaN-based light emitting material or InAlBGaN-based material, sapphire (Al 2 O 3 ), SiC, GaN, LiGaO 2 , LiAlO 3 , ZnO, ScAlMgO 4 is used. Desirably, NdGaO 3 and MgO are selected. In the present invention, nitrides and oxides are preferred as the crystal quality improvement effect is easily expected. Among the nitrides, GaN and AlN are preferred, and GaN is more preferred. Since GaN has an overwhelmingly higher refractive index than sapphire and the like, it is easy to influence the improvement of light extraction efficiency from the substrate according to the present invention, which is very preferable.
 基板21は、MOCVDやMBE等の結晶成長技術を利用して発光素子10を製造するために、あらかじめ化学エッチングや熱処理等を施しておいてもよい。また、後述するバッファ層22との関係で、基板21のバッファ層22が積層される面に意図的に凹凸加工をしておき、これによって、薄膜結晶層と基板21との界面で発生する貫通転移を発光素子の活性層近傍に導入しないようにすることも可能である。 The substrate 21 may be subjected to chemical etching, heat treatment, or the like in advance in order to manufacture the light emitting element 10 using a crystal growth technique such as MOCVD or MBE. In addition, in relation to the buffer layer 22 to be described later, the surface of the substrate 21 on which the buffer layer 22 is laminated is intentionally processed so that the penetration generated at the interface between the thin film crystal layer and the substrate 21 is achieved. It is also possible not to introduce the transition near the active layer of the light emitting device.
 基板21の厚みは、通常100μm以上3000μm以下である。基板の結晶品質改善効果が期待できる本発明においては、基板21の厚さは、従来とは異なり厚いものでもよい。このような厚みのある基板を用いる場合には、基板を薄膜化した発光素子と比較して、側壁の面積が実効的に増加するため、たとえ全放射束が同じ程度であっても、光取り出し効果を効果的に機能させることができる。すなわち、基板側壁の結晶品質改善効果が期待できれば、側壁からの光取り出し量を増加させることができるため好ましい。このような形態の発光素子においては、基板21の厚みとしては、150μm以上が好ましく、250μm以上がより好ましい。 The thickness of the substrate 21 is usually 100 μm or more and 3000 μm or less. In the present invention in which the effect of improving the crystal quality of the substrate can be expected, the thickness of the substrate 21 may be thick unlike the conventional one. When using a substrate having such a thickness, the area of the side wall is effectively increased compared to a light-emitting element having a thin substrate, so that even if the total radiant flux is the same, light extraction is possible. The effect can be functioned effectively. That is, it is preferable to expect an effect of improving the crystal quality of the substrate side wall because the amount of light extraction from the side wall can be increased. In the light emitting element of such a form, the thickness of the substrate 21 is preferably 150 μm or more, and more preferably 250 μm or more.
 前述のように、本発明の基板21は、薄膜結晶成長させる面と反対側の面、すなわち裏面の一部または全部に結晶品質改善層30を有しているか、結晶品質改善層が一旦形成された後、一部または全部が除去されたものであることが必須である。結晶品質改善層30は、さらに基板側壁に形成されていても良い。
 結晶品質改善層30については、前記[1-3]に記載の結晶品質改善層の特徴を有するものが好適である。
As described above, the substrate 21 of the present invention has the crystal quality improving layer 30 on the surface opposite to the surface on which the thin film crystal is grown, that is, a part or all of the back surface, or the crystal quality improving layer is once formed. After that, it is essential that a part or the whole is removed. The crystal quality improving layer 30 may be further formed on the side wall of the substrate.
As the crystal quality improving layer 30, those having the characteristics of the crystal quality improving layer described in [1-3] are preferable.
 <バッファ層> 
 バッファ層22は、基板21上に薄膜結晶成長する上で、転移の抑制、基板結晶の不完全性の緩和、基板結晶と所望の薄膜結晶層との各種の相互不整合の軽減など、主に薄膜結晶成長のための目的のために形成される。 
 バッファ層22は、薄膜結晶成長で成膜され、本発明で望ましい形態であるInAlGaN系材料、InAlBGaN系材料、InGaN系材料、AlGaN系材料、GaN系材料などを異種基板上に薄膜結晶成長する際には、必ずしも基板21との格子定数のマッチングが確保されないので、バッファ層22は特に重要である。たとえば、薄膜結晶層を有機金属気相成長法(MOVPE法)で成長する際には、600℃近傍の低温成長AlN層をバッファ層22に用いたり、あるいは500℃近傍で形成した低温成長GaN層を用いたりすることも出来る。また、同種基板上に薄膜結晶成長する場合、例えばGaN基板上にGaN、AlGaN、InGaN、AlInGaNなどの材料を成長する場合であっても、バッファ層22は重要である。この場合はバッファ層22として、800℃から1000℃程度の高温で成長したAlN、GaN、AlGaN、InAlGaN、InAlBGaNなども使用可能である。これらの層は一般に薄く5~40nm程度である。 
<Buffer layer>
The buffer layer 22 mainly grows a thin film crystal on the substrate 21 and suppresses transition, alleviates imperfection of the substrate crystal, and reduces various mismatches between the substrate crystal and a desired thin film crystal layer. Formed for the purpose of thin film crystal growth.
The buffer layer 22 is formed by thin film crystal growth. When an InAlGaN-based material, InAlBGaN-based material, InGaN-based material, AlGaN-based material, GaN-based material or the like, which is a desirable form in the present invention, is grown on a different substrate. The buffer layer 22 is particularly important because the lattice constant matching with the substrate 21 is not necessarily ensured. For example, when a thin film crystal layer is grown by metal organic vapor phase epitaxy (MOVPE method), a low temperature growth AlN layer near 600 ° C. is used as the buffer layer 22 or a low temperature growth GaN layer formed near 500 ° C. Can also be used. Further, when a thin film crystal is grown on the same type of substrate, the buffer layer 22 is important even when a material such as GaN, AlGaN, InGaN, or AlInGaN is grown on the GaN substrate. In this case, AlN, GaN, AlGaN, InAlGaN, InAlBGaN or the like grown at a high temperature of about 800 ° C. to 1000 ° C. can be used as the buffer layer 22. These layers are generally thin and about 5 to 40 nm.
 バッファ層22は必ずしも単一の層である必要はなく、低温で成長したGaNバッファ層22の上に、結晶性をより改善するために、ドーピングをほどこさない1000℃程度の温度で成長したGaN層を数μm程度有するようにしてもかまわない。実際には、このような厚膜バッファ層を有することが普通であって、その厚みは0.5~7μm程度である。バッファ層22は、Si等でドーピングされていてもよいし、バッファ層内にドーピング層とアンドープ層を積層して形成することも可能である。  The buffer layer 22 does not necessarily have to be a single layer, but is grown on the GaN buffer layer 22 grown at a low temperature at a temperature of about 1000 ° C. without doping to improve the crystallinity. You may make it have about several micrometers of layers. Actually, it is normal to have such a thick film buffer layer, and the thickness is about 0.5 to 7 μm. The buffer layer 22 may be doped with Si or the like, or may be formed by stacking a doped layer and an undoped layer in the buffer layer.
 また、バッファ層22の形成に関しては、いわゆるマイクロチャネルエピタキシーの一種である横方向成長技術(ELO)も使用可能であり、これによってサファイア等の基板とInAlGaN系材料の間で発生する貫通転移の密度を大幅に低減することも可能である。  For the formation of the buffer layer 22, a lateral growth technique (ELO) which is a kind of so-called microchannel epitaxy can also be used, and thereby the density of threading transition generated between a substrate such as sapphire and an InAlGaN-based material. Can be significantly reduced.
 <第一導電型半導体層および第一導電型クラッド層> 
 本発明の代表的形態では、図4に示すようにバッファ層22に接して、第一導電型クラッド層24が存在する。第一導電型クラッド層24は、後述する活性層構造25に対して、後述する第二導電型クラッド層26と共に機能して、キャリアを効率よく注入し、かつ、活性層構造からのオーバーフローも抑制し、量子井戸層における発光を高効率で実現するための機能を有している。また、あわせて活性層構造近傍への光の閉じ込めにも寄与し、量子井戸層における発光を高効率で実現するための機能を有している。第一導電型半導体層は、上記のクラッド機能を有する層に加えて、コンタクト層のように装置の機能向上のため、または製造上の理由により、第一導電型にドープされた層を含むものである。広義には、第一導電型半導体層の全体を第一導電型クラッド層24と考えてもよく、その場合にはコンタクト層等は、第一導電型クラッド層24の一部と見ることもできる。 
<First conductivity type semiconductor layer and first conductivity type cladding layer>
In a typical embodiment of the present invention, a first conductivity type cladding layer 24 is present in contact with the buffer layer 22 as shown in FIG. The first conductivity type clad layer 24 functions together with the second conductivity type clad layer 26 described later to the active layer structure 25 described later to efficiently inject carriers and suppress overflow from the active layer structure. In addition, it has a function for realizing light emission in the quantum well layer with high efficiency. In addition, it contributes to confinement of light in the vicinity of the active layer structure, and has a function for realizing light emission in the quantum well layer with high efficiency. The first conductivity type semiconductor layer includes a layer doped to the first conductivity type, in addition to the above-mentioned layer having a cladding function, for improving the function of the device like a contact layer or for manufacturing reasons. . In a broad sense, the entire first conductivity type semiconductor layer may be considered as the first conductivity type cladding layer 24, and in that case, the contact layer and the like can also be regarded as a part of the first conductivity type cladding layer 24. .
 一般的に第一導電型クラッド層24は、後述する活性層構造25の平均的屈折率より小さな屈折率を有する材料で、かつ、後述する活性層構造25の平均的なバンドギャップよりも大きな材料で構成される事が望ましい。さらに、第一導電型クラッド層24は、活性層構造25内の特にバリア層との関係において、いわゆるタイプI型のバンドラインナップとなる材料で構成されるのが一般的である。このような指針の元で、第一導電型クラッド層24の材料としては、所望の発光波長を実現するために準備される基板21、バッファ層22、活性層構造25等に鑑みて、適宜選択することができる。  Generally, the first conductivity type cladding layer 24 is a material having a refractive index smaller than an average refractive index of an active layer structure 25 described later and a material larger than an average band gap of the active layer structure 25 described later. It is desirable to consist of Furthermore, the first conductivity type clad layer 24 is generally made of a material that forms a so-called type I band lineup, particularly in relation to the barrier layer in the active layer structure 25. Under such guidelines, the material of the first conductivity type cladding layer 24 is appropriately selected in view of the substrate 21, the buffer layer 22, the active layer structure 25, and the like prepared for realizing a desired emission wavelength. can do.
 例えば、基板21としてc+面GaNを使用し、バッファ層22として高温成長したGaNを使用する場合には、第一導電型クラッド層24としてGaN系材料、AlGaN系材料、AlGaInN系材料、InAlBGaN系材料、もしくはその多層構造を用いることができる。
 第一導電型クラッド層24のキャリア濃度としては、下限としては1×1017cm-3以上が好ましく、5×1017cm-3以上がより好ましく、1×1018cm-3以上が最も好ましい。上限としては5×1019cm-3以下が好ましく、1×1019cm-3以下がより好ましく、7×1018cm-3以下が最も好ましい。また、ここでは、第一導電型がn型の場合、ドーパントとしては、Siが最も望ましい。 
For example, when c + plane GaN is used as the substrate 21 and GaN grown at a high temperature is used as the buffer layer 22, a GaN-based material, an AlGaN-based material, an AlGaInN-based material, an InAlBGaN-based material is used as the first conductivity type cladding layer 24. Alternatively, a multilayer structure thereof can be used.
The carrier concentration of the first conductivity type cladding layer 24 is preferably 1 × 10 17 cm −3 or more as a lower limit, more preferably 5 × 10 17 cm −3 or more, and most preferably 1 × 10 18 cm −3 or more. . The upper limit is preferably 5 × 10 19 cm −3 or less, more preferably 1 × 10 19 cm −3 or less, and most preferably 7 × 10 18 cm −3 or less. Here, when the first conductivity type is n-type, Si is most desirable as a dopant.
 また、本発明においては、第一導電型クラッド層24の厚みは、適宜選択することができ、通常1μm以上、好ましくは3μm以上、さらに好ましくは4μm以上である。また通常10μm以下、好ましくは8μm以下、さらに好ましくは7μm以下である。第一導電型クラッド層24が厚すぎると、薄膜結晶層の結晶品質が低下する。第一導電型クラッド層24が薄すぎると、十分に活性層構造にキャリアを閉じこめることができない。 In the present invention, the thickness of the first conductivity type cladding layer 24 can be appropriately selected, and is usually 1 μm or more, preferably 3 μm or more, more preferably 4 μm or more. Moreover, it is 10 micrometers or less normally, Preferably it is 8 micrometers or less, More preferably, it is 7 micrometers or less. If the first conductivity type clad layer 24 is too thick, the crystal quality of the thin film crystal layer is degraded. If the first conductivity type cladding layer 24 is too thin, carriers cannot be sufficiently confined in the active layer structure.
 第一導電型クラッド層24の構造は、図4の一例では単一の層からなる第一導電型クラッド層24を示すが、第一導電型クラッド層24は、2層以上の層からなるものであってもよい。この場合には、たとえばGaN系材料とAlGaN系材料、InAlGaN系材料、InAlBGaN系材料を使用することも可能である。また第一導電型クラッド層24の全体を異種材料の積層構造として超格子構造とすることもできる。さらに、第一導電型クラッド層24内において、前述のキャリア濃度を変化させることも可能である。  The structure of the first conductivity type cladding layer 24 shows the first conductivity type cladding layer 24 composed of a single layer in the example of FIG. 4, but the first conductivity type cladding layer 24 is composed of two or more layers. It may be. In this case, for example, a GaN-based material and an AlGaN-based material, an InAlGaN-based material, or an InAlBGaN-based material can be used. The entire first conductivity type cladding layer 24 may be a superlattice structure as a laminated structure of different materials. Furthermore, it is possible to change the carrier concentration in the first conductivity type cladding layer 24.
 第一導電型クラッド層24の第一導電型側電極28と接触している部分においては、そのキャリア濃度を意図的に高くして、当該電極との接触抵抗を低減することも可能である。 
 第一導電型クラッド層24の一部はエッチングされており、かつ、第一導電型クラッド層24の露出した側壁、エッチングされた部分などは、後述する第一導電型側電極27との接触を実現する第一電流注入領域36を除いて、すべて絶縁膜31で覆われている構造が望ましい。 
In the portion of the first conductivity type cladding layer 24 in contact with the first conductivity type side electrode 28, the carrier concentration can be intentionally increased to reduce the contact resistance with the electrode.
A part of the first conductivity type cladding layer 24 is etched, and exposed side walls, etched portions, etc. of the first conductivity type cladding layer 24 are in contact with a first conductivity type side electrode 27 described later. A structure that is entirely covered with the insulating film 31 except for the first current injection region 36 to be realized is desirable.
 第一導電型クラッド層24に加えて、第一導電型半導体層として、必要によりさらに異なる層が存在してもよい。例えば、電極との接続部にキャリアの注入を容易にするためのコンタクト層が含まれていてもよい。また、各層を、組成または形成条件等の異なる複数の層に分けて構成してもよい。 In addition to the first conductivity type cladding layer 24, a different layer may exist as necessary as the first conductivity type semiconductor layer. For example, a contact layer for facilitating carrier injection may be included in the connection portion with the electrode. Each layer may be divided into a plurality of layers having different compositions or formation conditions.
 <活性層構造> 
 第一導電型クラッド層24の上には、活性層構造25が形成されている。活性層構造25とは、前述の第一導電型クラッド層24と、後述する第二導電型クラッド層26から注入される、電子と正孔(あるいは正孔と電子)が再結合して発光する層である量子井戸層を含み、かつ、量子井戸層に隣接して配置される、あるいは、量子井戸層とクラッド層間に配置されるバリア層をも含む構造を指す。ここで、発光素子10の高出力化、高効率化を実現するためには、活性層構造中の量子井戸層の層数をW、バリア層の層数をBとすると、B=W+1を満たすことが望ましい。すなわち、クラッド層24、26と活性層構造25の全体の層の関係は、「第一導電型クラッド層、活性層構造、第二導電型クラッド層」と形成され、活性層構造25は、「バリア層、量子井戸層、バリア層」、あるいは、「バリア層、量子井戸層、バリア層、量子井戸層、バリア層」のように形成されることが、高出力化のために望ましい。 
<Active layer structure>
An active layer structure 25 is formed on the first conductivity type cladding layer 24. The active layer structure 25 emits light by recombination of electrons and holes (or holes and electrons) injected from the first conductivity type cladding layer 24 and the second conductivity type cladding layer 26 described later. A structure including a quantum well layer as a layer and also including a barrier layer disposed adjacent to the quantum well layer or disposed between the quantum well layer and the cladding layer. Here, in order to realize high output and high efficiency of the light-emitting element 10, when the number of quantum well layers in the active layer structure is W and the number of barrier layers is B, B = W + 1 is satisfied. It is desirable. That is, the relationship between the clad layers 24 and 26 and the entire active layer structure 25 is formed as “first conductivity type clad layer, active layer structure, second conductivity type clad layer”. It is desirable for high output to be formed as “barrier layer, quantum well layer, barrier layer” or “barrier layer, quantum well layer, barrier layer, quantum well layer, barrier layer”.
 ここで、量子井戸層においては量子サイズ効果を発現させて、発光効率を高めるために、その層厚はド・ブロイ波長と同程度にうすい層である。このため、高出力化を実現するためには、単層の量子井戸層のみではなく、複数の量子井戸層を設けてこれを分離して活性層構造とすることが望ましい。この際に各量子井戸層間の結合を制御しつつ分離する層がバリア層である。また、バリア層は、クラッド層と量子井戸層の分離のためにも存在することが望ましい。たとえば、クラッド層がAlGaNからなり、量子井戸層がInGaNからなる場合には、この間にGaNからなるバリア層が存在する形態が望ましい。これは結晶成長の最適温度が異なる場合の変更も容易にできるので、薄膜結晶成長の観点からも望ましい。また、クラッド層が、最もバンドギャップの広いInAlGaNからなり、量子井戸層が最もバンドギャップの狭いInAlGaNからなる場合は、バリア層にその中間のバンドギャップを有するInAlGaNを用いることも可能である。さらに、一般にクラッド層と量子井戸層との間のバンドギャップの差は、バリア層と量子井戸層の間のバンドギャップの差よりも大きく、量子井戸層へのキャリアの注入効率を考えても、量子井戸層はクラッド層に直接隣接しないことが望ましい。  Here, in order to express the quantum size effect and increase the luminous efficiency in the quantum well layer, the layer thickness is as thin as the de Broglie wavelength. For this reason, in order to achieve high output, it is desirable to provide not only a single quantum well layer but also a plurality of quantum well layers and separate them into an active layer structure. At this time, a layer that is separated while controlling the coupling between the quantum well layers is a barrier layer. In addition, it is desirable that the barrier layer exists for separation of the cladding layer and the quantum well layer. For example, when the cladding layer is made of AlGaN and the quantum well layer is made of InGaN, a form in which a barrier layer made of GaN exists between them is desirable. This is also desirable from the viewpoint of thin film crystal growth because it can be easily changed when the optimum temperature for crystal growth is different. When the clad layer is made of InAlGaN having the widest band gap and the quantum well layer is made of InAlGaN having the narrowest band gap, InAlGaN having an intermediate band gap can be used for the barrier layer. Furthermore, in general, the difference in the band gap between the cladding layer and the quantum well layer is larger than the difference in the band gap between the barrier layer and the quantum well layer, and considering the efficiency of carrier injection into the quantum well layer, The quantum well layer is preferably not directly adjacent to the cladding layer.
 量子井戸層は意図的なドーピングは実施しないほうが望ましい。一方、バリア層には、ドーピングを施して、系全体の抵抗を下げるなどのことを実施するのが望ましい。特に、バリア層にはn型のドーパント、特にSiをドーピングするのが望ましい。これは、p型のドーパントであるMgはデバイス内では拡散しやすく、高出力動作時においては、Mgの拡散を抑制することが重要となる。このために、Siは有効であって、バリア層にはSiがドーピングされていることが望ましい。但し量子井戸層とバリア層との界面においては、ド-ピングを実施しないほうが望ましい。  Quantum well layer should not be intentionally doped. On the other hand, it is desirable to dope the barrier layer to reduce the resistance of the entire system. In particular, the barrier layer is preferably doped with an n-type dopant, particularly Si. This is because Mg, which is a p-type dopant, easily diffuses in the device, and it is important to suppress the diffusion of Mg during high output operation. Therefore, Si is effective, and it is desirable that the barrier layer is doped with Si. However, it is desirable not to perform doping at the interface between the quantum well layer and the barrier layer.
 <第二導電型半導体層および第二導電型クラッド層> 
 第二導電型クラッド層26は、前述の活性層構造25に対して、前述の第一導電型クラッド層24と共に、キャリアを効率よく注入し、かつ、活性層構造25からのオーバーフローも抑制し、量子井戸層における発光を高効率で実現するための機能を有している。また、あわせて活性層構造近傍への光の閉じ込めにも寄与し、量子井戸層における発光を高効率で実現するための機能を有している。第二導電型半導体層は、上記のクラッド機能を有する層に加えて、コンタクト層のように装置の機能向上のため、または製造上の理由により、第二導電型にドープされた層を含むものである。広義には、第二導電型半導体層の全体を第二導電型クラッド層26と考えてもよく、その場合にはコンタクト層等は、第二導電型クラッド層26の一部と見ることもできる。 
<Second conductivity type semiconductor layer and second conductivity type cladding layer>
The second conductivity type cladding layer 26 efficiently injects carriers into the above-described active layer structure 25 together with the above-described first conductivity type cladding layer 24, and also suppresses overflow from the active layer structure 25, It has a function for realizing light emission in the quantum well layer with high efficiency. In addition, it contributes to confinement of light in the vicinity of the active layer structure, and has a function for realizing light emission in the quantum well layer with high efficiency. The second conductivity type semiconductor layer includes a layer doped to the second conductivity type in addition to the above-mentioned layer having a cladding function, for the purpose of improving the function of the device or for manufacturing reasons, like a contact layer. . In a broad sense, the entire second conductivity type semiconductor layer may be considered as the second conductivity type cladding layer 26, and in this case, the contact layer and the like can also be regarded as a part of the second conductivity type cladding layer 26. .
 一般的に第二導電型クラッド層26は、前述の活性層構造25の平均的屈折率より小さな屈折率を有する材料で、かつ、前述の活性層構造25の平均的なバンドギャップよりも大きな材料で構成される事が望ましい。さらに、第二導電型クラッド層26は、活性層構造25内の特にバリア層との関係において、いわゆるタイプI型のバンドラインナップとなる材料で構成されるのが一般的である。このような指針の元で、第二導電型クラッド層26の材料としては、所望の発光波長を実現するために準備される基板21、バッファ層22、活性層構造25等に鑑みて、適宜選択することができる。例えば、基板21としてc+面サファイアを使用し、バッファ層22としてGaNを使用する場合には、第二導電型クラッド層26としてGaN系材料、AlGaN系材料、AlGaInN系材料、AlGaBInN系材料等を用いることができる。また、上記材料の積層構造であってもかまわない。また、第一導電型クラッド層24と第二導電型クラッド層26は同じ材料で構成することも可能である。  In general, the second conductivity type cladding layer 26 is a material having a refractive index smaller than the average refractive index of the active layer structure 25 described above, and a material larger than the average band gap of the active layer structure 25 described above. It is desirable to consist of Further, the second conductivity type clad layer 26 is generally made of a material that forms a so-called type I band lineup, particularly in relation to the barrier layer in the active layer structure 25. Under such guidelines, the material of the second conductivity type cladding layer 26 is appropriately selected in view of the substrate 21, the buffer layer 22, the active layer structure 25, and the like prepared for realizing a desired emission wavelength. can do. For example, when c + plane sapphire is used as the substrate 21 and GaN is used as the buffer layer 22, a GaN-based material, an AlGaN-based material, an AlGaInN-based material, an AlGaBInN-based material, or the like is used as the second conductivity type cladding layer 26. be able to. Further, a laminated structure of the above materials may be used. Also, the first conductivity type cladding layer 24 and the second conductivity type cladding layer 26 can be made of the same material.
 第二導電型クラッド層のキャリア濃度としては、下限としては1×1017cm-3以上が好ましく、4×1017cm-3以上がより好ましく、5×1017cm-3以上がさらに好ましく7×1017cm-3以上が最も好ましい。上限としては7×1018cm-3以下が好ましく、3×1018cm-3以下がより好ましく、2×1018cm-3以下が最も好ましい。また、ここでは、第二導電型がp型の場合ドーパントとしては、Mgが最も望ましい。  The lower limit of the carrier concentration of the second conductivity type cladding layer is preferably 1 × 10 17 cm −3 or more, more preferably 4 × 10 17 cm −3 or more, and further preferably 5 × 10 17 cm −3 or more. × 10 17 cm −3 or more is most preferable. Preferably 7 × 10 18 cm -3 or less as an upper limit, more preferably 3 × 10 18 cm -3 or less, and most preferably 2 × 10 18 cm -3 or less. Here, Mg is most desirable as the dopant when the second conductivity type is p-type.
 第二導電型クラッド層26の構造は、図4の一例では単一の層で形成された例を示しているが、第二導電型クラッド層26は、2層以上の層からなるものであってもよい。この場合には、たとえばGaN系材料とAlGaN系材料を使用することも可能である。また第二導電型クラッド層26の全体を異種材料の積層構造からなる超格子構造とすることもできる。さらに、第二導電型クラッド層26内において、前述のキャリア濃度を変化させることも可能である。 The structure of the second conductivity type cladding layer 26 is an example of a single layer formed in the example of FIG. 4, but the second conductivity type cladding layer 26 is composed of two or more layers. May be. In this case, for example, a GaN-based material and an AlGaN-based material can be used. The entire second conductivity type cladding layer 26 may be a superlattice structure made of a laminated structure of different materials. Furthermore, it is possible to change the carrier concentration in the second conductivity type cladding layer 26.
 一般に、GaN系材料においてはn型ドーパントがSiであって、かつ、p型ドーパントがMgである場合には、p型GaN、p型AlGaN、p型AlInGaNの結晶性は、n型GaN、n型AlGaN、n型AlInGaNにはそれぞれ及ばない。このため、素子作製においては、結晶性の劣るp型クラッド層を活性層構造25の結晶成長後に実施することが望ましく、この観点で、第一導電型がn型で、第二導電型がp型である場合が望ましい。  In general, in a GaN-based material, when the n-type dopant is Si and the p-type dopant is Mg, the crystallinity of p-type GaN, p-type AlGaN, and p-type AlInGaN is n-type GaN, n It does not reach each of type AlGaN and n-type AlInGaN. Therefore, in device fabrication, it is desirable to implement a p-type cladding layer with poor crystallinity after crystal growth of the active layer structure 25. From this viewpoint, the first conductivity type is n-type and the second conductivity type is p. The type is desirable.
 また、結晶性の劣るp型クラッド層(これは、望ましい形態をとった場合の第二導電型クラッド層26に相当する)の厚みは、ある程度薄いほうが望ましい。但し、極端に薄い場合には、キャリアの注入効率が低下してしまうため、最適値が存在する。第二導電型側クラッド層26の厚みは、適宜選択可能であるが、0.05μmから0.3μmが望ましく、0.1μmから0.2μmが最も望ましい。  Also, it is desirable that the thickness of the p-type cladding layer with poor crystallinity (this corresponds to the second conductivity type cladding layer 26 in a desirable form) be thin to some extent. However, when it is extremely thin, the carrier injection efficiency is lowered, and therefore there is an optimum value. The thickness of the second-conductivity-type-side cladding layer 26 can be selected as appropriate, but is preferably 0.05 μm to 0.3 μm, and most preferably 0.1 μm to 0.2 μm.
 第二導電型クラッド層26の第二導電型側電極27と接触している部分においては、そのキャリア濃度を意図的に高くして、当該電極との接触抵抗を低減することも可能である。 
 第二導電型クラッド層26の露出した側壁は、後述する第二導電型側電極27との接触を実現した第二電流注入領域35を除いて、すべて絶縁膜31で覆われている構造であることが望ましい。 
In the portion of the second conductivity type clad layer 26 that is in contact with the second conductivity type side electrode 27, the carrier concentration can be intentionally increased to reduce the contact resistance with the electrode.
The exposed side walls of the second conductivity type cladding layer 26 are all covered with an insulating film 31 except for a second current injection region 35 that realizes contact with a second conductivity type side electrode 27 described later. It is desirable.
 さらに、第二導電型クラッド層26に加えて、第二導電型半導体層として、必要によりさらに異なる層が存在してもよい。例えば、電極と接する部分にキャリアの注入を容易にするためのコンタクト層が含まれていてもよい。また、各層を、組成または形成条件等の異なる複数の層に分けて構成してもよい。 
 第二導電型半導体層の表面には、少なくともMgおよびHが含有されていてもよい。 
Furthermore, in addition to the second conductivity type cladding layer 26, a different layer may be present as necessary as the second conductivity type semiconductor layer. For example, a contact layer for facilitating carrier injection may be included in a portion in contact with the electrode. Each layer may be divided into a plurality of layers having different compositions or formation conditions.
The surface of the second conductivity type semiconductor layer may contain at least Mg and H.
 尚、本発明の要旨に反しない限り、薄膜結晶層として、必要により上述のカテゴリに入らない層を形成してもよい。 
 <第二導電型側電極> 
 第二導電型側電極27は、第二導電型の窒化物化合物半導体と良好なオーム性接触を実現し、かつ、フリップチップマウントした際に、ハンダ材などによるサブマウント40などとの良好な接着を実現するものである。本目的のためには、適宜材料選択が可能であり、第二導電型側電極27は単一の層であっても、複数の層からなる場合でもかまわない。一般には、電極に要請される複数の目的を達するために、複数の層構成をとるのが普通である。 
In addition, unless it is contrary to the summary of this invention, you may form the layer which does not enter into the above-mentioned category as needed as a thin film crystal layer.
<Second conductivity type side electrode>
The second conductivity type side electrode 27 realizes a good ohmic contact with the second conductivity type nitride compound semiconductor, and when it is flip-chip mounted, it adheres well to the submount 40 by a solder material or the like. Is realized. For this purpose, the material can be selected as appropriate, and the second conductivity type side electrode 27 may be a single layer or a plurality of layers. In general, in order to achieve a plurality of purposes required for an electrode, a plurality of layer structures are usually employed.
 また、第二導電型がp型で第二導電型側クラッド層26の第二導電型側電極27側がGaNである場合には、第二導電型側電極27を構成する材料として、Ni、Pt、Pd、Mo、Auのいずれか、またはそれらの2種以上の元素を含む材料が好ましい。この電極は、多層構造であってもよく、少なくとも1層は上記元素を含む材料で形成され、好ましくは各層が上記元素を含み構成成分(種類および/または比率)が異なる材料で構成される。電極構成材料は、好ましくは単体金属または合金である。  Further, when the second conductivity type is p-type and the second conductivity type side electrode 27 side of the second conductivity type side cladding layer 26 is GaN, Ni, Pt are used as materials constituting the second conductivity type side electrode 27. , Pd, Mo, Au, or a material containing two or more elements thereof is preferable. This electrode may have a multilayer structure, and at least one layer is formed of a material containing the above element, and preferably each layer is made of a material containing the above element and having different constituent components (type and / or ratio). The electrode constituent material is preferably a single metal or an alloy.
 第二導電型側電極27は、第二導電型のキャリアを注入可能であれば、薄膜結晶層のどの層と接してもよく、例えば第二導電型側コンタクト層が設けられるときは、それに接するように形成される。 
 <第一導電型側電極> 
 第一導電型側電極28は、第一導電型の窒化物化合物半導体と良好なオーム性接触を実現し、かつ、フリップチップマウントした際に、ハンダ材等によるサブマウント40などとの良好な接着を実現するものであって、本目的のためには、適宜材料選択が可能である。第一導電型側電極28は単一の層であっても、複数の層からなる場合でもかまわない。一般には、電極に要請される複数の目的を達するために、複数の層構成をとるのが普通である。 
The second conductivity type side electrode 27 may be in contact with any layer of the thin film crystal layer as long as the second conductivity type carrier can be injected. For example, when the second conductivity type side contact layer is provided, the second conductivity type side electrode 27 is in contact therewith. Formed as follows.
<First conductivity type side electrode>
The first conductivity type side electrode 28 achieves good ohmic contact with the first conductivity type nitride compound semiconductor, and when it is flip-chip mounted, it adheres well to the submount 40 or the like using a solder material or the like. For this purpose, materials can be selected as appropriate. The first conductivity type side electrode 28 may be a single layer or a plurality of layers. In general, in order to achieve a plurality of purposes required for an electrode, a plurality of layer structures are usually employed.
 第一導電型がn型であるとすると、n側電極は、Ti、Al、Ag、Moのいずれか、またはそれらの2種以上の元素を含む材料が好ましい。この電極は、多層構造であってもよく、少なくとも1層は上記元素を含む材料で形成され、好ましくは各層が上記元素を含み構成成分(種類および/または比率)が異なる材料で構成される。電極構成材料は、好ましくは単体金属または合金である。これらは、これらの金属の仕事関数の絶対値が小さいためである。  Suppose that the first conductivity type is n-type, the n-side electrode is preferably Ti, Al, Ag, Mo, or a material containing two or more elements thereof. This electrode may have a multilayer structure, and at least one layer is formed of a material containing the above element, and preferably each layer is made of a material containing the above element and having different constituent components (type and / or ratio). The electrode constituent material is preferably a single metal or an alloy. These are because the absolute value of the work function of these metals is small.
 本発明においては、第一導電型側電極28は第一電流注入領域36の大きさよりも大きな面積に形成され、かつ、第一導電型側電極28と第二導電型側電極27は、空間的に重なりを有さないことが望ましい。これは、発光素子10をハンダなどでフリップチップマウントした際に、サブマウント40などとの十分な密着性を確保するに十分な面積を確保しつつ、第二導電型側電極27と第一導電型側電極28との間のハンダ材等による意図しない短絡を防止するのに十分な間隔を確保するために重要である。  In the present invention, the first conductivity type side electrode 28 is formed in an area larger than the size of the first current injection region 36, and the first conductivity type side electrode 28 and the second conductivity type side electrode 27 are spatially separated. It is desirable that there is no overlap. This is because when the light-emitting element 10 is flip-chip mounted with solder or the like, the second conductivity type side electrode 27 and the first conductivity are secured while securing a sufficient area to ensure sufficient adhesion with the submount 40 or the like. This is important in order to ensure a sufficient distance to prevent an unintended short circuit due to a solder material or the like between the mold side electrode 28 and the like.
 第一導電型側電極28は、第一導電型のキャリアを注入可能であれば、薄膜結晶層のどの層と接してもよく、例えば第一導電型側コンタクト層が設けられるときは、それに接するように形成される。 
 また、前述の様に、基板の加工による物理的または化学的ダメージは、特に、発光波長が470nm未満の比較的短い波長の光(青色光、青紫色光、紫色光、近紫外光、紫外光など)を比較的吸収しやすくする。特に、前述のように、中心波長が430nm以下の紫色光、近紫外光、紫外光においてこの吸収は顕著である。本発明における効果は、発光素子10が、特にこのような発光波長を有する場合において顕著である。この意味では、発光素子10は、活性層構造25内から発せられる光の中心波長をλ(nm)としたとき、以下の式1を満たすことが望ましく、この場合に、本発明の基板の光学損失の低減効果がより効果的に発現しうる。 
The first conductivity type side electrode 28 may be in contact with any layer of the thin film crystal layer as long as the first conductivity type carrier can be injected. For example, when the first conductivity type side contact layer is provided, the first conductivity type side electrode 28 is in contact therewith. Formed as follows.
In addition, as described above, physical or chemical damage due to the processing of the substrate is particularly caused by light having a relatively short wavelength with an emission wavelength of less than 470 nm (blue light, blue violet light, purple light, near ultraviolet light, ultraviolet light). Etc.) are relatively easy to absorb. In particular, as described above, this absorption is significant in violet light, near ultraviolet light, and ultraviolet light having a center wavelength of 430 nm or less. The effect of the present invention is remarkable when the light emitting element 10 has such a light emission wavelength. In this sense, it is desirable that the light emitting element 10 satisfies the following formula 1 when the center wavelength of light emitted from the active layer structure 25 is λ (nm). The effect of reducing the loss can be expressed more effectively.
   300nm≦λ≦430nm・・・(式1) 
 また、例えばGaN基板の場合は、そのバンドギャップに相当する光よりも波長の短い光(中心波長λが363nmよりも波長の短い光)を、物理的または化学的ダメージによらずに吸収する本来的な特性がある。一方、中心波長λが363nmよりも波長の長い光は、その波長が長くなるほどGaN基板は透明になるので、物理的または化学的ダメージ等の外因的吸収が相対的に大きくなる傾向があり、中心波長λが390nm以上でその傾向が強く表れる。従って、本発明の光学損失の低減効果をさらに効果的に発現しうるのは、光の中心波長λ(nm)が、以下の式2を満たすことが望ましく、以下の式3を満たすことがさらに望ましい。
300 nm ≦ λ ≦ 430 nm (Formula 1)
For example, in the case of a GaN substrate, light that has a shorter wavelength than light corresponding to the band gap (light having a shorter wavelength than the center wavelength λ of 363 nm) is absorbed without being physically or chemically damaged. Characteristics. On the other hand, in the case of light having a center wavelength λ longer than 363 nm, the longer the wavelength, the more transparent the GaN substrate becomes, so that extrinsic absorption such as physical or chemical damage tends to be relatively large. This tendency appears strongly when the wavelength λ is 390 nm or more. Therefore, the optical loss reducing effect of the present invention can be expressed more effectively because the center wavelength λ (nm) of the light preferably satisfies the following expression 2 and further satisfies the following expression 3. desirable.
   363nm≦λ≦430nm・・・(式2) 
   390nm≦λ≦430nm・・・(式3) 
 <サブマウント> 
 サブマウント40は、金属層を有し、フリップチップマウントをした発光素子10への電流注入と放熱の機能を併せ持つものである。サブマウント40の母材は、金属、AlN、SiC、ダイヤモンド、BN、CuWのいずれかであることが望ましい。これら材料は、放熱性に優れ、高出力の発光素子10に不可避である発熱の問題を効率よく抑制できて望ましい。またAl23、Si、ガラス等も安価であってサブマウント40の母材として利用範囲が広く好ましい。なお、サブマウントの母材を金属から選択する際には、その周りを耐エッチング性のある誘電体等で覆うことが望ましい。 
363 nm ≦ λ ≦ 430 nm (Formula 2)
390 nm ≦ λ ≦ 430 nm (Formula 3)
<Submount>
The submount 40 has a metal layer, and has both functions of current injection and heat dissipation to the light-emitting element 10 that is flip-chip mounted. The base material of the submount 40 is preferably one of metal, AlN, SiC, diamond, BN, and CuW. These materials are preferable because they have excellent heat dissipation and can efficiently suppress the problem of heat generation that is unavoidable for the high-power light-emitting element 10. Al 2 O 3 , Si, glass and the like are also inexpensive and are widely used as a base material for the submount 40. When the submount base material is selected from metals, it is desirable to cover the periphery with a dielectric material having etching resistance.
 発光素子10は各種ハンダ材、ペースト材によってサブマウント40上の金属層に接合される。発光素子10の高出力動作と高効率な発光のために放熱性を十分に確保するためには、特に金属ハンダによって接合されることが望ましい。金属ハンダとしては、In、InAg、PbSn、SnAg、AuSn、AuGeおよびAuSi等を挙げることができる。これらハンダは安定であって、使用温度環境等に照らして適宜選択可能である。  The light emitting element 10 is bonded to the metal layer on the submount 40 by various solder materials and paste materials. In order to ensure sufficient heat dissipation for the high-output operation of the light-emitting element 10 and the high-efficiency light emission, it is particularly desirable to bond with metal solder. Examples of the metal solder include In, InAg, PbSn, SnAg, AuSn, AuGe, and AuSi. These solders are stable and can be appropriately selected in light of the operating temperature environment.
 なお、サブマウントの表面は発光素子の発光波長領域の光に対して高反射特性となっていることが好ましい。 
 [2-2]上下導通型構造を有する半導体発光素子
 本発明のその他の実施形態による発光素子は、図5に示すように、基板21と、基板21の一方に積層された化合物半導体薄膜結晶層(以下、単に薄膜結晶層ともいう)とを有する。化合物半導体薄膜結晶層は、バッファ層22、第一導電型クラッド層24を含む第一導電型半導体層、活性層構造25、第二導電型クラッド層26を含む第二導電型半導体層、およびコンタクト層23が基板21側からこの順番に積層されて構成されている。    
Note that the surface of the submount preferably has a high reflection characteristic with respect to light in the emission wavelength region of the light emitting element.
[2-2] Semiconductor Light-Emitting Element Having Vertical Conductive Structure A light-emitting element according to another embodiment of the present invention includes a substrate 21 and a compound semiconductor thin film crystal layer laminated on one of the substrates 21 as shown in FIG. (Hereinafter also simply referred to as a thin film crystal layer). The compound semiconductor thin film crystal layer includes a buffer layer 22, a first conductivity type semiconductor layer including a first conductivity type cladding layer 24, an active layer structure 25, a second conductivity type semiconductor layer including a second conductivity type cladding layer 26, and a contact. The layer 23 is configured by being laminated in this order from the substrate 21 side.
 コンタクト層23の表面の一部に、電流注入用の第二導電型側電極27が配置されており、コンタクト層23と第二導電型側電極27の接触している部分が、第二導電型半導体層に電流を注入する第二電流注入領域35となっている。
 また、基板21の前記薄膜結晶層と反対側の面、即ち裏面には結晶品質改善層30が配置され、その上に第一導電型側電極28が配置されている。結晶品質改善層30は、導電性を有する場合は、残っていても良いが、SiOやSiNなどの絶縁性を有する場合は、形成後、第一導電型側電極28が配置される前に、その一部または全部が除去されている方が好ましい。なお、全部が除去されている場合であっても前述の様に、顕著な結晶品質改善効果が奏されているため、従来の半導体発光素子とは異なる別個の発明といえる。
A second conductivity type side electrode 27 for current injection is disposed on a part of the surface of the contact layer 23, and a portion where the contact layer 23 and the second conductivity type side electrode 27 are in contact with each other is the second conductivity type. A second current injection region 35 for injecting a current into the semiconductor layer is formed.
In addition, a crystal quality improving layer 30 is disposed on the surface opposite to the thin film crystal layer of the substrate 21, that is, the back surface, and the first conductivity type side electrode 28 is disposed thereon. If the crystal quality improving layer 30 has conductivity, it may remain, but if it has an insulating property such as SiO x or SiN x , after formation, before the first conductivity type side electrode 28 is disposed. Further, it is preferable that a part or all of them are removed. Note that even when the entire structure is removed, as described above, a remarkable crystal quality improvement effect is achieved. Therefore, it can be said that this is a separate invention different from the conventional semiconductor light emitting device.
 なお、上下導通型構造を有する発光素子10において、その一部に結晶品質改善層30を形成する場合、またはその一部を除去する場合においては、図6に示すように、第二導電型側電極27の直下に相当する領域に当該結晶品質善層30を配置することが好ましい。これは、以下のメカニズムによる。
 図6の発光素子10は、第二導電型側電極27の直下に相当する領域に結晶品質改善層30が配置されており、第二導電型側電極27の直下に相当する領域以外の部分は、結晶品質改善層30が形成されていないか、除去されている。
In the case of forming the crystal quality improving layer 30 in a part of the light emitting element 10 having the vertical conduction type structure, or removing the part thereof, as shown in FIG. It is preferable to dispose the crystal quality good layer 30 in a region corresponding to the region immediately below the electrode 27. This is due to the following mechanism.
In the light emitting device 10 of FIG. 6, the crystal quality improving layer 30 is disposed in a region corresponding to the region immediately below the second conductivity type side electrode 27, and portions other than the region corresponding to the region immediately below the second conductivity type side electrode 27 are formed. The crystal quality improving layer 30 is not formed or removed.
 この場合、第二導電型側電極27からの正孔と第一導電型側電極28からの電子が、第二導電型側電極27の直下に存在する活性層構造36Sには注入されにくいため、当該活性層構造36Sは発光しにくい。この活性層構造36Sからの発光は、第二導電型側電極によって遮蔽されており、光取り出し効果が期待しにくい部分であるため、かかる部分が発光しにくいことは、発光素子10にとってデメリットになりにくいと考えられる。一方、光取り出し効果が期待される、第二導電型側電極27の直下に相当する領域以外の領域37では、第二導電型側電極27からの正孔と第一導電型側電極28からの電子が当該領域37に注入されるため、電流が集中することとなる。よって、図6の構造では、この活性層構造37からの光を効率的に取り出すことができる。 In this case, since the holes from the second conductivity type side electrode 27 and the electrons from the first conductivity type side electrode 28 are difficult to be injected into the active layer structure 36S existing immediately below the second conductivity type side electrode 27, The active layer structure 36S hardly emits light. The light emitted from the active layer structure 36S is shielded by the second conductivity type side electrode and is a part where it is difficult to expect the light extraction effect. Therefore, it is a disadvantage for the light emitting device 10 that the part is difficult to emit light. It is considered difficult. On the other hand, in the region 37 other than the region directly under the second conductivity type side electrode 27 where the light extraction effect is expected, the holes from the second conductivity type side electrode 27 and the first conductivity type side electrode 28 Since electrons are injected into the region 37, the current is concentrated. Therefore, in the structure of FIG. 6, light from the active layer structure 37 can be extracted efficiently.
 第二導電型側電極27および第一導電型側電極28が上記のように配置されることによって、両者は基板21を挟んで、反対側に配置され、発光素子10は、いわゆる上下導通型の発光素子10として構成されている。 
 上下導通型の発光素子は、上下から第一導電型側電極および第二導電型側電極をそれぞれ取り出すことができ、第一導電型側電極を設けるために積層した半導体層の一部をエッチングなどにより除去する必要がなく、製造工程を簡便化することができる。
By arranging the second conductivity type side electrode 27 and the first conductivity type side electrode 28 as described above, both are arranged on the opposite side across the substrate 21, and the light emitting element 10 is a so-called vertical conduction type. The light emitting device 10 is configured.
The vertical conduction type light emitting element can take out the first conductivity type side electrode and the second conductivity type side electrode from above and below, and etches a part of the laminated semiconductor layer to provide the first conductivity type side electrode. Therefore, the manufacturing process can be simplified.
 装置を構成する各部材については、前述の[2-1](フリップチップ型構造)に記載の部材を適宜変更して用いればよいが、 基板裏面に第一導電型側電極を設けるため、基板21およびバッファ層22が、通常第一導電型である必要があり、例えば、第一導電型をn型とした場合は、基板21およびバッファ層22がn型ドーパントによりドープされていることが好ましい。 For each member constituting the device, the member described in [2-1] (Flip chip type structure) may be appropriately changed and used. However, since the first conductivity type side electrode is provided on the rear surface of the substrate, the substrate 21 and the buffer layer 22 usually need to be of the first conductivity type. For example, when the first conductivity type is n-type, the substrate 21 and the buffer layer 22 are preferably doped with an n-type dopant. .
 素子作製においては、結晶性の劣るp型クラッド層を活性層構造25の結晶成長後に実施することが望ましく、この観点で、第一導電型がn型で、第二導電型がp型である場合が望ましい。
 [2-3]その他の半導体発光素子
 本発明の結晶品質改善層は、加工された基板裏面に形成する事によってその効果を発現するものであるが、応用例として、例えば、レーザリフトオフ法によって、基板を剥離した後の薄膜結晶層の面に電極を形成する前処理として用いることもできる。
In device fabrication, it is desirable to implement a p-type cladding layer with poor crystallinity after crystal growth of the active layer structure 25. From this viewpoint, the first conductivity type is n-type and the second conductivity type is p-type. Case is desirable.
[2-3] Other Semiconductor Light Emitting Elements The crystal quality improving layer of the present invention exhibits its effect by being formed on the processed substrate back surface. As an application example, for example, by a laser lift-off method, It can also be used as a pretreatment for forming an electrode on the surface of the thin film crystal layer after peeling off the substrate.
 さらに、前記薄膜結晶層を支持用金属基板上に搭載し、上下導通型デバイスにした際の光取り出し面側の光学損失の低減等に利用する事も可能である。 Furthermore, the thin film crystal layer can be mounted on a supporting metal substrate and used to reduce optical loss on the light extraction surface side when a vertical conduction type device is formed.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す具体例により限定的に解釈されるべきものではない。
 (実施例1)
 半導体を積層する面は十分な結晶品質が確保されるように準備され、基板裏面は基板作成時の加工ダメージが残存したままになっているc+面GaN基板を用意し、MOCVD法により、近紫外LED構造を有するエピタキシャル層を形成した。次に、リフトオフ法によりp側電極を形成し、アロイ化処理を行ってp側電極を完成させた。次に、ドライエッチング法を用いて一部にn側電極を形成させるためのn-GaN層を露出させた。次に、リフトオフ法によりパターニングしたn側電極を形成した。
The features of the present invention will be described more specifically with reference to the following examples. The materials, amounts used, ratios, processing details, processing procedures, and the like shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as being limited by the specific examples shown below.
Example 1
A c + plane GaN substrate is prepared in which the surface on which the semiconductor is laminated is secured so as to ensure sufficient crystal quality, and the processing damage at the time of substrate creation remains on the back surface of the substrate. An epitaxial layer having an LED structure was formed. Next, a p-side electrode was formed by a lift-off method, and an alloying process was performed to complete the p-side electrode. Next, an n-GaN layer for partially forming an n-side electrode was exposed by dry etching. Next, an n-side electrode patterned by a lift-off method was formed.
 次に、エピタキシャル層を形成した面に、保護膜としてレジスト層を形成し、研磨装置のウエハー貼り付け板にワックスを用いて貼り付けた。次に、重量平均粒子径3μmのダイヤモンドスラリーを用いて、銅製研磨盤により、基板の裏面を研磨した。研磨装置のウエハー貼り付け板からウエハーを外して洗浄し、貼り付け時のワックスや保護膜を除去し、乾燥させた。研磨後の基板厚みは303μmであった。また、発光ピーク波長を測定したところ、415.3nmであった。このときの50mAの電流を注入した際の部分放射束を測定したところ、1.75mWであった。 Next, a resist layer was formed as a protective film on the surface on which the epitaxial layer was formed, and was attached to the wafer attaching plate of the polishing apparatus using wax. Next, the back surface of the substrate was polished with a copper polishing machine using a diamond slurry having a weight average particle diameter of 3 μm. The wafer was removed from the wafer attaching plate of the polishing apparatus and cleaned, and the wax and protective film at the time of attaching were removed and dried. The substrate thickness after polishing was 303 μm. The emission peak wavelength was measured and found to be 415.3 nm. When the partial radiant flux at the time of injecting the current of 50 mA was measured, it was 1.75 mW.
 次いで、前記GaN基板のc-面(裏面)に、プラズマCVD法によって、SiNxからなる結晶品質改善層を形成(成膜)した。このときの基板加熱温度200℃とした。SiNxの成膜条件は、SiH4流量5sccm、NH3流量13sccm、N2流量225sccmとして、圧力45Paに調節し、RFパワー250Wとした。成膜時間は17分36秒とした。結晶品質改善層形成後の部分放射束を形成前と同様に測定したところ、結晶品質改善層を形成する前に比べて27.6%の増加が確認された。 Next, a crystal quality improving layer made of SiN x was formed (deposited) on the c-plane (back surface) of the GaN substrate by plasma CVD. The substrate heating temperature at this time was 200 ° C. The SiN x deposition conditions were a SiH 4 flow rate of 5 sccm, an NH 3 flow rate of 13 sccm, and an N 2 flow rate of 225 sccm, a pressure of 45 Pa, and an RF power of 250 W. The film formation time was 17 minutes and 36 seconds. When the partial radiant flux after formation of the crystal quality improvement layer was measured in the same manner as before formation, an increase of 27.6% was confirmed as compared to before formation of the crystal quality improvement layer.
 次いで、フッ化水素49重量%含有フッ酸水溶液および40重量%フッ化アンモニウム水溶液の比が1:5(重量比)の溶液に30分間浸漬し、結晶品質改善層を除去した。その後、部分放射束を測定したところ、結晶品質改善層を形成する前(裏面研磨後)に比べて24.8%の増加が確認され、結晶品質改善層を形成した際の改善効果をほとんど維持する結果となった。 Subsequently, the crystal quality improving layer was removed by immersing in a solution having a ratio of 49% by weight of hydrogen fluoride containing hydrofluoric acid and 40% by weight of ammonium fluoride in a ratio of 1: 5 (weight ratio) for 30 minutes. Thereafter, when the partial radiant flux was measured, an increase of 24.8% was confirmed compared to before the formation of the crystal quality improvement layer (after the back surface polishing), and the improvement effect when the crystal quality improvement layer was formed was almost maintained. As a result.
 (実施例2)
 研磨後の基板厚みを404μmとし、エピタキシャル層を形成する条件を変更した以外は、実施例1と同様にして半導体発光素子を作製し、部分放射束を測定したところ、1.72mWであった。また、発光ピーク波長を測定したところ、398.8nmであった。
 実施例1と同様の方法にてSiNxからなる結晶品質改善層を形成し、除去した。このときの部分放射束を測定したところ、結晶品質改善層を形成する前に比べて11.1%の増加が確認された。
(Example 2)
A semiconductor light emitting device was fabricated in the same manner as in Example 1 except that the substrate thickness after polishing was 404 μm and the conditions for forming the epitaxial layer were changed, and the partial radiant flux was measured to be 1.72 mW. The emission peak wavelength was measured and found to be 398.8 nm.
A crystal quality improving layer made of SiN x was formed and removed by the same method as in Example 1. When the partial radiant flux at this time was measured, an increase of 11.1% was confirmed as compared with that before forming the crystal quality improving layer.
 (実施例3)
 実施例2と同様にして半導体発光装置を作成し、部分放射束を測定したところ、1.73mWであった。また、発光ピーク波長を測定したところ、400.8nmであった。次に、以下の条件にてプラズマCVD法によってSiNxからなる結晶品質改善層を形成した。即ち、基板加熱温度200℃とし、SiH4流量5sccm、NH3流量50sccm、N2流量100sccmとして、圧力45Paに調節し、RFパワー250Wとした。成膜時間は17分36秒とした。結晶品質改善層形成後の部分放射束を形成前と同様に測定したところ、SiNxからなる結晶品質改善層を形成する前に比べて9.8%の増加が確認された。
(Example 3)
A semiconductor light-emitting device was prepared in the same manner as in Example 2, and the partial radiant flux was measured to be 1.73 mW. Moreover, it was 400.8 nm when the light emission peak wavelength was measured. Next, a crystal quality improving layer made of SiN x was formed by plasma CVD under the following conditions. That is, the substrate heating temperature was 200 ° C., the SiH 4 flow rate was 5 sccm, the NH 3 flow rate was 50 sccm, the N 2 flow rate was 100 sccm, the pressure was adjusted to 45 Pa, and the RF power was 250 W. The film formation time was 17 minutes and 36 seconds. When the partial radiant flux after the formation of the crystal quality improvement layer was measured in the same manner as before the formation, an increase of 9.8% was confirmed as compared with that before the formation of the crystal quality improvement layer made of SiN x .
 実施例1と同様にして前記結晶品質改善層を除去した。このときの部分放射束を測定したところ、結晶品質改善層を形成する前に比べて5.7%の増加が確認された。
 (実施例4)
 半導体を積層する面は十分な結晶品質が確保されるように準備され、基板裏面は基板作成時の加工ダメージが残存したままになっているc+面GaN基板を用意し、MOCVD法により、近紫外LED構造を有するエピタキシャル層を形成した。次に、リフトオフ法によりp側電極を形成し、アロイ化処理を行ってp側電極を完成させた。次に、ドライエッチング法を用いて一部にn側電極を形成させるためのn-GaN層を露出させた。次に、リフトオフ法によりパターニングしたn側電極を形成した。基板の裏面は、購入したc+面GaN基板の裏面を研磨等することなく、そのままで発光素子を完成させた。発光ピーク波長を測定したところ、415.3nmであった。このときの50mAの電流を注入した際の部分放射束を測定したところ、1.92mWであった。
The crystal quality improving layer was removed in the same manner as in Example 1. When the partial radiant flux at this time was measured, an increase of 5.7% was confirmed as compared with that before forming the crystal quality improving layer.
Example 4
A c + -plane GaN substrate is prepared in which the surface on which the semiconductors are laminated is secured to ensure sufficient crystal quality, and the processing damage at the time of substrate fabrication remains on the back surface of the substrate. An epitaxial layer having an LED structure was formed. Next, a p-side electrode was formed by a lift-off method, and an alloying process was performed to complete the p-side electrode. Next, an n-GaN layer for partially forming an n-side electrode was exposed by dry etching. Next, an n-side electrode patterned by a lift-off method was formed. The back surface of the substrate was completed as it was without polishing the back surface of the purchased c + -plane GaN substrate. The emission peak wavelength was measured and found to be 415.3 nm. When the partial radiant flux was measured when a current of 50 mA was injected at this time, it was 1.92 mW.
 次いで、前記GaN基板のc-面(裏面)に、プラズマCVD法によって、SiNxからなる結晶品質改善層を形成(成膜)した。このときの基板加熱温度300℃とした。SiNxの成膜条件は、SiH4流量4sccm、NH3流量12sccm、N2流量220sccmとして、圧力45Paに調節し、RFパワー250Wとした。成膜時間は17分36秒とした。結晶品質改善層形成後の部分放射束を形成前と同様に測定したところ、結晶品質改善層を形成する前に比べて10.6%の増加が確認された。 Next, a crystal quality improving layer made of SiN x was formed (deposited) on the c-plane (back surface) of the GaN substrate by plasma CVD. The substrate heating temperature at this time was 300 ° C. The SiN x deposition conditions were a SiH 4 flow rate of 4 sccm, a NH 3 flow rate of 12 sccm, a N 2 flow rate of 220 sccm, a pressure of 45 Pa, and an RF power of 250 W. The film formation time was 17 minutes and 36 seconds. When the partial radiant flux after the formation of the crystal quality improvement layer was measured in the same manner as before the formation, an increase of 10.6% was confirmed as compared with that before the formation of the crystal quality improvement layer.
 次いで、フッ化水素49重量%含有フッ酸水溶液および40重量%フッ化アンモニウム水溶液の比が1:5(重量比)の溶液に5分間浸漬し、結晶品質改善層を除去した。その後、部分放射束を測定したところ、結晶品質改善層を形成する前(裏面研磨後)に比べて9.8%の増加が確認され、結晶品質改善層を形成した際の改善効果をほとんど維持する結果となった。 Subsequently, the crystal quality improving layer was removed by immersing in a solution having a ratio of 49% by weight of hydrogen fluoride containing hydrofluoric acid and 40% by weight of ammonium fluoride in a ratio of 1: 5 (weight ratio) for 5 minutes. Later, when the partial radiant flux was measured, an increase of 9.8% was confirmed compared to before the formation of the crystal quality improvement layer (after back surface polishing), and the improvement effect when the crystal quality improvement layer was formed was almost maintained. As a result.
 (比較例1)
 実施例2と同様にして半導体発光装置を作成し、部分放射束を測定したところ、1.72mWであった。また、発光ピーク波長を測定したところ、398.8nmであった。次に、以下の条件にてプラズマCVD装置の中で、NHプラズマに曝した。即ち、基板加熱温度200℃とし、NH3流量100sccmにおいて、圧力45Pa、RFパワー100Wとした。処理時間は5分であった。
(Comparative Example 1)
A semiconductor light-emitting device was prepared in the same manner as in Example 2, and the partial radiant flux was measured to be 1.72 mW. The emission peak wavelength was measured and found to be 398.8 nm. Next, it was exposed to NH 3 plasma in a plasma CVD apparatus under the following conditions. That is, the substrate heating temperature was 200 ° C., the NH 3 flow rate was 100 sccm, the pressure was 45 Pa, and the RF power was 100 W. The treatment time was 5 minutes.
 このときの部分放射束を測定したところ、NHプラズマ処理前に比べて有意な差は確認されなかった。即ち、結晶品質改善層を形成しない、単なるNHプラズマ処理では、ほとんど改善効果を奏しないことが認められた。
 (比較例2)
 半導体を積層する面、および基板裏面共に十分な結晶品質が確保されるように準備されたc+面GaN基板を用い、基板の裏面の研磨処理を行わなかった以外は実施例1と同様にして半導体発光装置を作成し、SiNx層を形成した。このSiNx層形成前の部分放射束を測定した。また、発光ピーク波長を測定したところ、413.5nmであった。
When the partial radiant flux at this time was measured, a significant difference was not confirmed compared with before NH 3 plasma treatment. That is, it was confirmed that the simple NH 3 plasma treatment without forming the crystal quality improvement layer hardly shows the improvement effect.
(Comparative Example 2)
A semiconductor was prepared in the same manner as in Example 1 except that a c + -plane GaN substrate prepared so that sufficient crystal quality was secured on both the semiconductor lamination surface and the substrate back surface was not polished. A light emitting device was prepared and an SiN x layer was formed. The partial radiant flux before the formation of the SiN x layer was measured. Moreover, when the light emission peak wavelength was measured, it was 413.5 nm.
 SiNx層形成後の部分放射束を測定したところ、SiNx層を形成する前に比べて有意な差は確認されず、ほとんど改善効果を奏しないことが認められた。
 このように、比較例2で形成されたSiNx層は、十分な結晶品質が確保されるよう準備された基板裏面上に形成されているので、(a)基板裏面の結晶性の向上機能、および(b)加工処理などによるダメージを回復させる機能のいずれの機能ももたない層であり、本発明の結晶品質改善層には該当しない。
 以上により、本発明は、実施例1~4のような、研磨などのダメージを受けた基板について、顕著な効果を奏することが確認された。
When the partial radiant flux after the formation of the SiN x layer was measured, a significant difference was not confirmed as compared with that before the formation of the SiN x layer, and it was recognized that there was almost no improvement effect.
Thus, since the SiN x layer formed in Comparative Example 2 is formed on the back surface of the substrate prepared so as to ensure sufficient crystal quality, (a) a function of improving the crystallinity of the back surface of the substrate, And (b) a layer that does not have any function of recovering damage due to processing or the like, and does not correspond to the crystal quality improving layer of the present invention.
From the above, it has been confirmed that the present invention has a remarkable effect with respect to the substrate damaged by polishing such as in Examples 1 to 4.
 本出願は、2008年9月19日出願の日本特許出願(特願2008-241052)に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on a Japanese patent application filed on September 19, 2008 (Japanese Patent Application No. 2008-241052), the contents of which are incorporated herein by reference.
 10  発光素子 
 21  基板 
 22  バッファ層 
 23  コンタクト層
 24  第一導電型クラッド層 
 25  活性層構造 
 26  第二導電型クラッド層 
 27  第二導電型側電極 
 28  第一導電型側電極 
 30  結晶品質改善層
 31  絶縁膜
 40  サブマウント
10 Light emitting element
21 Substrate
22 Buffer layer
23 Contact Layer 24 First Conductive Clad Layer
25 Active layer structure
26 Second conductivity type cladding layer
27 Second conductivity type side electrode
28 First conductivity type side electrode
30 Crystal Quality Improvement Layer 31 Insulating Film 40 Submount

Claims (26)

  1.  基板の結晶成長面の上に半導体層が積層された半導体発光素子の製造方法であって、
    (B)前記基板の裏面に結晶品質改善層を形成させる工程を有する
    ことを特徴とする半導体発光素子の製造方法。
    A method for manufacturing a semiconductor light emitting device in which a semiconductor layer is laminated on a crystal growth surface of a substrate,
    (B) A method of manufacturing a semiconductor light emitting device, comprising a step of forming a crystal quality improving layer on the back surface of the substrate.
  2. 前記(B)工程の前に、
    (A)前記結晶成長基板の裏面を加工する工程を有する
    請求項1に記載の半導体発光素子の製造方法。
    Before the step (B),
    (A) The manufacturing method of the semiconductor light emitting element of Claim 1 which has the process of processing the back surface of the said crystal growth board | substrate.
  3. 前記(B)工程の後に、
    (C)前記結晶品質改善層を除去する工程を有する
    請求項1または2に記載の半導体発光素子の製造方法。
    After the step (B),
    (C) The manufacturing method of the semiconductor light-emitting device according to claim 1, further comprising a step of removing the crystal quality improving layer.
  4.  前記(B)工程は、窒素原料として少なくともアンモニアを含有するガス種を用いて前記結晶品質改善層を形成することを含む
    請求項1から3のいずれか1項に記載の半導体発光素子の製造方法。
    4. The method for manufacturing a semiconductor light emitting element according to claim 1, wherein the step (B) includes forming the crystal quality improving layer using a gas species containing at least ammonia as a nitrogen raw material. 5. .
  5.  前記(B)工程は、酸素原料として少なくともNOを含有するガス種を用いて前記結晶品質改善層を形成することを含む
    請求項1から4のいずれか1項に記載の半導体発光素子の製造方法。
    5. The semiconductor light emitting element according to claim 1, wherein the step (B) includes forming the crystal quality improving layer using a gas species containing at least N 2 O as an oxygen source. 6. Production method.
  6.  前記(B)工程は、水素原子の濃度が1×1021atoms/cm3以上1×1022atoms/cm3以下となるように前記結晶品質改善層を形成することを含む
    請求項1から5のいずれか1項に記載の半導体発光素子の製造方法。
    The step (B) includes forming the crystal quality improving layer so that the concentration of hydrogen atoms is 1 × 10 21 atoms / cm 3 or more and 1 × 10 22 atoms / cm 3 or less. The manufacturing method of the semiconductor light-emitting device of any one of these.
  7.  前記(B)工程は、プラズマCVD法によって前記結晶品質改善層を形成することを含む
    請求項1から6のいずれか1項に記載の半導体発光素子の製造方法。
    The method of manufacturing a semiconductor light emitting element according to claim 1, wherein the step (B) includes forming the crystal quality improving layer by a plasma CVD method.
  8.  前記基板が、窒化物または酸化物である
    請求項1から7のいずれか1項に記載の半導体発光素子の製造方法。
    The method for manufacturing a semiconductor light-emitting element according to claim 1, wherein the substrate is a nitride or an oxide.
  9.  前記結晶品質改善層は、窒化物、酸化物、酸窒化物のいずれか1以上を含む
    請求項1から8のいずれか1項に記載の半導体発光素子の製造方法。
    9. The method of manufacturing a semiconductor light emitting element according to claim 1, wherein the crystal quality improving layer includes any one or more of a nitride, an oxide, and an oxynitride.
  10.  前記窒化物、酸化物、酸窒化物は、B、Al、Si、Ti、V、Cr、Mo、Hf、Ta、またはWのいずれか1種またはそれ以上の元素を含む
    請求項9に記載の半導体発光素子の製造方法。
    10. The nitride, oxide, or oxynitride according to claim 9, wherein the nitride, oxide, or oxynitride includes one or more elements selected from B, Al, Si, Ti, V, Cr, Mo, Hf, Ta, and W. A method for manufacturing a semiconductor light emitting device.
  11.  前記結晶品質改善層は、終端効果を発現する元素を含む
    請求項1から8のいずれか1項に記載の半導体発光素子の製造方法。
    The method for manufacturing a semiconductor light-emitting element according to claim 1, wherein the crystal quality improvement layer includes an element that exhibits a termination effect.
  12.  前記終端効果を発現する元素が、Si、Ge、Se、S、Al、P、Asのいずれか1種以上である
    請求項11に記載の半導体発光素子の製造方法。
    The method for manufacturing a semiconductor light emitting element according to claim 11, wherein the element that exhibits the termination effect is at least one of Si, Ge, Se, S, Al, P, and As.
  13.  基板の結晶成長面の上に半導体層が積層された半導体発光素子であって、
    前記基板の裏面に結晶品質改善層を有する
    ことを特徴とする半導体発光素子。
    A semiconductor light emitting device in which a semiconductor layer is stacked on a crystal growth surface of a substrate,
    A semiconductor light emitting device comprising a crystal quality improving layer on a back surface of the substrate.
  14.  前記半導体層が、バッファ層、第一導電型クラッド層を含む第一導電型半導体層、活性層構造、および第二導電型クラッド層を含む第二導電型半導体層がこの順番に積層されたものである
    請求項13に記載の半導体発光素子。
    The semiconductor layer includes a buffer layer, a first conductivity type semiconductor layer including a first conductivity type clad layer, an active layer structure, and a second conductivity type semiconductor layer including a second conductivity type clad layer stacked in this order. The semiconductor light-emitting device according to claim 13.
  15.  前記半導体発光素子が、前記第一導電型半導体層および前記第二導電型半導体層にそれぞれ電流を注入するための第一導電型側電極および第二導電型側電極を有し、前記第一導電型側電極および第二導電型側電極が共に、前記バッファ層に対峙して、かつ同じ側に配置されているフリップチップ型構造を有する
    請求項13または14に記載の半導体発光素子。
    The semiconductor light emitting element has a first conductivity type side electrode and a second conductivity type side electrode for injecting current into the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively, and the first conductivity type The semiconductor light emitting device according to claim 13 or 14, wherein both the mold side electrode and the second conductivity type side electrode have a flip chip type structure in which the mold side electrode and the second conductivity type side electrode are arranged on the same side as the buffer layer.
  16.  前記半導体発光素子が、前記第一導電型半導体層および前記第二導電型半導体層にそれぞれ電流を注入するための第一導電型側電極および第二導電型側電極を有し、前記第一導電型側電極および第二導電型側電極の一方が前記半導体層上に配置され、他方が前記基板面上に接して配置されている上下導通型構造を有する
    請求項13または14に記載の半導体発光素子。
    The semiconductor light emitting element has a first conductivity type side electrode and a second conductivity type side electrode for injecting current into the first conductivity type semiconductor layer and the second conductivity type semiconductor layer, respectively, and the first conductivity type 15. The semiconductor light emitting device according to claim 13, wherein the semiconductor light emitting device has a vertical conduction type structure in which one of a mold side electrode and a second conductivity type side electrode is disposed on the semiconductor layer and the other is disposed in contact with the substrate surface. element.
  17.  前記第一導電型半導体層、前記活性層構造および前記第二導電型半導体層は窒化物半導体である
    請求項13から16のいずれか1項に記載の半導体発光素子。 
    17. The semiconductor light emitting device according to claim 13, wherein the first conductive semiconductor layer, the active layer structure, and the second conductive semiconductor layer are nitride semiconductors.
  18.  前記窒化物半導体は、In、Ga、AlおよびBの少なくとも1種の元素を含有する
    請求項17に記載の半導体発光素子。 
    The semiconductor light emitting element according to claim 17, wherein the nitride semiconductor contains at least one element of In, Ga, Al, and B.
  19.  前記活性層構造内から発せられる光の中心波長λ(nm)が下記式を満たす
    請求項13から18のいずれか1項に記載の半導体発光素子。 
    300(nm)≦λ≦430(nm) 
    19. The semiconductor light emitting element according to claim 13, wherein a center wavelength λ (nm) of light emitted from the active layer structure satisfies the following formula.
    300 (nm) ≦ λ ≦ 430 (nm)
  20.  前記結晶品質改善層における水素原子の濃度が1×1021atoms/cm3以上1×1022atoms/cm3以下である
    請求項13から19のいずれか1項に記載の半導体発光素子。
    20. The semiconductor light emitting element according to claim 13, wherein the concentration of hydrogen atoms in the crystal quality improving layer is 1 × 10 21 atoms / cm 3 or more and 1 × 10 22 atoms / cm 3 or less.
  21.  前記基板が窒化物または酸化物である
    請求項13から20のいずれか1項に記載の半導体発光素子。
    21. The semiconductor light emitting element according to claim 13, wherein the substrate is a nitride or an oxide.
  22.  前記結晶品質改善層は、窒化物、酸化物、酸窒化物のいずれか1以上を含む
    請求項13から21のいずれか1項に記載の半導体発光素子。 
    The semiconductor light emitting element according to any one of claims 13 to 21, wherein the crystal quality improving layer includes at least one of nitride, oxide, and oxynitride.
  23.  前記窒化物、酸化物、酸窒化物は、B、Al、Si、Ti、V、Cr、Mo、Hf、Ta、またはWのいずれか1種またはそれ以上の元素を含む
    請求項22に記載の半導体発光素子。 
    The nitride, oxide, or oxynitride includes one or more elements selected from the group consisting of B, Al, Si, Ti, V, Cr, Mo, Hf, Ta, and W. Semiconductor light emitting device.
  24.  前記結晶品質改善層は、終端効果を発現する元素を含む
    請求項13から21のいずれか1項に記載の半導体発光素子。 
    The semiconductor light emitting element according to any one of claims 13 to 21, wherein the crystal quality improving layer includes an element that exhibits a termination effect.
  25.  前記終端効果を発現する元素が、Si、Ge、Se、S、Al、P、Asのいずれか1種以上である
    請求項24に記載の半導体発光素子。
    25. The semiconductor light emitting element according to claim 24, wherein the element that exhibits the termination effect is at least one of Si, Ge, Se, S, Al, P, and As.
  26.  前記結晶品質改善層が除去された
    請求項13から25のいずれか1項に記載の半導体発光素子。
    26. The semiconductor light emitting element according to claim 13, wherein the crystal quality improving layer is removed.
PCT/JP2009/066375 2008-09-19 2009-09-18 Method for manufacturing semiconductor light-emitting element and semiconductor light-emitting element WO2010032829A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010529814A JPWO2010032829A1 (en) 2008-09-19 2009-09-18 Semiconductor light emitting device manufacturing method and semiconductor light emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-241052 2008-09-19
JP2008241052 2008-09-19

Publications (1)

Publication Number Publication Date
WO2010032829A1 true WO2010032829A1 (en) 2010-03-25

Family

ID=42039650

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/066375 WO2010032829A1 (en) 2008-09-19 2009-09-18 Method for manufacturing semiconductor light-emitting element and semiconductor light-emitting element

Country Status (2)

Country Link
JP (1) JPWO2010032829A1 (en)
WO (1) WO2010032829A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038031A1 (en) * 2015-09-02 2017-03-09 信越半導体株式会社 Light-emitting element and method for manufacturing light-emitting element
JP2020167321A (en) * 2019-03-29 2020-10-08 旭化成株式会社 Nitride semiconductor light-emitting device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243253A (en) * 1998-02-25 1999-09-07 Sony Corp Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JPH11298040A (en) * 1998-04-10 1999-10-29 Sharp Corp Semiconductor light-emitting element and manufacture thereof
JP2004146605A (en) * 2002-10-24 2004-05-20 Matsushita Electric Ind Co Ltd Process for producing nitride semiconductor wafer and process for fabricating light emitting device
JP2005286135A (en) * 2004-03-30 2005-10-13 Eudyna Devices Inc Semiconductor device and manufacturing method thereof
JP2005302804A (en) * 2004-04-07 2005-10-27 Toyoda Gosei Co Ltd Light emitting diode and its manufacturing method
JP2007116076A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Semiconductor device
JP2008041841A (en) * 2006-08-03 2008-02-21 Sharp Corp Semiconductor light-emitting device, and manufacturing method of semiconductor light-emitting device
JP2008098199A (en) * 2006-10-05 2008-04-24 Nagoya Institute Of Technology Polishing method of group iii-v nitride semiconductor substrate and group iii-v nitride semiconductor substrate obtained by that method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11243253A (en) * 1998-02-25 1999-09-07 Sony Corp Growth of nitride-based iii-v compound semiconductor, manufacture of semiconductor device, substrate for growth of nitride-based iii-v compound semiconductor, manufacture of the substrate for growth of nitride-based iii-v compound semiconductor
JPH11298040A (en) * 1998-04-10 1999-10-29 Sharp Corp Semiconductor light-emitting element and manufacture thereof
JP2004146605A (en) * 2002-10-24 2004-05-20 Matsushita Electric Ind Co Ltd Process for producing nitride semiconductor wafer and process for fabricating light emitting device
JP2005286135A (en) * 2004-03-30 2005-10-13 Eudyna Devices Inc Semiconductor device and manufacturing method thereof
JP2005302804A (en) * 2004-04-07 2005-10-27 Toyoda Gosei Co Ltd Light emitting diode and its manufacturing method
JP2007116076A (en) * 2005-09-22 2007-05-10 Matsushita Electric Ind Co Ltd Semiconductor device
JP2008041841A (en) * 2006-08-03 2008-02-21 Sharp Corp Semiconductor light-emitting device, and manufacturing method of semiconductor light-emitting device
JP2008098199A (en) * 2006-10-05 2008-04-24 Nagoya Institute Of Technology Polishing method of group iii-v nitride semiconductor substrate and group iii-v nitride semiconductor substrate obtained by that method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038031A1 (en) * 2015-09-02 2017-03-09 信越半導体株式会社 Light-emitting element and method for manufacturing light-emitting element
JP2017050406A (en) * 2015-09-02 2017-03-09 信越半導体株式会社 Light-emitting element and manufacturing method of light-emitting element
CN110534625A (en) * 2015-09-02 2019-12-03 信越半导体株式会社 The manufacturing method of luminescence component and luminescence component
CN110534625B (en) * 2015-09-02 2022-12-23 信越半导体株式会社 Light emitting module and method for manufacturing light emitting module
JP2020167321A (en) * 2019-03-29 2020-10-08 旭化成株式会社 Nitride semiconductor light-emitting device

Also Published As

Publication number Publication date
JPWO2010032829A1 (en) 2012-02-16

Similar Documents

Publication Publication Date Title
US8581274B2 (en) Integrated semiconductor light-emitting device and its manufacturing method
CN101379627B (en) Light emitting element
US20090315045A1 (en) Integrated semiconductor light emitting device and method for manufacturing same
JP3974667B2 (en) Manufacturing method of semiconductor light emitting device
US20100308357A1 (en) Semiconductor light emitting element and method for manufacturing the same
US7947995B2 (en) Gallium nitride-based compound semiconductor light emitting device
EP2023412A1 (en) Semiconductor light-emitting device
US20040140474A1 (en) Semiconductor light-emitting device, method for fabricating the same and method for bonding the same
WO2007126158A1 (en) Semiconductor light emitting element and wafer
US20070105260A1 (en) Nitride-based semiconductor device and production method thereof
JP2007324585A (en) Semiconductor light-emitting element
JP2010093186A (en) Method of manufacturing gallium nitride-based compound semiconductor light-emitting element, layered structure of gallium nitride-based compound semiconductor element, gallium nitride-based compound semiconductor light-emitting element, and lamp
JP2005268581A (en) Gallium nitride family compound semiconductor light emitting device
JP2009218495A (en) Semiconductor light-emitting element and semiconductor light-emitting device
JP2007329465A (en) Method of manufacturing semiconductor light-emitting device
JP2007324581A (en) Integrated semiconductor light-emitting device, and manufacturing method thereof
JP2008117824A (en) Method of manufacturing nitride-based semiconductor element
US20050079642A1 (en) Manufacturing method of nitride semiconductor device
JP2007324586A (en) Manufacturing method of semiconductor light-emitting element
JP2005045054A (en) Group iii nitride semiconductor light emitting element
JP2007329464A (en) Semiconductor light-emitting device
JP2007324582A (en) Integrated semiconductor light-emitting device, and manufacturing method thereof
WO2010032829A1 (en) Method for manufacturing semiconductor light-emitting element and semiconductor light-emitting element
US20240106190A1 (en) Light-emitting element, semiconductor laser element, and manufacturing method and manufacturing apparatus thereof
JP2007324583A (en) Integrated semiconductor light-emitting device, and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09814673

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010529814

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09814673

Country of ref document: EP

Kind code of ref document: A1