WO2010029810A1 - 構造最適化装置、構造最適化方法及び構造最適化プログラム - Google Patents
構造最適化装置、構造最適化方法及び構造最適化プログラム Download PDFInfo
- Publication number
- WO2010029810A1 WO2010029810A1 PCT/JP2009/062974 JP2009062974W WO2010029810A1 WO 2010029810 A1 WO2010029810 A1 WO 2010029810A1 JP 2009062974 W JP2009062974 W JP 2009062974W WO 2010029810 A1 WO2010029810 A1 WO 2010029810A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- level set
- set function
- region
- boundary
- cavity
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
- G06F30/23—Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B81—MICROSTRUCTURAL TECHNOLOGY
- B81B—MICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
- B81B3/00—Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes
Definitions
- the present invention relates to a structure optimization device, a structure optimization method, and a structure optimization program.
- structural optimization methods include dimension optimization, shape optimization, and topology optimization.
- the shape optimization is a method of obtaining an optimum structure by updating the outer shape based on sensitivity information using the outer shape as a design variable, and is widely used in the machine industry as a practical method.
- shape optimization has the disadvantage that it is difficult to change the form such as the number of holes in the optimal structure, and it cannot be expected to significantly improve the performance of the structure.
- topology optimization can change the form of the optimal structure by replacing the optimal design problem with the material distribution problem and can expect a significant performance improvement of the structure.
- Non-Patent Document 1 structure optimization based on the level set method has been proposed as a new structure optimization method.
- This method expresses the outer shape with a one-dimensional high-level level set function, and replaces the change of the shape and form with the change of the level set function value to obtain the optimum structure.
- the outline of the optimum structure can always be clearly expressed, and there is an advantage that problems such as gray scale do not occur.
- the level set method updates the level set function based on the advection equation, it is assumed that the topology change (morphological change) in which a hole is created in the outer shape (object region) is not allowed.
- Non-Patent Document 2 in the process of structure optimization based on the level set method, a method for arbitrarily creating a hole based on a topological derivative of an objective function has been proposed as appropriate.
- Non-Patent Document 3 in the optimization process, by replacing the object region (region forming the structure) whose topological derivative value is a predetermined threshold with the cavity region (region forming the cavity) There has been proposed a method of allowing a topology change (morphological change) such that a hole is created in the outer shape (object region).
- the present invention has been made to solve the above-mentioned problems all at once, enabling a clear shape expression of the optimum structure and allowing a highly flexible structure optimization such as allowing a topology change in the object region. Making this possible is the main desired issue.
- the structure optimization apparatus according to the present invention is characterized by comprising the following configurations (1) to (3).
- a design area data storage unit for storing design area data indicating a design area of a structure.
- (2) Indicates whether each part of the design area where the initial structure is set is an object area that forms the structure, a cavity area that forms a cavity, or a boundary between these areas, and a value that represents the object area and a value that represents the cavity area
- a level set function data storage unit storing level set function data indicating a level set function in which a predetermined value between represents a boundary.
- the level set function is updated so that the performance of the structure such as rigidity approaches a target value to move the boundary between the object region and the cavity region, and the level A level set that allows a topology change (morphological change) in the object region accompanying the update of the set function to form a new cavity region in the object region, and moves the boundary between the new cavity region and the object region Function update part.
- the predetermined value between the value representing the object region and the value representing the cavity region uses a level set function indicating the boundary between the object region and the cavity region, so that the optimum structure is clearly defined. Shape representation can be made possible.
- the topology change in the object region is also updated by updating the level set function to allow the topology change in the object region and move the newly generated boundary. It is possible to achieve structural optimization with a high degree of freedom such as allowing
- the level set function update unit includes a function group having the level set function as a variable, an energy density in the object region, an energy density in the cavity region, and an interface energy density.
- the level set function updating unit updates the level set function so that the complexity indicating the structural complexity of the structure obtained as a result of updating the level set function becomes a preset complexity. It is desirable to be a thing. If this is the case, it is possible to create an optimum structure having the complexity (that is, fineness) of the structure intended by the designer (user) among the innumerable local optimum solutions.
- the structure optimization method includes a design region setting step for determining a design region of a structure, an object region in which each part of the design region in which the initial structure is set forms a structure, a cavity region that forms a cavity, or A level set function setting step that indicates whether or not a boundary between these regions, and a predetermined value between a value representing the object region and a value representing the cavity region defines a level set function representing the boundary, and under a predetermined constraint condition,
- the level set function is updated so that the performance of the structure such as rigidity approaches a target value, the boundary between the object region and the cavity region is moved, and the inside of the object region accompanying the update of the level set function
- the number updating step comprises a.
- the structure optimization program includes a design area data storage unit that stores design area data indicating a design area of a structure, and an object area and a cavity in which each part of the design area in which an initial structure is set forms a structure.
- Level set function data indicating a level set function representing the boundary, and a predetermined value between the value representing the object region and the value representing the cavity region is stored.
- a level set function data storage unit, and the boundary between the object region and the cavity region by updating the level set function so that the performance of the structure such as rigidity approaches a target value under a predetermined constraint condition
- a new cavity region is formed in the object region by allowing a topology change (morphological change) in the object region accompanying the update of the level set function.
- FIG. K 1 ( ⁇ ) 1 of the initial structure, which shows the structure and optimum structure of the optimization process.
- FIG. 1 is a device configuration diagram of the structure optimization apparatus 100 of the present embodiment
- FIG. 2 is a functional configuration diagram of the structure optimization apparatus 100
- FIG. 3 is a flowchart showing an operation of the structure optimization apparatus 100. is there.
- the structure optimization apparatus 100 creates a structure having a desired performance under a predetermined constraint condition in a preset design region.
- a storage device 102 such as a volatile memory or an HDD is provided, and an input / output for connecting an input means 103 such as a mouse or a keyboard, and an output means 105 such as a display or printer for outputting an analysis model or calculation results.
- a general-purpose or dedicated computer having an interface 104 or the like.
- the structure optimization device 100 is designed as shown in the functional configuration diagram of FIG. It functions as an area data storage unit 1, a level set function data storage unit 2, a boundary condition data storage unit 3, an analysis data storage unit 4, a level set function update unit 5, an operation result output unit 6, and the like.
- the design area data storage unit 1 stores design area data indicating a design area of a structure (including structural grid (mesh) information for dividing the design area into elements).
- the design area data is input by the user using the input unit 103, for example.
- the level set function data storage unit 2 stores level set function data indicating a level set function for specifying a structure in the design area such as an initial structure.
- the level set function means that each part of the design area in which the initial structure is set forms the structure, the object area occupied by the object (object phase), the cavity area forming the cavity (cavity phase), or It indicates whether it is a boundary, and a predetermined value between the value representing the object region and the value representing the cavity region represents the boundary between the object region and the cavity region.
- the level set function data is input by the user using the input unit 103, for example.
- the boundary condition data storage unit 3 stores boundary condition data indicating boundary conditions of the design area (hereinafter also referred to as a fixed design area). Specific boundary conditions include, for example, constraint conditions in the design region, external force (surface force) such as a load acting on the initial structure, and the like.
- the boundary condition data is input by the user using the input unit 103, for example.
- the analysis data storage unit 4 stores analysis data that are material constants such as constraint condition values necessary for volume constraints used when obtaining an optimum structure and values of Young's modulus and Poisson's ratio necessary for analysis of the displacement field. Yes.
- the analysis data is input by the user using the input unit 103, for example.
- the level set function updating unit 5 updates the level set function so that the performance of the structure such as rigidity and natural frequency approaches a target value under a predetermined constraint condition, and sets the boundary between the object region and the cavity region.
- a new cavity region (hole) is formed in the object region by allowing a topology change (morphological change) in the object region accompanying the update of the level set function and moving between the new cavity region and the object region. The boundary is moved.
- the level set function updating unit 5 minimizes the energy functional indicated by the function group having the level set function as a variable, the energy density in the object region, the energy density in the cavity region, and the interface energy density.
- a reaction diffusion equation indicating the time evolution of the level set function is calculated, and the level set function is updated by time evolution of the level set function using the reaction diffusion equation. The specific function of the level set function update unit 5 will be described later.
- the calculation result output unit 6 outputs the calculation result of the level set function updated by the level set function update unit 5, that is, the shape of the optimum structure, and displays it on the display 104 in this embodiment.
- the user operates the input means 103 to input design area data, level set function data, boundary condition data, and analysis data.
- the level set function data input by the user indicates an initial level set function indicating an initial structure.
- each data input in this way is received by a data receiving unit (not shown), the design area data is stored in the design area data storage unit 1, the level set function data is stored in the level set function data storage unit 2, and the boundary condition data is input.
- Analysis data is stored in the boundary condition data storage unit 3 in the analysis data storage unit 4 (step S1).
- the level set function updating unit 5 includes a target functional corresponding to the level set function (a functional for bringing the performance of the structure such as rigidity and natural frequency close to the target value) and a constraint functional (the constraint condition is changed).
- the functional shown is calculated using the finite element method.
- the level set function updating unit 5 determines whether or not the objective functional value has converged (step S3), and if it has converged, determines that an optimal solution has been obtained, ends the optimization, and The level set function is output to the calculation result output unit 6. On the other hand, if it does not converge, the level set function is updated using the finite element method (step S4). At this time, the level set function update unit 5 determines whether or not the constraint condition (for example, volume constraint) is satisfied (step S5). If the constraint condition is satisfied after the update, the process returns to step S2. On the other hand, if the constraint condition is satisfied, the level set function is corrected using the volume correction method described later (step S6), and the process returns to step S2. When the volume of the initial structure is significantly different from the volume constraint, volume correction is performed so that the volume is reduced by taking about 200 steps.
- the constraint condition for example, volume constraint
- ⁇ Structural optimization problem based on level set method> Consider structure optimization of an object region in a fixed region D (hereinafter referred to as a fixed design region) in which the existence of a region ⁇ (hereinafter referred to as an object region) occupied by an object is allowed.
- a scalar function ⁇ (x) called a level set function is introduced in the fixed design region D. Then, the object boundary is implicitly expressed by the zero coordinate plane of the level set function ⁇ (see FIG. 4).
- an upper limit value and a lower limit value are set in the level set function ⁇ and defined by the following equations.
- the level set function value is a positive real value, the same shape is expressed, and thus it is allowed to provide the above-described restrictions.
- the structural optimization problem is defined by the following equation using shape representation by the level set method.
- F is an objective functional
- G is a constraint functional
- V max is an upper limit value of an allowable volume.
- the objective functional F is an energy functional and is represented by a free energy density in the object region, a free energy density in the cavity region, and a boundary energy density.
- the free energy density is given by a function family ⁇ ( ⁇ ) having a level set function as a variable. This is because the phase of each point is identified by the value of the level set function ⁇ , thereby giving a free energy density. That is, the free energy density is not an explicit function of the level set function ⁇ but an explicit function of the object shape ⁇ . Also, considering the mapping from the level set function ⁇ to the object shape ⁇ , it is not unique.
- Topology optimization allows a general structure such as a porous structure in which minute voids are scattered everywhere, a plate structure in which ribs are arranged at extremely short intervals, and a mixture as an optimum design solution. Yes. Therefore, since a structure smaller than the size of spatial discretization in the numerical calculation cannot be expressed, a complexity indicating the structural complexity of the structure is set in advance. Alternatively, optimization problems must be mitigated. From a practical viewpoint, it is desirable to eliminate infinitely fine structures and arbitrarily set the complexity of the structure.
- This complexity setting method implicitly considers the structural complexity (fineness) by minimizing the energy functional considering the boundary energy based on the concept of the phase field method. That is, the complexity of the structure is set by the function that the diffusion term of the boundary energy term has a function of eliminating a fine structure.
- the complexity of the structure is implicitly set. That is, a method for solving the above-described problem by replacing the structure optimization problem of Expressions (2) and (3) with an optimization problem that minimizes the sum of the boundary energy and the objective functional shown in the following expression: suggest.
- the second term of the objective functional F represents the boundary energy. Since the level set function ⁇ has the same profile as the phase field variable of the phase field method and expresses the boundary energy, the upper limit value and the lower limit value of the level set function ⁇ are set in Equation (1). is doing. Further, ⁇ is a parameter that gives a ratio between the boundary energy and the objective functional F, and is called a complexity coefficient.
- V N is a normal component of the advection velocity at the object boundary, and replaces the external shape sensitivity obtained from the formulation of the optimization problem. Since this method is basically a shape optimization method, there is a problem that a topology change that allows a hollow region to be created in the object region is not allowed. For this reason, a method for arbitrarily creating a hole in an object region has been proposed, but it greatly depends on parameter settings, and it is difficult to stably obtain an optimal solution. Furthermore, many studies have shown that the coupled problem of heat / structure and the coupled problem of electrostatic field / heat / structure are extremely numerically unstable and the convergence of the solution is poor. . Therefore, it is desirable that the smoothness of the level set function ⁇ is ensured and that the problem be solved by solving a time evolution equation that allows a topology change such that a hole is created in the object region.
- a reaction-diffusion equation which is a time evolution equation regarding the level set function ⁇ is derived. That is, as shown in the following equation, the driving force that develops the level set function ⁇ over time is proportional to the gradient of the objective functional F.
- H ( ⁇ ) represents a snake side function. It can also be seen that the sensitivity d ⁇ / d ⁇ of the level set function ⁇ with respect to the shape ⁇ ( ⁇ ) can be considered as a constant C if the level set function ⁇ is constant in the object region ⁇ . Therefore, the above equation can be replaced by the following equation.
- the proportionality constant K and the complexity coefficient ⁇ are parameters, the constant C can be handled as a parameter, and C may be set so that the profile of the level set function ⁇ becomes steep.
- a Dirichlet boundary condition is given for a boundary ⁇ DN (hereinafter referred to as a non-design boundary) that is designated in advance as an object region boundary, and a Neumann boundary condition is given for other boundaries.
- the function of the phase field variable is assumed to be proportional to the gradient of the region integration, whereas in the present embodiment, the level set function is proportional to the gradient due to the region variation. It differs in that ⁇ is developed over time.
- the interface only advects in the process of time evolution, whereas in the method proposed in this embodiment, a topology in which a cavity region is created in the object region. Allowing change.
- the advection equation (6) used in the conventional method does not guarantee the smoothness of the level set function ⁇ , whereas the time evolution equation (10) is a partial differential equation called a reaction diffusion equation. Note that the smoothness of the level set function ⁇ is guaranteed by including the diffusion term.
- the value of the Lagrange multiplier ⁇ is obtained, and the level set function ⁇ is updated from the initial value based on the equation (10), and the level set function ⁇ when the objective functional F converges gives an optimal structure.
- the level set function ⁇ is developed in time in proportion to the gradient with respect to the change in the object shape by introducing the function family ⁇ ( ⁇ ) into the object shape expression. Note that as a result, in addition to the movement of the boundary ⁇ D, automatic topological changes that are not arbitrary are allowed.
- a boundary ⁇ u is completely constrained with respect to a fixed design region D in which a mixture of an object region and a cavity region that are composed of linear elastic bodies is allowed, and a surface force t is applied to the boundary ⁇ t and an object force b is applied to the object region.
- the boundary ⁇ u is fixed to the fixed design region boundary ⁇ D.
- the structure optimization problem that minimizes the average compliance under the volume constraint is described as follows.
- ⁇ represents a strain tensor
- F represents an elastic tensor
- V max represents a volume constraint value
- U represents a displacement function space defined by the following equation.
- boundary gamma t of the surface force acts that must always be the object boundary, the boundary gamma t and non-design boundary ⁇ D N.
- the KKT condition for the above optimization problem is derived, and the function f (x) necessary for updating the level set function ⁇ is given from the result.
- the Lagrangian F ′ ( ⁇ ) is described as follows using the Lagrange multiplier ⁇ and the associated displacement field v.
- the level set function ⁇ that satisfies this KKT condition is a candidate for the optimal solution (optimal structure).
- a level set function ⁇ having an appropriate initial structure is given, and the level set function ⁇ is updated using equation (11), whereby Lagrangian Decrease the sum of F ′ ( ⁇ ) and boundary energy.
- Equation (11) a function f ′ (x) that gives a Lagrangian objective functional necessary for updating the level set function ⁇ is derived using Equation (11).
- the optimization problem is defined as a self-adjoint problem by defining the adjoint displacement field v as the following equation.
- ⁇ t is a time difference. Note that the diffusion effect due to the boundary energy can be considered for the updated level set function ⁇ by setting the diffusion term ⁇ 2 ⁇ of the first equation of equation (15) to the updated value. Therefore, the diffusion effect is considered for all the update steps.
- ⁇ (t) is a vector composed of level set function values at each node at time t
- matrix T and vector Y are given by
- the level set function ⁇ is updated by the implicit method, there is no limitation on the time increment ⁇ t due to the CFL condition. As a result, by increasing the time increment ⁇ t, it is possible to avoid the problem that the time t increases and the boundary moving speed gradually decreases.
- the time increment ⁇ t is set so that the maximum value of the fluctuation of the level set function ⁇ is about 1, and the time increment is gradually increased.
- the hollow region is regarded as an object having a small longitudinal elastic modulus, and is approximated assuming that the longitudinal elastic modulus changes spatially smoothly in the vicinity of the boundary.
- the displacement field is analyzed without extracting the object shape explicitly by replacing the equilibrium equation (24) with the following equation.
- H e ( ⁇ ) is a function described by the following equation.
- d is a relative value (ratio) of the longitudinal elastic modulus of the cavity region with respect to the longitudinal elastic modulus of the object region
- t is a value indicating the transition width of the material constant, both of which are set as sufficiently small positive values.
- the volume constraint function G ( ⁇ ) is also obtained using the following approximate expression.
- the parameter K ( ⁇ ) is a function of the level set function ⁇
- volume constraints by the Lagrangian undetermined multiplier method
- numerical errors with respect to volume constraints in each update step are small, but there is a problem that the numerical errors are accumulated by performing repeated calculations. Therefore, when the volume constraint is not satisfied, it is necessary to perform volume correction by correcting the level set function ⁇ .
- the minimum value of the minute value ⁇ (x) that satisfies the following equation is obtained by using the bisection method, and ⁇ (x) + ⁇ (x) is newly set as the value of the level set function ⁇ .
- FIG. 5A shows a design region D and boundary conditions of design problem 1.
- the fixed design area D was a rectangular area of 8 ⁇ 10 ⁇ 2 m ⁇ 6 ⁇ 10 ⁇ 2 m, and the design area D was divided into elements by a structural grid having an element length of 5 ⁇ 10 ⁇ 4 m.
- the left end is completely displaced and a downward surface force is applied to the center of the right end.
- FIG. 5B shows a design area D and boundary conditions of the design problem 2.
- the fixed design area D was a rectangular area of 8 ⁇ 10 ⁇ 2 m ⁇ 6 ⁇ 10 ⁇ 2 m, and the design area D was divided into elements by a structural grid having an element length of 5 ⁇ 10 ⁇ 4 m.
- the left and right sides of the lower end are completely displaced and the surface force is applied downward to the center of the lower end.
- a 4-node isoparametric quadrilateral plane stress element is used, and a 4-node isoparametric quadrilateral element is used to update the level set function ⁇ .
- an isotropic material was assumed as the material of the analysis model, and the material constants were 210 GPa for the longitudinal elastic modulus and 0.3 for the Poisson's ratio.
- the ratio d of the longitudinal elastic modulus of the hollow region defined in the equation (35) to the longitudinal elastic modulus of the object region was set to 1 ⁇ 10 ⁇ 6 , and the set value t of the implicit transition width was set to 0.1.
- the black portion is the object region and the gray portion is the hollow region. Comparing the results of FIG. 6 and FIG. 7, it can be seen that the state of the optimization process is different, and that the result of FIG. 7 giving priority to the movement of the boundary ⁇ D moves faster. It can also be seen that the optimum structure obtained is the same structure, and a clear and physically reasonable result is obtained.
- the initial structure of one (Case 1) is a structure in which the entire fixed design region D is occupied by the object region, and the initial structure of the other (Case 2) is shown in FIG.
- (a) it was set as the structure with two holes in the initial structure of Case1.
- the complexity factor ⁇ was 0.07
- the optimization process is shown in FIGS. 8 and 9B and 9C, and the optimum structure is shown in FIG. It can be seen that the obtained results are the same optimal structure and a physically reasonable structure.
- the complexity coefficient ⁇ is set such that the setting value of Case 1 is 0.5, the setting value of Case 2 is 0.05, and the setting value of Case 3 is 0.03.
- the set value of Case 1 was set to 0.01, the set value of Case 2 was set to 0.005, and the set value of Case 3 was set to 0.0001.
- Case 2 has a smaller value of the complexity coefficient ⁇ , so that a more complicated (detailed) structure is allowed as the optimum solution.
- FIG. 10 shows the optimum structures of Case 1, Case 2, and Case 3 in design problem 1
- FIG. 11 shows the optimum structures of Case 1, Case 2, and Case 3 in design problem 2.
- FIG. 12 shows a design region and boundary conditions in the optimization in the case where the equal cross section restriction is provided.
- the fixed design region D was a rectangular parallelepiped region of 2.0 m ⁇ 0.8 m ⁇ 0.15 m, and a non-design region having a rectangular parallelepiped shape of 2.0 m ⁇ 0.8 m ⁇ 0.05 m was set below the fixed design region D.
- As the boundary condition both end portions in the longitudinal direction were completely displaced and the surface force was applied downward on the entire lower surface of the non-design area.
- the complexity coefficient ⁇ is set to anisotropy, and the complexity coefficient in the direction in which an equal section is desired to be set is sufficiently larger than the other complexity coefficients. That is, the complexity of coefficients in each axis direction ⁇ (X 1), ⁇ ( X 2), ⁇ in (X 3), sufficiently large compared to tau (X 3) and tau (X 1) and tau (X 2) Set ( ⁇ (X 3 ) >> ⁇ (X 1 ), ⁇ (X 2 )).
- FIG. 13 shows an optimum structure in the case of (A) “no equal section restriction” and (B) an optimum structure in the case of “with equal section restriction”. From these figures, it can be seen that an optimal structure with an equivalent cross-section constraint is obtained by setting the complexity factor ⁇ to anisotropy ( ⁇ (X 3 ) >> ⁇ (X 1 ), ⁇ (X 2 )). .
- the boundary gamma h in the fixed design area inside is set on the boundary of the object region, a design variable dependent boundary conditions determined in dependence on the value of the level set function is design variable.
- the thermal diffusion maximization problem is formulated as a total potential energy maximization problem shown in the following equation.
- ⁇ represents a heat conduction tensor
- T amp represents an ambient temperature
- U t is a temperature function space defined by the following equation.
- FIG. 14 shows design areas and boundary conditions.
- the fixed design area was a square area of 1 ⁇ 10 ⁇ 2 m ⁇ 1 ⁇ 10 ⁇ 2 m, and the design area was divided into elements by a structural grid having an element length of 5.0 ⁇ 10 ⁇ 5 m.
- V max of the volume allowed was 60% of the fixed design domain. Further, in order to define the heat transfer boundary, at least one boundary between the object region and the cavity region is required in the initial structure, so that the initial structure is centered on the lower left corner as shown in FIG. It was set as 1/4 arc.
- FIGS. 15B to 15E show the optimum structure obtained when the complexity coefficient ⁇ is set to 5 ⁇ 10 ⁇ 4 , 1 ⁇ 10 ⁇ 4 , 5 ⁇ 10 ⁇ 5 , and 1 ⁇ 10 ⁇ 5. Indicates.
- FIG. 15 shows that the complexity of the fin shape changes depending on the setting value of the complexity coefficient. It can also be seen that an optimal structure that is physically appropriate is obtained in either case.
- FIG. 16 shows the design area and boundary conditions for the internal heat generation problem.
- the fixed design area was a square area of 1 ⁇ 10 ⁇ 2 m ⁇ 1 ⁇ 10 ⁇ 2 m, and the design area was divided into elements by a structural grid having an element length of 2.5 ⁇ 10 ⁇ 5 m.
- the heat quantity Q 1.0 ⁇ 10 ⁇ 7 W / m 3 was given, and the maximum volume value V max allowed was 40% of the fixed design region.
- the initial structure was a structure in which the entire fixed design area was occupied by the object.
- optimization was performed by changing the complexity coefficient.
- FIGS. 17A to 17D show the optimum structure obtained when the complexity coefficient ⁇ is set to 5 ⁇ 10 ⁇ 5 , 1 ⁇ 10 ⁇ 5 , 5 ⁇ 10 ⁇ 6 , and 1 ⁇ 10 ⁇ 6. Indicates. Since the design area is symmetrical, only the right half was optimized. From these results, it can be seen that even in this design problem, the complexity of the optimum structure changes due to the setting of the complexity factor. It can also be seen that an optimal structure that is physically appropriate is obtained in either case.
- the predetermined value between the value representing the object region ⁇ and the value representing the cavity region indicates the boundary ⁇ D between the object region ⁇ and the cavity region.
- the level set function ⁇ it is possible to express a clear shape of the optimum structure.
- the boundary ⁇ D between the object region ⁇ and the cavity region is moved, and the level set function ⁇ is updated so as to move the newly generated boundary ⁇ D while allowing the topology change in the object region ⁇ . It is possible to optimize the structure with a high degree of freedom, such as allowing a topology change in the object region ⁇ .
- the structural optimization device of the above embodiment is applied to the rigidity maximization problem or the thermal diffusion maximization problem, but can be applied to various structural problems such as other natural frequency maximization problems. .
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Geometry (AREA)
- General Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Computational Mathematics (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
(2)初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を示すレベルセット関数データを格納しているレベルセット関数データ格納部。
(3)所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新部。
本実施形態に係る構造最適化装置100は、予め設定された設計領域内に、所定の制約条件下において所望の性能を有する構造物を創成するものであり、図1に示すように、CPU101に加えて揮発メモリやHDD等の記憶装置102を備え、さらにマウスやキーボード等の入力手段103、解析モデルや演算結果の出力するためのディスプレイやプリンタ等からなる出力手段105を接続するための入出力インターフェイス104等を有した汎用乃至は専用のコンピュータである。
次にこのように構成した構造最適化装置100の動作について図3を参照して説明する。
物体により占められている領域Ω(以下、物体領域)の存在が許容される固定領域D(以下、固定設計領域)において、物体領域の構造最適化について考える。レベルセット法は、固定設計領域Dにおいて、レベルセット関数と呼ばれるスカラー関数φ(x)を導入する。そして、そのレベルセット関数φのゼロ等位面によって物体境界を陰的に表現する方法である(図4参照)。
最適化問題、式(4)及び式(5)の最適解φを直接求めることは困難であるため、最適化問題を、レベルセット関数φの時間発展方程式を解く問題に帰着させる。通常、外形形状感度に基づき、次式に示す移流方程式に従って、レベルセット関数φを時間発展させることにより、形状最適化を行う。
線形弾性体で構成される物体領域と空洞領域の混在が許容される固定設計領域Dに対し、境界Γuを完全拘束し、境界Γtに表面力t、物体領域に物体力bを作用させる構造問題を考える。ただし、境界Γuは、固定設計領域境界∂Dに固定されているものとする。このとき、体積制約下で、平均コンプライアンスを最小化させる構造最適化問題は次式のように記述される。
次式に示すように、式(10)を時間方向に対して、差分法による離散化を行う。
レベルセット関数φを更新させるためには、物体領域において変位場の解析をする必要がある。ラグランジュ座標系に基づいて、物体領域の解析を行う場合、各更新ステップ毎に物体形状が異なるため、逐次メッシュを生成する必要があるうえ、離散的に得られた変位場を固定設計領域Dに写像しなければならない問題を持つ。さらに、最適化過程において、変位固定部と連結していない物体領域が生じた場合、その物体領域では剛体モードを持つ問題がある。そこで、本実施形態では、オイラー座標系に基づき、空洞領域では小さな縦弾性係数を持つ物体とみなし、境界近傍では縦弾性係数が空間的に滑らかに変化するものとして近似することにする。すわなち、平衡方程式(24)を次式に置き換えることにより、物体形状を陽に抽出することなく変位場の解析を行う。
パラメータK(φ)は、レベルセット関数φの関数であるため、境界∂Dの移動と構造の形態変化の優先度の度合を決めるパラメータ(易動度)であることがわかる。すなわち、境界近傍におけるK(φ)を大きく設定することは境界∂Dの移動を、トポロジー変化(形態変化)に対して優先させることに相当する。多くの計算結果から、パラメータK(φ)の設定によらず、同一の最適構造が得られることがわかった。この点に関して、K1(φ)=1(一定)と、φ=0を中心としたガウス分布K2(φ)=exp(-φ2)に対して、数値例においてその結果を示す。なお、K1(φ)の場合は、φによらず一定であるため、境界∂Dの移動とトポロジー変化との優先度合が同程度、K2(φ)の場合はφ=0近傍の値が大きいため、境界∂Dの移動を優先させることになる。
次に、本実施形態の構造最適化装置100を用いて、上述した方法の妥当性を検討する。
最初に、パラメータK(φ)に対する比較を行った。
次に、異なる初期構造を設定し、設計問題1に対して最適化を行った。
次に、複雑度係数τの設定値を変化させて、設計問題1及び設計問題2に対して最適化を行った。
図12に等断面制約を設けた場合の最適化における設計領域及び境界条件を示す。固定設計領域Dは、2.0m×0.8m×0.15mの直方体領域とし、その下部に2.0m×0.8m×0.05mの直方体形状をなす非設計領域を設定した。境界条件は、長手方向両端部を完全変位拘束し、非設計領域の下面全面に下向きに表面力を作用させた。
上記の比較例等においては、剛性最大化問題に適用した場合について説明したが、熱拡散問題に適用することもできる。熱拡散問題としては、熱伝導問題、熱伝達問題及び内部発熱問題が考えられる。
線形熱伝導体で構成される物体領域と空洞領域で構成される固定設計領域Dに対し、境界Γtにおいて温度T0で温度規定、境界Γhにおいて熱伝達係数hの熱伝達境界、境界Γqにおいて熱流束qの熱流束境界、固定設計領域Dに対して内部発熱Qが与えられている熱拡散最大化問題について考える。但し、境界Γt及び境界Γqは、固定設計領域Dの境界∂D上に設定しているものとする。また、境界Γhは固定設計領域内部において、物体領域の境界上で設定され、設計変数であるレベルセット関数の値に依存して決定される設計変数依存性の境界条件となる。このとき、熱拡散最大化問題は、次式に示す全ポテンシャルエネルギー最大化問題として定式化される。
図14に設計領域と境界条件を示す。固定設計領域は1×10-2m×1×10-2mの正方形領域とし、設計領域を要素長5.0×10-5mの構造格子で要素分割した。図に示すように、左端下方と下端左方をT0=50℃で温度設定し、その他の境界では断熱境界を与える。また、固定設計領域内部において、熱伝達率h=0.1W/(m2K)、周囲温度Tamp=25℃の下で、熱伝達境界を与える。許容される体積の最大値Vmaxは固定設計領域の60%とした。また、熱伝達境界を定義するためには、初期構造に物体領域と空洞領域との境界が少なくとも一箇所必要となるため、図15(a)に示すように、初期構造を左下の角を中心とした1/4円弧とした。
図16に内部発熱問題の設計領域及び境界条件を示す。固定設計領域は1×10-2m×1×10-2mの正方形領域とし、設計領域を要素長2.5×10-5mの構造格子で要素分割した。図16に示すように、上端中央をT0=25℃で温度設定し、その他の境界では断熱境界を与える。また、固定設計領域内部において、熱量Q=1.0×10-7W/m3を与え、許容される体積の最大値Vmaxは固定設計領域の40%とした。初期構造は、固定設計領域の全領域が物体に占められた構造とした。ここでは、複雑度係数と最適構造との関係を調べるために、複雑度係数を変化させて最適化を行った。
このように構成した本実施形態に係る構造最適化装置100によれば、物体領域Ωを表す値及び空洞領域を表す値の間の所定値が、物体領域Ω及び空洞領域の境界∂Dを示すレベルセット関数φを用いていることにより、最適構造の明確な形状表現を可能にすることができる。また、物体領域Ω及び空洞領域間の境界∂Dを移動させるとともに、物体領域Ω内でのトポロジー変化を許容して新たに生じる境界∂Dを移動させるようにレベルセット関数φを更新することにより、物体領域Ωでのトポロジー変化を許容する等の自由度の高い構造最適化を可能にすることができる。
D ・・・設計領域
Ω ・・・物体領域
∂Ω ・・・領域の境界
φ ・・・レベルセット関数
1 ・・・設計領域データ格納部
2 ・・・レベルセット関数データ格納部
5 ・・・レベルセット関数更新部
Claims (5)
- 構造物の設計領域を示す設計領域データを格納する設計領域データ格納部と、
初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を示すレベルセット関数データを格納しているレベルセット関数データ格納部と、
所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新部と、を具備する構造最適化装置。 - 前記レベルセット関数更新部が、レベルセット関数を変数とする関数族、物体領域におけるエネルギー密度、空洞領域におけるエネルギー密度、及び界面エネルギー密度により示されるエネルギー汎関数から、エネルギー汎関数最小化原理に従って、前記レベルセット関数の時間発展を示す反応拡散方程式を算出し、当該反応拡散方程式を用いて前記レベルセット関数を時間発展させることにより、前記レベルセット関数を更新するものである請求項1記載の構造最適化装置。
- 前記レベルセット関数更新部が、前記レベルセット関数を更新した結果得られる構造の構造的な複雑さを示す複雑度が予め設定された複雑度となるように、前記レベルセット関数を更新するものである請求項1記載の構造最適化装置。
- 構造物の設計領域を定める設計領域設定ステップと、
初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を定めるレベルセット関数設定ステップと、
所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新ステップと、を具備する構造最適化方法。 - 構造物の設計領域を示す設計領域データを格納する設計領域データ格納部と、
初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を示すレベルセット関数データを格納しているレベルセット関数データ格納部と、
所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新部と、としての機能をコンピュータに備えさせる構造最適化プログラム。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/063,454 US9081920B2 (en) | 2008-09-11 | 2009-07-17 | Structural optimization system, structural optimization method, and structural optimization program |
JP2010528686A JP5377501B2 (ja) | 2008-09-11 | 2009-07-17 | 構造最適化装置、構造最適化方法及び構造最適化プログラム |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-233176 | 2008-09-11 | ||
JP2008233176 | 2008-09-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010029810A1 true WO2010029810A1 (ja) | 2010-03-18 |
Family
ID=42005071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062974 WO2010029810A1 (ja) | 2008-09-11 | 2009-07-17 | 構造最適化装置、構造最適化方法及び構造最適化プログラム |
Country Status (3)
Country | Link |
---|---|
US (1) | US9081920B2 (ja) |
JP (1) | JP5377501B2 (ja) |
WO (1) | WO2010029810A1 (ja) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012221418A (ja) * | 2011-04-13 | 2012-11-12 | Toyo Tire & Rubber Co Ltd | 解析装置、その方法及びそのプログラム |
JP2013105260A (ja) * | 2011-11-11 | 2013-05-30 | Toyo Tire & Rubber Co Ltd | 粘弾性体構造物の断面形状の設計装置、その方法及びそのプログラム |
JP2013105259A (ja) * | 2011-11-11 | 2013-05-30 | Toyo Tire & Rubber Co Ltd | 流路断面形状の設計装置、その方法及びそのプログラム |
JP2016021240A (ja) * | 2014-07-15 | 2016-02-04 | ダッソー システムズ シムリア コーポレイション | モード動的解析におけるラグランジュ乗数を回復するシステムおよび方法 |
WO2019216221A1 (ja) * | 2018-05-07 | 2019-11-14 | 国立大学法人京都大学 | 構造物の幾何学的特徴量算出装置、医療用画像分析システム、リバースエンジニアリング支援システム、構造最適化システム、及び、幾何学的特徴量算出プログラム |
CN111015784A (zh) * | 2019-11-25 | 2020-04-17 | 大明重工有限公司 | 一种批量切割放置图形生成方法及装置 |
CN114757002A (zh) * | 2022-03-25 | 2022-07-15 | 中国船舶重工集团公司第七�三研究所 | 一种约束阻尼板壳的结构-材料分层拓扑优化设计方法 |
JP7244682B1 (ja) | 2021-12-24 | 2023-03-22 | サイバネットシステム株式会社 | 情報処理装置、情報処理方法及び情報処理プログラム |
Families Citing this family (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8880380B2 (en) * | 2007-12-21 | 2014-11-04 | Honda Motor Co., Ltd. | Crashworthiness design methodology using a hybrid cellular automata algorithm for the synthesis of topologies for structures subject to nonlinear transient loading |
CN102682161B (zh) * | 2012-04-18 | 2015-04-01 | 南阳理工学院 | 一种对接口芯片的元器件进行布局的方法 |
CN102682648B (zh) * | 2012-04-18 | 2014-01-01 | 南阳理工学院 | 一种对计算机组成原理实验箱元器件进行布局的方法 |
EP2763058B1 (en) * | 2013-01-30 | 2021-10-20 | Honda Research Institute Europe GmbH | Optimizing the design of physical structures/objects |
US20150103698A1 (en) * | 2013-10-10 | 2015-04-16 | GM Global Technology Operations LLC | System and method for topology optimization with a plurality of materials |
US9902114B2 (en) * | 2014-01-09 | 2018-02-27 | Siemens Product Lifecycle Management Software Inc. | Method for creating three dimensional lattice structures in computer-aided design models for additive manufacturing |
KR101628823B1 (ko) * | 2015-02-24 | 2016-06-09 | 한양대학교 산학협력단 | 조화 탐색법을 이용한 구조물의 위상 및 형상 동시 최적화 장치 및 방법 |
KR101628818B1 (ko) * | 2015-02-24 | 2016-06-09 | 한양대학교 산학협력단 | 조화 탐색법을 이용한 구조물의 형상 최적화 장치 및 방법 |
CN105488265B (zh) * | 2015-11-25 | 2020-02-21 | 四川大学 | 一种微波加热多物理场数值处理的方法 |
US10850495B2 (en) * | 2016-01-29 | 2020-12-01 | Massachusetts Institute Of Technology | Topology optimization with microstructures |
CN106547972B (zh) * | 2016-11-04 | 2019-07-02 | 中国科学院长春光学精密机械与物理研究所 | 基于参数化水平集方法的流体管道拓扑优化设计方法 |
US10802467B2 (en) * | 2017-01-06 | 2020-10-13 | General Electric Company | Methods of defining internal structures for additive manufacturing |
CN106709215B (zh) * | 2017-02-21 | 2019-02-22 | 北京航空航天大学 | 一种基于级数展开的连续体结构非概率可靠性拓扑优化方法 |
CN107273613B (zh) * | 2017-06-15 | 2018-06-12 | 华中科技大学 | 一种基于应力惩罚和自适应体积的结构拓扑优化设计方法 |
CN107526866B (zh) * | 2017-07-11 | 2020-05-01 | 西北工业大学 | 基于特征驱动的翼面结构拓扑优化方法 |
CN108491574B (zh) * | 2018-02-11 | 2022-03-04 | 郑州大学 | 基于光滑变形隐式曲线的结构形状设计方法 |
US20210004512A1 (en) * | 2018-03-16 | 2021-01-07 | Siemens Aktiengesellschaft | Topology optimization with design-dependent loads and boundary conditions for multi-physics applications |
CN108846167B (zh) * | 2018-05-24 | 2020-05-26 | 西安交通大学 | 机载计算机板级低直流阻抗共面电磁带隙电源层设计方法 |
CN109002611B (zh) * | 2018-07-17 | 2020-06-02 | 西安交通大学 | 一种数控机床主轴冷却水套通道布局优化设计方法 |
CN109145495B (zh) * | 2018-09-11 | 2019-05-14 | 吉林大学 | 固定分型线双模铸造件多组件的拓扑优化方法 |
US10635088B1 (en) | 2018-11-09 | 2020-04-28 | Autodesk, Inc. | Hollow topology generation with lattices for computer aided design and manufacturing |
WO2020097578A2 (en) | 2018-11-09 | 2020-05-14 | Autodesk, Inc. | Boundary based generative design with 2.5-axis subtractive manufacturing constraint for computer aided design and manufacturing |
CN109670207B (zh) * | 2018-11-22 | 2021-04-06 | 华中科技大学 | 一种面向多种多孔材料结构的动力学一体化设计方法 |
WO2020224634A1 (zh) * | 2019-05-09 | 2020-11-12 | 江苏大学 | 一种求解车身厚度优化的子区域混合元胞自动机方法 |
US11243510B2 (en) | 2020-05-20 | 2022-02-08 | Autodesk, Inc. | Computer aided generative design with tool size control to facilitate 2.5-axis subtractive manufacturing processes |
US11762368B2 (en) | 2020-05-20 | 2023-09-19 | Autodesk, Inc. | Computer aided generative design with layer boundary determination to facilitate 2.5-axis subtractive manufacturing processes |
CN112149243B (zh) * | 2020-09-08 | 2024-04-19 | 华中科技大学 | 一种基于渐进演化拓扑更新算法的柔性驱动机构设计方法 |
CN112765856B (zh) * | 2021-01-22 | 2021-10-19 | 三峡大学 | 一种功能梯度多孔结构拓扑优化的混合水平集方法 |
CN114896728B (zh) * | 2022-05-06 | 2024-07-16 | 大连理工大学 | 一种结构外载荷识别方法、装置、计算机设备和存储介质 |
CN116050061A (zh) * | 2022-11-22 | 2023-05-02 | 中车长春轨道客车股份有限公司 | 基于热流固耦合的超导磁体储氮结构拓扑优化方法和装置 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003150651A (ja) * | 2001-11-16 | 2003-05-23 | Inst Of Physical & Chemical Res | 固定格子上を移動する移動境界の設定方法およびそれを実現するコンピュータプログラム |
JP2005258813A (ja) * | 2004-03-11 | 2005-09-22 | Canon Inc | 情報処理装置及び情報処理方法並びにプログラム |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7124394B1 (en) * | 2003-04-06 | 2006-10-17 | Luminescent Technologies, Inc. | Method for time-evolving rectilinear contours representing photo masks |
JPWO2006009026A1 (ja) * | 2004-07-16 | 2008-05-01 | 国立大学法人京都大学 | 最適設計支援装置、最適設計支援方法及び最適設計支援プログラム |
-
2009
- 2009-07-17 WO PCT/JP2009/062974 patent/WO2010029810A1/ja active Application Filing
- 2009-07-17 JP JP2010528686A patent/JP5377501B2/ja active Active
- 2009-07-17 US US13/063,454 patent/US9081920B2/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003150651A (ja) * | 2001-11-16 | 2003-05-23 | Inst Of Physical & Chemical Res | 固定格子上を移動する移動境界の設定方法およびそれを実現するコンピュータプログラム |
JP2005258813A (ja) * | 2004-03-11 | 2005-09-22 | Canon Inc | 情報処理装置及び情報処理方法並びにプログラム |
Non-Patent Citations (3)
Title |
---|
LIN HE ET AL.: "Incorporating topological derivatives into shape derivatives based level set methods", JOURNAL OF COMPUTATIONAL PHYSICS, vol. 225, no. ISS.1, 1 July 2007 (2007-07-01), pages 891 - 909 * |
MARTIN BURGER ET AL.: "Incorporating topological derivatives into level set methods", JOURNAL OF COMPUTATIONAL PHYSICS, vol. 194, no. IS.194, 10 February 2004 (2004-02-10), pages 344 - 362 * |
TAKAYUKI YAMADA ET AL.: "Level Set-ho ni Motozuku Compliant Mechanism no Kozo Saitekika", TRANSACTIONS OF THE JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE, vol. 2008, 18 January 2008 (2008-01-18), pages 20080001 * |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012221418A (ja) * | 2011-04-13 | 2012-11-12 | Toyo Tire & Rubber Co Ltd | 解析装置、その方法及びそのプログラム |
JP2013105260A (ja) * | 2011-11-11 | 2013-05-30 | Toyo Tire & Rubber Co Ltd | 粘弾性体構造物の断面形状の設計装置、その方法及びそのプログラム |
JP2013105259A (ja) * | 2011-11-11 | 2013-05-30 | Toyo Tire & Rubber Co Ltd | 流路断面形状の設計装置、その方法及びそのプログラム |
JP2016021240A (ja) * | 2014-07-15 | 2016-02-04 | ダッソー システムズ シムリア コーポレイション | モード動的解析におけるラグランジュ乗数を回復するシステムおよび方法 |
JPWO2019216221A1 (ja) * | 2018-05-07 | 2021-05-13 | 国立大学法人 東京大学 | 構造物の幾何学的特徴量算出装置、医療用画像分析システム、リバースエンジニアリング支援システム、構造最適化システム、及び、幾何学的特徴量算出プログラム |
WO2019216221A1 (ja) * | 2018-05-07 | 2019-11-14 | 国立大学法人京都大学 | 構造物の幾何学的特徴量算出装置、医療用画像分析システム、リバースエンジニアリング支援システム、構造最適化システム、及び、幾何学的特徴量算出プログラム |
JP7224675B2 (ja) | 2018-05-07 | 2023-02-20 | 国立大学法人 東京大学 | 構造物の幾何学的特徴量算出装置、医療用画像分析システム、リバースエンジニアリング支援システム、構造最適化システム、及び、幾何学的特徴量算出プログラム |
CN111015784A (zh) * | 2019-11-25 | 2020-04-17 | 大明重工有限公司 | 一种批量切割放置图形生成方法及装置 |
CN111015784B (zh) * | 2019-11-25 | 2022-03-22 | 大明重工有限公司 | 一种批量切割放置图形生成方法及装置 |
JP7244682B1 (ja) | 2021-12-24 | 2023-03-22 | サイバネットシステム株式会社 | 情報処理装置、情報処理方法及び情報処理プログラム |
JP2023095726A (ja) * | 2021-12-24 | 2023-07-06 | サイバネットシステム株式会社 | 情報処理装置、情報処理方法及び情報処理プログラム |
JP7510529B2 (ja) | 2021-12-24 | 2024-07-03 | サイバネットシステム株式会社 | 情報処理装置、情報処理方法及び情報処理プログラム |
CN114757002A (zh) * | 2022-03-25 | 2022-07-15 | 中国船舶重工集团公司第七�三研究所 | 一种约束阻尼板壳的结构-材料分层拓扑优化设计方法 |
Also Published As
Publication number | Publication date |
---|---|
JP5377501B2 (ja) | 2013-12-25 |
JPWO2010029810A1 (ja) | 2012-02-02 |
US20110270587A1 (en) | 2011-11-03 |
US9081920B2 (en) | 2015-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5377501B2 (ja) | 構造最適化装置、構造最適化方法及び構造最適化プログラム | |
Wang et al. | A level set method for structural topology optimization | |
Jahangiry et al. | An isogeometrical approach to structural level set topology optimization | |
Dunning et al. | Introducing the sequential linear programming level-set method for topology optimization | |
Luo et al. | A level set‐based parameterization method for structural shape and topology optimization | |
Chen et al. | Level set based robust shape and topology optimization under random field uncertainties | |
Schleife et al. | Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations | |
Pedersen et al. | Strength optimized designs of thermoelastic structures | |
Abdi et al. | Topology optimization of geometrically nonlinear structures using an evolutionary optimization method | |
Zhuang et al. | Topology optimization of multi-material for the heat conduction problem based on the level set method | |
Ha et al. | Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh | |
Gain et al. | A critical comparative assessment of differential equation-driven methods for structural topology optimization | |
Cui et al. | The parameterized level set method for structural topology optimization with shape sensitivity constraint factor | |
Liu et al. | Adaptive moving mesh level set method for structure topology optimization | |
Wang et al. | Topological design for mechanical metamaterials using a multiphase level set method | |
Tiesinga et al. | Bifurcation analysis of incompressible flow in a driven cavity by the Newton–Picard method | |
Plews et al. | An improved nonintrusive global–local approach for sharp thermal gradients in a standard FEA platform | |
Araujo et al. | Checkerboard free topology optimization for compliance minimization applying the finite-volume theory | |
Vogel et al. | Adaptive thermodynamic topology optimization | |
Tang et al. | An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD | |
Dettmer et al. | New iterative and staggered solution schemes for incompressible fluid‐structure interaction based on Dirichlet‐Neumann coupling | |
Lazarov | Topology optimization using multiscale finite element method for high-contrast media | |
Keshtegar et al. | SVR-TO-APMA: Hybrid efficient modelling and topology framework for stable topology optimization with accelerated performance measure approach | |
Zhu et al. | Bi-directional evolutionary level set method for topology optimization | |
Mo et al. | Iterative reanalysis approximation‐assisted moving morphable component‐based topology optimization method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09812958 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010528686 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13063454 Country of ref document: US |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 09812958 Country of ref document: EP Kind code of ref document: A1 |