WO2010029810A1 - 構造最適化装置、構造最適化方法及び構造最適化プログラム - Google Patents

構造最適化装置、構造最適化方法及び構造最適化プログラム Download PDF

Info

Publication number
WO2010029810A1
WO2010029810A1 PCT/JP2009/062974 JP2009062974W WO2010029810A1 WO 2010029810 A1 WO2010029810 A1 WO 2010029810A1 JP 2009062974 W JP2009062974 W JP 2009062974W WO 2010029810 A1 WO2010029810 A1 WO 2010029810A1
Authority
WO
WIPO (PCT)
Prior art keywords
level set
set function
region
boundary
cavity
Prior art date
Application number
PCT/JP2009/062974
Other languages
English (en)
French (fr)
Inventor
山田崇恭
西脇眞二
泉井一浩
吉村允孝
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to US13/063,454 priority Critical patent/US9081920B2/en
Priority to JP2010528686A priority patent/JP5377501B2/ja
Publication of WO2010029810A1 publication Critical patent/WO2010029810A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B81MICROSTRUCTURAL TECHNOLOGY
    • B81BMICROSTRUCTURAL DEVICES OR SYSTEMS, e.g. MICROMECHANICAL DEVICES
    • B81B3/00Devices comprising flexible or deformable elements, e.g. comprising elastic tongues or membranes

Definitions

  • the present invention relates to a structure optimization device, a structure optimization method, and a structure optimization program.
  • structural optimization methods include dimension optimization, shape optimization, and topology optimization.
  • the shape optimization is a method of obtaining an optimum structure by updating the outer shape based on sensitivity information using the outer shape as a design variable, and is widely used in the machine industry as a practical method.
  • shape optimization has the disadvantage that it is difficult to change the form such as the number of holes in the optimal structure, and it cannot be expected to significantly improve the performance of the structure.
  • topology optimization can change the form of the optimal structure by replacing the optimal design problem with the material distribution problem and can expect a significant performance improvement of the structure.
  • Non-Patent Document 1 structure optimization based on the level set method has been proposed as a new structure optimization method.
  • This method expresses the outer shape with a one-dimensional high-level level set function, and replaces the change of the shape and form with the change of the level set function value to obtain the optimum structure.
  • the outline of the optimum structure can always be clearly expressed, and there is an advantage that problems such as gray scale do not occur.
  • the level set method updates the level set function based on the advection equation, it is assumed that the topology change (morphological change) in which a hole is created in the outer shape (object region) is not allowed.
  • Non-Patent Document 2 in the process of structure optimization based on the level set method, a method for arbitrarily creating a hole based on a topological derivative of an objective function has been proposed as appropriate.
  • Non-Patent Document 3 in the optimization process, by replacing the object region (region forming the structure) whose topological derivative value is a predetermined threshold with the cavity region (region forming the cavity) There has been proposed a method of allowing a topology change (morphological change) such that a hole is created in the outer shape (object region).
  • the present invention has been made to solve the above-mentioned problems all at once, enabling a clear shape expression of the optimum structure and allowing a highly flexible structure optimization such as allowing a topology change in the object region. Making this possible is the main desired issue.
  • the structure optimization apparatus according to the present invention is characterized by comprising the following configurations (1) to (3).
  • a design area data storage unit for storing design area data indicating a design area of a structure.
  • (2) Indicates whether each part of the design area where the initial structure is set is an object area that forms the structure, a cavity area that forms a cavity, or a boundary between these areas, and a value that represents the object area and a value that represents the cavity area
  • a level set function data storage unit storing level set function data indicating a level set function in which a predetermined value between represents a boundary.
  • the level set function is updated so that the performance of the structure such as rigidity approaches a target value to move the boundary between the object region and the cavity region, and the level A level set that allows a topology change (morphological change) in the object region accompanying the update of the set function to form a new cavity region in the object region, and moves the boundary between the new cavity region and the object region Function update part.
  • the predetermined value between the value representing the object region and the value representing the cavity region uses a level set function indicating the boundary between the object region and the cavity region, so that the optimum structure is clearly defined. Shape representation can be made possible.
  • the topology change in the object region is also updated by updating the level set function to allow the topology change in the object region and move the newly generated boundary. It is possible to achieve structural optimization with a high degree of freedom such as allowing
  • the level set function update unit includes a function group having the level set function as a variable, an energy density in the object region, an energy density in the cavity region, and an interface energy density.
  • the level set function updating unit updates the level set function so that the complexity indicating the structural complexity of the structure obtained as a result of updating the level set function becomes a preset complexity. It is desirable to be a thing. If this is the case, it is possible to create an optimum structure having the complexity (that is, fineness) of the structure intended by the designer (user) among the innumerable local optimum solutions.
  • the structure optimization method includes a design region setting step for determining a design region of a structure, an object region in which each part of the design region in which the initial structure is set forms a structure, a cavity region that forms a cavity, or A level set function setting step that indicates whether or not a boundary between these regions, and a predetermined value between a value representing the object region and a value representing the cavity region defines a level set function representing the boundary, and under a predetermined constraint condition,
  • the level set function is updated so that the performance of the structure such as rigidity approaches a target value, the boundary between the object region and the cavity region is moved, and the inside of the object region accompanying the update of the level set function
  • the number updating step comprises a.
  • the structure optimization program includes a design area data storage unit that stores design area data indicating a design area of a structure, and an object area and a cavity in which each part of the design area in which an initial structure is set forms a structure.
  • Level set function data indicating a level set function representing the boundary, and a predetermined value between the value representing the object region and the value representing the cavity region is stored.
  • a level set function data storage unit, and the boundary between the object region and the cavity region by updating the level set function so that the performance of the structure such as rigidity approaches a target value under a predetermined constraint condition
  • a new cavity region is formed in the object region by allowing a topology change (morphological change) in the object region accompanying the update of the level set function.
  • FIG. K 1 ( ⁇ ) 1 of the initial structure, which shows the structure and optimum structure of the optimization process.
  • FIG. 1 is a device configuration diagram of the structure optimization apparatus 100 of the present embodiment
  • FIG. 2 is a functional configuration diagram of the structure optimization apparatus 100
  • FIG. 3 is a flowchart showing an operation of the structure optimization apparatus 100. is there.
  • the structure optimization apparatus 100 creates a structure having a desired performance under a predetermined constraint condition in a preset design region.
  • a storage device 102 such as a volatile memory or an HDD is provided, and an input / output for connecting an input means 103 such as a mouse or a keyboard, and an output means 105 such as a display or printer for outputting an analysis model or calculation results.
  • a general-purpose or dedicated computer having an interface 104 or the like.
  • the structure optimization device 100 is designed as shown in the functional configuration diagram of FIG. It functions as an area data storage unit 1, a level set function data storage unit 2, a boundary condition data storage unit 3, an analysis data storage unit 4, a level set function update unit 5, an operation result output unit 6, and the like.
  • the design area data storage unit 1 stores design area data indicating a design area of a structure (including structural grid (mesh) information for dividing the design area into elements).
  • the design area data is input by the user using the input unit 103, for example.
  • the level set function data storage unit 2 stores level set function data indicating a level set function for specifying a structure in the design area such as an initial structure.
  • the level set function means that each part of the design area in which the initial structure is set forms the structure, the object area occupied by the object (object phase), the cavity area forming the cavity (cavity phase), or It indicates whether it is a boundary, and a predetermined value between the value representing the object region and the value representing the cavity region represents the boundary between the object region and the cavity region.
  • the level set function data is input by the user using the input unit 103, for example.
  • the boundary condition data storage unit 3 stores boundary condition data indicating boundary conditions of the design area (hereinafter also referred to as a fixed design area). Specific boundary conditions include, for example, constraint conditions in the design region, external force (surface force) such as a load acting on the initial structure, and the like.
  • the boundary condition data is input by the user using the input unit 103, for example.
  • the analysis data storage unit 4 stores analysis data that are material constants such as constraint condition values necessary for volume constraints used when obtaining an optimum structure and values of Young's modulus and Poisson's ratio necessary for analysis of the displacement field. Yes.
  • the analysis data is input by the user using the input unit 103, for example.
  • the level set function updating unit 5 updates the level set function so that the performance of the structure such as rigidity and natural frequency approaches a target value under a predetermined constraint condition, and sets the boundary between the object region and the cavity region.
  • a new cavity region (hole) is formed in the object region by allowing a topology change (morphological change) in the object region accompanying the update of the level set function and moving between the new cavity region and the object region. The boundary is moved.
  • the level set function updating unit 5 minimizes the energy functional indicated by the function group having the level set function as a variable, the energy density in the object region, the energy density in the cavity region, and the interface energy density.
  • a reaction diffusion equation indicating the time evolution of the level set function is calculated, and the level set function is updated by time evolution of the level set function using the reaction diffusion equation. The specific function of the level set function update unit 5 will be described later.
  • the calculation result output unit 6 outputs the calculation result of the level set function updated by the level set function update unit 5, that is, the shape of the optimum structure, and displays it on the display 104 in this embodiment.
  • the user operates the input means 103 to input design area data, level set function data, boundary condition data, and analysis data.
  • the level set function data input by the user indicates an initial level set function indicating an initial structure.
  • each data input in this way is received by a data receiving unit (not shown), the design area data is stored in the design area data storage unit 1, the level set function data is stored in the level set function data storage unit 2, and the boundary condition data is input.
  • Analysis data is stored in the boundary condition data storage unit 3 in the analysis data storage unit 4 (step S1).
  • the level set function updating unit 5 includes a target functional corresponding to the level set function (a functional for bringing the performance of the structure such as rigidity and natural frequency close to the target value) and a constraint functional (the constraint condition is changed).
  • the functional shown is calculated using the finite element method.
  • the level set function updating unit 5 determines whether or not the objective functional value has converged (step S3), and if it has converged, determines that an optimal solution has been obtained, ends the optimization, and The level set function is output to the calculation result output unit 6. On the other hand, if it does not converge, the level set function is updated using the finite element method (step S4). At this time, the level set function update unit 5 determines whether or not the constraint condition (for example, volume constraint) is satisfied (step S5). If the constraint condition is satisfied after the update, the process returns to step S2. On the other hand, if the constraint condition is satisfied, the level set function is corrected using the volume correction method described later (step S6), and the process returns to step S2. When the volume of the initial structure is significantly different from the volume constraint, volume correction is performed so that the volume is reduced by taking about 200 steps.
  • the constraint condition for example, volume constraint
  • ⁇ Structural optimization problem based on level set method> Consider structure optimization of an object region in a fixed region D (hereinafter referred to as a fixed design region) in which the existence of a region ⁇ (hereinafter referred to as an object region) occupied by an object is allowed.
  • a scalar function ⁇ (x) called a level set function is introduced in the fixed design region D. Then, the object boundary is implicitly expressed by the zero coordinate plane of the level set function ⁇ (see FIG. 4).
  • an upper limit value and a lower limit value are set in the level set function ⁇ and defined by the following equations.
  • the level set function value is a positive real value, the same shape is expressed, and thus it is allowed to provide the above-described restrictions.
  • the structural optimization problem is defined by the following equation using shape representation by the level set method.
  • F is an objective functional
  • G is a constraint functional
  • V max is an upper limit value of an allowable volume.
  • the objective functional F is an energy functional and is represented by a free energy density in the object region, a free energy density in the cavity region, and a boundary energy density.
  • the free energy density is given by a function family ⁇ ( ⁇ ) having a level set function as a variable. This is because the phase of each point is identified by the value of the level set function ⁇ , thereby giving a free energy density. That is, the free energy density is not an explicit function of the level set function ⁇ but an explicit function of the object shape ⁇ . Also, considering the mapping from the level set function ⁇ to the object shape ⁇ , it is not unique.
  • Topology optimization allows a general structure such as a porous structure in which minute voids are scattered everywhere, a plate structure in which ribs are arranged at extremely short intervals, and a mixture as an optimum design solution. Yes. Therefore, since a structure smaller than the size of spatial discretization in the numerical calculation cannot be expressed, a complexity indicating the structural complexity of the structure is set in advance. Alternatively, optimization problems must be mitigated. From a practical viewpoint, it is desirable to eliminate infinitely fine structures and arbitrarily set the complexity of the structure.
  • This complexity setting method implicitly considers the structural complexity (fineness) by minimizing the energy functional considering the boundary energy based on the concept of the phase field method. That is, the complexity of the structure is set by the function that the diffusion term of the boundary energy term has a function of eliminating a fine structure.
  • the complexity of the structure is implicitly set. That is, a method for solving the above-described problem by replacing the structure optimization problem of Expressions (2) and (3) with an optimization problem that minimizes the sum of the boundary energy and the objective functional shown in the following expression: suggest.
  • the second term of the objective functional F represents the boundary energy. Since the level set function ⁇ has the same profile as the phase field variable of the phase field method and expresses the boundary energy, the upper limit value and the lower limit value of the level set function ⁇ are set in Equation (1). is doing. Further, ⁇ is a parameter that gives a ratio between the boundary energy and the objective functional F, and is called a complexity coefficient.
  • V N is a normal component of the advection velocity at the object boundary, and replaces the external shape sensitivity obtained from the formulation of the optimization problem. Since this method is basically a shape optimization method, there is a problem that a topology change that allows a hollow region to be created in the object region is not allowed. For this reason, a method for arbitrarily creating a hole in an object region has been proposed, but it greatly depends on parameter settings, and it is difficult to stably obtain an optimal solution. Furthermore, many studies have shown that the coupled problem of heat / structure and the coupled problem of electrostatic field / heat / structure are extremely numerically unstable and the convergence of the solution is poor. . Therefore, it is desirable that the smoothness of the level set function ⁇ is ensured and that the problem be solved by solving a time evolution equation that allows a topology change such that a hole is created in the object region.
  • a reaction-diffusion equation which is a time evolution equation regarding the level set function ⁇ is derived. That is, as shown in the following equation, the driving force that develops the level set function ⁇ over time is proportional to the gradient of the objective functional F.
  • H ( ⁇ ) represents a snake side function. It can also be seen that the sensitivity d ⁇ / d ⁇ of the level set function ⁇ with respect to the shape ⁇ ( ⁇ ) can be considered as a constant C if the level set function ⁇ is constant in the object region ⁇ . Therefore, the above equation can be replaced by the following equation.
  • the proportionality constant K and the complexity coefficient ⁇ are parameters, the constant C can be handled as a parameter, and C may be set so that the profile of the level set function ⁇ becomes steep.
  • a Dirichlet boundary condition is given for a boundary ⁇ DN (hereinafter referred to as a non-design boundary) that is designated in advance as an object region boundary, and a Neumann boundary condition is given for other boundaries.
  • the function of the phase field variable is assumed to be proportional to the gradient of the region integration, whereas in the present embodiment, the level set function is proportional to the gradient due to the region variation. It differs in that ⁇ is developed over time.
  • the interface only advects in the process of time evolution, whereas in the method proposed in this embodiment, a topology in which a cavity region is created in the object region. Allowing change.
  • the advection equation (6) used in the conventional method does not guarantee the smoothness of the level set function ⁇ , whereas the time evolution equation (10) is a partial differential equation called a reaction diffusion equation. Note that the smoothness of the level set function ⁇ is guaranteed by including the diffusion term.
  • the value of the Lagrange multiplier ⁇ is obtained, and the level set function ⁇ is updated from the initial value based on the equation (10), and the level set function ⁇ when the objective functional F converges gives an optimal structure.
  • the level set function ⁇ is developed in time in proportion to the gradient with respect to the change in the object shape by introducing the function family ⁇ ( ⁇ ) into the object shape expression. Note that as a result, in addition to the movement of the boundary ⁇ D, automatic topological changes that are not arbitrary are allowed.
  • a boundary ⁇ u is completely constrained with respect to a fixed design region D in which a mixture of an object region and a cavity region that are composed of linear elastic bodies is allowed, and a surface force t is applied to the boundary ⁇ t and an object force b is applied to the object region.
  • the boundary ⁇ u is fixed to the fixed design region boundary ⁇ D.
  • the structure optimization problem that minimizes the average compliance under the volume constraint is described as follows.
  • represents a strain tensor
  • F represents an elastic tensor
  • V max represents a volume constraint value
  • U represents a displacement function space defined by the following equation.
  • boundary gamma t of the surface force acts that must always be the object boundary, the boundary gamma t and non-design boundary ⁇ D N.
  • the KKT condition for the above optimization problem is derived, and the function f (x) necessary for updating the level set function ⁇ is given from the result.
  • the Lagrangian F ′ ( ⁇ ) is described as follows using the Lagrange multiplier ⁇ and the associated displacement field v.
  • the level set function ⁇ that satisfies this KKT condition is a candidate for the optimal solution (optimal structure).
  • a level set function ⁇ having an appropriate initial structure is given, and the level set function ⁇ is updated using equation (11), whereby Lagrangian Decrease the sum of F ′ ( ⁇ ) and boundary energy.
  • Equation (11) a function f ′ (x) that gives a Lagrangian objective functional necessary for updating the level set function ⁇ is derived using Equation (11).
  • the optimization problem is defined as a self-adjoint problem by defining the adjoint displacement field v as the following equation.
  • ⁇ t is a time difference. Note that the diffusion effect due to the boundary energy can be considered for the updated level set function ⁇ by setting the diffusion term ⁇ 2 ⁇ of the first equation of equation (15) to the updated value. Therefore, the diffusion effect is considered for all the update steps.
  • ⁇ (t) is a vector composed of level set function values at each node at time t
  • matrix T and vector Y are given by
  • the level set function ⁇ is updated by the implicit method, there is no limitation on the time increment ⁇ t due to the CFL condition. As a result, by increasing the time increment ⁇ t, it is possible to avoid the problem that the time t increases and the boundary moving speed gradually decreases.
  • the time increment ⁇ t is set so that the maximum value of the fluctuation of the level set function ⁇ is about 1, and the time increment is gradually increased.
  • the hollow region is regarded as an object having a small longitudinal elastic modulus, and is approximated assuming that the longitudinal elastic modulus changes spatially smoothly in the vicinity of the boundary.
  • the displacement field is analyzed without extracting the object shape explicitly by replacing the equilibrium equation (24) with the following equation.
  • H e ( ⁇ ) is a function described by the following equation.
  • d is a relative value (ratio) of the longitudinal elastic modulus of the cavity region with respect to the longitudinal elastic modulus of the object region
  • t is a value indicating the transition width of the material constant, both of which are set as sufficiently small positive values.
  • the volume constraint function G ( ⁇ ) is also obtained using the following approximate expression.
  • the parameter K ( ⁇ ) is a function of the level set function ⁇
  • volume constraints by the Lagrangian undetermined multiplier method
  • numerical errors with respect to volume constraints in each update step are small, but there is a problem that the numerical errors are accumulated by performing repeated calculations. Therefore, when the volume constraint is not satisfied, it is necessary to perform volume correction by correcting the level set function ⁇ .
  • the minimum value of the minute value ⁇ (x) that satisfies the following equation is obtained by using the bisection method, and ⁇ (x) + ⁇ (x) is newly set as the value of the level set function ⁇ .
  • FIG. 5A shows a design region D and boundary conditions of design problem 1.
  • the fixed design area D was a rectangular area of 8 ⁇ 10 ⁇ 2 m ⁇ 6 ⁇ 10 ⁇ 2 m, and the design area D was divided into elements by a structural grid having an element length of 5 ⁇ 10 ⁇ 4 m.
  • the left end is completely displaced and a downward surface force is applied to the center of the right end.
  • FIG. 5B shows a design area D and boundary conditions of the design problem 2.
  • the fixed design area D was a rectangular area of 8 ⁇ 10 ⁇ 2 m ⁇ 6 ⁇ 10 ⁇ 2 m, and the design area D was divided into elements by a structural grid having an element length of 5 ⁇ 10 ⁇ 4 m.
  • the left and right sides of the lower end are completely displaced and the surface force is applied downward to the center of the lower end.
  • a 4-node isoparametric quadrilateral plane stress element is used, and a 4-node isoparametric quadrilateral element is used to update the level set function ⁇ .
  • an isotropic material was assumed as the material of the analysis model, and the material constants were 210 GPa for the longitudinal elastic modulus and 0.3 for the Poisson's ratio.
  • the ratio d of the longitudinal elastic modulus of the hollow region defined in the equation (35) to the longitudinal elastic modulus of the object region was set to 1 ⁇ 10 ⁇ 6 , and the set value t of the implicit transition width was set to 0.1.
  • the black portion is the object region and the gray portion is the hollow region. Comparing the results of FIG. 6 and FIG. 7, it can be seen that the state of the optimization process is different, and that the result of FIG. 7 giving priority to the movement of the boundary ⁇ D moves faster. It can also be seen that the optimum structure obtained is the same structure, and a clear and physically reasonable result is obtained.
  • the initial structure of one (Case 1) is a structure in which the entire fixed design region D is occupied by the object region, and the initial structure of the other (Case 2) is shown in FIG.
  • (a) it was set as the structure with two holes in the initial structure of Case1.
  • the complexity factor ⁇ was 0.07
  • the optimization process is shown in FIGS. 8 and 9B and 9C, and the optimum structure is shown in FIG. It can be seen that the obtained results are the same optimal structure and a physically reasonable structure.
  • the complexity coefficient ⁇ is set such that the setting value of Case 1 is 0.5, the setting value of Case 2 is 0.05, and the setting value of Case 3 is 0.03.
  • the set value of Case 1 was set to 0.01, the set value of Case 2 was set to 0.005, and the set value of Case 3 was set to 0.0001.
  • Case 2 has a smaller value of the complexity coefficient ⁇ , so that a more complicated (detailed) structure is allowed as the optimum solution.
  • FIG. 10 shows the optimum structures of Case 1, Case 2, and Case 3 in design problem 1
  • FIG. 11 shows the optimum structures of Case 1, Case 2, and Case 3 in design problem 2.
  • FIG. 12 shows a design region and boundary conditions in the optimization in the case where the equal cross section restriction is provided.
  • the fixed design region D was a rectangular parallelepiped region of 2.0 m ⁇ 0.8 m ⁇ 0.15 m, and a non-design region having a rectangular parallelepiped shape of 2.0 m ⁇ 0.8 m ⁇ 0.05 m was set below the fixed design region D.
  • As the boundary condition both end portions in the longitudinal direction were completely displaced and the surface force was applied downward on the entire lower surface of the non-design area.
  • the complexity coefficient ⁇ is set to anisotropy, and the complexity coefficient in the direction in which an equal section is desired to be set is sufficiently larger than the other complexity coefficients. That is, the complexity of coefficients in each axis direction ⁇ (X 1), ⁇ ( X 2), ⁇ in (X 3), sufficiently large compared to tau (X 3) and tau (X 1) and tau (X 2) Set ( ⁇ (X 3 ) >> ⁇ (X 1 ), ⁇ (X 2 )).
  • FIG. 13 shows an optimum structure in the case of (A) “no equal section restriction” and (B) an optimum structure in the case of “with equal section restriction”. From these figures, it can be seen that an optimal structure with an equivalent cross-section constraint is obtained by setting the complexity factor ⁇ to anisotropy ( ⁇ (X 3 ) >> ⁇ (X 1 ), ⁇ (X 2 )). .
  • the boundary gamma h in the fixed design area inside is set on the boundary of the object region, a design variable dependent boundary conditions determined in dependence on the value of the level set function is design variable.
  • the thermal diffusion maximization problem is formulated as a total potential energy maximization problem shown in the following equation.
  • represents a heat conduction tensor
  • T amp represents an ambient temperature
  • U t is a temperature function space defined by the following equation.
  • FIG. 14 shows design areas and boundary conditions.
  • the fixed design area was a square area of 1 ⁇ 10 ⁇ 2 m ⁇ 1 ⁇ 10 ⁇ 2 m, and the design area was divided into elements by a structural grid having an element length of 5.0 ⁇ 10 ⁇ 5 m.
  • V max of the volume allowed was 60% of the fixed design domain. Further, in order to define the heat transfer boundary, at least one boundary between the object region and the cavity region is required in the initial structure, so that the initial structure is centered on the lower left corner as shown in FIG. It was set as 1/4 arc.
  • FIGS. 15B to 15E show the optimum structure obtained when the complexity coefficient ⁇ is set to 5 ⁇ 10 ⁇ 4 , 1 ⁇ 10 ⁇ 4 , 5 ⁇ 10 ⁇ 5 , and 1 ⁇ 10 ⁇ 5. Indicates.
  • FIG. 15 shows that the complexity of the fin shape changes depending on the setting value of the complexity coefficient. It can also be seen that an optimal structure that is physically appropriate is obtained in either case.
  • FIG. 16 shows the design area and boundary conditions for the internal heat generation problem.
  • the fixed design area was a square area of 1 ⁇ 10 ⁇ 2 m ⁇ 1 ⁇ 10 ⁇ 2 m, and the design area was divided into elements by a structural grid having an element length of 2.5 ⁇ 10 ⁇ 5 m.
  • the heat quantity Q 1.0 ⁇ 10 ⁇ 7 W / m 3 was given, and the maximum volume value V max allowed was 40% of the fixed design region.
  • the initial structure was a structure in which the entire fixed design area was occupied by the object.
  • optimization was performed by changing the complexity coefficient.
  • FIGS. 17A to 17D show the optimum structure obtained when the complexity coefficient ⁇ is set to 5 ⁇ 10 ⁇ 5 , 1 ⁇ 10 ⁇ 5 , 5 ⁇ 10 ⁇ 6 , and 1 ⁇ 10 ⁇ 6. Indicates. Since the design area is symmetrical, only the right half was optimized. From these results, it can be seen that even in this design problem, the complexity of the optimum structure changes due to the setting of the complexity factor. It can also be seen that an optimal structure that is physically appropriate is obtained in either case.
  • the predetermined value between the value representing the object region ⁇ and the value representing the cavity region indicates the boundary ⁇ D between the object region ⁇ and the cavity region.
  • the level set function ⁇ it is possible to express a clear shape of the optimum structure.
  • the boundary ⁇ D between the object region ⁇ and the cavity region is moved, and the level set function ⁇ is updated so as to move the newly generated boundary ⁇ D while allowing the topology change in the object region ⁇ . It is possible to optimize the structure with a high degree of freedom, such as allowing a topology change in the object region ⁇ .
  • the structural optimization device of the above embodiment is applied to the rigidity maximization problem or the thermal diffusion maximization problem, but can be applied to various structural problems such as other natural frequency maximization problems. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Geometry (AREA)
  • General Physics & Mathematics (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

 本発明は、最適構造の明確な形状表現を可能にし、物体領域Ωでのトポロジー変化を許容する等の自由度の高い構造最適化を可能にするものである。本発明は、レベルセット関数φを定め、所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるようにレベルセット関数φを更新して、物体領域Ωと空洞領域との境界∂Ωを移動させるとともに、レベルセット関数φの更新に伴う物体領域Ω内のトポロジー変化を許容して物体領域Ω内に新たな空洞領域を形成し、その新たな空洞領域と物体領域Ωとの境界∂Ωを移動させる。

Description

構造最適化装置、構造最適化方法及び構造最適化プログラム
 本発明は、構造最適化装置、構造最適化方法及び構造最適化プログラムに関するものである。
 従来、構造最適化の方法としては、寸法最適化、形状最適化、トポロジー最適化がある。
 この中の形状最適化は、外形形状を設計変数として、感度情報に基づいて前記外形形状を更新することにより最適構造を得る方法であり、実用的な方法として機械産業において広く利用されている。
 しかしながら、形状最適化は、最適構造の穴の数などの形態を変更することが難しいという欠点をもち、構造の大幅な性能向上を期待できない。
 これに対して、トポロジー最適化は、最適設計問題を材料分布問題に置き換えて解くことにより、最適構造の形態変更を可能とし、構造の大幅な性能向上を期待できる。
 しかしながら、トポロジー最適化はグレースケールなどの数値不安定性問題を生じることがある。
 そして近年、新しい構造最適化方法として、レベルセット法に基づく構造最適化が提案されている(非特許文献1)。
 この方法は、外形形状を1次元高位のレベルセット関数で表現し、形状と形態の変更をレベルセット関数値の変化に置き換えて最適構造を得る。これにより従来のトポロジー最適化とは異なり、最適構造の輪郭を常に明確に表現することが可能であり、グレースケールなどの問題を生じることがないという長所を有する。
 しかしながら、レベルセット法は、移流方程式に基づいてレベルセット関数を更新させるため、外形形状(物体領域)に穴が創出されるようなトポロジー変化(形態変化)を許容しないことを前提としている。
 これに対して、非特許文献2に示すように、レベルセット法に基づく構造最適化の過程において、適宜、目的関数のトポロジカルデリバティブに基づいて、恣意的に穴を創出する方法が提案されている。また、非特許文献3に示すように、最適化の過程において、トポロジカルデリバティブの値が所定の閾値である物体領域(構造を形成する領域)を空洞領域(空洞を形成する領域)に置き換えることにより、外形形状(物体領域)に穴が創出されるようなトポロジー変化(形態変化)を許容する方法が提案されている。
 しかしながら、いずれの方法も、穴の数又は閾知の設定などのパラメータの依存性が極めて高く、適切にそれらのパラメータを設定しなければ、物理的に妥当な最適構造が得られないという問題がある(非特許文献4参照)
Wang, M. Y., Wang, X. and Guo, D., A level Set Method forStructural Topology Optimization, Computer Methods in Applied Mechanics andEngineering, Vol.192, (2003), pp.227-246. Yamasaki, S., Nishiwaki, S., Yamada, T., Izui, K., andYoshimura, M., A Structural Optimization Method Based on the Level Set MethodUsing A New Geometry-based Re-initialization Scheme, International Journal for NumericalMethods in Engineering,Vol. 18, (2008), pp.487-505. Park, K. S., and Youn, S. K., Topology Optimization ofshell structures using adaptive inner-front (AIF) level set method, Structuraland Multidisciplinary Optimization, Vol.36, (2008), pp.43-58. Yamada, T., Nishiwaki, S., Izui, K., and Yoshimura, M., AStudy of Boundary Setting in the Design Domain for Structural OptimizationBased on the Level Set Method, Transaction of the Japan Society for Industrialand Applied Mathematics, (submitted).
 そこで本発明は、上記問題点を一挙に解決するためになされたものであり、最適構造の明確な形状表現を可能にし、物体領域でのトポロジー変化を許容する等の自由度の高い構造最適化を可能にすることをその主たる所期課題とするものである。
 すなわち本発明に構造最適化装置は、以下の構成(1)~(3)を具備することを特徴とする。
 (1)構造物の設計領域を示す設計領域データを格納する設計領域データ格納部。
 (2)初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を示すレベルセット関数データを格納しているレベルセット関数データ格納部。
 (3)所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新部。
 このようなものであれば、物体領域を表す値及び空洞領域を表す値の間の所定値が、物体領域及び空洞領域の境界を示すレベルセット関数を用いていることにより、最適構造の明確な形状表現を可能にすることができる。また、物体領域及び空洞領域間の境界を移動させるとともに、物体領域内でのトポロジー変化を許容して新たに生じる境界を移動させるようにレベルセット関数を更新することにより、物体領域でのトポロジー変化を許容する等の自由度の高い構造最適化を可能にすることができる。
 レベルセット関数の更新方法の具体的な実施の態様としては、前記レベルセット関数更新部が、レベルセット関数を変数とする関数族、物体領域におけるエネルギー密度、空洞領域におけるエネルギー密度、及び界面エネルギー密度により示されるエネルギー汎関数を、エネルギー汎関数最小化原理に従って、前記レベルセット関数の時間発展を示す反応拡散方程式を算出し、当該反応拡散方程式を用いて前記レベルセット関数を時間発展させることにより、前記レベルセット関数を更新するものであることが望ましい。
 また、前記レベルセット関数更新部が、前記レベルセット関数を更新した結果得られる構造の構造的な複雑さを示す複雑度が予め設定された複雑度となるように、前記レベルセット関数を更新するものであることが望ましい。これならば、無数に存在する局所最適解の中で、設計者(ユーザ)の意図した構造の複雑さ(つまり細かさ)を有する最適構造を創成することができる。
 また本発明に係る構造最適化方法は、構造物の設計領域を定める設計領域設定ステップと、初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を定めるレベルセット関数設定ステップと、所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新ステップと、を具備する。
 さらに本発明に係る構造最適化プログラムは、構造物の設計領域を示す設計領域データを格納する設計領域データ格納部と、初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を示すレベルセット関数データを格納しているレベルセット関数データ格納部と、所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新部と、としての機能をコンピュータに備えさせることを特徴とする。
 このように本発明によれば、最適構造の明確な形状表現を可能にし、物体領域でのトポロジー変化を許容する等の自由度の高い構造最適化を可能にすることができる。
本実施形態に係る構造最適化装置の機器構成図である。 同実施形態に係る構造最適化装置の機能構成図である。 同実施形態の最適化アルゴリズムを示すフローチャートである。 レベルセット法における物体領域、空洞領域及び境界を示す図である。 設計問題1及び設計問題2の設計領域と境界条件を示す図である。 (φ)=1の初期構造、最適化過程の構造及び最適構造を示す図である。 (φ)=exp(-φ)の初期構造、最適化過程の構造及び最適構造を示す図である。 初期構造に関する比較を行うためのCase1の初期構造、最適化過程の構造及び最適構造を示す図である。 初期構造に関する比較を行うためのCase2の初期構造、最適化過程の構造及び最適構造を示す図である。 設計問題1における複雑度係数に関する比較を示す図である。 設計問題2における複雑度係数に関する比較を示す図である。 等断面制約を付加した場合の最適化問題の設計領域と境界条件を示す図である。 等断面制約を付加しない場合及び付加した場合の最適構造を示す図である。 熱伝達問題の設計領域と境界条件を示す図である。 熱伝達問題の初期構造及び複雑度係数別の最適構造を示す図である。 内部発熱問題の設計領域及び境界条件を示す図である。 内部発熱問の複雑度係数別の最適構造を示す図である。
 次に、本発明の一実施形態について図面を参照して説明する。なお、図1は本実施形態の構造最適化装置100の機器構成図であり、図2は構造最適化装置100の機能構成図であり、図3は構造最適化装置100の動作を示すフローチャートである。
 <装置構成>
 本実施形態に係る構造最適化装置100は、予め設定された設計領域内に、所定の制約条件下において所望の性能を有する構造物を創成するものであり、図1に示すように、CPU101に加えて揮発メモリやHDD等の記憶装置102を備え、さらにマウスやキーボード等の入力手段103、解析モデルや演算結果の出力するためのディスプレイやプリンタ等からなる出力手段105を接続するための入出力インターフェイス104等を有した汎用乃至は専用のコンピュータである。
 そして、所定のプログラムを前記記憶装置102にインストールし、そのプログラムに基づいてCPU101や周辺機器を協働させることにより、この構造最適化装置100は、図2の機能構成図に示すように、設計領域データ格納部1、レベルセット関数データ格納部2、境界条件データ格納部3、解析データ格納部4、レベルセット関数更新部5、演算結果出力部6等としての機能を発揮する。
 以下各部について説明する。
 設計領域データ格納部1は、構造物の設計領域(当該設計領域を要素分割する構造格子(メッシュ)情報を含む。)を示す設計領域データを格納するものである。なお、設計領域データは、例えばユーザが入力手段103を用いることにより入力される。
 レベルセット関数データ格納部2は、初期構造などの設計領域内にある構造を特定するためのレベルセット関数を示すレベルセット関数データを格納するものである。レベルセット関数とは、初期構造が設定された設計領域の各部が、構造を形成し、物体により占められた物体領域(物体相)、空洞を形成する空洞領域(空洞相)、又はそれら領域の境界であるかを示すものであり、物体領域を表す値及び空洞領域を表す値の間の所定値が、物体領域及び空洞領域の境界を表す。なお、レベルセット関数データは、例えばユーザが入力手段103を用いることにより入力される。
 境界条件データ格納部3は、前記設計領域(以下、固定設計領域ともいう。)の境界条件を示す境界条件データを格納するものである。具体的な境界条件としては、例えば設計領域の拘束条件、初期構造に作用する荷重等の外力(表面力)などである。なお、境界条件データは、例えばユーザが入力手段103を用いることにより入力される。
 解析データ格納部4は、最適構造を求めるときに用いる体積制約に必要な制約の条件値及び変位場の解析に必要なヤング率やポアソン比の値等の材料定数である解析データを格納している。なお、解析データは、例えばユーザが入力手段103を用いることにより入力される。
 レベルセット関数更新部5は、所定の制約条件下において、剛性、固有振動数等の構造物の性能を目標値に近づけるようにレベルセット関数を更新して、物体領域と空洞領域との境界を移動させるとともに、レベルセット関数の更新に伴う物体領域内のトポロジー変化(形態変化)を許容して物体領域内に新たな空洞領域(穴)を形成し、その新たな空洞領域と物体領域との境界を移動させるものである。
 具体的にレベルセット関数更新部5は、レベルセット関数を変数とする関数族、物体領域におけるエネルギー密度、空洞領域におけるエネルギー密度、及び界面エネルギー密度により示されるエネルギー汎関数を、エネルギー汎関数最小化原理に従って、前記レベルセット関数の時間発展を示す反応拡散方程式を算出し、当該反応拡散方程式を用いて前記レベルセット関数を時間発展させることにより、前記レベルセット関数を更新する。なお、レベルセット関数更新部5の具体的な機能については後述する。
 演算結果出力部6は、レベルセット関数更新部5により更新されたレベルセット関数の演算結果、つまり最適構造の形状を出力するもので、この実施形態ではディスプレイ104に表示する。
 <構造最適化装置100の動作>
 次にこのように構成した構造最適化装置100の動作について図3を参照して説明する。
 まず、設計領域データ、レベルセット関数データ、境界条件データ及び解析データを入力すべく入力手段103をユーザが操作する。ここで、ユーザにより入力されるレベルセット関数データは、初期構造を示す初期のレベルセット関数を示すものである。
 このようにして入力された各データをデータ受付部(図示しない)が受け付け、設計領域データを設計領域データ格納部1に、レベルセット関数データをレベルセット関数データ格納部2に、境界条件データを境界条件データ格納部3に、解析データを解析データ格納部4に格納する(ステップS1)。
 次に、レベルセット関数更新部5が、レベルセット関数に対応する目的汎関数(剛性、固有振動数等の構造物の性能を目標値に近づけるための汎関数)と制約汎関数(制約条件を示す汎関数)とを有限要素法を用いて計算する。
 そして、レベルセット関数更新部5は、目的汎関数値が収束したか否かを判断し(ステップS3)、収束したならば、最適解が得られたと判断して最適化を終了し、その時のレベルセット関数を演算結果出力部6に出力する。一方、収束しない場合には、有限要素法を用いてレベルセット関数を更新する(ステップS4)。このとき、レベルセット関数更新部5は、制約条件(例えば体積制約)を満たすか否かを判断し(ステップS5)、更新後に制約条件が満たされていれば、再び、ステップS2に戻る。一方、制約条件が満たされていれば、後述する体積修正法を用いて、レベルセット関数を修正し(ステップS6)、ステップS2に戻る。なお、初期構造の体積が体積制約と大きく異なる場合、200ステップ程度をかけて体積が減少するように体積修正を行う。
 以下に本実施形態に係る手法をレベルセット関数更新部5の機能とともに詳述する。
 <レベルセット法に基づく構造最適化問題>
 物体により占められている領域Ω(以下、物体領域)の存在が許容される固定領域D(以下、固定設計領域)において、物体領域の構造最適化について考える。レベルセット法は、固定設計領域Dにおいて、レベルセット関数と呼ばれるスカラー関数φ(x)を導入する。そして、そのレベルセット関数φのゼロ等位面によって物体境界を陰的に表現する方法である(図4参照)。
 本実施形態では、後述のように、フェーズフィールド法の考え方に基づいてレベルセット関数φを時間発展させるため、レベルセット関数φに上限値と下限値を設定し、次式で定義する。
Figure JPOXMLDOC01-appb-M000001
 なお、物体領域内部において、レベルセット関数値が正の実数値であれば、同一の形状を表現することになるので、上述の制約を設けることは許容される。
 レベルセット法による形状表現を用いて、構造最適化問題を次式で定義する。
Figure JPOXMLDOC01-appb-M000002
 ここで、Fは目的汎関数、Gは制約汎関数、Vmaxは許容される体積の上限値である。また、目的汎関数Fは、エネルギー汎関数であり、物体領域における自由エネルギー密度、空洞領域における自由エネルギー密度及び境界エネルギー密度により表わされる。さらに、自由エネルギー密度は、レベルセット関数を変数とする関数族Ω(φ)により与えられる。なぜなら、レベルセット関数φの値により各点の相が識別され、それにより自由エネルギー密度が与えられるからである。すなわち、自由エネルギー密度はレベルセット関数φの陽関数ではなく、物体形状Ωの陽関数である。また、レベルセット関数φから物体形状Ωへの写像について考えてみると、それは一意ではないからである。
 トポロジー最適化は、微小の空隙が至るところに散らばっているような多孔質のものや、リブが極めて短い間隔で並ぶ板構造、混合体などの一般化された構造を最適設計解として許容している。そのため、数値計算における空間的な離散化の大きさより小さい構造を表現することはできないので、構造の構造的な複雑さを示す複雑度を予め設定する。もしくは、最適化問題の緩和をしなければならない。実用上の観点から、無限に微細な構造を排除し、任意に構造の複雑度を設定することが望ましい。
 この複雑度の設定方法は、フェーズフィールド法の考え方に基づき、境界エネルギーを考慮したエネルギー汎関数を最小化させることにより、構造の複雑度(微細度)を陰的に考慮することにする。すなわち、境界エネルギー項の拡散項が微細な構造を排除する機能を有することによって、構造の複雑度が設定される。本実施形態においては、フェーズフィールド法の境界エネルギー表現に着目し、陰的に構造の複雑度の設定を行う。すなわち、式(2)、式(3)の構造最適化問題を、次式に示す境界エネルギー及び目的汎関数の和を最小化させる最適化問題に置き換えることにより、上述の問題を解決する方法を提案する。
Figure JPOXMLDOC01-appb-M000003
 ここで、目的汎関数Fの第二項が境界エネルギーを表すことになる。レベルセット関数φが、フェーズフィールド法のフェーズフィールド変数と同様なプロファイルを持つことで、境界のエネルギーを表現することになるため、式(1)においてレベルセット関数φの上限値及び下限値を設定している。また、τは、境界エネルギーと目的汎関数Fとの比を与えるパラメータであり、複雑度係数と呼ぶことにする。
 <反応拡散方程式>
 最適化問題、式(4)及び式(5)の最適解φを直接求めることは困難であるため、最適化問題を、レベルセット関数φの時間発展方程式を解く問題に帰着させる。通常、外形形状感度に基づき、次式に示す移流方程式に従って、レベルセット関数φを時間発展させることにより、形状最適化を行う。
Figure JPOXMLDOC01-appb-M000004
 ここで、Vは物体境界の移流速度の法線成分であり、最適化問題の定式化より得られる外形形状感度を、これに置き換える。この方法は、基本的には形状最適化の方法であるため、物体領域に空洞領域が創出されるようなトポロジー変化が許容されない問題を持つ。そのため、恣意的に物体領域中に穴を創出する方法が提案されているが、パラメータの設定に大きく依存し、安定的に最適解を得るのは難しい。さらには、熱・構造の連成問題、静電場・熱・構造の連成問題においては、極めて数値的に不安定であり、解の収束性が悪いことが、多くの検討結果からわかっている。そのため、レベルセット関数φの滑らかさが保障されており、かつ、物体領域に穴が創成されるようなトポロジー変化を許容した時間発展方程式を解く問題に帰着させることが望ましい。
 そこで本実施形態では、上述の問題を解決する方法として、界面拡散に基づいて界面の移流を表現するフェーズフィールド法の考え方に着目し、フェーズフィールド法と同じ考えにより、エネルギー汎関数最小化原理によって、レベルセット関数φに関する時間発展方程式である反応拡散方程式を導出する。すなわち、次式に示すように、レベルセット関数φを時間発展させる駆動力は、目的汎関数Fの勾配に比例するものとする。
Figure JPOXMLDOC01-appb-M000005
 ここで、K(φ)>0は比例定数、δF/δφは目的汎関数Fの汎関数微分を表す。上式に式(4)を代入すれば次式が得られる。
Figure JPOXMLDOC01-appb-M000006
 ここで、H(φ)はヘビサイド関数を表す。また、形状Ω(φ)に対するレベルセット関数φの感度dΩ/dφは、物体領域Ωにおいてレベルセット関数φが一定となるようにすれば、定数Cとして考えればよいことがわかる。したがって、上式を次式で置き換えることができる。
Figure JPOXMLDOC01-appb-M000007
 比例定数Kと複雑度係数τがパラメータであることから、定数Cはパラメータとして取り扱うことができ、レベルセット関数φのプロファイルが急峻になるようにCを設定すればよい。また、境界条件については、予め物体領域境界であることが指定されている境界∂D(以下、非設計境界という。)においては、ディリクレ境界条件、その他の境界においてはノイマン境界条件を与えることにより、固定設計領域D外部からの影響がないことを表現する。このとき、時間発展方程式系は次式となる。
Figure JPOXMLDOC01-appb-M000008
 なお、フェーズフィールド法では、フェーズフィールド変数の関数を被積分関数とした領域積分の勾配に比例するものとしていることに対して、本実施形態では、領域変動による勾配に比例して、レベルセット関数φを時間発展させる点で異なる。その結果として、フェーズフィールド法においては、時間発展の過程において、界面が移流するのみであることに対して、本実施形態で提案する方法では、物体領域内に空洞領域が創成されるようなトポロジー変化を許容している。また、従来の方法で用いられていた移流方程式(6)は、レベルセット関数φの滑らかさが保障されていないことに対して、時間発展方程式(10)は反応拡散方程式と呼ばれる偏微分方程式であり、拡散項が含まれることにより、レベルセット関数φの滑らかさが保障されていることを注記しておく。
 体積制約については、ラグランジュ未定乗数法により体積制約を課す方法を用いる。このとき、ラグランジュ乗数をλとすれば、時間発展方程式(9)は次式となる。
Figure JPOXMLDOC01-appb-M000009
 ラグランジュ乗数λについては、制約条件が活性であるとき、
Figure JPOXMLDOC01-appb-M000010
 である。したがって、式(11)、式(12)よりラグランジュ乗数λは次式で与えられる。
Figure JPOXMLDOC01-appb-M000011
 また、制約条件が非活性であるときは、次式となる。
Figure JPOXMLDOC01-appb-M000012
 以上より、ラグランジュ乗数λの値を求め、式(10)に基づいてレベルセット関数φを初期値から更新させていき、目的汎関数Fが収束したときのレベルセット関数φが最適構造を与える。
 ここで、式(10)に基づいてレベルセット関数φを時間発展させる場合、目的汎関数Fが単調減少することを、次式より確かめることができる。
Figure JPOXMLDOC01-appb-M000013
 なお、フェーズフィールド法においては、エネルギー密度は識別関数の関数としているため、境界∂Dが移流することにより、エネルギー汎関数が単調減少する。それゆえ、時間発展の過程において、物体領域に空洞領域が創出されるようなトポロジー変化は許容されない。これに対し、本実施形態の方法では物体形状の表現を関数族Ω(φ)を導入することにより、物体形状の変化に対する勾配に比例して、レベルセット関数φが時間発展する。その結果、境界∂Dの移動に加えて、恣意的ではない自動的なトポロジー変化を許容していることを注記しておく。
 <平均コンプライアンス最小化問題>
 線形弾性体で構成される物体領域と空洞領域の混在が許容される固定設計領域Dに対し、境界Γを完全拘束し、境界Γに表面力t、物体領域に物体力bを作用させる構造問題を考える。ただし、境界Γは、固定設計領域境界∂Dに固定されているものとする。このとき、体積制約下で、平均コンプライアンスを最小化させる構造最適化問題は次式のように記述される。
Figure JPOXMLDOC01-appb-M000014
 ここで、上記式中の各表記は次式で定義される。
Figure JPOXMLDOC01-appb-M000015
 さらに、εはひずみテンソル、Fは弾性テンソル、Vmaxは体積の制約値を表し、Uは以下の式にて定義される変位関数空間である。
Figure JPOXMLDOC01-appb-M000016
 なお、表面力が作用する境界Γは常に物体境界である必要があるため、境界Γを非設計境界∂Dとする。
 次に、上の最適化問題に関するKKT条件を導くとともに、その結果から、レベルセット関数φの更新に必要な関数f(x)を与える。上述の定式化より、ラグラジュアンF’(Ω)は、ラグランジュ乗数λ、随伴変位場vを用いて以下のように記述される。
Figure JPOXMLDOC01-appb-M000017
 式(23)を用いてKKT条件を導けば、次式となる。
Figure JPOXMLDOC01-appb-M000018
 このKKT条件を満たすレベルセット関数φが最適解(最適構造)の候補となる。しかし、これらを満たすレベルセット関数φを直接求めることは困難であるため、適当な初期構造となるレベルセット関数φを与え、式(11)を用いてレベルセット関数φを更新することにより、ラグラジュアンF’(Ω)及び境界エネルギーの和を減少させる。
 以下、式(11)を用いてレベルセット関数φを更新する際に必要となるラグラジュアンの目的汎関数を与える関数f’(x)を導出する。ここで、随伴変位場vを次式と定義することにより、最適化問題を自己随伴問題とする。
Figure JPOXMLDOC01-appb-M000019
 式(23)に式(25)を代入し、平衡方程式(24)を用いれば、ラグラジュアンF’(Ω)は次式となる。
Figure JPOXMLDOC01-appb-M000020
 したがって、目的汎関数を与える被積分関数f’(x)は次式となる。
Figure JPOXMLDOC01-appb-M000021
 <反応拡散方程式の数値解法>
 次式に示すように、式(10)を時間方向に対して、差分法による離散化を行う。
Figure JPOXMLDOC01-appb-M000022
 ここで、Δtは時間差分である。なお、式(15)の第一式の拡散項τ∇φを更新後の値とすることにより、更新後のレベルセット関数φに対して、境界エネルギーによる拡散効果を考えることができる。したがって、全更新ステップに対して拡散効果を考慮していることになる。
 次に、有限要素法を用いて空間方向に離散化するために、式(28)の弱形式を導出すると、次式となる。
Figure JPOXMLDOC01-appb-M000023
 ここでΦは、次式にて定義されるものであり、レベルセット関数φに関する関数空間である。
Figure JPOXMLDOC01-appb-M000024
 式(29)を有限要素法を用いて離散化すれば、次式となる。
Figure JPOXMLDOC01-appb-M000025
 ここで、Φ(t)は、時刻tにおける各節点のレベルセット関数値により構成されるベクトルであり、マトリックスT及びベクトルYは次式で与えられる。
Figure JPOXMLDOC01-appb-M000026
 本実施形態では、陰解法によりレベルセット関数φを更新するため、CFL条件による時間増分Δtの制限がない。その結果、時間増分Δtを増加させていくことにより、時刻tが増加するとともに境界移動速度が徐々に遅くなる問題を回避することが可能となる。なお、最初の更新ステップ20回程度においては、レベルセット関数φの変動の最大値が1程度となるように時間増分Δtを設定し、徐々に時間増分を増大させることにする。
 <オイラー座標系に基づく変位場の近似解析法>
 レベルセット関数φを更新させるためには、物体領域において変位場の解析をする必要がある。ラグランジュ座標系に基づいて、物体領域の解析を行う場合、各更新ステップ毎に物体形状が異なるため、逐次メッシュを生成する必要があるうえ、離散的に得られた変位場を固定設計領域Dに写像しなければならない問題を持つ。さらに、最適化過程において、変位固定部と連結していない物体領域が生じた場合、その物体領域では剛体モードを持つ問題がある。そこで、本実施形態では、オイラー座標系に基づき、空洞領域では小さな縦弾性係数を持つ物体とみなし、境界近傍では縦弾性係数が空間的に滑らかに変化するものとして近似することにする。すわなち、平衡方程式(24)を次式に置き換えることにより、物体形状を陽に抽出することなく変位場の解析を行う。
Figure JPOXMLDOC01-appb-M000027
 ここでH(φ)は次式で記述される関数である。
Figure JPOXMLDOC01-appb-M000028
 ここで、dは物体領域の縦弾性係数に対する空洞領域の縦弾性係数の相対値(比)、tは材料定数の遷移幅を示す値であり、どちらも十分に小さい正の値として設定する。また、体積制約関数G(Ω)に関しても、次式の近似式を用いて求めることにする。
Figure JPOXMLDOC01-appb-M000029
 <実装法の詳細について>
 パラメータK(φ)は、レベルセット関数φの関数であるため、境界∂Dの移動と構造の形態変化の優先度の度合を決めるパラメータ(易動度)であることがわかる。すなわち、境界近傍におけるK(φ)を大きく設定することは境界∂Dの移動を、トポロジー変化(形態変化)に対して優先させることに相当する。多くの計算結果から、パラメータK(φ)の設定によらず、同一の最適構造が得られることがわかった。この点に関して、K(φ)=1(一定)と、φ=0を中心としたガウス分布K(φ)=exp(-φ)に対して、数値例においてその結果を示す。なお、K(φ)の場合は、φによらず一定であるため、境界∂Dの移動とトポロジー変化との優先度合が同程度、K(φ)の場合はφ=0近傍の値が大きいため、境界∂Dの移動を優先させることになる。
 また、ラグランジュ未定乗数法により体積制約を考慮する場合、各更新ステップにおける体積制約に対する数値誤差は微小ではあるものの、繰り返し計算を行うことにより、その数値誤差が累積される問題を持つ。そのため、体積制約を満たさない場合、レベルセット関数φに修正を加えることにより、体積修正を行う必要がある。本実施形態では、次式を満たす微小値Δφ(x)の最小値を二分法を用いて求め、新たにφ(x)+Δφ(x)をレベルセット関数φの値とする。
Figure JPOXMLDOC01-appb-M000030
 <数値例>
 次に、本実施形態の構造最適化装置100を用いて、上述した方法の妥当性を検討する。
 図5(a)に設計問題1の設計領域Dと境界条件を示す。固定設計領域Dは8×10-2m×6×10-2mの長方形領域とし、設計領域Dを要素長5×10-4mの構造格子で要素分割した。また、許容される体積の最大値Vmaxは、固定設計領域Dの40%とした。境界条件は、左端を完全変位拘束し、右端中央に下向きの表面力を作用させる。
 図5(b)に設計問題2の設計領域Dと境界条件を示す。固定設計領域Dは8×10-2m×6×10-2mの長方形領域とし、設計領域Dを要素長5×10-4mの構造格子で要素分割した。また、許容される体積の最大値Vmaxは、固定設計領域Dの50%とした。境界条件は、下端左側及び右側を完全変位拘束し、下端中央に下向きに表面力を作用させる。
 変位場の解析には、設計問題1及び設計問題2のいずれの場合においても、4節点のアイソパラメトリック4角形平面応力要素、レベルセット関数φの更新には、4節点のアイソパラメトリック4角形要素を用いた。解析モデルの材料は、いずれの場合も、等方性材料を想定し、材料定数は縦弾性係数を210GPa、ポアソン比を0.3とした。さらに式(35)において定義された空洞領域の縦弾性係数の物体領域の縦弾性係数に対する比dを1×10-6、陰的な遷移幅の設定値tを0.1と設定した。
 <パラメータK(φ)に関する比較>
 最初に、パラメータK(φ)に対する比較を行った。
 初期構造を固定設計領域Dの上部2/3を占めている構造とし、複雑度係数τを0.07、C=1/max(f(x))と設定し、設計問題1に対して最適化を行った。
 K(φ)=1とした場合の初期構造、最適化過程の構造及び最適構造を図6に示す。同様に、K(φ)=exp(-φ)とした場合の初期構造、最適化過程の構造及び最適構造を図7に示す。図6及び図7中、黒色部分が物体領域であり灰色部分が空洞領域である。図6及び図7の結果を比較すると、最適化過程の様子が異なり、境界∂Dの移動を優先させている図7の結果の方が、速く境界∂Dが移動している様子が分かる。また、得られた最適構造は同一の構造であり、明瞭かつ物理的に妥当な結果が得られていることが分かる。
 <初期構造に関する比較>
 次に、異なる初期構造を設定し、設計問題1に対して最適化を行った。
 一方(Case1)の初期構造は、図8の(a)に示すように、固定設計領域Dの全領域が物体領域に占められている構造とし、他方(Case2)の初期構造は、図9の(a)に示すように、Case1の初期構造において穴が2つ空いた構造とした。また、Case1及びCase2のいずれも、複雑度係数τは0.07、その他のパラメータはそれぞれ、K(φ)=1、C=1/max(f(x))とした。図8及び図9の(b)及び(c)に最適化過程、(d)に最適構造を示す。得られた結果は同一の最適構造であり、物理的にも妥当な構造であることが分かる。
 <複雑度係数に関する比較>
 次に、複雑度係数τの設定値を変化させて、設計問題1及び設計問題2に対して最適化を行った。
 ここで、固定設計領域Dの全領域が物体領域により占められた構造を初期構造とし、K(φ)=1、C=1/max(f(x))とした。また、設計問題1において、複雑度係数τは、Case1の設定値を0.5とし、Case2の設定値を0.05とし、Case3の設定値を0.03とした。一方、設計問題2において、Case1の設定値を0.01とし、Case2の設定値を0.005とし、Case3の設定値を0.0001とした。なお、いずれの設計問題においても、Case2の方が複雑度係数τの値が小さいので、より複雑な(詳細な)構造を最適解として許容していることになる。
 図10に設計問題1におけるCase1、Case2及びCase3の最適構造を示し、図11に設計問題2におけるCase1、Case2及びCase3の最適構造を示す。これらの図により、いずれの場合も物理的に妥当な最適構造が得られていることが分かった。さらに、複雑度係数τの大きさによって、最適構造の複雑度が異なることが分かる。したがって、本実施形態で提案する方法は、複雑度係数の設定により、構造の複雑度を陰的に設定可能であり、最適構造の複雑度を定性的に考慮可能な方法であることを確かめることができた。
 <製造上の制約(等断面制約)を付加した場合の最適化>
 図12に等断面制約を設けた場合の最適化における設計領域及び境界条件を示す。固定設計領域Dは、2.0m×0.8m×0.15mの直方体領域とし、その下部に2.0m×0.8m×0.05mの直方体形状をなす非設計領域を設定した。境界条件は、長手方向両端部を完全変位拘束し、非設計領域の下面全面に下向きに表面力を作用させた。
 このとき、最適構造がX方向に等断面となるように幾何学的制約を付加した。具体的には、複雑度係数τを異方性とし、等断面としたい方向の複雑度係数をその他の複雑度係数よりも十分に大きく設定する。つまり、各軸方向における複雑度係数τ(X)、τ(X)、τ(X)において、τ(X)をτ(X)及びτ(X)に比べて十分大きく設定する(τ(X)≫τ(X)、τ(X))。
 図13に(A)「等断面制約なし」の場合の最適構造、及び(B)「等断面制約あり」の場合の最適構造を示す。これらの図より、複雑度係数τを異方性(τ(X)≫τ(X)、τ(X))とすることによって、等断面制約を付加した最適構造を得ることが分かる。
 <熱拡散問題>
 上記の比較例等においては、剛性最大化問題に適用した場合について説明したが、熱拡散問題に適用することもできる。熱拡散問題としては、熱伝導問題、熱伝達問題及び内部発熱問題が考えられる。
 以下に具体例として、熱伝達問題及び内部発熱問題について説明する。
 <熱拡散最大化問題の定式化>
 線形熱伝導体で構成される物体領域と空洞領域で構成される固定設計領域Dに対し、境界Γにおいて温度Tで温度規定、境界Γにおいて熱伝達係数hの熱伝達境界、境界Γにおいて熱流束qの熱流束境界、固定設計領域Dに対して内部発熱Qが与えられている熱拡散最大化問題について考える。但し、境界Γ及び境界Γは、固定設計領域Dの境界∂D上に設定しているものとする。また、境界Γは固定設計領域内部において、物体領域の境界上で設定され、設計変数であるレベルセット関数の値に依存して決定される設計変数依存性の境界条件となる。このとき、熱拡散最大化問題は、次式に示す全ポテンシャルエネルギー最大化問題として定式化される。
Figure JPOXMLDOC01-appb-M000031
 ここで、上式中の各表記は次式で定義される。
Figure JPOXMLDOC01-appb-M000032
 さらに、κは熱伝導テンソル、Tampは周囲温度を表し、Uは以下の式にて定義される温度関数空間である。
Figure JPOXMLDOC01-appb-M000033
 なお、式(43)におうては、全ポテンシャルエネルギーにマイナス符号を付加し、目的関数の最小化問題として定式化している。
 <熱拡散問題の数値例(熱伝達問題)>
 図14に設計領域と境界条件を示す。固定設計領域は1×10-2m×1×10-2mの正方形領域とし、設計領域を要素長5.0×10-5mの構造格子で要素分割した。図に示すように、左端下方と下端左方をT=50℃で温度設定し、その他の境界では断熱境界を与える。また、固定設計領域内部において、熱伝達率h=0.1W/(mK)、周囲温度Tamp=25℃の下で、熱伝達境界を与える。許容される体積の最大値Vmaxは固定設計領域の60%とした。また、熱伝達境界を定義するためには、初期構造に物体領域と空洞領域との境界が少なくとも一箇所必要となるため、図15(a)に示すように、初期構造を左下の角を中心とした1/4円弧とした。
 図15の(b)~(e)に、複雑度係数τを5×10-4、1×10-4、5×10-5、1×10-5に設定した場合に得られた最適構造を示す。図15より複雑度係数の設定値により、フィン形状の複雑さが変化することが分かった。また、いずれの場合も物理的に妥当な最適構造が得られていることが分かる。
 <熱拡散問題の数値例(内部発熱問題)>
 図16に内部発熱問題の設計領域及び境界条件を示す。固定設計領域は1×10-2m×1×10-2mの正方形領域とし、設計領域を要素長2.5×10-5mの構造格子で要素分割した。図16に示すように、上端中央をT=25℃で温度設定し、その他の境界では断熱境界を与える。また、固定設計領域内部において、熱量Q=1.0×10-7W/mを与え、許容される体積の最大値Vmaxは固定設計領域の40%とした。初期構造は、固定設計領域の全領域が物体に占められた構造とした。ここでは、複雑度係数と最適構造との関係を調べるために、複雑度係数を変化させて最適化を行った。
 図17の(a)~(d)に、複雑度係数τを5×10-5、1×10-5、5×10-6、1×10-6に設定した場合に得られた最適構造を示す。なお、設計領域は左右対称であるため、右半分のみ最適化解析を行った。これらの結果により、この設計問題においても、複雑度係数の設定により、最適構造の複雑さが変化していることが分かる。また、いずれの場合も物理的に妥当な最適構造が得られていることが分かる。
 <本実施形態の効果>
 このように構成した本実施形態に係る構造最適化装置100によれば、物体領域Ωを表す値及び空洞領域を表す値の間の所定値が、物体領域Ω及び空洞領域の境界∂Dを示すレベルセット関数φを用いていることにより、最適構造の明確な形状表現を可能にすることができる。また、物体領域Ω及び空洞領域間の境界∂Dを移動させるとともに、物体領域Ω内でのトポロジー変化を許容して新たに生じる境界∂Dを移動させるようにレベルセット関数φを更新することにより、物体領域Ωでのトポロジー変化を許容する等の自由度の高い構造最適化を可能にすることができる。
 なお、本発明は前記実施形態に限られるものではなく、その趣旨を逸脱しない範囲で種々の変形が可能であることは言うまでもない。
 例えば、前記実施形態の構造最適化装置は、剛性最大化問題又は熱拡散最大化問題に適用したものであったが、その他固有振動数最大化問題など、種々の構造問題に適用することができる。
 本発明を適用することにより、最適構造の明確な形状表現を可能にし、物体領域Ωでのトポロジー変化を許容する等の自由度の高い構造最適化を可能にすることができる。
100・・・構造最適化装置
D  ・・・設計領域
Ω  ・・・物体領域
∂Ω ・・・領域の境界
φ  ・・・レベルセット関数
1  ・・・設計領域データ格納部
2  ・・・レベルセット関数データ格納部
5  ・・・レベルセット関数更新部

Claims (5)

  1.  構造物の設計領域を示す設計領域データを格納する設計領域データ格納部と、
     初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を示すレベルセット関数データを格納しているレベルセット関数データ格納部と、
     所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新部と、を具備する構造最適化装置。
  2.  前記レベルセット関数更新部が、レベルセット関数を変数とする関数族、物体領域におけるエネルギー密度、空洞領域におけるエネルギー密度、及び界面エネルギー密度により示されるエネルギー汎関数から、エネルギー汎関数最小化原理に従って、前記レベルセット関数の時間発展を示す反応拡散方程式を算出し、当該反応拡散方程式を用いて前記レベルセット関数を時間発展させることにより、前記レベルセット関数を更新するものである請求項1記載の構造最適化装置。
  3.  前記レベルセット関数更新部が、前記レベルセット関数を更新した結果得られる構造の構造的な複雑さを示す複雑度が予め設定された複雑度となるように、前記レベルセット関数を更新するものである請求項1記載の構造最適化装置。
  4.  構造物の設計領域を定める設計領域設定ステップと、
     初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を定めるレベルセット関数設定ステップと、
     所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新ステップと、を具備する構造最適化方法。
  5.  構造物の設計領域を示す設計領域データを格納する設計領域データ格納部と、
     初期構造が設定された設計領域の各部が構造を形成する物体領域、空洞を形成する空洞領域、又はそれら領域の境界であるかを示し、物体領域を表す値及び空洞領域を表す値の間の所定値が前記境界を表すレベルセット関数を示すレベルセット関数データを格納しているレベルセット関数データ格納部と、
     所定の制約条件下において、剛性等の構造物の性能を目標値に近づけるように前記レベルセット関数を更新して、前記物体領域と前記空洞領域との境界を移動させるとともに、前記レベルセット関数の更新に伴う前記物体領域内のトポロジー変化(形態変化)を許容して前記物体領域内に新たな空洞領域を形成し、その新たな空洞領域と物体領域との境界を移動させるレベルセット関数更新部と、としての機能をコンピュータに備えさせる構造最適化プログラム。
PCT/JP2009/062974 2008-09-11 2009-07-17 構造最適化装置、構造最適化方法及び構造最適化プログラム WO2010029810A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/063,454 US9081920B2 (en) 2008-09-11 2009-07-17 Structural optimization system, structural optimization method, and structural optimization program
JP2010528686A JP5377501B2 (ja) 2008-09-11 2009-07-17 構造最適化装置、構造最適化方法及び構造最適化プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-233176 2008-09-11
JP2008233176 2008-09-11

Publications (1)

Publication Number Publication Date
WO2010029810A1 true WO2010029810A1 (ja) 2010-03-18

Family

ID=42005071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062974 WO2010029810A1 (ja) 2008-09-11 2009-07-17 構造最適化装置、構造最適化方法及び構造最適化プログラム

Country Status (3)

Country Link
US (1) US9081920B2 (ja)
JP (1) JP5377501B2 (ja)
WO (1) WO2010029810A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221418A (ja) * 2011-04-13 2012-11-12 Toyo Tire & Rubber Co Ltd 解析装置、その方法及びそのプログラム
JP2013105260A (ja) * 2011-11-11 2013-05-30 Toyo Tire & Rubber Co Ltd 粘弾性体構造物の断面形状の設計装置、その方法及びそのプログラム
JP2013105259A (ja) * 2011-11-11 2013-05-30 Toyo Tire & Rubber Co Ltd 流路断面形状の設計装置、その方法及びそのプログラム
JP2016021240A (ja) * 2014-07-15 2016-02-04 ダッソー システムズ シムリア コーポレイション モード動的解析におけるラグランジュ乗数を回復するシステムおよび方法
WO2019216221A1 (ja) * 2018-05-07 2019-11-14 国立大学法人京都大学 構造物の幾何学的特徴量算出装置、医療用画像分析システム、リバースエンジニアリング支援システム、構造最適化システム、及び、幾何学的特徴量算出プログラム
CN111015784A (zh) * 2019-11-25 2020-04-17 大明重工有限公司 一种批量切割放置图形生成方法及装置
CN114757002A (zh) * 2022-03-25 2022-07-15 中国船舶重工集团公司第七�三研究所 一种约束阻尼板壳的结构-材料分层拓扑优化设计方法
JP7244682B1 (ja) 2021-12-24 2023-03-22 サイバネットシステム株式会社 情報処理装置、情報処理方法及び情報処理プログラム

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8880380B2 (en) * 2007-12-21 2014-11-04 Honda Motor Co., Ltd. Crashworthiness design methodology using a hybrid cellular automata algorithm for the synthesis of topologies for structures subject to nonlinear transient loading
CN102682161B (zh) * 2012-04-18 2015-04-01 南阳理工学院 一种对接口芯片的元器件进行布局的方法
CN102682648B (zh) * 2012-04-18 2014-01-01 南阳理工学院 一种对计算机组成原理实验箱元器件进行布局的方法
EP2763058B1 (en) * 2013-01-30 2021-10-20 Honda Research Institute Europe GmbH Optimizing the design of physical structures/objects
US20150103698A1 (en) * 2013-10-10 2015-04-16 GM Global Technology Operations LLC System and method for topology optimization with a plurality of materials
US9902114B2 (en) * 2014-01-09 2018-02-27 Siemens Product Lifecycle Management Software Inc. Method for creating three dimensional lattice structures in computer-aided design models for additive manufacturing
KR101628823B1 (ko) * 2015-02-24 2016-06-09 한양대학교 산학협력단 조화 탐색법을 이용한 구조물의 위상 및 형상 동시 최적화 장치 및 방법
KR101628818B1 (ko) * 2015-02-24 2016-06-09 한양대학교 산학협력단 조화 탐색법을 이용한 구조물의 형상 최적화 장치 및 방법
CN105488265B (zh) * 2015-11-25 2020-02-21 四川大学 一种微波加热多物理场数值处理的方法
US10850495B2 (en) * 2016-01-29 2020-12-01 Massachusetts Institute Of Technology Topology optimization with microstructures
CN106547972B (zh) * 2016-11-04 2019-07-02 中国科学院长春光学精密机械与物理研究所 基于参数化水平集方法的流体管道拓扑优化设计方法
US10802467B2 (en) * 2017-01-06 2020-10-13 General Electric Company Methods of defining internal structures for additive manufacturing
CN106709215B (zh) * 2017-02-21 2019-02-22 北京航空航天大学 一种基于级数展开的连续体结构非概率可靠性拓扑优化方法
CN107273613B (zh) * 2017-06-15 2018-06-12 华中科技大学 一种基于应力惩罚和自适应体积的结构拓扑优化设计方法
CN107526866B (zh) * 2017-07-11 2020-05-01 西北工业大学 基于特征驱动的翼面结构拓扑优化方法
CN108491574B (zh) * 2018-02-11 2022-03-04 郑州大学 基于光滑变形隐式曲线的结构形状设计方法
US20210004512A1 (en) * 2018-03-16 2021-01-07 Siemens Aktiengesellschaft Topology optimization with design-dependent loads and boundary conditions for multi-physics applications
CN108846167B (zh) * 2018-05-24 2020-05-26 西安交通大学 机载计算机板级低直流阻抗共面电磁带隙电源层设计方法
CN109002611B (zh) * 2018-07-17 2020-06-02 西安交通大学 一种数控机床主轴冷却水套通道布局优化设计方法
CN109145495B (zh) * 2018-09-11 2019-05-14 吉林大学 固定分型线双模铸造件多组件的拓扑优化方法
US10635088B1 (en) 2018-11-09 2020-04-28 Autodesk, Inc. Hollow topology generation with lattices for computer aided design and manufacturing
WO2020097578A2 (en) 2018-11-09 2020-05-14 Autodesk, Inc. Boundary based generative design with 2.5-axis subtractive manufacturing constraint for computer aided design and manufacturing
CN109670207B (zh) * 2018-11-22 2021-04-06 华中科技大学 一种面向多种多孔材料结构的动力学一体化设计方法
WO2020224634A1 (zh) * 2019-05-09 2020-11-12 江苏大学 一种求解车身厚度优化的子区域混合元胞自动机方法
US11243510B2 (en) 2020-05-20 2022-02-08 Autodesk, Inc. Computer aided generative design with tool size control to facilitate 2.5-axis subtractive manufacturing processes
US11762368B2 (en) 2020-05-20 2023-09-19 Autodesk, Inc. Computer aided generative design with layer boundary determination to facilitate 2.5-axis subtractive manufacturing processes
CN112149243B (zh) * 2020-09-08 2024-04-19 华中科技大学 一种基于渐进演化拓扑更新算法的柔性驱动机构设计方法
CN112765856B (zh) * 2021-01-22 2021-10-19 三峡大学 一种功能梯度多孔结构拓扑优化的混合水平集方法
CN114896728B (zh) * 2022-05-06 2024-07-16 大连理工大学 一种结构外载荷识别方法、装置、计算机设备和存储介质
CN116050061A (zh) * 2022-11-22 2023-05-02 中车长春轨道客车股份有限公司 基于热流固耦合的超导磁体储氮结构拓扑优化方法和装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150651A (ja) * 2001-11-16 2003-05-23 Inst Of Physical & Chemical Res 固定格子上を移動する移動境界の設定方法およびそれを実現するコンピュータプログラム
JP2005258813A (ja) * 2004-03-11 2005-09-22 Canon Inc 情報処理装置及び情報処理方法並びにプログラム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7124394B1 (en) * 2003-04-06 2006-10-17 Luminescent Technologies, Inc. Method for time-evolving rectilinear contours representing photo masks
JPWO2006009026A1 (ja) * 2004-07-16 2008-05-01 国立大学法人京都大学 最適設計支援装置、最適設計支援方法及び最適設計支援プログラム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003150651A (ja) * 2001-11-16 2003-05-23 Inst Of Physical & Chemical Res 固定格子上を移動する移動境界の設定方法およびそれを実現するコンピュータプログラム
JP2005258813A (ja) * 2004-03-11 2005-09-22 Canon Inc 情報処理装置及び情報処理方法並びにプログラム

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
LIN HE ET AL.: "Incorporating topological derivatives into shape derivatives based level set methods", JOURNAL OF COMPUTATIONAL PHYSICS, vol. 225, no. ISS.1, 1 July 2007 (2007-07-01), pages 891 - 909 *
MARTIN BURGER ET AL.: "Incorporating topological derivatives into level set methods", JOURNAL OF COMPUTATIONAL PHYSICS, vol. 194, no. IS.194, 10 February 2004 (2004-02-10), pages 344 - 362 *
TAKAYUKI YAMADA ET AL.: "Level Set-ho ni Motozuku Compliant Mechanism no Kozo Saitekika", TRANSACTIONS OF THE JAPAN SOCIETY FOR COMPUTATIONAL ENGINEERING AND SCIENCE, vol. 2008, 18 January 2008 (2008-01-18), pages 20080001 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012221418A (ja) * 2011-04-13 2012-11-12 Toyo Tire & Rubber Co Ltd 解析装置、その方法及びそのプログラム
JP2013105260A (ja) * 2011-11-11 2013-05-30 Toyo Tire & Rubber Co Ltd 粘弾性体構造物の断面形状の設計装置、その方法及びそのプログラム
JP2013105259A (ja) * 2011-11-11 2013-05-30 Toyo Tire & Rubber Co Ltd 流路断面形状の設計装置、その方法及びそのプログラム
JP2016021240A (ja) * 2014-07-15 2016-02-04 ダッソー システムズ シムリア コーポレイション モード動的解析におけるラグランジュ乗数を回復するシステムおよび方法
JPWO2019216221A1 (ja) * 2018-05-07 2021-05-13 国立大学法人 東京大学 構造物の幾何学的特徴量算出装置、医療用画像分析システム、リバースエンジニアリング支援システム、構造最適化システム、及び、幾何学的特徴量算出プログラム
WO2019216221A1 (ja) * 2018-05-07 2019-11-14 国立大学法人京都大学 構造物の幾何学的特徴量算出装置、医療用画像分析システム、リバースエンジニアリング支援システム、構造最適化システム、及び、幾何学的特徴量算出プログラム
JP7224675B2 (ja) 2018-05-07 2023-02-20 国立大学法人 東京大学 構造物の幾何学的特徴量算出装置、医療用画像分析システム、リバースエンジニアリング支援システム、構造最適化システム、及び、幾何学的特徴量算出プログラム
CN111015784A (zh) * 2019-11-25 2020-04-17 大明重工有限公司 一种批量切割放置图形生成方法及装置
CN111015784B (zh) * 2019-11-25 2022-03-22 大明重工有限公司 一种批量切割放置图形生成方法及装置
JP7244682B1 (ja) 2021-12-24 2023-03-22 サイバネットシステム株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JP2023095726A (ja) * 2021-12-24 2023-07-06 サイバネットシステム株式会社 情報処理装置、情報処理方法及び情報処理プログラム
JP7510529B2 (ja) 2021-12-24 2024-07-03 サイバネットシステム株式会社 情報処理装置、情報処理方法及び情報処理プログラム
CN114757002A (zh) * 2022-03-25 2022-07-15 中国船舶重工集团公司第七�三研究所 一种约束阻尼板壳的结构-材料分层拓扑优化设计方法

Also Published As

Publication number Publication date
JP5377501B2 (ja) 2013-12-25
JPWO2010029810A1 (ja) 2012-02-02
US20110270587A1 (en) 2011-11-03
US9081920B2 (en) 2015-07-14

Similar Documents

Publication Publication Date Title
JP5377501B2 (ja) 構造最適化装置、構造最適化方法及び構造最適化プログラム
Wang et al. A level set method for structural topology optimization
Jahangiry et al. An isogeometrical approach to structural level set topology optimization
Dunning et al. Introducing the sequential linear programming level-set method for topology optimization
Luo et al. A level set‐based parameterization method for structural shape and topology optimization
Chen et al. Level set based robust shape and topology optimization under random field uncertainties
Schleife et al. Plane-wave pseudopotential implementation of explicit integrators for time-dependent Kohn-Sham equations in large-scale simulations
Pedersen et al. Strength optimized designs of thermoelastic structures
Abdi et al. Topology optimization of geometrically nonlinear structures using an evolutionary optimization method
Zhuang et al. Topology optimization of multi-material for the heat conduction problem based on the level set method
Ha et al. Level set based topological shape optimization of geometrically nonlinear structures using unstructured mesh
Gain et al. A critical comparative assessment of differential equation-driven methods for structural topology optimization
Cui et al. The parameterized level set method for structural topology optimization with shape sensitivity constraint factor
Liu et al. Adaptive moving mesh level set method for structure topology optimization
Wang et al. Topological design for mechanical metamaterials using a multiphase level set method
Tiesinga et al. Bifurcation analysis of incompressible flow in a driven cavity by the Newton–Picard method
Plews et al. An improved nonintrusive global–local approach for sharp thermal gradients in a standard FEA platform
Araujo et al. Checkerboard free topology optimization for compliance minimization applying the finite-volume theory
Vogel et al. Adaptive thermodynamic topology optimization
Tang et al. An adaptive scalable fully implicit algorithm based on stabilized finite element for reduced visco-resistive MHD
Dettmer et al. New iterative and staggered solution schemes for incompressible fluid‐structure interaction based on Dirichlet‐Neumann coupling
Lazarov Topology optimization using multiscale finite element method for high-contrast media
Keshtegar et al. SVR-TO-APMA: Hybrid efficient modelling and topology framework for stable topology optimization with accelerated performance measure approach
Zhu et al. Bi-directional evolutionary level set method for topology optimization
Mo et al. Iterative reanalysis approximation‐assisted moving morphable component‐based topology optimization method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812958

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528686

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13063454

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 09812958

Country of ref document: EP

Kind code of ref document: A1