WO2010029701A1 - Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method - Google Patents

Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method Download PDF

Info

Publication number
WO2010029701A1
WO2010029701A1 PCT/JP2009/004247 JP2009004247W WO2010029701A1 WO 2010029701 A1 WO2010029701 A1 WO 2010029701A1 JP 2009004247 W JP2009004247 W JP 2009004247W WO 2010029701 A1 WO2010029701 A1 WO 2010029701A1
Authority
WO
WIPO (PCT)
Prior art keywords
atoms
layer
alloy containing
forming
atom
Prior art date
Application number
PCT/JP2009/004247
Other languages
French (fr)
Japanese (ja)
Inventor
栗林正樹
ジュリアント ジャヤプラウィラダビッド
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2010528609A priority Critical patent/JPWO2010029701A1/en
Publication of WO2010029701A1 publication Critical patent/WO2010029701A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • G01R33/098Magnetoresistive devices comprising tunnel junctions, e.g. tunnel magnetoresistance sensors
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • G11B5/3906Details related to the use of magnetic thin film layers or to their effects
    • G11B5/3909Arrangements using a magnetic tunnel junction
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3295Spin-exchange coupled multilayers wherein the magnetic pinned or free layers are laminated without anti-parallel coupling within the pinned and free layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets

Definitions

  • the present invention relates to a magnetic reproducing head of a magnetic disk drive, a storage element of a magnetic random access memory, and a magnetoresistive element used for a magnetic sensor, preferably a tunnel magnetoresistive element (in particular, a spin valve tunnel magnetoresistive element). Further, the present invention relates to a method of manufacturing a magnetoresistive element and a storage medium used in the method.
  • Patent documents 1 to 6 and non-patent documents 1 and 2 disclose TMR (tunneling magnetoresistance) effect elements comprising a tunnel barrier layer and first and second ferromagnetic layers disposed on both sides thereof. Is described.
  • An alloy containing Co atoms, Fe atoms and B atoms (hereinafter referred to as a CoFeB alloy) is used as the first and / or second ferromagnetic layers constituting this element.
  • the CoFeB alloy layer a polycrystalline structure is described.
  • Patent documents 2 to 5 disclose TMR elements using a crystalline magnesium oxide film consisting of a single crystal or a polycrystal as a tunnel barrier film. ing.
  • An object of the present invention is to provide a magnetoresistive element having a further improved MR ratio as compared with the prior art, a method of manufacturing the same, and a storage medium used in the method of manufacturing.
  • the first aspect of the present invention is a substrate, A crystalline first ferromagnetic layer located on the substrate and made of an alloy containing Co atoms, Fe atoms and B atoms, A tunnel barrier layer located on the crystalline first ferromagnetic layer and having a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer, A crystalline second ferromagnetic layer located on the tunnel barrier layer and comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and Fe atoms, An intermediate layer made of a nonmagnetic material located on the crystalline second ferromagnetic layer, and A crystalline ferromagnetic material layer located on the intermediate layer and made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms, Ni atoms, Fe atoms and B It is a magnetoresistive element characterized by having a third ferromagnetic layer having a crystalline
  • a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer positioned between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method A method of manufacturing a magnetoresistive element having The step of forming the tunnel barrier layer includes the step of forming a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer by sputtering.
  • Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms
  • a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms
  • a nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material.
  • Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer.
  • a third aspect of the present invention is a process of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer positioned between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method.
  • a method of manufacturing a magnetoresistive element having In the step of forming the tunnel barrier layer, a layer made of crystalline metal magnesium or crystalline boron magnesium alloy is formed by sputtering, and the metal magnesium or boron magnesium alloy is oxidized to form a crystalline magnesium oxide layer.
  • Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms
  • a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms
  • a nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material.
  • Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer.
  • a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer positioned between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method is provided.
  • a storage medium storing a control program for executing the manufacture of a magnetoresistive element having A control program for executing the step of forming the tunnel barrier layer and the magnetization free layer is Forming a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer by a sputtering method using a target made of magnesium oxide or boron magnesium oxide; Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms Forming a layer comprising an alloy containing or an alloy containing Co atoms and B atoms, A nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material.
  • a process of filming, and Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer.
  • a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer positioned between the magnetization fixed layer and the magnetization free layer on a substrate using a sputtering method A storage medium storing a control program for executing the manufacture of a magnetoresistive element having A control program for executing the step of forming the tunnel barrier layer and the magnetization free layer is A layer of crystalline metallic magnesium or crystalline boron magnesium alloy is formed by sputtering using a target of metallic magnesium or boron magnesium alloy, and the metallic magnesium or boron magnesium alloy is oxidized to form crystalline magnesium oxide.
  • Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms
  • a layer comprising an alloy containing or an alloy containing Co atoms and B atoms
  • a nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material.
  • a process of filming, and Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer.
  • the MR ratio achieved by the conventional tunnel magnetoresistive effect element (hereinafter referred to as TMR element) can be significantly improved.
  • the present invention can be mass-produced and highly practical. Therefore, by using the present invention, a memory element of MRAM (Magnetoresistive Random Access Memory: ferroelectric memory) capable of achieving ultra-high integration can be efficiently provided. .
  • MRAM Magneticoresistive Random Access Memory: ferroelectric memory
  • FIG. 6 is a cross-sectional view of another tunnel barrier layer of the present invention. It is a model perspective view of the column-like crystal structure which concerns on the magnetoresistive element of this invention. It is sectional drawing of the TMR element of the other structure of the magnetoresistive element of this invention.
  • the magnetoresistive element of the present invention comprises a substrate, a crystalline first ferromagnetic layer, a tunnel barrier layer, a crystalline second ferromagnetic layer, a nonmagnetic intermediate layer, and a crystalline third ferromagnetic layer.
  • the first ferromagnetic layer is made of an alloy containing Co atoms, Fe atoms, and B atoms (hereinafter referred to as CoFeB).
  • the tunnel barrier layer has a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer.
  • the second ferromagnetic layer is made of CoFeB or an alloy containing Co atoms and Fe atoms (hereinafter referred to as CoFe).
  • the third ferromagnetic layer comprises a crystalline ferromagnetic layer comprising a CoFe layer or a CoFeB layer, and a crystalline strong layer comprising an alloy containing Ni atoms, Fe atoms and B atoms, or an alloy containing Ni atoms and Fe atoms It consists of a laminated film with a magnetic layer.
  • an alloy containing Ni atoms, Fe atoms and B atoms is referred to as NiFeB
  • an alloy containing Ni atoms and Fe atoms is referred to as NiFe.
  • magnesium oxide is described as Mg oxide, boron magnesium oxide as BMg oxide, metal magnesium as Mg, and a boron magnesium alloy as BMg.
  • FIG. 1 shows an example of the laminated structure of the magnetoresistive element 10 according to the present invention, and shows the laminated structure of the magnetoresistive element 10 using the TMR element 12.
  • a multilayer film of 12 layers including the TMR element 12 is formed on the substrate 11.
  • the twelve-layer multilayer film is a multilayer film structure from the lowermost first layer (Ta layer) to the uppermost twelfth layer (Ru layer).
  • the PtMn layer 14 the CoFe layer 15, the nonmagnetic metal layer (Ru) layer 161, the first ferromagnetic layer CoFeB layer 121, the tunnel barrier layer nonmagnetic polycrystalline Mg oxide layer or BMg
  • An oxide layer 122 is stacked.
  • a second ferromagnetic layer, a polycrystalline CoFe layer or CoFeB layer 1233, a nonmagnetic Ta layer 162, a third ferromagnetic layer, a polycrystalline CoFe layer or CoFeB layer 1232 and a polycrystalline NiFe layer A NiFeB layer 1231 is stacked. Furthermore, the nonmagnetic Ta layer 17 and the nonmagnetic Ru layer 18 are stacked in this order.
  • the numerical values in parentheses in each layer in the drawing indicate the thickness of each layer, and the unit is nm. The said thickness is an example, Comprising: It is not limited to this.
  • the first ferromagnetic layer 121 described above may have a laminated structure of two or more layers in which a CoFeB layer and another ferromagnetic layer are added.
  • a substrate such as a wafer substrate, a glass substrate or a sapphire substrate.
  • Reference numeral 12 denotes a TMR element, which is formed of a laminated structure of a first ferromagnetic layer 121 made of polycrystalline CoFeB, a tunnel barrier layer 122, a second ferromagnetic layer 1233, and a third ferromagnetic layer 1232 and 1231.
  • the tunnel barrier layer 122 has a polycrystalline Mg oxide layer or a polycrystalline BMg oxide layer
  • the second ferromagnetic layer 1232 is made of a polycrystalline CoFe layer or a polycrystalline CoFeB layer.
  • the third ferromagnetic layer is formed of a laminated film of a polycrystalline CoFe layer or CoFeB layer 1232 and a polycrystalline NiFe layer or NiFeB layer 1231.
  • an intermediate layer 162 made of a nonmagnetic metal or a nonmagnetic material of a nonmagnetic insulator is disposed.
  • the polycrystalline CoFe can contain a small amount (5 atomic% or less, preferably 0.01 to 1 atomic%) of other atoms such as Pt or the like.
  • 13 is a lower electrode layer (underlayer) of a first layer (Ta layer), and 14 is an antiferromagnetic layer of a second layer (PtMn layer).
  • 15 is a ferromagnetic layer of the third layer (CoFe layer), and 161 is a nonmagnetic layer for exchange coupling of the fourth layer (Ru layer).
  • the fifth layer is a ferromagnetic layer formed of the crystalline CoFeB layer 121.
  • the B atom content (hereinafter referred to as B content) in the crystalline CoFeB layer 121 is preferably set in the range of 0.1 atomic% to 60 atomic%, more preferably 10 atomic% to 50 atomic%.
  • the crystalline CoFeB layer 121 can contain other atoms, for example, Pt, Ni, Mn, etc. in a trace amount (5 atomic% or less, preferably 0.01 to 1 atomic%).
  • the layer formed of the third layer, the fourth layer, and the fifth layer described above is the magnetization fixed layer 19.
  • the substantial magnetization fixed layer 19 is a ferromagnetic layer of the crystalline CoFeB layer 121 of the fifth layer.
  • Reference numeral 122 denotes a tunnel barrier layer of a sixth layer (polycrystalline Mg oxide layer or BMg oxide layer), which is an insulating layer.
  • the tunnel barrier layer 122 may be a single polycrystalline Mg oxide layer or a polycrystalline BMg oxide layer.
  • the tunnel barrier layer 122 can be configured as illustrated in FIG. That is, it is a stacked structure of a polycrystalline Mg oxide layer or polycrystalline BMg oxide layer 1221, a polycrystalline Mg layer or polycrystalline BMg layer 1222, and a polycrystalline Mg oxide layer or polycrystalline BMg oxide layer 1223. Furthermore, it may be a laminated structure in which a plurality of three layers consisting of the laminated films 1221, 1222 and 1223 shown in FIG. 6 are provided.
  • FIG. 8 is an example of another TMR element 12 of the present invention.
  • Reference numerals 12, 121, 122, 162, 1231 to 1233 in FIG. 8 are the same members as those described above.
  • the tunnel barrier layer 122 is a laminated film composed of a polycrystalline Mg oxide layer or polycrystalline BMg oxide layer 82 and Mg layers or BMg layers 81 and 83 on both sides of the layer 82.
  • the use of the layer 81 can be omitted, and the layer 82 can be disposed adjacent to the crystalline CoFe layer or the crystalline CoFeB layer 1233.
  • the use of layer 83 can be omitted and layer 82 can be placed adjacent to crystalline CoFeB layer 121.
  • FIG. 7 is a schematic perspective view of a polycrystalline structure composed of an aggregate 71 of column-like crystals 72 in the BMg oxide layer or the Mg oxide layer.
  • the polycrystalline structure also includes the structure of a polycrystalline-amorphous mixed region including a partially amorphous region in the polycrystalline region.
  • the column-like crystal is preferably a single crystal in which the (001) crystal plane is preferentially oriented in the film thickness direction in each column.
  • the average diameter of the column-shaped single crystal is preferably 10 nm or less, more preferably 2 nm to 5 nm, and the film thickness is preferably 10 nm or less, more preferably 0.5 nm. To 5 nm.
  • the BMg oxide used in the present invention has a general formula B x Mg y O z (0.7 ⁇ Z / (X + Y) ⁇ 1.3, preferably 0.8 ⁇ Z / (X + Y) ⁇ It is indicated by 1.0).
  • B x Mg y O z 0.7 ⁇ Z / (X + Y) ⁇ 1.3, preferably 0.8 ⁇ Z / (X + Y) ⁇ It is indicated by 1.0).
  • a stoichiometric amount of BMg oxide a high MR ratio can be obtained even with an oxygen deficient BMg oxide.
  • Mg oxide used in the present invention has a general formula of Mg y O z (0.7 ⁇ Z / Y ⁇ 1.3, preferably 0.8 ⁇ Z / Y ⁇ 1.0) It is indicated by.
  • the polycrystalline Mg oxide or polycrystalline BMg oxide used in the present invention contains various minor components such as Zn atom, C atom, Al atom, Ca atom, Si atom, etc. in the range of 10 ppm to 100 ppm. Can.
  • the seventh, ninth, and tenth layers are each a ferromagnetic layer comprising a crystalline CoFe layer or CoFeB layer 1233, a ferromagnetic layer comprising a crystalline CoFe layer or CoFeB layer 1232, a crystalline NiFe layer or a crystalline NiFe layer or It is a ferromagnetic layer composed of a NiFeB layer.
  • the laminated film consisting of the seventh, ninth and tenth layers can function as a magnetization free layer.
  • an eighth layer Ta layer 162 which is an intermediate layer made of a nonmagnetic material, is disposed between the seventh layer and the ninth layer.
  • the eighth layer is made of nonmagnetic metal such as Ru or Ir, nonmagnetic insulator such as Al 2 O 3 (aluminum oxide), SiO 2 (silicon oxide), Si 3 N 4 (silicon nitride), etc. in addition to Ta. It can be used. Further, the film thickness can be set preferably in the range of 50 nm or less, more preferably 5 nm to 40 nm.
  • the crystalline CoFe layer or the crystalline CoFeB layer 1232 constituting the seventh layer and the ninth layer can be deposited by sputtering using a CoFe target or a CoFeB target.
  • the crystalline NiFe layer or the crystalline NiFeB layer 1231 constituting the tenth layer can be deposited by sputtering using a NiFe target or a NiFeB target.
  • the crystalline CoFeB layer 121, the CoFe layer or CoFeB layer 1233, 1232 and the NiFe layer or NiFeB layer 1231 have the same crystal structure as the aggregate 71 composed of the column-like crystal structure 72 shown in FIG. It may be
  • the crystalline CoFeB layer 121 and the CoFe layer or CoFeB layer 1233 are preferably provided adjacent to the tunnel barrier layer 122 located in the middle. In the manufacturing apparatus, these three layers are sequentially stacked without breaking the vacuum.
  • Reference numeral 17 denotes an electrode layer of a tenth layer (Ta layer).
  • Reference numeral 18 denotes a hard mask layer of an eleventh layer (Ru layer).
  • the eleventh layer may be removed from the magnetoresistive element when used as a hard mask.
  • FIG. 2 is a schematic plan view of an apparatus for manufacturing the magnetoresistive element 10.
  • This apparatus is an apparatus capable of producing a multilayer film including a plurality of magnetic layers and a nonmagnetic layer, and mass production type sputtering film formation It is an apparatus.
  • the magnetic multilayer film manufacturing apparatus 200 shown in FIG. 2 is a cluster type manufacturing apparatus, and includes three film forming chambers based on the sputtering method.
  • a transfer chamber 202 including a robot transfer device (not shown) is installed at a central position.
  • Two load lock / unload lock chambers 205 and 206 are provided in the transfer chamber 202 of the manufacturing apparatus 200 for manufacturing the magnetoresistance element, and loading and unloading of the substrate (for example, silicon substrate) 11 is performed by each of them. .
  • the tact time can be shortened, and the magnetoresistive element can be manufactured with high productivity.
  • the manufacturing apparatus 200 for manufacturing a magnetoresistive element three deposition magnetron sputtering chambers 201A to 201C and one etching chamber 203 are provided around the transfer chamber 202.
  • the required surface of the TMR element 10 is etched.
  • a gate valve 204 which can be opened and closed is provided between each of the chambers 201A to 201C and 203 and the transfer chamber 202.
  • Each of the chambers 201A to 201C and 202 is provided with an evacuation mechanism, a gas introduction mechanism, a power supply mechanism, and the like (not shown).
  • the respective films from the first layer to the eleventh layer described above can be sequentially deposited on the substrate 11 using high frequency sputtering without breaking the vacuum. it can.
  • cathodes 31 to 35, 41 to 45, 51 to 54 disposed on suitable circumferences are disposed on the ceilings of the film forming magnetron sputtering chambers 201A to 201C, respectively.
  • the substrate 11 is disposed on a substrate holder located coaxially with the circumference.
  • high frequency power such as radio frequency (RF frequency) is applied to the cathodes 31 to 35, 41 to 45, 51 to 54 from the power input means 207A to 207C.
  • RF frequency radio frequency
  • power in the range of 0.3 MHz to 10 GHz, preferably in the range of 5 MHz to 5 GHz and in the range of 10 W to 500 W, preferably 100 W to 300 W can be used.
  • a Ta target is attached to the cathode 31, a PtMn target to the cathode 32, a CoFeB target to the cathode 33, a CoFe target to the cathode 34, and a Ru target to the cathode 35.
  • a Mg oxide target is attached to the cathode 51, a BMg oxide target to the cathode 52, a Mg target to the cathode 53, and a BMg target to the cathode 54.
  • the TMR element 122 of the structure illustrated in FIG. 8 can be manufactured by using this cathode 53 or 54.
  • the cathode 41 has a CoFe target for the ninth layer
  • the cathode 42 has a CoFeB target for the seventh layer
  • the cathode 43 has a Ta target for the eighth layer and the eleventh layer
  • the cathode 44 The Ru target for the 12th layer is attached.
  • a NiFe target or a NiFeB target for the tenth layer is attached.
  • the in-plane directions of the targets mounted on the cathodes 31 to 35, 41 to 45, and 51 to 54 and the in-plane direction of the substrate be nonparallel to each other.
  • the non-parallel arrangement it is possible to deposit a magnetic film and a nonmagnetic film with the same composition as the target composition with high efficiency by sputtering while rotating a target smaller than the substrate diameter.
  • both can be arranged non-parallel so that the crossing angle between the target central axis and the substrate central axis is 45 ° or less, preferably 5 ° to 30 °.
  • the substrate at this time can use a rotational speed of 10 rpm to 500 rpm, preferably, a rotational speed of 50 rpm to 200 rpm.
  • a crystalline (preferably polycrystalline) Mg layer is formed by sputtering using a Mg target, and the Mg is introduced into an oxidation chamber (not shown) for introducing an oxidizing gas. Can be obtained by oxidation.
  • a crystalline (preferably polycrystalline) BMg layer is formed by a sputtering method using a BMg target, and the BMg is formed in an oxidation chamber (not shown) for introducing an oxidizing gas. Can be obtained by oxidation.
  • oxidizing gas examples include oxygen gas, ozone gas, water vapor and the like.
  • FIG. 3 is a block diagram of a film forming apparatus used in the present invention.
  • a transfer chamber 301 corresponds to the transfer chamber 202 in FIG. 2
  • a film forming chamber 302 corresponds to the film forming magnetron sputtering chamber 201A
  • a film forming chamber 303 corresponds to the film forming magnetron sputtering chamber 201B.
  • Reference numeral 304 denotes a film forming chamber corresponding to the film forming magnetron sputtering chamber 201C
  • 305 denotes a load lock and unload lock chamber corresponding to the load lock and unload lock chambers 205 and 206.
  • reference numeral 306 denotes a central processing unit (CPU) incorporating the storage medium 312.
  • Reference numerals 309 to 311 are bus lines connecting the CPU 306 and the processing chambers 301 to 305, and control signals for controlling the operations of the processing chambers 301 to 305 are transmitted from the CPU 306 to the processing chambers 301 to 305.
  • the substrate (not shown) in the load lock / unload lock chamber 305 is carried out to the transfer chamber 301.
  • the substrate unloading step is calculated based on the control program stored in the storage medium 312 by the CPU 306.
  • Control signals based on the operation result are implemented by controlling the execution of various devices mounted on the load lock / unload lock chamber 305 and the transfer chamber 301 through the bus lines 307 and 311. Examples of the various devices include a gate valve (not shown), a robot mechanism, a transport mechanism, and a drive system.
  • the substrate transported to the transport chamber 301 is carried out to the film forming chamber 302.
  • the substrate carried into the film forming chamber 302 is the first layer (Ta layer 13), the second layer (PtMn layer 14), the third layer (CoFe layer 15), and the fourth layer (Ru layer) of FIG. 161) and the fifth layer (CoFeB layer 121) are sequentially stacked.
  • the CoFeB layer 121 of the fifth layer at this stage preferably has an amorphous structure, but may have a polycrystalline structure.
  • control signals calculated based on the control program stored in the storage medium 312 in the CPU 306 execute the various devices mounted on the transfer chamber 301 and the film forming chamber 302 through the bus lines 307 and 308. It is implemented by controlling. Examples of the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system, and the like.
  • the substrate having the laminated film up to the fifth layer is temporarily returned to the transfer chamber 301 and then carried into the film forming chamber 303.
  • a polycrystalline Mg oxide layer or a polycrystalline BMg oxide layer 122 is formed as a sixth layer on the amorphous CoFeB 121 layer of the fifth layer.
  • control signals calculated based on the control program stored in the storage medium 312 in the CPU 306 execute various devices mounted on the transfer chamber 301 and the film formation chamber 303 through the bus lines 307 and 309.
  • the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system, and the like.
  • the substrate having the laminated film up to the Mg oxide layer or the BMg oxide layer 122 of the sixth layer is once returned again to the transfer chamber 301, and is then carried to the film formation chamber 304.
  • an eleventh layer (Ta layer 17) and a twelfth layer (Ru layer 18) are sequentially stacked.
  • the seventh layer CoFe layer or CoFeB layer 1233, the ninth layer CoFe layer or CoFeB layer 1232 and the tenth layer NiFe layer or NiFeB layer 1231 at this stage preferably has an amorphous structure, but is polycrystalline. It may be a structure.
  • control signals calculated based on the control program stored in the storage medium 312 in the CPU 306 execute the various devices mounted in the transfer chamber 301 and the film forming chamber 304 through the bus lines 307 and 310. It is implemented by controlling.
  • the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system, and the like.
  • the eighth Ta layer 162 and the eleventh Ta layer 17 are formed using the same target attached to the cathode 54.
  • the storage medium 312 is a storage medium of the present invention, and a control program for executing the manufacture of the magnetoresistive element is stored in the storage medium.
  • Examples of the storage medium 312 used in the present invention include hard disk media, magneto-optical disk media, floppy (registered trademark) disk media, nonvolatile memories such as flash memory and MRAM, and the like, and include media capable of storing programs. .
  • the fifth layer (CoFeB layer 121), the seventh layer and the ninth layer (CoFe layer or CoFeB layer 1233, 1232) and the tenth layer (NiFe layer or NiFeB layer 1231) immediately after film formation are used.
  • the amorphous state can be crystallized by annealing. As a result, the polycrystalline structure shown in FIG. 7 can be obtained.
  • the magnetoresistive element 10 immediately after film formation is carried into an annealing furnace (not shown), where the fifth layer 121, the seventh layer 1233, the ninth layer 1232 and the tenth layer 1231 are used.
  • the amorphous state can be phase-changed to the crystalline state.
  • magnetism can be imparted to the PtMn layer 14 which is the second layer.
  • the storage medium 312 stores a control program for performing the process in the annealing furnace. Therefore, according to a control signal obtained by the operation of the CPU 306 based on the control program, various devices (for example, a heater mechanism, an exhaust mechanism, a transport mechanism, etc.) in the annealing furnace are controlled to execute the annealing process. Can.
  • a Rh layer or an Ir layer can be used.
  • an alloy layer such as an IrMn layer, an IrMnCr layer, an NiMn layer, a PdPtMn layer, a RuRhMn layer, or an OsMn layer is preferably used.
  • the film thickness is preferably 10 to 30 nm.
  • FIG. 4 is a schematic view of an MRAM 401 using the magnetoresistive element of the present invention as a memory element.
  • 402 is a memory element of the present invention
  • 403 is a word line
  • 404 is a bit line.
  • Each of the large number of memory elements 402 is arranged at each intersection position of the plurality of word lines 403 and the plurality of bit lines 404, and is arranged in a lattice-like positional relationship.
  • Each of the multiple memory elements 402 can store one bit of information.
  • FIG. 5 is an equivalent circuit diagram configured by TMR element 10 storing 1-bit information at the intersection position of word line 403 and bit line 404 of MRAM 401, and transistor 501 having a switch function.
  • the magnetoresistive element shown in FIG. 1 was manufactured using the film forming apparatus shown in FIG.
  • the film formation conditions of the TMR element 12 which is the main part are as follows.
  • the CoFeB layer 121 uses a target having a CoFeB composition ratio (atomic: atomic ratio) of 60/20/20, Ar as a sputtering gas, and a pressure of 0.03 Pa.
  • the CoFeB layer 121 was formed at a sputtering rate of 0.64 nm / sec by magnetron DC sputtering (chamber 201A).
  • the CoFeB layer 121 at this time had an amorphous structure.
  • the tunnel barrier layer 122 was formed using an MgO target having an MgO composition ratio (atomic: atomic ratio) of 50/50.
  • An Mg oxide layer was formed by magnetron RF sputtering (13.56 MHz) using Ar as a sputtering gas and using a pressure of 0.2 Pa out of a pressure range of 0.01 to 0.4 Pa as a preferable range.
  • the Mg oxide layer had a polycrystalline structure composed of the aggregate 71 of column-like crystals 72 shown in FIG.
  • the film-forming rate of magnetron RF sputtering (13.56 MHz) at this time was 0.14 nm / sec.
  • the substrate is introduced into a sputtering apparatus (chamber 201 B), and the magnetization free layer (the seventh CoFeB layer 1233, the eighth Ta layer 162, the ninth CoFe layer 1232 and the tenth NiFe layer 1231 ) was deposited.
  • the CoFeB layer 1233, the CoFe layer 1232 and the NiFe layer 1231 were formed using Ar as a sputtering gas, a pressure of 0.03 Pa, and a magnetron DC sputtering (chamber 201B) at a sputtering rate of 0.64 nm / sec.
  • targets of CoFeB composition ratio (atomic) 25/25/50, CoFe composition ratio (atomic) 50/50 and NiFe composition ratio (atomic) 40/60 were used, respectively.
  • the CoFeB layer 1233, the CoFe layer 1232 and the NiFe layer 1231 had an amorphous structure.
  • the deposition rate of the Mg oxide layer is 0.14 nm / sec.
  • the deposition rate of the Mg oxide layer is 0.14 nm / sec.
  • the magnetoresistive element 10 which has been deposited by sputtering in each of the magnetron sputtering chambers 201A, 201B and 201C for film formation, is annealed in a heat treatment furnace at a temperature of about 300 ° C. and 4 hours in a magnetic field of 8 kOe. Carried out. As a result, it was confirmed that the amorphous structure of CoFeB layer 121, BoFeB layer 1233, CoFe layer 1232 and NiFe layer 1231 had a polycrystalline structure comprising aggregate 71 of columnar crystals 72 shown in FIG.
  • the magnetoresistive element 10 can act as a magnetoresistive element having a TMR effect. Moreover, predetermined magnetization was given to the antiferromagnetic material layer 14 which is a PtMn layer of a 2nd layer by this annealing process.
  • a magnetoresistive element is manufactured using the same method as the above example except that the use of the eighth layer Ta layer 162, the ninth layer CoFe layer 1232 and the tenth layer NiFe layer 1231 is omitted. Was produced.
  • the MR ratio of the magnetoresistive element of the example and the magnetoresistive element of the comparative example was measured and compared, the MR ratio of the magnetoresistive element of the example was compared with the MR ratio of the magnetoresistive element of the comparative example. It has been improved by 2 times to 1.5 times or more.
  • the MR ratio is a parameter related to the magnetoresistance effect in which the electric resistance of the film changes as the magnetization direction of the magnetic film or magnetic multilayer film changes in response to an external magnetic field, and the rate of change of the electric resistance Rate (MR ratio).
  • the magnetoresistive element was manufactured using the same method as that of the ninth example except that the CoFe layer 1232 of the ninth layer was changed to CoFeB (atomic composition ratio: 50/30/20). The same effect as in the example was obtained.
  • the magnetoresistive element was manufactured using the same method as that of the tenth example except that the NiFe layer 1231 of the tenth layer was changed to NiFeB (atomic composition ratio: 50/30/20). The same effect as in the example was obtained.
  • a magnetoresistive element is manufactured by the same method as that of the sixth embodiment except that a polycrystalline BMg oxide layer is used.
  • MR ratio was measured.
  • the deposition rate was 0.14 nm / sec using a BMgO target with a BMgO composition ratio (atomic: atomic ratio) of 25/25/50.
  • the MR ratio significantly improved (compared to the MR ratio according to the embodiment using the polycrystalline Mg oxide layer).
  • MR ratio of 5 times or more was obtained.
  • a magnetoresistive element is manufactured using the completely same method as the above example except that the CoFeB layer 121 of the magnetization fixed layer is changed to a CoFe (atomic composition ratio; 50/50) layer, The MR ratio was measured. As a result, the measurement results were as low as 1/100 or less of the MR ratio obtained by the magnetoresistive element of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

A magnetoresistive element having a higher MR ratio than conventional ones and a method for manufacturing the magnetoresistive element. The magnetoresistive element comprises a substrate, a crystalline first ferromagnetic layer, a tunnel barrier layer, a crystalline second ferromagnetic layer, a non-magnetic intermediate layer, and a crystalline third ferromagnetic layer.  The first ferromagnetic layer is composed of an alloy containing Co atoms, Fe atoms and B atoms; the tunnel barrier layer has a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer; the second ferromagnetic layer is composed of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms; and the third ferromagnetic layer is composed of a layer which is composed of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms, and a layer which is composed of an alloy containing Ni atoms, Fe atoms and B atoms or an alloy containing Ni atoms and Fe atoms.

Description

磁気抵抗素子とその製造方法、該製造方法に用いる記憶媒体Magnetoresistive element, method of manufacturing the same, storage medium used in the method of manufacturing
 本発明は、磁気ディスク駆動装置の磁気再生ヘッド、磁気ランダムアクセスメモリの記憶素子及び磁気センサーに用いられる磁気抵抗素子、好ましくは、トンネル磁気抵抗素子(特に、スピンバルブ型トンネル磁気抵抗素子)に関する。さらに、磁気抵抗素子の製造方法と、該製造方法に用いる記憶媒体に関する。 The present invention relates to a magnetic reproducing head of a magnetic disk drive, a storage element of a magnetic random access memory, and a magnetoresistive element used for a magnetic sensor, preferably a tunnel magnetoresistive element (in particular, a spin valve tunnel magnetoresistive element). Further, the present invention relates to a method of manufacturing a magnetoresistive element and a storage medium used in the method.
 特許文献1乃至特許文献6、非特許文献1、2には、トンネルバリア層とその両側に設置した第一及び第二の強磁性体層からなるTMR(トンネル磁気抵抗;Tunneling Magneto Resistance)効果素子が記載されている。この素子を構成する第一及び/又は第二の強磁性体層としては、Co原子、Fe原子及びB原子を含有した合金(以下、CoFeB合金と記す)が用いられている。また、該CoFeB合金層として、多結晶構造のものが記載されている。 Patent documents 1 to 6 and non-patent documents 1 and 2 disclose TMR (tunneling magnetoresistance) effect elements comprising a tunnel barrier layer and first and second ferromagnetic layers disposed on both sides thereof. Is described. An alloy containing Co atoms, Fe atoms and B atoms (hereinafter referred to as a CoFeB alloy) is used as the first and / or second ferromagnetic layers constituting this element. Also, as the CoFeB alloy layer, a polycrystalline structure is described.
 また、特許文献2乃至特許文献5、特許文献7、非特許文献1乃至非特許文献5には、単結晶又は多結晶からなる結晶性酸化マグネシウム膜をトンネルバリア膜として用いたTMR素子が記載されている。 Patent documents 2 to 5, patent documents 7 and non-patent documents 1 to 5 disclose TMR elements using a crystalline magnesium oxide film consisting of a single crystal or a polycrystal as a tunnel barrier film. ing.
特開2002-204004号公報JP 2002-204004 A 国際公開第2005/088745号パンフレットWO 2005/088745 pamphlet 特開2003-304010号公報JP 2003-304010 A 特開2006-080116号公報JP, 2006-080116, A 米国特許出願公開第2006/0056115号明細書US Patent Application Publication No. 2006/0056115 米国特許第7252852号明細書U.S. Pat. No. 7,252,852 特開2003-318465号公報JP 2003-318465 A
 本発明の課題は、従来技術と比較し、一層改善された高いMR比を持った磁気抵抗素子とその製造方法及び、該製造方法に用いる記憶媒体を提供することにある。 An object of the present invention is to provide a magnetoresistive element having a further improved MR ratio as compared with the prior art, a method of manufacturing the same, and a storage medium used in the method of manufacturing.
 本発明の第1は、基板、
前記基板の上に位置し、Co原子、Fe原子及びB原子を含有する合金からなる結晶性第一強磁性体層、
前記結晶性第一強磁性体層の上に位置し、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を有するトンネルバリア層、
前記トンネルバリア層の上に位置し、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる結晶性第二強磁性体層、
前記結晶性第二強磁性体層の上に位置し、非磁性材からなる中間層、並びに、
前記中間層の上に位置し、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる結晶性強磁性体層、及び、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる結晶性強磁性体層を有する第三強磁性体層
を有することを特徴とする磁気抵抗素子である。
The first aspect of the present invention is a substrate,
A crystalline first ferromagnetic layer located on the substrate and made of an alloy containing Co atoms, Fe atoms and B atoms,
A tunnel barrier layer located on the crystalline first ferromagnetic layer and having a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer,
A crystalline second ferromagnetic layer located on the tunnel barrier layer and comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and Fe atoms,
An intermediate layer made of a nonmagnetic material located on the crystalline second ferromagnetic layer, and
A crystalline ferromagnetic material layer located on the intermediate layer and made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms, Ni atoms, Fe atoms and B It is a magnetoresistive element characterized by having a third ferromagnetic layer having a crystalline ferromagnetic layer made of an alloy containing atoms or an alloy containing Ni atoms and Fe atoms.
 本発明の第2は、スパッタリング法を用いて、基板の上に、磁化固定層、磁化自由層、及び該磁化固定層と該磁化自由層との間に位置するトンネルバリア層を成膜する工程を有する磁気抵抗素子の製造方法であって、
 前記トンネルバリア層を成膜する工程は、スパッタリング法により、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を成膜する工程を有し、
 前記磁化自由層を成膜する工程は、
 Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなるターゲットを用いたスパッタリング法により、前記トンネルバリア層に隣接させて、Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層を成膜する工程、
 非磁性材からなるターゲットを用いたスパッタリング法により、前記Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層に隣接させて、非磁性中間層を成膜する工程、
 前記非磁性中間層の上に、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなるターゲットを用いたスパッタリング法により、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる層を成膜し、次いで、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなるターゲットを用いたスパッタリング法により、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる層を成膜して積層膜を形成する工程である
ことを特徴とする磁気抵抗素子の製造方法である。
According to a second aspect of the present invention, there is provided a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer positioned between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method. A method of manufacturing a magnetoresistive element having
The step of forming the tunnel barrier layer includes the step of forming a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer by sputtering.
In the step of forming the magnetization free layer,
Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms Forming a layer comprising an alloy containing or an alloy containing Co atoms and B atoms,
A nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material. Filming process,
Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer. Forming a layer comprising an alloy containing Fe or a Co atom and an Fe atom, and then forming an alloy containing an Ni atom, an Fe atom and a B atom, or an alloy containing an Ni atom and an Fe atom Forming a layer of an alloy containing Ni atoms, Fe atoms and B atoms, or an alloy containing Ni atoms and Fe atoms by a sputtering method using It is a manufacturing method of a magnetoresistive element.
 本発明の第3は、スパッタリング法を用いて、基板の上に、磁化固定層、磁化自由層、及び該磁化固定層と該磁化自由層との間に位置するトンネルバリア層を成膜する工程を有する磁気抵抗素子の製造方法であって、
 前記トンネルバリア層を成膜する工程は、スパッタリング法により、結晶性金属マグネシウム又は結晶性ボロンマグネシウム合金からなる層を成膜し、該金属マグネシウム又はボロンマグネシウム合金を酸化して、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を形成する工程を有し、
 前記磁化自由層を成膜する工程は、
 Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなるターゲットを用いたスパッタリング法により、前記トンネルバリア層に隣接させて、Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層を成膜する工程、
 非磁性材からなるターゲットを用いたスパッタリング法により、前記Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層に隣接させて、非磁性中間層を成膜する工程、
 前記非磁性中間層の上に、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなるターゲットを用いたスパッタリング法により、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる層を成膜し、次いで、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなるターゲットを用いたスパッタリング法により、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる層を成膜して積層膜を形成する工程である
ことを特徴とする磁気抵抗素子の製造方法である。
A third aspect of the present invention is a process of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer positioned between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method. A method of manufacturing a magnetoresistive element having
In the step of forming the tunnel barrier layer, a layer made of crystalline metal magnesium or crystalline boron magnesium alloy is formed by sputtering, and the metal magnesium or boron magnesium alloy is oxidized to form a crystalline magnesium oxide layer. Or forming a crystalline boron magnesium oxide layer,
In the step of forming the magnetization free layer,
Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms Forming a layer comprising an alloy containing or an alloy containing Co atoms and B atoms,
A nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material. Filming process,
Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer. Forming a layer comprising an alloy containing Fe or a Co atom and an Fe atom, and then forming an alloy containing an Ni atom, an Fe atom and a B atom, or an alloy containing an Ni atom and an Fe atom Forming a layer of an alloy containing Ni atoms, Fe atoms and B atoms, or an alloy containing Ni atoms and Fe atoms by a sputtering method using It is a manufacturing method of a magnetoresistive element.
 本発明の第4は、スパッタリング法を用いて、基板の上に、磁化固定層、磁化自由層、及び該磁化固定層と該磁化自由層との間に位置するトンネルバリア層を成膜する工程を有する磁気抵抗素子の製造を実行する制御プログラムを記憶した記憶媒体であって、
 前記トンネルバリア層及び磁化自由層を成膜する工程を実行する制御プログラムは、
 酸化マグネシウム又はボロンマグネシウム酸化物からなるターゲットを用いたスパッタリング法により、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を成膜する工程、
 Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなるターゲットを用いたスパッタリング法により、前記トンネルバリア層に隣接させて、Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層を成膜する工程、
 非磁性材からなるターゲットを用いたスパッタリング法により、前記Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層に隣接させて、非磁性中間層を成膜する工程、並びに、
 前記非磁性中間層の上に、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなるターゲットを用いたスパッタリング法により、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる層を成膜し、次いで、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなるターゲットを用いたスパッタリング法により、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる層を成膜して積層膜を形成する工程
を実行するための制御プログラムを記憶したことを特徴とする記憶媒体である。
According to a fourth aspect of the present invention, there is provided a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer positioned between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method. A storage medium storing a control program for executing the manufacture of a magnetoresistive element having
A control program for executing the step of forming the tunnel barrier layer and the magnetization free layer is
Forming a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer by a sputtering method using a target made of magnesium oxide or boron magnesium oxide;
Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms Forming a layer comprising an alloy containing or an alloy containing Co atoms and B atoms,
A nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material. A process of filming, and
Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer. Forming a layer comprising an alloy containing Fe or a Co atom and an Fe atom, and then forming an alloy containing an Ni atom, an Fe atom and a B atom, or an alloy containing an Ni atom and an Fe atom A control program for executing a step of forming a laminated film by depositing a layer composed of an alloy containing Ni atoms, Fe atoms and B atoms or an alloy containing Ni atoms and Fe atoms by a sputtering method using A storage medium characterized in that
 本発明の第5は、スパッタリング法を用いて、基板の上に、磁化固定層、磁化自由層、及び該磁化固定層と該磁化自由層との間に位置するトンネルバリア層を成膜する工程を有する磁気抵抗素子の製造を実行する制御プログラムを記憶した記憶媒体であって、
 前記トンネルバリア層及び磁化自由層を成膜する工程を実行する制御プログラムは、
 金属マグネシウム又はボロンマグネシウム合金からなるターゲットを用いたスパッタリング法により、結晶性金属マグネシウム又は結晶性ボロンマグネシウム合金からなる層を成膜し、該金属マグネシウム又はボロンマグネシウム合金を酸化して、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を形成する工程、
 Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなるターゲットを用いたスパッタリング法により、前記トンネルバリア層に隣接させて、Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層を成膜する工程、
 非磁性材からなるターゲットを用いたスパッタリング法により、前記Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層に隣接させて、非磁性中間層を成膜する工程、並びに、
 前記非磁性中間層の上に、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなるターゲットを用いたスパッタリング法により、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる層を成膜し、次いで、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなるターゲットを用いたスパッタリング法により、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる層を成膜して積層膜を形成する工程
を実行するための制御プログラムを記憶したことを特徴とする記憶媒体である。
According to a fifth aspect of the present invention, there is provided a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer positioned between the magnetization fixed layer and the magnetization free layer on a substrate using a sputtering method. A storage medium storing a control program for executing the manufacture of a magnetoresistive element having
A control program for executing the step of forming the tunnel barrier layer and the magnetization free layer is
A layer of crystalline metallic magnesium or crystalline boron magnesium alloy is formed by sputtering using a target of metallic magnesium or boron magnesium alloy, and the metallic magnesium or boron magnesium alloy is oxidized to form crystalline magnesium oxide. Forming a layer or a crystalline boron magnesium oxide layer,
Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms Forming a layer comprising an alloy containing or an alloy containing Co atoms and B atoms,
A nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material. A process of filming, and
Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer. Forming a layer comprising an alloy containing Fe or a Co atom and an Fe atom, and then forming an alloy containing an Ni atom, an Fe atom and a B atom, or an alloy containing an Ni atom and an Fe atom A control program for executing a step of forming a laminated film by depositing a layer composed of an alloy containing Ni atoms, Fe atoms and B atoms or an alloy containing Ni atoms and Fe atoms by a sputtering method using A storage medium characterized in that
 本発明によれば、従来のトンネル磁気抵抗効果素子(以下、TMR素子と記す)で達成されていたMR比を大幅に改善することができる。また、本発明は、量産可能で実用性が高く、よって本発明を用いることにより、超高集積化が可能なMRAM(Magnetoresistive Random Access Memory:強誘電体メモリ)のメモリ素子が効率良く提供される。 According to the present invention, the MR ratio achieved by the conventional tunnel magnetoresistive effect element (hereinafter referred to as TMR element) can be significantly improved. In addition, the present invention can be mass-produced and highly practical. Therefore, by using the present invention, a memory element of MRAM (Magnetoresistive Random Access Memory: ferroelectric memory) capable of achieving ultra-high integration can be efficiently provided. .
本発明の磁気抵抗素子の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the magnetoresistive element of this invention. 本発明の磁気抵抗素子を製造する成膜装置の一例の構成を模式的に示す図である。It is a figure which shows typically the structure of an example of the film-forming apparatus which manufactures the magnetoresistive element of this invention. 図2の装置のブロック図である。Figure 3 is a block diagram of the device of Figure 2; 本発明の磁気抵抗素子を用いて構成されるMRAMの模式斜視図である。It is a model perspective view of MRAM comprised using the magnetoresistive element of this invention. 本発明の磁気抵抗素子を用いて構成されるMRAMの等価回路図である。It is an equivalent circuit schematic of MRAM comprised using the magnetoresistive element of this invention. 本発明の別のトンネルバリア層の断面図である。FIG. 6 is a cross-sectional view of another tunnel barrier layer of the present invention. 本発明の磁気抵抗素子に係るカラム状結晶構造の模式斜視図である。It is a model perspective view of the column-like crystal structure which concerns on the magnetoresistive element of this invention. 本発明の磁気抵抗素子の他の構成のTMR素子の断面図である。It is sectional drawing of the TMR element of the other structure of the magnetoresistive element of this invention.
 本発明の磁気抵抗素子は、基板と、結晶性第一強磁性体層、トンネルバリア層、結晶性第二強磁性体層、非磁性中間層、結晶性第三強磁性体層を有する。そして、第一強磁性体層が、Co原子、Fe原子及びB原子を含有する合金(以下、CoFeBと記す)からなる。また、トンネルバリア層は、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を有する。さらに、第二強磁性体層はCoFeB或いは、Co原子とFe原子を含有する合金(以下、CoFeと記す)からなる。第三強磁性体層は、CoFe層又はCoFeB層からなる結晶性強磁性体層と、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる結晶性強磁性体層との積層膜からなる。尚、以下の説明においては、Ni原子、Fe原子及びB原子を含有する合金をNiFeB、Ni原子とFe原子を含有する合金をNiFeと記す。また、酸化マグネシウムをMg酸化物、ボロンマグネシウム酸化物をBMg酸化物、金属マグネシウムをMg、ボロンマグネシウム合金をBMgと記す。 The magnetoresistive element of the present invention comprises a substrate, a crystalline first ferromagnetic layer, a tunnel barrier layer, a crystalline second ferromagnetic layer, a nonmagnetic intermediate layer, and a crystalline third ferromagnetic layer. The first ferromagnetic layer is made of an alloy containing Co atoms, Fe atoms, and B atoms (hereinafter referred to as CoFeB). In addition, the tunnel barrier layer has a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer. Furthermore, the second ferromagnetic layer is made of CoFeB or an alloy containing Co atoms and Fe atoms (hereinafter referred to as CoFe). The third ferromagnetic layer comprises a crystalline ferromagnetic layer comprising a CoFe layer or a CoFeB layer, and a crystalline strong layer comprising an alloy containing Ni atoms, Fe atoms and B atoms, or an alloy containing Ni atoms and Fe atoms It consists of a laminated film with a magnetic layer. In the following description, an alloy containing Ni atoms, Fe atoms and B atoms is referred to as NiFeB, and an alloy containing Ni atoms and Fe atoms is referred to as NiFe. Further, magnesium oxide is described as Mg oxide, boron magnesium oxide as BMg oxide, metal magnesium as Mg, and a boron magnesium alloy as BMg.
 以下に、本発明の好適な実施形態を挙げてより詳細に説明する。 Hereinafter, preferred embodiments of the present invention will be described in more detail.
 図1は、本発明に係る磁気抵抗素子10の積層構造の一例を示し、TMR素子12を用いた磁気抵抗素子10の積層構造を示している。この磁気抵抗素子10によれば、基板11の上に、このTMR素子12を含め、例えば、12層の多層膜が形成されている。この12層の多層膜では、最下層の第1層(Ta層)から最上層の第12層(Ru層)に向かった多層膜構造体となっている。具体的には、PtMn層14、CoFe層15、非磁性金属層(Ru)層161、第一強磁性体層であるCoFeB層121、トンネルバリア層である非磁性多結晶Mg酸化物層又はBMg酸化物層122が積層されている。さらにその上に、第二強磁性体層である多結晶CoFe層又はCoFeB層1233、非磁性Ta層162、第三強磁性体層である多結晶CoFe層又はCoFeB層1232及び多結晶NiFe層又はNiFeB層1231が積層されている。さらにまた、非磁性Ta層17及び非磁性Ru層18がこの順序で積層されている。尚、図中の各層の括弧中の数値は、各層の厚みを示し、単位はnmである。当該厚みは一例であって、これに限定されるものではない。 FIG. 1 shows an example of the laminated structure of the magnetoresistive element 10 according to the present invention, and shows the laminated structure of the magnetoresistive element 10 using the TMR element 12. According to the magnetoresistive element 10, for example, a multilayer film of 12 layers including the TMR element 12 is formed on the substrate 11. The twelve-layer multilayer film is a multilayer film structure from the lowermost first layer (Ta layer) to the uppermost twelfth layer (Ru layer). Specifically, the PtMn layer 14, the CoFe layer 15, the nonmagnetic metal layer (Ru) layer 161, the first ferromagnetic layer CoFeB layer 121, the tunnel barrier layer nonmagnetic polycrystalline Mg oxide layer or BMg An oxide layer 122 is stacked. Furthermore, a second ferromagnetic layer, a polycrystalline CoFe layer or CoFeB layer 1233, a nonmagnetic Ta layer 162, a third ferromagnetic layer, a polycrystalline CoFe layer or CoFeB layer 1232 and a polycrystalline NiFe layer A NiFeB layer 1231 is stacked. Furthermore, the nonmagnetic Ta layer 17 and the nonmagnetic Ru layer 18 are stacked in this order. The numerical values in parentheses in each layer in the drawing indicate the thickness of each layer, and the unit is nm. The said thickness is an example, Comprising: It is not limited to this.
 また、本発明では、上述の第一強磁性体層121は、CoFeB層と他の強磁性体層とを加えた2層以上の積層構造としても良い。 In the present invention, the first ferromagnetic layer 121 described above may have a laminated structure of two or more layers in which a CoFeB layer and another ferromagnetic layer are added.
 11は、ウエハー基板、ガラス基板やサファイヤ基板などの基板である。 11 is a substrate such as a wafer substrate, a glass substrate or a sapphire substrate.
 12はTMR素子で、多結晶CoFeBからなる第一強磁性体層121、トンネルバリア層122、第二強磁性体層1233及び第三強磁性体層1232,1231の積層構造体によって構成されている。トンネルバリア層122は多結晶Mg酸化物層又は多結晶BMg酸化物層を有し、第二強磁性体層1232は多結晶CoFe層又は多結晶CoFeB層からなる。第三強磁性体層は多結晶CoFe層又はCoFeB層1232及び多結晶NiFe層又はNiFeB層1231の積層膜からなる。 Reference numeral 12 denotes a TMR element, which is formed of a laminated structure of a first ferromagnetic layer 121 made of polycrystalline CoFeB, a tunnel barrier layer 122, a second ferromagnetic layer 1233, and a third ferromagnetic layer 1232 and 1231. . The tunnel barrier layer 122 has a polycrystalline Mg oxide layer or a polycrystalline BMg oxide layer, and the second ferromagnetic layer 1232 is made of a polycrystalline CoFe layer or a polycrystalline CoFeB layer. The third ferromagnetic layer is formed of a laminated film of a polycrystalline CoFe layer or CoFeB layer 1232 and a polycrystalline NiFe layer or NiFeB layer 1231.
 上記第二強磁性体層1233と第三強磁性体層1232との間には、非磁性金属又は非磁性絶縁物の非磁性材からなる中間層162が配置される。 Between the second ferromagnetic layer 1233 and the third ferromagnetic layer 1232, an intermediate layer 162 made of a nonmagnetic metal or a nonmagnetic material of a nonmagnetic insulator is disposed.
 本発明によれば、上記多結晶CoFeには、他の原子、例えばPt等を微量含有(5atomic%以下、好ましくは、0.01乃至1atomic%)させることができる。 According to the present invention, the polycrystalline CoFe can contain a small amount (5 atomic% or less, preferably 0.01 to 1 atomic%) of other atoms such as Pt or the like.
 13は、第1層(Ta層)の下電極層(下地層)であり、14は、第2層(PtMn層)の反強磁性体層である。15は第3層(CoFe層)の強磁性体層で、161は第4層(Ru層)の交換結合用非磁性体層である。 13 is a lower electrode layer (underlayer) of a first layer (Ta layer), and 14 is an antiferromagnetic layer of a second layer (PtMn layer). 15 is a ferromagnetic layer of the third layer (CoFe layer), and 161 is a nonmagnetic layer for exchange coupling of the fourth layer (Ru layer).
 第5層は、結晶性CoFeB層121からなる強磁性体層である。結晶性CoFeB層121でのB原子の含有量(以下、B含有量と記す)は、好ましくは0.1atomic%乃至60atmic%、より好ましくは10atomic%乃至50atmic%の範囲に設定される。 The fifth layer is a ferromagnetic layer formed of the crystalline CoFeB layer 121. The B atom content (hereinafter referred to as B content) in the crystalline CoFeB layer 121 is preferably set in the range of 0.1 atomic% to 60 atomic%, more preferably 10 atomic% to 50 atomic%.
 本発明では、結晶性CoFeB層121には、他の原子、例えば、Pt、Ni、Mn等を微量(5atomic%以下、好ましくは、0.01乃至1atomic%)含有させることができる。 In the present invention, the crystalline CoFeB layer 121 can contain other atoms, for example, Pt, Ni, Mn, etc. in a trace amount (5 atomic% or less, preferably 0.01 to 1 atomic%).
 上述の第3層、第4層及び第5層とからなる層は磁化固定層19である。実質的な磁化固定層19は、第5層の結晶性CoFeB層121の強磁性体層である。 The layer formed of the third layer, the fourth layer, and the fifth layer described above is the magnetization fixed layer 19. The substantial magnetization fixed layer 19 is a ferromagnetic layer of the crystalline CoFeB layer 121 of the fifth layer.
 122は、第6層(多結晶Mg酸化物層又はBMg酸化物層)のトンネルバリア層で、絶縁層である。トンネルバリア層122は、単一の多結晶Mg酸化物層又は多結晶BMg酸化物層であってもよい。 Reference numeral 122 denotes a tunnel barrier layer of a sixth layer (polycrystalline Mg oxide layer or BMg oxide layer), which is an insulating layer. The tunnel barrier layer 122 may be a single polycrystalline Mg oxide layer or a polycrystalline BMg oxide layer.
 また、本発明は、トンネルバリア層122を図6に図示した構成とすることができる。即ち、多結晶Mg酸化物層又は多結晶BMg酸化物層1221、多結晶Mg層又は多結晶BMg層1222及び多結晶Mg酸化物層又は多結晶BMg酸化物層1223の積層構造である。さらに、図6に図示した積層膜1221、1222及び1223からなる3層を複数設けた積層構造体であってもよい。 Further, in the present invention, the tunnel barrier layer 122 can be configured as illustrated in FIG. That is, it is a stacked structure of a polycrystalline Mg oxide layer or polycrystalline BMg oxide layer 1221, a polycrystalline Mg layer or polycrystalline BMg layer 1222, and a polycrystalline Mg oxide layer or polycrystalline BMg oxide layer 1223. Furthermore, it may be a laminated structure in which a plurality of three layers consisting of the laminated films 1221, 1222 and 1223 shown in FIG. 6 are provided.
 図8は、本発明の別のTMR素子12の例である。図8中の符号12、121、122、162、1231乃至1233は、上述のものと同一部材である。本例では、トンネルバリア層122は、多結晶Mg酸化物層又は多結晶BMg酸化物層82と、該層82の両側のMg層又はBMg層81及び83とからなる積層膜である。また、本発明では、層81の使用を省略し、層82を結晶性CoFe層又は結晶性CoFeB層1233に隣接配置させることができる。又は、層83の使用を省略し、層82を結晶性CoFeB層121に隣接配置させることができる。 FIG. 8 is an example of another TMR element 12 of the present invention. Reference numerals 12, 121, 122, 162, 1231 to 1233 in FIG. 8 are the same members as those described above. In this example, the tunnel barrier layer 122 is a laminated film composed of a polycrystalline Mg oxide layer or polycrystalline BMg oxide layer 82 and Mg layers or BMg layers 81 and 83 on both sides of the layer 82. Also, in the present invention, the use of the layer 81 can be omitted, and the layer 82 can be disposed adjacent to the crystalline CoFe layer or the crystalline CoFeB layer 1233. Alternatively, the use of layer 83 can be omitted and layer 82 can be placed adjacent to crystalline CoFeB layer 121.
 図7は、BMg酸化物層又はMg酸化物層のカラム状結晶72の集合体71からなる多結晶構造の模式斜視図である。該多結晶構造には、多結晶領域内に部分的なアモルファス領域を含む多結晶-アモルファス混合領域の構造物も包含される。該カラム状結晶は、各カラム毎において、膜厚方向で(001)結晶面が優先的に配向した単結晶であることが好ましい。また、該カラム状単結晶の平均的な直径は、好ましくは10nm以下であり、より好ましくは2nm乃至5nmの範囲であり、その膜厚は、好ましくは10nm以下であり、より好ましくは0.5nm乃至5nmの範囲である。 FIG. 7 is a schematic perspective view of a polycrystalline structure composed of an aggregate 71 of column-like crystals 72 in the BMg oxide layer or the Mg oxide layer. The polycrystalline structure also includes the structure of a polycrystalline-amorphous mixed region including a partially amorphous region in the polycrystalline region. The column-like crystal is preferably a single crystal in which the (001) crystal plane is preferentially oriented in the film thickness direction in each column. The average diameter of the column-shaped single crystal is preferably 10 nm or less, more preferably 2 nm to 5 nm, and the film thickness is preferably 10 nm or less, more preferably 0.5 nm. To 5 nm.
 また、本発明で用いられるBMg酸化物は、一般式BxMgyz(0.7≦Z/(X+Y)≦1.3であり、好ましくは、0.8≦Z/(X+Y)<1.0である)で示される。本発明では、化学論量のBMg酸化物を用いるのが好ましいが、酸素欠損のBMg酸化物であっても、高いMR比を得ることができる。 Further, the BMg oxide used in the present invention has a general formula B x Mg y O z (0.7 ≦ Z / (X + Y) ≦ 1.3, preferably 0.8 ≦ Z / (X + Y) < It is indicated by 1.0). In the present invention, although it is preferable to use a stoichiometric amount of BMg oxide, a high MR ratio can be obtained even with an oxygen deficient BMg oxide.
 また、本発明で用いられるMg酸化物は、一般式Mgyz(0.7≦Z/Y≦1.3であり、好ましくは、0.8≦Z/Y<1.0である)で示される。本発明では、化学論量のMg酸化物を用いるのが好ましいが、酸素欠損のMg酸化物であっても、高いMR比を得ることができる。 In addition, Mg oxide used in the present invention has a general formula of Mg y O z (0.7 ≦ Z / Y ≦ 1.3, preferably 0.8 ≦ Z / Y <1.0) It is indicated by. In the present invention, it is preferable to use a stoichiometric amount of Mg oxide, but even with oxygen deficient Mg oxide, a high MR ratio can be obtained.
 また、本発明で用いられる多結晶Mg酸化物又は多結晶BMg酸化物は、各種微量成分、例えばZn原子、C原子、Al原子、Ca原子、Si原子等を10ppm乃至100ppmの範囲で含有することができる。 The polycrystalline Mg oxide or polycrystalline BMg oxide used in the present invention contains various minor components such as Zn atom, C atom, Al atom, Ca atom, Si atom, etc. in the range of 10 ppm to 100 ppm. Can.
 第7層、第9層及び第10層は、それぞれ、結晶性CoFe層又はCoFeB層1233からなる強磁性体層、結晶性CoFe層又はCoFeB層1232からなる強磁性体層、結晶性NiFe層又はNiFeB層からなる強磁性体層である。該第7層、第9層及び第10層からなる積層膜は、磁化自由層として機能することができる。 The seventh, ninth, and tenth layers are each a ferromagnetic layer comprising a crystalline CoFe layer or CoFeB layer 1233, a ferromagnetic layer comprising a crystalline CoFe layer or CoFeB layer 1232, a crystalline NiFe layer or a crystalline NiFe layer or It is a ferromagnetic layer composed of a NiFeB layer. The laminated film consisting of the seventh, ninth and tenth layers can function as a magnetization free layer.
 本発明においては、該第7層と該第9層との間に、非磁性材からなる中間層である第8層のTa層162が配置される。第8層は、Taの他に、RuやIr等の非磁性金属、Al23(酸化アルミニウム)、SiO2(酸化シリコン)やSi34(窒化シリコン)等の非磁性絶縁物を用いることができる。また、膜厚は、好ましくは50nm以下、より好ましくは5nm乃至40nmの範囲に設定することができる。 In the present invention, an eighth layer Ta layer 162, which is an intermediate layer made of a nonmagnetic material, is disposed between the seventh layer and the ninth layer. The eighth layer is made of nonmagnetic metal such as Ru or Ir, nonmagnetic insulator such as Al 2 O 3 (aluminum oxide), SiO 2 (silicon oxide), Si 3 N 4 (silicon nitride), etc. in addition to Ta. It can be used. Further, the film thickness can be set preferably in the range of 50 nm or less, more preferably 5 nm to 40 nm.
 第7層及び第9層を構成する結晶性CoFe層又は結晶性CoFeB層1232は、CoFeターゲット又はCoFeBターゲットを用いたスパッタリングにより成膜することができる。 The crystalline CoFe layer or the crystalline CoFeB layer 1232 constituting the seventh layer and the ninth layer can be deposited by sputtering using a CoFe target or a CoFeB target.
 第10層を構成する結晶性NiFe層又は結晶性NiFeB層1231は、NiFeターゲット又はNiFeBターゲットを用いたスパッタリングにより成膜することができる。 The crystalline NiFe layer or the crystalline NiFeB layer 1231 constituting the tenth layer can be deposited by sputtering using a NiFe target or a NiFeB target.
 上記した結晶性CoFeB層121と、CoFe層又はCoFeB層1233、1232、NiFe層又はNiFeB層1231は、前述の図7に図示したカラム状結晶構造72からなる集合体71と同一の構造の結晶構造のものであってもよい。 The crystalline CoFeB layer 121, the CoFe layer or CoFeB layer 1233, 1232 and the NiFe layer or NiFeB layer 1231 have the same crystal structure as the aggregate 71 composed of the column-like crystal structure 72 shown in FIG. It may be
 結晶性CoFeB層121とCoFe層又はCoFeB層1233とは、中間に位置するトンネルバリア層122と隣接させて設けることが好ましい。製造装置においては、これら3層は、真空を破ることなく、順次、積層される。 The crystalline CoFeB layer 121 and the CoFe layer or CoFeB layer 1233 are preferably provided adjacent to the tunnel barrier layer 122 located in the middle. In the manufacturing apparatus, these three layers are sequentially stacked without breaking the vacuum.
 17は、第10層(Ta層)の電極層である。 Reference numeral 17 denotes an electrode layer of a tenth layer (Ta layer).
 18は、第11層(Ru層)のハードマスク層である。第11層は、ハードマスクとして用いられた際には、磁気抵抗素子から除去されていてもよい。 Reference numeral 18 denotes a hard mask layer of an eleventh layer (Ru layer). The eleventh layer may be removed from the magnetoresistive element when used as a hard mask.
 次に、図2を参照して、上記の積層構造を有する磁気抵抗素子10を製造する装置と製造方法を説明する。図2は磁気抵抗素子10を製造する装置の概略的な平面図であり、本装置は複数の磁性層及び非磁性層を含む多層膜を作製することのできる装置であり、量産型スパッタリング成膜装置である。 Next, with reference to FIG. 2, an apparatus and a method of manufacturing the magnetoresistive element 10 having the above-described laminated structure will be described. FIG. 2 is a schematic plan view of an apparatus for manufacturing the magnetoresistive element 10. This apparatus is an apparatus capable of producing a multilayer film including a plurality of magnetic layers and a nonmagnetic layer, and mass production type sputtering film formation It is an apparatus.
 図2に示された磁性多層膜作製装置200は、クラスタ型製造装置であり、スパッタリング法に基づく3つの成膜チャンバを備えている。本装置200では、ロボット搬送装置(不図示)を備える搬送チャンバ202が中央位置に設置している。磁気抵抗素子製造のための製造装置200の搬送チャンバ202には、2つのロードロック・アンロードロックチャンバ205及び206が設けられ、それぞれにより基板(例えば、シリコン基板)11の搬入及び搬出が行われる。これらのロードロック・アンロードロックチャンバ205及び206を交互に、基板の搬入搬出を実施することによって、タクトタイムを短縮させ、生産性よく磁気抵抗素子を作製できる構成となっている。 The magnetic multilayer film manufacturing apparatus 200 shown in FIG. 2 is a cluster type manufacturing apparatus, and includes three film forming chambers based on the sputtering method. In the present apparatus 200, a transfer chamber 202 including a robot transfer device (not shown) is installed at a central position. Two load lock / unload lock chambers 205 and 206 are provided in the transfer chamber 202 of the manufacturing apparatus 200 for manufacturing the magnetoresistance element, and loading and unloading of the substrate (for example, silicon substrate) 11 is performed by each of them. . By alternately carrying the substrate into and out of the load lock / unload lock chamber 205 and 206, the tact time can be shortened, and the magnetoresistive element can be manufactured with high productivity.
 磁気抵抗素子製造のための製造装置200では、搬送チャンバ202の周囲に、3つの成膜用マグネトロンスパッタリングチャンバ201A乃至201Cと、1つのエッチングチャンバ203とが設けられている。エッチングチャンバ203では、TMR素子10の所要表面をエッチング処理する。各チャンバ201A乃至201C及び203と搬送チャンバ202との間には、開閉自在なゲートバルブ204が設けられている。尚、各チャンバ201A乃至201C及び202には、不図示の真空排気機構、ガス導入機構、電力供給機構などが付設されている。成膜用マグネトロンスパッタリングチャンバ201A乃至201Cは、高周波スパッタリング法を用いて、基板11の上に、真空を破らずに、前述した第1層から第11層までの各膜を順次に堆積することができる。 In the manufacturing apparatus 200 for manufacturing a magnetoresistive element, three deposition magnetron sputtering chambers 201A to 201C and one etching chamber 203 are provided around the transfer chamber 202. In the etching chamber 203, the required surface of the TMR element 10 is etched. A gate valve 204 which can be opened and closed is provided between each of the chambers 201A to 201C and 203 and the transfer chamber 202. Each of the chambers 201A to 201C and 202 is provided with an evacuation mechanism, a gas introduction mechanism, a power supply mechanism, and the like (not shown). In the magnetron sputtering chambers 201A to 201C for film formation, the respective films from the first layer to the eleventh layer described above can be sequentially deposited on the substrate 11 using high frequency sputtering without breaking the vacuum. it can.
 成膜用マグネトロンスパッタリングチャンバ201A乃至201Cの天井部には、それぞれ、適当な円周の上に配置された4基または5基のカソード31乃至35、41乃至45、51乃至54が配置される。さらに当該円周と同軸上に位置する基板ホルダ上に基板11が配置される。また、上記カソード31乃至35、41乃至45、51乃至54に装着したターゲットの背後にマグネットを配置したマグネトロンスパッタリング装置とするのが好ましい。 Four or five cathodes 31 to 35, 41 to 45, 51 to 54 disposed on suitable circumferences are disposed on the ceilings of the film forming magnetron sputtering chambers 201A to 201C, respectively. Furthermore, the substrate 11 is disposed on a substrate holder located coaxially with the circumference. Moreover, it is preferable to set it as the magnetron sputtering apparatus which has arrange | positioned the magnet behind the target with which said cathodes 31 to 35, 41 to 45, 51 to 54 were mounted.
 上記装置においては、電力投入手段207A乃至207Cから、上記カソード31乃至35、41乃至45、51乃至54にラジオ周波数(RF周波数)のような高周波電力が印加される。高周波電力としては、0.3MHz乃至10GHzの範囲、好ましくは、5MHz乃至5GHzの範囲の周波数及び10W乃至500Wの範囲、好ましくは、100W乃至300Wの範囲の電力を用いることができる。 In the above apparatus, high frequency power such as radio frequency (RF frequency) is applied to the cathodes 31 to 35, 41 to 45, 51 to 54 from the power input means 207A to 207C. As high frequency power, power in the range of 0.3 MHz to 10 GHz, preferably in the range of 5 MHz to 5 GHz and in the range of 10 W to 500 W, preferably 100 W to 300 W can be used.
 上記において、例えば、カソード31にはTaターゲットが、カソード32にはPtMnターゲットが、カソード33にはCoFeBターゲットが、カソード34にはCoFeターゲットが、カソード35にはRuターゲットが装着される。 In the above, for example, a Ta target is attached to the cathode 31, a PtMn target to the cathode 32, a CoFeB target to the cathode 33, a CoFe target to the cathode 34, and a Ru target to the cathode 35.
 また、カソード51にはMg酸化物ターゲットが、カソード52にはBMg酸化物ターゲットが、カソード53にMgターゲットが、カソード54にはBMgターゲットが装着される。図8に図示した構造のTMR素子122は、このカソード53又は54を用いることによって作製することができる。 Further, a Mg oxide target is attached to the cathode 51, a BMg oxide target to the cathode 52, a Mg target to the cathode 53, and a BMg target to the cathode 54. The TMR element 122 of the structure illustrated in FIG. 8 can be manufactured by using this cathode 53 or 54.
 カソード41には、第9層のためのCoFeターゲットが、カソード42には第7層のためのCoFeBターゲットが、カソード43には第8層及び第11層のためのTaターゲットが、カソード44には第12層のためのRuターゲットが装着される。カソード45には、第10層のためのNiFeターゲット又はNiFeBターゲットが装着される。 The cathode 41 has a CoFe target for the ninth layer, the cathode 42 has a CoFeB target for the seventh layer, the cathode 43 has a Ta target for the eighth layer and the eleventh layer, and the cathode 44 The Ru target for the 12th layer is attached. On the cathode 45, a NiFe target or a NiFeB target for the tenth layer is attached.
 上記カソード31乃至35、41乃至45、51乃至54に装着した各ターゲットの各面内方向と基板の面内方向とは、互いに非平行に配置することが好ましい。該非平行な配置を用いることによって、基板径より小径のターゲットを回転させながらスパッタリングすることによって、高効率で、且つ、ターゲット組成と同一組成の磁性膜及び非磁性膜を堆積させることができる。 It is preferable that the in-plane directions of the targets mounted on the cathodes 31 to 35, 41 to 45, and 51 to 54 and the in-plane direction of the substrate be nonparallel to each other. By using the non-parallel arrangement, it is possible to deposit a magnetic film and a nonmagnetic film with the same composition as the target composition with high efficiency by sputtering while rotating a target smaller than the substrate diameter.
 上記非平行な配置は、例えば、ターゲット中心軸と基板中心軸との交差角を45°以下、好ましくは5°乃至30°となる様に、両者を非平行に配置することができる。また、この時の基板は、10rpm乃至500rpmの回転速度、好ましくは、50rpm乃至200rpmの回転速度を用いることができる。 In the non-parallel arrangement, for example, both can be arranged non-parallel so that the crossing angle between the target central axis and the substrate central axis is 45 ° or less, preferably 5 ° to 30 °. Also, the substrate at this time can use a rotational speed of 10 rpm to 500 rpm, preferably, a rotational speed of 50 rpm to 200 rpm.
 また、結晶性Mg酸化物層は、Mgターゲットを用いたスパッタリング法により、結晶性(好ましくは、多結晶)Mg層を成膜し、該Mgを酸化性ガス導入の酸化チャンバ(不図示)内で酸化することにより得ることができる。 In addition, as the crystalline Mg oxide layer, a crystalline (preferably polycrystalline) Mg layer is formed by sputtering using a Mg target, and the Mg is introduced into an oxidation chamber (not shown) for introducing an oxidizing gas. Can be obtained by oxidation.
 また、結晶性BMg酸化物層は、BMgターゲットを用いたスパッタリング法により、結晶性(好ましくは、多結晶)BMg層を成膜し、該BMgを酸化性ガス導入の酸化チャンバ(不図示)内で酸化することにより得ることができる。 In addition, as the crystalline BMg oxide layer, a crystalline (preferably polycrystalline) BMg layer is formed by a sputtering method using a BMg target, and the BMg is formed in an oxidation chamber (not shown) for introducing an oxidizing gas. Can be obtained by oxidation.
 上記酸化性ガスとしては、酸素ガス、オゾンガス、水蒸気等が挙げられる。 Examples of the oxidizing gas include oxygen gas, ozone gas, water vapor and the like.
 図3は、本発明に用いられる成膜装置のブロック図である。図中、301は図2中の搬送チャンバ202に相当する搬送チャンバ、302は成膜用マグネトロンスパッタリングチャンバ201Aに相当する成膜チャンバ、303は成膜用マグネトロンスパッタリングチャンバ201Bに相当する成膜チャンバである。また、304は成膜用マグネトロンスパッタリングチャンバ201Cに相当する成膜チャンバ、305はロードロック・アンロードロックチャンバ205及び206に相当するロードロック・アンロードロックチャンバである。さらに、306は記憶媒体312を内蔵した中央演算器(CPU)である。符号309乃至311は、CPU306と各処理チャンバ301乃至305とを接続するバスラインで、各処理チャンバ301乃至305の動作を制御する制御信号がCPU306より各処理チャンバ301乃至305に送信される。 FIG. 3 is a block diagram of a film forming apparatus used in the present invention. 2, a transfer chamber 301 corresponds to the transfer chamber 202 in FIG. 2, a film forming chamber 302 corresponds to the film forming magnetron sputtering chamber 201A, and a film forming chamber 303 corresponds to the film forming magnetron sputtering chamber 201B. is there. Reference numeral 304 denotes a film forming chamber corresponding to the film forming magnetron sputtering chamber 201C, and 305 denotes a load lock and unload lock chamber corresponding to the load lock and unload lock chambers 205 and 206. Further, reference numeral 306 denotes a central processing unit (CPU) incorporating the storage medium 312. Reference numerals 309 to 311 are bus lines connecting the CPU 306 and the processing chambers 301 to 305, and control signals for controlling the operations of the processing chambers 301 to 305 are transmitted from the CPU 306 to the processing chambers 301 to 305.
 本発明では、ロードロック・アンロードロックチャンバ305内の基板(不図示)は、搬送チャンバ301に搬出される。この基板搬出工程は、CPU306が記憶媒体312に記憶させた制御プログラムに基づいて演算する。この演算結果に基づく制御信号が、バスライン307,311を通して、ロードロック・アンロードロックチャンバ305及び搬送チャンバ301に搭載した各種装置の実行を制御することによって実施される。該各種装置としては、例えば、不図示のゲートバルブ、ロボット機構、搬送機構、駆動系等が挙げられる。 In the present invention, the substrate (not shown) in the load lock / unload lock chamber 305 is carried out to the transfer chamber 301. The substrate unloading step is calculated based on the control program stored in the storage medium 312 by the CPU 306. Control signals based on the operation result are implemented by controlling the execution of various devices mounted on the load lock / unload lock chamber 305 and the transfer chamber 301 through the bus lines 307 and 311. Examples of the various devices include a gate valve (not shown), a robot mechanism, a transport mechanism, and a drive system.
 搬送チャンバ301に搬送された基板は、成膜チャンバ302に搬出される。成膜チャンバ302に搬入された基板は、ここで、図1の第1層(Ta層13)、第2層(PtMn層14)、第3層(CoFe層15)、第4層(Ru層161)及び第5層(CoFeB層121)が順次積層される。この段階での第5層のCoFeB層121は、好ましくはアモルファス構造となっているが、多結晶構造であってもよい。 The substrate transported to the transport chamber 301 is carried out to the film forming chamber 302. Here, the substrate carried into the film forming chamber 302 is the first layer (Ta layer 13), the second layer (PtMn layer 14), the third layer (CoFe layer 15), and the fourth layer (Ru layer) of FIG. 161) and the fifth layer (CoFeB layer 121) are sequentially stacked. The CoFeB layer 121 of the fifth layer at this stage preferably has an amorphous structure, but may have a polycrystalline structure.
 上記積層は、CPU306内で、記憶媒体312に記憶させた制御プログラムに基づいて演算された制御信号が、バスライン307,308を通して、搬送チャンバ301及び成膜チャンバ302に搭載した各種装置の実行を制御することによって実施される。該各種装置としては、例えば、不図示のカソードへの電力投入機構、基板回転機構、ガス導入機構、排気機構、ゲートバルブ、ロボット機構、搬送機構、駆動系等が挙げられる。 In the stack, control signals calculated based on the control program stored in the storage medium 312 in the CPU 306 execute the various devices mounted on the transfer chamber 301 and the film forming chamber 302 through the bus lines 307 and 308. It is implemented by controlling. Examples of the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system, and the like.
 上記第5層までの積層膜を持った基板は、一旦、搬送チャンバ301に戻され、その後成膜チャンバ303に搬入される。 The substrate having the laminated film up to the fifth layer is temporarily returned to the transfer chamber 301 and then carried into the film forming chamber 303.
 成膜チャンバ303内で、上記第5層のアモルファスCoFeB121層の上に、第6層として、多結晶Mg酸化物層又は多結晶BMg酸化物層122の成膜を実行する。該成膜は、CPU306内で、記憶媒体312に記憶させた制御プログラムに基づいて演算された制御信号が、バスライン307,309を通して、搬送チャンバ301及び成膜チャンバ303に搭載した各種装置の実行を制御することによって実施される。該各種装置としては、例えば、不図示のカソードへの電力投入機構、基板回転機構、ガス導入機構、排気機構、ゲートバルブ、ロボット機構、搬送機構、駆動系等が挙げられる。 In the film forming chamber 303, a polycrystalline Mg oxide layer or a polycrystalline BMg oxide layer 122 is formed as a sixth layer on the amorphous CoFeB 121 layer of the fifth layer. In the film formation, control signals calculated based on the control program stored in the storage medium 312 in the CPU 306 execute various devices mounted on the transfer chamber 301 and the film formation chamber 303 through the bus lines 307 and 309. By controlling the Examples of the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system, and the like.
 上記第6層のMg酸化物層又はBMg酸化物層122までの積層膜を持った基板は、再度、一旦、搬送チャンバ301に戻され、その後成膜チャンバ304に搬入される。 The substrate having the laminated film up to the Mg oxide layer or the BMg oxide layer 122 of the sixth layer is once returned again to the transfer chamber 301, and is then carried to the film formation chamber 304.
 成膜チャンバ304内で、上記第6層122の上に、第7層(CoFe層又はCoFeB層1233)、第8層(Ta層162)、第9層(CoFe層又はCoFe層1232)、第10層(NiFe層又はNiFeB層1231)が積層される。次いで、第11層(Ta層17)及び第12層(Ru層18)が順次積層される。この段階での第7層のCoFe層又はCoFeB層1233、第9層のCoFe層又はCoFeB層1232及び第10層のNiFe層又はNiFeB層1231は、好ましくはアモルファス構造となっているが、多結晶構造であってもよい。 In the film forming chamber 304, the seventh layer (CoFe layer or CoFeB layer 1233), the eighth layer (Ta layer 162), the ninth layer (CoFe layer or CoFe layer 1232), the seventh layer (CoFe layer or CoFeB layer 1233), Ten layers (NiFe layer or NiFeB layer 1231) are stacked. Next, an eleventh layer (Ta layer 17) and a twelfth layer (Ru layer 18) are sequentially stacked. The seventh layer CoFe layer or CoFeB layer 1233, the ninth layer CoFe layer or CoFeB layer 1232 and the tenth layer NiFe layer or NiFeB layer 1231 at this stage preferably has an amorphous structure, but is polycrystalline. It may be a structure.
 上記積層は、CPU306内で、記憶媒体312に記憶させた制御プログラムに基づいて演算された制御信号が、バスライン307,310を通して、搬送チャンバ301及び成膜チャンバ304に搭載した各種装置の実行を制御することによって実施される。該各種装置としては、例えば、不図示のカソードへの電力投入機構、基板回転機構、ガス導入機構、排気機構、ゲートバルブ、ロボット機構、搬送機構、駆動系等が挙げられる。 In the stack, control signals calculated based on the control program stored in the storage medium 312 in the CPU 306 execute the various devices mounted in the transfer chamber 301 and the film forming chamber 304 through the bus lines 307 and 310. It is implemented by controlling. Examples of the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system, and the like.
 尚、第8層のTa層162及び第11層のTa層17は、カソード54に装着した同一のターゲットを用いて成膜される。 The eighth Ta layer 162 and the eleventh Ta layer 17 are formed using the same target attached to the cathode 54.
 記憶媒体312は、本発明の記憶媒体であり、係る記憶媒体には磁気抵抗素子の製造を実行するための制御プログラムが記憶されている。 The storage medium 312 is a storage medium of the present invention, and a control program for executing the manufacture of the magnetoresistive element is stored in the storage medium.
 本発明で用いる記憶媒体312としては、ハードディスク媒体、光磁気ディスク媒体、フロッピー(登録商標)ディスク媒体、フラッシュメモリやMRAM等の不揮発性メモリ全般を挙げることができ、プログラム格納可能な媒体を含むものである。 Examples of the storage medium 312 used in the present invention include hard disk media, magneto-optical disk media, floppy (registered trademark) disk media, nonvolatile memories such as flash memory and MRAM, and the like, and include media capable of storing programs. .
 また、本発明は、成膜直後の上記第5層(CoFeB層121)、第7層及び第9層(CoFe層又はCoFeB層1233,1232)及び第10層(NiFe層又はNiFeB層1231)のアモルファス状態をアニーリングにより結晶化することができる。その結果、図7に図示した多結晶構造とすることができる。このため、本発明では、成膜直後の磁気抵抗素子10をアニーリング炉(不図示)に搬入し、ここで、上記第5層121、第7層1233、第9層1232及び第10層1231のアモルファス状態を結晶状態に相変化させることができる。 Further, according to the present invention, the fifth layer (CoFeB layer 121), the seventh layer and the ninth layer (CoFe layer or CoFeB layer 1233, 1232) and the tenth layer (NiFe layer or NiFeB layer 1231) immediately after film formation are used. The amorphous state can be crystallized by annealing. As a result, the polycrystalline structure shown in FIG. 7 can be obtained. For this reason, in the present invention, the magnetoresistive element 10 immediately after film formation is carried into an annealing furnace (not shown), where the fifth layer 121, the seventh layer 1233, the ninth layer 1232 and the tenth layer 1231 are used. The amorphous state can be phase-changed to the crystalline state.
 また、この時、第2層であるPtMn層14に磁気を付与することができる。 At this time, magnetism can be imparted to the PtMn layer 14 which is the second layer.
 上記記憶媒体312には、アニーリング炉での工程を実施するための制御プログラムが記憶されている。よって該制御プログラムに基づく、CPU306の演算により得た制御信号によって、アニーリング炉内の各種装置(図示せず、例えば、ヒータ機構、排気機構、搬送機構等)を制御し、アニーリング工程を実行することができる。 The storage medium 312 stores a control program for performing the process in the annealing furnace. Therefore, according to a control signal obtained by the operation of the CPU 306 based on the control program, various devices (for example, a heater mechanism, an exhaust mechanism, a transport mechanism, etc.) in the annealing furnace are controlled to execute the annealing process. Can.
 また、本発明では、上記第4層161のRu層に換えて、Rh層又はIr層を用いることができる。 Further, in the present invention, in place of the Ru layer of the fourth layer 161, a Rh layer or an Ir layer can be used.
 また、本発明では、上記第2層のPtMn14層に換えて、IrMn層、IrMnCr層、NiMn層、PdPtMn層、RuRhMn層やOsMn層等の合金層も好ましく用いられる。又、その膜厚は、10乃至30nmが好ましい。 In the present invention, instead of the PtMn 14 layer of the second layer, an alloy layer such as an IrMn layer, an IrMnCr layer, an NiMn layer, a PdPtMn layer, a RuRhMn layer, or an OsMn layer is preferably used. The film thickness is preferably 10 to 30 nm.
 図4は、本発明の磁気抵抗素子をメモリ素子として用いたMRAM401の模式図である。MRAM401において、402は本発明のメモリ素子、403はワード線、404はビット線である。多数のメモリ素子402のそれぞれは、複数のワード線403と複数のビット線404の各交点位置に配置され、格子状の位置関係に配置される。多数のメモリ素子402のそれぞれが1ビットの情報を記憶することができる。 FIG. 4 is a schematic view of an MRAM 401 using the magnetoresistive element of the present invention as a memory element. In the MRAM 401, 402 is a memory element of the present invention, 403 is a word line, and 404 is a bit line. Each of the large number of memory elements 402 is arranged at each intersection position of the plurality of word lines 403 and the plurality of bit lines 404, and is arranged in a lattice-like positional relationship. Each of the multiple memory elements 402 can store one bit of information.
 図5は、MRAM401のワード線403とビット線404の交点位置において、1ビットの情報を記憶するTMR素子10と、スイッチ機能を有するトランジスタ501とで構成した等価回路図である。 FIG. 5 is an equivalent circuit diagram configured by TMR element 10 storing 1-bit information at the intersection position of word line 403 and bit line 404 of MRAM 401, and transistor 501 having a switch function.
 図1に示した磁気抵抗素子を図2に示した成膜装置を用いて作製した。主要部であるTMR素子12の成膜条件は以下の通りである。 The magnetoresistive element shown in FIG. 1 was manufactured using the film forming apparatus shown in FIG. The film formation conditions of the TMR element 12 which is the main part are as follows.
 CoFeB層121は、CoFeB組成比(atomic:原子比)60/20/20のターゲットを用い、Arをスパッタガスとし、その圧力を0.03Paとした。CoFeB層121の成膜は、マグネトロンDCスパッタ(チャンバ201A)によりスパッタレート0.64nm/secで成膜した。この時のCoFeB層121は、アモルファス構造を有していた。 The CoFeB layer 121 uses a target having a CoFeB composition ratio (atomic: atomic ratio) of 60/20/20, Ar as a sputtering gas, and a pressure of 0.03 Pa. The CoFeB layer 121 was formed at a sputtering rate of 0.64 nm / sec by magnetron DC sputtering (chamber 201A). The CoFeB layer 121 at this time had an amorphous structure.
 続いて、スパッタリング装置(チャンバ201C)に換えて、MgO組成比(atomic:原子比)50/50のMgOターゲットを用いてトンネルバリア層122を成膜した。スパッタガスとしてArを用い、好適範囲0.01乃至0.4Paの圧力範囲のうち、0.2Paの圧力を用いて、マグネトロンRFスパッタリング(13.56MHz)によりMg酸化物層を成膜した。この時、Mg酸化物層は、図7に図示したカラム状結晶72の集合体71よりなる多結晶構造であった。また、この時のマグネトロンRFスパッタリング(13.56MHz)の成膜レートは、0.14nm/secであった。 Subsequently, in place of the sputtering apparatus (chamber 201C), the tunnel barrier layer 122 was formed using an MgO target having an MgO composition ratio (atomic: atomic ratio) of 50/50. An Mg oxide layer was formed by magnetron RF sputtering (13.56 MHz) using Ar as a sputtering gas and using a pressure of 0.2 Pa out of a pressure range of 0.01 to 0.4 Pa as a preferable range. At this time, the Mg oxide layer had a polycrystalline structure composed of the aggregate 71 of column-like crystals 72 shown in FIG. Moreover, the film-forming rate of magnetron RF sputtering (13.56 MHz) at this time was 0.14 nm / sec.
 さらに、基板をスパッタリング装置(チャンバ201B)に導入して、磁化自由層(第7層のCoFeB層1233、第8層のTa層162、第9層のCoFe層1232及び第10層のNiFe層1231)である強磁性体層を成膜した。 Furthermore, the substrate is introduced into a sputtering apparatus (chamber 201 B), and the magnetization free layer (the seventh CoFeB layer 1233, the eighth Ta layer 162, the ninth CoFe layer 1232 and the tenth NiFe layer 1231 ) Was deposited.
 CoFeB層1233とCoFe層1232とNiFe層1231とは、Arをスパッタガスとし、その圧力を0.03Paとし、マグネトロンDCスパッタ(チャンバ201B)によりスパッタレート0.64nm/secで成膜した。この時、それぞれ、CoFeB組成比(atomic)25/25/50、CoFe組成比(atomic)50/50及びNiFe組成比(atomic)40/60のターゲットを用いた。この成膜直後において、CoFeB層1233、CoFe層1232と、NiFe層1231とは、アモルファス構造であった。 The CoFeB layer 1233, the CoFe layer 1232 and the NiFe layer 1231 were formed using Ar as a sputtering gas, a pressure of 0.03 Pa, and a magnetron DC sputtering (chamber 201B) at a sputtering rate of 0.64 nm / sec. At this time, targets of CoFeB composition ratio (atomic) 25/25/50, CoFe composition ratio (atomic) 50/50 and NiFe composition ratio (atomic) 40/60 were used, respectively. Immediately after this film formation, the CoFeB layer 1233, the CoFe layer 1232 and the NiFe layer 1231 had an amorphous structure.
 本例では、Mg酸化物層の成膜速度は0.14nm/secであったが、0.01nm乃至1.0nm/secの範囲で成膜しても問題ない。 In this example, the deposition rate of the Mg oxide layer is 0.14 nm / sec. However, there is no problem in depositing in the range of 0.01 nm to 1.0 nm / sec.
 成膜用マグネトロンスパッタリングチャンバ201A、201B及び201Cのそれぞれでスパッタリング成膜を行って積層が完了した磁気抵抗素子10は、熱処理炉において、約300℃及び4時間で、8kOeの磁場中で、アニーリング処理を実施した。この結果、アモルファス構造のCoFeB層121、BoFeB層1233、CoFe層1232及びNiFe層1231は、図7に図示したカラム状結晶72の集合体71よりなる多結晶構造であったことが確認された。 The magnetoresistive element 10, which has been deposited by sputtering in each of the magnetron sputtering chambers 201A, 201B and 201C for film formation, is annealed in a heat treatment furnace at a temperature of about 300 ° C. and 4 hours in a magnetic field of 8 kOe. Carried out. As a result, it was confirmed that the amorphous structure of CoFeB layer 121, BoFeB layer 1233, CoFe layer 1232 and NiFe layer 1231 had a polycrystalline structure comprising aggregate 71 of columnar crystals 72 shown in FIG.
 このアニーリング工程により、磁気抵抗素子10は、TMR効果を持った磁気抵抗素子として作用することができる。また、このアニーリング工程により、第2層のPtMn層である反強磁性体層14には、所定の磁化が付与されていた。 By this annealing step, the magnetoresistive element 10 can act as a magnetoresistive element having a TMR effect. Moreover, predetermined magnetization was given to the antiferromagnetic material layer 14 which is a PtMn layer of a 2nd layer by this annealing process.
 比較例として、上記第8層のTa層162、第9層のCoFe層1232及び第10層のNiFe層1231の使用を省略した他は、上記実施例と同様の方法を用いて、磁気抵抗素子を作製した。 As a comparative example, a magnetoresistive element is manufactured using the same method as the above example except that the use of the eighth layer Ta layer 162, the ninth layer CoFe layer 1232 and the tenth layer NiFe layer 1231 is omitted. Was produced.
 実施例の磁気抵抗素子と比較例の磁気抵抗素子とのMR比を測定し、対比したところ、実施例の磁気抵抗素子のMR比は、比較例の磁気抵抗素子のMR比と比較し、1.2倍乃至1.5倍以上の数値で改善されていた。 When the MR ratio of the magnetoresistive element of the example and the magnetoresistive element of the comparative example was measured and compared, the MR ratio of the magnetoresistive element of the example was compared with the MR ratio of the magnetoresistive element of the comparative example. It has been improved by 2 times to 1.5 times or more.
 MR比は、外部磁界に応答して磁性膜または磁性多層膜の磁化方向が変化するのに伴って膜の電気抵抗も変化する磁気抵抗効果に関するパラメータで、その電気抵抗の変化率を磁気抵抗変化率(MR比)としたものである。 The MR ratio is a parameter related to the magnetoresistance effect in which the electric resistance of the film changes as the magnetization direction of the magnetic film or magnetic multilayer film changes in response to an external magnetic field, and the rate of change of the electric resistance Rate (MR ratio).
 また、上記実施例において、第7層のCoFeB層1233をCoFe(原子組成比50/50)に変更した他は、全く同様の方法を用いて、磁気抵抗素子を作製したところ、上記実施例と同様の効果が得られた。 Moreover, when the magnetoresistive element was manufactured using the completely same method except changing the CoFeB layer 1233 of the 7th layer into CoFe (atomic composition ratio 50/50) in the said Example, with the said Example and Similar effects were obtained.
 また、上記実施例において、第9層のCoFe層1232をCoFeB(原子組成比;50/30/20)に変更した他は、全く同様の方法を用いて、磁気抵抗素子を作製したところ、上記実施例と同様の効果が得られた。 Further, in the above example, the magnetoresistive element was manufactured using the same method as that of the ninth example except that the CoFe layer 1232 of the ninth layer was changed to CoFeB (atomic composition ratio: 50/30/20). The same effect as in the example was obtained.
 また、上記実施例において、第10層のNiFe層1231をNiFeB(原子組成比;50/30/20)に変更した他は、全く同様の方法を用いて、磁気抵抗素子を作製したところ、上記実施例と同様の効果が得られた。 Also, in the above example, the magnetoresistive element was manufactured using the same method as that of the tenth example except that the NiFe layer 1231 of the tenth layer was changed to NiFeB (atomic composition ratio: 50/30/20). The same effect as in the example was obtained.
 また、上述の実施例で用いた第6層の多結晶Mg酸化物層に換えて、第6層として多結晶BMg酸化物層を用いた他は、全く同様の方法で磁気抵抗素子を作製し、MR比を測定した。BMgO組成比(atomic:原子比)25/25/50のBMgOターゲットを用い、成膜速度は0.14nm/secとした。その結果、上述の多結晶Mg酸化物層を用いた実施例と比較して、一層、顕著に改善されたMR比(多結晶Mg酸化物層を用いた実施例によるMR比に対し、1.5倍以上のMR比)が得られた。 Moreover, in place of the polycrystalline Mg oxide layer of the sixth layer used in the above-described embodiment, a magnetoresistive element is manufactured by the same method as that of the sixth embodiment except that a polycrystalline BMg oxide layer is used. , MR ratio was measured. The deposition rate was 0.14 nm / sec using a BMgO target with a BMgO composition ratio (atomic: atomic ratio) of 25/25/50. As a result, compared with the embodiment using the polycrystalline Mg oxide layer described above, the MR ratio significantly improved (compared to the MR ratio according to the embodiment using the polycrystalline Mg oxide layer). MR ratio of 5 times or more was obtained.
 さらに、比較例として、磁化固定層のCoFeB層121をCoFe(原子組成比;50/50)層に変更した他は、上記実施例と全く同様の方法を用いて、磁気抵抗素子を作製し、MR比を測定した。その結果、本発明の磁気抵抗素子により得たMR比の1/100以下と全く低い測定結果であった。 Furthermore, as a comparative example, a magnetoresistive element is manufactured using the completely same method as the above example except that the CoFeB layer 121 of the magnetization fixed layer is changed to a CoFe (atomic composition ratio; 50/50) layer, The MR ratio was measured. As a result, the measurement results were as low as 1/100 or less of the MR ratio obtained by the magnetoresistive element of the present invention.
 10:磁気抵抗素子、11:基板、12:TMR素子、121:CoFeB強磁性体層(第5層)、122:トンネルバリア層(第6層)、1231:NiFe/NiFeB強磁性体層(第10層;磁化自由層)、1232:CoFe/CoFeB強磁性体層(第9層;磁化自由層)、1233:CoFeB/CoFeB強磁性体層(第7層;磁化自由層)、13:下電極層(第1層;下地層)、14:反強磁性層(第2層)、15:強磁性体層(第3層)、161:交換結合用非磁性層(第4層)、162:非磁性中間層(第8層)、17:上電極層(第11層)、18:ハードマスク層(第12層)、19:磁化固定層、200:磁気抵抗素子作成装置、201A乃至201C:成膜チャンバ、202:搬送チャンバ、203:エッチングチャンバ、204:ゲートバルブ、205,206:ロードロック・アンロードロックチャンバ、31乃至35,41乃至45,51乃至54:カソード、207A乃至207C:電力投入部、301:搬送チャンバ、302乃至304:成膜チャンバ、305:ロードロック・アンロードロックチャンバ、306:中央演算器(CPU)、307乃至311:バスライン、312:記憶媒体、401:MRAM、402:メモリ素子、403:ワード線、404:ビット線、501:トランジスタ、71:カラム状結晶群の集合体、72:カラム状結晶、81:Mg層又はBMg層、82:Mg酸化物層又はBMg酸化物層、83:Mg層又はBMg層 10: magnetoresistive element, 11: substrate, 12: TMR element, 121: CoFeB ferromagnetic layer (fifth layer), 122: tunnel barrier layer (sixth layer), 1231: NiFe / NiFeB ferromagnetic layer (fifth layer) 10 layers: magnetization free layer), 1232: CoFe / CoFeB ferromagnetic layer (ninth layer; magnetization free layer), 1233: CoFeB / CoFeB ferromagnetic layer (seventh layer; magnetization free layer), 13: lower electrode Layer (first layer; base layer), 14: antiferromagnetic layer (second layer), 15: ferromagnetic layer (third layer), 161: nonmagnetic layer for exchange coupling (fourth layer), 162: Nonmagnetic intermediate layer (eighth layer), 17: upper electrode layer (eleventh layer), 18: hard mask layer (12th layer), 19: magnetization fixed layer, 200: magnetoresistive element formation device, 201A to 201C: Deposition chamber, 202: transfer chamber, 203: etch Chamber, 204: gate valve, 205, 206: load lock / unload lock chamber, 31 to 35, 41 to 45, 51 to 54: cathode, 207A to 207C: power input part, 301: transfer chamber, 302 to 304: Deposition chamber 305: load lock / unlock chamber 306: central processing unit (CPU) 307 to 311: bus line 312: storage medium 401: MRAM 402: memory element 403: word line 404 Bit line 501: transistor 71: aggregate of columnar crystals 72: columnar crystals 81: Mg layer or BMg layer 82: Mg oxide layer or BMg oxide layer 83: Mg layer or BMg layer

Claims (6)

  1.  基板、
    前記基板の上に位置し、Co原子、Fe原子及びB原子を含有する合金からなる結晶性第一強磁性体層、
    前記結晶性第一強磁性体層の上に位置し、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を有するトンネルバリア層、
    前記トンネルバリア層の上に位置し、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる結晶性第二強磁性体層、
    前記結晶性第二強磁性体層の上に位置し、非磁性材からなる中間層、並びに、
    前記中間層の上に位置し、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる結晶性強磁性体層、及び、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる結晶性強磁性体層を有する第三強磁性体層
    を有することを特徴とする磁気抵抗素子。
    substrate,
    A crystalline first ferromagnetic layer located on the substrate and made of an alloy containing Co atoms, Fe atoms and B atoms,
    A tunnel barrier layer located on the crystalline first ferromagnetic layer and having a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer,
    A crystalline second ferromagnetic layer located on the tunnel barrier layer and comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and Fe atoms,
    An intermediate layer made of a nonmagnetic material located on the crystalline second ferromagnetic layer, and
    A crystalline ferromagnetic material layer located on the intermediate layer and made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms, Ni atoms, Fe atoms and B A magnetoresistive element comprising a third ferromagnetic layer having a crystalline ferromagnetic layer made of an alloy containing atoms or an alloy containing Ni atoms and Fe atoms.
  2.  前記非磁性材は、非磁性金属又は非磁性絶縁物であることを特徴とする請求項1に記載の磁気抵抗素子。 The magnetoresistive element according to claim 1, wherein the nonmagnetic material is a nonmagnetic metal or a nonmagnetic insulator.
  3.  スパッタリング法を用いて、基板の上に、磁化固定層、磁化自由層、及び該磁化固定層と該磁化自由層との間に位置するトンネルバリア層を成膜する工程を有する磁気抵抗素子の製造方法であって、
     前記トンネルバリア層を成膜する工程は、スパッタリング法により、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を成膜する工程を有し、
     前記磁化自由層を成膜する工程は、
     Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなるターゲットを用いたスパッタリング法により、前記トンネルバリア層に隣接させて、Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層を成膜する工程、
     非磁性材からなるターゲットを用いたスパッタリング法により、前記Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層に隣接させて、非磁性中間層を成膜する工程、
     前記非磁性中間層の上に、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなるターゲットを用いたスパッタリング法により、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる層を成膜し、次いで、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなるターゲットを用いたスパッタリング法により、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる層を成膜して積層膜を形成する工程である
    ことを特徴とする磁気抵抗素子の製造方法。
    Production of a magnetoresistive element having a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer located between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method Method,
    The step of forming the tunnel barrier layer includes the step of forming a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer by sputtering.
    In the step of forming the magnetization free layer,
    Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms Forming a layer comprising an alloy containing or an alloy containing Co atoms and B atoms,
    A nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material. Filming process,
    Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer. Forming a layer comprising an alloy containing Fe or a Co atom and an Fe atom, and then forming an alloy containing an Ni atom, an Fe atom and a B atom, or an alloy containing an Ni atom and an Fe atom Forming a layer of an alloy containing Ni atoms, Fe atoms and B atoms, or an alloy containing Ni atoms and Fe atoms by a sputtering method using Method of manufacturing a magnetoresistive element
  4.  スパッタリング法を用いて、基板の上に、磁化固定層、磁化自由層、及び該磁化固定層と該磁化自由層との間に位置するトンネルバリア層を成膜する工程を有する磁気抵抗素子の製造方法であって、
     前記トンネルバリア層を成膜する工程は、スパッタリング法により、結晶性金属マグネシウム又は結晶性ボロンマグネシウム合金からなる層を成膜し、該金属マグネシウム又はボロンマグネシウム合金を酸化して、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を形成する工程を有し、
     前記磁化自由層を成膜する工程は、
     Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなるターゲットを用いたスパッタリング法により、前記トンネルバリア層に隣接させて、Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層を成膜する工程、
     非磁性材からなるターゲットを用いたスパッタリング法により、前記Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層に隣接させて、非磁性中間層を成膜する工程、
     前記非磁性中間層の上に、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなるターゲットを用いたスパッタリング法により、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる層を成膜し、次いで、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなるターゲットを用いたスパッタリング法により、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる層を成膜して積層膜を形成する工程である
    ことを特徴とする磁気抵抗素子の製造方法。
    Production of a magnetoresistive element having a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer located between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method Method,
    In the step of forming the tunnel barrier layer, a layer made of crystalline metal magnesium or crystalline boron magnesium alloy is formed by sputtering, and the metal magnesium or boron magnesium alloy is oxidized to form a crystalline magnesium oxide layer. Or forming a crystalline boron magnesium oxide layer,
    In the step of forming the magnetization free layer,
    Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms Forming a layer comprising an alloy containing or an alloy containing Co atoms and B atoms,
    A nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material. Filming process,
    Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer. Forming a layer comprising an alloy containing Fe or a Co atom and an Fe atom, and then forming an alloy containing an Ni atom, an Fe atom and a B atom, or an alloy containing an Ni atom and an Fe atom Forming a layer of an alloy containing Ni atoms, Fe atoms and B atoms, or an alloy containing Ni atoms and Fe atoms by a sputtering method using Method of manufacturing a magnetoresistive element
  5.  スパッタリング法を用いて、基板の上に、磁化固定層、磁化自由層、及び該磁化固定層と該磁化自由層との間に位置するトンネルバリア層を成膜する工程を有する磁気抵抗素子の製造を実行する制御プログラムを記憶した記憶媒体であって、
     前記トンネルバリア層及び磁化自由層を成膜する工程を実行する制御プログラムは、
     酸化マグネシウム又はボロンマグネシウム酸化物からなるターゲットを用いたスパッタリング法により、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を成膜する工程、
     Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなるターゲットを用いたスパッタリング法により、前記トンネルバリア層に隣接させて、Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層を成膜する工程、
     非磁性材からなるターゲットを用いたスパッタリング法により、前記Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層に隣接させて、非磁性中間層を成膜する工程、並びに、
     前記非磁性中間層の上に、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなるターゲットを用いたスパッタリング法により、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる層を成膜し、次いで、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなるターゲットを用いたスパッタリング法により、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる層を成膜して積層膜を形成する工程
    を実行するための制御プログラムを記憶したことを特徴とする記憶媒体。
    Production of a magnetoresistive element having a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer located between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method A storage medium storing a control program for executing
    A control program for executing the step of forming the tunnel barrier layer and the magnetization free layer is
    Forming a crystalline magnesium oxide layer or a crystalline boron magnesium oxide layer by a sputtering method using a target made of magnesium oxide or boron magnesium oxide;
    Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms Forming a layer comprising an alloy containing or an alloy containing Co atoms and B atoms,
    A nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material. A process of filming, and
    Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer. Forming a layer comprising an alloy containing Fe or a Co atom and an Fe atom, and then forming an alloy containing an Ni atom, an Fe atom and a B atom, or an alloy containing an Ni atom and an Fe atom A control program for executing a step of forming a laminated film by depositing a layer composed of an alloy containing Ni atoms, Fe atoms and B atoms or an alloy containing Ni atoms and Fe atoms by a sputtering method using A storage medium characterized by storing
  6.  スパッタリング法を用いて、基板の上に、磁化固定層、磁化自由層、及び該磁化固定層と該磁化自由層との間に位置するトンネルバリア層を成膜する工程を有する磁気抵抗素子の製造を実行する制御プログラムを記憶した記憶媒体であって、
     前記トンネルバリア層及び磁化自由層を成膜する工程を実行する制御プログラムは、
     金属マグネシウム又はボロンマグネシウム合金からなるターゲットを用いたスパッタリング法により、結晶性金属マグネシウム又は結晶性ボロンマグネシウム合金からなる層を成膜し、該金属マグネシウム又はボロンマグネシウム合金を酸化して、結晶性酸化マグネシウム層又は結晶性ボロンマグネシウム酸化物層を形成する工程、
     Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなるターゲットを用いたスパッタリング法により、前記トンネルバリア層に隣接させて、Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層を成膜する工程、
     非磁性材からなるターゲットを用いたスパッタリング法により、前記Co原子、Fe原子及びB原子を含有する合金又はCo原子とB原子を含有する合金からなる層に隣接させて、非磁性中間層を成膜する工程、並びに、
     前記非磁性中間層の上に、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなるターゲットを用いたスパッタリング法により、Co原子、Fe原子及びB原子を含有する合金又はCo原子とFe原子とを含有する合金からなる層を成膜し、次いで、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなるターゲットを用いたスパッタリング法により、Ni原子、Fe原子及びB原子を含有する合金又はNi原子とFe原子を含有する合金からなる層を成膜して積層膜を形成する工程
    を実行するための制御プログラムを記憶したことを特徴とする記憶媒体。
    Production of a magnetoresistive element having a step of forming a magnetization fixed layer, a magnetization free layer, and a tunnel barrier layer located between the magnetization fixed layer and the magnetization free layer on a substrate by using a sputtering method A storage medium storing a control program for executing
    A control program for executing the step of forming the tunnel barrier layer and the magnetization free layer is
    A layer of crystalline metallic magnesium or crystalline boron magnesium alloy is formed by sputtering using a target of metallic magnesium or boron magnesium alloy, and the metallic magnesium or boron magnesium alloy is oxidized to form crystalline magnesium oxide. Forming a layer or a crystalline boron magnesium oxide layer,
    Co atoms, Fe atoms and B atoms are made to be adjacent to the tunnel barrier layer by sputtering using a target comprising an alloy containing Co atoms, Fe atoms and B atoms, or an alloy containing Co atoms and B atoms Forming a layer comprising an alloy containing or an alloy containing Co atoms and B atoms,
    A nonmagnetic intermediate layer is formed adjacent to a layer made of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and B atoms by sputtering using a target made of nonmagnetic material. A process of filming, and
    Co atoms, Fe atoms and B atoms are formed by sputtering using a target consisting of an alloy containing Co atoms, Fe atoms and B atoms or an alloy containing Co atoms and Fe atoms on the nonmagnetic interlayer. Forming a layer comprising an alloy containing Fe or a Co atom and an Fe atom, and then forming an alloy containing an Ni atom, an Fe atom and a B atom, or an alloy containing an Ni atom and an Fe atom A control program for executing a step of forming a laminated film by depositing a layer composed of an alloy containing Ni atoms, Fe atoms and B atoms or an alloy containing Ni atoms and Fe atoms by a sputtering method using A storage medium characterized by storing
PCT/JP2009/004247 2008-09-09 2009-08-31 Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method WO2010029701A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010528609A JPWO2010029701A1 (en) 2008-09-09 2009-08-31 Magnetoresistive element, manufacturing method thereof, and storage medium used in the manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-231068 2008-09-09
JP2008231068 2008-09-09

Publications (1)

Publication Number Publication Date
WO2010029701A1 true WO2010029701A1 (en) 2010-03-18

Family

ID=42004967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004247 WO2010029701A1 (en) 2008-09-09 2009-08-31 Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method

Country Status (2)

Country Link
JP (1) JPWO2010029701A1 (en)
WO (1) WO2010029701A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204002A (en) * 2000-12-28 2002-07-19 Nec Corp Spin tunnel magnetoresistance effect film and element, and magnetoresistance sensor using the same, and magnetic device and method of manufacturing the same
JP2004172599A (en) * 2002-11-01 2004-06-17 Nec Corp Magnetoresistive device and method of manufacturing the same
JP2004349687A (en) * 2003-04-17 2004-12-09 Applied Materials Inc Method of fabricating magnetoresistive random access memory (mram) device
JP2007294737A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Tunnel magnetoresistance effect element, and magnetic memory cell and magnetic random access memory using the same
JP2008085170A (en) * 2006-09-28 2008-04-10 Toshiba Corp Magnetoresistance effect-type element and magnetoresistance effect-type random access memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002204002A (en) * 2000-12-28 2002-07-19 Nec Corp Spin tunnel magnetoresistance effect film and element, and magnetoresistance sensor using the same, and magnetic device and method of manufacturing the same
JP2004172599A (en) * 2002-11-01 2004-06-17 Nec Corp Magnetoresistive device and method of manufacturing the same
JP2004349687A (en) * 2003-04-17 2004-12-09 Applied Materials Inc Method of fabricating magnetoresistive random access memory (mram) device
JP2007294737A (en) * 2006-04-26 2007-11-08 Hitachi Ltd Tunnel magnetoresistance effect element, and magnetic memory cell and magnetic random access memory using the same
JP2008085170A (en) * 2006-09-28 2008-04-10 Toshiba Corp Magnetoresistance effect-type element and magnetoresistance effect-type random access memory

Also Published As

Publication number Publication date
JPWO2010029701A1 (en) 2012-02-02

Similar Documents

Publication Publication Date Title
WO2010026705A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
US20100080894A1 (en) Fabricating method of magnetoresistive element, and storage medium
US20100078310A1 (en) Fabricating method of magnetoresistive element, and storage medium
JP4292128B2 (en) Method for manufacturing magnetoresistive element
JP4908556B2 (en) Method for manufacturing magnetoresistive element
US20110143460A1 (en) Method of manufacturing magnetoresistance element and storage medium used in the manufacturing method
JP4774082B2 (en) Method for manufacturing magnetoresistive element
WO2010023833A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
JP2011138954A (en) Method of manufacturing magnetic tunnel junction device using perpendicular magnetization of ferromagnetic layer
WO2010095525A1 (en) Magnetoresistive element and method for manufacturing magnetoresistive element
WO2010026725A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
WO2010026703A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
WO2010026704A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
JP4774092B2 (en) Magnetoresistive element and MRAM using the same
WO2010029701A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
WO2010064564A1 (en) Magnetoresistive element, method of producing same, and storage medium used in method of producing same
JP4902686B2 (en) Method for manufacturing magnetoresistive element
JP2011040496A (en) Method of manufacturing magnetic medium, and sputtering device
JP4774116B2 (en) Magnetoresistive effect element
JP2011018693A (en) Method of manufacturing magnetic medium and film depositing apparatus
JP2009044173A (en) Magnetic multilayer film forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09812850

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010528609

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09812850

Country of ref document: EP

Kind code of ref document: A1