JP4774092B2 - Magnetoresistive element and MRAM using the same - Google Patents
Magnetoresistive element and MRAM using the same Download PDFInfo
- Publication number
- JP4774092B2 JP4774092B2 JP2008259611A JP2008259611A JP4774092B2 JP 4774092 B2 JP4774092 B2 JP 4774092B2 JP 2008259611 A JP2008259611 A JP 2008259611A JP 2008259611 A JP2008259611 A JP 2008259611A JP 4774092 B2 JP4774092 B2 JP 4774092B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ferromagnetic
- ferromagnetic layer
- mram
- interface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 62
- 230000005294 ferromagnetic effect Effects 0.000 claims description 49
- 239000000395 magnesium oxide Substances 0.000 claims description 34
- 229910019236 CoFeB Inorganic materials 0.000 claims description 23
- 230000004888 barrier function Effects 0.000 claims description 21
- 239000013078 crystal Substances 0.000 claims description 20
- 230000000694 effects Effects 0.000 claims description 16
- 239000000758 substrate Substances 0.000 claims description 16
- 238000004544 sputter deposition Methods 0.000 claims description 15
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 7
- 239000010408 film Substances 0.000 description 38
- 230000005291 magnetic effect Effects 0.000 description 19
- 230000005415 magnetization Effects 0.000 description 13
- 238000004519 manufacturing process Methods 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 229910019041 PtMn Inorganic materials 0.000 description 4
- 238000000137 annealing Methods 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 229910003321 CoFe Inorganic materials 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 230000005641 tunneling Effects 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 230000001427 coherent effect Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000010849 ion bombardment Methods 0.000 description 2
- ORQBXQOJMQIAOY-UHFFFAOYSA-N nobelium Chemical compound [No] ORQBXQOJMQIAOY-UHFFFAOYSA-N 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 2
- 229910005435 FeTaN Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical group [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 238000001755 magnetron sputter deposition Methods 0.000 description 1
- 230000003446 memory effect Effects 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Mram Or Spin Memory Techniques (AREA)
- Hall/Mr Elements (AREA)
Description
本発明は、磁気抵抗効果素子およびそれを用いたMRAMに関し、特に、簡単なスパッタリング成膜法を利用して製作され、極めて高い磁気抵抗比を有する磁気抵抗効果素子およびそれを用いたMRAMに関する。 The present invention relates to a magnetoresistive effect element and an MRAM using the magnetoresistive effect element, and more particularly to a magnetoresistive effect element manufactured using a simple sputtering film forming method and having an extremely high magnetoresistance ratio and an MRAM using the magnetoresistive effect element.
近年、不揮発性メモリとしてMRAM(Magnetoresistive Random Access Memory:強誘電体メモリ)と呼ばれる磁気メモリ装置が注目され、実用化の段階に入りつつある。MRAMは、構造が簡単であり、ギガビット級の超高集積化が容易であり、磁気モーメントの回転を利用して記憶作用を生じさせることから書換え可能回数が極めて大きく、さらには動作速度をナノ秒台にすることができるという特性を有している。 In recent years, a magnetic memory device called MRAM (Magnetoresistive Random Access Memory: ferroelectric memory) has been attracting attention as a nonvolatile memory, and is entering the stage of practical use. The MRAM has a simple structure, is easy to achieve ultra-high-gigabit integration, and has a very large number of rewritable times because it uses the rotation of the magnetic moment to generate a memory action. It has the characteristic that it can be used as a stand.
図4にMRAMの構造を示す。MRAM101において、102はメモリ素子、103はワード線、104はビット線である。多数のメモリ素子102のそれぞれは、複数のワード線103と複数のビット線104の各交点位置に配置され、格子状の位置関係に配置される。多数のメモリ素子102のそれぞれが1ビットの情報を記憶する。
FIG. 4 shows the structure of the MRAM. In the
MRAM101のメモリ素子102は、図5に示すごとく、ワード線103とビット線104の交点位置において、1ビットの情報を記憶する磁気抵抗効果素子すなわちTMR素子110と、スイッチ機能を有するトランジスタ106とから構成される。当該メモリ素子102における主要な要素はTMR(Tunneling Magneto resistance:トンネル磁気抵抗効果)素子110が用いられる点である。TMR素子の基本的構造は、図6に示されるように、強磁性金属電極(強磁性層)107/トンネルバリア(トンネル障壁)層108/強磁性金属電極(強磁性層)109から成る三層の積層構造である。TMR素子110は、一対の強磁性層107,109とその中間に位置するトンネルバリア層108によって構成されている。
As shown in FIG. 5, the
TMR素子110は、図6に示されるごとく、トンネルバリア層108の両側の強磁性層107,109の間に所要電圧を印加して一定電流を流した状態において、外部磁場をかけ、強磁性層107,109の磁化の向きが平行で同じであるとき(「平行状態」という)、TMR素子の電気抵抗は最小になり((A)の状態:抵抗値RP)、強磁性層の磁化の向きが平行で反対であるとき(「反平行状態」という)、TMR素子の電気抵抗は最大になる((B)の状態:抵抗値RA)という特性を有する。このためTMR素子110は、外部磁場によって平行状態と反平行状態を作り出すことにより、抵抗値変化として情報の記憶を行うことができる。
As shown in FIG. 6, the
以上のTMR素子に関して、実用性のあるギガビット級のMRAMを実現するために、「平行状態」の抵抗値RPと「反平行状態」の抵抗値RAの差が大きいことが要求される。その指標として磁気抵抗比(MR比)が用いられる。MR比は「(RA−RP)/RP」として定義される。 With respect to the above TMR elements, in order to realize a practical gigabit class MRAM, it is required that the difference between the resistance value R P in the “parallel state” and the resistance value R A in the “anti-parallel state” is large. A magnetoresistance ratio (MR ratio) is used as the index. The MR ratio is defined as “(R A −R P ) / R P ”.
MR比を向上するために、従来は、強磁性金属電極(強磁性層)の電極材料の最適化、またはトンネルバリア層の製造法の工夫等が行われている。例えば特許文献1や特許文献2では、強磁性金属電極(強磁性層)の材料に関してFexCoyBz等を用いたいくつかの最適例が提案されている。 In order to improve the MR ratio, conventionally, the electrode material of the ferromagnetic metal electrode (ferromagnetic layer) has been optimized, or the manufacturing method of the tunnel barrier layer has been devised. For example, Patent Document 1 and Patent Document 2 propose several optimum examples using Fe x Co y B z or the like for the material of the ferromagnetic metal electrode (ferromagnetic layer).
上記の特許文献1,2に開示されるTMR素子のMR比はほぼ70%よりも低く、さらなるMR比の向上が必要である。 The MR ratio of the TMR element disclosed in Patent Documents 1 and 2 is lower than about 70%, and further improvement of the MR ratio is necessary.
また最近では、MgOバリア層を用いた単結晶TMR薄膜に関して、MBEと超高真空蒸着装置を用いてFe/MgO/Feの単結晶TMR薄膜を作製し、MR比88%が得られた報告がなされている(非特許文献1)。このTMR薄膜は完全エピタキシャル単結晶構造を有している。 Recently, a single crystal TMR thin film using an MgO barrier layer has been reported to produce a single crystal TMR thin film of Fe / MgO / Fe using MBE and an ultra-high vacuum deposition apparatus, and an MR ratio of 88% was obtained. (Non-Patent Document 1). This TMR thin film has a complete epitaxial single crystal structure.
上記の非特許文献1に記載の単結晶MgOバリア層を用いた単結晶TMR薄膜を作製するためには、高価なMgO単結晶基板を採用する必要がある。また高価なMBE装置によるFe膜のエピタキシャル成長や超高真空電子ビーム蒸着によるMgOの成膜などの高度な成膜技術が必要となり、成膜時間が長くなるなど量産性に適さないという問題を有している。 In order to produce a single crystal TMR thin film using the single crystal MgO barrier layer described in Non-Patent Document 1, it is necessary to employ an expensive MgO single crystal substrate. In addition, advanced film formation techniques such as epitaxial growth of Fe film by expensive MBE equipment and MgO film formation by ultra-high vacuum electron beam evaporation are required, and there is a problem that it is not suitable for mass productivity because of a long film formation time. ing.
本発明の目的は、高いMR比を有し、量産性を高め、実用性を高めた磁気抵抗効果素子およびそれを用いたMRAMを提供することにある。 An object of the present invention is to provide a magnetoresistive effect element having a high MR ratio, improved mass productivity, and improved practicality, and an MRAM using the magnetoresistive effect element.
本発明に係る磁気抵抗効果素子およびそれを用いたMRAMは、上記目的を達成するために、次のように構成される。 In order to achieve the above object, the magnetoresistive effect element according to the present invention and the MRAM using the magnetoresistive effect element are configured as follows.
本発明の磁気抵抗効果素子は、第1の強磁性層、第2の強磁性層、及び該第1の強磁性層と第2の強磁性層との間に位置するバリア層を有する積層構造、並びに、該第1の強磁性層の側に位置する基板を含む磁気抵抗効果素子であって、前記バリア層は、前記第1の強磁性層との界面から前記第2の強磁性層との界面まで、層の厚さ方向において、(001)面が界面に平行に配向した単結晶構造の酸化マグネシウムを有し、前記第1の強磁性層は、CoFeBを含有することを特徴とする。The magnetoresistive element of the present invention has a laminated structure having a first ferromagnetic layer, a second ferromagnetic layer, and a barrier layer positioned between the first ferromagnetic layer and the second ferromagnetic layer. And a magnetoresistive effect element including a substrate positioned on the first ferromagnetic layer side, wherein the barrier layer is connected to the second ferromagnetic layer from the interface with the first ferromagnetic layer. In the thickness direction of the layer, the (001) plane has magnesium oxide having a single crystal structure oriented in parallel to the interface, and the first ferromagnetic layer contains CoFeB. .
上記本発明の磁気抵抗素子は、前記第1の強磁性層は、前記バリア層の成膜時にアモルファスであること、前記バリア層は、酸化マグネシウムターゲットを用いたスパッタリング法で成膜された層であることをその好ましい態様として含む。In the magnetoresistive element of the present invention, the first ferromagnetic layer is amorphous when the barrier layer is formed, and the barrier layer is a layer formed by a sputtering method using a magnesium oxide target. It is included as a preferable embodiment.
また、本発明のMRAMは、ワード線、前記ワード線と交差配置したビット線、並びに、 前記ワード線と前記ビット線との間を接続するように配置した磁気抵抗効果素子及びトランジスタを有するMRAMであって、前記磁気抵抗効果素子は、第1の強磁性層、第2の強磁性層及び前記第1の強磁性層と第2の強磁性層との間に位置し、前記第1の強磁性層との界面から前記第2の強磁性層との界面まで、層の厚さ方向において、(001)面が該層の界面に平行に配向した単結晶構造の酸化マグネシウム層を有する積層構造を有し、前記第1の強磁性層はCoFeBを含有することを特徴とする。 The MRAM of the present invention is an MRAM having a word line, a bit line arranged to cross the word line, and a magnetoresistive effect element and a transistor arranged to connect the word line and the bit line. The magnetoresistive element is located between the first ferromagnetic layer, the second ferromagnetic layer, and the first ferromagnetic layer and the second ferromagnetic layer, and the first strong layer. A laminated structure having a magnesium oxide layer having a single crystal structure in which the (001) plane is oriented parallel to the interface of the layer in the thickness direction from the interface with the magnetic layer to the interface with the second ferromagnetic layer have a, the first ferromagnetic layer is characterized by containing a CoFeB.
本発明によれば、TMR素子等の磁気抵抗効果素子の中間層であるトンネルバリア層が単結晶構造を有するMgO層であるので、MR比を極めて高くすることができ、これをMRAMのメモリ素子として利用するときギガビット級の超高集積度のMRAMを実現できる。さらに、上記の単結晶MgO層をスパッタリング法で成膜することによって、量産性に適し、実用性の高い磁気抵抗効果素子を作製することができる。 According to the present invention, since the tunnel barrier layer, which is an intermediate layer of the magnetoresistive effect element such as the TMR element, is an MgO layer having a single crystal structure, the MR ratio can be extremely increased. When used as a GRAM, it is possible to realize a GRAM ultra-high integration MRAM. Furthermore, by forming the single crystal MgO layer by a sputtering method, a magnetoresistive element suitable for mass production and highly practical can be manufactured.
以下に、本発明の好適な実施形態(実施例)を添付図面に基づいて説明する。 DESCRIPTION OF EMBODIMENTS Preferred embodiments (examples) of the present invention will be described below with reference to the accompanying drawings.
図1は本発明に係る磁気抵抗効果素子の積層構造の一例を示し、TMR素子の積層構造を示している。このTMR素子10によれば、基板11の上にTMR素子10を構成する例えば9層の多層膜が形成されている。この9層の多層膜では、最下層の第1層から最上層の第9層に向かって「Ta」,「PtMn」,「70CoFe」,「Ru」,「CoFeB」,「MgO」,「CoFeB」,「Ta」,「Ru」の順序で磁性膜等が積層されている。第1層(Ta:タンタル)は下地層であり、第2層(PtMn)は反強磁性層である。第3層から第5層(70CoFe,Ru,CoFeB)から成る層は磁化固定層を形成している。実質的な磁化固定層は第5層の「CoFeB」から成る強磁性層である。第6層(MgO:酸化マグネシウム)は絶縁層であってトンネルバリア層である。第7層(CoFeB)は強磁性層であり、磁化自由層である。第6層(MgO)は、その上下に位置する一対の強磁性層(CoFeB)の間の中間層を形成している。第8層(Ta:タンタル)と第9層(Ru:ルテニウム)はハードマスク層を形成する。上記の磁化固定層(第5層の「CoFeB」)とトンネルバリア層(第6層の「MgO」)と磁化自由層(第7層の「CoFeB」)とによって、基本的構造として狭義な意味でのTMR素子部12が形成される。磁化固定層である第5層の「CoFeB」と磁化自由層である第7層の「CoFeB」はアモルファス状態の強磁性体として知られている。トンネルバリア層であるMgO層は厚さ方向に渡って単結晶構造を有するように形成されている。
FIG. 1 shows an example of a laminated structure of magnetoresistive elements according to the present invention, and shows a laminated structure of TMR elements. According to the
なお、図1において、各層において括弧の中に記載された数値は各層の厚みを示し、単位は「nm(ナノメートル)」である。当該厚みは一例であって、これに限定されるものではない。 In addition, in FIG. 1, the numerical value described in parentheses in each layer indicates the thickness of each layer, and the unit is “nm (nanometer)”. The said thickness is an example and is not limited to this.
次に、図2を参照して、上記の積層構造を有するTMR素子10を製造する装置と製造方法を説明する。図2はTMR素子10を製造する装置の概略的な平面図であり、本装置は複数の磁性膜を含む多層膜を作製することのできる装置であり、量産用のスパッタリング成膜装置である。
Next, with reference to FIG. 2, an apparatus and a manufacturing method for manufacturing the
図2に示された磁性多層膜作製装置20はクラスタ型装置であり、スパッタリング法に基づく複数の成膜チャンバを備えている。本装置20では、図示しないロボット搬送装置を備える搬送チャンバ22が中央位置に設置されている。磁性多層膜作製装置20の搬送チャンバ22には、2つのロード/アンロードチャンバ25,26が設けられ、それぞれにより基板(シリコン基板)11の搬入/搬出が行われる。これらのロード/アンロードチャンバ25,26を交互に使用することによって、生産性よく多層膜を作製できる構成となっている。
The magnetic multilayer
上記の磁性多層膜作製装置20では、搬送チャンバ22の周囲に、例えば、3つの成膜チャンバ27A,27B,27Cと、1つのエッチングチャンバ28とが設けられている。エッチングチャンバ28ではTMR素子10の所要表面をエッチング処理する。各チャンバの間には両チャンバを隔離しかつ必要に応じて開閉自在であるゲートバルブ30が設けられている。なお、各チャンバには、図示しない真空排気機構、ガス導入機構、電力供給機構などが付設されている。
In the magnetic multilayer
磁性多層膜作製装置20の成膜チャンバ27A,27B,27Cの各々ではスパッタリング法により基板11の上に前述した各磁性膜を下側から順次に堆積する。例えば成膜チャンバ27A,27B,27Cの天井部には、それぞれ、適当な円周の上に配置された4基または5基のターゲット(31,32,33,34,35)、(41,42,43,44,45)、(51,52,53,54)が配置される。さらに当該円周と同軸上に位置する基板ホルダ上に基板が配置される。
In each of the
上記において、例えば、ターゲット31の材料は「Ta」であり、ターゲット33の材料は「CoFeB」である。またターゲット41の材料は「PtMn」であり、ターゲット42の材料は「CoFe」であり、ターゲット43の材料は「Ru」である。さらにターゲット51の材料は「MgO」である。
In the above, for example, the material of the
上記の複数のターゲットは、効率よくかつ適切な組成の磁性膜を堆積させるために、好適には各基板に向くように傾斜して設けられるが、基板面に平行な状態で設けられてもよい。また、複数のターゲットと基板とは相対的に回転するような構成に基づいて配置されている。上記の構成を有する装置20において、各成膜チャンバ27A,27B,27Cを利用して、基板11の上に、図1に示した磁性多層膜がスパッタリング法により順次に成膜される。
In order to deposit a magnetic film having an appropriate composition with good efficiency, the plurality of targets are preferably provided so as to be inclined toward each substrate, but may be provided in a state parallel to the substrate surface. . Further, the plurality of targets and the substrate are arranged based on a configuration that rotates relatively. In the
本発明の主要な素子部であるTMR素子部12の成膜条件を述べる。磁化固定層(第5層の「CoFeB」)は、CoFeB組成比60/20/20at%のターゲットを用い、Ar圧力0.03Paで、マグネトロンDCスパッタによりスパッタレート0.64 /secで成膜した。続いて、トンネルバリア層(第6層の「MgO」)は、MgO組成比50/50at%のターゲットを用い、スパッタガスとしてArを用い、圧力は0.01〜0.4Paの範囲で変えて成膜した。マグネトロンRFスパッタによりスパッタレート0.14 /secで成膜を行った。さらに続けて、磁化自由層(第7層の「CoFeB」)を磁化固定層(第5層の「CoFeB」)と同じ成膜条件で成膜した。 Deposition conditions of the TMR element portion 12 which is a main element portion of the present invention will be described. The magnetization fixed layer (“CoFeB” of the fifth layer) was formed at a sputtering rate of 0.64 / sec by magnetron DC sputtering with a CoFeB composition ratio of 60/20/20 at% at an Ar pressure of 0.03 Pa. . Subsequently, the tunnel barrier layer (“MgO” in the sixth layer) uses a target with an MgO composition ratio of 50/50 at%, uses Ar as a sputtering gas, and changes the pressure within a range of 0.01 to 0.4 Pa. A film was formed. Film formation was performed at a sputtering rate of 0.14 / sec by magnetron RF sputtering. Subsequently, a magnetization free layer (seventh layer “CoFeB”) was formed under the same film formation conditions as the magnetization fixed layer (fifth layer “CoFeB”).
この実施例では、MgO膜の成膜速度は0.14 /secであったが、0.01〜1.0 /secの範囲で成膜しても問題ない。 In this embodiment, the deposition rate of the MgO film was 0.14 / sec. However, there is no problem even if the deposition is performed in the range of 0.01 to 1.0 / sec.
成膜チャンバ27A,27B,27Cのそれぞれでスパッタリング成膜を行って積層が完了したTMR素子10は、熱処理炉において、アニーリングアニーリング処理が行われる。このとき、アニーリング温度は例えば約300℃であり、例えば8kOeの磁場中で、例えば4時間アニーリング処理が行われる。これにより、TMR素子10の第2層のPtMnに所要の磁化が与えられる。
The
図3にMgOの磁気特性を測定した結果を示す。測定した全範囲において高いMR比が得られた。特に、圧力が0.05Pa以上0.2Pa以下の領域では、高いMR比が得られた。圧力が0.05Pa以上の領域において、基板上の圧力が増し、イオン衝撃が低下した結果、膜の欠陥が減少したものと推定される。圧力が0.05Pa以上では、MR比は増大し、トンネル抵抗値(RA)は増加した。これは、良好な単結晶膜が形成された結果、膜のリーク電流が減少したためと推定される。一方、0.05Pa以下の領域では、トンネル抵抗値(RA)は低下し、MR比も低下した。これは、イオン衝撃が増大した結果、MgO単結晶膜の欠陥が増大したためと考えられる。サンプルを断面TEMで観察した結果、測定した圧力の全範囲において、MgO膜は下側の界面から上側の界面まで全層にわたり単結晶構造を有しており、界面に平行にMgO単結晶の(001)面が配向している様子が観察された。また、CoFeB層は、アモルファス状態に形成されていることが観察された。 FIG. 3 shows the result of measuring the magnetic properties of MgO. A high MR ratio was obtained over the entire measured range. In particular, a high MR ratio was obtained in the region where the pressure was 0.05 Pa or more and 0.2 Pa or less. In the region where the pressure is 0.05 Pa or more, it is presumed that the film defects are reduced as a result of the pressure on the substrate increasing and the ion bombardment decreasing. When the pressure was 0.05 Pa or more, the MR ratio increased and the tunnel resistance value (RA) increased. This is presumably because the leakage current of the film was reduced as a result of the formation of a good single crystal film. On the other hand, in the region of 0.05 Pa or less, the tunnel resistance value (RA) decreased and the MR ratio also decreased. This is presumably because defects in the MgO single crystal film increased as a result of increased ion bombardment. As a result of observing the sample with a cross-sectional TEM, the MgO film has a single crystal structure over the entire layer from the lower interface to the upper interface in the entire range of the measured pressure, and the MgO single crystal ( The orientation of the (001) plane was observed. Further, it was observed that the CoFeB layer was formed in an amorphous state.
今回のサンプルは、MgO層の両側の強磁性層ともアモルファスのCoFeBで形成したが、どちらか一方のみの強磁性層をアモルファスのCoFeBで形成しても、同様の結果が観測された。この強磁性層は、少なくともバリア層が接する部分がアモルファス物質状態を有すれば十分である。 In this sample, the ferromagnetic layers on both sides of the MgO layer were formed of amorphous CoFeB, but the same result was observed when only one of the ferromagnetic layers was formed of amorphous CoFeB. This ferromagnetic layer is sufficient if at least the portion in contact with the barrier layer has an amorphous material state.
一方、MgO層の両側の強磁性層として多結晶構造を有するCoFeを形成したときには、MgO層には多数の転移が見られ、良好な単結晶膜は得られず、特性の低いものであった。 On the other hand, when CoFe having a polycrystalline structure was formed as the ferromagnetic layer on both sides of the MgO layer, many transitions were observed in the MgO layer, and a good single crystal film could not be obtained and the characteristics were low. .
このとき、前述のごとくターゲットとしてMgOターゲット51が用いられ、かつ好ましくはRF(高周波)マグネトロンスパッタリング法が適用される。なおりアクティブスパッタリング法を用い、MgターゲットをArとO2の混合ガスでスパッタしてMgO膜を形成することもできる。
At this time, as described above, the
なお上記において、MgO層は、全層にわたって単結晶であり、(001)面が界面に平行に配向する単結晶構造を有している。さらに、TMR素子部12を形成する一対の強磁性層は、アモルファス状態を有するCoFeBの代わりに、CoFeTaZr,CoTaZr,CoFeNbZr,CoFeZr,FeTaC,FeTaN,FeCなどのアモルファス状態を有する強磁性層を用いることができる。 In the above, the MgO layer is a single crystal over the entire layer, and has a single crystal structure in which the (001) plane is oriented parallel to the interface. Further, the pair of ferromagnetic layers forming the TMR element portion 12 uses a ferromagnetic layer having an amorphous state such as CoFeTaZr, CoTaZr, CoFeNbZr, CoFeZr, FeTaC, FeTaN, or FeC instead of CoFeB having an amorphous state. Can do.
以上の実施形態で説明された構成、形状、大きさおよび配置関係については本発明が理解・実施できる程度に概略的に示したものにすぎず、また数値および各構成の組成(材質)については例示にすぎない。従って本発明は、説明された実施形態に限定されるものではなく、特許請求の範囲に示される技術的思想の範囲を逸脱しない限り様々な形態に変更することができる。 The configurations, shapes, sizes, and arrangement relationships described in the above embodiments are merely shown to the extent that the present invention can be understood and implemented, and the numerical values and the compositions (materials) of the respective configurations are as follows. It is only an example. Therefore, the present invention is not limited to the described embodiments, and can be modified in various forms without departing from the scope of the technical idea shown in the claims.
本発明は、量産可能で実用性が高く、かつ超高集積化が可能なMRAMのメモリ素子として利用される。 The present invention is used as a memory element of an MRAM that can be mass-produced, has high practicality, and can be highly integrated.
10 TMR素子
11 基板(シリコン基板)
20 磁性多層膜作製装置
27A,27B,27C 成膜チャンバ
10
20 Magnetic multilayer
Claims (4)
前記バリア層は、前記第1の強磁性層との界面から前記第2の強磁性層との界面まで、層の厚さ方向において、(001)面が界面に平行に配向した単結晶構造の酸化マグネシウムを有し、前記第1の強磁性層は、CoFeBを含有することを特徴とする磁気抵抗効果素子。The barrier layer has a single crystal structure in which the (001) plane is oriented parallel to the interface in the thickness direction of the layer from the interface with the first ferromagnetic layer to the interface with the second ferromagnetic layer. A magnetoresistive effect element comprising magnesium oxide, wherein the first ferromagnetic layer contains CoFeB.
前記ワード線と交差配置したビット線、並びに、
前記ワード線と前記ビット線との間を接続するように配置した磁気抵抗効果素子及びトランジスタを有するMRAMであって、
前記磁気抵抗効果素子は、第1の強磁性層、第2の強磁性層及び前記第1の強磁性層と第2の強磁性層との間に位置し、前記第1の強磁性層との界面から前記第2の強磁性層との界面まで、層の厚さ方向において、(001)面が該層の界面に平行に配向した単結晶構造の酸化マグネシウム層を有する積層構造を有し、前記第1の強磁性層はCoFeBを含有することを特徴とするMRAM。 Word line,
A bit line crossing the word line, and
An MRAM having a magnetoresistive element and a transistor arranged to connect between the word line and the bit line;
The magnetoresistive element is located between the first ferromagnetic layer, the second ferromagnetic layer, and the first and second ferromagnetic layers, and from the interface to the interface between the second ferromagnetic layer in the thickness direction of the layer, have a layered structure having a magnesium oxide layer of a single crystal structure (001) plane was oriented parallel to the interface of said layer The MRAM is characterized in that the first ferromagnetic layer contains CoFeB .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008259611A JP4774092B2 (en) | 2008-10-06 | 2008-10-06 | Magnetoresistive element and MRAM using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008259611A JP4774092B2 (en) | 2008-10-06 | 2008-10-06 | Magnetoresistive element and MRAM using the same |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004259280A Division JP4292128B2 (en) | 2004-09-07 | 2004-09-07 | Method for manufacturing magnetoresistive element |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009044174A JP2009044174A (en) | 2009-02-26 |
JP4774092B2 true JP4774092B2 (en) | 2011-09-14 |
Family
ID=40444499
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2008259611A Expired - Lifetime JP4774092B2 (en) | 2008-10-06 | 2008-10-06 | Magnetoresistive element and MRAM using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4774092B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10680167B2 (en) | 2004-03-12 | 2020-06-09 | Japan Science And Technology Agency | Magnetic tunnel junction device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013082961A (en) * | 2011-10-07 | 2013-05-09 | Ulvac Japan Ltd | Sputtering apparatus |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003124541A (en) * | 2001-10-12 | 2003-04-25 | Nec Corp | Exchange coupling film, magnetoresistive effect element, magnetic head, and magnetic random access memory |
JP4082711B2 (en) * | 2004-03-12 | 2008-04-30 | 独立行政法人科学技術振興機構 | Magnetoresistive element and manufacturing method thereof |
-
2008
- 2008-10-06 JP JP2008259611A patent/JP4774092B2/en not_active Expired - Lifetime
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10680167B2 (en) | 2004-03-12 | 2020-06-09 | Japan Science And Technology Agency | Magnetic tunnel junction device |
US11233193B2 (en) | 2004-03-12 | 2022-01-25 | Japan Science And Technology Agency | Method of manufacturing a magnetorestive random access memeory (MRAM) |
US11737372B2 (en) | 2004-03-12 | 2023-08-22 | Godo Kaisha Ip Bridge 1 | Method of manufacturing a magnetoresistive random access memory (MRAM) |
US11968909B2 (en) | 2004-03-12 | 2024-04-23 | Godo Kaisha Ip Bridge 1 | Method of manufacturing a magnetoresistive random access memory (MRAM) |
Also Published As
Publication number | Publication date |
---|---|
JP2009044174A (en) | 2009-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4292128B2 (en) | Method for manufacturing magnetoresistive element | |
JP4774082B2 (en) | Method for manufacturing magnetoresistive element | |
US20100078310A1 (en) | Fabricating method of magnetoresistive element, and storage medium | |
US20100080894A1 (en) | Fabricating method of magnetoresistive element, and storage medium | |
US20110227018A1 (en) | Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method | |
US20110084348A1 (en) | Magnetoresistance element, method of manufacturing the same, and storage medium used in the manufacturing method | |
JP4774092B2 (en) | Magnetoresistive element and MRAM using the same | |
WO2010026725A1 (en) | Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method | |
JP4902686B2 (en) | Method for manufacturing magnetoresistive element | |
WO2010026703A1 (en) | Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method | |
JP4774116B2 (en) | Magnetoresistive effect element | |
WO2010026704A1 (en) | Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method | |
JP2009044173A (en) | Magnetic multilayer film forming apparatus | |
WO2010029701A1 (en) | Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method | |
JPWO2010064564A1 (en) | Magnetoresistive element, manufacturing method thereof, and storage medium used in the manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110420 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110607 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110624 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140701 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4774092 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |