WO2010064564A1 - Magnetoresistive element, method of producing same, and storage medium used in method of producing same - Google Patents

Magnetoresistive element, method of producing same, and storage medium used in method of producing same Download PDF

Info

Publication number
WO2010064564A1
WO2010064564A1 PCT/JP2009/069864 JP2009069864W WO2010064564A1 WO 2010064564 A1 WO2010064564 A1 WO 2010064564A1 JP 2009069864 W JP2009069864 W JP 2009069864W WO 2010064564 A1 WO2010064564 A1 WO 2010064564A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
atoms
magnetoresistive element
ferromagnetic layer
sputtering
Prior art date
Application number
PCT/JP2009/069864
Other languages
French (fr)
Japanese (ja)
Inventor
正樹 栗林
ダビッド ジュリアント ジャヤプラウィラ
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Priority to JP2010513525A priority Critical patent/JPWO2010064564A1/en
Publication of WO2010064564A1 publication Critical patent/WO2010064564A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/305Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling
    • H01F41/307Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices applying the spacer or adjusting its interface, e.g. in order to enable particular effect different from exchange coupling insulating or semiconductive spacer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Definitions

  • the present invention relates to a magnetic reproducing head of a magnetic disk drive, a storage element of a magnetic random access memory, and a magnetoresistive element used for a magnetic sensor, preferably a tunnel magnetoresistive element (in particular, a spin valve tunnel magnetoresistive element). Furthermore, the present invention relates to a method of manufacturing a magnetoresistive element and a storage medium used in the method.
  • Patent Documents 1 to 4 and Non-patent Documents 1 to 5 describe TMR (Tunneling Magneto Resistance) effect elements using a crystalline magnesium oxide film made of single crystal or polycrystal as a tunnel barrier film. There is.
  • An object of the present invention is to provide a magnetoresistive element having a further improved MR ratio as compared with the prior art, a method of manufacturing the same, and a storage medium used in the method of manufacturing.
  • the present invention is a magnetoresistive element, which comprises a substrate, a crystalline first ferromagnetic layer located on the substrate, and the crystalline first ferromagnetic layer.
  • a tunnel barrier layer having a crystal structure of a metal oxide containing B atoms and Mg atoms, located on the side facing the substrate, and the crystalline first ferromagnetic layer of the tunnel barrier layer And a crystalline second ferromagnetic layer located on the side.
  • the present invention also relates to a method of manufacturing a magnetoresistive element, which comprises a first step of forming a first ferromagnetic layer on a substrate by sputtering, and the first step of sputtering using a sputtering method.
  • the present invention is a storage medium storing a control program for causing a computer to execute a method of manufacturing a magnetoresistive element, wherein the manufacturing method forms a film of a first ferromagnetic layer on a substrate.
  • a third sputtering step of depositing a second ferromagnetic layer thereon is a storage medium storing a control program for causing a computer to execute a method of manufacturing a magnetoresistive element, wherein the manufacturing method forms a film of a first ferromagnetic layer on a substrate.
  • the MR ratio achieved by the conventional tunnel magnetoresistive effect element (hereinafter referred to as TMR element) can be significantly improved.
  • the present invention can be mass-produced and highly practical. Therefore, by using the present invention, a memory element of MRAM (Magnetoresistive Random Access Memory: ferroelectric memory) capable of achieving ultra-high integration can be efficiently provided. .
  • MRAM Magneticoresistive Random Access Memory: ferroelectric memory
  • FIG. 6 is a cross-sectional view of another tunnel barrier layer of the present invention. It is a model perspective view of the column-like crystal structure which concerns on the magnetoresistive element of this invention. It is sectional drawing of the TMR element of the other structure of the magnetoresistive element of this invention.
  • a magnetoresistive element comprises a substrate, a crystalline first ferromagnetic layer located on the substrate side, a tunnel barrier layer located on the crystalline first ferromagnetic layer, and the tunnel barrier layer. And a crystalline second ferromagnetic layer located on the top of the first magnetic layer. Furthermore, an antiferromagnet layer located on the crystalline second ferromagnetic layer may be provided.
  • the tunnel barrier layer has a crystal structure of a metal oxide containing B (boron) atoms and Mg atoms (hereinafter referred to as BMg oxide).
  • BMg oxide a metal oxide containing B (boron) atoms and Mg atoms
  • the upper surface of the crystalline second ferromagnetic layer and the lower surface of the antiferromagnetic layer may be interface-connected to each other.
  • an intermediate layer may be provided between the crystalline second ferromagnetic layer and the antiferromagnetic layer.
  • the intermediate layer is, for example, a nonmagnetic material represented by a metal layer (for example, Cu layer, Mg layer, Ru layer, etc.) or a metal oxide layer (for example, MgO layer, TiO 2 layer, Al 2 O 3 layer, etc.) It may be a layer, or may be a laminate layer in which the metal layer and / or the metal oxide layer are laminated as one layer or two or more layers.
  • the tunnel barrier layer is an alloy layer containing B atoms and Mg atoms (hereinafter referred to as BMg layer) or a metal layer composed of Mg atoms (hereinafter referred to as Mg layer). Note) may be included.
  • a laminated film having a BMg oxide crystal layer is formed on both sides of the BMg layer or Mg layer.
  • the BMg layer or the Mg layer may be a single layer or a plurality of two or more layers, and in the case of two or more layers, a crystalline BMg oxide layer is provided between the respective layers.
  • the tunnel barrier layer of the TMR element is made to have the crystal structure of the metal oxide containing B atoms and Mg atoms, so that the MR ratio is significantly larger than that of the conventional TMR element. It can be improved.
  • the content of B atoms in the metal oxide is preferably 30 atomic% or less, more preferably in the range of 0.01 atomic% to 20 atomic%.
  • the BMg oxide used in the present invention has a general formula B x Mg y O z (0.7 ⁇ Z / (X + Y) ⁇ 1.3, preferably 0.8 ⁇ Z / (X + Y) ⁇ It is indicated by 1.0).
  • B x Mg y O z 0.7 ⁇ Z / (X + Y) ⁇ 1.3, preferably 0.8 ⁇ Z / (X + Y) ⁇ It is indicated by 1.0).
  • a high MR ratio can be obtained by using an oxygen deficient BMg oxide.
  • an Mg layer or Mg atoms are contained between the first ferromagnetic layer and the tunnel barrier layer and / or between the second ferromagnetic layer and the tunnel barrier layer.
  • An alloy layer (hereinafter referred to as a Mg alloy layer) may be provided.
  • BMg is preferably used as the Mg alloy layer.
  • an alloy of Co, Fe and B (hereinafter referred to as CoFeB), an alloy of Co and Fe (hereinafter, CoFe) Is preferably used.
  • an alloy of Ni and Fe (hereinafter referred to as NiFe) is also preferably used.
  • at least one type can be selected from the above alloy group.
  • first ferromagnetic layer and the second ferromagnetic layer according to the present invention may be the same alloy, or may be an alloy different from each other.
  • each of the first ferromagnetic layer, the tunnel barrier layer, and the second ferromagnetic layer is an aggregate of columnar crystals (including needle crystals, columnar crystals, and the like). It has a polycrystalline structure formed.
  • FIG. 7 is a schematic perspective view of a polycrystalline structure composed of an aggregate 71 of column-like crystals 72 of BMg oxide.
  • the polycrystalline structure also includes the structure of a polycrystalline-amorphous mixed region including a partially amorphous region in the polycrystalline region.
  • the column-like crystal is preferably a single crystal in which the (001) crystal plane is preferentially oriented in the film thickness direction in each column.
  • the average diameter of the column-like single crystals is preferably 10 nm or less, more preferably in the range of 2 nm to 5 nm.
  • the film thickness is preferably 10 nm or less, more preferably in the range of 0.5 nm to 5 nm.
  • the antiferromagnetic layer used in the present invention for example, an alloy such as PtMn, PdMn, IrMn, RhMn or RuOsMn can be used.
  • a method of manufacturing the magnetoresistive element of the present invention will be described.
  • the production method of the present invention comprises the following steps. First step: A first ferromagnetic layer of amorphous structure is formed by sputtering. Second step: A crystalline layer of BMg oxide is deposited on the first ferromagnetic layer by sputtering. Third step: A second ferromagnetic layer of an amorphous structure is formed on the BMg oxide crystal layer by sputtering. Fourth step: converting the amorphous structure of the first ferromagnetic layer and the second ferromagnetic layer into a crystal structure.
  • each of the first step, the second step and the third step can be carried out using an independent sputtering apparatus (for example, a film forming chamber).
  • the first step is performed using a first sputtering apparatus, and then the substrate is carried from the first sputtering apparatus to the second sputtering apparatus, where the second process is performed. Subsequently, the substrate is carried from the second sputtering apparatus to the third sputtering apparatus, where the third step is performed.
  • the film forming process of the BMg oxide layer and the film forming process of the first and second ferromagnetic layers are preferably carried out using different sputtering apparatuses.
  • the sputtering apparatus used in the present invention is preferably a magnetron sputtering apparatus that applies high frequency power (for example, RF power) to the target.
  • high frequency power for example, RF power
  • an annealing process, an ultrasonic wave application process, and the like can be used as the fifth process performed after the fourth process, but it is particularly preferable to use an annealing process using an infrared irradiation method.
  • the amorphous structure of the first ferromagnetic material and the second ferromagnetic material located at the interface of the BMg oxide crystal layer starts epitaxial growth from the interface to the crystal structure.
  • columnar crystals are formed in the layer thickness direction of the first ferromagnetic layer and the second ferromagnetic layer from the interface.
  • the annealing step used in the present invention is performed at 200 ° C. to 500 ° C. (preferably 230 ° C. to 400 ° C.) for 1 hour to 6 hours (preferably 2 hours to 5 hours).
  • the crystallinity of the produced crystals can be changed.
  • the degree of crystallinity can be 90% or more per total volume, and in particular, the degree of crystallinity can be 100%.
  • the second step according to the present invention is preferably a step of forming a crystalline layer of BMg oxide by sputtering using a target made of BMg oxide.
  • a target made of BMg oxide is preferable, and oxygen gas, ozone gas, water vapor and the like are preferably used as the oxidizing gas.
  • First sputtering step A first ferromagnetic layer of amorphous structure is deposited.
  • Third sputtering step A second ferromagnetic layer of an amorphous structure is formed on the crystalline layer of the metal oxide (BMg oxide).
  • Crystallization step The amorphous structure of the first ferromagnetic layer and the second ferromagnetic layer is converted into a crystal structure.
  • the crystallization step is preferably an annealing step.
  • the second sputtering step is preferably a sputtering step using a target made of BMg oxide.
  • a reactive sputtering step using a target composed of the BMg oxide and an oxidizing gas is preferable.
  • oxygen gas, ozone gas, water vapor and the like are preferably used.
  • Examples of the storage medium of the present invention include hard disk media, magneto-optical disk media, floppy (registered trademark) disk media, nonvolatile memories such as flash memory and MRAM, and the like, and include media capable of storing programs.
  • FIG. 1 shows an example of the laminated structure of the top type magnetoresistance element 10 of the present invention, and shows the laminated structure of the magnetoresistance element 10 using the TMR element 12.
  • the TMR element 12 formed on the substrate 11 is provided.
  • the top type magnetoresistive element 10, including the TMR element 12, has, for example, a multilayer film of nine layers.
  • the nine-layer multilayer film has a multilayer film structure from the lowermost first layer (Ta layer) to the uppermost ninth layer (Ru layer).
  • a magnetic layer and a nonmagnetic layer are sequentially formed of a CoFeB layer, a nonmagnetic BMg oxide layer, a CoFeB layer, a nonmagnetic Ru layer, a CoFe layer, an antiferromagnetic layer PtMn layer, a nonmagnetic Ta layer and a nonmagnetic Ru layer.
  • a magnetic layer is laminated.
  • the numerical values in the parentheses of each layer indicate the thickness of each layer, and the unit is nm. The said thickness is an example, Comprising: It is not limited to this.
  • the antiferromagnetic material layer PtMn layer is an alloy layer containing Pt atoms and Mn atoms.
  • reference numeral 11 denotes a substrate such as a wafer substrate, a glass substrate or a sapphire substrate.
  • Reference numeral 12 denotes a TMR element, which includes a first ferromagnetic layer 123, a tunnel barrier layer 122, and a second ferromagnetic layer 121.
  • Reference numeral 13 denotes a lower electrode layer (base layer) of the first layer (Ta layer), and reference numeral 14 denotes an antiferromagnetic layer of a seventh layer (PtMn layer).
  • Reference numeral 15 is a ferromagnetic layer of a sixth layer (CoFe layer), reference numeral 16 is a nonmagnetic layer for exchange coupling of the fifth layer (Ru layer), and reference numeral 121 is a fourth layer (crystalline CoFeB layer). Ferromagnetic layer.
  • a layer including the fourth layer 121, the fifth layer 16 and the sixth layer 15 is the magnetization fixed layer 19.
  • the substantial magnetization fixed layer 19 is a ferromagnetic layer 121 composed of the crystalline CoFeB layer of the fourth layer, and corresponds to the above-mentioned second ferromagnetic layer according to the present invention.
  • a tunnel barrier layer 122 is a third layer (polycrystalline BMg oxide) and is an insulating layer.
  • the tunnel barrier layer 122 according to the present invention may be a single polycrystalline BMg oxide layer.
  • B as a crystalline BMg layer or Mg layer 1222 such as microcrystalline, polycrystalline or single crystal in a polycrystalline BMg oxide layer as a tunnel barrier layer 122
  • An alloy layer containing atoms and Mg atoms or Mg atoms may be provided.
  • a layered structure in which polycrystalline BMg oxide layers 1221 and 1223 are provided on both sides of the BMg layer or Mg layer 1222 is adopted.
  • the BMg layer or Mg layer 1222 illustrated in FIG. 6 can be a plurality of layers including two or more layers, and can be alternate layers stacked alternately with the BMg oxide layer.
  • FIG. 8 is an example of another TMR element 12 of the present invention.
  • Reference numerals 12, 121, 122 and 123 in FIG. 8 denote the same members as those in FIG.
  • the tunnel barrier layer 122 is a laminated film in which a BMg oxide layer 82 and a BMg layer or Mg layers 81 and 83 on both sides of the layer 82 are laminated.
  • the layer 81 in the above example may be a BMg layer and the layer 83 may be a Mg layer, or the layer 81 in the above example may be an Mg layer and the layer 83 may be a layer BMg layer.
  • the use of the layer 81 described above may be omitted, and the layer 82 may be disposed adjacent to the crystalline ferromagnetic layer 123, or the use of the layer 83 described above may be omitted and the layer 82 It can be disposed adjacent to the ferromagnetic layer 121.
  • the use of the layer 81 described above may be omitted, and the layer 82 may be disposed adjacent to the crystalline ferromagnetic layer 123, or the use of the layer 83 described above may be omitted and the layer 82 It can be disposed adjacent to the ferromagnetic layer 121.
  • the use of the layer 81 described above may be omitted, and the layer 82 may be disposed adjacent to the crystalline ferromagnetic layer 123, or the use of the layer 83 described above may be omitted and the layer 82 It can be disposed adjacent to the ferromagnetic layer 121.
  • a metal layer of Mg atoms or an alloy layer containing Mg atoms is provided.
  • reference numeral 123 denotes a crystalline ferromagnetic layer of a second layer (CoFeB layer), which is a magnetization free layer, and corresponds to the first ferromagnetic layer according to the present invention.
  • the second layer 123 may be a crystalline ferromagnetic layer made of polycrystalline NiFe made of an aggregate of columnar crystals.
  • the crystalline ferromagnetic layers 121 and 123 are preferably provided adjacent to the tunnel barrier layer 122 located between them. In the manufacturing apparatus, these three layers are sequentially stacked without breaking the vacuum.
  • Reference numeral 17 denotes an electrode layer of an eighth layer (Ta layer), and reference numeral 18 denotes a hard mask layer of a ninth layer (Ru layer).
  • the ninth layer may be removed from the magnetoresistive element when used as a hard mask.
  • the ferromagnetic layer 121 (CoFeB layer) which is the fourth layer among the above-mentioned magnetization fixed layers, the third layer (polycrystalline BMg oxide layer) which is the tunnel barrier layer 122, and the second layer which is the magnetization free layer
  • the TMR element 12 is formed by the magnetic layer 123 (CoFeB layer).
  • the tunnel barrier layer 122 (BMg oxide layer), the crystalline ferromagnetic layer 121 (CoFeB layer), and the crystalline ferromagnetic layer 123 preferably have the column-like crystal structure 71 shown in FIG. 7 described above.
  • FIG. 2 is a schematic plan view of an apparatus for manufacturing the magnetoresistive element 10.
  • This apparatus is an apparatus capable of producing a multilayer film including a plurality of magnetic layers and a nonmagnetic layer, and mass production type sputtering film formation It is an apparatus.
  • the magnetic multilayer film manufacturing apparatus 200 shown in FIG. 2 is a cluster type manufacturing apparatus, and includes three film forming chambers based on the sputtering method.
  • a transfer chamber 202 including a robot transfer device (not shown) is installed at a central position.
  • Two load lock / unload lock chambers 205 and 206 are provided in the transfer chamber 202 of the manufacturing apparatus 200 for manufacturing the magnetoresistance element, and loading and unloading of the substrate (for example, silicon substrate) 11 is performed by each of them. .
  • the tact time can be shortened, and the magnetoresistive element can be manufactured with high productivity.
  • the manufacturing apparatus 200 for manufacturing a magnetoresistive element three deposition magnetron sputtering chambers 201A to 201C and one etching chamber 203 are provided around the transfer chamber 202.
  • the required surface of the TMR element 10 is etched.
  • a gate valve 204 which can be opened and closed is provided between each of the chambers 201A to 201C and 203 and the transfer chamber 202.
  • Each of the chambers 201A to 201C and 202 is provided with an evacuation mechanism, a gas introduction mechanism, a power supply mechanism, and the like (not shown).
  • the respective films from the first layer to the ninth layer described above can be sequentially deposited on the substrate 11 using high frequency sputtering without breaking the vacuum. it can.
  • cathodes 31 to 35, 41 to 45, 51 to 54 disposed on suitable circumferences are disposed on the ceilings of the film forming magnetron sputtering chambers 201A to 201C, respectively.
  • the substrate 11 is disposed on a substrate holder located coaxially with the circumference.
  • high frequency power such as radio frequency (RF frequency) is applied to the cathodes 31 to 35, 41 to 45, 51 to 54 from the power input means 207A to 207C.
  • RF frequency radio frequency
  • power in the range of 0.3 MHz to 10 GHz, preferably in the range of 5 MHz to 5 GHz and in the range of 10 W to 500 W, preferably 100 W to 300 W can be used.
  • a Ta target is attached to the cathode 31, a PtMn target to the cathode 32, a CoFeB target to the cathode 33, a CoFe target to the cathode 34, and a Ru target to the cathode 35, respectively.
  • a BMg oxide target or a BMg target is attached to the cathode 41.
  • a reactive sputtering chamber (not shown) for performing reactive sputtering with an oxidizing gas can be connected to the transfer chamber 202.
  • polycrystalline BMg oxide is formed in an oxidation chamber (not shown) using an oxidizing gas (eg, oxygen gas, ozone gas, water vapor, etc.) It can be chemically changed into layers.
  • an oxidizing gas eg, oxygen gas, ozone gas, water vapor, etc.
  • a BMg oxide target can be attached to the cathode 41 and a BMg target can be attached to the cathode 42. At this time, targets can not be attached to the cathodes 43 to 45. Further, a BMg oxide target or a BMg target can also be attached to the cathodes 43 to 45.
  • a CoFeB target is attached to the cathode 51 and a Ta target is attached to the cathode 52.
  • the cathode 53 has no target attached.
  • the cathode 54 has no target attached.
  • the in-plane direction of each of the targets mounted on the cathodes 31 to 35, 41 to 45, and 51 to 52 and the in-plane direction of the substrate are preferably arranged non-parallel to each other.
  • the diameter of the target mounted on the cathodes 31 to 35, 41 to 45, and 51 to 52 is 0.1 to 0.9 times the diameter of the substrate, preferably 0.2 times the diameter of the substrate. To 0.5 times.
  • both can be arranged non-parallel so that the crossing angle between the target central axis and the substrate central axis is 45 ° or less, preferably 5 ° to 30 °.
  • the substrate at this time can use a rotational speed of 10 rpm to 500 rpm, preferably, a rotational speed of 50 rpm to 200 rpm.
  • FIG. 3 is a block diagram of a film forming apparatus used in the present invention.
  • reference numeral 301 denotes a transfer chamber corresponding to the transfer chamber 202 in FIG. 2
  • reference numeral 302 denotes a film forming chamber corresponding to the magnetron sputtering chamber 201A for film formation
  • reference numeral 303 denotes a film corresponding to the magnetron sputtering chamber 201B for film formation. It is a membrane chamber.
  • Reference numeral 304 denotes a film forming chamber corresponding to the film forming magnetron sputtering chamber 201C
  • reference numeral 305 denotes a load lock and unload lock chamber corresponding to the load lock and unload lock chambers 205 and 206.
  • reference numeral 306 denotes a central processing unit (CPU) incorporating the storage medium 312.
  • Reference numerals 309 to 311 are bus lines connecting the CPU 306 and the processing chambers 301 to 305, and control signals for controlling the operations of the processing chambers 301 to 305 are transmitted from the CPU 306 to the processing chambers 301 to 305.
  • a substrate (not shown) in the load lock / unload lock chamber 305 is carried out to the transfer chamber 301.
  • the substrate unloading step is calculated based on a control program as a computer-executable program stored in the storage medium 312 by the CPU 306.
  • the CPU 306 transmits control signals based on the calculation result to the various devices mounted on the load lock / unlock chamber 305 and the transfer chamber 301 through the bus lines 307 and 311. That is, the substrate unloading step is performed by the CPU 306 controlling the execution of the various devices according to the control signal.
  • the various devices include a gate valve (not shown), a robot mechanism, a transport mechanism, a drive system, etc.
  • the storage medium 312 corresponds to the storage medium of the present invention described above.
  • the substrate transported to the transport chamber 301 is carried out to the film forming chamber 302.
  • the first layer 13 and the second layer 123 of FIG. 1 are sequentially stacked on the substrate carried into the film forming chamber 302.
  • the CoFeB layer of the second layer 123 at this stage preferably has an amorphous structure, but may have a polycrystalline structure.
  • various control signals are loaded in the transfer chamber 301 and the film forming chamber 304 through the bus lines 307 and 310 by the CPU 306 in the CPU 306 based on the control program stored in the storage medium 312. Send to device. That is, the transfer of the substrate to the film forming chamber 304 by the transfer chamber 301 and the film forming of the first layer 13 and the second layer 123 by the film forming chamber 304 are controlled by the CPU 306 based on the control signal.
  • various devices which concern, for example, a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system and the like can be mentioned.
  • the CPU 306 controls the film forming chamber 304 to form the second layer 123 as the first ferromagnetic layer on the first layer 13.
  • the substrate having the laminated film up to the second layer is temporarily returned to the transfer chamber 301 and then carried into the film forming chamber 303.
  • a polycrystalline BMg oxide layer is formed as the third layer 122 on the amorphous CoFeB layer of the second layer 123.
  • the CPU 306 controls the control signal calculated based on the control program stored in the storage medium 312 in the CPU 306 through the bus lines 307 and 309 to the transfer chamber 301 and the film forming chamber. It transmits to various devices mounted in 303.
  • the transfer of the substrate to the deposition chamber 303 by the transfer chamber 301 and the deposition of the third layer 122 by the deposition chamber 303 are performed by the CPU 306 controlling the execution of the various devices according to the control signal.
  • the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system and the like.
  • the CPU 306 controls the film forming chamber 303 to form the third layer 122 as a tunnel barrier layer on the second layer 123 according to the control program.
  • the substrate stacked up to the third layer 122 is once returned again to the transfer chamber 301, and is then carried into the deposition chamber 302.
  • the fourth layer 121, the fifth layer 16, the sixth layer 15, the seventh layer 14, the eighth layer 17, and the ninth layer are formed on the polycrystalline BMg oxide layer of the third layer 122.
  • Layers 18 are sequentially stacked.
  • the CoFeB layer of the fourth layer 121 at this stage preferably has an amorphous structure, but may have a polycrystalline structure.
  • the CPU 306 controls the control signal calculated based on the control program stored in the storage medium 312 in the CPU 306 through the bus lines 307 and 308 to the transfer chamber 301 and the film forming chamber 302.
  • the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system and the like.
  • the CPU 306 controls the film forming chamber 302 to form the fourth layer 121 as the second ferromagnetic layer on the third layer 122, and further, the fourth layer 121.
  • the fifth layer 16 to the ninth layer 18 are sequentially formed on the top.
  • the storage medium 312 of the present invention can be any of non-volatile memory such as hard disk medium, magneto-optical disk medium, floppy (registered trademark) disk medium, flash memory and MRAM, and can store programs. It includes the medium.
  • the first to ninth layers are described.
  • the laminated film consisting of layers can be carried into an annealing furnace (not shown).
  • the storage medium 312 stores a control program for performing the process in the annealing furnace. Therefore, according to a control signal obtained by the operation of the CPU 306 based on the control program, various devices in the annealing furnace (for example, a heater mechanism, an exhaust mechanism, a transport mechanism, etc. not shown) are controlled to execute the annealing process. Can. That is, when at least one of the second layer 123 as the first ferromagnetic layer and the fourth layer 121 as the second ferromagnetic layer has an amorphous structure, the CPU 306 controls the annealing furnace to form the second layer. The amorphous structure of 123 and / or the fourth layer 121 can be transformed into a crystalline structure.
  • other alloy layers can be used as the fourth layer 121 and the second layer 123 instead of the above-described CoFeB layer.
  • a polycrystalline ferromagnetic layer such as a CoFeTaZr layer, a CoTaZr layer, a CoFeNbZr layer, a CoFeZr layer, a FeTaC layer, an FeTaN layer, or an FeC layer can be used.
  • an Rh layer or an Ir layer can be used.
  • alloy layers such as IrMn layer, IrMnCr layer, NiMn layer, PdPtMn layer, RuRhMn layer and OsMn layer are preferably used.
  • the film thickness is preferably 10 to 30 nm.
  • the polycrystalline CoFeB layer of the fourth layer 121 can be a two-layered film of a polycrystalline CoFeB layer and a polycrystalline CoFe layer (located on the side of the antiferromagnetic layer 14).
  • the polycrystalline CoFe layer located on the side of the antiferromagnetic layer 14 can be deposited in a polycrystalline state on the BMgO layer of the fourth layer by sputtering.
  • the present inventors confirmed that the CoFeB layer following the film formation of the polycrystalline CoFe layer has an amorphous structure immediately after the sputtering film formation (before the annealing step). Therefore, by annealing the CoFeB layer of the amorphous structure, it is possible to change the phase to an epitaxial polycrystalline structure.
  • FIG. 4 is a schematic view of an MRAM 401 using the magnetoresistive element of the present invention as a memory element.
  • reference numeral 402 is a memory element of the present invention
  • reference numeral 403 is a word line
  • reference numeral 404 is a bit line.
  • Each of the large number of memory elements 402 is arranged at each intersection position of the plurality of word lines 403 and the plurality of bit lines 404, and is arranged in a lattice-like positional relationship.
  • Each of the multiple memory elements 402 can store one bit of information.
  • FIG. 5 is an equivalent circuit diagram including the TMR element 10 storing 1-bit information and the transistor 501 having a switch function at the intersection of the word line 403 and the bit line 404 of the MRAM 401.
  • the magnetoresistive element shown in FIG. 1 was manufactured using the film forming apparatus shown in FIG.
  • the film formation conditions of the TMR element 12 which is the main part are as follows.
  • the ferromagnetic layer 123 is formed at a sputtering rate of 0.64 nm / sec by magnetron DC sputtering (chamber 201C) at an Ar gas pressure of 0.03 Pa using a target having a CoFeB composition ratio (atomic: atomic ratio) of 60/20/20. I made a film.
  • the CoFeB layer (ferromagnetic layer 123) at this time had an amorphous structure. Subsequently, it was changed to a sputtering apparatus (chamber 201B).
  • the pressure of the sputtering gas was set to 0.2 Pa within the pressure range of 0.01 to 0.4 Pa in a preferable range.
  • the tunnel barrier layer 122 which is a BMg oxide layer of the sixth layer was formed by magnetron RF sputtering (13.56 MHz).
  • the BMg oxide layer (tunnel barrier layer 122) had a polycrystalline structure composed of aggregates of columnar crystals.
  • the film-forming rate of magnetron RF sputtering (13.56 MHz) at this time was 0.14 nm / sec.
  • the ferromagnetic layer 121 which is the magnetization fixed layer (the fourth CoFeB layer). It was confirmed that the fourth CoFeB layer (ferromagnetic layer 121) had an amorphous structure.
  • the fifth Ru layer 16, the sixth CoFe layer 15, the seventh PtMn layer 14, the eighth Ta layer 17 and the eighth layer forming the magnetization fixed layer are formed.
  • a Ru layer 18 of nine layers was continuously formed by the chamber 201A without breaking the vacuum state to form a laminated film.
  • the film forming speed of the BMg oxide layer is 0.14 nm / sec, but there is no problem if the film is formed in the range of 0.01 nm to 1.0 nm / sec.
  • Annealing treatment is performed in a magnetic field of 8 kOe at about 300 ° C. and 4 hours in a heat treatment furnace with respect to the magnetoresistive element 10 in which lamination is completed by performing sputtering film formation in each of the film forming magnetron sputtering chambers 201A to 201C. Carried out.
  • the CoFeB layers of the second layer and the fourth layer of the amorphous structure had a polycrystalline structure composed of the aggregate 71 of the column-like crystals 72 shown in FIG.
  • the magnetoresistive element 10 can act as a magnetoresistive element having a TMR effect.
  • predetermined magnetization was given to the antiferromagnetic material layer 14 which is a PtMn layer of a 7th layer by this annealing process.
  • a magnetoresistive element using a polycrystalline Mg oxide layer in which the use of B atoms is omitted was produced.
  • the MR ratio of the magnetoresistive element of the example and the magnetoresistive element of the comparative example was measured and compared, the MR ratio of the example was 1.2 to 1.5 times or more the MR ratio of the comparative example. It has been improved.
  • the MR ratio can be increased.
  • the MR ratio is a parameter related to the magnetoresistance effect in which the electric resistance of the film also changes as the magnetization direction of the magnetic film or magnetic multilayer film changes in response to an external magnetic field.
  • the rate of change in resistance (MR ratio) is used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

A magnetoresistive element having an MR ratio higher than those of prior arts. The magnetoresistive element is provided with a substrate (11), a first ferromagnetic layer (123) formed on top of the substrate (11), a tunnel barrier layer (122) formed on top of the first ferromagnetic layer (123) and having a crystal structure of a metal oxide containing B and Mg atoms, and a second ferromagnetic layer (121) formed on top of the tunnel barrier layer (122).

Description

磁気抵抗素子、その製造方法、および該製造方法に用いる記憶媒体Magnetoresistive element, method of manufacturing the same, and storage medium used in the method of manufacturing
 本発明は、磁気ディスク駆動装置の磁気再生ヘッド、磁気ランダムアクセスメモリの記憶素子及び磁気センサーに用いられる磁気抵抗素子、好ましくは、トンネル磁気抵抗素子(特に、スピンバルブ型トンネル磁気抵抗素子)に関する。さらに、磁気抵抗素子の製造法と、該製造方法に用いる記憶媒体に関する。 The present invention relates to a magnetic reproducing head of a magnetic disk drive, a storage element of a magnetic random access memory, and a magnetoresistive element used for a magnetic sensor, preferably a tunnel magnetoresistive element (in particular, a spin valve tunnel magnetoresistive element). Furthermore, the present invention relates to a method of manufacturing a magnetoresistive element and a storage medium used in the method.
 特許文献1乃至4、非特許文献1乃至5には、単結晶又は多結晶からなる結晶性酸化マグネシウム膜をトンネルバリア膜として用いたTMR(トンネル磁気抵抗;Tunneling Magneto Resistance)効果素子が記載されている。 Patent Documents 1 to 4 and Non-patent Documents 1 to 5 describe TMR (Tunneling Magneto Resistance) effect elements using a crystalline magnesium oxide film made of single crystal or polycrystal as a tunnel barrier film. There is.
特開2003-318465号公報JP 2003-318465 A 国際公開第2005/088745号パンフレットWO 2005/088745 pamphlet 特開2006-80116号公報JP, 2006-80116, A 米国特許出願公開第2006/0056115号明細書US Patent Application Publication No. 2006/0056115
 本発明の課題は、従来技術と比較し、一層改善された高いMR比を持った磁気抵抗素子、その製造方法及び、該製造方法に用いる記憶媒体を提供することにある。 An object of the present invention is to provide a magnetoresistive element having a further improved MR ratio as compared with the prior art, a method of manufacturing the same, and a storage medium used in the method of manufacturing.
 このような課題を解決するために、本発明は、磁気抵抗素子であって、基板と、前記基板上に位置する結晶性第一強磁性体層と、前記結晶性第一強磁性体層の、前記基板と対向する側に位置する、B原子及びMg原子を含有した金属酸化物の結晶構造を有するトンネルバリア層と、前記トンネルバリア層の、前記結晶性第一強磁性体層と対向する側に位置する結晶性第二強磁性体層とを備えることを特徴とする。 In order to solve such problems, the present invention is a magnetoresistive element, which comprises a substrate, a crystalline first ferromagnetic layer located on the substrate, and the crystalline first ferromagnetic layer. A tunnel barrier layer having a crystal structure of a metal oxide containing B atoms and Mg atoms, located on the side facing the substrate, and the crystalline first ferromagnetic layer of the tunnel barrier layer And a crystalline second ferromagnetic layer located on the side.
 また、本発明は、磁気抵抗素子の製造方法であって、スパッタリング法を用いて、基板上に第一強磁性体層を成膜する第一工程と、スパッタリング法を用いて、前記第一強磁性体層の上に、B原子及びMg原子を含有した金属酸化物を含む結晶層を成膜する第二工程と、スパッタリング法を用いて、前記金属酸化物を含む結晶層の上に、第二強磁性体層を成膜する第三工程と、を有することを特徴とする。 The present invention also relates to a method of manufacturing a magnetoresistive element, which comprises a first step of forming a first ferromagnetic layer on a substrate by sputtering, and the first step of sputtering using a sputtering method. A second step of forming a crystalline layer containing a metal oxide containing B atoms and Mg atoms on a magnetic layer, and a sputtering method, using the sputtering method, on the crystalline layer containing the metal oxide, And forming a second ferromagnetic layer.
 さらに、本発明は、コンピュータに、磁気抵抗素子の製造方法を実行させるための制御プログラムを記憶する記憶媒体であって、前記製造方法は、基板上に第一強磁性体層を成膜する第一スパッタリング工程と、前記第一強磁性体層の上に、B原子及びMg原子を含有した金属酸化物を含む結晶層を成膜する第二スパッタリング工程と、前記金属酸化物を含む結晶層の上に、第二強磁性体層を成膜する第三スパッタリング工程とを有することを特徴とする。 Furthermore, the present invention is a storage medium storing a control program for causing a computer to execute a method of manufacturing a magnetoresistive element, wherein the manufacturing method forms a film of a first ferromagnetic layer on a substrate. A second sputtering step of depositing a crystal layer containing a metal oxide containing B atoms and Mg atoms on the first ferromagnetic layer, and a crystal layer containing the metal oxide And a third sputtering step of depositing a second ferromagnetic layer thereon.
 本発明によれば、従来のトンネル磁気抵抗効果素子(以下、TMR素子と記す)で達成されていたMR比を大幅に改善することができる。また、本発明は、量産可能で実用性が高く、よって本発明を用いることにより、超高集積化が可能なMRAM(Magnetoresistive Random Access Memory:強誘電体メモリ)のメモリ素子が効率良く提供される。 According to the present invention, the MR ratio achieved by the conventional tunnel magnetoresistive effect element (hereinafter referred to as TMR element) can be significantly improved. In addition, the present invention can be mass-produced and highly practical. Therefore, by using the present invention, a memory element of MRAM (Magnetoresistive Random Access Memory: ferroelectric memory) capable of achieving ultra-high integration can be efficiently provided. .
本発明の磁気抵抗素子の一例の断面模式図である。It is a cross-sectional schematic diagram of an example of the magnetoresistive element of this invention. 本発明の磁気抵抗素子を製造する成膜装置の一例の構成を模式的に示す図である。It is a figure which shows typically the structure of an example of the film-forming apparatus which manufactures the magnetoresistive element of this invention. 図2の装置のブロック図である。Figure 3 is a block diagram of the device of Figure 2; 本発明の磁気抵抗素子を用いて構成されるMRAMの模式斜視図である。It is a model perspective view of MRAM comprised using the magnetoresistive element of this invention. 本発明の磁気抵抗素子を用いて構成されるMRAMの等価回路図である。It is an equivalent circuit schematic of MRAM comprised using the magnetoresistive element of this invention. 本発明の別のトンネルバリア層の断面図である。FIG. 6 is a cross-sectional view of another tunnel barrier layer of the present invention. 本発明の磁気抵抗素子に係るカラム状結晶構造の模式斜視図である。It is a model perspective view of the column-like crystal structure which concerns on the magnetoresistive element of this invention. 本発明の磁気抵抗素子の他の構成のTMR素子の断面図である。It is sectional drawing of the TMR element of the other structure of the magnetoresistive element of this invention.
 以下、図面を参照して本発明の実施形態を詳細に説明する。なお、以下で説明する図面で、同一機能を有するものは同一符号を付け、その繰り返しの説明は省略する。 
 本発明の磁気抵抗素子は、基板と、該基板側に位置する結晶性第一強磁性体層と、該結晶性第一強磁性体層の上に位置するトンネルバリア層と、該トンネルバリア層の上に位置する結晶性第二強磁性体層とを備えるトップ型磁気抵抗素子である。さらに、該結晶性第二強磁性体層の上に位置する反強磁性体層を備えても良い。そして、上記トンネルバリア層は、B(ボロン)原子及びMg原子を含有した金属酸化物(以下、BMg酸化物と記す)の結晶構造を有する。上記結晶性第二強磁性体層の上面と反強磁性体層の下面とは、互いに界面接続されていてもよい。又、該結晶性第二強磁性体層と該反強磁性体層との間に、中間層を設けても良い。該中間層は、例えば、金属層(例えば、Cu層、Mg層やRu層等)又は金属酸化物層(例えばMgO層やTiO層、Al層等)に代表される非磁性体層であっても良いし、該金属層および/または金属酸化物層を、一層、又は二層以上積層させた積層体層であっても良い。 
 本発明の磁気抵抗素子において、上記トンネルバリア層は、該層中に、B原子及びMg原子を含有した合金層(以下、BMg層と記す)又はMg原子からなる金属層(以下、Mg層と記す)を有していても良い。この場合、該BMg層又はMg層の両側に、BMg酸化物の結晶層を有する積層膜を形成している。また、係るBMg層又はMg層は、単一層でも2層以上の複数層としてもよく、2層以上の場合には、各層間に結晶性のBMg酸化物層が設けられる。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings described below, components having the same function are denoted by the same reference numerals, and the repetitive description thereof is omitted.
A magnetoresistive element according to the present invention comprises a substrate, a crystalline first ferromagnetic layer located on the substrate side, a tunnel barrier layer located on the crystalline first ferromagnetic layer, and the tunnel barrier layer. And a crystalline second ferromagnetic layer located on the top of the first magnetic layer. Furthermore, an antiferromagnet layer located on the crystalline second ferromagnetic layer may be provided. The tunnel barrier layer has a crystal structure of a metal oxide containing B (boron) atoms and Mg atoms (hereinafter referred to as BMg oxide). The upper surface of the crystalline second ferromagnetic layer and the lower surface of the antiferromagnetic layer may be interface-connected to each other. In addition, an intermediate layer may be provided between the crystalline second ferromagnetic layer and the antiferromagnetic layer. The intermediate layer is, for example, a nonmagnetic material represented by a metal layer (for example, Cu layer, Mg layer, Ru layer, etc.) or a metal oxide layer (for example, MgO layer, TiO 2 layer, Al 2 O 3 layer, etc.) It may be a layer, or may be a laminate layer in which the metal layer and / or the metal oxide layer are laminated as one layer or two or more layers.
In the magnetoresistive element of the present invention, the tunnel barrier layer is an alloy layer containing B atoms and Mg atoms (hereinafter referred to as BMg layer) or a metal layer composed of Mg atoms (hereinafter referred to as Mg layer). Note) may be included. In this case, a laminated film having a BMg oxide crystal layer is formed on both sides of the BMg layer or Mg layer. The BMg layer or the Mg layer may be a single layer or a plurality of two or more layers, and in the case of two or more layers, a crystalline BMg oxide layer is provided between the respective layers.
 このように、本発明では、TMR素子のトンネルバリア層が、B原子およびMg原子を含有する金属酸化物の結晶構造を有するようにしているので、従来のTMR素子と比べてMR比を大幅に改善することができる。 As described above, in the present invention, the tunnel barrier layer of the TMR element is made to have the crystal structure of the metal oxide containing B atoms and Mg atoms, so that the MR ratio is significantly larger than that of the conventional TMR element. It can be improved.
 本発明に係るトンネルバリア層において、B原子の金属酸化物中の含有量は30atomic%以下が好ましく、より好ましくは0.01atomic%乃至20atomic%の範囲である。 In the tunnel barrier layer according to the present invention, the content of B atoms in the metal oxide is preferably 30 atomic% or less, more preferably in the range of 0.01 atomic% to 20 atomic%.
 また、本発明で用いられるBMg酸化物は、一般式BxMgyz(0.7≦Z/(X+Y)≦1.3であり、好ましくは、0.8≦Z/(X+Y)<1.0である)で示される。本発明では、化学論量のBMg酸化物を用いるのが好ましいが、酸素欠損のBMg酸化物を用いても高いMR比を得ることができる。 Further, the BMg oxide used in the present invention has a general formula B x Mg y O z (0.7 ≦ Z / (X + Y) ≦ 1.3, preferably 0.8 ≦ Z / (X + Y) < It is indicated by 1.0). In the present invention, although it is preferable to use a stoichiometric amount of BMg oxide, a high MR ratio can be obtained by using an oxygen deficient BMg oxide.
 本発明の磁気抵抗素子においては、第一強磁性体層とトンネルバリア層との間、及び/又は、第二強磁性体層とトンネルバリア層との間に、Mg層又はMg原子を含有した合金層(以下、Mg合金層と記す)を設けても良い。係るMg合金層としては、BMgが好ましく用いられる。 In the magnetoresistive element of the present invention, an Mg layer or Mg atoms are contained between the first ferromagnetic layer and the tunnel barrier layer and / or between the second ferromagnetic layer and the tunnel barrier layer. An alloy layer (hereinafter referred to as a Mg alloy layer) may be provided. As the Mg alloy layer, BMg is preferably used.
 本発明で用いられる第一強磁性体層及び第二強磁性体層には、好ましくは、CoとFeとBとの合金(以下、CoFeBと記す)、CoとFeとの合金(以下、CoFeと記す)が好ましく用いられる。また、CoとFeとNiとの合金(以下、CoFeNiと記す)、CoとFeとNiとBとの合金(以下、CoFeNiBと記す)も好ましく用いられる。さらに、NiとFeとの合金(以下、NiFeと記す)も好ましく用いられる。本発明では、上記合金群より少なくとも1種を選択することができる。 In the first ferromagnetic layer and the second ferromagnetic layer used in the present invention, preferably, an alloy of Co, Fe and B (hereinafter referred to as CoFeB), an alloy of Co and Fe (hereinafter, CoFe) Is preferably used. Further, alloys of Co, Fe and Ni (hereinafter referred to as CoFeNi) and alloys of Co, Fe, Ni and B (hereinafter referred to as CoFeNiB) are also preferably used. Furthermore, an alloy of Ni and Fe (hereinafter referred to as NiFe) is also preferably used. In the present invention, at least one type can be selected from the above alloy group.
 また、本発明に係る第一強磁性体層及び第二強磁性体層は、同一の合金であってもよく、また両者が相違した合金であってもよい。 Further, the first ferromagnetic layer and the second ferromagnetic layer according to the present invention may be the same alloy, or may be an alloy different from each other.
 本発明の磁気抵抗素子において、好ましくは、上記第一強磁性体層、トンネルバリア層、第二強磁性体層がそれぞれ、カラム状結晶(針状結晶、柱状結晶等を含む)の集合体によって形成された多結晶構造を有する。 In the magnetoresistive element of the present invention, preferably, each of the first ferromagnetic layer, the tunnel barrier layer, and the second ferromagnetic layer is an aggregate of columnar crystals (including needle crystals, columnar crystals, and the like). It has a polycrystalline structure formed.
 図7は、BMg酸化物のカラム状結晶72の集合体71からなる多結晶構造の模式斜視図である。該多結晶構造には、多結晶領域内に部分的なアモルファス領域を含む多結晶-アモルファス混合領域の構造物も包含される。該カラム状結晶は、各カラム毎において、膜厚方向で(001)結晶面が優先的に配向した単結晶であることが好ましい。また、該カラム状単結晶の平均的な直径は、好ましくは10nm以下であり、より好ましくは2nm乃至5nmの範囲である。またその膜厚は、好ましくは10nm以下であり、より好ましくは0.5nm乃至5nmの範囲である。 
 本発明で用いる反強磁性体層としては、例えば、PtMn、PdMn、IrMn、RhMnやRuOsMnなどの合金を用いることができる。 
 次に、本発明の磁気抵抗素子の製造方法について説明する。本発明の製造方法は、以下の工程を有する。第一工程:スパッタリング法を用いて、アモルファス構造の第一強磁性体層を成膜する。第二工程:スパッタリング法を用いて、上記第一強磁性体層の上に、BMg酸化物の結晶層を成膜する。第三工程:スパッタリング法を用いて、上記BMg酸化物の結晶層の上に、アモルファス構造の第二強磁性体層を成膜する。第四工程:上記第一強磁性体層及び第二強磁性体層のアモルファス構造を結晶構造に変換する。
FIG. 7 is a schematic perspective view of a polycrystalline structure composed of an aggregate 71 of column-like crystals 72 of BMg oxide. The polycrystalline structure also includes the structure of a polycrystalline-amorphous mixed region including a partially amorphous region in the polycrystalline region. The column-like crystal is preferably a single crystal in which the (001) crystal plane is preferentially oriented in the film thickness direction in each column. The average diameter of the column-like single crystals is preferably 10 nm or less, more preferably in the range of 2 nm to 5 nm. The film thickness is preferably 10 nm or less, more preferably in the range of 0.5 nm to 5 nm.
As the antiferromagnetic layer used in the present invention, for example, an alloy such as PtMn, PdMn, IrMn, RhMn or RuOsMn can be used.
Next, a method of manufacturing the magnetoresistive element of the present invention will be described. The production method of the present invention comprises the following steps. First step: A first ferromagnetic layer of amorphous structure is formed by sputtering. Second step: A crystalline layer of BMg oxide is deposited on the first ferromagnetic layer by sputtering. Third step: A second ferromagnetic layer of an amorphous structure is formed on the BMg oxide crystal layer by sputtering. Fourth step: converting the amorphous structure of the first ferromagnetic layer and the second ferromagnetic layer into a crystal structure.
 本発明では、上記第一工程、上記第二工程及び上記第三工程は、夫々、独立のスパッタリング装置(例えば、成膜チャンバ)を用いて、実施することができる。例えば、第一スパッタリング装置を用いて第一工程を実施し、続いて、基板を第一スパッタリング装置から第二スパッタリング装置に搬入し、ここで第二工程を実施する。続いて、基板を第二スパッタリング装置から第三スパッタリング装置に搬入し、ここで第三工程を実施する。特に、本発明では、BMg酸化物層の成膜工程と、第一及び第二強磁性体層の成膜工程とは、互いに相違したスパッタリング装置を用いて実施することが好ましい。 In the present invention, each of the first step, the second step and the third step can be carried out using an independent sputtering apparatus (for example, a film forming chamber). For example, the first step is performed using a first sputtering apparatus, and then the substrate is carried from the first sputtering apparatus to the second sputtering apparatus, where the second process is performed. Subsequently, the substrate is carried from the second sputtering apparatus to the third sputtering apparatus, where the third step is performed. In particular, in the present invention, the film forming process of the BMg oxide layer and the film forming process of the first and second ferromagnetic layers are preferably carried out using different sputtering apparatuses.
 本発明で用いられるスパッタリング装置は、ターゲットに高周波電力(例えば、RF電力)を印加するマグネトロンスパッタリング装置が好ましい。 The sputtering apparatus used in the present invention is preferably a magnetron sputtering apparatus that applies high frequency power (for example, RF power) to the target.
 本発明においては、上記第四工程の後に行われる第五工程としては、アニーリング工程や超音波印加工程などを用いることができるが、特に、赤外線照射法を用いたアニーリング工程を用いることが好ましい。アニーリング工程中では、BMg酸化物の結晶層の界面に位置する第一強磁性体及び第二強磁性体のアモルファス構造が、該界面から、結晶構造にエピタキャル成長を開始する。この結果、上記界面からの第一強磁性体層及び第二強磁性体層の層厚方向において、カラム状結晶が形成される。 In the present invention, an annealing process, an ultrasonic wave application process, and the like can be used as the fifth process performed after the fourth process, but it is particularly preferable to use an annealing process using an infrared irradiation method. During the annealing step, the amorphous structure of the first ferromagnetic material and the second ferromagnetic material located at the interface of the BMg oxide crystal layer starts epitaxial growth from the interface to the crystal structure. As a result, columnar crystals are formed in the layer thickness direction of the first ferromagnetic layer and the second ferromagnetic layer from the interface.
 本発明で用いられるアニーリング工程は、200℃乃至500℃(好ましくは、230℃乃至400℃)で、1時間乃至6時間(好ましくは、2時間乃至5時間)で実施される。このアニーリング工程の温度及び加熱時間に応じて、生成される結晶の結晶化度を変化させることができる。本発明では、結晶化度を対全体積当り90%以上とすることができ、特に、結晶化度100%とすることができる。 The annealing step used in the present invention is performed at 200 ° C. to 500 ° C. (preferably 230 ° C. to 400 ° C.) for 1 hour to 6 hours (preferably 2 hours to 5 hours). Depending on the temperature and heating time of this annealing step, the crystallinity of the produced crystals can be changed. In the present invention, the degree of crystallinity can be 90% or more per total volume, and in particular, the degree of crystallinity can be 100%.
 本発明に係る上記第二工程は、BMg酸化物から成るターゲットを用いたスパッタリングによって、BMg酸化物の結晶層を成膜する工程が好ましい。特に、該ターゲットと酸化性ガスを用いた反応性スパッタリングが好ましく、該酸化性ガスとしては、酸素ガス、オゾンガス、水蒸気等が好ましく用いられる。 The second step according to the present invention is preferably a step of forming a crystalline layer of BMg oxide by sputtering using a target made of BMg oxide. In particular, reactive sputtering using the target and an oxidizing gas is preferable, and oxygen gas, ozone gas, water vapor and the like are preferably used as the oxidizing gas.
 次に、本発明の記憶媒体について説明する。係る記憶媒体には、次の工程をコンピュータに実行させて磁気抵抗素子を製造するための制御プログラムが記憶されている。第一スパッタリング工程:アモルファス構造の第一強磁性体層を成膜する。第二スパッタリング工程:上記第一強磁性体層の上に、BMg酸化物の結晶層を成膜する。第三スパッタリング工程:上記金属酸化物(BMg酸化物)の結晶層の上に、アモルファス構造の第二強磁性体層を成膜する。第四スパッタリング工程:上記第二強磁性体層の上に、反強磁性体層を成膜する。結晶化工程:上記第一強磁性体層及び第二強磁性体層のアモルファス構造を結晶構造に変換する。 Next, the storage medium of the present invention will be described. The control program for making a computer perform the following process and manufacturing a magnetoresistive element is memorize | stored in the storage medium which concerns. First sputtering step: A first ferromagnetic layer of amorphous structure is deposited. Second sputtering step: A crystalline layer of BMg oxide is formed on the first ferromagnetic layer. Third sputtering step: A second ferromagnetic layer of an amorphous structure is formed on the crystalline layer of the metal oxide (BMg oxide). Fourth sputtering step: An antiferromagnetic layer is formed on the second ferromagnetic layer. Crystallization step: The amorphous structure of the first ferromagnetic layer and the second ferromagnetic layer is converted into a crystal structure.
 上記結晶化工程は、好ましくはアニーリング工程である。また、第二スパッタリング工程は、好ましくはBMg酸化物からなるターゲットを用いたスパッタリング工程である。特に、該第二スパッタリング工程としては、上記BMg酸化物からなるターゲットと酸化性ガスを用いた反応性スパッタリング工程が好ましい。また、酸化性ガスとしては、酸素ガス、オゾンガス、水蒸気等が好ましく用いられる。 The crystallization step is preferably an annealing step. The second sputtering step is preferably a sputtering step using a target made of BMg oxide. In particular, as the second sputtering step, a reactive sputtering step using a target composed of the BMg oxide and an oxidizing gas is preferable. Further, as the oxidizing gas, oxygen gas, ozone gas, water vapor and the like are preferably used.
 本発明の記憶媒体としては、ハードディスク媒体、光磁気ディスク媒体、フロッピー(登録商標)ディスク媒体、フラッシュメモリやMRAM等の不揮発性メモリ全般を挙げることができ、プログラム格納可能な媒体を含むものである。 Examples of the storage medium of the present invention include hard disk media, magneto-optical disk media, floppy (registered trademark) disk media, nonvolatile memories such as flash memory and MRAM, and the like, and include media capable of storing programs.
 以下に、本発明の好適な実施形態を挙げてより詳細に説明する。 
 図1は、本発明のトップ型磁気抵抗素子10の積層構造の一例を示し、TMR素子12を用いた磁気抵抗素子10の積層構造を示している。この磁気抵抗素子10によれば、基板11の上に形成されたTMR素子12を備えている。このトップ型磁気抵抗素子10は、このTMR素子12を含め、例えば、9層の多層膜が形成されている。この9層の多層膜では、最下層の第1層(Ta層)から最上層の第9層(Ru層)に向かった多層膜構造体となっている。具体的には、CoFeB層、非磁性BMg酸化物層、CoFeB層、非磁性Ru層、CoFe層、反強磁性体層PtMn層、非磁性Ta層及び非磁性Ru層の順序で磁性層及び非磁性層が積層されている。尚、各層の括弧中の数値は、各層の厚みを示し、単位はnmである。当該厚みは一例であって、これに限定されるものではない。また、反強磁性体層PtMn層はPt原子とMn原子とを含有する合金層である。
Hereinafter, preferred embodiments of the present invention will be described in more detail.
FIG. 1 shows an example of the laminated structure of the top type magnetoresistance element 10 of the present invention, and shows the laminated structure of the magnetoresistance element 10 using the TMR element 12. According to the magnetoresistive element 10, the TMR element 12 formed on the substrate 11 is provided. The top type magnetoresistive element 10, including the TMR element 12, has, for example, a multilayer film of nine layers. The nine-layer multilayer film has a multilayer film structure from the lowermost first layer (Ta layer) to the uppermost ninth layer (Ru layer). Specifically, a magnetic layer and a nonmagnetic layer are sequentially formed of a CoFeB layer, a nonmagnetic BMg oxide layer, a CoFeB layer, a nonmagnetic Ru layer, a CoFe layer, an antiferromagnetic layer PtMn layer, a nonmagnetic Ta layer and a nonmagnetic Ru layer. A magnetic layer is laminated. The numerical values in the parentheses of each layer indicate the thickness of each layer, and the unit is nm. The said thickness is an example, Comprising: It is not limited to this. Further, the antiferromagnetic material layer PtMn layer is an alloy layer containing Pt atoms and Mn atoms.
 図1において、符号11は、ウエハー基板、ガラス基板やサファイヤ基板などの基板である。符号12はTMR素子で、第一強磁性体層123、トンネルバリア層122及び第二強磁性体層121を有している。符号13は第1層(Ta層)の下電極層(下地層)であり、符号14は第7層(PtMn層)の反強磁性体層である。符号15は第6層(CoFe層)の強磁性体層で、符号16は第5層(Ru層)の交換結合用非磁性体層であり、符号121は第4層(結晶性CoFeB層)の強磁性体層である。これら第4層121、第5層16及び第6層15を含む層が磁化固定層19である。実質的な磁化固定層19は、第4層の結晶性CoFeB層から成る強磁性体層121であり、本発明に係る上記第二強磁性体層に相当する。 In FIG. 1, reference numeral 11 denotes a substrate such as a wafer substrate, a glass substrate or a sapphire substrate. Reference numeral 12 denotes a TMR element, which includes a first ferromagnetic layer 123, a tunnel barrier layer 122, and a second ferromagnetic layer 121. Reference numeral 13 denotes a lower electrode layer (base layer) of the first layer (Ta layer), and reference numeral 14 denotes an antiferromagnetic layer of a seventh layer (PtMn layer). Reference numeral 15 is a ferromagnetic layer of a sixth layer (CoFe layer), reference numeral 16 is a nonmagnetic layer for exchange coupling of the fifth layer (Ru layer), and reference numeral 121 is a fourth layer (crystalline CoFeB layer). Ferromagnetic layer. A layer including the fourth layer 121, the fifth layer 16 and the sixth layer 15 is the magnetization fixed layer 19. The substantial magnetization fixed layer 19 is a ferromagnetic layer 121 composed of the crystalline CoFeB layer of the fourth layer, and corresponds to the above-mentioned second ferromagnetic layer according to the present invention.
 122は、第3層(多結晶BMg酸化物)のトンネルバリア層で、絶縁層である。本発明に係るトンネルバリア層122は、単一の多結晶BMg酸化物層であってもよい。 A tunnel barrier layer 122 is a third layer (polycrystalline BMg oxide) and is an insulating layer. The tunnel barrier layer 122 according to the present invention may be a single polycrystalline BMg oxide layer.
 また、本発明は、図6に図示したように、トンネルバリア層122としての多結晶BMg酸化物層の中に微結晶、多結晶又は単結晶等の結晶性BMg層又はMg層1222といった、B原子およびMg原子を含有した合金層またはMg原子を設けても良い。この場合、BMg層又はMg層1222の両側に多結晶BMg酸化物層1221及び1223を設けた積層構造とする。さらに、図6に図示したBMg層又はMg層1222を、2層以上とした複数層とし、BMg酸化物層と交互に積層した交互層とすることができる。 In the present invention, as illustrated in FIG. 6, B as a crystalline BMg layer or Mg layer 1222 such as microcrystalline, polycrystalline or single crystal in a polycrystalline BMg oxide layer as a tunnel barrier layer 122 An alloy layer containing atoms and Mg atoms or Mg atoms may be provided. In this case, a layered structure in which polycrystalline BMg oxide layers 1221 and 1223 are provided on both sides of the BMg layer or Mg layer 1222 is adopted. Furthermore, the BMg layer or Mg layer 1222 illustrated in FIG. 6 can be a plurality of layers including two or more layers, and can be alternate layers stacked alternately with the BMg oxide layer.
 図8は、本発明の別のTMR素子12の例である。図8中の符号12、121、122及び123は、図1と同一部材である。本例では、トンネルバリア層122は、BMg酸化物層82、並びに、該層82の両側のBMg層又はMg層81及び83を積層させた積層膜である。また、上述例の層81をBMg層とし、層83をMg層としてもよく、又は上述例の層81をMg層とし、層83を層BMg層としてもよい。また、本発明では、上述の層81の使用を省略し、層82を結晶性強磁性体層123に隣接配置することができ、又は上述の層83の使用を省略し、層82を第二強磁性体層121に隣接配置することができる。このように、図8に示す実施形態では、第一強磁性体層123とBMg酸化物層82との間、および第二強磁性体層121とBMg酸化物層82との間のいずれか一方に、Mg原子からなる金属層またはMg原子を含有した合金層が設けられる。 FIG. 8 is an example of another TMR element 12 of the present invention. Reference numerals 12, 121, 122 and 123 in FIG. 8 denote the same members as those in FIG. In this example, the tunnel barrier layer 122 is a laminated film in which a BMg oxide layer 82 and a BMg layer or Mg layers 81 and 83 on both sides of the layer 82 are laminated. In addition, the layer 81 in the above example may be a BMg layer and the layer 83 may be a Mg layer, or the layer 81 in the above example may be an Mg layer and the layer 83 may be a layer BMg layer. Also, in the present invention, the use of the layer 81 described above may be omitted, and the layer 82 may be disposed adjacent to the crystalline ferromagnetic layer 123, or the use of the layer 83 described above may be omitted and the layer 82 It can be disposed adjacent to the ferromagnetic layer 121. Thus, in the embodiment shown in FIG. 8, either one of the first ferromagnetic layer 123 and the BMg oxide layer 82 and the second ferromagnetic layer 121 and the BMg oxide layer 82. A metal layer of Mg atoms or an alloy layer containing Mg atoms is provided.
 図1において、符号123は、第2層(CoFeB層)の結晶性強磁性体層であり、磁化自由層であり、本発明に係る上記第一強磁性体層に相当する。第2層123は、上記の他に、カラム状結晶の集合体からなる多結晶NiFeを用いた結晶性強磁性体層であってもよい。 In FIG. 1, reference numeral 123 denotes a crystalline ferromagnetic layer of a second layer (CoFeB layer), which is a magnetization free layer, and corresponds to the first ferromagnetic layer according to the present invention. In addition to the above, the second layer 123 may be a crystalline ferromagnetic layer made of polycrystalline NiFe made of an aggregate of columnar crystals.
 結晶性強磁性体層121と123とは、それらの中間に位置するトンネルバリア層122と隣接させて設けることが好ましい。製造装置においては、これら3層は、真空を破ることなく、順次、積層される。 The crystalline ferromagnetic layers 121 and 123 are preferably provided adjacent to the tunnel barrier layer 122 located between them. In the manufacturing apparatus, these three layers are sequentially stacked without breaking the vacuum.
 符号17は第8層(Ta層)の電極層であり、符号18は第9層(Ru層)のハードマスク層である。第9層は、ハードマスクとして用いられた際には、磁気抵抗素子から除去されていてもよい。 Reference numeral 17 denotes an electrode layer of an eighth layer (Ta layer), and reference numeral 18 denotes a hard mask layer of a ninth layer (Ru layer). The ninth layer may be removed from the magnetoresistive element when used as a hard mask.
 上記磁化固定層のうちの第4層である強磁性体層121(CoFeB層)とトンネルバリア層122である第3層(多結晶BMg酸化物層)と磁化自由層である第2層の強磁性体層123(CoFeB層)とによって、TMR素子12が形成される。 The ferromagnetic layer 121 (CoFeB layer) which is the fourth layer among the above-mentioned magnetization fixed layers, the third layer (polycrystalline BMg oxide layer) which is the tunnel barrier layer 122, and the second layer which is the magnetization free layer The TMR element 12 is formed by the magnetic layer 123 (CoFeB layer).
 トンネルバリア層122(BMg酸化物層)、結晶性強磁性体層121(CoFeB層)及び結晶性強磁性体層123は、前述の図7に図示したカラム状結晶構造71を有することが好ましい。 The tunnel barrier layer 122 (BMg oxide layer), the crystalline ferromagnetic layer 121 (CoFeB layer), and the crystalline ferromagnetic layer 123 preferably have the column-like crystal structure 71 shown in FIG. 7 described above.
 次に、図2を参照して、上記の積層構造を有する磁気抵抗素子10を製造する装置と製造方法を説明する。図2は磁気抵抗素子10を製造する装置の概略的な平面図であり、本装置は複数の磁性層及び非磁性層を含む多層膜を作製することのできる装置であり、量産型スパッタリング成膜装置である。 Next, with reference to FIG. 2, an apparatus and a method of manufacturing the magnetoresistive element 10 having the above-described laminated structure will be described. FIG. 2 is a schematic plan view of an apparatus for manufacturing the magnetoresistive element 10. This apparatus is an apparatus capable of producing a multilayer film including a plurality of magnetic layers and a nonmagnetic layer, and mass production type sputtering film formation It is an apparatus.
 図2に示された磁性多層膜作製装置200は、クラスタ型製造装置であり、スパッタリング法に基づく3つの成膜チャンバを備えている。本装置200では、ロボット搬送装置(不図示)を備える搬送チャンバ202が中央位置に設置している。磁気抵抗素子製造のための製造装置200の搬送チャンバ202には、2つのロードロック・アンロードロックチャンバ205及び206が設けられ、それぞれにより基板(例えば、シリコン基板)11の搬入及び搬出が行われる。これらのロードロック・アンロードロックチャンバ205及び206により交互に、基板の搬入搬出を実施することによって、タクトタイムを短縮させ、生産性よく磁気抵抗素子を作製できる構成となっている。 The magnetic multilayer film manufacturing apparatus 200 shown in FIG. 2 is a cluster type manufacturing apparatus, and includes three film forming chambers based on the sputtering method. In the present apparatus 200, a transfer chamber 202 including a robot transfer device (not shown) is installed at a central position. Two load lock / unload lock chambers 205 and 206 are provided in the transfer chamber 202 of the manufacturing apparatus 200 for manufacturing the magnetoresistance element, and loading and unloading of the substrate (for example, silicon substrate) 11 is performed by each of them. . By alternately carrying in and out the substrate by the load lock / unload lock chambers 205 and 206, the tact time can be shortened, and the magnetoresistive element can be manufactured with high productivity.
 磁気抵抗素子製造のための製造装置200では、搬送チャンバ202の周囲に、3つの成膜用マグネトロンスパッタリングチャンバ201A乃至201Cと、1つのエッチングチャンバ203とが設けられている。エッチングチャンバ203では、TMR素子10の所要表面をエッチング処理する。各チャンバ201A乃至201C及び203と搬送チャンバ202との間には、開閉自在なゲートバルブ204が設けられている。尚、各チャンバ201A乃至201C及び202には、不図示の真空排気機構、ガス導入機構、電力供給機構などが付設されている。成膜用マグネトロンスパッタリングチャンバ201A乃至201Cは、高周波スパッタリング法を用いて、基板11の上に、真空を破らずに、前述した第1層から第9層までの各膜を順次に堆積することができる。 In the manufacturing apparatus 200 for manufacturing a magnetoresistive element, three deposition magnetron sputtering chambers 201A to 201C and one etching chamber 203 are provided around the transfer chamber 202. In the etching chamber 203, the required surface of the TMR element 10 is etched. A gate valve 204 which can be opened and closed is provided between each of the chambers 201A to 201C and 203 and the transfer chamber 202. Each of the chambers 201A to 201C and 202 is provided with an evacuation mechanism, a gas introduction mechanism, a power supply mechanism, and the like (not shown). In the magnetron sputtering chambers 201A to 201C for film formation, the respective films from the first layer to the ninth layer described above can be sequentially deposited on the substrate 11 using high frequency sputtering without breaking the vacuum. it can.
 成膜用マグネトロンスパッタリングチャンバ201A乃至201Cの天井部には、それぞれ、適当な円周の上に配置された4基または5基のカソード31乃至35、41乃至45、51乃至54が配置される。さらに当該円周と同軸上に位置する基板ホルダ上に基板11が配置される。また、上記カソード31乃至35、41乃至45、51乃至54に装着したターゲットの背後にマグネットを配置したマグネトロンスパッタリング装置とするのが好ましい。 Four or five cathodes 31 to 35, 41 to 45, 51 to 54 disposed on suitable circumferences are disposed on the ceilings of the film forming magnetron sputtering chambers 201A to 201C, respectively. Furthermore, the substrate 11 is disposed on a substrate holder located coaxially with the circumference. Moreover, it is preferable to set it as the magnetron sputtering apparatus which has arrange | positioned the magnet behind the target with which said cathodes 31 to 35, 41 to 45, 51 to 54 were mounted.
 上記装置においては、電力投入手段207A乃至207Cから、上記カソード31乃至35、41乃至45、51乃至54にラジオ周波数(RF周波数)のような高周波電力が印加される。高周波電力としては、0.3MHz乃至10GHzの範囲、好ましくは、5MHz乃至5GHzの範囲の周波数及び10W乃至500Wの範囲、好ましくは、100W乃至300Wの範囲の電力を用いることができる。 In the above apparatus, high frequency power such as radio frequency (RF frequency) is applied to the cathodes 31 to 35, 41 to 45, 51 to 54 from the power input means 207A to 207C. As high frequency power, power in the range of 0.3 MHz to 10 GHz, preferably in the range of 5 MHz to 5 GHz and in the range of 10 W to 500 W, preferably 100 W to 300 W can be used.
 上記において、例えば、カソード31にはTaターゲットが、カソード32にはPtMnターゲットが、カソード33にはCoFeBターゲットが、カソード34にはCoFeターゲットが、カソード35にはRuターゲットがそれぞれ装着される。また、カソード41にはBMg酸化物ターゲット又はBMgターゲットが装着される。BMgターゲットを用いる時は、酸化性ガスとともに反応性スパッタリングを実施するための反応性スパッタリング用チャンバ(不図示)を搬送チャンバ202に接続して実施することができる。 In the above, for example, a Ta target is attached to the cathode 31, a PtMn target to the cathode 32, a CoFeB target to the cathode 33, a CoFe target to the cathode 34, and a Ru target to the cathode 35, respectively. Further, a BMg oxide target or a BMg target is attached to the cathode 41. When a BMg target is used, a reactive sputtering chamber (not shown) for performing reactive sputtering with an oxidizing gas can be connected to the transfer chamber 202.
 また、BMgターゲットを用いたスパッタリングにより多結晶BMg層を成膜した後、酸化性ガス(例えば、酸素ガス、オゾンガス、水蒸気等)を用いた酸化チャンバ(不図示)にて、多結晶BMg酸化物層に化学変化させることができる。 In addition, after a polycrystalline BMg layer is formed by sputtering using a BMg target, polycrystalline BMg oxide is formed in an oxidation chamber (not shown) using an oxidizing gas (eg, oxygen gas, ozone gas, water vapor, etc.) It can be chemically changed into layers.
 また、別の形態例として、カソード41にBMg酸化物ターゲットを、カソード42にBMgターゲットを装着することもできる。この時、カソード43乃至45にはターゲットを未装着とすることができる。また、カソード43乃至45にも、BMg酸化物ターゲット、又はBMgターゲットを装着することもできる。 Further, as another embodiment, a BMg oxide target can be attached to the cathode 41 and a BMg target can be attached to the cathode 42. At this time, targets can not be attached to the cathodes 43 to 45. Further, a BMg oxide target or a BMg target can also be attached to the cathodes 43 to 45.
 カソード51にはCoFeBターゲットが、カソード52にはTaターゲットが、装着される。カソード53は、ターゲットが未装着である。また、カソード54は¥も、ターゲットを未装着とする。 A CoFeB target is attached to the cathode 51 and a Ta target is attached to the cathode 52. The cathode 53 has no target attached. Also, the cathode 54 has no target attached.
 上記カソード31乃至35、41乃至45、並びに、51乃至52に装着した各ターゲットの各面内方向と基板の面内方向とは、互いに、非平行に配置することが好ましい。該非平行な配置を用い、基板径より小径のターゲットを回転させながらスパッタリングすることによって、高効率で、且つ、ターゲット組成と同一組成の磁性膜及び非磁性膜を堆積させることができる。又、上記カソード31乃至35、41乃至45、並びに、51乃至52に搭載するターゲットの直径は、基板の直径の0.1倍乃至0.9倍の長さとするか、好ましくは0.2倍乃至0.5倍とする。 The in-plane direction of each of the targets mounted on the cathodes 31 to 35, 41 to 45, and 51 to 52 and the in-plane direction of the substrate are preferably arranged non-parallel to each other. By using the non-parallel arrangement and sputtering while rotating a target smaller than the substrate diameter, magnetic films and nonmagnetic films can be deposited with high efficiency and the same composition as the target composition. The diameter of the target mounted on the cathodes 31 to 35, 41 to 45, and 51 to 52 is 0.1 to 0.9 times the diameter of the substrate, preferably 0.2 times the diameter of the substrate. To 0.5 times.
 上記非平行な配置は、例えば、ターゲット中心軸と基板中心軸との交差角を45°以下、好ましくは5°乃至30°となる様に、両者を非平行に配置することができる。また、この時の基板は、10rpm乃至500rpmの回転速度、好ましくは、50rpm乃至200rpmの回転速度を用いることができる。 In the non-parallel arrangement, for example, both can be arranged non-parallel so that the crossing angle between the target central axis and the substrate central axis is 45 ° or less, preferably 5 ° to 30 °. Also, the substrate at this time can use a rotational speed of 10 rpm to 500 rpm, preferably, a rotational speed of 50 rpm to 200 rpm.
 図3は、本発明に用いられる成膜装置のブロック図である。図中、符号301は図2中の搬送チャンバ202に相当する搬送チャンバ、符号302は成膜用マグネトロンスパッタリングチャンバ201Aに相当する成膜チャンバ、符号303は成膜用マグネトロンスパッタリングチャンバ201Bに相当する成膜チャンバである。また、符号304は成膜用マグネトロンスパッタリングチャンバ201Cに相当する成膜チャンバ、符号305はロードロック・アンロードロックチャンバ205及び206に相当するロードロック・アンロードロックチャンバである。さらに、符号306は記憶媒体312を内蔵した中央演算器(CPU)である。符号309乃至311は、CPU306と各処理チャンバ301乃至305とを接続するバスラインで、各処理チャンバ301乃至305の動作を制御する制御信号がCPU306より各処理チャンバ301乃至305に送信される。 FIG. 3 is a block diagram of a film forming apparatus used in the present invention. In the figure, reference numeral 301 denotes a transfer chamber corresponding to the transfer chamber 202 in FIG. 2, reference numeral 302 denotes a film forming chamber corresponding to the magnetron sputtering chamber 201A for film formation, and reference numeral 303 denotes a film corresponding to the magnetron sputtering chamber 201B for film formation. It is a membrane chamber. Reference numeral 304 denotes a film forming chamber corresponding to the film forming magnetron sputtering chamber 201C, and reference numeral 305 denotes a load lock and unload lock chamber corresponding to the load lock and unload lock chambers 205 and 206. Further, reference numeral 306 denotes a central processing unit (CPU) incorporating the storage medium 312. Reference numerals 309 to 311 are bus lines connecting the CPU 306 and the processing chambers 301 to 305, and control signals for controlling the operations of the processing chambers 301 to 305 are transmitted from the CPU 306 to the processing chambers 301 to 305.
 本発明の磁気抵抗素子の製造においては、例えば、ロードロック・アンロードロックチャンバ305内の基板(図示せず)は搬送チャンバ301に搬出される。この基板搬出工程は、CPU306が記憶媒体312に記憶させた、コンピュータ実行可能プログラム(computer-executable program)としての制御プログラムに基づいて演算する。そして、CPU306が、この演算結果に基づく制御信号を、バスライン307及び311を通して、ロードロック・アンロードロックチャンバ305及び搬送チャンバ301に搭載した各種装置に送信する。すなわち、上記基板搬出工程は、CPU306が上記制御信号により上記各種装置の実行を制御することによって実施される。上記各種装置としては、例えば、不図示のゲートバルブ、ロボット機構、搬送機構、駆動系等が挙げられ、記憶媒体312が前述した本発明の記憶媒体に相当する。 In the manufacture of the magnetoresistive element of the present invention, for example, a substrate (not shown) in the load lock / unload lock chamber 305 is carried out to the transfer chamber 301. The substrate unloading step is calculated based on a control program as a computer-executable program stored in the storage medium 312 by the CPU 306. Then, the CPU 306 transmits control signals based on the calculation result to the various devices mounted on the load lock / unlock chamber 305 and the transfer chamber 301 through the bus lines 307 and 311. That is, the substrate unloading step is performed by the CPU 306 controlling the execution of the various devices according to the control signal. Examples of the various devices include a gate valve (not shown), a robot mechanism, a transport mechanism, a drive system, etc., and the storage medium 312 corresponds to the storage medium of the present invention described above.
 搬送チャンバ301に搬送された基板は、成膜チャンバ302に搬出される。成膜チャンバ302に搬入された基板は、ここで、図1の第1層13及び第2層123が順次積層される。この段階での第2層123のCoFeB層は、好ましくはアモルファス構造となっているが、多結晶構造であってもよい。 The substrate transported to the transport chamber 301 is carried out to the film forming chamber 302. Here, the first layer 13 and the second layer 123 of FIG. 1 are sequentially stacked on the substrate carried into the film forming chamber 302. The CoFeB layer of the second layer 123 at this stage preferably has an amorphous structure, but may have a polycrystalline structure.
 上記積層プロセスでは、CPU306が、該CPU306内で、記憶媒体312に記憶させた制御プログラムに基づいて演算された制御信号を、バスライン307,310を通して搬送チャンバ301及び成膜チャンバ304に搭載した各種装置に送信する。すなわち、搬送チャンバ301による基板の成膜チャンバ304への搬送、および成膜チャンバ304による第1層13および第2層123の成膜は、CPU306が上記制御信号により上記各種装置の実行を制御することで実施される。係る各種装置としては、例えば、不図示のカソードへの電力投入機構、基板回転機構、ガス導入機構、排気機構、ゲートバルブ、ロボット機構、搬送機構、駆動系等が挙げられる。 
 このように、上記制御プログラムに従ってCPU306は、成膜チャンバ304を制御して、第1層13上に、第一強磁性体層としての第2層123を形成させる。
In the stacking process, various control signals are loaded in the transfer chamber 301 and the film forming chamber 304 through the bus lines 307 and 310 by the CPU 306 in the CPU 306 based on the control program stored in the storage medium 312. Send to device. That is, the transfer of the substrate to the film forming chamber 304 by the transfer chamber 301 and the film forming of the first layer 13 and the second layer 123 by the film forming chamber 304 are controlled by the CPU 306 based on the control signal. To be implemented. As various devices which concern, for example, a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system and the like can be mentioned.
Thus, according to the control program, the CPU 306 controls the film forming chamber 304 to form the second layer 123 as the first ferromagnetic layer on the first layer 13.
 上記第2層までの積層膜を持った基板は、一旦、搬送チャンバ301に戻され、その後成膜チャンバ303に搬入される。成膜チャンバ303内で、上記第2層123のアモルファスCoFeB層の上に、第3層122として、多結晶BMg酸化物層の成膜を実行する。第3層122の成膜では、CPU306が、該CPU306内で、記憶媒体312に記憶させた制御プログラムに基づいて演算された制御信号を、バスライン307,309を通して、搬送チャンバ301及び成膜チャンバ303に搭載した各種装置に送信する。すなわち、搬送チャンバ301による基板の成膜チャンバ303への搬送、および成膜チャンバ303による第3層122の成膜は、CPU306が上記制御信号により上記各種装置の実行を制御することで実施される。上記各種装置としては、例えば、不図示のカソードへの電力投入機構、基板回転機構、ガス導入機構、排気機構、ゲートバルブ、ロボット機構、搬送機構、駆動系等が挙げられる。 
 このように、上記制御プログラムに従ってCPU306は、成膜チャンバ303を制御して、第2層123上に、トンネルバリア層としての第3層122を形成させる。
The substrate having the laminated film up to the second layer is temporarily returned to the transfer chamber 301 and then carried into the film forming chamber 303. In the film forming chamber 303, a polycrystalline BMg oxide layer is formed as the third layer 122 on the amorphous CoFeB layer of the second layer 123. In the film formation of the third layer 122, the CPU 306 controls the control signal calculated based on the control program stored in the storage medium 312 in the CPU 306 through the bus lines 307 and 309 to the transfer chamber 301 and the film forming chamber. It transmits to various devices mounted in 303. That is, the transfer of the substrate to the deposition chamber 303 by the transfer chamber 301 and the deposition of the third layer 122 by the deposition chamber 303 are performed by the CPU 306 controlling the execution of the various devices according to the control signal. . Examples of the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system and the like.
As described above, the CPU 306 controls the film forming chamber 303 to form the third layer 122 as a tunnel barrier layer on the second layer 123 according to the control program.
 上記第3層122まで積層した基板は、再度、一旦、搬送チャンバ301に戻され、その後成膜チャンバ302に搬入される。成膜チャンバ304内で、上記第3層122の多結晶BMg酸化物層の上に、第4層121、第5層16、第6層15、第7層14、第8層17及び第9層18が順次積層される。この段階での第4層121のCoFeB層は、好ましくは、アモルファス構造となっているが、多結晶構造であってもよい。 The substrate stacked up to the third layer 122 is once returned again to the transfer chamber 301, and is then carried into the deposition chamber 302. In the film forming chamber 304, the fourth layer 121, the fifth layer 16, the sixth layer 15, the seventh layer 14, the eighth layer 17, and the ninth layer are formed on the polycrystalline BMg oxide layer of the third layer 122. Layers 18 are sequentially stacked. The CoFeB layer of the fourth layer 121 at this stage preferably has an amorphous structure, but may have a polycrystalline structure.
 第9層までの積層では、CPU306は、該CPU306内で、記憶媒体312に記憶させた制御プログラムに基づいて演算された制御信号を、バスライン307,308を通して、搬送チャンバ301及び成膜チャンバ302に搭載した各種装置に送信する。すなわち、搬送チャンバ301による基板の成膜チャンバ302への搬送、および成膜チャンバ302による第4層121~第9層18までの成膜は、CPU306が上記制御信号により上記各種装置の実行を制御することで実施される。上記各種装置としては、例えば、不図示のカソードへの電力投入機構、基板回転機構、ガス導入機構、排気機構、ゲートバルブ、ロボット機構、搬送機構、駆動系等が挙げられる。 In the stack up to the ninth layer, the CPU 306 controls the control signal calculated based on the control program stored in the storage medium 312 in the CPU 306 through the bus lines 307 and 308 to the transfer chamber 301 and the film forming chamber 302. Send to various devices installed in That is, the transfer of the substrate to the film forming chamber 302 by the transfer chamber 301 and the film forming of the fourth layer 121 to the ninth layer 18 by the film forming chamber 302 are controlled by the CPU 306 by the control signal. It is carried out by doing. Examples of the various devices include a power input mechanism to a cathode (not shown), a substrate rotation mechanism, a gas introduction mechanism, an exhaust mechanism, a gate valve, a robot mechanism, a transport mechanism, a drive system and the like.
 このように、上記制御プログラムに従ってCPU306は、成膜チャンバ302を制御して、第3層122上に、第二強磁性体層としての第4層121を形成させ、さらに、該第4層121上に、第5層16~第9層18を順次形成させる。 Thus, according to the control program, the CPU 306 controls the film forming chamber 302 to form the fourth layer 121 as the second ferromagnetic layer on the third layer 122, and further, the fourth layer 121. The fifth layer 16 to the ninth layer 18 are sequentially formed on the top.
 本発明の記憶媒体312としては、前述したように、ハードディスク媒体、光磁気ディスク媒体、フロッピー(登録商標)ディスク媒体、フラッシュメモリやMRAM等の不揮発性メモリ全般を挙げることができ、プログラム格納可能な媒体を含むものである。 As described above, the storage medium 312 of the present invention can be any of non-volatile memory such as hard disk medium, magneto-optical disk medium, floppy (registered trademark) disk medium, flash memory and MRAM, and can store programs. It includes the medium.
 上記第4層121及び第2層123のアモルファスCoFeB層のアニーリングによる多結晶化を促す、及び、第7層14の反強磁性体PtMn層の磁気付与を促すために、第1層乃至第9層からなる積層膜をアニーリング炉(不図示)に搬入することができる。 In order to promote the polycrystallization of the amorphous CoFeB layer of the fourth layer 121 and the second layer 123 by annealing, and to promote the magnetic application of the antiferromagnetic PtMn layer of the seventh layer 14, the first to ninth layers are described. The laminated film consisting of layers can be carried into an annealing furnace (not shown).
 上記記憶媒体312には、アニーリング炉での工程を実施するための制御プログラムが記憶されている。よって、該制御プログラムに基づく、CPU306の演算により得た制御信号によって、アニーリング炉内の各種装置(例えば、不図示のヒータ機構、排気機構、搬送機構等)を制御し、アニーリング工程を実行することができる。すなわち、第一強磁性体層としての第2層123および第二強磁性体層としての第4層121の少なくとも一方がアモルファス構造である場合、CPU306は、アニーリング炉を制御して、第2層123および/または第4層121のアモルファス構造を結晶構造に変換させることができる。 The storage medium 312 stores a control program for performing the process in the annealing furnace. Therefore, according to a control signal obtained by the operation of the CPU 306 based on the control program, various devices in the annealing furnace (for example, a heater mechanism, an exhaust mechanism, a transport mechanism, etc. not shown) are controlled to execute the annealing process. Can. That is, when at least one of the second layer 123 as the first ferromagnetic layer and the fourth layer 121 as the second ferromagnetic layer has an amorphous structure, the CPU 306 controls the annealing furnace to form the second layer. The amorphous structure of 123 and / or the fourth layer 121 can be transformed into a crystalline structure.
 また、本発明では、上記第4層121及び第2層123として、上述のCoFeB層に換えて他の合金層を用いることができる。具体的には、CoFeTaZr層、CoTaZr層、CoFeNbZr層、CoFeZr層、FeTaC層、FeTaN層、又はFeC層などの多結晶強磁性体層を用いることができる。 In the present invention, other alloy layers can be used as the fourth layer 121 and the second layer 123 instead of the above-described CoFeB layer. Specifically, a polycrystalline ferromagnetic layer such as a CoFeTaZr layer, a CoTaZr layer, a CoFeNbZr layer, a CoFeZr layer, a FeTaC layer, an FeTaN layer, or an FeC layer can be used.
 また、本発明では、上記第5層16のRu層に換えて、Rh層又はIr層を用いることができる。 In the present invention, in place of the Ru layer of the fifth layer 16, an Rh layer or an Ir layer can be used.
 さらに、本発明では、上記第7層14のPtMn層に換えて、IrMn層、IrMnCr層、NiMn層、PdPtMn層、RuRhMn層やOsMn層等の各合金層が好ましく用いられる。又、その膜厚は、10乃至30nmが好ましい。 Furthermore, in the present invention, instead of the PtMn layer of the seventh layer 14, alloy layers such as IrMn layer, IrMnCr layer, NiMn layer, PdPtMn layer, RuRhMn layer and OsMn layer are preferably used. The film thickness is preferably 10 to 30 nm.
 本発明では、上記第4層121の多結晶CoFeB層を多結晶CoFeB層と多結晶CoFe層(反強磁性体層14側に位置させる)との二積層膜とすることができる。この場合、反強磁性体層14側に位置する上記多結晶CoFe層は、スパッタリング法により第4層のBMgO層の上に多結晶状態での成膜が可能である。 In the present invention, the polycrystalline CoFeB layer of the fourth layer 121 can be a two-layered film of a polycrystalline CoFeB layer and a polycrystalline CoFe layer (located on the side of the antiferromagnetic layer 14). In this case, the polycrystalline CoFe layer located on the side of the antiferromagnetic layer 14 can be deposited in a polycrystalline state on the BMgO layer of the fourth layer by sputtering.
 尚、本発明者らは、上記多結晶CoFe層の成膜に続くCoFeB層は、スパッタリング成膜直後(アニーリング工程前)でアモルファス構造であることを確認した。よって、上記アモルファス構造のCoFeB層をアニーリングすることにより、エピタキシャル多結晶構造に相変化させることができる。 The present inventors confirmed that the CoFeB layer following the film formation of the polycrystalline CoFe layer has an amorphous structure immediately after the sputtering film formation (before the annealing step). Therefore, by annealing the CoFeB layer of the amorphous structure, it is possible to change the phase to an epitaxial polycrystalline structure.
 図4は、本発明の磁気抵抗素子をメモリ素子として用いたMRAM401の模式図である。MRAM401において、符号402は本発明のメモリ素子、符号403はワード線、符号404はビット線である。多数のメモリ素子402のそれぞれは、複数のワード線403と複数のビット線404との各交点位置に配置され、格子状の位置関係に配置される。多数のメモリ素子402のそれぞれが1ビットの情報を記憶することができる。 FIG. 4 is a schematic view of an MRAM 401 using the magnetoresistive element of the present invention as a memory element. In the MRAM 401, reference numeral 402 is a memory element of the present invention, reference numeral 403 is a word line, and reference numeral 404 is a bit line. Each of the large number of memory elements 402 is arranged at each intersection position of the plurality of word lines 403 and the plurality of bit lines 404, and is arranged in a lattice-like positional relationship. Each of the multiple memory elements 402 can store one bit of information.
 図5は、MRAM401のワード線403とビット線404との交点位置において、1ビットの情報を記憶するTMR素子10と、スイッチ機能を有するトランジスタ501とを有する等価回路図である。 FIG. 5 is an equivalent circuit diagram including the TMR element 10 storing 1-bit information and the transistor 501 having a switch function at the intersection of the word line 403 and the bit line 404 of the MRAM 401.
 (実施例) 
 図1に示した磁気抵抗素子を図2に示した成膜装置を用いて作製した。主要部であるTMR素子12の成膜条件は以下の通りである。
(Example)
The magnetoresistive element shown in FIG. 1 was manufactured using the film forming apparatus shown in FIG. The film formation conditions of the TMR element 12 which is the main part are as follows.
 強磁性体層123はCoFeB組成比(atomic:原子比)60/20/20のターゲットを用い、Arガス圧力0.03Paで、マグネトロンDCスパッタ(チャンバ201C)によりスパッタレート0.64nm/secで成膜した。この時のCoFeB層(強磁性体層123)は、アモルファス構造を有していた。続いて、スパッタリング装置(チャンバ201B)に換えた。BMgO組成比(atomic:原子比)25/25/50のターゲットを用い、スパッタガスの圧力は好適範囲0.01乃至0.4Paの圧力範囲のうち、0.2Paとした。この条件で、マグネトロンRFスパッタリング(13.56MHz)により、第6層のBMg酸化物層であるトンネルバリア層122を成膜した。この際、BMg酸化物層(トンネルバリア層122)は、カラム状結晶の集合体よりなる多結晶構造であった。また、この時のマグネトロンRFスパッタリング(13.56MHz)の成膜レートは、0.14nm/secであった。 The ferromagnetic layer 123 is formed at a sputtering rate of 0.64 nm / sec by magnetron DC sputtering (chamber 201C) at an Ar gas pressure of 0.03 Pa using a target having a CoFeB composition ratio (atomic: atomic ratio) of 60/20/20. I made a film. The CoFeB layer (ferromagnetic layer 123) at this time had an amorphous structure. Subsequently, it was changed to a sputtering apparatus (chamber 201B). Using a target having a BMgO composition ratio (atomic: atomic ratio) of 25/25/50, the pressure of the sputtering gas was set to 0.2 Pa within the pressure range of 0.01 to 0.4 Pa in a preferable range. Under this condition, the tunnel barrier layer 122 which is a BMg oxide layer of the sixth layer was formed by magnetron RF sputtering (13.56 MHz). At this time, the BMg oxide layer (tunnel barrier layer 122) had a polycrystalline structure composed of aggregates of columnar crystals. Moreover, the film-forming rate of magnetron RF sputtering (13.56 MHz) at this time was 0.14 nm / sec.
 さらに続けて、スパッタリング装置(チャンバ201A)に換えて、磁化固定層(第4層のCoFeB層)である強磁性体層121を成膜した。第4層のCoFeB層(強磁性体層121)は、アモルファス構造であることを確認した。
 第4層121に上に、続けて、磁化固定層を形成する第5層のRu層16、第6層のCoFe層15、第7層のPtMn層14、第8層のTa層17及び第9層のRu層18をチャンバ201Aにより、真空状態を破ることなく、連続成膜し、積層体膜を形成した。
Subsequently, instead of the sputtering apparatus (chamber 201A), the ferromagnetic layer 121, which is the magnetization fixed layer (the fourth CoFeB layer), was formed. It was confirmed that the fourth CoFeB layer (ferromagnetic layer 121) had an amorphous structure.
Next to the fourth layer 121, the fifth Ru layer 16, the sixth CoFe layer 15, the seventh PtMn layer 14, the eighth Ta layer 17 and the eighth layer forming the magnetization fixed layer are formed. A Ru layer 18 of nine layers was continuously formed by the chamber 201A without breaking the vacuum state to form a laminated film.
 本例では、BMg酸化物層の成膜速度は0.14nm/secであったが、0.01nm乃至1.0nm/secの範囲で成膜しても問題ない。 In this example, the film forming speed of the BMg oxide layer is 0.14 nm / sec, but there is no problem if the film is formed in the range of 0.01 nm to 1.0 nm / sec.
 成膜用マグネトロンスパッタリングチャンバ201A乃至201Cのそれぞれでスパッタリング成膜を行って積層が完了した磁気抵抗素子10に対して、熱処理炉において約300℃及び4時間で、8kOeの磁場中で、アニーリング処理を実施した。その結果、アモルファス構造の第2層及び第4層のCoFeB層は、図7に図示したカラム状結晶72の集合体71よりなる多結晶構造となったことが確認された。このアニーリング工程により、磁気抵抗素子10は、TMR効果を持った磁気抵抗素子として作用することができる。また、このアニーリング工程により、第7層のPtMn層である反強磁性体層14には、所定の磁化が付与されていた。 Annealing treatment is performed in a magnetic field of 8 kOe at about 300 ° C. and 4 hours in a heat treatment furnace with respect to the magnetoresistive element 10 in which lamination is completed by performing sputtering film formation in each of the film forming magnetron sputtering chambers 201A to 201C. Carried out. As a result, it was confirmed that the CoFeB layers of the second layer and the fourth layer of the amorphous structure had a polycrystalline structure composed of the aggregate 71 of the column-like crystals 72 shown in FIG. By this annealing step, the magnetoresistive element 10 can act as a magnetoresistive element having a TMR effect. Moreover, predetermined magnetization was given to the antiferromagnetic material layer 14 which is a PtMn layer of a 7th layer by this annealing process.
 本発明の比較例として、多結晶BMg酸化物層からなるトンネルバリア層122に換えて、B原子の使用を省略した多結晶Mg酸化物層を用いた磁気抵抗素子を作成した。 As a comparative example of the present invention, in place of the tunnel barrier layer 122 made of a polycrystalline BMg oxide layer, a magnetoresistive element using a polycrystalline Mg oxide layer in which the use of B atoms is omitted was produced.
 実施例の磁気抵抗素子と比較例の磁気抵抗素子とのMR比を測定し、対比したところ、実施例のMR比は、比較例のMR比の1.2倍乃至1.5倍以上の数値で改善されていた。このように、本実施例によれば、TMR素子のトンネルバリア層として、B原子およびM原子を含有した金属酸化物の結晶構造を用いるので、MR比を高めることができる。 When the MR ratio of the magnetoresistive element of the example and the magnetoresistive element of the comparative example was measured and compared, the MR ratio of the example was 1.2 to 1.5 times or more the MR ratio of the comparative example. It has been improved. As described above, according to this embodiment, since the crystal structure of the metal oxide containing B atoms and M atoms is used as the tunnel barrier layer of the TMR element, the MR ratio can be increased.
 尚、本例で使用したトンネルバリア層のBMg酸化物は、一般式BxMgyz(Z/(X+Y)=0.95)で示す酸素欠損のBMg酸化物であった。 Incidentally, BMg oxide tunnel barrier layer used in this example was BMg oxide oxygen deficiency represented by the general formula B x Mg y O z (Z / (X + Y) = 0.95).
 また、MR比は、外部磁界に応答して磁性膜または磁性多層膜の磁化方向が変化するのに伴って膜の電気抵抗も変化する磁気抵抗効果に関するパラメータで、その電気抵抗の変化率を磁気抵抗変化率(MR比)としたものである。 The MR ratio is a parameter related to the magnetoresistance effect in which the electric resistance of the film also changes as the magnetization direction of the magnetic film or magnetic multilayer film changes in response to an external magnetic field. The rate of change in resistance (MR ratio) is used.

Claims (20)

  1.  基板と、
     前記基板上に位置する結晶性第一強磁性体層と、
     前記結晶性第一強磁性体層の、前記基板と対向する側に位置する、B原子及びMg原子を含有した金属酸化物の結晶構造を有するトンネルバリア層と、
     前記トンネルバリア層の、前記結晶性第一強磁性体層と対向する側に位置する結晶性第二強磁性体層と
     を備えることを特徴とする磁気抵抗素子。
    A substrate,
    A crystalline first ferromagnetic layer located on the substrate;
    A tunnel barrier layer having a crystal structure of a metal oxide containing B atoms and Mg atoms, which is located on the side of the crystalline first ferromagnetic layer facing the substrate;
    A magnetoresistive element comprising: a crystalline second ferromagnetic layer positioned on the side facing the crystalline first ferromagnetic layer of the tunnel barrier layer.
  2.  前記結晶性第二強磁性層の、前記トンネルバリア層と対向する側に位置する反強磁性体層をさらに備えることを特徴とする請求項1に記載の磁気抵抗素子。 The magnetoresistive element according to claim 1, further comprising an antiferromagnetic layer located on the side facing the tunnel barrier layer of the crystalline second ferromagnetic layer.
  3.  前記トンネルバリア層において、B原子の前記金属酸化物中の含有量は30atomic%以下であることを特徴とする請求項1に記載の磁気抵抗素子。 2. The magnetoresistive element according to claim 1, wherein the content of B atoms in the metal oxide in the tunnel barrier layer is 30 atomic% or less.
  4.  前記トンネルバリア層は、
     更に、B原子及びMg原子を含有した合金層又はMg原子からなる金属層を有し、
     該合金層又は金属層の両側に、B原子及びMg原子を含有した金属酸化物の結晶層を有する積層膜であることを特徴とする請求項1に記載の磁気抵抗素子。
    The tunnel barrier layer is
    And an alloy layer containing B atoms and Mg atoms or a metal layer composed of Mg atoms,
    The magnetoresistive element according to claim 1, wherein the magnetoresistive element is a laminated film having a crystal layer of a metal oxide containing B atoms and Mg atoms on both sides of the alloy layer or the metal layer.
  5.  前記結晶性第一強磁性体層と前記トンネルバリア層との間に、Mg原子からなる金属層又はMg原子を含有した合金層を有することを特徴とする請求項1に記載の磁気抵抗素子。 2. A magnetoresistive element according to claim 1, further comprising a metal layer made of Mg atoms or an alloy layer containing Mg atoms between the crystalline first ferromagnetic layer and the tunnel barrier layer.
  6.  前記Mg原子を含有した合金層は、Mg原子及びB原子を含有した合金層であることを特徴とする請求項5に記載の磁気抵抗素子。 The magnetoresistive element according to claim 5, wherein the alloy layer containing Mg atoms is an alloy layer containing Mg atoms and B atoms.
  7.  前記結晶性第二強磁性体層と前記トンネルバリア層との間に、Mg原子からなる金属層又はMg原子を含有した合金層を有することを特徴とする請求項1に記載の磁気抵抗素子。 The magnetoresistive element according to claim 1, further comprising a metal layer made of Mg atoms or an alloy layer containing Mg atoms between the crystalline second ferromagnetic layer and the tunnel barrier layer.
  8.  前記合金層は、Mg原子及びB原子を含有した合金層であることを特徴とする請求項7に記載の磁気抵抗素子。 The magnetoresistive element according to claim 7, wherein the alloy layer is an alloy layer containing Mg atoms and B atoms.
  9.  前記第一強磁性体層、トンネルバリア層、および第二強磁性体層のそれぞれは、カラム状結晶の集合体によって形成された多結晶構造を有することを特徴とする請求項1に記載の磁気抵抗素子。 The magnetic device according to claim 1, wherein each of the first ferromagnetic layer, the tunnel barrier layer, and the second ferromagnetic layer has a polycrystalline structure formed by an assembly of columnar crystals. Resistance element.
  10.  スパッタリング法を用いて、基板上に第一強磁性体層を成膜する第一工程と、
     スパッタリング法を用いて、前記第一強磁性体層の上に、B原子及びMg原子を含有した金属酸化物を含む結晶層を成膜する第二工程と、
     スパッタリング法を用いて、前記金属酸化物を含む結晶層の上に、第二強磁性体層を成膜する第三工程と、
     を有することを特徴とする磁気抵抗素子の製造方法。
    A first step of forming a first ferromagnetic layer on a substrate using a sputtering method;
    A second step of forming a crystalline layer containing a metal oxide containing B atoms and Mg atoms on the first ferromagnetic layer using a sputtering method;
    A third step of depositing a second ferromagnetic layer on the crystalline layer containing the metal oxide using a sputtering method;
    A manufacturing method of a magnetoresistive element characterized by having.
  11.  前記第一強磁性体層および前記第二強磁性体層の少なくともいずれか一方はアモルファス構造であり、
     前記第三工程の後に、前記アモルファス構造を結晶構造に変換する工程をさらに有することを特徴とする請求項10に記載の磁気抵抗素子の製造方法。
    At least one of the first ferromagnetic layer and the second ferromagnetic layer has an amorphous structure,
    11. The method of manufacturing a magnetoresistive element according to claim 10, further comprising the step of converting the amorphous structure into a crystal structure after the third step.
  12.  前記変換する工程は、アニーリング工程を有することを特徴とする請求項11に記載の磁気抵抗素子の製造方法。 The method of manufacturing a magnetoresistive element according to claim 11, wherein the converting step includes an annealing step.
  13.  前記第三工程の後に、スパッタリング法を用いて、前記第二強磁性体層の上に、反強磁性体層を成膜する工程をさらに有することを特徴とする請求項10に記載の磁気抵抗素子の製造方法。 11. The magnetic resistance according to claim 10, further comprising the step of forming an antiferromagnet layer on the second ferromagnetic layer using a sputtering method after the third step. Method of manufacturing a device
  14.  前記第二工程は、B原子及びMg原子を含有した金属酸化物から成るターゲットを用いたスパッタリングによって、B原子及びMg原子を含有した金属酸化物の結晶層を成膜する工程であることを特徴とする請求項10に記載の磁気抵抗素子の製造方法。 The second step is a step of forming a crystal layer of a metal oxide containing B atoms and Mg atoms by sputtering using a target consisting of a metal oxide containing B atoms and Mg atoms. The method of manufacturing a magnetoresistive element according to claim 10, wherein
  15.  前記第二工程は、B原子及びMg原子を含有した合金から成るターゲット及び酸化性ガスを用いた反応性スパッタリングによって、B原子及びMg原子を含有した金属酸化物の結晶層を成膜する工程であることを特徴とする請求項10に記載の磁気抵抗素子の製造方法。 The second step is a step of forming a crystalline layer of a metal oxide containing B atoms and Mg atoms by reactive sputtering using a target consisting of an alloy containing B atoms and Mg atoms and an oxidizing gas. 11. The method of manufacturing a magnetoresistive element according to claim 10, wherein
  16.  コンピュータに、磁気抵抗素子の製造方法を実行させるための制御プログラムを記憶する記憶媒体であって、
     前記製造方法は、
     基板上に第一強磁性体層を成膜する第一スパッタリング工程と、
     前記第一強磁性体層の上に、B原子及びMg原子を含有した金属酸化物を含む結晶層を成膜する第二スパッタリング工程と、
     前記金属酸化物を含む結晶層の上に、第二強磁性体層を成膜する第三スパッタリング工程と
     を有することを特徴とする記憶媒体。
    A storage medium storing a control program for causing a computer to execute a method of manufacturing a magnetoresistive element,
    The manufacturing method is
    A first sputtering step of forming a first ferromagnetic layer on a substrate;
    A second sputtering step of forming a crystal layer containing a metal oxide containing B atoms and Mg atoms on the first ferromagnetic layer;
    A third sputtering step of forming a second ferromagnetic layer on the crystal layer containing the metal oxide.
  17.  前記第一強磁性体層および前記第二強磁性体層の少なくともいずれか一方はアモルファス構造であり、
     前記第三スパッタリング工程の後に、前記アモルファス構造を結晶構造に変換する結晶化工程をさらに有することを特徴とする請求項16に記載の記憶媒体。
    At least one of the first ferromagnetic layer and the second ferromagnetic layer has an amorphous structure,
    The storage medium according to claim 16, further comprising a crystallization step of converting the amorphous structure into a crystal structure after the third sputtering step.
  18.  前記結晶化工程は、アニーリング工程を有することを特徴とする請求項17に記載の記憶媒体。 The storage medium according to claim 17, wherein the crystallization step comprises an annealing step.
  19.  前記第二スパッタリング工程は、B原子及びMg原子を含有した金属酸化物から成るターゲットを用いたスパッタリング工程であることを特徴とする請求項16に記載の記憶媒体。 The storage medium according to claim 16, wherein the second sputtering process is a sputtering process using a target composed of a metal oxide containing B atoms and Mg atoms.
  20.  前記第二スパッタリング工程は、B原子及びMg原子を含有した合金から成るターゲット及び酸化性ガスを用いた反応性スパッタリング工程であることを特徴とする請求項16に記載の記憶媒体。 The storage medium according to claim 16, wherein the second sputtering process is a reactive sputtering process using a target made of an alloy containing B atoms and Mg atoms and an oxidizing gas.
PCT/JP2009/069864 2008-12-01 2009-11-25 Magnetoresistive element, method of producing same, and storage medium used in method of producing same WO2010064564A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010513525A JPWO2010064564A1 (en) 2008-12-01 2009-11-25 Magnetoresistive element, manufacturing method thereof, and storage medium used in the manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008305957 2008-12-01
JP2008-305957 2008-12-01

Publications (1)

Publication Number Publication Date
WO2010064564A1 true WO2010064564A1 (en) 2010-06-10

Family

ID=42233215

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069864 WO2010064564A1 (en) 2008-12-01 2009-11-25 Magnetoresistive element, method of producing same, and storage medium used in method of producing same

Country Status (2)

Country Link
JP (1) JPWO2010064564A1 (en)
WO (1) WO2010064564A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349687A (en) * 2003-04-17 2004-12-09 Applied Materials Inc Method of fabricating magnetoresistive random access memory (mram) device
JP2008085170A (en) * 2006-09-28 2008-04-10 Toshiba Corp Magnetoresistance effect-type element and magnetoresistance effect-type random access memory
JP2008192926A (en) * 2007-02-06 2008-08-21 Tdk Corp Tunnel type magnetic detection element and manufacturing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4581133B2 (en) * 2004-03-12 2010-11-17 独立行政法人科学技術振興機構 Magnetoresistive element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004349687A (en) * 2003-04-17 2004-12-09 Applied Materials Inc Method of fabricating magnetoresistive random access memory (mram) device
JP2008085170A (en) * 2006-09-28 2008-04-10 Toshiba Corp Magnetoresistance effect-type element and magnetoresistance effect-type random access memory
JP2008192926A (en) * 2007-02-06 2008-08-21 Tdk Corp Tunnel type magnetic detection element and manufacturing method therefor

Also Published As

Publication number Publication date
JPWO2010064564A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
US20100080894A1 (en) Fabricating method of magnetoresistive element, and storage medium
US20100078310A1 (en) Fabricating method of magnetoresistive element, and storage medium
WO2010026705A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
JP4292128B2 (en) Method for manufacturing magnetoresistive element
US20110143460A1 (en) Method of manufacturing magnetoresistance element and storage medium used in the manufacturing method
WO2010023833A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
JP4774082B2 (en) Method for manufacturing magnetoresistive element
JP2011138954A (en) Method of manufacturing magnetic tunnel junction device using perpendicular magnetization of ferromagnetic layer
WO2010095525A1 (en) Magnetoresistive element and method for manufacturing magnetoresistive element
WO2010026725A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
WO2010026703A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
WO2010026704A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
JP4774092B2 (en) Magnetoresistive element and MRAM using the same
WO2010064564A1 (en) Magnetoresistive element, method of producing same, and storage medium used in method of producing same
WO2010029701A1 (en) Magnetoresistive element, method for manufacturing same, and storage medium used in the manufacturing method
JP4902686B2 (en) Method for manufacturing magnetoresistive element
JP2011040496A (en) Method of manufacturing magnetic medium, and sputtering device
JP4774116B2 (en) Magnetoresistive effect element
JP2011018693A (en) Method of manufacturing magnetic medium and film depositing apparatus
JP2009044173A (en) Magnetic multilayer film forming apparatus

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010513525

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830331

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830331

Country of ref document: EP

Kind code of ref document: A1