WO2010026822A1 - Electric appliance disassembling method, and electric appliance disassembling device - Google Patents

Electric appliance disassembling method, and electric appliance disassembling device Download PDF

Info

Publication number
WO2010026822A1
WO2010026822A1 PCT/JP2009/061197 JP2009061197W WO2010026822A1 WO 2010026822 A1 WO2010026822 A1 WO 2010026822A1 JP 2009061197 W JP2009061197 W JP 2009061197W WO 2010026822 A1 WO2010026822 A1 WO 2010026822A1
Authority
WO
WIPO (PCT)
Prior art keywords
superheated steam
substrate
disassembling
electric device
heating
Prior art date
Application number
PCT/JP2009/061197
Other languages
French (fr)
Japanese (ja)
Inventor
正之 辻村
進 堀内
Original Assignee
新熱工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新熱工業株式会社 filed Critical 新熱工業株式会社
Priority to CN2009801337630A priority Critical patent/CN102138370A/en
Publication of WO2010026822A1 publication Critical patent/WO2010026822A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/34Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
    • H05K3/3494Heating methods for reflowing of solder
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/08Treatments involving gases
    • H05K2203/088Using a vapour or mist, e.g. cleaning using water vapor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/17Post-manufacturing processes
    • H05K2203/176Removing, replacing or disconnecting component; Easily removable component

Definitions

  • the present invention relates to a disassembling method and a disassembling apparatus for an electric device having components fixed by soldering, brazing, varnishing or the like on a base material such as a substrate.
  • the present invention relates to a heating method for disassembling such an electric device.
  • electric devices such as circuit boards (including electronic devices in this specification, claims, etc.) mounted on information communication devices such as used mobile phones and computers include noble metals and rare metals. Therefore, it is desired to separate these from the resin part and other metal parts and collect them for reuse.
  • Patent Document 1 in a recycling method of a printed circuit board for recovering valuable metals such as gold (Au) used for connection parts, symbols indicating information such as energization time, manufacturing method, and disassembling method of the printed circuit board The circuit pattern and the like are peeled off with reference to FIG.
  • a method for removing the parts from the substrate by melting a bonding material such as solder or solder of the parts is known as a well-known example. It has been.
  • Patent Document 2 describes a method of using an organic solvent vapor (considered as saturated vapor) as one of the means for melting the bonding material.
  • Patent Document 3 describes a method of using a boiling hydrocarbon (boiling point 215 ° C.), a silicone oil (boiling point 250 ° C.) vapor, or a heating liquid as a high boiling point heating medium.
  • Patent Document 4 uses a method such as an infrared heater, hot air, heat of condensation of an inert organic solvent, and high-frequency heating as means for melting the bonding material. After melting the bonding material, impact, vibration, shearing is performed. An example of using a method of separating a component from a substrate by adding a s.
  • Patent Document 5 describes a method of separating a component from a substrate by injecting high-temperature nitrogen gas (300 to 500 ° C.) onto the substrate, melting the bonding material, and then applying ultrasonic vibration. Yes.
  • JP 2002-314210 A JP-A-9-186450 JP 60-244096 Gazette Japanese Patent Laid-Open No. 8-139446 JP 61-295696 A
  • the dismantling of the electrical equipment as described above employs a method of mainly manually or mechanically separating the metal part and the resin part, and a method of melting a set of equipment in a furnace and separating it in a molten state. Yes.
  • a high-boiling heat medium is heated and the substrate is immersed in the medium (liquid) or the condensation latent heat of those saturated vapors is used for heating, there is a limit in the range of heating utilization concentration.
  • a mechanical force such as a cutting force or a peeling force is applied to a component having various shapes to remove it from the substrate, so that automation is difficult and workability is very low.
  • the present invention has been developed to solve the above-described problems, and an object of the present invention is to provide a method and an apparatus for disassembling an electric device that easily separates a component from a substrate. In particular, it is an object of the present invention to provide a method for heating an electric device for separating a component from a substrate.
  • the present invention solves the above-described problems by the following means.
  • the invention according to claim 1 is a method for disassembling an electrical device in which a component fixed on a substrate is separated from the substrate by a bonding material that melts when heated to a melting point or higher, and the bonding material is heated with superheated steam. It is characterized by using and heating.
  • the reason for using superheated steam instead of saturated steam is that Kyochang solder (in the case of tin-copper system), which is frequently used in electric boards, has a maximum melting point of about 240 ° C., so the condensation latent heat of saturated steam This is because it is difficult to melt by itself, and superheated steam above the dry steam point obtained by further heating saturated steam is necessary.
  • the component is fixed on the substrate with a resin-based material, and the superheated steam is substantially at atmospheric pressure at least at a heating position of the component, and the resin-based material is softened.
  • the temperature is higher than the point.
  • the invention according to claim 3 is characterized in that processing is performed in a state in which the periphery of the substrate and the component is maintained in a low oxygen atmosphere by the superheated steam.
  • the atmosphere in which the electrical equipment is processed is filled with superheated steam, it is preferable to use a low oxygen atmosphere with an oxygen concentration of about 1/20 that of air.
  • the invention according to claim 4 is characterized in that the superheated steam is superheated steam. Since only the sensible heat of the superheated steam or the sensible heat and the latent heat of condensation is used, it can be heated to a higher temperature region than when only the latent heat of condensation is used.
  • the means for obtaining superheated steam is not limited to the heated steam generating means of the present invention.
  • superheated steam of a high boiling point heat medium such as fluorinated hydrocarbon or silicone oil can be used as the heating medium. This is preferable in terms of cost.
  • the invention according to claim 5 is characterized in that the substrate is vibrated when the substrate and components fixed on the substrate are exposed to superheated steam.
  • the invention described in claim 6 is an apparatus for decomposing an electric device for separating a component fixed on a substrate from a substrate by a bonding material that melts by heating to a temperature equal to or higher than the melting point.
  • the heating container part which accommodates the said fixed component, and the superheated steam generator which introduces the superheated steam which has the temperature more than melting
  • the component is fixed on the substrate by a resin material
  • the superheated steam is at least atmospheric pressure at a heating location of the component, and is equal to or higher than a softening point of the resin material. It is characterized by temperature.
  • the invention described in claim 8 is characterized in that the inside of the heating container is made into a low oxygen atmosphere by introducing the superheated steam.
  • the invention according to claim 9 is characterized in that the superheated steam is superheated steam.
  • the invention described in claim 10 is characterized in that a vibration means for vibrating the substrate is provided in the vicinity of the heating container portion.
  • the invention according to claim 11 is characterized in that at least one of a preheating chamber for gradually heating the substrate or a precooling chamber for gradually cooling the substrate is provided in the heating container portion.
  • the invention according to claim 12 is characterized in that the superheated steam generator is arranged in the preheating chamber.
  • the invention described in claim 13 is characterized in that a preheating heater is installed in the heating container portion.
  • an air curtain for preventing leakage of outside air to the heating container part is provided at the inlet of the heating container part and the outlet from which the substrate is carried out. It is provided.
  • the invention described in claim 15 is characterized in that an impact applying mechanism for applying a mechanical impact to the substrate is provided in the heating container portion.
  • the invention described in claim 16 is characterized in that superheated steam recovery means is provided in the heating container portion.
  • the invention according to claim 17 is a method of disassembling an electric device for separating a component fixed on a substrate by a bonding material having a melting point lower than that of a member to be bonded, from the substrate, and the substrate and the substrate.
  • the fixed component is exposed to superheated steam having a temperature equal to or higher than the melting point of the bonding material to melt the bonding material, and the component is separated from the substrate.
  • the invention according to claim 18 is an apparatus for decomposing an electric device for separating a component fixed on a substrate by a bonding material having a melting point lower than that of a member to be bonded, from the substrate, and the substrate and the substrate. And a superheated steam generator for introducing superheated steam having a temperature equal to or higher than the melting point of the bonding material into the container.
  • the superheated steam generator is configured to introduce a first cylindrical body and steam from one end of the first cylindrical body into the first cylindrical body.
  • a second tubular body that is inserted into the first tubular body and communicates with the first tubular body at an end opposite to the introduction conduit, and the second tubular body.
  • a third cylinder that is inserted into the cylindrical body and communicates with the second cylindrical body at an end opposite to the side where the first cylindrical body and the second cylindrical body communicate with each other.
  • a discharge pipe that discharges superheated steam from the third cylindrical body, and a heating unit that is provided in a gas flow path from the introduction pipe to the discharge pipe and that heats the steam. It is characterized by providing.
  • the following effects can be obtained.
  • electronic parts, electrical parts, wiring parts and the like can be easily separated from the substrate by melting the joining material with superheated steam having a temperature equal to or higher than the melting point of the joining material such as solder or solder.
  • the electric device can be easily disassembled.
  • the component Even when the component is hardened with a resin material such as varnish, the component can be easily peeled by heating and softening the resin material with superheated steam.
  • (3) By expelling air with superheated steam and creating a high-temperature, low-oxygen reducing atmosphere, generation of harmful gases due to resin combustion (oxidation) and carbonization can be suppressed.
  • FIG. 3 is a cross-sectional view showing a III-III cross section of FIG. 2. It is the IV section enlarged view of FIG. It is a figure which shows the structure in 2nd Embodiment of the decomposition
  • 6A and 6B are diagrams illustrating the structure of a shower head in the electric apparatus disassembling apparatus of FIG. 5, in which FIG. 6A is a plan view and FIG.
  • FIG. 6B is a side view. It is a block diagram explaining the superheated steam supply system of the decomposition
  • This disassembling apparatus is for disassembling a circuit board (work) such as a mobile phone or a computer, and executes the disassembling method for an electric device of the present invention.
  • Some circuit boards have various components such as IC chips (elements), coils, capacitors, and wirings fixed on a board such as a printed circuit board. Connection terminals of various components are fixed to the printed circuit board by soldering. Some IC chips are also fixed to the printed circuit board by varnish.
  • FIG. 1 is a diagram illustrating a configuration of a disassembling apparatus according to a first embodiment of the present invention.
  • the decomposition apparatus includes a boiler 1, a superheated steam generator 2, a shower head 3, a conveyor 4, a vibrator 5, a heating container 6, and the like.
  • a workpiece (electrical device) to be disassembled by the disassembling apparatus includes, for example, a substrate 7 that is a printed circuit board, and an element 8 that is soldered to the substrate 7 and further hardened with varnish.
  • the boiler 1 heats water supplied from a water supply means (not shown) to generate saturated water vapor.
  • the superheated steam generator 2 generates superheated steam by reheating saturated steam supplied from the boiler 1.
  • the superheated steam generator 2 will be described in detail later.
  • the shower head 3 is provided in the heating vessel 6, and jets and irradiates the superheated steam generated by the superheated steam generator 2 to the work passing through the inside of the heating container 6.
  • the shower head 3 has a plurality of ejection holes through which superheated steam is ejected.
  • the conveyor 4 is a belt conveyor disposed through the heating container 6, and loads the work placed on the recovery container 9 into the heating container 6, transports the heating container 6 over a predetermined time, and then carries it out. It is a transport device.
  • the vibrator 5 is provided inside the conveyor 4 in the heating container 6 and vibrates the upper surface portion on which the collection container 9 in the conveyor 4 is placed.
  • three vibrators 5 are arranged at almost equal intervals along the traveling direction (workpiece conveying direction) of the conveyor 4.
  • the heating container 6 is formed in a box shape having, for example, a substantially rectangular side view shape, front view shape, and planar shape.
  • the heating container 6 forms a continuous conveyor furnace in cooperation with the conveyor 4.
  • the inside of the heating container 6 is purged of air by superheated steam ejected from the shower head 3 to create a high temperature and low oxygen atmosphere.
  • the temperature of the superheated steam is controlled by the output of the sheathed heater 60 of the superheated steam generator 2. Further, the flow rate of the superheated steam is controlled by the output of the boiler 1. The distribution of superheated steam in the heating container 6 is determined by the hole position and hole diameter of the shower head 3.
  • FIG. 2 is a side view including a partial cross section of the superheated steam generator 2.
  • 3 is a cross-sectional view taken along the line III-III in FIG.
  • the appearance of the superheated steam generator 2 includes a supply-side end plate 30 to which the saturated steam supply pipe 10 is connected, a container body 20 and a discharge-side end plate 40 to which the superheated steam discharge pipe 70 is connected.
  • a separation pipe 50 is disposed, and the superheated steam discharge pipe 70 is extended to the vicinity of the closed end of the separation pipe 50 to form a fluid flow path, and then the fluid is efficiently heated.
  • a sheathed heater 60 is disposed inside the separation pipe 50 and outside the superheated steam discharge pipe 70.
  • the direction of steam flow in the superheated steam generator 2 is indicated by arrows in the figure.
  • each member such as the diaphragm 50 whose temperature conditions are particularly severe is made of stainless steel whose surface is passivated after high-temperature oxidation treatment or electrolytic polishing. Take measures against high temperature corrosion.
  • the container body 20 is formed in a cylindrical shape. Both end portions 21 and 22 of the container body 20 are closed by a supply-side end plate 30 and a discharge-side end plate 40, respectively.
  • the container body 20 functions as the first cylindrical body referred to in the present invention.
  • the main body 20 is arranged so that its central axis is substantially horizontal, but the present invention is not limited to this.
  • the supply-side end plate 30 and the discharge-side end plate 40 are each a flat disk and are fitted with their outer peripheral edges in contact with the inner peripheral surface of the main body 20 and are fixed by welding or the like. Openings 31 and 41 into which the saturated steam supply pipe 10 and the superheated steam discharge pipe 70 are inserted and fixed are formed in the central portions of the supply side end plate 30 and the discharge side end plate 40, respectively.
  • the diaphragm 50 is formed in a cylindrical shape having a smaller diameter than the main body 20.
  • the diaphragm 50 is inserted into the main body 20 so as to be concentric with the main body 20.
  • the diaphragm 50 has a stay 51 protruding from the outer peripheral surface to the outer diameter side, and is supported by fixing the protruding end portion of the stay 51 to the inner peripheral surface of the main body 20.
  • Both end portions 52 and 53 of the separation tube 50 are arranged to face the supply side end plate 30 and the discharge side end plate 40 with a space therebetween.
  • the diaphragm 50 functions as a second cylindrical body referred to in the present invention.
  • An end 52 on the supply side end plate 30 side of the diaphragm 50 is closed by an end plate 54.
  • the end plate 54 is a flat disk-shaped member, and its periphery is fixed and sealed by being welded to the diaphragm 50.
  • a heat shield plate 110 is provided at the end 52 of the separation tube 50.
  • the heat shield plate 110 is a flat plate-like member arranged with a gap between the outer surface of the end plate 54 (surface on the saturated steam supply pipe 10 side).
  • the heat shield plate 110 is formed in a disk shape having a diameter slightly larger than that of the diaphragm 50 by, for example, stainless steel.
  • the heat shield plate 110 is arranged in parallel with the end plate 54 and is fixed to the separation tube 50 in a state of being floated from the end plate 54 by a plurality of support columns 113 described later.
  • FIG. 4 is an enlarged view of the vicinity of the heat shield plate 110
  • FIG. 4 (a) is an enlarged view of a portion IV in FIG. 1
  • FIG. 4 (b) is a view taken along the line bb in FIG. .
  • the heat shield plate 110 has a double structure in which a pair of plates 111 and 112 are stacked in layers, and is supported on the diaphragm 50 by a support column 113.
  • the plate 111 is formed in a disc shape, faces the end plate 54 of the separation tube 50 with a space therebetween, and is arranged in parallel with the end plate 54.
  • an upright portion 111a raised on the side opposite to the separation tube 50 (on the supply end plate 30 side) is formed.
  • the plate 111 has an opening 111b into which the support 113 is inserted.
  • the plate 112 is formed in a disk shape, is opposed to the surface portion of the plate 111 opposite to the separation tube 50 with a space therebetween, and is disposed in parallel with the plate 111.
  • the outer peripheral edge portion of the plate 112 is joined to the protruding end portion of the rising portion 111a of the plate 111 by welding or the like.
  • the support column 113 is a shaft-like member provided on the end plate 54 and the plate 111 of the separation tube 50.
  • three support columns 113 are provided in the circumferential direction of the heat shield plate 110 so as to be distributed at substantially equal intervals.
  • a disc-shaped flange 113a is fixed to the end of the support 113 on the heat shield plate 110 side.
  • the flange 113a is housed inside the heat shield plate 110 (between the plates 111 and 112), and is fixed to the surface of the plate 111 on the plate 112 side.
  • the end of the column 113 on the side of the separation tube 50 is fixed to the end plate 54 by, for example, welding.
  • the saturated steam supply pipe 10 is a cylindrical pipe line to which saturated steam is supplied from the boiler 1.
  • the saturated water vapor supply pipe 10 is inserted into the main body 20 through the opening 31 of the supply side end plate 30. A space between the inner peripheral edge of the opening 31 and the outer peripheral surface of the saturated water vapor supply pipe 10 is welded over the entire circumference, thereby sealing the opening 31.
  • the saturated water vapor supply pipe 10 is disposed substantially concentrically with the main body 20.
  • the end portion 11 of the saturated water vapor supply pipe 10 protrudes from the supply-side end plate 30 and is disposed to face the heat shield plate 110 with a space therebetween.
  • the saturated water vapor supply pipe 10 functions as an introduction pipe line according to the present invention.
  • the superheated steam discharge pipe 70 is a cylindrical pipe that discharges the superheated steam, which is a heated gas generated in the superheated steam generator 2, to the outside.
  • the superheated steam discharge pipe 70 is inserted into the main body 20 through the opening 41 of the discharge side end plate 40, and is further inserted into the partition 50 within the main body 20.
  • a space between the inner peripheral edge of the opening 41 and the outer peripheral surface of the superheated steam discharge pipe 70 is welded over the entire circumference, thereby sealing the opening 41.
  • the superheated steam discharge pipe 70 is disposed substantially concentrically with the main body 20 and the diaphragm 50.
  • the distal end 71 of the superheated steam discharge pipe 70 is disposed inside the separation pipe 50 so as to face the end plate 54 with a space therebetween.
  • the tip 71 is a communication part through which water vapor flowing between the inner peripheral surface of the separation pipe 50 and the outer peripheral surface of the superheated steam discharge pipe 70 is introduced into the superheated steam discharge pipe 70.
  • the superheated steam discharge pipe 70 functions as a third cylindrical body and a discharge pipe in the present invention.
  • the sheathed heater 60 is a heating unit that reheats the saturated water vapor supplied from the saturated water vapor supply pipe 10 to form superheated steam.
  • the sheathed heater 60 is introduced into the main body 20 from the supply side end plate 30, and passes through the space between the inner peripheral surface of the main body 20 and the outer peripheral surface of the septum 50, and is opposite to the end plate 54 of the septum 50.
  • a side end (opening end) 53 is arranged linearly.
  • the heat generating portion 61 of the sheathed heater 60 is drawn into the inner diameter side of the separation pipe 50 from the opening end portion of the separation pipe 50 and is spirally wound around the outer peripheral surface of the superheated steam discharge pipe 70.
  • the heat generating portion 61 of the sheathed heater 60 is supported by a support 100 that protrudes from the outer peripheral surface of the superheated steam discharge pipe 70.
  • the support 100 attached in the axial direction on the outer surface of the superheated steam discharge pipe 70 ensures the vibration resistance of the sheathed heater 60, prevents accidents of damage to the sheathed heater 60, the superheated steam discharge pipe 70, and the separation pipe 50, and further communicates.
  • This is a vibration proof and heating structure provided with heat transfer efficiency to the superheated steam flowing in the superheated steam discharge pipe 70.
  • the saturated steam introduced from the saturated steam supply pipe 10 into the main body 20 is an end plate adjacent to the heat shield plate 110 disposed for the purpose of avoiding cooling of superheated steam flowing in the partition 50. 54, preheated in the outer space S1, heated in the communicating inner space S2, and finally heated in the communicating superheated steam discharge pipe 70, so that stable quality superheated steam by 1.5 passes can be generated.
  • the saturated steam blown from the saturated steam supply pipe 10 into the container body 20 collides with the heat shield plate 110 and flows to the outer diameter side, and further collides with the inner peripheral surface of the container body 20, It flows in the outer space S ⁇ b> 1 between the inner peripheral surface of the main body 20 and the outer peripheral surface of the separation tube 50 toward the discharge side end plate 40.
  • the water vapor that has reached the vicinity of the discharge side end plate 40 flows into the inner diameter side of the separation pipe 50 from the open end 53 of the separation pipe 50, and between the inner peripheral surface of the separation pipe 50 and the superheated steam discharge pipe 70.
  • the steam that has reached the vicinity of the end 52 collides with the end plate 54 and is introduced into the end 71 of the superheated steam discharge pipe 70, and is discharged to the outside through the superheated steam discharge pipe 70.
  • the saturated steam is heated by the heat generating portion 61 of the sheathed heater 60 and changes from saturated steam to superheated steam. Further, the condensed water generated when the saturated water vapor is cooled by the low-temperature members immediately after the heat exchange with the outside air via the main body 20 or immediately after the operation starts is dropped along the inner peripheral surface of the main body 20 and the like. And stored in the lower part of the main body 20. The condensed water is heated during operation of the apparatus and discharged as superheated steam.
  • the container in order to ensure the maximum thermal efficiency without reducing the generated superheated steam temperature, the container is arranged so that the distance between the inlet of the saturated steam supply pipe 10 and the outlet of the superheated steam discharge pipe 70 is maximized.
  • a heat shield plate 110 is disposed in the vicinity of both ends 21 and 22 of the body main body 20 and in the vicinity of the inlet of the saturated steam supply pipe 10 at a position facing the flow direction of the saturated steam, so that the superheated steam flows inward. The cooling of the pipe 50 is avoided and the overall thermal efficiency is improved.
  • the condensed water when the flow rate of the saturated water vapor supplied from the saturated water vapor supply pipe 10 is large, the condensed water is entrained as a droplet in the air flow along the surface of the condensed water staying in the apparatus and discharged. It may be mixed in superheated steam in a liquid state.
  • the supply amount of saturated water vapor is set so that the water vapor stream does not entrain droplets in consideration of the vapor flow velocity on the liquid surface of the condensed water.
  • the following effects can be obtained. (1) By melting the solder with superheated steam having a temperature equal to or higher than the melting point of the solder, the element 8 can be easily peeled from the substrate 7 and the workpiece can be easily disassembled. (2) Even if the element 8 is further hardened by varnish in addition to soldering or the like, the element 8 can be easily peeled off by heating, softening and melting the varnish with superheated steam. . (3) The generation of harmful gas due to carbonization of varnish and the like can be suppressed by expelling the air in the heating container 6 with superheated steam and creating an atmosphere of high temperature and low oxygen.
  • the decomposition apparatus 200 of this example includes a heating container part (loader part) 210 that accommodates and heats a workpiece, a superheated steam generator 250 that generates superheated steam, and a superheated steam generated in the apparatus as a heating container part 210.
  • a shower head 260 to be introduced into the interior of the heating container section 210 and a transport means (conveyor) 270 for transporting the workpiece within the heating container section 210.
  • the heating vessel part 210 is a hollow box having a long side.
  • a work inlet 211 is opened on one side surface (right side in FIG. 5) of the heating container 210, and a processed work outlet 212 is opened on the opposite side surface (left side in FIG. 5).
  • a conveyor 270 that conveys the workpiece is disposed.
  • the conveyor 270 is wound between a sprocket 275 disposed on the upstream side (inlet side) and a drive roller 276 disposed on the downstream side (exit side), and circulates in a counterclockwise direction in FIG. .
  • the conveyor 270 is a pair of chain conveyors in this example.
  • the work is a plurality of substrates and is accommodated in the box-shaped holder 300 and conveyed.
  • the holder 300 will be described later.
  • a roller conveyor 203 is disposed upstream of the inlet 211 of the heating container section 210 to convey the holder 300 containing the workpiece to the disassembling apparatus 200.
  • the holder 300 is transferred from the roller conveyor 203 to the chain conveyor 270 by the loader mechanism 500.
  • the loader mechanism 500 will be described later.
  • a roller conveyor 205 that carries the holder 300 out of the disassembling apparatus 200 is disposed downstream of the outlet 212 of the heating container section 210.
  • the holder 300 is transferred from the chain conveyor 270 to the roller conveyor 205 by an unloader mechanism. Since the unloader mechanism is publicly known, the description thereof is omitted.
  • the heating container section 210 is divided into a preheating chamber 215, a processing chamber 216, and a precooling chamber 217 in order from the upstream side in the transport direction by partition walls 210a and 210b.
  • the superheated steam generator 250 and an ejector 251 connected to the device 250 are disposed above the preheating chamber 215.
  • the superheated steam generator 250 for example, the superheated steam generator described with reference to FIGS. 2 to 3 can be used.
  • a boiler 253 arranged outside the heating container is connected to the ejector 251.
  • the boiler 253 heats water supplied from a water supply means (not shown) to generate saturated water vapor (100 ° C., about 0.1 MPa). This saturated water vapor is sent to the superheated steam generator 250 by the ejector 251 and reheated to generate superheated steam (about 280 ° C., about 0.1 MPA).
  • the shower head 260 for introducing superheated steam generated by the superheated steam generator 250 is provided above the processing chamber 216.
  • the shower head 260 includes a hollow flat rectangular parallelepiped main body portion 261 and a superheated steam introduction pipe 262 provided so as to protrude from the center of the upper surface of the main body portion 261.
  • a plurality of steam outlets 263 are formed on the lower surface of the main body 261 in a dispersed manner.
  • the distribution of superheated steam can be adjusted by the diameter and position of the discharge port 263.
  • the diameter and position of the discharge port 263 are adjusted according to the size and number of workpieces, and the steam flow path is formed so as to obtain an appropriate flow rate distribution.
  • the main body 261 is arranged facing the upper path of the conveyor 270.
  • a superheated steam supply pipe 255 extending from the superheated steam generator 250 is connected to the superheated steam introduction pipe 262 of the shower head 260.
  • the superheated steam generated by the superheated steam generator 250 is jetted from the superheated steam supply pipe 255 to the work conveyed by the chain conveyor 270 via the shower head 260.
  • a temperature sensor 257 is attached in the processing chamber 216, and detects the temperature inside the processing chamber 216.
  • the controller 258 performs feedback control so that the temperature of the superheated steam generator 250 becomes a predetermined set temperature according to the temperature detected by the temperature sensor 257, and adjusts the heating power of the superheated steam generator 250 and the flow rate of the superheated steam. To do.
  • a suction header 221 is disposed below the upper path of the conveyor 270 in the processing chamber 216 so as to face the shower head 260.
  • the suction header 211 is connected to the ejector 251.
  • the suction header 221 sucks waste superheated steam that has not been used for heating the workpiece and sends it to the ejector 251. This waste superheated steam is mixed with saturated steam supplied from the boiler 253, sent to the superheated steam generator 250, and reused.
  • a preheating heater 223 that gradually heats the processing chamber 216 before starting the superheated steam generator 250 is disposed below the processing chamber 216.
  • suction headers 225 and 226 are also arranged above the preheating chamber 215 and the precooling chamber 217, respectively. These suction headers 225 and 226 are also connected to the ejector 251. Waste superheated steam existing in these chambers is also sucked from the suction headers 225 and 226, mixed with saturated steam supplied from the boiler 253, sent to the superheated steam generator 250, and reused.
  • Opposite exhaust headers 231 and 241 and intake headers 232 and 242 are arranged at the inlet 211 and the outlet 212 of the heating container section 210, respectively.
  • the exhaust headers 231 and 241 and the intake headers 232 and 242 are connected by a line including heaters 233 and 243 and blowers 234 and 244 connected in series.
  • the air heated by the heaters 233 and 243 is discharged from the exhaust headers 231 and 241 through the lines by the blowers 234 and 244, and is simultaneously sucked by the intake heads 232 and 242.
  • the air curtain by the air heated between both headers is comprised.
  • the impact applying means is a block 290 having a triangular cross section, and has an inclined surface 290a inclined upward from the upstream toward the downstream. The front end of the inclined surface 290a protrudes upward from the conveyance path of the chain conveyor 270. A plurality (three in the figure) of blocks 290 are arranged along the transport path.
  • the bottom wall 210c of the heating vessel section 210 is inclined downward from the preheating chamber 215 toward the precooling chamber 217.
  • a drain port 227 for collecting condensed water is formed in the bottom wall of the precooling chamber 217.
  • the drainage port 227 is connected to the boiler 253, and the collected condensed water is reused.
  • the holder 300 includes a bottom plate 310 and a cover (not shown).
  • the bottom plate 310 has a double structure of an inner plate 320 and an outer plate 330 having a rectangular planar shape.
  • the width of the outer plate 330 is slightly wider than the inner plate 320.
  • Side plates 331 rise from the left and right edges of the outer plate 330, and upper end portions 332 of both side plates 331 are bent inward so as to protrude above the inner plate 320.
  • the inner plate 320 is suspended and elastically supported by a spring 335 from an upper end portion 332 of the side plate 331 of the outer plate 330. As shown in FIG.
  • the spring 335 is externally fitted to a pin 336 extending through the upper end portion 332 of the side plate 331 of the outer plate 330 and the inner plate 320 in the vicinity of the four corners of the bottom plate 310. .
  • the inner plate 320 is elastically supported by the spring 335 with respect to the outer plate 330.
  • a grip 321 for holding a plurality of (in this example, 10) substrates in a cantilever manner is formed on the upper surface of the inner plate 320.
  • the substrate is erected in parallel with the transport direction.
  • a large number of slits 323 are opened on one surface of the inner plate 320.
  • Guides 339 extending in the transport direction are fixed to the left and right edges of the lower surface of the outer plate 330.
  • the guide 339 engages with each chain while the holder 300 is transported by the chain conveyor 270, and guides the guide 339 so that it does not shift from side to side.
  • the guide 339 is a plate that is long in the conveyance direction, and the front end 341 in the traveling direction is bent downward. The front end 341 of the guide 339 engages the chain as will be described later.
  • a roller 343 that rotates in the transport direction is attached to a position on the lower surface of the outer plate 330 that is inward from the left and right edges. These rollers 343 protrude below the guide 339.
  • a large number of slits 345 are formed on one surface of the outer plate 330. The position of the slit 345 is shifted in the lateral direction with respect to the slit 323 of the inner plate 320.
  • the cover (not shown) covers the four sides of the bottom plate 310 and has an upper surface opened.
  • the loader mechanism 500 that delivers the holder 300 to the conveyor 270 will be described with reference to FIGS.
  • the loader mechanism 500 delivers the holder 300 conveyed by the roller conveyor 203 to the chain conveyor 270.
  • the roller conveyor 203 is disposed so as to be inclined downward toward the upstream end of the chain conveyor 270.
  • the loader mechanism 500 is disposed at the downstream end on both sides of the roller conveyor 203 and includes a link arm 510 and a guide arm 520 connected to the link arm 510.
  • the link arm 510 has a long arm 511 and a short arm 515.
  • the center of both arms 510 is rotatably attached to the base of the roller conveyor 203.
  • a counterweight 512 is attached to the distal end of the long arm 511 and biases the link arm 510 to rotate clockwise.
  • a stopper piece 516 standing upright from the arm 515 extends in the vicinity of the center of the short arm 515.
  • the link arm 510 has an upper position (indicated by a solid line in FIG. 10) in which the stopper piece 516 protrudes upward from the conveyance surface of the roller conveyor 203, and a lower position (indicated by an imaginary line in FIG. 10) in which the stopper piece 516 is retracted below the same surface. Rotate between.
  • the guide arm 520 is rotatably supported by a pin on the base of the roller conveyor 203 at a substantially central position.
  • One end of the guide arm 520 is rotatably attached to the tip of the short arm 515 of the link arm 510 by a pin 521.
  • the pin 521 connecting the short arm 515 and the guide arm 520 is urged downward by a wire 525 with variable tension.
  • attachments 271 standing upright from the conveyance surface are attached to the chain conveyor 270 at predetermined intervals.
  • the attachment 271 is provided with a pin 272 extending in a direction orthogonal to the transport direction.
  • the front end 341 of the guide 339 of the holder 300 is engaged with the pin 272.
  • the link arm 510 In the unloaded state shown by the solid line in FIG. 10, the link arm 510 is urged to rotate clockwise by the counterweight 512, and the stopper piece 516 of the short arm 515 is moved upward from the conveying surface of the roller conveyor 203. Waiting in the upper position sticking out.
  • the front surface of the holder 300 hits the stopper piece 516 and pushes the stopper piece 516 forward.
  • the link arm 510 starts to rotate counterclockwise against the weight 512 against the urging force.
  • an appropriate downward biasing force is applied to the pin 521 connecting the short arm 515 and the guide arm 520 by the wire 525, so the link arm 510 rotates smoothly.
  • the stopper piece 516 is retracted downward from the conveyance surface, and the guide arm 520 is rotated to the horizontal position. Then, the holder 300 moves away from the stopper piece 516, and the tip 541 of the guide 399 is supported by the guide arm 520 as indicated by the imaginary line in FIG.
  • the pin 272 of the attachment 271 of the circulating chain conveyor 270 engages with the front end 341 of the guide 399.
  • the holder 300 is transferred from the roller conveyor 203 to the chain conveyor 270.
  • superheated steam is generated by the superheated steam generator 250.
  • the temperature of the superheated steam is about 280 ° C.
  • the pressure is atmospheric pressure (about 0.1 MPA).
  • the generated superheated steam is jetted from the shower head 260 into the processing chamber 216.
  • the inside of the processing chamber 216 is purged with air and filled with superheated steam, and has a high temperature and low oxygen atmosphere.
  • the temperature of the superheated steam is reduced to about 270 ° C. due to the influence of heat dissipation loss.
  • the pressure is substantially equal to the atmospheric pressure (about 0.1 MPA).
  • the oxygen concentration in the processing chamber 216 is as low as about 1/20 of air.
  • the processing chamber 216 is heated by the preheater 223 before the superheated steam generator 250 is activated. As a result, the start-up temperature condition of the superheated steam generator 250 is adjusted, and the heat loss from the surface of the apparatus during operation is compensated.
  • the chamber 215 is heated by heat generated from the device 250 or the like.
  • the preheating chamber 215 is heated to about 100 ° C.
  • the precooling chamber 217 is maintained at 100 ° C. or lower.
  • the conveyor 270 is circulating. Then, the holder 300 in which the workpiece is accommodated is transferred from the roller conveyor 203 to the chain conveyor 270 by the loader mechanism 500. The holder 300 transferred to the chain conveyor 270 is preheated from the inlet 211 of the heating container section 210 through the air curtain and into the preheating chamber 215. Thereafter, the work that is transferred to the processing chamber 216 and accommodated in the holder 300 is exposed to superheated steam ejected from the shower head 260. As a result, the bonding member (conductive substance (alloy)) that fixes the component to the substrate, such as solder or brazing material, is in a molten state, the bonding force between the component and the substrate is weakened, and is easily separated from the substrate. .
  • the bonding member conductive substance (alloy)
  • a roller 343 (see FIG. 8B) provided on the lower surface of the holder 300 rides on the slope 290a of the block 290, and the guide 339 is a pin 272 of the chain conveyor 270 (see FIG. 10).
  • the roller 343 moves away from the front edge of the slope 290a, the holder 300 falls on the chain conveyor 270, and the guide 339 engages with the chain conveyor 270. Due to this drop, an impact is applied to the holder 300, and the work housed in the holder 300 receives vibration. This vibration further weakens the bonding force between the component and the substrate.
  • the inner plate 320 on which the workpiece is supported in a cantilever manner is further vibrated according to the attenuation of the spring 335. Further, since the workpiece is supported in a cantilever manner, the workpiece vibrates in the left-right direction in FIG. 8B with the grip 321 as a fulcrum. These vibrations further weaken the bonding force between the component and the board.
  • the holder 300 receives vibration every time it passes through the plurality of blocks 290, and finally the component is separated from the substrate.
  • the separated parts fall from the substrate and accumulate on the inner plate 320 of the holder 300.
  • the molten joining member falls downward from the slit 323 of the inner plate 320 and accumulates on the outer plate 330.
  • the holder 300 is conveyed to the pre-cooling chamber 217 and cooled to a temperature of about 100 ° C. or lower. And it is carried out from the heating container part 210 through the air curtain of the exit 212, and is transferred from the chain conveyor 270 to the roller conveyor 205 by an unloader mechanism (not shown).
  • the vertical axis of the graph indicates the separation yield (%), and the horizontal axis indicates the temperature (° C.) in the processing chamber.
  • the separation yield is the ratio of the number of separated parts to the total number of parts. Since the melting point of the solder as the joining material is about 240 ° C. at the maximum, the separation yield when the temperature is 250 ° C. or higher was determined. As shown in the graph, when the temperature is around 250 ° C., the separation yield is 70 to 75%, but when the temperature is 270 ° C. or higher, a high separation yield of 90% or higher can be obtained. As a result, the optimum temperature condition can be set to 270 ° C.
  • the vertical axis of the graph represents the separation yield (%), and the horizontal axis represents the heating time (minutes).
  • the temperature in the processing chamber was 270 ° C.
  • the separation yield is about 88%, but when it is 4 minutes or more, it is slightly increased to about 90%.
  • the optimum heating time was 5 minutes.
  • the vertical axis of the graph represents the separation yield (%), and the horizontal axis represents the steam flow rate (kg / h).
  • the separation yield is about 80% when the steam flow rate is 6 kg / h, but about 90% when the steam flow rate is 8 kg / h or more.
  • the steam flow rate was 8 kg / h.
  • the vertical axis of the graph is the oxygen concentration (%), and the horizontal axis is the measurement point.
  • the measurement points were 20 places in the space of the processing chamber.
  • the oxygen concentration is 0.5 to 1.4%, which is very low. For this reason, it is thought that the oxidation effect with respect to a heating target object (workpiece
  • FIG. 15 is a table showing experimental results under optimum operating conditions. As a result of four experiments conducted under optimum operating conditions (temperature: 270 ° C., heating time: 5 minutes, steam flow rate: 8 kg / h), a high separation yield of 89 to 92% was obtained.
  • the following effects can be obtained in addition to the effects obtained in the first embodiment.
  • (1) As a result of obtaining the optimum operating conditions of the superheated steam generator, a high separation yield of about 90% can be obtained.
  • (2) Since it can be processed at a high temperature of about 280 ° C. necessary for melting the joining member under atmospheric pressure, no high-pressure resistance measures are required and safety is high. Further, since the temperature range of the superheated steam can be freely set in a wide range, the melting temperature range can be widened, so that most of the commonly used bonding materials can be melted.
  • the preheating chamber is provided in the heating container and the superheated steam generator is disposed in the preheated chamber, the preheated chamber can be heated by the heat generated from the superheated steam generator, and no other heating source is required.
  • a pre-cooling chamber is provided in the heating container and the workpiece is cooled to a certain extent before being carried out, it is possible to prevent accidents such as generation of odors or touching the heated workpiece.
  • the header for sucking the waste superheated steam is provided, the waste superheated steam can be reused.
  • the condensed drain is recovered and reused, it is safe in terms of environment.
  • the present invention is not limited to the embodiments described above, and various modifications and changes are possible, and these are also within the technical scope of the present invention.
  • the electric device to be disassembled is a printed board on which various components are mounted by, for example, soldering and varnish, but the electric device to be disassembled according to the present invention is not limited to this.
  • the disassembling apparatus of the embodiment sprays superheated steam while conveying the workpiece on the conveyor, the present invention is not limited to this, and can also be applied to an apparatus that performs badge type processing.
  • the superheated steam generator of the embodiment has, for example, a triple pipe structure including a main body, a separation pipe, and a superheated steam discharge pipe.
  • a superheated steam generator having a multi-tube structure can also be applied.
  • the first cylindrical body can be inserted into another cylindrical body, or another cylindrical body can be inserted into the third cylindrical body.
  • the gas flow path has a configuration of two or more passes.
  • a superheated steam generator other than the one having such a multiple tube may be used.
  • a sheathed heater is applied as the heating means, but the heating means is not limited to this, and for example, a heating means other than the sheathed heater such as IH may be used.
  • the steam for melting the solder or the like is, for example, water vapor.
  • the present invention is not particularly limited to this, and the electrical equipment is decomposed using superheated steam made of other substances. Also good.

Abstract

Provided are an electric appliance disassembling method for separating parts easily from a board, and a disassembling device.  This method separates the parts, which are fixed on the board by a jointing material having a lower melting point than that of a member to be jointed, from that board.  The board and the parts fixed on the board are exposed to superheated steam having a temperature at or higher than the melting point of the jointing material, so that the jointing material is melted to separate the parts from the board.

Description

電気機器の分解方法、及び、電気機器の分解装置Disassembling method for electric equipment and disassembling apparatus for electric equipment
 本発明は、例えば基板等の基材上にハンダ付け、ロウ付け、ワニス等によって固定された部品を有する電気機器の分解方法及び分解装置に関するものである。特には、このような電気機器を分解するための加熱方法に関する。 The present invention relates to a disassembling method and a disassembling apparatus for an electric device having components fixed by soldering, brazing, varnishing or the like on a base material such as a substrate. In particular, the present invention relates to a heating method for disassembling such an electric device.
 例えば使用済の携帯電話機やコンピュータ等の情報通信機器に搭載される回路基板等の電気機器(本明細書、請求の範囲等では電子機器を含むものとする)には、貴金属や希少金属(レアメタル)等の有用な材料や、再利用可能なチップ、コイル等の部品が含まれるため、樹脂部分や他の金属部分から分離してこれらを回収し、再利用することが要望されている。 For example, electric devices such as circuit boards (including electronic devices in this specification, claims, etc.) mounted on information communication devices such as used mobile phones and computers include noble metals and rare metals. Therefore, it is desired to separate these from the resin part and other metal parts and collect them for reuse.
 例えば、特許文献1には、接続部に用いられる金(Au)等の有価金属を回収するためのプリント基板のリサイクル方法において、プリント基板の通電時間、製造方法、分解方法等の情報を示す記号を参照しながら回路パターン等の引き剥がしを行うことが記載されている。また、プリント板等の基材に固定された一部の部品を交換するために、この部品のハンダやロウなどの接合材料を溶融して、部品を基板上から取り除く方法も多数公知例として知られている。 For example, in Patent Document 1, in a recycling method of a printed circuit board for recovering valuable metals such as gold (Au) used for connection parts, symbols indicating information such as energization time, manufacturing method, and disassembling method of the printed circuit board The circuit pattern and the like are peeled off with reference to FIG. In addition, in order to replace some parts fixed to a substrate such as a printed board, a method for removing the parts from the substrate by melting a bonding material such as solder or solder of the parts is known as a well-known example. It has been.
 例えば、特許文献2には、接合材料の溶融手段の一つとして、有機溶剤の蒸気(飽和蒸気と考えられる)を用いる方法が記載されている。
 また、特許文献3には、高沸点の熱媒体として、沸化炭化水素(沸点215℃)やシリコーンオイル(沸点250℃)の蒸気や、加熱液体を使用する方法が記載されている。
For example, Patent Document 2 describes a method of using an organic solvent vapor (considered as saturated vapor) as one of the means for melting the bonding material.
Patent Document 3 describes a method of using a boiling hydrocarbon (boiling point 215 ° C.), a silicone oil (boiling point 250 ° C.) vapor, or a heating liquid as a high boiling point heating medium.
 また、特許文献4には、接合材料を溶融させる手段として、赤外線ヒータ、熱風、不活性有機溶剤の凝縮熱、高周波加熱等の方法を使用し、接合材料を溶融した後に、衝撃や振動、せん断を加えること等により、部品を基板から分離する方法を使用する例が記載されている。 Patent Document 4 uses a method such as an infrared heater, hot air, heat of condensation of an inert organic solvent, and high-frequency heating as means for melting the bonding material. After melting the bonding material, impact, vibration, shearing is performed. An example of using a method of separating a component from a substrate by adding a s.
 さらに、特許文献5には、基板に高温の窒素ガス(300~500℃)を噴出して、接合材料を溶融し、その後超音波振動を加えることにより部品を基板から分離する方法が記載されている。 Further, Patent Document 5 describes a method of separating a component from a substrate by injecting high-temperature nitrogen gas (300 to 500 ° C.) onto the substrate, melting the bonding material, and then applying ultrasonic vibration. Yes.
特開2002-314210号公報JP 2002-314210 A 特開平9-186450号公報JP-A-9-186450 特開昭60-244096号公報JP 60-244096 Gazette 特開平8-139446号公報Japanese Patent Laid-Open No. 8-139446 特開昭61-295696号公報JP 61-295696 A
 上述したような電気機器の解体は、金属部分や樹脂部分を切り離すために、おもに手動または機械的に分離する方法や、機器一式を炉で溶融し、溶融状態で分離を行う方法が採用されている。
 また、高沸点の熱媒体を加熱し、その媒体(液体)中に基板を浸したり、それらの飽和蒸気の凝縮潜熱を加熱に利用しているため、加熱利用濃度の領域に限界がある。
 さらに、手動または機械的に分離する場合、種々の形状の部品等に切断力、引き剥がし力などの機械的な力を与えて基材から取り外すため、自動化が難しく非常に作業性が低い。
 一方、溶融回収を行う場合、回収しようとする金属が混合されるため、溶融した後の分離作業に多くの手間がかかり、分離回収効率が低い。また、回収対象材料以外の材料も溶融する必要があるため、不要物の溶解に多くのエネルギを使ってしまう。
 また、熱を使う方法では、樹脂等が燃焼したりコンデンサからの絶縁油等の酸化により有毒ガスが発生する場合があり、さらに分離回収した金属等の酸化変質の問題があり好ましくない。
The dismantling of the electrical equipment as described above employs a method of mainly manually or mechanically separating the metal part and the resin part, and a method of melting a set of equipment in a furnace and separating it in a molten state. Yes.
In addition, since a high-boiling heat medium is heated and the substrate is immersed in the medium (liquid) or the condensation latent heat of those saturated vapors is used for heating, there is a limit in the range of heating utilization concentration.
Further, when separating manually or mechanically, a mechanical force such as a cutting force or a peeling force is applied to a component having various shapes to remove it from the substrate, so that automation is difficult and workability is very low.
On the other hand, when performing melt recovery, since the metals to be recovered are mixed, a lot of labor is required for the separation work after melting, and the separation and recovery efficiency is low. In addition, since it is necessary to melt materials other than the material to be collected, a lot of energy is used to dissolve unnecessary materials.
Also, the method using heat is not preferable because resin or the like may burn or toxic gas may be generated due to oxidation of insulating oil or the like from the capacitor.
 本発明は、上記の問題点を解決すべく創案されたものであって、部品を基板から容易に分離する電気機器の分解方法及び分解装置を提供することを課題とする。特には、部品を基板から分離するための、電気機器を加熱する方法を提供することを課題とする。 The present invention has been developed to solve the above-described problems, and an object of the present invention is to provide a method and an apparatus for disassembling an electric device that easily separates a component from a substrate. In particular, it is an object of the present invention to provide a method for heating an electric device for separating a component from a substrate.
 本発明は、以下のような解決手段により、上述した課題を解決する。
 請求項1に記載の発明は、融点以上に加熱することによって溶融する接合材料によって基板上に固定された部品を前記基板から分離する電気機器の分解方法であって、前記接合材料を過熱蒸気を用いて加熱することを特徴とする。
The present invention solves the above-described problems by the following means.
The invention according to claim 1 is a method for disassembling an electrical device in which a component fixed on a substrate is separated from the substrate by a bonding material that melts when heated to a melting point or higher, and the bonding material is heated with superheated steam. It is characterized by using and heating.
 ここで、飽和蒸気でなく過熱蒸気を使用する理由は、電気基板で多用されている共昌ハンダ(スズ-銅系の場合)の融点が最大で約240℃であるため、飽和蒸気の凝縮潜熱だけでは溶融しにくく、飽和蒸気をさらに加熱した乾き蒸気点以上の過熱蒸気が必要であるためである。 Here, the reason for using superheated steam instead of saturated steam is that Kyochang solder (in the case of tin-copper system), which is frequently used in electric boards, has a maximum melting point of about 240 ° C., so the condensation latent heat of saturated steam This is because it is difficult to melt by itself, and superheated steam above the dry steam point obtained by further heating saturated steam is necessary.
 請求項2に記載の発明は、前記部品は前記基板上に樹脂系材料によって固定され、前記過熱蒸気は、少なくとも前記部品の加熱箇所において実質的に大気圧であるとともに、前記樹脂系材料の軟化点以上の温度であることを特徴とする。 According to a second aspect of the present invention, the component is fixed on the substrate with a resin-based material, and the superheated steam is substantially at atmospheric pressure at least at a heating position of the component, and the resin-based material is softened. The temperature is higher than the point.
 請求項3に記載の発明は、前記過熱蒸気によって前記基板及び前記部品の周囲を低酸素雰囲気に保った状態で処理することを特徴とする。 The invention according to claim 3 is characterized in that processing is performed in a state in which the periphery of the substrate and the component is maintained in a low oxygen atmosphere by the superheated steam.
 特には、電気機器が処理される雰囲気を過熱蒸気で満たす際、酸素濃度が空気の約1/20程度の低酸素雰囲気とすることが好ましい。 In particular, when the atmosphere in which the electrical equipment is processed is filled with superheated steam, it is preferable to use a low oxygen atmosphere with an oxygen concentration of about 1/20 that of air.
 請求項4に記載の発明は、前記過熱蒸気は過熱水蒸気であることを特徴とする。
 過熱蒸気の顕熱のみ、又は、顕熱と凝縮潜熱を利用するため、凝縮潜熱のみを利用する場合よりも、より高温領域に加熱できる。なお、過熱水蒸気を得る手段は、本発明の加熱水蒸気発生手段に限らない。
 なお、加熱媒体は、過熱水蒸気以外に、例えば、弗化炭化水素やシリコーンオイルなどの高沸点熱媒体の過熱蒸気を使用することもできるが、過熱水蒸気を使用することが、安全性や加熱性能、コストの点で好ましい。
The invention according to claim 4 is characterized in that the superheated steam is superheated steam.
Since only the sensible heat of the superheated steam or the sensible heat and the latent heat of condensation is used, it can be heated to a higher temperature region than when only the latent heat of condensation is used. The means for obtaining superheated steam is not limited to the heated steam generating means of the present invention.
In addition to the superheated steam, for example, superheated steam of a high boiling point heat medium such as fluorinated hydrocarbon or silicone oil can be used as the heating medium. This is preferable in terms of cost.
 請求項5に記載の発明は、前記基板及び該基板上に固定された部品を過熱蒸気に曝す際に、前記基板を加振することを特徴とする。 The invention according to claim 5 is characterized in that the substrate is vibrated when the substrate and components fixed on the substrate are exposed to superheated steam.
 請求項6に記載の発明は、融点以上に加熱することによって溶融する接合材料によって基板上に固定された部品を前記基板から分離する電気機器の分解装置であって、前記基板及び該基板上に固定された前記部品を収容する加熱容器部と、前記加熱容器部内に前記接合材料の融点以上の温度を有する過熱蒸気を導入する過熱蒸気発生装置と、を備えることを特徴とする。 The invention described in claim 6 is an apparatus for decomposing an electric device for separating a component fixed on a substrate from a substrate by a bonding material that melts by heating to a temperature equal to or higher than the melting point. The heating container part which accommodates the said fixed component, and the superheated steam generator which introduces the superheated steam which has the temperature more than melting | fusing point of the said joining material in the said heating container part, It is characterized by the above-mentioned.
 請求項7に記載の発明は、前記部品は前記基板上に樹脂系材料によって固定され、前記過熱蒸気は、少なくとも前記部品の加熱箇所において大気圧であるとともに、前記樹脂系材料の軟化点以上の温度であることを特徴とする。 According to a seventh aspect of the present invention, the component is fixed on the substrate by a resin material, and the superheated steam is at least atmospheric pressure at a heating location of the component, and is equal to or higher than a softening point of the resin material. It is characterized by temperature.
 請求項8に記載の発明は、前記加熱容器部内は前記過熱蒸気の導入により低酸素雰囲気にされていることを特徴とする。
 請求項9に記載の発明は、前記過熱蒸気は過熱水蒸気であることを特徴とする。
 請求項10に記載の発明は、前記加熱容器部の近傍に、前記基板を加振する加振手段が備えられていることを特徴とする。
The invention described in claim 8 is characterized in that the inside of the heating container is made into a low oxygen atmosphere by introducing the superheated steam.
The invention according to claim 9 is characterized in that the superheated steam is superheated steam.
The invention described in claim 10 is characterized in that a vibration means for vibrating the substrate is provided in the vicinity of the heating container portion.
 請求項11に記載の発明は、前記加熱容器部内に、前記基板を徐熱する予熱室又は前記基板を徐冷する予冷室の少なくとも一方が設けられていることを特徴とする。 The invention according to claim 11 is characterized in that at least one of a preheating chamber for gradually heating the substrate or a precooling chamber for gradually cooling the substrate is provided in the heating container portion.
 請求項12に記載の発明は、前記予熱室内に、前記過熱蒸気発生装置が配置されていることを特徴とする。
 請求項13に記載の発明は、前記加熱容器部内に、予熱ヒータが設置されていることを特徴とする。
 請求項14に記載の発明は、前記加熱容器部の、前記基板が導入される入口、及び、該基板が搬出される出口に、前記加熱容器部への外気の漏入を防止するエアカーテンが設けられていることを特徴とする。
The invention according to claim 12 is characterized in that the superheated steam generator is arranged in the preheating chamber.
The invention described in claim 13 is characterized in that a preheating heater is installed in the heating container portion.
According to the fourteenth aspect of the present invention, an air curtain for preventing leakage of outside air to the heating container part is provided at the inlet of the heating container part and the outlet from which the substrate is carried out. It is provided.
 請求項15に記載の発明は、前記加熱容器部内に、前記基板に機械的な衝撃を加える衝撃付与機構が備えられていることを特徴とする。
 請求項16に記載の発明は、前記加熱容器部内に、過熱蒸気回収手段が設けられていることを特徴とする。
The invention described in claim 15 is characterized in that an impact applying mechanism for applying a mechanical impact to the substrate is provided in the heating container portion.
The invention described in claim 16 is characterized in that superheated steam recovery means is provided in the heating container portion.
 請求項17に記載の発明は、被接合部材よりも低い融点を有する接合材料によって基板上に固定された部品を前記基板から分離する電気機器の分解方法であって、前記基板及び該基板上に固定された前記部品を前記接合材料の融点以上の温度を有する過熱蒸気に曝して前記接合材料を溶融させ、前記部品を前記基板から分離することを特徴とする。 The invention according to claim 17 is a method of disassembling an electric device for separating a component fixed on a substrate by a bonding material having a melting point lower than that of a member to be bonded, from the substrate, and the substrate and the substrate. The fixed component is exposed to superheated steam having a temperature equal to or higher than the melting point of the bonding material to melt the bonding material, and the component is separated from the substrate.
 請求項18に記載の発明は、被接合部材よりも低い融点を有する接合材料によって基板上に固定された部品を前記基板から分離する電気機器の分解装置であって、前記基板及び該基板上に固定された前記部品を収容する容器部と、前記容器部内に前記接合材料の融点以上の温度を有する過熱蒸気を導入する過熱蒸気発生装置と、を備えることを特徴とする。 The invention according to claim 18 is an apparatus for decomposing an electric device for separating a component fixed on a substrate by a bonding material having a melting point lower than that of a member to be bonded, from the substrate, and the substrate and the substrate. And a superheated steam generator for introducing superheated steam having a temperature equal to or higher than the melting point of the bonding material into the container.
 請求項19に記載の発明は、前記過熱蒸気発生装置は、第1の筒状体と、前記第1の筒状体の一方の端部から蒸気を該第1の筒状体内に導入する導入管路と、前記第1の筒状体の内部に挿入され、前記導入管路側と反対側の端部で前記第1の筒状体と連通する第2の筒状体と、前記第2の筒状体の内部に挿入され、前記第1の筒状体と前記第2の筒状体とが連通する側と反対側の端部で前記第2の筒状体と連通する第3の筒状体と、前記第3の筒状体から過熱蒸気を排出する排出管路と、前記導入管路から前記排出管路までの気体流路内に設けられ、前記蒸気を加熱する加熱手段とを備えることを特徴とする。 According to a nineteenth aspect of the present invention, the superheated steam generator is configured to introduce a first cylindrical body and steam from one end of the first cylindrical body into the first cylindrical body. A second tubular body that is inserted into the first tubular body and communicates with the first tubular body at an end opposite to the introduction conduit, and the second tubular body. A third cylinder that is inserted into the cylindrical body and communicates with the second cylindrical body at an end opposite to the side where the first cylindrical body and the second cylindrical body communicate with each other. And a discharge pipe that discharges superheated steam from the third cylindrical body, and a heating unit that is provided in a gas flow path from the introduction pipe to the discharge pipe and that heats the steam. It is characterized by providing.
 本発明によれば、以下の効果を得ることができる。
(1)例えばハンダ、ロウ等の接合材料の融点以上の温度を有する過熱蒸気でこの接合材料を溶融させることによって、電子部品、電気品、配線等の部品は、基板から容易に剥離可能な状態となり、電気機器を容易に分解することができる。
(2)部品が例えばワニス等の樹脂系材料によって固められている場合であっても、過熱蒸気で樹脂系材料を加熱し軟化させることによって、部品を容易に剥離することができる。
(3)過熱蒸気によって空気を追い出し、高温かつ低酸素の還元雰囲気とすることによって、樹脂の燃焼(酸化)や炭化による有害ガスの発生を抑制できる。
(4)過熱蒸気として過熱水蒸気を用いることによって、ワークが100℃以下の状態では539kcal/kgの潜熱を加熱に用いることができるため、例えば加熱空気の熱風を用いる場合よりも短時間でワークを昇温することができ、高速処理が可能である。さらに、装置から漏れた場合も有毒ではなく、また、不燃性であるため、高い安全性が得られる。
(5)ワークを過熱蒸気に曝しつつ基板を加振することによって、容易に剥離可能となった部品を重力で落下させて回収することができる。
According to the present invention, the following effects can be obtained.
(1) For example, electronic parts, electrical parts, wiring parts and the like can be easily separated from the substrate by melting the joining material with superheated steam having a temperature equal to or higher than the melting point of the joining material such as solder or solder. Thus, the electric device can be easily disassembled.
(2) Even when the component is hardened with a resin material such as varnish, the component can be easily peeled by heating and softening the resin material with superheated steam.
(3) By expelling air with superheated steam and creating a high-temperature, low-oxygen reducing atmosphere, generation of harmful gases due to resin combustion (oxidation) and carbonization can be suppressed.
(4) By using superheated steam as superheated steam, 539 kcal / kg of latent heat can be used for heating when the work is at a temperature of 100 ° C. or lower. For example, the work can be carried out in a shorter time than when using hot air of heated air. The temperature can be raised and high-speed processing is possible. Furthermore, when it leaks from the apparatus, it is not toxic and is nonflammable, so that high safety can be obtained.
(5) By oscillating the substrate while exposing the workpiece to superheated steam, the easily peelable parts can be dropped by gravity and collected.
本発明を適用した電気機器の分解装置の第1の実施形態における構成を示す図である。It is a figure which shows the structure in 1st Embodiment of the decomposition | disassembly apparatus of the electric equipment to which this invention is applied. 図1の電気機器の分解装置における過熱蒸気発生装置を示す図である。It is a figure which shows the superheated steam generator in the decomposition | disassembly apparatus of the electric equipment of FIG. 図2のIII-III断面を示す断面図である。FIG. 3 is a cross-sectional view showing a III-III cross section of FIG. 2. 図2のIV部拡大図である。It is the IV section enlarged view of FIG. 本発明を適用した電気機器の分解装置の第2の実施形態における構成を示す図である。It is a figure which shows the structure in 2nd Embodiment of the decomposition | disassembly apparatus of the electric equipment to which this invention is applied. 図5の電気機器の分解装置におけるシャワーヘッドの構造を説明する図であって、図6(a)は平面図、図6(b)は側面図である。6A and 6B are diagrams illustrating the structure of a shower head in the electric apparatus disassembling apparatus of FIG. 5, in which FIG. 6A is a plan view and FIG. 6B is a side view. 図5の電気機器の分解装置の過熱蒸気供給システムを説明するブロック図である。It is a block diagram explaining the superheated steam supply system of the decomposition | disassembly apparatus of the electric equipment of FIG. 図5の電気機器の分解装置のホルダの底板の構造を示す図であって、図8(a)は平面図、図8(b)は正面図である。It is a figure which shows the structure of the baseplate of the holder of the decomposition | disassembly apparatus of the electric equipment of FIG. 5, Comprising: Fig.8 (a) is a top view, FIG.8 (b) is a front view. 図5の電気機器の分解装置のローダ機構を説明する図である。It is a figure explaining the loader mechanism of the decomposition | disassembly apparatus of the electric equipment of FIG. 図9のローダ機構のリンクアームの回動動作を説明する図である。It is a figure explaining rotation operation | movement of the link arm of the loader mechanism of FIG. 図5の電気機器の分解装置における、処理温度と分離収率との関係を示すグラフである。It is a graph which shows the relationship between process temperature and the separation yield in the decomposition | disassembly apparatus of the electric equipment of FIG. 図5の電気機器の分解装置における、加熱時間と分離収率との関係を示すグラフである。It is a graph which shows the relationship between the heating time and the separation yield in the decomposition | disassembly apparatus of the electric equipment of FIG. 図5の電気機器の分解装置における、蒸気流量と分離収率との関係を示すグラフである。It is a graph which shows the relationship between a vapor | steam flow rate and a separation yield in the decomposition | disassembly apparatus of the electric equipment of FIG. 図5の電気機器の分解装置内の酸素濃度の分布を示すグラフである。It is a graph which shows distribution of the oxygen concentration in the decomposition | disassembly apparatus of the electric equipment of FIG. 図5の電気機器の分解装置の分離収率の測定結果を示す表である。It is a table | surface which shows the measurement result of the separation yield of the decomposition | disassembly apparatus of the electric equipment of FIG.
 本発明を適用した電気機器の分解装置(以下、単に「分解装置」と称する。)の実施形態を、図面に基づいて説明する。この分解装置は、例えば携帯電話機、コンピュータ等の回路基板(ワーク)を分解するものであり、本発明の電気機器の分解方法を実行するものである。回路基板は、例えば、プリント基板等の基板上にICチップ(素子)、コイル、コンデンサ等の各種部品や配線が固定されたものもある。各種部品の接続端子は、プリント基板にハンダ付けによって固定されている。また、ICチップは、ワニスによってもプリント基板に固定されているものもある。 An embodiment of an electric apparatus disassembling apparatus (hereinafter simply referred to as “decomposing apparatus”) to which the present invention is applied will be described with reference to the drawings. This disassembling apparatus is for disassembling a circuit board (work) such as a mobile phone or a computer, and executes the disassembling method for an electric device of the present invention. Some circuit boards have various components such as IC chips (elements), coils, capacitors, and wirings fixed on a board such as a printed circuit board. Connection terminals of various components are fixed to the printed circuit board by soldering. Some IC chips are also fixed to the printed circuit board by varnish.
 図1は、本発明の第1の実施形態の分解装置の構成を示す図である。
 分解装置は、ボイラ1、過熱蒸気発生装置2、シャワーヘッド3、コンベア4、バイブレータ5、加熱容器6等を備えて構成されている。
 分解装置によって分解されるワーク(電気機器)は、例えばプリント基板である基板7、及び、この基板7にハンダ付けされ、さらにワニスで固められた素子8を有して構成される。
FIG. 1 is a diagram illustrating a configuration of a disassembling apparatus according to a first embodiment of the present invention.
The decomposition apparatus includes a boiler 1, a superheated steam generator 2, a shower head 3, a conveyor 4, a vibrator 5, a heating container 6, and the like.
A workpiece (electrical device) to be disassembled by the disassembling apparatus includes, for example, a substrate 7 that is a printed circuit board, and an element 8 that is soldered to the substrate 7 and further hardened with varnish.
 ボイラ1は、図示しない給水手段から供給される水を加熱して飽和水蒸気を発生するものである。 The boiler 1 heats water supplied from a water supply means (not shown) to generate saturated water vapor.
 過熱蒸気発生装置2は、ボイラ1から供給される飽和水蒸気を再加熱して過熱蒸気を発生するものである。この過熱蒸気発生装置2については、後に詳しく説明する。 The superheated steam generator 2 generates superheated steam by reheating saturated steam supplied from the boiler 1. The superheated steam generator 2 will be described in detail later.
 シャワーヘッド3は、加熱容器6内に設けられ、その内部を通過するワークに対して、過熱蒸気発生装置2が発生した過熱蒸気を噴出し照射するものである。シャワーヘッド3は、過熱蒸気が噴出する複数の噴出孔を有する。 The shower head 3 is provided in the heating vessel 6, and jets and irradiates the superheated steam generated by the superheated steam generator 2 to the work passing through the inside of the heating container 6. The shower head 3 has a plurality of ejection holes through which superheated steam is ejected.
 コンベア4は、加熱容器6を貫いて配置されたベルトコンベアであって、回収容器9に載せられたワークを加熱容器6内に搬入し、加熱容器6内を所定時間かけて搬送した後に搬出する搬送装置である。 The conveyor 4 is a belt conveyor disposed through the heating container 6, and loads the work placed on the recovery container 9 into the heating container 6, transports the heating container 6 over a predetermined time, and then carries it out. It is a transport device.
 バイブレータ5は、加熱容器6内におけるコンベア4の内部に設けられ、コンベア4における回収容器9が載せられる上面部を加振するものである。バイブレータ5は、コンベア4の走行方向(ワーク搬送方向)に沿って、例えば3個がほぼ等間隔に分布して配置されている。 The vibrator 5 is provided inside the conveyor 4 in the heating container 6 and vibrates the upper surface portion on which the collection container 9 in the conveyor 4 is placed. For example, three vibrators 5 are arranged at almost equal intervals along the traveling direction (workpiece conveying direction) of the conveyor 4.
 加熱容器6は、例えばほぼ矩形の側面視形状、正面視形状、平面形状を有するボックス状に形成されている。加熱容器6は、コンベア4と協働して、連続式のコンベア炉を構成する。分解装置の運転時には、加熱容器6の内部は、シャワーヘッド3から噴出する過熱蒸気によって空気を追い出し、高温かつ低酸素状態の雰囲気とする。 The heating container 6 is formed in a box shape having, for example, a substantially rectangular side view shape, front view shape, and planar shape. The heating container 6 forms a continuous conveyor furnace in cooperation with the conveyor 4. During the operation of the decomposition apparatus, the inside of the heating container 6 is purged of air by superheated steam ejected from the shower head 3 to create a high temperature and low oxygen atmosphere.
 本実施形態の電気機器の分解装置において、過熱蒸気の温度は過熱蒸気発生装置2のシーズヒータ60の出力によりコントロールされる。また、過熱蒸気の流量は、ボイラ1の出力によってコントロールされる。加熱容器6内の過熱蒸気の分布は、シャワーヘッド3の穴位置、穴径によって決定される。 In the disassembling apparatus for electrical equipment according to the present embodiment, the temperature of the superheated steam is controlled by the output of the sheathed heater 60 of the superheated steam generator 2. Further, the flow rate of the superheated steam is controlled by the output of the boiler 1. The distribution of superheated steam in the heating container 6 is determined by the hole position and hole diameter of the shower head 3.
 ワークが回収すべき素子8を下向きとして回収容器9に載せられた状態で、加熱容器6内をコンベア4によって搬送されるときに、ワークが過熱蒸気に曝されると、ハンダやロウ材等の、基板7に素子8を固定している導電性の物質(合金)は、過熱蒸気によって温度を上げられ(例えば約100~1300℃)、溶融状態となって剥離が容易な状態となる。また、ワニスも加熱されて軟化する。
 そして、バイブレータ5によってコンベア4及び回収容器9を介してワークを加振すると、素子8が基板7から分離して素子8は重力落下し、回収容器9に収容される。
When the work is exposed to superheated steam when the work 8 is conveyed by the conveyor 4 in the state where the work 8 is placed on the recovery container 9 with the element 8 to be recovered facing down, solder, brazing material, etc. The conductive substance (alloy) fixing the element 8 to the substrate 7 is raised in temperature by superheated steam (for example, about 100 to 1300 ° C.) and becomes molten and easily peeled off. The varnish is also heated and softened.
When the workpiece is vibrated through the conveyor 4 and the collection container 9 by the vibrator 5, the element 8 is separated from the substrate 7, and the element 8 falls by gravity and is accommodated in the collection container 9.
 以下、過熱蒸気発生装置2の構成について、より詳細に説明する。
 図2は、過熱蒸気発生装置2の一部断面を含む側面図である。図3は、図2のIII―III部断面図である。
 過熱蒸気発生装置2の外観は、飽和水蒸気供給管10が接続された供給側端板30と器体本体20と過熱水蒸気排出管70が接続された排出側端板40から構成される。過熱蒸気発生装置2の内部には、隔管50が配置され、過熱水蒸気排出管70を隔管50の閉端部近傍まで伸ばして流体流路を形成した上で、流体を効率よく加熱するために隔管50の内側で過熱水蒸気排出管70の外側にシーズヒータ60が配設される。過熱蒸気発生装置2の内部の蒸気の流れ方向を、図中に矢印で示す。
Hereinafter, the configuration of the superheated steam generator 2 will be described in more detail.
FIG. 2 is a side view including a partial cross section of the superheated steam generator 2. 3 is a cross-sectional view taken along the line III-III in FIG.
The appearance of the superheated steam generator 2 includes a supply-side end plate 30 to which the saturated steam supply pipe 10 is connected, a container body 20 and a discharge-side end plate 40 to which the superheated steam discharge pipe 70 is connected. In the superheated steam generator 2, a separation pipe 50 is disposed, and the superheated steam discharge pipe 70 is extended to the vicinity of the closed end of the separation pipe 50 to form a fluid flow path, and then the fluid is efficiently heated. In addition, a sheathed heater 60 is disposed inside the separation pipe 50 and outside the superheated steam discharge pipe 70. The direction of steam flow in the superheated steam generator 2 is indicated by arrows in the figure.
 過熱蒸気発生装置2の内部には高温の水蒸気が流れることになるので、特に温度条件の厳しくなる隔管50等の各部材は、高温酸化処理または電解研磨後に表面を不動態化処理したステンレス鋼等を用い高温腐食対策をとる。 Since high-temperature steam flows inside the superheated steam generator 2, each member such as the diaphragm 50 whose temperature conditions are particularly severe is made of stainless steel whose surface is passivated after high-temperature oxidation treatment or electrolytic polishing. Take measures against high temperature corrosion.
 器体本体20は、円筒状に形成されている。器体本体20の両端部21,22は、それぞれ供給側端板30及び排出側端板40によって閉塞されている。器体本体20は、本発明にいう第1の筒状体として機能する。器体本体20は、例えばその中心軸がほぼ水平となるように配置されるが、本発明はこれに限定されない。
 供給側端板30及び排出側端板40は、それぞれ平板状の円盤であって、その外周縁部が器体本体20の内周面と接する状態で嵌め込まれ、溶接等によって固定されている。
 供給側端板30及び排出側端板40の中央部には、それぞれ飽和水蒸気供給管10及び過熱水蒸気排出管70が挿入され固定される開口31,41が形成されている。
The container body 20 is formed in a cylindrical shape. Both end portions 21 and 22 of the container body 20 are closed by a supply-side end plate 30 and a discharge-side end plate 40, respectively. The container body 20 functions as the first cylindrical body referred to in the present invention. For example, the main body 20 is arranged so that its central axis is substantially horizontal, but the present invention is not limited to this.
The supply-side end plate 30 and the discharge-side end plate 40 are each a flat disk and are fitted with their outer peripheral edges in contact with the inner peripheral surface of the main body 20 and are fixed by welding or the like.
Openings 31 and 41 into which the saturated steam supply pipe 10 and the superheated steam discharge pipe 70 are inserted and fixed are formed in the central portions of the supply side end plate 30 and the discharge side end plate 40, respectively.
 隔管50は、器体本体20よりも径が小さい円筒状に形成されている。隔管50は、器体本体20と同心となるように器体本体20内に挿入されている。隔管50は、その外周面から外径側に突き出したステー51を有し、ステー51の突端部を器体本体20の内周面に固定することによって支持されている。隔管50の両端部52,53は、供給側端板30及び排出側端板40とそれぞれ間隔を隔てて対向して配置されている。
 隔管50は、本発明にいう第2の筒状体として機能する。
The diaphragm 50 is formed in a cylindrical shape having a smaller diameter than the main body 20. The diaphragm 50 is inserted into the main body 20 so as to be concentric with the main body 20. The diaphragm 50 has a stay 51 protruding from the outer peripheral surface to the outer diameter side, and is supported by fixing the protruding end portion of the stay 51 to the inner peripheral surface of the main body 20. Both end portions 52 and 53 of the separation tube 50 are arranged to face the supply side end plate 30 and the discharge side end plate 40 with a space therebetween.
The diaphragm 50 functions as a second cylindrical body referred to in the present invention.
 隔管50の供給側端板30側の端部52は、端板54によって閉塞されている。端板54は、平坦な円盤状の部材であって、その周囲を隔管50に溶接されることによって固定及びシールされている。
 また、隔管50の端部52には、遮熱板110が設けられている。遮熱板110は、端板54の外表面(飽和水蒸気供給管10側の面)との間に空隙を有して配置された平板状の部材である。遮熱板110は、例えばステンレス鋼によって隔管50よりもわずかに径が大きい円盤状に形成されている。遮熱板110は、端板54と平行に配置されるとともに、後述する複数の支柱113で端板54から浮かせた状態で隔管50に固定されている。
An end 52 on the supply side end plate 30 side of the diaphragm 50 is closed by an end plate 54. The end plate 54 is a flat disk-shaped member, and its periphery is fixed and sealed by being welded to the diaphragm 50.
A heat shield plate 110 is provided at the end 52 of the separation tube 50. The heat shield plate 110 is a flat plate-like member arranged with a gap between the outer surface of the end plate 54 (surface on the saturated steam supply pipe 10 side). The heat shield plate 110 is formed in a disk shape having a diameter slightly larger than that of the diaphragm 50 by, for example, stainless steel. The heat shield plate 110 is arranged in parallel with the end plate 54 and is fixed to the separation tube 50 in a state of being floated from the end plate 54 by a plurality of support columns 113 described later.
 図4は、遮熱板110付近の拡大図であり、図4(a)は図1のIV部拡大図、図4(b)は図4(a)のb-b部矢視図である。
 遮熱板110は、1対のプレート111、112を層状に重ねた二重構造となっており、支柱113により隔管50に支持されている。
 プレート111は、円盤状に形成され、隔管50の端板54と間隔を隔てて対向し、この端板54と平行に配置されている。プレート111の外周縁部には、隔管50と反対側(供給端板30側)に立ち上げられた立上部111aが形成されている。また、プレート111には、支柱113が挿入される開口111bが形成されている。
 プレート112は、円盤状に形成され、プレート111の隔管50とは反対側の面部と間隔を隔てて対向し、プレート111と平行に配置されている。プレート112の外周縁部は、プレート111の立上部111aの突端部と溶接等によって接合されている。これによって、プレート111,112は、中空の円盤状の構造を形成する。
 支柱113は、隔管50の端板54とプレート111とにわたして設けられた軸状の部材である。支柱113は、遮熱板110の周方向にほぼ等間隔に分散して、例えば3本が設けられる。支柱113の遮熱板110側の端部には円盤状のフランジ113aが固定される。このフランジ113aは、遮熱板110の内部(プレート111と112の間)に収容され、プレート111のプレート112側の面に固定されている。支柱113の隔管50側の端部は、端板54と例えば溶接等によって固定されている。
4 is an enlarged view of the vicinity of the heat shield plate 110, FIG. 4 (a) is an enlarged view of a portion IV in FIG. 1, and FIG. 4 (b) is a view taken along the line bb in FIG. .
The heat shield plate 110 has a double structure in which a pair of plates 111 and 112 are stacked in layers, and is supported on the diaphragm 50 by a support column 113.
The plate 111 is formed in a disc shape, faces the end plate 54 of the separation tube 50 with a space therebetween, and is arranged in parallel with the end plate 54. On the outer peripheral edge portion of the plate 111, an upright portion 111a raised on the side opposite to the separation tube 50 (on the supply end plate 30 side) is formed. Further, the plate 111 has an opening 111b into which the support 113 is inserted.
The plate 112 is formed in a disk shape, is opposed to the surface portion of the plate 111 opposite to the separation tube 50 with a space therebetween, and is disposed in parallel with the plate 111. The outer peripheral edge portion of the plate 112 is joined to the protruding end portion of the rising portion 111a of the plate 111 by welding or the like. Thus, the plates 111 and 112 form a hollow disk-like structure.
The support column 113 is a shaft-like member provided on the end plate 54 and the plate 111 of the separation tube 50. For example, three support columns 113 are provided in the circumferential direction of the heat shield plate 110 so as to be distributed at substantially equal intervals. A disc-shaped flange 113a is fixed to the end of the support 113 on the heat shield plate 110 side. The flange 113a is housed inside the heat shield plate 110 (between the plates 111 and 112), and is fixed to the surface of the plate 111 on the plate 112 side. The end of the column 113 on the side of the separation tube 50 is fixed to the end plate 54 by, for example, welding.
 飽和水蒸気供給管10は、ボイラ1から飽和水蒸気を供給される円筒状の管路である。飽和水蒸気供給管10は、供給側端板30の開口31から器体本体20内に挿入されている。開口31の内周縁部と飽和水蒸気供給管10の外周面との間は全周にわたって溶接され、これによって開口31はシールされている。飽和水蒸気供給管10は、器体本体20とほぼ同心に配置されている。飽和水蒸気供給管10の端部11は、供給側端板30から突出するとともに、遮熱板110と間隔を隔てて対向して配置されている。飽和水蒸気供給管10は、本発明にいう導入管路として機能する。 The saturated steam supply pipe 10 is a cylindrical pipe line to which saturated steam is supplied from the boiler 1. The saturated water vapor supply pipe 10 is inserted into the main body 20 through the opening 31 of the supply side end plate 30. A space between the inner peripheral edge of the opening 31 and the outer peripheral surface of the saturated water vapor supply pipe 10 is welded over the entire circumference, thereby sealing the opening 31. The saturated water vapor supply pipe 10 is disposed substantially concentrically with the main body 20. The end portion 11 of the saturated water vapor supply pipe 10 protrudes from the supply-side end plate 30 and is disposed to face the heat shield plate 110 with a space therebetween. The saturated water vapor supply pipe 10 functions as an introduction pipe line according to the present invention.
 過熱水蒸気排出管70は、過熱蒸気発生装置2内で発生した加熱済気体である過熱蒸気を外部へ排出する円筒状の管路である。過熱水蒸気排出管70は、排出側端板40の開口41から器体本体20内へ挿入され、さらに、器体本体20内で隔管50内に挿入されている。開口41の内周縁部と過熱水蒸気排出管70の外周面との間は全周にわたって溶接され、これによって開口41はシールされている。過熱水蒸気排出管70は、器体本体20及び隔管50とそれぞれほぼ同心に配置されている。過熱水蒸気排出管70の先端部71は、隔管50の内部において、端板54と間隔を隔てて対向して配置されている。この先端部71は、隔管50の内周面と過熱水蒸気排出管70の外周面との間を流れてきた水蒸気が過熱水蒸気排出管70内に導入される連通部となっている。
 この過熱水蒸気排出管70は、本発明にいう第3の筒状体、及び、排出管路として機能する。
The superheated steam discharge pipe 70 is a cylindrical pipe that discharges the superheated steam, which is a heated gas generated in the superheated steam generator 2, to the outside. The superheated steam discharge pipe 70 is inserted into the main body 20 through the opening 41 of the discharge side end plate 40, and is further inserted into the partition 50 within the main body 20. A space between the inner peripheral edge of the opening 41 and the outer peripheral surface of the superheated steam discharge pipe 70 is welded over the entire circumference, thereby sealing the opening 41. The superheated steam discharge pipe 70 is disposed substantially concentrically with the main body 20 and the diaphragm 50. The distal end 71 of the superheated steam discharge pipe 70 is disposed inside the separation pipe 50 so as to face the end plate 54 with a space therebetween. The tip 71 is a communication part through which water vapor flowing between the inner peripheral surface of the separation pipe 50 and the outer peripheral surface of the superheated steam discharge pipe 70 is introduced into the superheated steam discharge pipe 70.
The superheated steam discharge pipe 70 functions as a third cylindrical body and a discharge pipe in the present invention.
 シーズヒータ60は、飽和水蒸気供給管10から供給された飽和水蒸気を再加熱して過熱蒸気とする加熱手段である。シーズヒータ60は、供給側端板30から器体本体20内に導入され、ここから器体本体20の内周面と隔管50の外周面との間を通して隔管50の端板54と反対側の端部(開口端部)53まで直線状に配置されている。シーズヒータ60の発熱部61は、隔管50の開口端部から隔管50の内径側に引き込まれ、過熱水蒸気排出管70の外周面に螺旋状に巻き付けられている。
 シーズヒータ60の発熱部61は、過熱水蒸気排出管70の外周面から突き出して設けられたサポート100によって支持されている。
 過熱水蒸気排出管70の外表面上軸方向に付設されたサポート100によってシーズヒータ60の耐振性を確保し、シーズヒータ60と過熱水蒸気排出管70及び隔管50の損傷事故を防ぎ、さらに連通する過熱水蒸気排出管70内を流れる過熱水蒸気への伝熱効率を付与された耐振及び加熱構造である。
The sheathed heater 60 is a heating unit that reheats the saturated water vapor supplied from the saturated water vapor supply pipe 10 to form superheated steam. The sheathed heater 60 is introduced into the main body 20 from the supply side end plate 30, and passes through the space between the inner peripheral surface of the main body 20 and the outer peripheral surface of the septum 50, and is opposite to the end plate 54 of the septum 50. A side end (opening end) 53 is arranged linearly. The heat generating portion 61 of the sheathed heater 60 is drawn into the inner diameter side of the separation pipe 50 from the opening end portion of the separation pipe 50 and is spirally wound around the outer peripheral surface of the superheated steam discharge pipe 70.
The heat generating portion 61 of the sheathed heater 60 is supported by a support 100 that protrudes from the outer peripheral surface of the superheated steam discharge pipe 70.
The support 100 attached in the axial direction on the outer surface of the superheated steam discharge pipe 70 ensures the vibration resistance of the sheathed heater 60, prevents accidents of damage to the sheathed heater 60, the superheated steam discharge pipe 70, and the separation pipe 50, and further communicates. This is a vibration proof and heating structure provided with heat transfer efficiency to the superheated steam flowing in the superheated steam discharge pipe 70.
 上記した構成によって、飽和水蒸気供給管10から器体本体20に導入された飽和水蒸気は、隔管50内を流れる過熱水蒸気の冷却回避の目的で配設された遮熱板110と隣接する端板54に当たり外空間S1で予熱され、連通する内空間S2で加熱され、さらに連通する過熱水蒸気排出管70で最終加熱され、1.5パスによる安定した質の過熱水蒸気を生成することができる。 With the above-described configuration, the saturated steam introduced from the saturated steam supply pipe 10 into the main body 20 is an end plate adjacent to the heat shield plate 110 disposed for the purpose of avoiding cooling of superheated steam flowing in the partition 50. 54, preheated in the outer space S1, heated in the communicating inner space S2, and finally heated in the communicating superheated steam discharge pipe 70, so that stable quality superheated steam by 1.5 passes can be generated.
 すなわち、飽和水蒸気供給管10から器体本体20内に吹込まれた飽和水蒸気は、遮熱板110に衝突して外径側に流れ、さらに器体本体20の内周面と衝突し、器体本体20の内周面と隔管50の外周面との間の外空間S1内を排出側端板40側へ流れる。排出側端板40付近に達した水蒸気は、隔管50の開口している端部53から隔管50の内径側へ流入し、隔管50の内周面と過熱水蒸気排出管70との間の内空間S2内を端部52及び端板54側へ流れる。端部52付近に達した水蒸気は、端板54と衝突して過熱水蒸気排出管70の端部71内へ導入され、過熱水蒸気排出管70内を通って外部へ排出される。 That is, the saturated steam blown from the saturated steam supply pipe 10 into the container body 20 collides with the heat shield plate 110 and flows to the outer diameter side, and further collides with the inner peripheral surface of the container body 20, It flows in the outer space S <b> 1 between the inner peripheral surface of the main body 20 and the outer peripheral surface of the separation tube 50 toward the discharge side end plate 40. The water vapor that has reached the vicinity of the discharge side end plate 40 flows into the inner diameter side of the separation pipe 50 from the open end 53 of the separation pipe 50, and between the inner peripheral surface of the separation pipe 50 and the superheated steam discharge pipe 70. Flows in the inner space S <b> 2 toward the end 52 and the end plate 54. The steam that has reached the vicinity of the end 52 collides with the end plate 54 and is introduced into the end 71 of the superheated steam discharge pipe 70, and is discharged to the outside through the superheated steam discharge pipe 70.
 また、飽和水蒸気は、上記のように流れる途中で、シーズヒータ60の発熱部61によって加熱され、飽和水蒸気から過熱蒸気へと変化する。また、飽和水蒸気が器体本体20を介した外気との熱交換や、運転開始直後における低温の各部材によって冷却されて発生する凝縮水は、器体本体20の内周面等を伝って滴下し、器体本体20の下部に貯留される。凝縮水は、装置の運転中に加熱されて過熱水蒸気となり排出される。 In the middle of flowing as described above, the saturated steam is heated by the heat generating portion 61 of the sheathed heater 60 and changes from saturated steam to superheated steam. Further, the condensed water generated when the saturated water vapor is cooled by the low-temperature members immediately after the heat exchange with the outside air via the main body 20 or immediately after the operation starts is dropped along the inner peripheral surface of the main body 20 and the like. And stored in the lower part of the main body 20. The condensed water is heated during operation of the apparatus and discharged as superheated steam.
 本実施形態においては、生成した過熱水蒸気温度を減温させることなく最大熱効率を確保するため、飽和水蒸気供給管10の入口と過熱水蒸気排出管70の出口を両間隔が最大となるように、器体本体20の両端部21,22近傍に配設し、飽和水蒸気供給管10の入口近傍に飽和水蒸気の流れ方向に直面する位置に遮熱板110を配設し、過熱水蒸気が内流する隔管50が冷却減温されることを回避し、全体の熱効率を向上させている。 In the present embodiment, in order to ensure the maximum thermal efficiency without reducing the generated superheated steam temperature, the container is arranged so that the distance between the inlet of the saturated steam supply pipe 10 and the outlet of the superheated steam discharge pipe 70 is maximized. A heat shield plate 110 is disposed in the vicinity of both ends 21 and 22 of the body main body 20 and in the vicinity of the inlet of the saturated steam supply pipe 10 at a position facing the flow direction of the saturated steam, so that the superheated steam flows inward. The cooling of the pipe 50 is avoided and the overall thermal efficiency is improved.
 ここで、本実施形態において、飽和水蒸気供給管10から供給する飽和水蒸気の流速が大きいと、装置内に滞留する凝縮水の水面に沿った気流に凝縮水が液滴として巻き込まれ、排出される過熱水蒸気内に液相の状態で混入する場合がある。これを防止するため、飽和水蒸気の供給量は、凝縮水の液面の蒸気流速を考慮して、水蒸気気流が液滴を巻込まないように設定する。 Here, in this embodiment, when the flow rate of the saturated water vapor supplied from the saturated water vapor supply pipe 10 is large, the condensed water is entrained as a droplet in the air flow along the surface of the condensed water staying in the apparatus and discharged. It may be mixed in superheated steam in a liquid state. In order to prevent this, the supply amount of saturated water vapor is set so that the water vapor stream does not entrain droplets in consideration of the vapor flow velocity on the liquid surface of the condensed water.
 以上説明した実施形態によれば、以下の効果を得ることができる。
(1)ハンダの融点以上の温度を有する過熱蒸気でこのハンダを溶融させることによって、素子8は基板7から容易に剥離可能な状態となり、ワークを容易に分解することができる。
(2)素子8がハンダ付け等に加えて、さらにワニスによって固められている場合であっても、過熱蒸気でワニスを加熱し軟化、溶融させることによって、素子8を容易に剥離することができる。
(3)過熱蒸気によって加熱容器6内の空気を追い出し、高温かつ低酸素の雰囲気とすることによって、ワニス等の炭化による有害ガスの発生を抑制できる。
(4)過熱蒸気として過熱水蒸気を用いることによって、ワークが100℃以下の状態では539kcal/kgの潜熱を加熱に用いることができるため、例えば加熱空気の熱風を用いる場合よりも短時間でワークを昇温することができ、高速処理が可能である。
(5)ワークを過熱蒸気に曝しつつワークを載せたコンベア4をバイブレータ5で加振することによって、素子8を回収容器9内に落下させて回収することができる。
According to the embodiment described above, the following effects can be obtained.
(1) By melting the solder with superheated steam having a temperature equal to or higher than the melting point of the solder, the element 8 can be easily peeled from the substrate 7 and the workpiece can be easily disassembled.
(2) Even if the element 8 is further hardened by varnish in addition to soldering or the like, the element 8 can be easily peeled off by heating, softening and melting the varnish with superheated steam. .
(3) The generation of harmful gas due to carbonization of varnish and the like can be suppressed by expelling the air in the heating container 6 with superheated steam and creating an atmosphere of high temperature and low oxygen.
(4) By using superheated steam as superheated steam, 539 kcal / kg of latent heat can be used for heating when the work is at a temperature of 100 ° C. or lower. The temperature can be raised and high speed processing is possible.
(5) When the conveyor 4 on which the workpiece is placed is vibrated by the vibrator 5 while exposing the workpiece to superheated steam, the element 8 can be dropped into the collection container 9 and collected.
 次に、図5を参照して、本発明の第2の実施の形態に係る電気機器の分解装置を説明する。
 この例の分解装置200は、ワークが収容されて加熱される加熱容器部(ローダ部)210と、過熱蒸気を発生する過熱蒸気発生装置250と、同装置で発生した過熱蒸気を加熱容器部210の内部に導入するシャワーヘッド260と、加熱容器部210内でワークを搬送する搬送手段(コンベア)270と、を主に備える。
Next, with reference to FIG. 5, an electric apparatus disassembling apparatus according to the second embodiment of the present invention will be described.
The decomposition apparatus 200 of this example includes a heating container part (loader part) 210 that accommodates and heats a workpiece, a superheated steam generator 250 that generates superheated steam, and a superheated steam generated in the apparatus as a heating container part 210. A shower head 260 to be introduced into the interior of the heating container section 210 and a transport means (conveyor) 270 for transporting the workpiece within the heating container section 210.
 加熱容器部210は、横に長い中空の箱状のものである。加熱容器部210の、一方の側面(図5の右側)には、ワークの入口211が開けられており、反対側の側面(図5の左側)には処理されたワークの出口212が開けられている。この入口211と出口212との間には、ワークを搬送するコンベア270が配置されている。コンベア270は、上流側(入口側)に配置されたスプロケット275と、下流側(出口側)に配置された駆動ローラ276との間に巻き回されて、図5の反時計方向に循環走行する。コンベア270は、この例では一対のチェーンコンベアである。ワークは、この例では、複数枚の基板であり、ボックス状のホルダ300に収容されて搬送される。ホルダ300については後述する。 The heating vessel part 210 is a hollow box having a long side. A work inlet 211 is opened on one side surface (right side in FIG. 5) of the heating container 210, and a processed work outlet 212 is opened on the opposite side surface (left side in FIG. 5). ing. Between the entrance 211 and the exit 212, a conveyor 270 that conveys the workpiece is disposed. The conveyor 270 is wound between a sprocket 275 disposed on the upstream side (inlet side) and a drive roller 276 disposed on the downstream side (exit side), and circulates in a counterclockwise direction in FIG. . The conveyor 270 is a pair of chain conveyors in this example. In this example, the work is a plurality of substrates and is accommodated in the box-shaped holder 300 and conveyed. The holder 300 will be described later.
 加熱容器部210の入口211の上流側には、ワークが収容されたホルダ300を、分解装置200に搬送するローラコンベア203が配置されている。ホルダ300は、ローラコンベア203からチェーンコンベア270に、ローダ機構500によって移管される。ローダ機構500については後述する。一方、加熱容器部210の出口212の下流には、ホルダ300を、分解装置200から搬出するローラコンベア205が配置されている。ホルダ300は、チェーンコンベア270からローラコンベア205に、アンローダ機構によって移管される。アンローダ機構については公知のため説明を省略する。 A roller conveyor 203 is disposed upstream of the inlet 211 of the heating container section 210 to convey the holder 300 containing the workpiece to the disassembling apparatus 200. The holder 300 is transferred from the roller conveyor 203 to the chain conveyor 270 by the loader mechanism 500. The loader mechanism 500 will be described later. On the other hand, a roller conveyor 205 that carries the holder 300 out of the disassembling apparatus 200 is disposed downstream of the outlet 212 of the heating container section 210. The holder 300 is transferred from the chain conveyor 270 to the roller conveyor 205 by an unloader mechanism. Since the unloader mechanism is publicly known, the description thereof is omitted.
 加熱容器部210は、隔壁210a、210bによって、搬送方向における上流側から順に、予熱室215、処理室216、予冷室217に区分けされている。 The heating container section 210 is divided into a preheating chamber 215, a processing chamber 216, and a precooling chamber 217 in order from the upstream side in the transport direction by partition walls 210a and 210b.
 予熱室215の上方には、過熱蒸気発生装置250と、同装置250に接続するエジェクタ251が配置されている。過熱蒸気発生装置250は、例えば、図2~図3を参照して説明した過熱蒸気発生装置を使用できる。エジェクタ251には、加熱容器部外に配置されたボイラ253が接続している。ボイラ253は、図示しない給水手段から供給される水を加熱して飽和水蒸気(100℃、約0.1MPA)を発生する。この飽和水蒸気は、エジェクタ251により過熱蒸気発生装置250に送り込まれて再加熱され、過熱蒸気(約280℃、約0.1MPA)を発生する。 The superheated steam generator 250 and an ejector 251 connected to the device 250 are disposed above the preheating chamber 215. As the superheated steam generator 250, for example, the superheated steam generator described with reference to FIGS. 2 to 3 can be used. A boiler 253 arranged outside the heating container is connected to the ejector 251. The boiler 253 heats water supplied from a water supply means (not shown) to generate saturated water vapor (100 ° C., about 0.1 MPa). This saturated water vapor is sent to the superheated steam generator 250 by the ejector 251 and reheated to generate superheated steam (about 280 ° C., about 0.1 MPA).
 処理室216の上方には、過熱蒸気発生装置250で発生した過熱蒸気を導入するシャワーヘッド260が設けられている。シャワーヘッド260は、図6に示すように、中空の平たい直方体状の本体部261と、本体部261の上面中央から突き出して設けられた過熱蒸気導入管262とを有する。本体部261の下面には、複数の蒸気排出口263が分散して形成されている。排出口263の径や位置によって、過熱蒸気の分布を調整できる。例えば、ワークの寸法や数に応じて、排出口263の径や位置を調整して、適切な流量分布となるように蒸気の流路を形成する。本体部261は、コンベア270の上段経路に面して配置されている。 Above the processing chamber 216, a shower head 260 for introducing superheated steam generated by the superheated steam generator 250 is provided. As shown in FIG. 6, the shower head 260 includes a hollow flat rectangular parallelepiped main body portion 261 and a superheated steam introduction pipe 262 provided so as to protrude from the center of the upper surface of the main body portion 261. A plurality of steam outlets 263 are formed on the lower surface of the main body 261 in a dispersed manner. The distribution of superheated steam can be adjusted by the diameter and position of the discharge port 263. For example, the diameter and position of the discharge port 263 are adjusted according to the size and number of workpieces, and the steam flow path is formed so as to obtain an appropriate flow rate distribution. The main body 261 is arranged facing the upper path of the conveyor 270.
 図7に示すように、シャワーヘッド260の過熱蒸気導入管262には、過熱蒸気発生装置250から延びる過熱蒸気供給管255が接続している。過熱蒸気発生装置250で発生した過熱蒸気は、過熱蒸気供給管255からシャワーヘッド260を介して、チェーンコンベア270で搬送されるワークに向けて噴射される。処理室216内には温度センサ257が取り付けられており、同部内の温度を検知する。制御器258は、温度センサ257が検知した温度に応じて過熱蒸気発生器250の温度が所定の設定温度となるようにフィードバック制御し、過熱蒸気発生装置250の加熱電力や過熱蒸気の流量を調整する。 As shown in FIG. 7, a superheated steam supply pipe 255 extending from the superheated steam generator 250 is connected to the superheated steam introduction pipe 262 of the shower head 260. The superheated steam generated by the superheated steam generator 250 is jetted from the superheated steam supply pipe 255 to the work conveyed by the chain conveyor 270 via the shower head 260. A temperature sensor 257 is attached in the processing chamber 216, and detects the temperature inside the processing chamber 216. The controller 258 performs feedback control so that the temperature of the superheated steam generator 250 becomes a predetermined set temperature according to the temperature detected by the temperature sensor 257, and adjusts the heating power of the superheated steam generator 250 and the flow rate of the superheated steam. To do.
 また、処理室216内の、コンベア270の上段経路の下方には、吸引ヘッダ221が、シャワーヘッド260と対向するように配置されている。この吸引ヘッダ211は、エジェクタ251に接続している。吸引ヘッダ221は、ワークの加熱に使用されなかった廃過熱蒸気を吸引し、エジェクタ251に送る。この廃過熱蒸気は、ボイラ253から供給される飽和水蒸気と混合されて、過熱蒸気発生装置250に送られて再利用される。 Further, a suction header 221 is disposed below the upper path of the conveyor 270 in the processing chamber 216 so as to face the shower head 260. The suction header 211 is connected to the ejector 251. The suction header 221 sucks waste superheated steam that has not been used for heating the workpiece and sends it to the ejector 251. This waste superheated steam is mixed with saturated steam supplied from the boiler 253, sent to the superheated steam generator 250, and reused.
 さらに、処理室216の下方には、過熱蒸気発生装置250の起動前に処理室216を徐熱する予熱ヒータ223が配置されている。 Furthermore, a preheating heater 223 that gradually heats the processing chamber 216 before starting the superheated steam generator 250 is disposed below the processing chamber 216.
 なお、予熱室215及び予冷室217の上方にも、それぞれ吸引ヘッダ225、226が配置されている。これらの吸引ヘッダ225、226もエジェクタ251に接続している。これらの室内に存在する廃過熱蒸気も、吸引ヘッダ225、226から吸引されて、ボイラ253から供給される飽和水蒸気と混合され、過熱蒸気発生装置250に送られて再利用される。 Note that suction headers 225 and 226 are also arranged above the preheating chamber 215 and the precooling chamber 217, respectively. These suction headers 225 and 226 are also connected to the ejector 251. Waste superheated steam existing in these chambers is also sucked from the suction headers 225 and 226, mixed with saturated steam supplied from the boiler 253, sent to the superheated steam generator 250, and reused.
 加熱容器部210の入口211及び出口212には、それぞれ対向する排気ヘッダ231、241と吸気ヘッダ232、242が配置されている。排気ヘッダ231、241と吸気ヘッダ232、242とは、直列に接続された加熱器233、243と送風器234、244を備えたラインで接続されている。入口211及び出口212において、加熱器233、243で加熱された空気は、送風器234、244によりラインを通って排気ヘッダ231、241から排出され、同時に吸気ヘッド232、242で吸引される。これにより、両ヘッダ間に加熱された空気によるエアカーテンが構成される。これらのエアカーテンにより、加熱容器部210内への外気の漏入が防止されるとともに、加熱容器部210内からの過熱蒸気の漏出を防止する。 Opposite exhaust headers 231 and 241 and intake headers 232 and 242 are arranged at the inlet 211 and the outlet 212 of the heating container section 210, respectively. The exhaust headers 231 and 241 and the intake headers 232 and 242 are connected by a line including heaters 233 and 243 and blowers 234 and 244 connected in series. At the inlet 211 and the outlet 212, the air heated by the heaters 233 and 243 is discharged from the exhaust headers 231 and 241 through the lines by the blowers 234 and 244, and is simultaneously sucked by the intake heads 232 and 242. Thereby, the air curtain by the air heated between both headers is comprised. These air curtains prevent outside air from leaking into the heating container section 210 and prevent leakage of superheated steam from the heating container section 210.
 処理室216内の、チェーンコンベア270の上段経路には、搬送されるホルダに機械的な衝撃を加える衝撃付与手段が設けられている。衝撃付与手段は、この例では、断面形状が三角形のブロック290であり、上流から下流に向かって上方に傾斜した傾斜面290aを有する。傾斜面290aの前端は、チェーンコンベア270の搬送経路より上方に突き出ている。ブロック290は搬送経路に沿って複数個(図では3個)配置されている。 In the upper path of the chain conveyor 270 in the processing chamber 216, there is provided impact applying means for applying a mechanical impact to the conveyed holder. In this example, the impact applying means is a block 290 having a triangular cross section, and has an inclined surface 290a inclined upward from the upstream toward the downstream. The front end of the inclined surface 290a protrudes upward from the conveyance path of the chain conveyor 270. A plurality (three in the figure) of blocks 290 are arranged along the transport path.
 加熱容器部210の底壁210cは、予熱室215から予冷室217に向かって下方に傾斜している。予冷室217の底壁には、凝縮水が回収される排水口227が形成されている。この排水口227は、ボイラ253に接続しており、回収された凝縮水が再利用される。 The bottom wall 210c of the heating vessel section 210 is inclined downward from the preheating chamber 215 toward the precooling chamber 217. A drain port 227 for collecting condensed water is formed in the bottom wall of the precooling chamber 217. The drainage port 227 is connected to the boiler 253, and the collected condensed water is reused.
 次に、図8を参照して、ワークが収容されるホルダについて説明する。
 ホルダ300は、底板310と、カバー(図示されず)とを有する。底板310は、平面形状が長方形の内板320と外板330との二重の構造である。外板330の幅は、内板320よりもやや広い。外板330の左右の縁には、側板331が立ち上がっており、両側板331の上端部332は、内板320の上方に張り出すように内側に折り曲げられている。内板320は、外板330の側板331の上端部332からバネ335によって吊り下げられて弾性支持されている。バネ335は、図8(a)に示すように、底板310の四隅近傍において、外板330の側板331の上端部332と、内板320とを貫通して延びるピン336に外嵌されている。このような構成により、内板320は外板330に対して、バネ335により弾性支持されている。
Next, with reference to FIG. 8, the holder in which a workpiece | work is accommodated is demonstrated.
The holder 300 includes a bottom plate 310 and a cover (not shown). The bottom plate 310 has a double structure of an inner plate 320 and an outer plate 330 having a rectangular planar shape. The width of the outer plate 330 is slightly wider than the inner plate 320. Side plates 331 rise from the left and right edges of the outer plate 330, and upper end portions 332 of both side plates 331 are bent inward so as to protrude above the inner plate 320. The inner plate 320 is suspended and elastically supported by a spring 335 from an upper end portion 332 of the side plate 331 of the outer plate 330. As shown in FIG. 8A, the spring 335 is externally fitted to a pin 336 extending through the upper end portion 332 of the side plate 331 of the outer plate 330 and the inner plate 320 in the vicinity of the four corners of the bottom plate 310. . With such a configuration, the inner plate 320 is elastically supported by the spring 335 with respect to the outer plate 330.
 内板320の上面には、複数(この例では10枚)の基板を片持ち式に保持するグリップ321が形成されている。この例では、基板は搬送方向と平行に立てられる。また、内板320の一面には、多数のスリット323が開けられている。 On the upper surface of the inner plate 320, a grip 321 for holding a plurality of (in this example, 10) substrates in a cantilever manner is formed. In this example, the substrate is erected in parallel with the transport direction. In addition, a large number of slits 323 are opened on one surface of the inner plate 320.
 外板330の下面の左右縁には、搬送方向に延びるガイド339が固定されている。ガイド339は、ホルダ300がチェーンコンベア270で搬送される間、各チェーンに係合して、左右にずれないようにガイドするためのものである。ガイド339は、搬送方向に長いプレートであり、進行方向前端341が下方に折れ曲がっている。このガイド339の前端341が、後述するように、チェーンに係合する。 Guides 339 extending in the transport direction are fixed to the left and right edges of the lower surface of the outer plate 330. The guide 339 engages with each chain while the holder 300 is transported by the chain conveyor 270, and guides the guide 339 so that it does not shift from side to side. The guide 339 is a plate that is long in the conveyance direction, and the front end 341 in the traveling direction is bent downward. The front end 341 of the guide 339 engages the chain as will be described later.
 また、外板330の下面の、左右縁から内寄りの位置には、搬送方向に回転するローラ343が取り付けられている。これらのローラ343は、ガイド339よりも下方に突き出している。
 さらに、外板330の一面には、多数のスリット345が開けられている。スリット345の位置は、内板320のスリット323に対して、横方向にずれて配置されている。
A roller 343 that rotates in the transport direction is attached to a position on the lower surface of the outer plate 330 that is inward from the left and right edges. These rollers 343 protrude below the guide 339.
In addition, a large number of slits 345 are formed on one surface of the outer plate 330. The position of the slit 345 is shifted in the lateral direction with respect to the slit 323 of the inner plate 320.
 カバー(図示されず)は、底板310の四方を覆うものであり、上面が開口している。 The cover (not shown) covers the four sides of the bottom plate 310 and has an upper surface opened.
 次に、図9、図10を参照して、ホルダ300をコンベア270に受け渡すローダ機構500について説明する。
 ローダ機構500は、ローラコンベア203で搬送されたホルダ300を、チェーンコンベア270に受け渡すものである。図9に示すように、ローラコンベア203は、チェーンコンベア270の上流端に向かって下方に傾斜するように配置されている。ローダ機構500は、ローラコンベア203の両側の下流端に配置されており、リンクアーム510と、このリンクアーム510に連結するガイドアーム520とで構成される。
Next, the loader mechanism 500 that delivers the holder 300 to the conveyor 270 will be described with reference to FIGS.
The loader mechanism 500 delivers the holder 300 conveyed by the roller conveyor 203 to the chain conveyor 270. As shown in FIG. 9, the roller conveyor 203 is disposed so as to be inclined downward toward the upstream end of the chain conveyor 270. The loader mechanism 500 is disposed at the downstream end on both sides of the roller conveyor 203 and includes a link arm 510 and a guide arm 520 connected to the link arm 510.
 リンクアーム510は、図10に示すように、長アーム511と短アーム515とを有する。両アーム510の中央は、ローラコンベア203の基台に回動可能に取り付けられている。長アーム511の先端にはカウンタウェイト512が取り付けられており、リンクアーム510を時計方向に回動するように付勢している。
 短アーム515ほぼ中央付近には、同アーム515から直立するストッパ片516が延びている。リンクアーム510は、ストッパ片516がローラコンベア203の搬送面から上方に突き出す上位置(図10の実線で示す)と、同面の下方に退避する下位置(図10の想像線で示す)との間を回動する。
As shown in FIG. 10, the link arm 510 has a long arm 511 and a short arm 515. The center of both arms 510 is rotatably attached to the base of the roller conveyor 203. A counterweight 512 is attached to the distal end of the long arm 511 and biases the link arm 510 to rotate clockwise.
A stopper piece 516 standing upright from the arm 515 extends in the vicinity of the center of the short arm 515. The link arm 510 has an upper position (indicated by a solid line in FIG. 10) in which the stopper piece 516 protrudes upward from the conveyance surface of the roller conveyor 203, and a lower position (indicated by an imaginary line in FIG. 10) in which the stopper piece 516 is retracted below the same surface. Rotate between.
 ガイドアーム520は、ほぼ中央でローラコンベア203の基台にピンにより回動可能に支持されている。ガイドアーム520の一端は、リンクアーム510の短アーム515の先端に、ピン521により回動可能に取り付けられている。リンクアーム510が上位置から下位置へ回動すると、ガイドアーム520は、チェーンコンベア270側に下方に傾斜した位置(図10の実線で示す)と、ほぼ水平な位置(図10の想像線で示す)との間を回動する。 The guide arm 520 is rotatably supported by a pin on the base of the roller conveyor 203 at a substantially central position. One end of the guide arm 520 is rotatably attached to the tip of the short arm 515 of the link arm 510 by a pin 521. When the link arm 510 is rotated from the upper position to the lower position, the guide arm 520 is tilted downward (shown by a solid line in FIG. 10) toward the chain conveyor 270 side, and a substantially horizontal position (in an imaginary line in FIG. 10). Rotate between
 短アーム515とガイドアーム520とを連結するピン521は、張力可変のワイヤ525により下方に付勢されている。 The pin 521 connecting the short arm 515 and the guide arm 520 is urged downward by a wire 525 with variable tension.
 なお、チェーンコンベア270には、図9、10に示すように、所定の間隔で、搬送面から直立するアタッチメント271が取り付けられている。アタッチメント271には、搬送方向と直交する方向に延びるピン272が立設されている。このピン272に、ホルダ300のガイド339の前端341が係合する。 In addition, as shown in FIGS. 9 and 10, attachments 271 standing upright from the conveyance surface are attached to the chain conveyor 270 at predetermined intervals. The attachment 271 is provided with a pin 272 extending in a direction orthogonal to the transport direction. The front end 341 of the guide 339 of the holder 300 is engaged with the pin 272.
 図10の実線で示すアンロード状態においては、リンクアーム510は、カウンタウェイト512によって時計方向に回動するように付勢されて、短アーム515のストッパ片516がローラコンベア203の搬送面から上方に突き出す上位置に待機している。
 ホルダ300がローラコンベア203で自重によって搬送されてくると、ホルダ300の前面がストッパ片516に当たり、ストッパ片516を前方に押す。すると、リンクアーム510は、ウェイト512に付勢力に抗して反時計方向に回動し始める。ここで、短アーム515とガイドアーム520とを連結するピン521にはワイヤ525により適宜な大きさの下方への付勢力がかけられているので、リンクアーム510はなめらかに回動する。これにより、ストッパ片516は搬送面から下方に退避し、ガイドアーム520は水平位置に回動する。すると、ホルダ300は、ストッパ片516から外れて前進し、図10の想像線で示すように、ガイド399の先端541がガイドアーム520に支持される。
In the unloaded state shown by the solid line in FIG. 10, the link arm 510 is urged to rotate clockwise by the counterweight 512, and the stopper piece 516 of the short arm 515 is moved upward from the conveying surface of the roller conveyor 203. Waiting in the upper position sticking out.
When the holder 300 is conveyed by its own weight on the roller conveyor 203, the front surface of the holder 300 hits the stopper piece 516 and pushes the stopper piece 516 forward. Then, the link arm 510 starts to rotate counterclockwise against the weight 512 against the urging force. Here, an appropriate downward biasing force is applied to the pin 521 connecting the short arm 515 and the guide arm 520 by the wire 525, so the link arm 510 rotates smoothly. As a result, the stopper piece 516 is retracted downward from the conveyance surface, and the guide arm 520 is rotated to the horizontal position. Then, the holder 300 moves away from the stopper piece 516, and the tip 541 of the guide 399 is supported by the guide arm 520 as indicated by the imaginary line in FIG.
 そして、ホルダ300のガイド399の前端341がガイドアーム520の先端に達するタイミングで、循環走行するチェーンコンベア270のアタッチメント271のピン272が、ガイド399の前端341に係合する。これにより、図9に示すように、ホルダ300が、ローラコンベア203からチェーンコンベア270に移管される。 Then, at the timing when the front end 341 of the guide 399 of the holder 300 reaches the front end of the guide arm 520, the pin 272 of the attachment 271 of the circulating chain conveyor 270 engages with the front end 341 of the guide 399. As a result, as shown in FIG. 9, the holder 300 is transferred from the roller conveyor 203 to the chain conveyor 270.
 次に、図5を参照して、この分解装置を用いたワークの分解動作を説明する。
 まず、過熱蒸気発生装置250で過熱蒸気を発生させる。一例として、過熱蒸気の温度は約280℃であり、圧力は大気圧(約0.1MPA)である。発生した過熱蒸気は、シャワーヘッド260から処理室216内に噴射される。その結果、処理室216内は、空気が追い出されて過熱蒸気が充満し、高温かつ低酸素状態の雰囲気とされている。ここで、過熱蒸気の温度は、放熱ロスの影響により約270℃程度に低下する。また、大気解放されるため圧力は実質的に大気圧(約0.1MPA)と等しい。処理室216内の酸素濃度は、空気の約1/20程度と極めて低い。
 なお、処理室216は、過熱蒸気発生装置250の起動前に予熱ヒータ223により加温されている。これにより、過熱蒸気発生装置250の起動温度条件を整えるとともに、運転時の装置表面からの放熱ロスを補っている。
Next, a workpiece disassembling operation using the disassembling apparatus will be described with reference to FIG.
First, superheated steam is generated by the superheated steam generator 250. As an example, the temperature of the superheated steam is about 280 ° C., and the pressure is atmospheric pressure (about 0.1 MPA). The generated superheated steam is jetted from the shower head 260 into the processing chamber 216. As a result, the inside of the processing chamber 216 is purged with air and filled with superheated steam, and has a high temperature and low oxygen atmosphere. Here, the temperature of the superheated steam is reduced to about 270 ° C. due to the influence of heat dissipation loss. Further, since it is released to the atmosphere, the pressure is substantially equal to the atmospheric pressure (about 0.1 MPA). The oxygen concentration in the processing chamber 216 is as low as about 1/20 of air.
The processing chamber 216 is heated by the preheater 223 before the superheated steam generator 250 is activated. As a result, the start-up temperature condition of the superheated steam generator 250 is adjusted, and the heat loss from the surface of the apparatus during operation is compensated.
 さらに、加熱容器部210の入口211と出口212においては、各々エアカーテンにより外気の漏入が防止されている。 In addition, at the inlet 211 and the outlet 212 of the heating container part 210, leakage of outside air is prevented by an air curtain.
 また、予熱室215には過熱蒸気発生装置250が配置されているため、同室215は同装置250から発生する熱等により加温されている。一例として、予熱室215は約100℃に加温されている。一方、予冷室217は100℃以下に維持されている。 Further, since the superheated steam generator 250 is disposed in the preheating chamber 215, the chamber 215 is heated by heat generated from the device 250 or the like. As an example, the preheating chamber 215 is heated to about 100 ° C. On the other hand, the precooling chamber 217 is maintained at 100 ° C. or lower.
 コンベア270は循環走行している。そして、ワークが収容されたホルダ300が、ローラコンベア203からローダ機構500によりチェーンコンベア270に移管される。チェーンコンベア270に移管されたホルダ300は、加熱容器部210の入口211からエアカーテンを通って予熱室215に入って予熱される。その後、処理室216に搬送され、ホルダ300に収容されているワークが、シャワーヘッド260から噴出される過熱蒸気に曝される。これにより、ハンダやロウ材等の、基板に部品を固定している接合部材(導電性の物質(合金))が溶融状態となり、部品と基板との接合力が弱まり、基板から分離しやすくなる。 The conveyor 270 is circulating. Then, the holder 300 in which the workpiece is accommodated is transferred from the roller conveyor 203 to the chain conveyor 270 by the loader mechanism 500. The holder 300 transferred to the chain conveyor 270 is preheated from the inlet 211 of the heating container section 210 through the air curtain and into the preheating chamber 215. Thereafter, the work that is transferred to the processing chamber 216 and accommodated in the holder 300 is exposed to superheated steam ejected from the shower head 260. As a result, the bonding member (conductive substance (alloy)) that fixes the component to the substrate, such as solder or brazing material, is in a molten state, the bonding force between the component and the substrate is weakened, and is easily separated from the substrate. .
 そして、ホルダ300がブロック290に達すると、ホルダ300の下面に設けたローラ343(図8(b)参照)がブロック290の斜面290aに乗り上げ、ガイド339はチェーンコンベア270のピン272(図10参照)から離れる。そして、やがて、ローラ343が斜面290aの前縁から離れて、ホルダ300はチェーンコンベア270上に落下して、ガイド339がチェーンコンベア270に係合する。この落下により、ホルダ300に衝撃が加えられ、ホルダ300に収容されているワークが振動を受ける。この振動により、さらに、部品と基板との接合力が弱められる。また、落下後は、ホルダ300内においては、ワークが片持ち式に支持されている内板320が、バネ335の減衰に応じてさらに振動している。さらに、ワークは片持ち式に支持されているので、グリップ321を支点として図8(b)の左右方向にも振動する。これらの振動によって、さらに、部品と基板との接合力が弱められる。 When the holder 300 reaches the block 290, a roller 343 (see FIG. 8B) provided on the lower surface of the holder 300 rides on the slope 290a of the block 290, and the guide 339 is a pin 272 of the chain conveyor 270 (see FIG. 10). ) Eventually, the roller 343 moves away from the front edge of the slope 290a, the holder 300 falls on the chain conveyor 270, and the guide 339 engages with the chain conveyor 270. Due to this drop, an impact is applied to the holder 300, and the work housed in the holder 300 receives vibration. This vibration further weakens the bonding force between the component and the substrate. In addition, after the fall, in the holder 300, the inner plate 320 on which the workpiece is supported in a cantilever manner is further vibrated according to the attenuation of the spring 335. Further, since the workpiece is supported in a cantilever manner, the workpiece vibrates in the left-right direction in FIG. 8B with the grip 321 as a fulcrum. These vibrations further weaken the bonding force between the component and the board.
 ホルダ300は、複数個のブロック290を通過する毎に振動を受け、最終的には部品が基板から分離する。分離した部品は基板から落下してホルダ300の内板320上に堆積する。一方、溶融した接合部材は、内板320のスリット323から下方に落下し、外板330上に堆積する。 The holder 300 receives vibration every time it passes through the plurality of blocks 290, and finally the component is separated from the substrate. The separated parts fall from the substrate and accumulate on the inner plate 320 of the holder 300. On the other hand, the molten joining member falls downward from the slit 323 of the inner plate 320 and accumulates on the outer plate 330.
 その後、ホルダ300は予冷室217に搬送されて、約100℃以下の温度に冷却される。そして、出口212のエアカーテンを通って加熱容器部210から搬出され、チェーンコンベア270からアンローダ機構(図示されず)によりローラコンベア205に移管される。 Thereafter, the holder 300 is conveyed to the pre-cooling chamber 217 and cooled to a temperature of about 100 ° C. or lower. And it is carried out from the heating container part 210 through the air curtain of the exit 212, and is transferred from the chain conveyor 270 to the roller conveyor 205 by an unloader mechanism (not shown).
 また、運転中は常に、加熱容器部210内に設置された廃過熱蒸気吸引ヘッダ221、225、226から、過剰に存在する過熱蒸気がエジェクタ251によって過熱蒸気発生装置250に回収されている。この過熱蒸気は、ボイラ253から供給される飽和水蒸気と混合されて再利用される。
 さらに、運転終了後は、加熱容器部210内で発生した凝縮ドレンが排水口227から回収される。このドレンはボイラ253に送られて、再利用される。
Further, always during operation, excessive superheated steam is recovered in the superheated steam generator 250 by the ejector 251 from the waste superheated steam suction headers 221, 225, and 226 installed in the heating container unit 210. This superheated steam is mixed with saturated steam supplied from the boiler 253 and reused.
Further, after the operation is completed, the condensed drain generated in the heating container unit 210 is recovered from the drain port 227. This drain is sent to the boiler 253 and reused.
 次に、装置の最適運転条件(温度、時間、酸素濃度)を求めた実験結果を、図11~15を参照して説明する。
 まず、図11のグラフを参照して、処理室内の温度と、ワークの分離収率との関係を説明する。グラフの縦軸は分離収率(%)を示し、横軸は処理室内の温度(℃)を示す。分離収率とは、全部品数に対する分離された部品数の割合である。
 接合材料であるハンダの溶融点は最高で約240℃であるため、温度が250℃以上の場合の分離収率を求めた。グラフに示すように、温度が250℃付近では、分離収率は70~75%であるが、温度が270℃以上では、90%以上の高い分離収率を得られた。
 この結果、最適温度条件は270℃と設定できる。
Next, experimental results for obtaining the optimum operating conditions (temperature, time, oxygen concentration) of the apparatus will be described with reference to FIGS.
First, the relationship between the temperature in the processing chamber and the workpiece separation yield will be described with reference to the graph of FIG. The vertical axis of the graph indicates the separation yield (%), and the horizontal axis indicates the temperature (° C.) in the processing chamber. The separation yield is the ratio of the number of separated parts to the total number of parts.
Since the melting point of the solder as the joining material is about 240 ° C. at the maximum, the separation yield when the temperature is 250 ° C. or higher was determined. As shown in the graph, when the temperature is around 250 ° C., the separation yield is 70 to 75%, but when the temperature is 270 ° C. or higher, a high separation yield of 90% or higher can be obtained.
As a result, the optimum temperature condition can be set to 270 ° C.
 次に、図12のグラフを参照して、加熱時間と、ワークの分離収率との関係を説明する。グラフの縦軸は分離収率(%)を示し、横軸は加熱時間(分)を示す。処理室内の温度は270℃とした。
 グラフに示すように、加熱時間が3分の場合は、分離収率は88%程度であるが、4分以上の場合は、90%程度にやや上昇している。
 この結果、最適加熱時間は5分とした。
Next, the relationship between the heating time and the workpiece separation yield will be described with reference to the graph of FIG. The vertical axis of the graph represents the separation yield (%), and the horizontal axis represents the heating time (minutes). The temperature in the processing chamber was 270 ° C.
As shown in the graph, when the heating time is 3 minutes, the separation yield is about 88%, but when it is 4 minutes or more, it is slightly increased to about 90%.
As a result, the optimum heating time was 5 minutes.
 次に、図13のグラフを参照して、処理室内の蒸気流量と、ワークの分離収率との関係を説明する。グラフの縦軸は分離収率(%)を示し、横軸は蒸気流量(kg/h)を示す。
 グラフに示すように、蒸気流量が6kg/hでは分離収率は80%程度であるが、8kg/h以上では、90%程度となる。
 この結果、蒸気流量は8kg/hとした。
Next, the relationship between the steam flow rate in the processing chamber and the workpiece separation yield will be described with reference to the graph of FIG. The vertical axis of the graph represents the separation yield (%), and the horizontal axis represents the steam flow rate (kg / h).
As shown in the graph, the separation yield is about 80% when the steam flow rate is 6 kg / h, but about 90% when the steam flow rate is 8 kg / h or more.
As a result, the steam flow rate was 8 kg / h.
 次に、図14のグラフを参照して、処理室内の酸素濃度の分布を説明する。グラフの縦軸は酸素濃度(%)、横軸は測定点である。測定点は、処理室の空間内の20ヵ所とした。
 グラフに示すように、酸素濃度は0.5~1.4%であり、非常に低い。このため加熱対象物(ワーク)に対する酸化作用や対象物の燃焼性を大幅に低減できると考えられる。
Next, the oxygen concentration distribution in the processing chamber will be described with reference to the graph of FIG. The vertical axis of the graph is the oxygen concentration (%), and the horizontal axis is the measurement point. The measurement points were 20 places in the space of the processing chamber.
As shown in the graph, the oxygen concentration is 0.5 to 1.4%, which is very low. For this reason, it is thought that the oxidation effect with respect to a heating target object (workpiece | work) and the combustibility of a target object can be reduced significantly.
 最後に、以上の結果に基づく最適運転条件における分離収率を示す。
 図15は、最適運転条件下での実験結果を示す表である。
 最適運転条件(温度:270℃、加熱時間:5分、蒸気流量:8kg/h)で4回実験を行った結果、分離収率は89~92%という高い結果が得られた。
Finally, the separation yield under optimum operating conditions based on the above results is shown.
FIG. 15 is a table showing experimental results under optimum operating conditions.
As a result of four experiments conducted under optimum operating conditions (temperature: 270 ° C., heating time: 5 minutes, steam flow rate: 8 kg / h), a high separation yield of 89 to 92% was obtained.
 以上説明した第2の実施形態によれば、第1の実施形態で得られた効果に加え、以下の効果を得ることができる。
(1)過熱蒸気発生装置の最適運転条件を求めた結果、90%程度の高い分離収率を得ることができる。
(2)大気圧下において接合部材の溶融に必要な約280℃程度の高温での処理が可能であるため、耐高圧対策が不要であり、安全性が高い。また、過熱蒸気の温度範囲を広い範囲で自由に設定できるため、溶融温度範囲を広くとれるので、一般に使用されている接合材料のほとんどを溶融できる。
(3)加熱手段として、高沸点熱媒体や有機溶剤を使用せず、大気圧の過熱水蒸気を使用するため、安全性が高いとともに環境問題が生じず、ランニングコストも安い。
(4)過熱蒸気によって空気を排除し、酸素濃度が空気の約1/20程度の低酸素濃度雰囲気下で処理するので、部品や樹脂系接合部材の熱分解に伴う有機ガスの発生を抑制できる。
According to the second embodiment described above, the following effects can be obtained in addition to the effects obtained in the first embodiment.
(1) As a result of obtaining the optimum operating conditions of the superheated steam generator, a high separation yield of about 90% can be obtained.
(2) Since it can be processed at a high temperature of about 280 ° C. necessary for melting the joining member under atmospheric pressure, no high-pressure resistance measures are required and safety is high. Further, since the temperature range of the superheated steam can be freely set in a wide range, the melting temperature range can be widened, so that most of the commonly used bonding materials can be melted.
(3) Since a high boiling point heating medium or organic solvent is not used as the heating means, and superheated steam at atmospheric pressure is used, safety is high, environmental problems do not occur, and running costs are low.
(4) Exclude air with superheated steam and process in a low oxygen concentration atmosphere where the oxygen concentration is about 1/20 of that of air, so it is possible to suppress the generation of organic gas associated with thermal decomposition of parts and resin-based joining members .
(5)加熱容器部に予熱室を設け、予熱室内に過熱蒸気発生装置を配置したので、この過熱蒸気発生装置から発生する熱で予熱室内を加熱でき、他の加熱源が不要である。
(6)加熱容器部内に予冷室を設けて、ワークをある程度冷却してから搬出するので、匂いの発生や、加熱されたワークに触れてやけどする等の事故を防ぐことができる。
(7)廃過熱蒸気を吸引するヘッダを設けたので、廃過熱蒸気を再利用できる。
(8)凝縮ドレンを回収して再利用しているので、環境面において安全である。
(5) Since the preheating chamber is provided in the heating container and the superheated steam generator is disposed in the preheated chamber, the preheated chamber can be heated by the heat generated from the superheated steam generator, and no other heating source is required.
(6) Since a pre-cooling chamber is provided in the heating container and the workpiece is cooled to a certain extent before being carried out, it is possible to prevent accidents such as generation of odors or touching the heated workpiece.
(7) Since the header for sucking the waste superheated steam is provided, the waste superheated steam can be reused.
(8) Since the condensed drain is recovered and reused, it is safe in terms of environment.
(変形例)
 本発明は、以上説明した実施形態に限定されることなく、種々の変形や変更が可能であって、それらも本発明の技術的範囲内である。
(1)実施形態では、分解対象となる電気機器は例えばハンダ付け及びワニスによって各種部品が実装されたプリント基板であるが、本発明の分解対象となる電気機器はこれに限定されない。
(2)実施形態の分解装置は、ワークをコンベアで搬送しながら過熱蒸気を吹き付けているが、本発明はこれに限らず、バッジ式処理を行うものにも適用することができる。
(3)実施形態の過熱蒸気発生装置は、例えば、器体本体、隔管、過熱水蒸気排出管からなる3重管構造を有しているが、本発明はこれに限らず、4重以上の多重管構造を有する過熱蒸気発生装置も適用することができる。この場合、第1の筒状体を他の筒状体の内部に挿入したり、また、第3の筒状体の内部に他の筒状体を挿入した構成とすることができる。この場合、気体流路は2パス以上の構成となる。また、本発明において、このような多重管を有するもの以外の過熱蒸気発生装置を用いてもよい。
(4)実施形態の過熱蒸気発生装置は、加熱手段として例えばシーズヒータを適用しているが、加熱手段はこれに限定されず、例えばIH等のシーズヒータ以外の加熱手段を用いるようにしてもよい。
(5)実施形態において、ハンダ等を溶融させる蒸気は例えば水蒸気であったが、本発明はこれに特に限定されず、他の物質からなる過熱蒸気を用いて電気機器の分解を行うようにしてもよい。
(Modification)
The present invention is not limited to the embodiments described above, and various modifications and changes are possible, and these are also within the technical scope of the present invention.
(1) In the embodiment, the electric device to be disassembled is a printed board on which various components are mounted by, for example, soldering and varnish, but the electric device to be disassembled according to the present invention is not limited to this.
(2) Although the disassembling apparatus of the embodiment sprays superheated steam while conveying the workpiece on the conveyor, the present invention is not limited to this, and can also be applied to an apparatus that performs badge type processing.
(3) The superheated steam generator of the embodiment has, for example, a triple pipe structure including a main body, a separation pipe, and a superheated steam discharge pipe. A superheated steam generator having a multi-tube structure can also be applied. In this case, the first cylindrical body can be inserted into another cylindrical body, or another cylindrical body can be inserted into the third cylindrical body. In this case, the gas flow path has a configuration of two or more passes. In the present invention, a superheated steam generator other than the one having such a multiple tube may be used.
(4) In the superheated steam generator of the embodiment, for example, a sheathed heater is applied as the heating means, but the heating means is not limited to this, and for example, a heating means other than the sheathed heater such as IH may be used. Good.
(5) In the embodiment, the steam for melting the solder or the like is, for example, water vapor. However, the present invention is not particularly limited to this, and the electrical equipment is decomposed using superheated steam made of other substances. Also good.
   1  ボイラ             2  過熱蒸気発生装置
   3  シャワーヘッド         4  コンベア
   5  バイブレータ          6  加熱容器
   7  基板              8  素子
   9  回収容器
  10  飽和水蒸気供給管       11  端部
  20  器体本体           21,22  端部
  23  扁平部            24,25  突出部
  30  供給側端板          31  開口
  40  排出側端板          41  開口
  50  隔管             51  ステー
  52,53  端部          54  端板
  60  シーズヒータ         61  発熱部
  70  過熱水蒸気排出管       71  先端部
 100  サポート          110  遮熱板
  S1  外空間            S2  内空間
 200 電気機器の分解装置
 210 加熱容器部          203 ローラコンベア
 205 ローラコンベア        211 入口
 212 出口             215 予熱室
 216 処理室            217 予冷室
 221、225、226 吸引ヘッダ  223 予熱ヒータ
 227 排水口            231、241 排気ヘッダ
 232、242 吸気ヘッダ      233、243 加熱器
 234、244 送風器
 250 過熱蒸気発生装置       251 エジェクタ
 253 ボイラ            255 過熱蒸気供給管
 257 温度センサ          258 制御器
 260 シャワーヘッド        261 本体部
 262 過熱蒸気導入管        263 蒸気排出口
 270 チェーンコンベア       271 アタッチメント
 272 ピン             275 スプロケット
 276 駆動ローラ
 290 衝撃付与手段(ブロック)
 300 ホルダ            310 底板
 320 内板             321 グリップ
 323 スリット           330 外板
 331 側板             332 上端部
 335 バネ             336 ピン
 339 ガイド            341 前端
 343 ローラ            345 スリット
 500 ローダ機構          510 リンクアーム
 511 長アーム           515 短アーム
 512 カウンタウェイト       516 ストッパ片
 520 ガイドアーム         521 ピン
 525 ワイヤ
DESCRIPTION OF SYMBOLS 1 Boiler 2 Superheated steam generator 3 Shower head 4 Conveyor 5 Vibrator 6 Heating container 7 Substrate 8 Element 9 Recovery container 10 Saturated steam supply pipe 11 End part 20 Main body 21 and 22 End part 23 Flat part 24, 25 Protrusion part 30 Supply side end plate 31 Opening 40 Discharge side end plate 41 Opening 50 Separation pipe 51 Stay 52, 53 End part 54 End plate 60 Sheath heater 61 Heating part 70 Superheated steam discharge pipe 71 Tip part 100 Support 110 Heat shield plate S1 Outer space S2 Inner space 200 Disassembling apparatus for electric equipment 210 Heating container section 203 Roller conveyor 205 Roller conveyor 211 Inlet 212 Outlet 215 Heating chamber 216 Processing chamber 217 Precooling chamber 221, 225, 226 Suction header 223 Preheating heater 227 Drain port 231, 241 Exhaust header 232, 242 Intake header 233, 243 Heater 234, 244 Air blower 250 Superheated steam generator 251 Ejector 253 Boiler 255 Superheated steam supply pipe 257 Temperature sensor 258 Controller 260 Shower head 261 Main body part 262 Superheated steam introduction pipe 263 Steam outlet 270 Chain conveyor 271 Attachment 272 Pin 275 Sprocket 276 Drive roller 290 Impact applying means (block)
300 Holder 310 Bottom plate 320 Inner plate 321 Grip 323 Slit 330 Outer plate 331 Side plate 332 Upper end 335 Spring 336 Pin 339 Guide 341 Front end 343 Roller 345 Slit 500 Loader mechanism 510 Link arm 511 Long arm 515 Short arm 512 Counter weight 5 Counter Guide arm 521 pin 525 wire

Claims (19)

  1.  融点以上に加熱することによって溶融する接合材料によって基板上に固定された部品を前記基板から分離する電気機器の分解方法であって、
     前記接合材料を過熱蒸気を用いて加熱することを特徴とする電気機器の分解方法。
    A method of disassembling an electrical device that separates a component fixed on a substrate by a bonding material that melts by heating to a melting point or higher, from the substrate,
    A method for disassembling an electric device, wherein the bonding material is heated using superheated steam.
  2.  前記部品は前記基板上に樹脂系材料によって固定され、
     前記過熱蒸気は、少なくとも前記部品の加熱箇所において実質的に大気圧であるとともに、前記樹脂系材料の軟化点以上の温度であること
     を特徴とする請求項1に記載の電気機器の分解方法。
    The component is fixed on the substrate by a resin material,
    2. The method for decomposing an electric device according to claim 1, wherein the superheated steam is substantially at atmospheric pressure at least at a heating portion of the component and has a temperature equal to or higher than a softening point of the resin material.
  3.  前記過熱蒸気によって前記基板及び前記部品の周囲を低酸素雰囲気に保った状態で処理すること
     を特徴とする請求項1又は請求項2に記載の電気機器の分解方法。
    The method for disassembling an electric device according to claim 1 or 2, wherein the substrate and the component are treated with the superheated steam in a low oxygen atmosphere.
  4.  前記過熱蒸気は過熱水蒸気であること
     を特徴とする請求項1から請求項3までのいずれか1項に記載の電気機器の分解方法。
    The method of disassembling an electric device according to any one of claims 1 to 3, wherein the superheated steam is superheated steam.
  5.  前記基板及び該基板上に固定された部品を過熱蒸気に曝す際に、前記基板を加振すること
    を特徴とする請求項1から請求項4までのいずれか1項に記載の電気機器の分解方法。
    The decomposition of the electric device according to any one of claims 1 to 4, wherein the substrate is vibrated when the substrate and a component fixed on the substrate are exposed to superheated steam. Method.
  6.  融点以上に加熱することによって溶融する接合材料によって基板上に固定された部品を前記基板から分離する電気機器の分解装置であって、
     前記基板及び該基板上に固定された前記部品を収容する加熱容器部と、
     前記加熱容器部内に前記接合材料の融点以上の温度を有する過熱蒸気を導入する過熱蒸気発生装置と、
    を備えることを特徴とする電気機器の分解装置。
    An apparatus for decomposing an electric device for separating a component fixed on a substrate by a bonding material that is melted by heating to a melting point or higher, from the substrate,
    A heating container portion for accommodating the substrate and the component fixed on the substrate;
    A superheated steam generator for introducing superheated steam having a temperature equal to or higher than the melting point of the bonding material into the heating container part;
    An apparatus for disassembling electrical equipment, comprising:
  7.  前記部品は前記基板上に樹脂系材料によって固定され、
     前記過熱蒸気は、少なくとも前記部品の加熱箇所において大気圧であるとともに、前記樹脂系材料の軟化点以上の温度であること
     を特徴とする請求項6に記載の電気機器の分解装置。
    The component is fixed on the substrate by a resin material,
    The apparatus for decomposing an electric device according to claim 6, wherein the superheated steam is at an atmospheric pressure at least at a heating portion of the component and at a temperature equal to or higher than a softening point of the resin material.
  8.  前記加熱容器部内は前記過熱蒸気の導入により低酸素雰囲気にされていること
     を特徴とする請求項6又は請求項7に記載の電気機器の分解装置。
    The apparatus for disassembling an electric device according to claim 6 or 7, wherein the inside of the heating container is made into a low oxygen atmosphere by introducing the superheated steam.
  9.  前記過熱蒸気は過熱水蒸気であること
     を特徴とする請求項6から請求項8までのいずれか1項に記載の電気機器の分解装置。
    The apparatus for disassembling an electric device according to any one of claims 6 to 8, wherein the superheated steam is superheated steam.
  10.  前記加熱容器部の近傍に、前記基板を加振する加振手段が備えられていること
     を特徴とする請求項6から請求項9までのいずれか1項に記載の電気機器の分解装置。
    The apparatus for disassembling an electric device according to any one of claims 6 to 9, further comprising a vibrating unit that vibrates the substrate in the vicinity of the heating container.
  11.  前記加熱容器部内に、前記基板を徐熱する予熱室又は前記基板を徐冷する予冷室の少なくとも一方が設けられていること、
    を特徴とする請求項6から請求項10までのいずれか1項に記載の電気機器の分解装置。
    In the heating container portion, at least one of a preheating chamber for gradually heating the substrate or a precooling chamber for gradually cooling the substrate is provided,
    The apparatus for disassembling an electric device according to any one of claims 6 to 10, wherein
  12.  前記予熱室内に、前記過熱蒸気発生装置が配置されていること
    を特徴とする請求項11に記載の電気機器の分解装置。
    The apparatus for disassembling an electric device according to claim 11, wherein the superheated steam generator is disposed in the preheating chamber.
  13.  前記加熱容器部内に、予熱ヒータが設置されていること
    を特徴とする請求項6から請求項12までのいずれか1項に記載の電気機器の分解装置。
    The preheating heater is installed in the said heating container part, The decomposition | disassembly apparatus of the electrical equipment of any one of Claim 6-12 characterized by the above-mentioned.
  14.  前記加熱容器部の、前記基板が導入される入口、及び、該基板が搬出される出口に、前記加熱容器部への外気の漏入を防止するエアカーテンが設けられていること
    を特徴とする請求項6から請求項13までのいずれか1項に記載の電気機器の分解装置。
    An air curtain for preventing leakage of outside air to the heating container part is provided at an inlet of the heating container part to which the substrate is introduced and an outlet from which the substrate is carried out. The apparatus for disassembling an electric device according to any one of claims 6 to 13.
  15.  前記加熱容器部内に、前記基板に機械的な衝撃を加える衝撃付与機構が備えられていること
    を特徴とする請求項6から請求項14までのいずれか1項に記載の電気機器の分解装置。
    The apparatus for disassembling an electric device according to any one of claims 6 to 14, wherein an impact applying mechanism for applying a mechanical impact to the substrate is provided in the heating container portion.
  16.  前記加熱容器部内に、過熱蒸気回収手段が設けられていること
    を特徴とする請求項6から請求項15までのいずれか1項に記載の電気機器の分解装置。
    The apparatus for disassembling an electric device according to any one of claims 6 to 15, wherein superheated steam recovery means is provided in the heating container section.
  17.  被接合部材よりも低い融点を有する接合材料によって基板上に固定された部品を前記基板から分離する電気機器の分解方法であって、
     前記基板及び該基板上に固定された前記部品を前記接合材料の融点以上の温度を有する過熱蒸気に曝して前記接合材料を溶融させ、前記部品を前記基板から分離することを特徴とする電気機器の分解方法。
    A method for disassembling an electric device for separating a component fixed on a substrate by a bonding material having a melting point lower than that of a member to be bonded, from the substrate,
    An electrical apparatus comprising: separating the component from the substrate by exposing the substrate and the component fixed on the substrate to superheated steam having a temperature equal to or higher than a melting point of the bonding material to melt the bonding material. Disassembly method.
  18.  被接合部材よりも低い融点を有する接合材料によって基板上に固定された部品を前記基板から分離する電気機器の分解装置であって、
     前記基板及び該基板上に固定された前記部品を収容する容器部と、
     前記容器部内に前記接合材料の融点以上の温度を有する過熱蒸気を導入する過熱蒸気発生装置と
     を備えることを特徴とする電気機器の分解装置。
    An apparatus for decomposing an electric device for separating a component fixed on a substrate by a bonding material having a melting point lower than that of a member to be bonded from the substrate,
    A container portion for accommodating the substrate and the component fixed on the substrate;
    A superheated steam generator for introducing superheated steam having a temperature equal to or higher than the melting point of the bonding material into the container portion.
  19.  前記過熱蒸気発生装置は、第1の筒状体と、前記第1の筒状体の一方の端部から蒸気を該第1の筒状体内に導入する導入管路と、前記第1の筒状体の内部に挿入され、前記導入管路側と反対側の端部で前記第1の筒状体と連通する第2の筒状体と、前記第2の筒状体の内部に挿入され、前記第1の筒状体と前記第2の筒状体とが連通する側と反対側の端部で前記第2の筒状体と連通する第3の筒状体と、前記第3の筒状体から過熱蒸気を排出する排出管路と、前記導入管路から前記排出管路までの気体流路内に設けられ、前記蒸気を加熱する加熱手段とを備えること
     を特徴とする請求項18に記載の電気機器の分解装置。
    The superheated steam generator includes a first cylindrical body, an introduction pipe for introducing steam into the first cylindrical body from one end of the first cylindrical body, and the first cylinder. A second cylindrical body that is inserted into the cylindrical body, communicates with the first cylindrical body at an end opposite to the introduction pipe line, and is inserted into the second cylindrical body; A third cylindrical body communicating with the second cylindrical body at an end opposite to a side where the first cylindrical body and the second cylindrical body communicate with each other; and the third cylinder 19. A discharge pipe for discharging superheated steam from the state body, and a heating means provided in a gas flow path from the introduction pipe to the discharge pipe for heating the steam. The disassembly apparatus of the electric equipment as described in.
PCT/JP2009/061197 2008-09-03 2009-06-19 Electric appliance disassembling method, and electric appliance disassembling device WO2010026822A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009801337630A CN102138370A (en) 2008-09-03 2009-06-19 Electric appliance disassembling method, and electric appliance disassembling device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008225390 2008-09-03
JP2008-225390 2008-09-03

Publications (1)

Publication Number Publication Date
WO2010026822A1 true WO2010026822A1 (en) 2010-03-11

Family

ID=41591532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061197 WO2010026822A1 (en) 2008-09-03 2009-06-19 Electric appliance disassembling method, and electric appliance disassembling device

Country Status (4)

Country Link
JP (2) JP4393576B1 (en)
KR (1) KR20110052659A (en)
CN (1) CN102138370A (en)
WO (1) WO2010026822A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3552789A1 (en) * 2018-02-19 2019-10-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing workpiece

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012138397A (en) * 2010-12-24 2012-07-19 Fuji Denki Thermosystems Kk Method and device for separating electronic components of printed circuit board
JP5759653B2 (en) * 2011-03-11 2015-08-05 株式会社ブラウニー Superheated steam generator and method, superheated steam processing method
JP2012236337A (en) * 2011-05-12 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> Method for dismantling article
JP2012236149A (en) * 2011-05-12 2012-12-06 Nippon Telegr & Teleph Corp <Ntt> Method of disassembling cellular phone
CN102319723A (en) * 2011-08-16 2012-01-18 西南科技大学 The discarded printed circuit boards electronic devices and components are dismantled reclaimer automatically
CN102284471B (en) * 2011-08-16 2014-10-01 西南科技大学 Method for automatically dismantling and recovering waste printed circuit board by using industrial exhaust heat
JP2013172029A (en) * 2012-02-21 2013-09-02 Koki Tec Corp Repairing device and repairing method
JP2013223822A (en) * 2012-04-20 2013-10-31 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for recycling optical fiber cable
JP5843289B2 (en) * 2012-04-27 2016-01-13 株式会社アステック入江 Printed circuit board processing method
CN103599921A (en) * 2013-11-19 2014-02-26 西南科技大学 Automatic lossless dismounting recovery method and automatic lossless dismounting recovery device of discarded printed circuit board
CN103962672A (en) * 2014-05-05 2014-08-06 苏玉琴 Soldering tin separator
CN106672622B (en) * 2016-12-25 2018-10-26 中山市恒辉自动化科技有限公司 A kind of flow-type electronic product recycling consersion unit
EP3960314A4 (en) * 2019-04-26 2022-12-21 Niimi-Solar Co., Ltd. Pyrolysis apparatus
JP6876308B1 (en) * 2020-02-27 2021-05-26 株式会社セレア Separation method and separation device
JP7443122B2 (en) 2020-03-27 2024-03-05 株式会社ジェイテクトサーモシステム heat treatment equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318133A (en) * 1987-06-22 1988-12-27 Hitachi Ltd Device for detaching electronic circuit element
JPH1017948A (en) * 1996-06-27 1998-01-20 Senju Metal Ind Co Ltd Method for removing solder of printed circuit board and device for removing solder
JP2002343838A (en) * 2001-05-14 2002-11-29 Nec Corp Semiconductor chip, method for removing the same and semiconductor device
JP2003152327A (en) * 2001-11-19 2003-05-23 Fuji Electric Co Ltd Method and device for soldering

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2755225B2 (en) * 1995-02-10 1998-05-20 日本電気株式会社 Separation and disassembly of printed wiring boards with components
JPH10202362A (en) * 1997-01-17 1998-08-04 Toyota Motor Corp Soldering method and soldering apparatus
CN1897790A (en) * 2005-07-17 2007-01-17 郑金标 Separation of printing circuit board component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63318133A (en) * 1987-06-22 1988-12-27 Hitachi Ltd Device for detaching electronic circuit element
JPH1017948A (en) * 1996-06-27 1998-01-20 Senju Metal Ind Co Ltd Method for removing solder of printed circuit board and device for removing solder
JP2002343838A (en) * 2001-05-14 2002-11-29 Nec Corp Semiconductor chip, method for removing the same and semiconductor device
JP2003152327A (en) * 2001-11-19 2003-05-23 Fuji Electric Co Ltd Method and device for soldering

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3552789A1 (en) * 2018-02-19 2019-10-16 Toyota Jidosha Kabushiki Kaisha Method for manufacturing workpiece

Also Published As

Publication number Publication date
JP2010087464A (en) 2010-04-15
CN102138370A (en) 2011-07-27
JP2010087522A (en) 2010-04-15
JP4393576B1 (en) 2010-01-06
KR20110052659A (en) 2011-05-18

Similar Documents

Publication Publication Date Title
JP4393576B1 (en) Disassembly method of electrical equipment
JPH02502200A (en) Gas phase processes and equipment
EP1867424B1 (en) Method for removing fume in reflow furnace and reflow furnace
AU2008260343A1 (en) Method and apparatus for removing contaminants from a reflow apparatus
JP4082462B1 (en) Reflow furnace
US20100012709A1 (en) Reflow furnace
JP5352312B2 (en) Disassembling method for electric equipment and disassembling apparatus for electric equipment
JPH05261528A (en) Vapor reflow soldering device
KR101265871B1 (en) Apparatus and method for providing an inerting gas during soldering
JP5485828B2 (en) Flux collection device and flux collection method
JP5434763B2 (en) Jet soldering equipment
JP2011082282A (en) Reflow apparatus
JP6895212B2 (en) Local soldering equipment
JP3933879B2 (en) Method for preventing oxidation of molten solder in water vapor atmosphere
JPS62148082A (en) Vapor reflow type soldering device
JPH03118962A (en) Vapor reflowing type soldering apparatus
JP6366984B2 (en) Flow soldering equipment
WO2005068123A1 (en) Reflow furnace
TW548346B (en) Process and apparatus for treating metal surfaces by dry means
JP4866253B2 (en) Reflow furnace
JP2723449B2 (en) Vapor reflow soldering equipment
JP2000252621A (en) Reflow apparatus
JPH03146257A (en) Method and device for soldering
JP2006295024A (en) Reflow soldering machine
JPS6031295A (en) Vapor soldering method and device therefor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980133763.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811351

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20117004346

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1210/KOLNP/2011

Country of ref document: IN

122 Ep: pct application non-entry in european phase

Ref document number: 09811351

Country of ref document: EP

Kind code of ref document: A1