WO2010026798A1 - Oxide thin film transistor and method for manufacturing the same - Google Patents

Oxide thin film transistor and method for manufacturing the same Download PDF

Info

Publication number
WO2010026798A1
WO2010026798A1 PCT/JP2009/056593 JP2009056593W WO2010026798A1 WO 2010026798 A1 WO2010026798 A1 WO 2010026798A1 JP 2009056593 W JP2009056593 W JP 2009056593W WO 2010026798 A1 WO2010026798 A1 WO 2010026798A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
layer
insulating layer
oxide thin
Prior art date
Application number
PCT/JP2009/056593
Other languages
French (fr)
Japanese (ja)
Inventor
竜太 飯島
徳子 美浦
元士 板垣
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010026798A1 publication Critical patent/WO2010026798A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4908Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET for thin film semiconductor, e.g. gate of TFT
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device

Definitions

  • the present invention relates to an oxide thin film transistor and a method for manufacturing the same.
  • an active drive circuit including a thin film transistor is embedded in each pixel of a flexible display such as an organic EL, a film liquid crystal, and electronic paper.
  • a oxide thin film transistor using an oxide as a material of a semiconductor layer of a thin film transistor has been developed. It is known that an oxide semiconductor layer can be formed at a low temperature and has high field-effect mobility.
  • some oxide semiconductors include transparent oxide semiconductors. If a transparent oxide semiconductor and a known transparent substrate material are selected as materials, a transparent thin film transistor can be formed. Can be expected.
  • the insulating layer formed on the upper surface of the oxide semiconductor layer is generally formed by a vacuum process such as a sputtering method or a plasma CVD method.
  • a vacuum process such as a sputtering method or a plasma CVD method.
  • these methods have a problem that the apparatus becomes large and costs increase, and the process is complicated.
  • plasma ions generated from the apparatus in the forming process damage the oxide semiconductor layer and the like.
  • a semiconductor device has been proposed that employs an organic polymer such as polyimide or polyamide as the material of the insulating layer on the top surface of the oxide semiconductor layer (see, for example, Patent Document 1).
  • an organic polymer such as polyimide or polyamide
  • a polymer resin is used as the material of the insulating layer on the top surface of the oxide semiconductor layer, and therefore the insulating layer can be formed by a coating method.
  • the insulating layer can be formed without damaging the oxide semiconductor layer.
  • this semiconductor device has the following problems.
  • a gate electrode and a pixel electrode are formed on the upper surface of the insulating layer, and cleaning with pure water is performed in the formation process.
  • the insulating layer is composed of only an organic polymer resin layer such as polyimide or polyamide as in this semiconductor device, pure water passes through the insulating layer and reaches the oxide semiconductor layer during the cleaning process. There is a risk that.
  • the oxide semiconductor layer takes in moisture, the oxide thin film transistor has a problem that it is difficult to stabilize the characteristics.
  • heat treatment is generally performed after formation to remove moisture from the oxide semiconductor layer.
  • the oxide semiconductor layer may be damaged during this heat treatment. Therefore, the heat treatment results in a problem that the semiconductor characteristics of the oxide semiconductor layer are deteriorated and the transistor characteristics are deteriorated.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an oxide thin film transistor having stable characteristics and a method for manufacturing the same.
  • An oxide thin film transistor including an amorphous perfluoro resin layer made of a perfluoro resin is provided.
  • FIG. 1 is a longitudinal sectional view of an oxide thin film transistor 1 of a first embodiment. It is a flowchart which shows the manufacturing process of the oxide thin-film transistor 1 of 1st embodiment.
  • 2 is a longitudinal sectional view of a state in which a source electrode 3 and a drain electrode 4 are formed on the upper surface of a substrate 2.
  • FIG. FIG. 4 is a longitudinal sectional view showing a state where an oxide semiconductor layer 9 is formed between a source electrode 3 and a drain electrode 4 shown in FIG. 3.
  • 2 is a longitudinal sectional view showing a state in which a non-fluorine organic resin layer 51 is formed on the top surfaces of a substrate 2, a source electrode 3, a drain electrode 4, and an oxide semiconductor layer 9.
  • FIG. 2 is a longitudinal sectional view showing a state in which an amorphous perfluoro resin layer 52 is formed on the upper surface of a non-fluorine organic resin layer 51.
  • FIG. 6 is a longitudinal sectional view of an oxide thin film transistor 1a of Comparative Example 1.
  • FIG. 6 is a longitudinal sectional view of an oxide thin film transistor 1b of Comparative Example 2.
  • FIG. 3 is a voltage-current characteristic of the oxide thin film transistor 1. This is a voltage-current characteristic of the oxide thin film transistor 1a.
  • It is a longitudinal cross-sectional view of the oxide thin-film transistor 12 of 2nd embodiment. It is a flowchart which shows the manufacturing process of the oxide thin-film transistor 12 of 2nd embodiment.
  • FIG. 2 is a longitudinal sectional view of a state where a gate electrode 106 is formed on the upper surface of a substrate 102.
  • FIG. It is a longitudinal cross-sectional view of a state in which the gate insulating layer 110 according to the third embodiment is formed on the upper surfaces of the substrate 102 and the gate electrode 106.
  • FIG. 10 is a longitudinal sectional view of a state in which an oxide semiconductor layer 109 is formed between a source electrode 103 and a drain electrode 104. It is a longitudinal cross-sectional view in the state in which the non-fluorine type organic resin layer 151 was formed on the upper surface of the source electrode 103, the drain electrode 104, the oxide semiconductor layer 109, and the gate insulating layer 110 in 3rd embodiment.
  • FIG. 6 is a longitudinal sectional view showing a state in which an amorphous perfluoro resin layer 152 is formed on the upper surface of a non-fluorine organic resin layer 151. It is a longitudinal cross-sectional view of a state in which a contact hole 111 penetrating the non-fluorine organic resin layer 151 and the amorphous perfluororesin layer 152 is formed.
  • oxide thin film transistor 1 according to the first embodiment of the present disclosure will be described.
  • a cross-sectional structure of the oxide thin film transistor 1 will be described with reference to FIG.
  • the oxide thin film transistor 1 of the first embodiment is a so-called “top gate type” oxide thin film transistor in which the gate electrode 6 is located above the source electrode 3 and the drain electrode 4.
  • the oxide thin film transistor 1 of this embodiment is characterized in that, in addition to being a top gate type, the gate insulating layer 5 is formed of two layers of a non-fluorine organic resin layer 51 and an amorphous perfluoro resin layer 52.
  • the lower side of FIG. 1 (substrate 2 side) is described as the lower side of the oxide thin film transistor 1, and the upper side of FIG.
  • the oxide thin film transistor 1 has a plate-like substrate 2, and a source electrode 3 and a drain electrode 4 are provided on the upper surface of the substrate 2 so as to be separated from each other.
  • An oxide semiconductor layer 9 is continuously provided on the upper surface of the source electrode 3 and the drain electrode 4 and the upper surface of the substrate 2 sandwiched between the source electrode 3 and the drain electrode 4.
  • a gate insulating layer 5 is provided so as to cover the oxide semiconductor layer 9, the source electrode 3, the drain electrode 4, and the substrate 2.
  • the gate insulating layer 5 includes a lower non-fluorine organic resin layer 51 covering at least the oxide semiconductor layer 9 and an upper amorphous perfluoro resin layer 52 covering the upper surface of the non-fluorine organic resin layer 51. Yes.
  • a gate electrode 6 is provided on the upper surface of the amorphous perfluororesin layer 52 at a position facing the oxide semiconductor layer 9.
  • the substrate 2 is a plate-like member having a flat surface.
  • Various materials are applicable as the material of the substrate 2, but when a conductive material is employed, an insulating film needs to be provided on the surface of the substrate 2.
  • a plastic substrate is used in addition to a glass substrate and a silicon substrate with a thermal oxide film.
  • plastic is particularly used as the material of the substrate 2. Examples of plastic materials include polyethersulfone (PES), polyethylene terephthalate (PET), polyimide (PI), polyethylene naphthalate (PEN), polyetherimide (PEI), polystyrene (PS), and polyvinyl chloride (PVC).
  • PES polyethersulfone
  • PET polyethylene terephthalate
  • PI polyimide
  • PEN polyethylene naphthalate
  • PEI polyetherimide
  • PS polystyrene
  • PVC polyvinyl chloride
  • a glass barrier film made of SiO 2 or SiNx is formed on the surface of the substrate 2.
  • a glass substrate is used as the substrate 2.
  • a source electrode 3 and a drain electrode 4 are provided with a separation width of a predetermined channel length.
  • the material of the source electrode 3 and the drain electrode 4 is a single metal such as Au, Ag, Ni, Cu, Pd, Al, Mo, Cr, Ti, Ta, Pt, W (tungsten), or at least one of the metals.
  • a composite containing a conductive oxide such as indium tin oxide (ITO) or a conductive polymer such as polyethylenedioxythiophene (PEDOT) is applicable.
  • the source electrode 3 and the drain electrode 4 of this embodiment are made of Ni.
  • An oxide semiconductor layer 9 is continuously provided on each upper surface of the source electrode 3 and the drain electrode 4 and an upper surface of the substrate 2 sandwiched between the source electrode 3 and the drain electrode 4.
  • a known oxide semiconductor material can be used as the material of the oxide semiconductor layer 9.
  • an oxide semiconductor material containing at least one element of In, Ga, and Zn is employed.
  • Specific examples of the oxide semiconductor material containing at least one element of In, Ga, and Zn include InGaZnO 4 , ZnO, ZnInO, and In 2 O 3 .
  • the oxide semiconductor layer 9 of this embodiment is made of InGaZnO 4 .
  • the gate insulating layer 5 includes a lower non-fluorine organic resin layer 51 covering at least the oxide semiconductor layer 9 and an upper amorphous perfluoro resin layer 52 covering the upper surface of the non-fluorine organic resin layer 51. Yes.
  • the material of the non-fluorine organic resin layer 51 may be any non-fluorine organic polymer having insulating properties. Specifically, polyimide (PI), polyamide (PA), polyester (PE), polyvinylphenol (PVP), polyvinyl alcohol (PVA), polyvinyl acetate (PVAC), polymethyl methacrylate (PMMA), polyurethane (PUR) Polysulfone (PSF), cyanoethyl pullulan, epoxy resin, phenol resin, benzocyclobutene resin, acrylic resin, polymer alloy of the above resin, or copolymer resin can be used.
  • the non-fluorinated organic resin layer 51 of the present embodiment is formed by cross-linked PVP in which polyvinyl phenol (PVP) is cross-linked by melanin resin.
  • the upper surface of the non-fluorine organic resin layer 51 is covered with an amorphous perfluoro resin layer 52.
  • the amorphous perfluoro resin layer 52 is made of an amorphous perfluoro resin, and specifically, for example, Cytop (registered trademark) manufactured by Asahi Glass Co., Ltd. is used.
  • Perfluororesin is a fluororesin composed of a carbon skeleton, fluorine, and a small amount of oxygen. Its structure is amorphous. Amorphous perfluororesin has properties as a fluororesin such as fire resistance, chemical resistance, and water repellency, and is very transparent due to its amorphous structure (visible light transmittance of 95% or more).
  • the amorphous perfluoro resin can be handled as a liquid material by dissolving it in a predetermined fluorine-based solvent. Therefore, an amorphous perfluoro resin thin film can be formed by a coating method.
  • a gate electrode 6 is provided at a position facing the oxide semiconductor layer 9.
  • the material of the gate electrode 6 includes a single metal such as Au, Ag, Cu, Pd, Ni, Al, Mo, Cr, Ti, Ta, Pt, W (tungsten), or a composite containing at least one metal,
  • a conductive oxide such as indium tin oxide (ITO) or a conductive polymer such as polyethylenedioxythiophene (PEDOT) is applicable.
  • the gate electrode 6 of this embodiment is made of Ni.
  • the manufacturing process of the oxide thin film transistor 1 includes a source / drain electrode formation step (S1) in which the source electrode 3 and the drain electrode 4 are formed on the upper surface of the substrate 2, and the source electrode 3 and the drain electrode, respectively.
  • the semiconductor layer forming step (S2) in which the oxide semiconductor layer 9 is formed on the upper surface of the substrate 2 between 4, and the gate insulating layer forming step (S3) in which the gate insulating layer 5 is formed at least on the upper surface of the oxide semiconductor layer 9 )
  • a gate electrode forming step (S4) in which the gate electrode 6 is formed on the upper surface of the gate insulating layer 5.
  • the gate insulating layer forming step (S3) includes a non-fluorinated organic resin layer forming step (S31) in which the non-fluorinated organic resin layer 51 is formed so as to cover at least the upper surface of the oxide semiconductor layer 9, and a non-fluorinated organic resin.
  • This includes an amorphous perfluoro resin layer forming step (S32) in which the amorphous perfluoro resin layer 52 is formed so as to cover the upper surface of the resin layer 51.
  • the source / drain electrode forming step of S1 is performed.
  • the source electrode 3 and the drain electrode 4 are formed on the upper surface of the substrate 2 as shown in FIG.
  • the method for forming the source electrode 3 and the drain electrode 4 is not particularly limited.
  • a thin film made of a material for forming electrodes is formed on the upper surface of the substrate 2 and then unnecessary portions are removed by patterning.
  • various methods can be applied to the film forming method and the patterning method. Specifically, as a film forming method, a sputtering method, a vacuum evaporation method, a CVD method, a plating method, or the like can be applied.
  • As the patterning method a photolithography method, a screen printing method, or the like can be applied.
  • a Ni thin film was formed on the upper surface of the substrate 2. And the formed Ni thin film was patterned and the unnecessary part was removed, and the source electrode 3 and the drain electrode 4 were formed.
  • the Ni thin film was formed by a sputtering method. At this time, Ni was used as the target, and a DC sputtering apparatus was used as the apparatus. A resist pattern was formed on the upper surface of the formed Ni thin film using a photolithography method, and then the Ni thin film was etched using an etching method. The unnecessary photoresist was removed by washing with acetone.
  • the source electrode 3 and the drain electrode 4 made of Ni were formed on the upper surface of the substrate 2.
  • the formed source electrode 3 and drain electrode 4 had a thickness of 150 nm.
  • the semiconductor layer forming step of S2 is performed.
  • the oxide semiconductor layer 9 is continuous with the upper surface of the substrate 2 between the source electrode 3 and the drain electrode 4 and the upper surface of the source electrode 3 and the drain electrode 4.
  • a method of forming the oxide semiconductor layer 9 is generally a method of removing unnecessary portions by patterning after forming a semiconductor thin film.
  • a sputtering method is suitable as the film forming method, but is not limited thereto.
  • As the patterning method a photolithography method, a screen printing method, or the like can be used.
  • the InGaZnO 4 film covers the upper surface of the source electrode 3, the upper surface of the drain electrode 4, and the upper surface of the substrate 2 shown in FIG. 3 so as to cover the portion where the source electrode 3 and drain electrode 4 are not provided. Is formed. Thereafter, the InGaZnO 4 film is patterned to remove unnecessary portions, whereby the oxide semiconductor layer 9 made of InGaZnO 4 is formed.
  • the InGaZnO 4 film is formed by a sputtering method. InGaZnO 4 is used as a target, and a mixed gas of Ar and O 2 is flowed.
  • the InGaZnO 4 film After forming the InGaZnO 4 film, a resist pattern is formed by a photolithography method, and the InGaZnO 4 film is etched by an etching method using an organic acid-based ITO etchant. The unnecessary photoresist is removed by washing with acetone.
  • the oxide semiconductor layer 9 made of InGaZnO 4 is continuously formed on the upper surface of the substrate 2 between the source electrode 3 and the drain electrode 4, the upper surface of the source electrode 3, and the upper surface of the drain electrode 4. Can be made.
  • the thickness of the formed oxide semiconductor layer 9 was 30 nm.
  • the gate insulating layer forming step of S3 is performed.
  • the non-fluorine organic resin layer 51 is formed so as to cover the upper surface of the source electrode 3, the drain electrode 4, the oxide semiconductor layer 9, and the substrate 2.
  • the source electrode 3 and the drain among the upper surfaces of the source electrode 3, the drain electrode 4, and the oxide semiconductor layer 9 and the upper surface of the substrate 2 are formed.
  • a non-fluorine organic resin layer 51 is formed so as to cover a portion where the electrode 4 and the oxide semiconductor layer 9 are not provided.
  • the method for forming the non-fluorine organic resin layer 51 is not particularly limited, but it is preferable to use a coating method from the viewpoint of cost. Various methods can be applied as the coating method. Specifically, any of spin coating, slit coating, dip coating, spraying, roll coating, curtain coating, printing, droplet discharge, and the like can be used.
  • a non-fluorine organic resin layer forming solution containing polyvinylphenol is formed by spin coating on the upper surfaces of the oxide semiconductor layer 9, the source electrode 3, and the drain electrode 4 shown in FIG. Then, the oxide semiconductor layer 9, the source electrode 3, and the drain electrode 4 were coated so as to cover a portion where the oxide semiconductor layer 9, the source electrode 3, and the drain electrode 4 were not provided, and then heat treatment was performed.
  • the heat treatment was performed by using a hot plate, heating at 70 ° C. for 10 minutes, heating at 150 ° C. for 10 minutes, and finally heating at 200 ° C. for 30 minutes.
  • the thickness of the non-fluorine organic resin layer 51 after the heat treatment was 700 nm.
  • the amorphous perfluoro resin layer 52 is formed so as to cover the non-fluorine organic resin layer 51 as shown in FIG.
  • the formation of the amorphous perfluororesin layer 52 is performed using a coating method.
  • the amorphous perfluororesin layer forming solution was applied by spin coating so as to cover the upper surface of the non-fluorine organic resin layer 51 shown in FIG.
  • a solution for forming an amorphous perfluoro resin layer “Cytop (registered trademark) solution” manufactured by Asahi Glass Co., Ltd., prepared for the spin coating method was used.
  • the heat treatment was performed using a hot plate. As an example, heating was performed at 70 ° C. for 10 minutes, followed by heating at 120 ° C. for 10 minutes, and finally heating at 200 ° C. for 10 minutes.
  • the thickness of the amorphous perfluororesin layer 52 after the heat treatment was 100 nm.
  • the gate electrode forming step of S4 is performed.
  • the gate electrode 6 is formed on the upper surface of the amorphous perfluororesin layer 52 as shown in FIG.
  • the method for forming the gate electrode 6 is not particularly limited. In general, after forming a thin film of a material for forming the gate electrode 6, patterning is performed to remove unnecessary portions.
  • various methods can be applied to the film forming method and the patterning method. Specifically, as a film forming method, a sputtering method, a vacuum evaporation method, a CVD method, a plating method, or the like can be applied.
  • As the patterning method a photolithography method, a screen printing method, or the like can be applied.
  • the Ni thin film is patterned to remove unnecessary portions, thereby forming the gate electrode 6 made of Ni.
  • the Ni thin film was formed by a vacuum deposition method. After the Ni thin film was formed, a resist pattern was formed by photolithography, and the Ni thin film was etched by etching. The unnecessary photoresist was removed by washing with acetone.
  • the gate electrode 6 made of Ni was formed on the upper surface of the amorphous perfluoro resin layer 52.
  • the formed gate electrode 6 had a thickness of 200 nm.
  • the performance of the oxide thin film transistor 1 was evaluated.
  • the performance evaluation was also performed on the oxide thin film transistor 1b composed of only one layer. Hereinafter, this performance evaluation will be described.
  • the configuration of the oxide thin film transistor 1a of Comparative Example 1 shown in FIG. 7 is the same as that of the oxide thin film transistor 1 except that the gate insulating layer 5 is composed of only one non-fluorine organic resin layer 51 having a thickness of 800 nm. .
  • the oxide thin film transistor 1a is obtained by omitting only the amorphous perfluororesin layer forming step (S32) in the manufacturing process of the oxide thin film transistor 1 of the first embodiment.
  • the oxide thin film transistor 1b of Comparative Example 2 shown in FIG. 8 is the oxide thin film transistor 1 of the first embodiment except that the gate insulating layer 5 is composed of only one layer of an amorphous perfluoro resin layer 52 having a thickness of 800 nm. It is the same. Moreover, the oxide thin film transistor 1b is obtained by omitting only the non-fluorine-based organic resin layer forming step (S31) in the manufacturing process of the oxide thin film transistor 1 of the first embodiment.
  • the curve a shows the voltage-current characteristics of the oxide thin film transistors 1, 1a, 1b before the heat treatment
  • the curve b shows the voltage-current of the oxide thin film transistors 1, 1a, 1b after the heat treatment. Show the characteristics.
  • the performance evaluation was performed using the field effect mobility of the oxide thin film transistor and the turn-on voltage obtained from the voltage-current characteristics shown in FIGS. 9 to 11 as indices.
  • the turn-on voltage is a gate voltage that becomes a boundary when the oxide thin film transistor is turned on from the off state. When a predetermined voltage is applied between the source electrode 3 and the drain electrode 4 to change the gate voltage, the current flowing between the source electrode 3 and the drain electrode 4 is measured, and the field effect mobility is calculated from the obtained value. And turn-on voltage were
  • the performance evaluation was performed on the oxide thin film transistors 1, 1a, and 1b after the formation and the oxide thin film transistors 1, 1a, and 1b on which the heat treatment was further performed after the formation.
  • the heat treatment was performed by heating the formed oxide thin film transistors 1, 1a, and 1b at 200 ° C. for 5 minutes using a hot plate.
  • characteristics may be unstable when moisture is taken into the oxide semiconductor layer. Therefore, in order to stabilize transistor characteristics, heat treatment is generally performed after formation to remove moisture in the oxide semiconductor layer.
  • the field effect mobility before and after the heat treatment in the oxide thin film transistor 1 and the turn-on voltage were evaluated. Based on the voltage-current characteristics of the oxide thin film transistor 1 shown in FIG. 9, the field-effect mobility and the turn-on voltage were determined to be 7.2 cm 2 / Vs and the turn-on voltage was ⁇ 10 V before the heat treatment. (Curve a). Further, after the heat treatment, the field effect mobility was 7.6 cm 2 / Vs, and the turn-on voltage was ⁇ 10 V (curve b). Thereby, in the oxide thin-film transistor 1 of 1st embodiment, it turned out that field effect mobility improves a little by heat processing. It was also found that the turn-on voltage hardly changed before and after the heat treatment. Thus, it was shown that the oxide thin film transistor 1 having high field effect mobility and having stable characteristics without fluctuation of turn-on voltage due to heat treatment can be obtained.
  • the oxide thin film transistor 1 was subjected to the same experiment a plurality of times, and the field effect mobility and the turn-on voltage were obtained. As a result, a reproducible result was obtained. Thereby, it was confirmed that the oxide thin film transistor 1 has stable transistor characteristics.
  • the field effect mobility and the turn-on voltage before and after the heat treatment in the oxide thin film transistor 1a were evaluated. Based on the voltage-current characteristics of the oxide thin film transistor 1a shown in FIG. 10, the field-effect mobility and the turn-on voltage are determined. The field-effect mobility is 4.9 cm 2 / Vs and the turn-on voltage is ⁇ 7.5 V before the heat treatment. (Curve a). Further, after the heat treatment, the field effect mobility was 5.2 cm 2 / Vs, and the turn-on voltage was ⁇ 50 V or less (curve b). Thereby, in the oxide thin film transistor 1a of the comparative example 1, it was shown that the turn-on voltage is significantly shifted negatively by the heat treatment. In order to reduce the drive voltage of the transistor, it is necessary to reduce the absolute value of the turn-on voltage. However, in the oxide thin film transistor 1a, it has been shown that the absolute value of the turn-on voltage may increase due to heat treatment.
  • the field effect mobility and the turn-on voltage before and after the heat treatment in the oxide thin film transistor 1b were evaluated. Based on the voltage-current characteristics of the oxide thin film transistor 1b shown in FIG. 11, the field-effect mobility and the turn-on voltage were determined to be 0.32 cm 2 / Vs and the turn-on voltage was ⁇ 20 V before the heat treatment. (Curve a). Further, after the heat treatment, the field effect mobility was 0.31 cm 2 / Vs, and the turn-on voltage was ⁇ 20 V (curve b). Thereby, in the oxide thin-film transistor 1b of the comparative example 2, it was shown that the field effect mobility is low and the absolute value of the turn-on voltage is large compared with the oxide thin-film transistor 1 of the first embodiment.
  • the turn-on voltage of a thin film transistor approximates the inverse proportion of the capacitance of the gate insulating layer.
  • the capacitance of the gate insulating layer is proportional to the relative dielectric constant of the material forming the gate insulating layer.
  • the gate insulating layer 5 is formed only from the amorphous perfluoro resin layer 52 having a low dielectric constant. For this reason, it is presumed that the absolute value of the turn-on voltage has increased.
  • the gate insulating layer 5 includes a non-fluorine-based organic resin layer 51 made of a crosslinked PVP having a higher dielectric constant than the amorphous perfluoro resin, an amorphous perfluoro resin layer 52, and This is a laminated structure. For this reason, it is presumed that the absolute value of the turn-on voltage could be reduced.
  • the gate insulating layer 5 stacked on the upper surface of the oxide semiconductor layer 9 includes the non-fluorine organic resin layer 51 covering the oxide semiconductor layer 9 and the non-fluorine. And an amorphous perfluoro resin layer 52 covering the organic resin layer 51.
  • the amorphous perfluoro resin layer 52 as a constituent element of the gate insulating layer 5, good and stable characteristics are obtained.
  • the oxide thin film transistor 1 with almost no change in characteristics can be obtained.
  • the gate insulating layer 5 includes a water-repellent amorphous perfluoro resin layer 52. Therefore, in the cleaning process during patterning performed when the gate electrode 6 is formed on the upper surface of the gate insulating layer 5, the cleaning water passes through the gate insulating layer 5 and the oxide semiconductor layer on the lower surface of the gate insulating layer 5. None reach 9. It is known that the characteristics of the oxide thin film transistor 1 become unstable when moisture is adsorbed on the oxide semiconductor layer 9. In the oxide thin film transistor 1, the cleaning water can be prevented from reaching the oxide semiconductor layer 9, and the characteristics of the oxide thin film transistor 1 can be stabilized.
  • the dielectric constant of the gate insulating layer 5 is improved and the absolute value of the turn-on voltage of the oxide thin film transistor 1 is reduced. be able to. Therefore, the oxide thin film transistor 1 having a low driving voltage can be obtained.
  • both the non-fluorine organic resin layer 51 and the amorphous perfluoro resin layer 52 can be formed at a low temperature by a coating method. Therefore, the gate insulating layer 5 can be formed easily and inexpensively without using a large-scale apparatus. In addition, the gate insulating layer 5 can be formed without damaging the oxide semiconductor layer 9 formed on the lower surface side. Furthermore, a flexible plastic substrate with low heat resistance can be used as the substrate, and in that case, an oxide thin film transistor having flexibility can be manufactured.
  • the non-fluorine organic resin layer 51 is in contact with the upper surface of the oxide semiconductor layer 9, and the material of the non-fluorine organic resin layer 51 is polyvinyl phenol (PVP) having low reactivity with respect to the oxide semiconductor. It was adopted. Therefore, the oxide semiconductor layer 9 is not damaged in the process of forming the gate insulating layer 5. Therefore, the semiconductor characteristics of the oxide semiconductor layer 9 can be maintained, and the oxide thin film transistor 1 having favorable characteristics can be formed.
  • PVP polyvinyl phenol
  • the oxide semiconductor layer 9 is formed. Therefore, the oxide semiconductor layer 9 is not damaged when the source electrode 3 and the drain electrode 4 are formed.
  • the oxide thin film transistor 12 of the second embodiment will be described with reference to FIG. 12 and FIG.
  • the non-fluorine organic resin layer 51 is formed above the amorphous perfluororesin layer 52 in the gate insulating layer 50.
  • Other configurations are the same as those of the oxide thin film transistor 1 of the first embodiment. Therefore, only the stacking order of the non-fluorinated organic resin layer 51 and the amorphous perfluororesin layer 52 in the gate insulating layer 50 will be described mainly.
  • Other configurations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the cross-sectional structure of the oxide thin film transistor 12 of the second embodiment will be described.
  • the source electrode 3 and the drain electrode 4 are provided apart from each other on the upper surface of the substrate 2.
  • An oxide semiconductor layer 9 is continuously provided on the upper surface of the source electrode 3 and the drain electrode 4 and the upper surface of the substrate 2 sandwiched between the source electrode 3 and the drain electrode 4.
  • a gate insulating layer 50 is provided so as to cover the oxide semiconductor layer 9, the source electrode 3, the drain electrode 4, and the upper surface of the substrate 2.
  • the gate insulating layer 50 includes a lower amorphous perfluoro resin layer 52 covering at least the oxide semiconductor layer 9 and an upper non-fluorine organic resin layer 51 covering the amorphous perfluoro resin layer 52.
  • a gate electrode 6 is provided on the top surface of the non-fluorine organic resin layer 51 at a position facing the oxide semiconductor layer 9.
  • the material of each component of the oxide thin film transistor 12 is the same as that of the oxide thin film transistor 1 of the first embodiment.
  • the manufacturing process of the oxide thin film transistor 12 of the second embodiment includes a source / drain electrode forming step (S1) in which the source electrode 3 and the drain electrode 4 are formed on the upper surface of the substrate 2, respectively, A semiconductor layer forming step (S2) in which the oxide semiconductor layer 9 is formed on the upper surface of the substrate 2 between the electrode 3 and the drain electrode 4, and gate insulation in which the gate insulating layer 5 is formed on at least the upper surface of the oxide semiconductor layer 9
  • the layer forming step (S30) and the gate electrode forming step (S4) in which the gate electrode 6 is formed on the upper surface of the gate insulating layer 5 are configured.
  • the source / drain electrode forming step (S1), the semiconductor layer forming step (S2), and the gate electrode forming step (S4) are the same as those in the first embodiment, description thereof is omitted. Only the gate insulating layer forming step (S30) will be described.
  • the gate insulating layer forming step (S30) in the second embodiment includes an amorphous perfluoro resin layer forming step (S301) in which an amorphous perfluoro resin layer 52 is formed so as to cover at least the upper surface of the oxide semiconductor layer 9, and an amorphous state.
  • the amorphous perfluoro resin layer forming step (S301) will be described.
  • an amorphous perfluoro resin layer forming solution is applied to the upper surfaces of the oxide semiconductor layer 9, the source electrode 3, the drain electrode 4 and the substrate 2 by spin coating. After coating so as to cover a portion of the upper surface where the oxide semiconductor layer 9, the source electrode 3, and the drain electrode 4 are not provided, heat treatment was performed.
  • the amorphous perfluoro resin layer forming solution “Cytop (registered trademark) solution” manufactured by Asahi Glass Co., Ltd., prepared for the spin coating method was used. The heat treatment was performed using a hot plate, heated at 70 ° C.
  • the upper surface of the amorphous perfluororesin layer 52 was hydrophilized by plasma treatment with oxygen, argon, nitrogen or the like.
  • the amorphous perfluoro resin layer forming step (S32) in the first embodiment is performed in that plasma treatment is performed to make the upper surface hydrophilic. Is different.
  • non-fluorine organic resin layer forming step (S302) a non-fluorine-based organic resin layer-forming solution containing polyvinylphenol was applied to the upper surface of the amorphous perfluororesin layer by spin coating, and then heat-treated. .
  • the non-fluorine organic resin layer forming solution is a mixed solution of PVP, melamine-formaldehyde, and propylene glycol monomethyl ether acetate.
  • the heat treatment was performed by using a hot plate, heating at 70 ° C. for 10 minutes, heating at 150 ° C. for 10 minutes, and finally heating at 200 ° C. for 30 minutes.
  • the same effect as the oxide thin film transistor 1 of the first embodiment can be obtained.
  • the amorphous perfluoro resin layer 52 is covered with the non-fluorine organic resin layer 51 and is not exposed to the outside. Since the cross-linked PVP forming the non-fluorine organic resin layer 51 has higher hardness than the amorphous perfluoro resin, the physical resistance of the gate insulating layer 50 can be improved. Thereby, deterioration of the characteristics of the oxide thin film transistor 12 due to damage to the gate insulating layer 50 can be suppressed. In particular, damage to the gate insulating layer 50 in the gate electrode formation step (S4) performed after forming the gate insulating layer 50 can be reduced, and the oxide thin film transistor 12 having favorable characteristics can be obtained.
  • the oxide thin film transistor 100 of the third embodiment is a so-called “bottom gate type” oxidation in which the gate electrode 106 is located below the source electrode 103 and the drain electrode 104.
  • the oxide thin film transistor 100 according to the third embodiment is characterized in that, in addition to being a bottom gate type, the interlayer insulating layer 105 is formed of two layers of a non-fluorine organic resin layer 151 and an amorphous perfluoro resin layer 152. Have.
  • the second embodiment is different from the first embodiment in that a contact hole 111 penetrating the interlayer insulating layer 105 is provided and a pixel electrode 112 is provided. Note that description of the same parts as those in the first embodiment is omitted.
  • the oxide thin film transistor 100 includes a plate-like substrate 102, and a gate electrode 106 is provided over the substrate 102.
  • the gate insulating layer 110 in the third embodiment is provided so as to cover the substrate 102 and the gate electrode 106.
  • a source electrode 103 and a drain electrode 104 are provided apart from each other on the upper surface of the gate insulating layer 110 in the third embodiment.
  • the oxide semiconductor layer 109 is continuously provided on the upper surface of the gate insulating layer 110, the upper surface of the source electrode 103, and the upper surface of the drain electrode 104 in the third embodiment between the source electrode 103 and the drain electrode 104. ing.
  • the upper surface of the oxide semiconductor layer 109, the upper surfaces of the source electrode 103 and the drain electrode 104, and the upper surface of the gate insulating layer 110 in the third embodiment are covered with an interlayer insulating layer 105.
  • the interlayer insulating layer 105 includes a lower non-fluorine organic resin layer 151 and an upper amorphous perfluoro resin layer 152.
  • a pixel electrode 112 is provided on the upper surface of the interlayer insulating layer 105.
  • a contact hole 111 that penetrates the interlayer insulating layer 105 is provided between the pixel electrode 112 and the drain electrode 104.
  • the material of the substrate 102 is the same as the material of the substrate 2 of the first embodiment.
  • the material of the gate electrode 106 formed on the upper surface of the substrate 102 is the same as the material of the gate electrode 6 of the first embodiment.
  • the gate insulating layer 110 in the third embodiment provided so as to cover the upper surface of the substrate 102 and the upper surface of the gate electrode 106 is composed of a single layer and is formed of an insulating material.
  • an inorganic insulating material is employed as the insulating material, Al 2 O 3 , SiO 2 , SiN, TiO 2 or the like can be applied.
  • an organic insulating material is employed as the insulating material, PI (polyimide), PMMA (polymethyl methacrylate), PVP (polyparavinylphenol), or the like can be applied.
  • PI polyimide
  • PMMA polymethyl methacrylate
  • PVP polyparavinylphenol
  • the materials of the source electrode 103 and the drain electrode 104 provided on the upper surface of the gate insulating layer 110 in the third embodiment are the same as the materials of the source electrode 3 and the drain electrode 4 in the first embodiment.
  • the material of the oxide semiconductor layer 109 provided on the upper surface of the gate insulating layer 110, the upper surface of the source electrode 103, and the upper surface of the drain electrode 104 in the third embodiment between the source electrode 103 and the drain electrode 104 is the first embodiment.
  • the form is the same as the material of the oxide semiconductor layer 9 of the second embodiment.
  • the interlayer insulating layer 105 provided on the upper surface of the substrate 102, the source electrode 103, the drain electrode 104, and the oxide semiconductor layer 109 has the same configuration as the gate insulating layer 5 in the first embodiment.
  • the interlayer insulating layer 105 includes a lower non-fluorine organic resin layer 151 and an upper amorphous perfluoro resin layer 152.
  • the materials of the non-fluorine organic resin layer 151 and the amorphous perfluoro resin layer 152 forming the interlayer insulating layer 105 in the third embodiment are the non-fluorine organic materials forming the gate insulating layer 5 in the first embodiment. This is the same as the resin layer 51 and the amorphous perfluoro resin layer 52.
  • the pixel electrode 112 formed on the upper surface of the interlayer insulating layer 105 is formed of ITO (indium tin oxide).
  • the manufacturing process of the oxide thin film transistor 100 of the third embodiment includes a gate electrode formation step (S101), a gate insulating layer formation step (S102), a source / drain electrode formation step (S103),
  • the semiconductor layer forming step (S104), the interlayer insulating layer forming step (S105), the contact hole forming step (S106), and the pixel electrode forming step (S107) are provided.
  • the interlayer insulating layer forming step (S105) includes a non-fluorinated organic resin layer forming step (S151) and an amorphous perfluoro resin layer forming step (S152).
  • S151 non-fluorinated organic resin layer forming step
  • S152 amorphous perfluoro resin layer forming step
  • a gate electrode formation step (S101) is performed.
  • the gate electrode 106 is formed on the upper surface of the substrate 102.
  • the substrate 102 is cleaned, and a Ni thin film is formed on the upper surface of the substrate 102.
  • the Ni thin film is formed by a sputtering method.
  • Ni is used as the target, and a DC sputtering apparatus is used as the apparatus.
  • a resist pattern is formed on the upper surface of the formed Ni thin film by a photolithography method, and the Ni thin film is etched by an etching method. Finally, the unnecessary photoresist is removed by acetone cleaning.
  • the gate electrode 106 made of Ni can be formed on the upper surface of the substrate 102.
  • a gate insulating layer forming step is performed (S102).
  • an SiO 2 film is formed on the upper surface of the gate electrode 106 and the upper surface of the substrate 102 shown in FIG.
  • the SiO 2 film is formed by a sputtering method, and SiO 2 is used as a target while flowing a mixed gas of Ar and O 2 .
  • the gate insulating layer 110 of the third embodiment made of SiO 2 is formed on the upper surface of the gate electrode 106 and the portion of the upper surface of the substrate 102 where the gate electrode 106 is not provided.
  • a source / drain electrode formation step (S103) is performed.
  • an Ni thin film is formed on the upper surface of the gate insulating layer 110 in the third embodiment shown in FIG.
  • a source electrode 103 and a drain electrode 104 are formed. Since the formation conditions are the same as those of the gate electrode 106, description thereof is omitted.
  • a semiconductor layer forming step (S104) is performed.
  • the semiconductor layer forming step (S104) as shown in FIG. 19, the upper surface of the gate insulating layer 110, the upper surface of the source electrode 103, and the upper surface of the drain electrode 104 between the source electrode 103 and the drain electrode 104 in the third embodiment.
  • the oxide semiconductor layer 109 is continuously formed.
  • the semiconductor layer forming step (S104) first, the source electrode 103 and the drain electrode among the upper surface of the source electrode 103, the upper surface of the drain electrode 104, and the upper surface of the gate insulating layer 110 in the third embodiment shown in FIG.
  • An InGaZnO 4 film is formed so as to cover a portion where 104 is not provided.
  • the InGaZnO 4 film is patterned to remove unnecessary portions, whereby the oxide semiconductor layer 109 made of InGaZnO 4 is formed.
  • the InGaZnO 4 film is formed by a sputtering method, and InGaZnO 4 is used as a target and a mixed gas of Ar and O 2 is supplied.
  • a resist pattern is formed using a photolithography method, and the InGaZnO 4 film is etched. Finally, the unnecessary photoresist is removed by acetone cleaning.
  • an oxide made of InGaZnO 4 is formed on the upper surface of the gate insulating layer 110, the upper surface of the source electrode 103, and the upper surface of the drain electrode 104 in the third embodiment between the source electrode 103 and the drain electrode 104.
  • the semiconductor layer 109 can be formed continuously.
  • the interlayer insulating layer forming step (S105) includes a non-fluorine organic resin layer forming step (S151) for forming the lower non-fluorine organic resin layer 151, and an upper amorphous perfluoro resin layer. And an amorphous perfluoro resin layer forming step (S152) for forming 152.
  • the non-fluorine organic resin layer forming step (S151) As shown in FIG. 20, the upper surfaces of the oxide semiconductor layer 109, the source electrode 103, and the drain electrode 104, and the upper surface of the gate insulating layer 110 in the third embodiment. Among these, the non-fluorine organic resin layer 151 is formed so as to cover a portion where the oxide semiconductor layer 109, the source electrode 103, and the drain electrode 104 are not provided.
  • the non-fluorine-based organic resin layer forming step (S151) the non-fluorine-based organic resin layer forming solution containing PVP is spin-coated with the oxide semiconductor layer 109, the source electrode 103, and the drain electrode 104 shown in FIG.
  • the non-fluorine organic resin layer forming solution is a mixed solution of PVP, melamine-formaldehyde, and propylene glycol monomethyl ether acetate.
  • the heat treatment is performed using a hot plate, and is performed by heating at 70 ° C. for 10 minutes, then heating at 150 ° C. for 10 minutes, and finally heating at 200 ° C. for 30 minutes.
  • the amorphous perfluoro resin layer 152 is formed so as to cover the upper surface of the non-fluorine organic resin layer 151.
  • the amorphous perfluoro resin layer forming step (S152) after applying the amorphous perfluoro resin layer forming solution on the top surface of the substrate 2, the source electrode 3, the drain electrode 4, and the oxide semiconductor layer 9 by spin coating, Heat treatment was performed.
  • “Cytop (registered trademark) solution” manufactured by Asahi Glass Co., Ltd., prepared for the spin coating method was used. The heat treatment was performed using a hot plate, heated at 70 ° C. for 10 minutes, then heated at 120 ° C. for 10 minutes, and finally heated at 200 ° C. for 10 minutes.
  • a contact hole forming step (S106) is performed.
  • a contact hole 111 penetrating the non-fluorine organic resin layer 151 and the amorphous perfluororesin layer 152 is formed.
  • a resist mask having openings at locations corresponding to the contact holes 111 is formed on the upper surface of the amorphous perfluororesin layer 152 shown in FIG.
  • the amorphous perfluoro resin layer 152 and the non-fluorine organic resin layer 151 are etched by a dry etching method. Oxygen is used as the etching gas. In this way, the contact hole 111 can be formed as shown in FIG.
  • a pixel electrode forming step is performed (S107).
  • an ITO thin film is formed on the upper surface of the amorphous perfluoro resin layer 152.
  • unnecessary portions are removed by patterning to form pixel electrodes 112 made of ITO.
  • the ITO film is formed by a sputtering method.
  • a resist pattern is formed and the ITO film is etched.
  • the unnecessary photoresist is removed by acetone cleaning.
  • the pixel electrode 112 can be formed on the upper surface of the amorphous perfluororesin layer 152 as shown in FIG.
  • the interlayer insulating layer 105 laminated on the upper surface of the oxide semiconductor layer 109 is a non-fluorine organic resin layer covering the oxide semiconductor layer 109. 151 and an amorphous perfluororesin layer 152 covering the non-fluorine organic resin layer 151.
  • the amorphous perfluoro resin layer 152 as a constituent element of the interlayer insulating layer 105, a change in characteristics of the oxide thin film transistor 100 when heat treatment is performed after the formation of the interlayer insulating layer 105 can be suppressed.
  • the non-fluorine organic resin layer 151 and the amorphous perfluoro resin layer 152 are formed at a low temperature by a coating method. Therefore, the interlayer insulating layer 105 can be formed easily and inexpensively without using a large-scale apparatus. In addition, the interlayer insulating layer 105 can be formed without damaging the oxide semiconductor layer 109 formed on the lower surface side of the interlayer insulating layer 105. Furthermore, a flexible plastic substrate having low heat resistance can be employed as the substrate. In that case, a flexible oxide thin film transistor can be manufactured.
  • the non-fluorine organic resin layer 151 is in contact with the upper surface of the oxide semiconductor layer 109, and the material of the non-fluorine organic resin layer 151 is polyvinyl phenol (PVP) having low reactivity with respect to the oxide semiconductor. It was adopted. Therefore, the oxide semiconductor layer 109 is not damaged in the formation process of the interlayer insulating layer 105. Therefore, the semiconductor characteristics of the oxide semiconductor layer 109 can be maintained, and the oxide thin film transistor 100 having favorable characteristics can be formed.
  • PVP polyvinyl phenol
  • the oxide semiconductor layer 109 is formed. Therefore, the oxide semiconductor layer 109 is not damaged when the source electrode 103 and the drain electrode 104 are formed.
  • InGaZnO 4 is used as a material for the oxide semiconductor layer 109, film formation in the semiconductor layer formation step (S104) can be performed at room temperature. Therefore, a flexible plastic substrate can be used as the substrate. In that case, a flexible oxide thin film transistor can be manufactured. In addition, an oxide thin film transistor having high field effect mobility can be realized.
  • the present disclosure is not limited to the embodiments described in detail, and various modifications may be made without departing from the scope of the present disclosure.
  • the materials, sizes, and shapes of the substrate, the gate electrode, the source electrode, the drain electrode, the gate insulating layer, and the oxide semiconductor layer included in the oxide thin film transistor are not limited to those in the embodiment and depart from the gist of the present disclosure. It can be appropriately changed within the range not to be.
  • the oxide semiconductor layer is formed after the source electrode and the drain electrode are formed.
  • the source electrode and the drain electrode may be formed after the oxide semiconductor layer is formed. In this case, since the source electrode and the drain electrode are not oxidized in the formation process of the oxide semiconductor layer, the selection range when selecting the material of the source electrode and the drain electrode can be widened.
  • the non-fluorine organic resin layer 151 is formed on the top surface of the oxide semiconductor layer 109, and the amorphous perfluororesin layer 152 is formed on the top surface.
  • the amorphous perfluoro resin layer 152 is formed on the upper surface of the oxide semiconductor layer 109, and the non-fluorine-based organic resin layer 151 is formed on the upper surface. You may form. In this case, the amorphous perfluoro resin layer 152 having low hardness is covered with the non-fluorine organic resin layer 151 and is not exposed to the outside.
  • the physical resistance of the interlayer insulating layer 105 can be improved.
  • deterioration of the characteristics of the oxide thin film transistor 100 due to damage to the interlayer insulating layer 105 can be suppressed.
  • damage to the interlayer insulating layer 105 in the pixel electrode formation step (S107) performed after forming the interlayer insulating layer 105 can be reduced, and the oxide thin film transistor 100 having favorable characteristics can be obtained.
  • the oxide thin film transistor and the manufacturing method of the oxide thin film transistor of the present disclosure can be applied to a so-called bottom gate type or top gate type oxide thin film transistor and a manufacturing method thereof.

Abstract

An oxide thin film transistor (1) is provided with a first insulating layer (2); an oxide semiconductor layer (9) which forms a channel section on an upper surface of the first insulating layer (2); a source electrode (3) and a drain electrode (4) arranged by being spaced apart with a channel section therebetween; and a second insulating layer (5) arranged on an upper surface of the oxide semiconductor layer (9). The second insulating layer (5) is provided with a non-fluoric organic polymer layer (51) composed of non-fluoric organic polymer molecules, and an amorphous perfluoro resin layer (52) composed of an amorphous perfluoro resin.

Description

酸化物薄膜トランジスタ、及びその製造方法Oxide thin film transistor and manufacturing method thereof
 本発明は、酸化物薄膜トランジスタ、及びその製造方法に関する。 The present invention relates to an oxide thin film transistor and a method for manufacturing the same.
 従来、有機EL、フィルム液晶、電子ペーパ等のフレキシブルディスプレイの各画素には、薄膜トランジスタを備えたアクティブ駆動回路が埋め込まれている。近年、薄膜トランジスタの半導体層の材質として、酸化物を用いる酸化物薄膜トランジスタの開発が行われている。酸化物半導体層は低温で製膜が可能であり、高い電界効果移動度をもつことが知られている。しかも、酸化物半導体のなかには、透明な酸化物半導体もあり、透明酸化物半導体と、周知の透明基板材料などとを材料として選択すれば、透明な薄膜トランジスタが形成できるなど、従来にはなかった特性が期待できる。 Conventionally, an active drive circuit including a thin film transistor is embedded in each pixel of a flexible display such as an organic EL, a film liquid crystal, and electronic paper. In recent years, an oxide thin film transistor using an oxide as a material of a semiconductor layer of a thin film transistor has been developed. It is known that an oxide semiconductor layer can be formed at a low temperature and has high field-effect mobility. In addition, some oxide semiconductors include transparent oxide semiconductors. If a transparent oxide semiconductor and a known transparent substrate material are selected as materials, a transparent thin film transistor can be formed. Can be expected.
 ところで、酸化物半導体層の上面に形成される絶縁層は、スパッタリング法やプラズマCVD法のような真空プロセスにより形成されるのが一般的である。しかしながら、これらの方法は、装置が大掛かりとなってしまい、コストがかかってしまう上、工程が煩雑であるという問題点があった。その上、これらの方法で絶縁層が形成される場合には、形成過程で装置から発生するプラズマイオンが、酸化物半導体層などにダメージを与えてしまうという問題点があった。 Incidentally, the insulating layer formed on the upper surface of the oxide semiconductor layer is generally formed by a vacuum process such as a sputtering method or a plasma CVD method. However, these methods have a problem that the apparatus becomes large and costs increase, and the process is complicated. In addition, when an insulating layer is formed by these methods, there is a problem that plasma ions generated from the apparatus in the forming process damage the oxide semiconductor layer and the like.
 そこで、例えば、酸化物半導体層上面の絶縁層の材質として、ポリイミド、ポリアミドのような有機高分子を採用した半導体デバイスが提案されている(例えば、特許文献1参照)。この半導体デバイス(本願における酸化物薄膜トランジスタ)では、酸化物半導体層上面の絶縁層の材質として高分子樹脂を採用したため、絶縁層を塗布法によって形成することができる。これにより、酸化物半導体層にダメージを与えることなく、絶縁層を形成することができる。
特開2007-158147号公報
Thus, for example, a semiconductor device has been proposed that employs an organic polymer such as polyimide or polyamide as the material of the insulating layer on the top surface of the oxide semiconductor layer (see, for example, Patent Document 1). In this semiconductor device (oxide thin film transistor in the present application), a polymer resin is used as the material of the insulating layer on the top surface of the oxide semiconductor layer, and therefore the insulating layer can be formed by a coating method. Thus, the insulating layer can be formed without damaging the oxide semiconductor layer.
JP 2007-158147 A
 しかしながら、この半導体デバイスでも、以下の問題点があった。上述の絶縁層上面には、ゲート電極や画素電極が形成されるが、その形成工程において純水による洗浄が行われる。この半導体デバイスのように、絶縁層が、ポリイミド、ポリアミドのような有機高分子樹脂層のみからなる場合、洗浄処理の際に、純水が絶縁層を透過して、酸化物半導体層まで達してしまうおそれがある。酸化物半導体層が水分を取り込んだ場合には、その酸化物薄膜トランジスタは、特性を安定化させることが困難であるという問題点があった。また、酸化物薄膜トランジスタは、特性を安定化させるために、形成後に熱処理を行い、酸化物半導体層から水分を除去するのが一般的である。しかしながら、上述の半導体デバイスのように、絶縁層がポリイミド、ポリアミドのような有機高分子樹脂層のみからなる場合には、この熱処理の際に酸化物半導体層がダメージを受けてしまう場合がある。そのため、熱処理をすることで、結果的に酸化物半導体層の半導体特性が低下してしまい、トランジスタ特性が悪くなってしまうという問題点があった。 However, this semiconductor device has the following problems. A gate electrode and a pixel electrode are formed on the upper surface of the insulating layer, and cleaning with pure water is performed in the formation process. When the insulating layer is composed of only an organic polymer resin layer such as polyimide or polyamide as in this semiconductor device, pure water passes through the insulating layer and reaches the oxide semiconductor layer during the cleaning process. There is a risk that. When the oxide semiconductor layer takes in moisture, the oxide thin film transistor has a problem that it is difficult to stabilize the characteristics. In order to stabilize characteristics of an oxide thin film transistor, heat treatment is generally performed after formation to remove moisture from the oxide semiconductor layer. However, when the insulating layer is made of only an organic polymer resin layer such as polyimide or polyamide as in the semiconductor device described above, the oxide semiconductor layer may be damaged during this heat treatment. Therefore, the heat treatment results in a problem that the semiconductor characteristics of the oxide semiconductor layer are deteriorated and the transistor characteristics are deteriorated.
 本発明は上述の課題を解決するためになされたものであり、安定した特性を有する酸化物薄膜トランジスタ、およびその製造方法を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an oxide thin film transistor having stable characteristics and a method for manufacturing the same.
 本開示によれば、第1の絶縁層と、前記第1の絶縁層上面において、チャネル部を形成する酸化物半導体層と、前記チャネル部を介して互いに離間して設けられているソース電極及びドレイン電極と、前記酸化物半導体層の上面に設けられた第2の絶縁層とを備え、前記第2の絶縁層は、非フッ素系有機高分子からなる非フッ素系有機高分子層と、アモルファスパーフルオロ樹脂からなるアモルファスパーフルオロ樹脂層とを備えた酸化物薄膜トランジスタが提供される。 According to the present disclosure, the first insulating layer, the oxide semiconductor layer that forms the channel portion on the upper surface of the first insulating layer, the source electrode that is provided apart from each other via the channel portion, and A drain electrode; and a second insulating layer provided on an upper surface of the oxide semiconductor layer, wherein the second insulating layer includes a non-fluorine organic polymer layer made of a non-fluorine organic polymer, an amorphous material An oxide thin film transistor including an amorphous perfluoro resin layer made of a perfluoro resin is provided.
 また、本開示によれば、第1の絶縁層の上面に酸化物半導体層を形成させる酸化物半導体層形成工程と、前記酸化物半導体層により形成されるチャネル部を介して互いに離間するソース電極及びドレイン電極を形成させるソース・ドレイン電極形成工程と、前記酸化物半導体層の上面に第2の絶縁層を形成させる第2絶縁層形成工程とを備え、前記第2絶縁層形成工程は、非フッ素系有機高分子からなる非フッ素系有機高分子層を形成させる非フッ素系有機高分子層形成工程と、アモルファスパーフルオロ樹脂からなるアモルファスパーフルオロ樹脂層を形成させるアモルファスパーフルオロ樹脂層形成工程とを備えた酸化物薄膜トランジスタの製造方法が提供される。 According to the present disclosure, the oxide semiconductor layer forming step of forming the oxide semiconductor layer on the upper surface of the first insulating layer, and the source electrodes separated from each other via the channel portion formed by the oxide semiconductor layer And a source / drain electrode forming step for forming a drain electrode, and a second insulating layer forming step for forming a second insulating layer on the top surface of the oxide semiconductor layer, wherein the second insulating layer forming step includes: A non-fluorine organic polymer layer forming step for forming a non-fluorine organic polymer layer composed of a fluorine-based organic polymer; and an amorphous perfluoro resin layer forming step for forming an amorphous perfluoro resin layer composed of an amorphous perfluoro resin. There is provided a method for manufacturing an oxide thin film transistor comprising:
第一実施形態の酸化物薄膜トランジスタ1の縦断面図である。1 is a longitudinal sectional view of an oxide thin film transistor 1 of a first embodiment. 第一実施形態の酸化物薄膜トランジスタ1の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the oxide thin-film transistor 1 of 1st embodiment. 基板2の上面にソース電極3とドレイン電極4とが形成された状態の縦断面図である。2 is a longitudinal sectional view of a state in which a source electrode 3 and a drain electrode 4 are formed on the upper surface of a substrate 2. FIG. 図3に示すソース電極3とドレイン電極4との間に酸化物半導体層9が形成された状態の縦断面図である。FIG. 4 is a longitudinal sectional view showing a state where an oxide semiconductor layer 9 is formed between a source electrode 3 and a drain electrode 4 shown in FIG. 3. 基板2とソース電極3とドレイン電極4と酸化物半導体層9との上面に、非フッ素系有機樹脂層51が形成された状態の縦断面図である。2 is a longitudinal sectional view showing a state in which a non-fluorine organic resin layer 51 is formed on the top surfaces of a substrate 2, a source electrode 3, a drain electrode 4, and an oxide semiconductor layer 9. FIG. 非フッ素系有機樹脂層51の上面にアモルファスパーフルオロ樹脂層52が形成された状態の縦断面図である。2 is a longitudinal sectional view showing a state in which an amorphous perfluoro resin layer 52 is formed on the upper surface of a non-fluorine organic resin layer 51. FIG. 比較例1の酸化物薄膜トランジスタ1aの縦断面図である。6 is a longitudinal sectional view of an oxide thin film transistor 1a of Comparative Example 1. FIG. 比較例2の酸化物薄膜トランジスタ1bの縦断面図である。6 is a longitudinal sectional view of an oxide thin film transistor 1b of Comparative Example 2. FIG. 酸化物薄膜トランジスタ1の電圧-電流特性である。3 is a voltage-current characteristic of the oxide thin film transistor 1. 酸化物薄膜トランジスタ1aの電圧-電流特性である。This is a voltage-current characteristic of the oxide thin film transistor 1a. 酸化物薄膜トランジスタ1bの電圧-電流特性である。This is a voltage-current characteristic of the oxide thin film transistor 1b. 第二実施形態の酸化物薄膜トランジスタ12の縦断面図である。It is a longitudinal cross-sectional view of the oxide thin-film transistor 12 of 2nd embodiment. 第二実施形態の酸化物薄膜トランジスタ12の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the oxide thin-film transistor 12 of 2nd embodiment. 第三実施形態の酸化物薄膜トランジスタ100の縦断面図である。It is a longitudinal cross-sectional view of the oxide thin film transistor 100 of 3rd embodiment. 酸化物薄膜トランジスタ100の製造工程を示すフローチャートである。3 is a flowchart showing manufacturing steps of the oxide thin film transistor 100. 基板102の上面にゲート電極106が形成された状態の縦断面図である。2 is a longitudinal sectional view of a state where a gate electrode 106 is formed on the upper surface of a substrate 102. FIG. 基板102、ゲート電極106の上面に、第三実施形態におけるゲート絶縁層110が形成された状態の縦断面図である。It is a longitudinal cross-sectional view of a state in which the gate insulating layer 110 according to the third embodiment is formed on the upper surfaces of the substrate 102 and the gate electrode 106. 第三実施形態におけるゲート絶縁層110の上面に、ソース電極103、ドレイン電極104が形成された状態の縦断面図である。It is a longitudinal cross-sectional view in the state in which the source electrode 103 and the drain electrode 104 were formed on the upper surface of the gate insulating layer 110 in 3rd embodiment. ソース電極103とドレイン電極104との間に酸化物半導体層109が形成された状態の縦断面図である。FIG. 10 is a longitudinal sectional view of a state in which an oxide semiconductor layer 109 is formed between a source electrode 103 and a drain electrode 104. ソース電極103、ドレイン電極104、酸化物半導体層109、第三実施形態におけるゲート絶縁層110の上面に、非フッ素系有機樹脂層151が形成された状態の縦断面図である。It is a longitudinal cross-sectional view in the state in which the non-fluorine type organic resin layer 151 was formed on the upper surface of the source electrode 103, the drain electrode 104, the oxide semiconductor layer 109, and the gate insulating layer 110 in 3rd embodiment. 非フッ素系有機樹脂層151の上面にアモルファスパーフルオロ樹脂層152が形成された状態の縦断面図である。FIG. 6 is a longitudinal sectional view showing a state in which an amorphous perfluoro resin layer 152 is formed on the upper surface of a non-fluorine organic resin layer 151. 非フッ素系有機樹脂層151およびアモルファスパーフルオロ樹脂層152を貫通するコンタクトホール111が形成された状態の縦断面図である。It is a longitudinal cross-sectional view of a state in which a contact hole 111 penetrating the non-fluorine organic resin layer 151 and the amorphous perfluororesin layer 152 is formed.
 以下、本開示の第一実施形態である酸化物薄膜トランジスタ1について説明する。はじめに、酸化物薄膜トランジスタ1の断面構造について、図1を参照して説明する。 Hereinafter, the oxide thin film transistor 1 according to the first embodiment of the present disclosure will be described. First, a cross-sectional structure of the oxide thin film transistor 1 will be described with reference to FIG.
 第一実施形態の酸化物薄膜トランジスタ1は、ゲート電極6が、ソース電極3及びドレイン電極4より上側に位置する、所謂「トップゲート型」の酸化物薄膜トランジスタである。本実施形態の酸化物薄膜トランジスタ1は、トップゲート型であることのほか、ゲート絶縁層5が非フッ素系有機樹脂層51とアモルファスパーフルオロ樹脂層52との二層により形成されることに特徴を有する。以下の説明では、図1の下側(基板2側)を酸化物薄膜トランジスタ1の下側、図1の上側を酸化物薄膜トランジスタ1の上側として説明する。 The oxide thin film transistor 1 of the first embodiment is a so-called “top gate type” oxide thin film transistor in which the gate electrode 6 is located above the source electrode 3 and the drain electrode 4. The oxide thin film transistor 1 of this embodiment is characterized in that, in addition to being a top gate type, the gate insulating layer 5 is formed of two layers of a non-fluorine organic resin layer 51 and an amorphous perfluoro resin layer 52. Have. In the following description, the lower side of FIG. 1 (substrate 2 side) is described as the lower side of the oxide thin film transistor 1, and the upper side of FIG.
 酸化物薄膜トランジスタ1は、板状の基板2を有し、基板2の上面にはソース電極3及びドレイン電極4が離間して設けられている。ソース電極3の上面及びドレイン電極4の上面と、ソース電極3及びドレイン電極4に挟まれる基板2の上面とには、酸化物半導体層9が連続して設けられている。そして、酸化物半導体層9とソース電極3とドレイン電極4と基板2とを覆うように、ゲート絶縁層5が設けられている。ゲート絶縁層5は、少なくとも酸化物半導体層9を覆う下側の非フッ素系有機樹脂層51と、非フッ素系有機樹脂層51の上面を覆う上側のアモルファスパーフルオロ樹脂層52とから構成されている。アモルファスパーフルオロ樹脂層52の上面には、酸化物半導体層9に対向する位置に、ゲート電極6が設けられている。 The oxide thin film transistor 1 has a plate-like substrate 2, and a source electrode 3 and a drain electrode 4 are provided on the upper surface of the substrate 2 so as to be separated from each other. An oxide semiconductor layer 9 is continuously provided on the upper surface of the source electrode 3 and the drain electrode 4 and the upper surface of the substrate 2 sandwiched between the source electrode 3 and the drain electrode 4. A gate insulating layer 5 is provided so as to cover the oxide semiconductor layer 9, the source electrode 3, the drain electrode 4, and the substrate 2. The gate insulating layer 5 includes a lower non-fluorine organic resin layer 51 covering at least the oxide semiconductor layer 9 and an upper amorphous perfluoro resin layer 52 covering the upper surface of the non-fluorine organic resin layer 51. Yes. A gate electrode 6 is provided on the upper surface of the amorphous perfluororesin layer 52 at a position facing the oxide semiconductor layer 9.
 基板2は、表面が平坦である板状部材である。基板2の材質としては、各種材質が適用可能であるが、導電性の材質が採用される場合には、基板2の表面に絶縁膜が設けられる必要がある。基板2の材質として絶縁性の材質が用いられる場合には、ガラス基板や熱酸化膜付シリコン基板のほか、プラスチック基板が用いられる。基板2に可撓性を付与したい場合には、特に、基板2の材質としてプラスチックが採用される。プラスチックの材質としては、例えば、ポリエーテルスルホン(PES)、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、ポリエーテルイミド(PEI)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。基板2の耐水性を向上させる場合には、基板2の表面にSiOやSiNxなどからなるガラスバリア膜が形成される。本実施形態では、基板2としてガラス基板が用いられる。 The substrate 2 is a plate-like member having a flat surface. Various materials are applicable as the material of the substrate 2, but when a conductive material is employed, an insulating film needs to be provided on the surface of the substrate 2. When an insulating material is used as the material of the substrate 2, a plastic substrate is used in addition to a glass substrate and a silicon substrate with a thermal oxide film. When it is desired to impart flexibility to the substrate 2, plastic is particularly used as the material of the substrate 2. Examples of plastic materials include polyethersulfone (PES), polyethylene terephthalate (PET), polyimide (PI), polyethylene naphthalate (PEN), polyetherimide (PEI), polystyrene (PS), and polyvinyl chloride (PVC). ), Polyethylene (PE), polypropylene (PP) and the like. In order to improve the water resistance of the substrate 2, a glass barrier film made of SiO 2 or SiNx is formed on the surface of the substrate 2. In the present embodiment, a glass substrate is used as the substrate 2.
 基板2の上面には、ソース電極3及びドレイン電極4が、所定のチャネル長の離間幅をもって各々設けられている。このソース電極3及びドレイン電極4の材質には、Au、Ag、Ni、Cu、Pd、Al、Mo、Cr、Ti、Ta、Pt、W(タングステン)等の金属単体、または少なくともいずれかの金属を含む複合体、酸化インジウムスズ(ITO)などの導電性酸化物、ポリエチレンジオキシチオフェン(PEDOT)等の導電性ポリマーが適用可能である。本実施形態のソース電極3及びドレイン電極4は、Niよりなる。 On the upper surface of the substrate 2, a source electrode 3 and a drain electrode 4 are provided with a separation width of a predetermined channel length. The material of the source electrode 3 and the drain electrode 4 is a single metal such as Au, Ag, Ni, Cu, Pd, Al, Mo, Cr, Ti, Ta, Pt, W (tungsten), or at least one of the metals. A composite containing a conductive oxide such as indium tin oxide (ITO) or a conductive polymer such as polyethylenedioxythiophene (PEDOT) is applicable. The source electrode 3 and the drain electrode 4 of this embodiment are made of Ni.
 ソース電極3、ドレイン電極4の各上面及びソース電極3及びドレイン電極4に挟まれる基板2の上面には、酸化物半導体層9が連続して設けられている。酸化物半導体層9の材質は公知の酸化物半導体材料が採用可能である。好ましくは、In、Ga、Znの少なくともいずれか1種の元素を含む酸化物半導体材料が採用される。In、Ga、Znの少なくともいずれか1種の元素を含む酸化物半導体材料としては、具体的には、InGaZnO、ZnO、ZnInO、Inが挙げられる。本実施形態の酸化物半導体層9は、InGaZnOからなる。 An oxide semiconductor layer 9 is continuously provided on each upper surface of the source electrode 3 and the drain electrode 4 and an upper surface of the substrate 2 sandwiched between the source electrode 3 and the drain electrode 4. A known oxide semiconductor material can be used as the material of the oxide semiconductor layer 9. Preferably, an oxide semiconductor material containing at least one element of In, Ga, and Zn is employed. Specific examples of the oxide semiconductor material containing at least one element of In, Ga, and Zn include InGaZnO 4 , ZnO, ZnInO, and In 2 O 3 . The oxide semiconductor layer 9 of this embodiment is made of InGaZnO 4 .
 酸化物半導体層9、ソース電極3、ドレイン電極4、基板2の各上面はゲート絶縁層5によって覆われている。ゲート絶縁層5は、少なくとも酸化物半導体層9を覆う下側の非フッ素系有機樹脂層51と、非フッ素系有機樹脂層51の上面を覆う上側のアモルファスパーフルオロ樹脂層52とから構成されている。 Each upper surface of the oxide semiconductor layer 9, the source electrode 3, the drain electrode 4, and the substrate 2 is covered with a gate insulating layer 5. The gate insulating layer 5 includes a lower non-fluorine organic resin layer 51 covering at least the oxide semiconductor layer 9 and an upper amorphous perfluoro resin layer 52 covering the upper surface of the non-fluorine organic resin layer 51. Yes.
 非フッ素系有機樹脂層51の材質は、絶縁性を有する非フッ素系の有機高分子であればよい。具体的には、ポリイミド(PI)、ポリアミド(PA)、ポリエステル(PE)、ポリビニルフェノール(PVP)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル(PVAC)、ポリメチルメタクリレート(PMMA)、ポリウレタン(PUR)、ポリスルホン(PSF)、シアノエチルプルラン、エポキシ樹脂、フェノール樹脂、ベンゾシクロブテン樹脂、アクリル樹脂、または前記樹脂のポリマーアロイ、あるいは共重合樹脂を用いることができる。本実施形態の非フッ素系有機樹脂層51は、ポリビニルフェノール(PVP)が、メラニン樹脂により架橋される、架橋PVPにより形成される。 The material of the non-fluorine organic resin layer 51 may be any non-fluorine organic polymer having insulating properties. Specifically, polyimide (PI), polyamide (PA), polyester (PE), polyvinylphenol (PVP), polyvinyl alcohol (PVA), polyvinyl acetate (PVAC), polymethyl methacrylate (PMMA), polyurethane (PUR) Polysulfone (PSF), cyanoethyl pullulan, epoxy resin, phenol resin, benzocyclobutene resin, acrylic resin, polymer alloy of the above resin, or copolymer resin can be used. The non-fluorinated organic resin layer 51 of the present embodiment is formed by cross-linked PVP in which polyvinyl phenol (PVP) is cross-linked by melanin resin.
 非フッ素系有機樹脂層51の上面は、アモルファスパーフルオロ樹脂層52で覆われている。アモルファスパーフルオロ樹脂層52は、アモルファスパーフルオロ樹脂からなり、具体的には、例えば、旭硝子株式会社製のサイトップ(登録商標)が用いられる。 The upper surface of the non-fluorine organic resin layer 51 is covered with an amorphous perfluoro resin layer 52. The amorphous perfluoro resin layer 52 is made of an amorphous perfluoro resin, and specifically, for example, Cytop (registered trademark) manufactured by Asahi Glass Co., Ltd. is used.
 ここで、アモルファスパーフルオロ樹脂について説明する。パーフルオロ樹脂は、炭素骨格とフッ素と微量の酸素からなるフッ素樹脂である。その構造は、非晶質(アモルファス)である。アモルファスパーフルオロ樹脂は、耐火性、耐薬品性、撥水性などのフッ素樹脂としての特性を有するとともに、そのアモルファス構造により、透明性が非常に高い(可視光線透過率95%以上)。アモルファスパーフルオロ樹脂は、所定のフッ素系溶媒に溶解させることで、液体材料として取り扱うことができる。よって、塗布法による、アモルファスパーフルオロ樹脂薄膜の形成が可能である。 Here, the amorphous perfluoro resin will be described. Perfluororesin is a fluororesin composed of a carbon skeleton, fluorine, and a small amount of oxygen. Its structure is amorphous. Amorphous perfluororesin has properties as a fluororesin such as fire resistance, chemical resistance, and water repellency, and is very transparent due to its amorphous structure (visible light transmittance of 95% or more). The amorphous perfluoro resin can be handled as a liquid material by dissolving it in a predetermined fluorine-based solvent. Therefore, an amorphous perfluoro resin thin film can be formed by a coating method.
 アモルファスパーフルオロ樹脂層52の上面には、酸化物半導体層9に対向する位置に、ゲート電極6が設けられている。ゲート電極6の材質には、Au、Ag、Cu、Pd、Ni、Al、Mo、Cr、Ti、Ta、Pt、W(タングステン)等の金属単体、または少なくともいずれかの金属を含む複合体、酸化インジウムスズ(ITO)などの導電性酸化物、ポリエチレンジオキシチオフェン(PEDOT)等の導電性ポリマーが適用可能である。本実施形態のゲート電極6は、Niよりなる。 On the upper surface of the amorphous perfluoro resin layer 52, a gate electrode 6 is provided at a position facing the oxide semiconductor layer 9. The material of the gate electrode 6 includes a single metal such as Au, Ag, Cu, Pd, Ni, Al, Mo, Cr, Ti, Ta, Pt, W (tungsten), or a composite containing at least one metal, A conductive oxide such as indium tin oxide (ITO) or a conductive polymer such as polyethylenedioxythiophene (PEDOT) is applicable. The gate electrode 6 of this embodiment is made of Ni.
 次に、上記構造の酸化物薄膜トランジスタ1の製造工程について、図2乃至図6を参照して説明する。 Next, a manufacturing process of the oxide thin film transistor 1 having the above structure will be described with reference to FIGS.
 酸化物薄膜トランジスタ1の製造工程は、図2に示すように、基板2の上面にソース電極3及びドレイン電極4が各々形成されるソース・ドレイン電極形成工程(S1)と、ソース電極3及びドレイン電極4の間の基板2上面に酸化物半導体層9が形成される半導体層形成工程(S2)と、少なくとも酸化物半導体層9の上面にゲート絶縁層5が形成されるゲート絶縁層形成工程(S3)と、ゲート絶縁層5の上面にゲート電極6が形成されるゲート電極形成工程(S4)とから構成されている。ゲート絶縁層形成工程(S3)は、少なくとも酸化物半導体層9の上面を覆うように非フッ素系有機樹脂層51が形成される非フッ素系有機樹脂層形成工程(S31)と、非フッ素系有機樹脂層51の上面を覆うようにアモルファスパーフルオロ樹脂層52が形成されるアモルファスパーフルオロ樹脂層形成工程(S32)とからなる。 As shown in FIG. 2, the manufacturing process of the oxide thin film transistor 1 includes a source / drain electrode formation step (S1) in which the source electrode 3 and the drain electrode 4 are formed on the upper surface of the substrate 2, and the source electrode 3 and the drain electrode, respectively. The semiconductor layer forming step (S2) in which the oxide semiconductor layer 9 is formed on the upper surface of the substrate 2 between 4, and the gate insulating layer forming step (S3) in which the gate insulating layer 5 is formed at least on the upper surface of the oxide semiconductor layer 9 ) And a gate electrode forming step (S4) in which the gate electrode 6 is formed on the upper surface of the gate insulating layer 5. The gate insulating layer forming step (S3) includes a non-fluorinated organic resin layer forming step (S31) in which the non-fluorinated organic resin layer 51 is formed so as to cover at least the upper surface of the oxide semiconductor layer 9, and a non-fluorinated organic resin. This includes an amorphous perfluoro resin layer forming step (S32) in which the amorphous perfluoro resin layer 52 is formed so as to cover the upper surface of the resin layer 51.
 はじめに、S1のソース・ドレイン電極形成工程が行われる。このソース・ドレイン電極形成工程(S1)では、図3に示すように、基板2の上面にソース電極3、ドレイン電極4が形成される。ソース電極3、ドレイン電極4の形成方法は、特に限定されない。基板2の上面に、電極を形成する材質の薄膜を形成した後、パターニングして不要部分を除去する方法が一般的である。ここで、製膜方法、パターニング方法に関しても、各種方法が適用可能である。具体的には、製膜方法としては、スパッタリング法、真空蒸着法、CVD法、めっき法などが適用可能である。パターニング法としては、フォトリソグラフィ法やスクリーン印刷法などが適用可能である。 First, the source / drain electrode forming step of S1 is performed. In this source / drain electrode formation step (S1), the source electrode 3 and the drain electrode 4 are formed on the upper surface of the substrate 2 as shown in FIG. The method for forming the source electrode 3 and the drain electrode 4 is not particularly limited. In general, a thin film made of a material for forming electrodes is formed on the upper surface of the substrate 2 and then unnecessary portions are removed by patterning. Here, various methods can be applied to the film forming method and the patterning method. Specifically, as a film forming method, a sputtering method, a vacuum evaporation method, a CVD method, a plating method, or the like can be applied. As the patterning method, a photolithography method, a screen printing method, or the like can be applied.
 本実施形態では、ガラスからなる基板2を洗浄後、基板2の上面にNi薄膜を形成した。そして、形成したNi薄膜のパターニングを行い、不要部分を除去することにより、ソース電極3、ドレイン電極4を形成した。Ni薄膜の製膜は、スパッタリング法により行った。このときのターゲットとしてはNiを使用し、装置としてはDCスパッタ装置を用いた。形成されたNi薄膜の上面に、フォトリソグラフィ法を用いてレジストパターンを形成した後、エッチング法を用いてNi薄膜をエッチングした。不要となったフォトレジストは、アセトン洗浄により除去した。こうして、図3に示すように、基板2の上面に、Niからなるソース電極3及びドレイン電極4を形成させた。形成されたソース電極3及びドレイン電極4の厚さは、150nmであった。 In this embodiment, after cleaning the substrate 2 made of glass, a Ni thin film was formed on the upper surface of the substrate 2. And the formed Ni thin film was patterned and the unnecessary part was removed, and the source electrode 3 and the drain electrode 4 were formed. The Ni thin film was formed by a sputtering method. At this time, Ni was used as the target, and a DC sputtering apparatus was used as the apparatus. A resist pattern was formed on the upper surface of the formed Ni thin film using a photolithography method, and then the Ni thin film was etched using an etching method. The unnecessary photoresist was removed by washing with acetone. Thus, as shown in FIG. 3, the source electrode 3 and the drain electrode 4 made of Ni were formed on the upper surface of the substrate 2. The formed source electrode 3 and drain electrode 4 had a thickness of 150 nm.
 次に、S2の半導体層形成工程が行われる。半導体層形成工程(S2)では、図4に示すように、ソース電極3及びドレイン電極4の間の基板2上面、及びソース電極3とドレイン電極4との上面に酸化物半導体層9が連続して形成される。酸化物半導体層9の形成方法は、半導体薄膜を形成した後、パターニングして不要部分を除去する方法が一般的である。製膜方法としてはスパッタリング法が好適であるが、これに制限されるものではない。パターニング法としては、フォトリソグラフィ法やスクリーン印刷法等を用いることができる。 Next, the semiconductor layer forming step of S2 is performed. In the semiconductor layer forming step (S2), as shown in FIG. 4, the oxide semiconductor layer 9 is continuous with the upper surface of the substrate 2 between the source electrode 3 and the drain electrode 4 and the upper surface of the source electrode 3 and the drain electrode 4. Formed. A method of forming the oxide semiconductor layer 9 is generally a method of removing unnecessary portions by patterning after forming a semiconductor thin film. A sputtering method is suitable as the film forming method, but is not limited thereto. As the patterning method, a photolithography method, a screen printing method, or the like can be used.
 本実施形態では、図3に示すソース電極3の上面、ドレイン電極4の上面、及び基板2の上面のうちのソース電極3、ドレイン電極4の設けられていない部位を覆うように、InGaZnO膜が形成される。その後、InGaZnO膜をパターニングして不要部分が除去されることにより、InGaZnOからなる酸化物半導体層9が形成される。InGaZnO膜の製膜は、スパッタリング法により行われる。ターゲットとしてInGaZnOが用いられるとともに、ArとOとの混合ガスを流しながら行われる。InGaZnO膜を形成した後、フォトリソグラフィ法によりレジストパターンが形成され、有機酸系のITOエッチャントを用いて、エッチング法によりInGaZnO膜がエッチングされる。不要となったフォトレジストは、アセトン洗浄により除去される。こうして、図4に示すように、ソース電極3及びドレイン電極4の間の基板2上面、ソース電極3の上面、ドレイン電極4の上面に、InGaZnOからなる酸化物半導体層9を連続して形成させることができる。形成された酸化物半導体層9の厚さは、30nmであった。 In the present embodiment, the InGaZnO 4 film covers the upper surface of the source electrode 3, the upper surface of the drain electrode 4, and the upper surface of the substrate 2 shown in FIG. 3 so as to cover the portion where the source electrode 3 and drain electrode 4 are not provided. Is formed. Thereafter, the InGaZnO 4 film is patterned to remove unnecessary portions, whereby the oxide semiconductor layer 9 made of InGaZnO 4 is formed. The InGaZnO 4 film is formed by a sputtering method. InGaZnO 4 is used as a target, and a mixed gas of Ar and O 2 is flowed. After forming the InGaZnO 4 film, a resist pattern is formed by a photolithography method, and the InGaZnO 4 film is etched by an etching method using an organic acid-based ITO etchant. The unnecessary photoresist is removed by washing with acetone. Thus, as illustrated in FIG. 4, the oxide semiconductor layer 9 made of InGaZnO 4 is continuously formed on the upper surface of the substrate 2 between the source electrode 3 and the drain electrode 4, the upper surface of the source electrode 3, and the upper surface of the drain electrode 4. Can be made. The thickness of the formed oxide semiconductor layer 9 was 30 nm.
 次に、S3のゲート絶縁層形成工程が行われる。ゲート絶縁層形成工程(S3)は、図2に示すように、ソース電極3、ドレイン電極4、酸化物半導体層9、及び基板2の上面を覆うように、非フッ素系有機樹脂層51が形成される非フッ素系有機樹脂層形成工程(S31)と、非フッ素系有機樹脂層51の上面にアモルファスパーフルオロ樹脂層52が形成されるアモルファスパーフルオロ樹脂層形成工程(S32)とからなる。 Next, the gate insulating layer forming step of S3 is performed. In the gate insulating layer forming step (S3), as shown in FIG. 2, the non-fluorine organic resin layer 51 is formed so as to cover the upper surface of the source electrode 3, the drain electrode 4, the oxide semiconductor layer 9, and the substrate 2. The non-fluorinated organic resin layer forming step (S31) and the amorphous perfluororesin layer forming step (S32) in which the amorphous perfluororesin layer 52 is formed on the upper surface of the non-fluorinated organic resin layer 51.
 非フッ素系有機樹脂層形成工程(S31)では、図5に示すように、ソース電極3、ドレイン電極4、酸化物半導体層9の各上面、及び基板2の上面のうちのソース電極3、ドレイン電極4、酸化物半導体層9が設けられていない部位を覆うように、非フッ素系有機樹脂層51が形成される。非フッ素系有機樹脂層51の形成方法に関しては特に限定するものではないが、塗布法を用いることがコストの面から好ましい。塗布法としては、各種方法が適用可能である。具体的には、スピンコート法、スリットコート法、ディップコート法、スプレー法、ロールコート法、カーテンコート法、印刷法、液滴吐出法等のいずれをも用いることができる。 In the non-fluorine-based organic resin layer forming step (S31), as shown in FIG. 5, the source electrode 3 and the drain among the upper surfaces of the source electrode 3, the drain electrode 4, and the oxide semiconductor layer 9 and the upper surface of the substrate 2 are formed. A non-fluorine organic resin layer 51 is formed so as to cover a portion where the electrode 4 and the oxide semiconductor layer 9 are not provided. The method for forming the non-fluorine organic resin layer 51 is not particularly limited, but it is preferable to use a coating method from the viewpoint of cost. Various methods can be applied as the coating method. Specifically, any of spin coating, slit coating, dip coating, spraying, roll coating, curtain coating, printing, droplet discharge, and the like can be used.
 本実施形態では、ポリビニルフェノールを含有する非フッ素系有機樹脂層形成用溶液を、スピンコート法により、図4に示す酸化物半導体層9、ソース電極3、ドレイン電極4の各上面、及び基板2の上面のうちの酸化物半導体層9、ソース電極3、ドレイン電極4の設けられていない部位を覆うように塗布した後、熱処理を行った。非フッ素系有機樹脂層形成用溶液は、PVP、メラミン-ホルムアルデヒド、プロピレングリコールモノメチルエーテルアセテートの混合溶液である。各材料の重量比は、PVP:メラミン-ホルムアルデヒド:プロピレングリコールモノメチルエーテルアセテート=1:2:10である。熱処理は、ホットプレートを用いて行われ、70℃で10分間加熱した後、150℃で10分間加熱し、最後に200℃で30分間加熱することにより行われた。熱処理後の非フッ素系有機樹脂層51の厚さは、700nmであった。 In the present embodiment, a non-fluorine organic resin layer forming solution containing polyvinylphenol is formed by spin coating on the upper surfaces of the oxide semiconductor layer 9, the source electrode 3, and the drain electrode 4 shown in FIG. Then, the oxide semiconductor layer 9, the source electrode 3, and the drain electrode 4 were coated so as to cover a portion where the oxide semiconductor layer 9, the source electrode 3, and the drain electrode 4 were not provided, and then heat treatment was performed. The non-fluorine organic resin layer forming solution is a mixed solution of PVP, melamine-formaldehyde, and propylene glycol monomethyl ether acetate. The weight ratio of each material is PVP: melamine-formaldehyde: propylene glycol monomethyl ether acetate = 1: 2: 10. The heat treatment was performed by using a hot plate, heating at 70 ° C. for 10 minutes, heating at 150 ° C. for 10 minutes, and finally heating at 200 ° C. for 30 minutes. The thickness of the non-fluorine organic resin layer 51 after the heat treatment was 700 nm.
 アモルファスパーフルオロ樹脂層形成工程(S32)では、図6に示すように、非フッ素系有機樹脂層51を覆うように、アモルファスパーフルオロ樹脂層52が形成される。アモルファスパーフルオロ樹脂層52の形成は、塗布法を用いて行われる。 In the amorphous perfluoro resin layer forming step (S32), the amorphous perfluoro resin layer 52 is formed so as to cover the non-fluorine organic resin layer 51 as shown in FIG. The formation of the amorphous perfluororesin layer 52 is performed using a coating method.
 本実施形態では、アモルファスパーフルオロ樹脂層形成用溶液を、スピンコート法により、図5に示す非フッ素系有機樹脂層51の上面を覆うように塗布した後、熱処理を行った。アモルファスパーフルオロ樹脂層形成用溶液は、スピンコート法用に調整された、旭硝子株式会社製「サイトップ(登録商標)溶液」を用いた。熱処理は、ホットプレートを用いて行われた。一例として、70℃で10分間加熱した後、120℃で10分間加熱し、最後に200℃で10分間加熱することにより行われた。熱処理後のアモルファスパーフルオロ樹脂層52の厚さは、100nmであった。 In this embodiment, the amorphous perfluororesin layer forming solution was applied by spin coating so as to cover the upper surface of the non-fluorine organic resin layer 51 shown in FIG. As a solution for forming an amorphous perfluoro resin layer, “Cytop (registered trademark) solution” manufactured by Asahi Glass Co., Ltd., prepared for the spin coating method was used. The heat treatment was performed using a hot plate. As an example, heating was performed at 70 ° C. for 10 minutes, followed by heating at 120 ° C. for 10 minutes, and finally heating at 200 ° C. for 10 minutes. The thickness of the amorphous perfluororesin layer 52 after the heat treatment was 100 nm.
 次に、S4のゲート電極形成工程が行われる。ゲート電極形成工程(S4)では、図1に示すように、アモルファスパーフルオロ樹脂層52の上面に、ゲート電極6が形成される。ゲート電極6の形成方法は、特に限定されない。ゲート電極6を形成する材質の薄膜を形成した後、パターニングして不要部分を除去する方法が一般的である。しかしながら、製膜方法、パターニング方法に関しても、各種方法が適用可能である。具体的には、製膜方法としては、スパッタリング法、真空蒸着法、CVD法、めっき法などが適用可能である。パターニング法としては、フォトリソグラフィ法やスクリーン印刷法などが適用可能である。 Next, the gate electrode forming step of S4 is performed. In the gate electrode formation step (S4), the gate electrode 6 is formed on the upper surface of the amorphous perfluororesin layer 52 as shown in FIG. The method for forming the gate electrode 6 is not particularly limited. In general, after forming a thin film of a material for forming the gate electrode 6, patterning is performed to remove unnecessary portions. However, various methods can be applied to the film forming method and the patterning method. Specifically, as a film forming method, a sputtering method, a vacuum evaporation method, a CVD method, a plating method, or the like can be applied. As the patterning method, a photolithography method, a screen printing method, or the like can be applied.
 本実施形態では、Ni薄膜を形成した後、Ni薄膜のパターニングを行い、不要部分を除去することにより、Niからなるゲート電極6を形成した。Ni薄膜の形成は、真空蒸着法により行った。Ni薄膜が形成された後、フォトリソグラフィ法により、レジストパターンを形成し、エッチング法により、Ni薄膜をエッチングした。不要となったフォトレジストは、アセトン洗浄により除去した。こうして、図1に示すように、アモルファスパーフルオロ樹脂層52の上面に、Niからなるゲート電極6を形成した。形成されたゲート電極6の厚さは、200nmであった。 In this embodiment, after forming the Ni thin film, the Ni thin film is patterned to remove unnecessary portions, thereby forming the gate electrode 6 made of Ni. The Ni thin film was formed by a vacuum deposition method. After the Ni thin film was formed, a resist pattern was formed by photolithography, and the Ni thin film was etched by etching. The unnecessary photoresist was removed by washing with acetone. Thus, as shown in FIG. 1, the gate electrode 6 made of Ni was formed on the upper surface of the amorphous perfluoro resin layer 52. The formed gate electrode 6 had a thickness of 200 nm.
 次に、上述の製造方法によって形成された酸化物薄膜トランジスタ1の効果を確認するため、酸化物薄膜トランジスタ1の性能評価を行った。この性能評価では、比較例1として、ゲート絶縁層5を非フッ素系有機樹脂層51の一層のみで構成した酸化物薄膜トランジスタ1a、及び、比較例2として、ゲート絶縁層5をアモルファスパーフルオロ樹脂層52の一層のみで構成した酸化物薄膜トランジスタ1bについても、性能評価を行った。以下、この性能評価について説明する。 Next, in order to confirm the effect of the oxide thin film transistor 1 formed by the above-described manufacturing method, the performance of the oxide thin film transistor 1 was evaluated. In this performance evaluation, as Comparative Example 1, the oxide thin film transistor 1a in which the gate insulating layer 5 is composed of only one non-fluorine organic resin layer 51, and as Comparative Example 2, the gate insulating layer 5 is an amorphous perfluoro resin layer. The performance evaluation was also performed on the oxide thin film transistor 1b composed of only one layer. Hereinafter, this performance evaluation will be described.
 はじめに、比較例1の酸化物薄膜トランジスタ1a、および比較例2の酸化物薄膜トランジスタ1bの断面構造について、図7および図8を参照して説明する。 First, cross-sectional structures of the oxide thin film transistor 1a of the comparative example 1 and the oxide thin film transistor 1b of the comparative example 2 will be described with reference to FIGS.
 図7に示す比較例1の酸化物薄膜トランジスタ1aの構成は、ゲート絶縁層5を膜厚800nmの非フッ素系有機樹脂層51の一層のみで構成したこと以外は、酸化物薄膜トランジスタ1と同様である。酸化物薄膜トランジスタ1aは、第一実施形態の酸化物薄膜トランジスタ1の製造工程のうち、アモルファスパーフルオロ樹脂層形成工程(S32)のみを省いて製造することにより得られる。 The configuration of the oxide thin film transistor 1a of Comparative Example 1 shown in FIG. 7 is the same as that of the oxide thin film transistor 1 except that the gate insulating layer 5 is composed of only one non-fluorine organic resin layer 51 having a thickness of 800 nm. . The oxide thin film transistor 1a is obtained by omitting only the amorphous perfluororesin layer forming step (S32) in the manufacturing process of the oxide thin film transistor 1 of the first embodiment.
 また、図8に示す比較例2の酸化物薄膜トランジスタ1bは、ゲート絶縁層5を膜厚800nmのアモルファスパーフルオロ樹脂層52の一層のみで構成したこと以外は、第一実施形態の酸化物薄膜トランジスタ1と同様である。また、酸化物薄膜トランジスタ1bは、第一実施形態の酸化物薄膜トランジスタ1の製造工程のうち、非フッ素系有機樹脂層形成工程(S31)のみを省いて製造することにより得られる。 Further, the oxide thin film transistor 1b of Comparative Example 2 shown in FIG. 8 is the oxide thin film transistor 1 of the first embodiment except that the gate insulating layer 5 is composed of only one layer of an amorphous perfluoro resin layer 52 having a thickness of 800 nm. It is the same. Moreover, the oxide thin film transistor 1b is obtained by omitting only the non-fluorine-based organic resin layer forming step (S31) in the manufacturing process of the oxide thin film transistor 1 of the first embodiment.
 次に、性能評価の方法および性能評価の結果について、図9乃至11を参照して説明する。なお、図9乃至11において、曲線aは、熱処理前の酸化物薄膜トランジスタ1、1a、1bの電圧-電流特性を示し、曲線bは、熱処理後の酸化物薄膜トランジスタ1、1a、1bの電圧-電流特性を示す。 Next, a performance evaluation method and performance evaluation results will be described with reference to FIGS. 9 to 11, the curve a shows the voltage-current characteristics of the oxide thin film transistors 1, 1a, 1b before the heat treatment, and the curve b shows the voltage-current of the oxide thin film transistors 1, 1a, 1b after the heat treatment. Show the characteristics.
 性能評価は、図9乃至11に示す電圧-電流特性より求められる酸化物薄膜トランジスタの電界効果移動度と、ターンオン電圧とを指標として行った。電界効果移動度は、下記の式を用いて算出される。
 Ids=μCinW(V-Vth/2L
 ただし、μは電界効果移動度、Idsは飽和領域においてソース・ドレイン間に流れる電流(以下、ドレイン電流)、Cinはゲート絶縁膜の単位面積当たりのキャパシタンス、Wはチャネル幅、Vはゲート電圧、Vthは閾値電圧、Lはチャネル長である。また、ターンオン電圧は、酸化物薄膜トランジスタにおいて、オフ状態からオン状態になるときの境界となるゲート電圧である。ソース電極3、ドレイン電極4間に所定の電圧を印加して、ゲート電圧を変化させた際にソース電極3、ドレイン電極4間に流れる電流を測定し、得られた値から、電界効果移動度とターンオン電圧とを算出した。
The performance evaluation was performed using the field effect mobility of the oxide thin film transistor and the turn-on voltage obtained from the voltage-current characteristics shown in FIGS. 9 to 11 as indices. The field effect mobility is calculated using the following formula.
I ds = μC in W (V g −V th ) 2 / 2L
Where μ is the field effect mobility, I ds is the current flowing between the source and drain in the saturation region (hereinafter referred to as drain current), C in is the capacitance per unit area of the gate insulating film, W is the channel width, and V g is The gate voltage, Vth is the threshold voltage, and L is the channel length. The turn-on voltage is a gate voltage that becomes a boundary when the oxide thin film transistor is turned on from the off state. When a predetermined voltage is applied between the source electrode 3 and the drain electrode 4 to change the gate voltage, the current flowing between the source electrode 3 and the drain electrode 4 is measured, and the field effect mobility is calculated from the obtained value. And turn-on voltage were calculated.
 また、性能評価は、形成後の酸化物薄膜トランジスタ1、1a、1b、および形成後に熱処理がさらに行われた酸化物薄膜トランジスタ1、1a、1bを対象として行った。熱処理は、形成後の酸化物薄膜トランジスタ1、1a、1bを、ホットプレートを用いて、200℃で5分間加熱することにより行われた。酸化物半導体層を有する酸化物薄膜トランジスタでは、酸化物半導体層中に水分が取り込まれると、その特性が不安定になる場合がある。そのため、トランジスタ特性を安定化させるために、形成後、熱処理を行い、酸化物半導体層中の水分を除去するのが一般的である。 Further, the performance evaluation was performed on the oxide thin film transistors 1, 1a, and 1b after the formation and the oxide thin film transistors 1, 1a, and 1b on which the heat treatment was further performed after the formation. The heat treatment was performed by heating the formed oxide thin film transistors 1, 1a, and 1b at 200 ° C. for 5 minutes using a hot plate. In an oxide thin film transistor including an oxide semiconductor layer, characteristics may be unstable when moisture is taken into the oxide semiconductor layer. Therefore, in order to stabilize transistor characteristics, heat treatment is generally performed after formation to remove moisture in the oxide semiconductor layer.
 はじめに、酸化物薄膜トランジスタ1における熱処理前後の電界効果移動度、およびターンオン電圧について評価した。図9に示す酸化物薄膜トランジスタ1の電圧-電流特性に基づき、電界効果移動度およびターンオン電圧を求めると、熱処理前は、電界効果移動度が7.2cm/Vs、ターンオン電圧が-10Vであった(曲線a)。また、熱処理後には、電界効果移動度が7.6cm/Vs、ターンオン電圧が-10Vであった(曲線b)。これにより、第一実施形態の酸化物薄膜トランジスタ1では、熱処理が行われることにより、電界効果移動度がやや向上することが判明した。また、熱処理前後で、ターンオン電圧はほとんど変化しないことが判明した。これにより、高い電界効果移動度を有し、かつ熱処理によるターンオン電圧の変動のない安定した特性を有する酸化物薄膜トランジスタ1が得られることが示された。 First, the field effect mobility before and after the heat treatment in the oxide thin film transistor 1 and the turn-on voltage were evaluated. Based on the voltage-current characteristics of the oxide thin film transistor 1 shown in FIG. 9, the field-effect mobility and the turn-on voltage were determined to be 7.2 cm 2 / Vs and the turn-on voltage was −10 V before the heat treatment. (Curve a). Further, after the heat treatment, the field effect mobility was 7.6 cm 2 / Vs, and the turn-on voltage was −10 V (curve b). Thereby, in the oxide thin-film transistor 1 of 1st embodiment, it turned out that field effect mobility improves a little by heat processing. It was also found that the turn-on voltage hardly changed before and after the heat treatment. Thus, it was shown that the oxide thin film transistor 1 having high field effect mobility and having stable characteristics without fluctuation of turn-on voltage due to heat treatment can be obtained.
 なお、酸化物薄膜トランジスタ1について、同様の実験を複数回行い、電界効果移動度、およびターンオン電圧を求めたところ、再現性の良い結果が得られた。これにより、酸化物薄膜トランジスタ1は、安定したトランジスタ特性を有することが確認された。 The oxide thin film transistor 1 was subjected to the same experiment a plurality of times, and the field effect mobility and the turn-on voltage were obtained. As a result, a reproducible result was obtained. Thereby, it was confirmed that the oxide thin film transistor 1 has stable transistor characteristics.
 次に、酸化物薄膜トランジスタ1aにおける熱処理前後の電界効果移動度およびターンオン電圧について評価した。図10に示す酸化物薄膜トランジスタ1aの電圧-電流特性に基づき、電界効果移動度およびターンオン電圧を求めると、熱処理前は、電界効果移動度が4.9cm/Vs、ターンオン電圧が-7.5Vであった(曲線a)。また、熱処理後には、電界効果移動度が5.2cm/Vs、ターンオン電圧が-50V以下であった(曲線b)。これにより、比較例1の酸化物薄膜トランジスタ1aでは、熱処理が行われることにより、ターンオン電圧が大幅に負にシフトすることが示された。トランジスタの駆動電圧を低くするためには、ターンオン電圧の絶対値を小さくする必要がある。しかし、酸化物薄膜トランジスタ1aでは、熱処理が行われることにより、ターンオン電圧の絶対値が大きくなってしまう場合があることが示された。 Next, the field effect mobility and the turn-on voltage before and after the heat treatment in the oxide thin film transistor 1a were evaluated. Based on the voltage-current characteristics of the oxide thin film transistor 1a shown in FIG. 10, the field-effect mobility and the turn-on voltage are determined. The field-effect mobility is 4.9 cm 2 / Vs and the turn-on voltage is −7.5 V before the heat treatment. (Curve a). Further, after the heat treatment, the field effect mobility was 5.2 cm 2 / Vs, and the turn-on voltage was −50 V or less (curve b). Thereby, in the oxide thin film transistor 1a of the comparative example 1, it was shown that the turn-on voltage is significantly shifted negatively by the heat treatment. In order to reduce the drive voltage of the transistor, it is necessary to reduce the absolute value of the turn-on voltage. However, in the oxide thin film transistor 1a, it has been shown that the absolute value of the turn-on voltage may increase due to heat treatment.
 なお、酸化物薄膜トランジスタ1aについて、同様の実験を複数回行い、電界効果移動度、およびターンオン電圧を求めたところ、熱処理前、熱処理後ともに、結果に再現性が得られなかった。これにより、酸化物薄膜トランジスタ1aのトランジスタ特性は、安定していないことが確認された。 It should be noted that the same experiment was performed a plurality of times for the oxide thin film transistor 1a, and the field effect mobility and the turn-on voltage were determined. As a result, reproducibility was not obtained before and after the heat treatment. Thereby, it was confirmed that the transistor characteristics of the oxide thin film transistor 1a were not stable.
 次に、酸化物薄膜トランジスタ1bにおける熱処理前後の電界効果移動度およびターンオン電圧について評価した。図11に示す酸化物薄膜トランジスタ1bの電圧-電流特性に基づき、電界効果移動度およびターンオン電圧を求めると、熱処理前は、電界効果移動度が0.32cm/Vs、ターンオン電圧が-20Vであった(曲線a)。また、熱処理後には、電界効果移動度が0.31cm/Vs、ターンオン電圧が-20Vであった(曲線b)。これにより、比較例2の酸化物薄膜トランジスタ1bでは、第一実施形態の酸化物薄膜トランジスタ1と比較して、電界効果移動度が低く、ターンオン電圧の絶対値が大きいことが示された。薄膜トランジスタのターンオン電圧は、ゲート絶縁層の静電容量の反比例に近似することが知られている。また、ゲート絶縁層の静電容量は、ゲート絶縁層を形成する材料の比誘電率に比例する。比較例2の酸化物薄膜トランジスタ1bでは、ゲート絶縁層5が、誘電率の低いアモルファスパーフルオロ樹脂層52のみから形成されている。このため、ターンオン電圧の絶対値が大きくなったものと推測される。 Next, the field effect mobility and the turn-on voltage before and after the heat treatment in the oxide thin film transistor 1b were evaluated. Based on the voltage-current characteristics of the oxide thin film transistor 1b shown in FIG. 11, the field-effect mobility and the turn-on voltage were determined to be 0.32 cm 2 / Vs and the turn-on voltage was −20 V before the heat treatment. (Curve a). Further, after the heat treatment, the field effect mobility was 0.31 cm 2 / Vs, and the turn-on voltage was −20 V (curve b). Thereby, in the oxide thin-film transistor 1b of the comparative example 2, it was shown that the field effect mobility is low and the absolute value of the turn-on voltage is large compared with the oxide thin-film transistor 1 of the first embodiment. It is known that the turn-on voltage of a thin film transistor approximates the inverse proportion of the capacitance of the gate insulating layer. The capacitance of the gate insulating layer is proportional to the relative dielectric constant of the material forming the gate insulating layer. In the oxide thin film transistor 1b of Comparative Example 2, the gate insulating layer 5 is formed only from the amorphous perfluoro resin layer 52 having a low dielectric constant. For this reason, it is presumed that the absolute value of the turn-on voltage has increased.
 一方、第一実施形態の酸化物薄膜トランジスタ1では、ゲート絶縁層5が、アモルファスパーフルオロ樹脂よりも比誘電率の高い架橋PVPからなる非フッ素系有機樹脂層51と、アモルファスパーフルオロ樹脂層52との積層構造である。このため、ターンオン電圧の絶対値を小さくすることができたものと推測される。 On the other hand, in the oxide thin film transistor 1 of the first embodiment, the gate insulating layer 5 includes a non-fluorine-based organic resin layer 51 made of a crosslinked PVP having a higher dielectric constant than the amorphous perfluoro resin, an amorphous perfluoro resin layer 52, and This is a laminated structure. For this reason, it is presumed that the absolute value of the turn-on voltage could be reduced.
 以上説明したように、第一実施形態の酸化物薄膜トランジスタ1は、酸化物半導体層9上面に積層するゲート絶縁層5を、酸化物半導体層9を覆う非フッ素系有機樹脂層51と、非フッ素系有機樹脂層51を覆うアモルファスパーフルオロ樹脂層52とから構成した。アモルファスパーフルオロ樹脂層52をゲート絶縁層5の構成要素とすることにより、良好かつ安定した特性を有する。また、熱処理を行った場合にも、特性の変化が殆どない酸化物薄膜トランジスタ1が得られる。 As described above, in the oxide thin film transistor 1 according to the first embodiment, the gate insulating layer 5 stacked on the upper surface of the oxide semiconductor layer 9 includes the non-fluorine organic resin layer 51 covering the oxide semiconductor layer 9 and the non-fluorine. And an amorphous perfluoro resin layer 52 covering the organic resin layer 51. By using the amorphous perfluoro resin layer 52 as a constituent element of the gate insulating layer 5, good and stable characteristics are obtained. In addition, even when heat treatment is performed, the oxide thin film transistor 1 with almost no change in characteristics can be obtained.
 また、ゲート絶縁層5が、撥水性のアモルファスパーフルオロ樹脂層52を備えている。そのため、ゲート絶縁層5の上面にゲート電極6を形成させる際に行われるパターニング中の洗浄処理において、洗浄水が、ゲート絶縁層5を透過して、ゲート絶縁層5の下面の酸化物半導体層9まで到達することがない。酸化物半導体層9に水分が吸着してしまうと、酸化物薄膜トランジスタ1の特性は不安定になることが知られている。酸化物薄膜トランジスタ1では、洗浄水が酸化物半導体層9に到達することを防止して、酸化物薄膜トランジスタ1の特性を安定させることができる。 The gate insulating layer 5 includes a water-repellent amorphous perfluoro resin layer 52. Therefore, in the cleaning process during patterning performed when the gate electrode 6 is formed on the upper surface of the gate insulating layer 5, the cleaning water passes through the gate insulating layer 5 and the oxide semiconductor layer on the lower surface of the gate insulating layer 5. Never reach 9. It is known that the characteristics of the oxide thin film transistor 1 become unstable when moisture is adsorbed on the oxide semiconductor layer 9. In the oxide thin film transistor 1, the cleaning water can be prevented from reaching the oxide semiconductor layer 9, and the characteristics of the oxide thin film transistor 1 can be stabilized.
 また、非フッ素系有機樹脂層51の材質として、誘電率の高いポリビニルフェノール(PVP)を採用したため、ゲート絶縁層5の誘電率を向上させ、酸化物薄膜トランジスタ1のターンオン電圧の絶対値を小さくすることができる。よって、駆動電圧の小さい酸化物薄膜トランジスタ1を得ることができる。 Further, since polyvinylphenol (PVP) having a high dielectric constant is adopted as the material of the non-fluorine organic resin layer 51, the dielectric constant of the gate insulating layer 5 is improved and the absolute value of the turn-on voltage of the oxide thin film transistor 1 is reduced. be able to. Therefore, the oxide thin film transistor 1 having a low driving voltage can be obtained.
 また、非フッ素系有機樹脂層51、およびアモルファスパーフルオロ樹脂層52は、ともに塗布法により、低温形成することが可能である。そのため、大がかりな装置を用いることなく、簡単、且つ安価に、ゲート絶縁層5を形成することが可能である。しかも、下面側に形成された酸化物半導体層9にダメージを与えることなく、ゲート絶縁層5を形成させることが可能である。さらに、耐熱性の低い可撓性プラスチック基板を基板として採用することができ、その場合には可撓性を備える酸化物薄膜トランジスタの製造が可能となる。 Further, both the non-fluorine organic resin layer 51 and the amorphous perfluoro resin layer 52 can be formed at a low temperature by a coating method. Therefore, the gate insulating layer 5 can be formed easily and inexpensively without using a large-scale apparatus. In addition, the gate insulating layer 5 can be formed without damaging the oxide semiconductor layer 9 formed on the lower surface side. Furthermore, a flexible plastic substrate with low heat resistance can be used as the substrate, and in that case, an oxide thin film transistor having flexibility can be manufactured.
 また、酸化物半導体層9の上面には、非フッ素系有機樹脂層51のみが接触する構成とし、非フッ素系有機樹脂層51の材質として、酸化物半導体に対する反応性の低いポリビニルフェノール(PVP)を採用した。よって、ゲート絶縁層5の形成過程において、酸化物半導体層9はダメージを受けることがない。そのため、酸化物半導体層9の半導体特性を維持することができ、良好な特性を有する酸化物薄膜トランジスタ1を形成することができる。 Further, only the non-fluorine organic resin layer 51 is in contact with the upper surface of the oxide semiconductor layer 9, and the material of the non-fluorine organic resin layer 51 is polyvinyl phenol (PVP) having low reactivity with respect to the oxide semiconductor. It was adopted. Therefore, the oxide semiconductor layer 9 is not damaged in the process of forming the gate insulating layer 5. Therefore, the semiconductor characteristics of the oxide semiconductor layer 9 can be maintained, and the oxide thin film transistor 1 having favorable characteristics can be formed.
 また、ソース電極3とドレイン電極4とが形成された後で、酸化物半導体層9が形成される。そのため、ソース電極3やドレイン電極4が形成される際に、酸化物半導体層9がダメージを受けることがない。 In addition, after the source electrode 3 and the drain electrode 4 are formed, the oxide semiconductor layer 9 is formed. Therefore, the oxide semiconductor layer 9 is not damaged when the source electrode 3 and the drain electrode 4 are formed.
 その上、酸化物半導体層9の材料として、InGaZnOを採用しているため、半導体層形成工程(S2)における製膜は、室温で行うことが可能である。そのため、可撓性を有するプラスチック基板を基板として採用することができる。その場合には可撓性を備える酸化物薄膜トランジスタの製造が可能となる。しかも、高い電界効果移動度を持つ酸化物薄膜トランジスタを実現できる。 In addition, since InGaZnO 4 is employed as the material of the oxide semiconductor layer 9, film formation in the semiconductor layer formation step (S2) can be performed at room temperature. Therefore, a flexible plastic substrate can be used as the substrate. In that case, a flexible oxide thin film transistor can be manufactured. In addition, an oxide thin film transistor having high field effect mobility can be realized.
 次に、第二実施形態の酸化物薄膜トランジスタ12について、図12および図13を参照して説明する。第二実施形態の酸化物薄膜トランジスタ12は、ゲート絶縁層50において、非フッ素系有機樹脂層51がアモルファスパーフルオロ樹脂層52よりも上側に形成される。その他は、第一実施形態の酸化物薄膜トランジスタ1と同様の構成である。したがって、ゲート絶縁層50における非フッ素系有機樹脂層51とアモルファスパーフルオロ樹脂層52との積層順のみを重点的に説明する。その他の構成については同一符号を付し、詳細な説明を省略する。 Next, the oxide thin film transistor 12 of the second embodiment will be described with reference to FIG. 12 and FIG. In the oxide thin film transistor 12 of the second embodiment, the non-fluorine organic resin layer 51 is formed above the amorphous perfluororesin layer 52 in the gate insulating layer 50. Other configurations are the same as those of the oxide thin film transistor 1 of the first embodiment. Therefore, only the stacking order of the non-fluorinated organic resin layer 51 and the amorphous perfluororesin layer 52 in the gate insulating layer 50 will be described mainly. Other configurations are denoted by the same reference numerals, and detailed description thereof is omitted.
 初めに、第二実施形態の酸化物薄膜トランジスタ12の断面構造について説明する。酸化物薄膜トランジスタ12では、図12に示すように、基板2の上面にソース電極3及びドレイン電極4が離間して設けられている。ソース電極3の上面及びドレイン電極4の上面と、ソース電極3及びドレイン電極4に挟まれる基板2の上面とには、酸化物半導体層9が連続して設けられている。そして、酸化物半導体層9とソース電極3とドレイン電極4と基板2の上面とを覆うように、ゲート絶縁層50が設けられている。ゲート絶縁層50は、少なくとも酸化物半導体層9を覆う下側のアモルファスパーフルオロ樹脂層52と、アモルファスパーフルオロ樹脂層52を覆う上側の非フッ素系有機樹脂層51とから構成されている。非フッ素系有機樹脂層51の上面には、酸化物半導体層9に対向する位置に、ゲート電極6が設けられている。酸化物薄膜トランジスタ12の各構成要素の材質は、第一実施形態の酸化物薄膜トランジスタ1と同様である。 First, the cross-sectional structure of the oxide thin film transistor 12 of the second embodiment will be described. In the oxide thin film transistor 12, as shown in FIG. 12, the source electrode 3 and the drain electrode 4 are provided apart from each other on the upper surface of the substrate 2. An oxide semiconductor layer 9 is continuously provided on the upper surface of the source electrode 3 and the drain electrode 4 and the upper surface of the substrate 2 sandwiched between the source electrode 3 and the drain electrode 4. A gate insulating layer 50 is provided so as to cover the oxide semiconductor layer 9, the source electrode 3, the drain electrode 4, and the upper surface of the substrate 2. The gate insulating layer 50 includes a lower amorphous perfluoro resin layer 52 covering at least the oxide semiconductor layer 9 and an upper non-fluorine organic resin layer 51 covering the amorphous perfluoro resin layer 52. A gate electrode 6 is provided on the top surface of the non-fluorine organic resin layer 51 at a position facing the oxide semiconductor layer 9. The material of each component of the oxide thin film transistor 12 is the same as that of the oxide thin film transistor 1 of the first embodiment.
 次に、第二実施形態の酸化物薄膜トランジスタ12の製造工程について説明する。第二実施形態の酸化物薄膜トランジスタ12の製造工程は、図13に示すように、基板2の上面にソース電極3及びドレイン電極4が各々形成されるソース・ドレイン電極形成工程(S1)と、ソース電極3及びドレイン電極4の間の基板2上面に酸化物半導体層9が形成される半導体層形成工程(S2)と、少なくとも酸化物半導体層9の上面にゲート絶縁層5が形成されるゲート絶縁層形成工程(S30)と、ゲート絶縁層5の上面にゲート電極6が形成されるゲート電極形成工程(S4)とから構成されている。ソース・ドレイン電極形成工程(S1)、半導体層形成工程(S2)、およびゲート電極形成工程(S4)については、第一実施形態と同様であるため、説明を省略する。ゲート絶縁層形成工程(S30)についてのみ説明する。 Next, the manufacturing process of the oxide thin film transistor 12 of the second embodiment will be described. As shown in FIG. 13, the manufacturing process of the oxide thin film transistor 12 of the second embodiment includes a source / drain electrode forming step (S1) in which the source electrode 3 and the drain electrode 4 are formed on the upper surface of the substrate 2, respectively, A semiconductor layer forming step (S2) in which the oxide semiconductor layer 9 is formed on the upper surface of the substrate 2 between the electrode 3 and the drain electrode 4, and gate insulation in which the gate insulating layer 5 is formed on at least the upper surface of the oxide semiconductor layer 9 The layer forming step (S30) and the gate electrode forming step (S4) in which the gate electrode 6 is formed on the upper surface of the gate insulating layer 5 are configured. Since the source / drain electrode forming step (S1), the semiconductor layer forming step (S2), and the gate electrode forming step (S4) are the same as those in the first embodiment, description thereof is omitted. Only the gate insulating layer forming step (S30) will be described.
 第二実施形態におけるゲート絶縁層形成工程(S30)は、少なくとも酸化物半導体層9の上面を覆うようにアモルファスパーフルオロ樹脂層52が形成されるアモルファスパーフルオロ樹脂層形成工程(S301)と、アモルファスパーフルオロ樹脂層52の上面を覆うように非フッ素系有機樹脂層51が形成される非フッ素系有機樹脂層形成工程(S302)とからなる。 The gate insulating layer forming step (S30) in the second embodiment includes an amorphous perfluoro resin layer forming step (S301) in which an amorphous perfluoro resin layer 52 is formed so as to cover at least the upper surface of the oxide semiconductor layer 9, and an amorphous state. This includes a non-fluorinated organic resin layer forming step (S302) in which the non-fluorinated organic resin layer 51 is formed so as to cover the upper surface of the perfluororesin layer 52.
 アモルファスパーフルオロ樹脂層形成工程(S301)について説明する。アモルファスパーフルオロ樹脂層形成工程(S301)では、はじめに、アモルファスパーフルオロ樹脂層形成用溶液を、スピンコート法により、酸化物半導体層9、ソース電極3、ドレイン電極4の各上面、及び基板2の上面のうちの酸化物半導体層9、ソース電極3、ドレイン電極4の設けられていない部位を覆うように塗布した後、熱処理を行った。アモルファスパーフルオロ樹脂層形成用溶液は、スピンコート法用に調整された、旭硝子株式会社製の「サイトップ(登録商標)溶液」を用いた。熱処理は、ホットプレートを用いて行われ、70℃で10分間加熱した後、120℃で10分間加熱し、最後に200℃で10分間加熱することにより行われた。熱処理の後、酸素、アルゴン、窒素などのプラズマ処理により、アモルファスパーフルオロ樹脂層52の上面を親水化した。第二実施形態のアモルファスパーフルオロ樹脂層形成工程(S301)は、熱処理の後、上面の親水化のためにプラズマ処理をおこなう点で、第一実施形態におけるアモルファスパーフルオロ樹脂層形成工程(S32)とは異なる。 The amorphous perfluoro resin layer forming step (S301) will be described. In the amorphous perfluoro resin layer forming step (S301), first, an amorphous perfluoro resin layer forming solution is applied to the upper surfaces of the oxide semiconductor layer 9, the source electrode 3, the drain electrode 4 and the substrate 2 by spin coating. After coating so as to cover a portion of the upper surface where the oxide semiconductor layer 9, the source electrode 3, and the drain electrode 4 are not provided, heat treatment was performed. As the amorphous perfluoro resin layer forming solution, “Cytop (registered trademark) solution” manufactured by Asahi Glass Co., Ltd., prepared for the spin coating method was used. The heat treatment was performed using a hot plate, heated at 70 ° C. for 10 minutes, then heated at 120 ° C. for 10 minutes, and finally heated at 200 ° C. for 10 minutes. After the heat treatment, the upper surface of the amorphous perfluororesin layer 52 was hydrophilized by plasma treatment with oxygen, argon, nitrogen or the like. In the amorphous perfluoro resin layer forming step (S301) of the second embodiment, after the heat treatment, the amorphous perfluoro resin layer forming step (S32) in the first embodiment is performed in that plasma treatment is performed to make the upper surface hydrophilic. Is different.
 次に、非フッ素系有機樹脂層形成工程(S302)について説明する。非フッ素系有機樹脂層形成工程(S302)では、ポリビニルフェノールを含有する非フッ素系有機樹脂層形成用溶液を、スピンコート法により、アモルファスパーフルオロ樹脂層の上面に塗布した後、熱処理を行った。非フッ素系有機樹脂層形成用溶液は、PVP、メラミン-ホルムアルデヒド、プロピレングリコールモノメチルエーテルアセテートの混合溶液である。各材料の重量比は、PVP:メラミン-ホルムアルデヒド:プロピレングリコールモノメチルエーテルアセテート=1:2:10である。熱処理は、ホットプレートを用いて行われ、70℃で10分間加熱した後、150℃で10分間加熱し、最後に200℃で30分間加熱することにより行われた。 Next, the non-fluorine organic resin layer forming step (S302) will be described. In the non-fluorine-based organic resin layer forming step (S302), a non-fluorine-based organic resin layer-forming solution containing polyvinylphenol was applied to the upper surface of the amorphous perfluororesin layer by spin coating, and then heat-treated. . The non-fluorine organic resin layer forming solution is a mixed solution of PVP, melamine-formaldehyde, and propylene glycol monomethyl ether acetate. The weight ratio of each material is PVP: melamine-formaldehyde: propylene glycol monomethyl ether acetate = 1: 2: 10. The heat treatment was performed by using a hot plate, heating at 70 ° C. for 10 minutes, heating at 150 ° C. for 10 minutes, and finally heating at 200 ° C. for 30 minutes.
 第二実施形態の酸化物薄膜トランジスタ12でも、第一実施形態の酸化物薄膜トランジスタ1と同様の効果が得られる。また、第二実施形態の酸化物薄膜トランジスタ12では、アモルファスパーフルオロ樹脂層52が非フッ素系有機樹脂層51に覆われて、外部に露出しない。非フッ素系有機樹脂層51を形成する架橋PVPは、アモルファスパーフルオロ樹脂よりも硬度が高いことから、ゲート絶縁層50の物理的耐性を向上させることができる。これにより、ゲート絶縁層50がダメージを受けることによる、酸化物薄膜トランジスタ12の特性の悪化を抑制できる。特に、ゲート絶縁層50を形成した後に行われるゲート電極形成工程(S4)におけるゲート絶縁層50へのダメージを軽減させ、良好な特性を有する酸化物薄膜トランジスタ12を得ることができる。 Also in the oxide thin film transistor 12 of the second embodiment, the same effect as the oxide thin film transistor 1 of the first embodiment can be obtained. Further, in the oxide thin film transistor 12 of the second embodiment, the amorphous perfluoro resin layer 52 is covered with the non-fluorine organic resin layer 51 and is not exposed to the outside. Since the cross-linked PVP forming the non-fluorine organic resin layer 51 has higher hardness than the amorphous perfluoro resin, the physical resistance of the gate insulating layer 50 can be improved. Thereby, deterioration of the characteristics of the oxide thin film transistor 12 due to damage to the gate insulating layer 50 can be suppressed. In particular, damage to the gate insulating layer 50 in the gate electrode formation step (S4) performed after forming the gate insulating layer 50 can be reduced, and the oxide thin film transistor 12 having favorable characteristics can be obtained.
 次に、第三実施形態の酸化物薄膜トランジスタ100について、図14を参照して説明する。第三実施形態の酸化物薄膜トランジスタ100は、第一実施形態、第二実施形態とは異なり、ゲート電極106がソース電極103やドレイン電極104より下側に位置する、所謂「ボトムゲート型」の酸化物薄膜トランジスタである。第三実施形態の酸化物薄膜トランジスタ100は、ボトムゲート型であることの他、層間絶縁層105が非フッ素系有機樹脂層151とアモルファスパーフルオロ樹脂層152の二層により形成されることに特徴を有する。また、層間絶縁層105を貫通するコンタクトホール111が設けられている点、画素電極112が設けられている点で第一実施形態、第二実施形態と異なる。なお、第一実施形態と同一部分の説明については省略する。 Next, the oxide thin film transistor 100 of the third embodiment will be described with reference to FIG. Unlike the first and second embodiments, the oxide thin film transistor 100 of the third embodiment is a so-called “bottom gate type” oxidation in which the gate electrode 106 is located below the source electrode 103 and the drain electrode 104. Thin film transistor. The oxide thin film transistor 100 according to the third embodiment is characterized in that, in addition to being a bottom gate type, the interlayer insulating layer 105 is formed of two layers of a non-fluorine organic resin layer 151 and an amorphous perfluoro resin layer 152. Have. Further, the second embodiment is different from the first embodiment in that a contact hole 111 penetrating the interlayer insulating layer 105 is provided and a pixel electrode 112 is provided. Note that description of the same parts as those in the first embodiment is omitted.
 はじめに、酸化物薄膜トランジスタ100の断面構造について説明する。酸化物薄膜トランジスタ100は、板状の基板102を有し、基板102上にゲート電極106が設けられている。そして、基板102とゲート電極106とを覆うように、第三実施形態におけるゲート絶縁層110が設けられている。第三実施形態におけるゲート絶縁層110の上面には、ソース電極103とドレイン電極104とが離間して設けられている。また、ソース電極103とドレイン電極104との間の第三実施形態におけるゲート絶縁層110の上面、ソース電極103の上面、ドレイン電極104の上面には、酸化物半導体層109が連続して設けられている。 First, a cross-sectional structure of the oxide thin film transistor 100 will be described. The oxide thin film transistor 100 includes a plate-like substrate 102, and a gate electrode 106 is provided over the substrate 102. The gate insulating layer 110 in the third embodiment is provided so as to cover the substrate 102 and the gate electrode 106. A source electrode 103 and a drain electrode 104 are provided apart from each other on the upper surface of the gate insulating layer 110 in the third embodiment. In addition, the oxide semiconductor layer 109 is continuously provided on the upper surface of the gate insulating layer 110, the upper surface of the source electrode 103, and the upper surface of the drain electrode 104 in the third embodiment between the source electrode 103 and the drain electrode 104. ing.
 そして、酸化物半導体層109の上面と、ソース電極103及びドレイン電極104の各上面と、第三実施形態におけるゲート絶縁層110の上面とは、層間絶縁層105により覆われている。層間絶縁層105は、下側の非フッ素系有機樹脂層151と上側のアモルファスパーフルオロ樹脂層152とからなる。層間絶縁層105の上面には画素電極112が設けられている。また、画素電極112とドレイン電極104との間には、層間絶縁層105を貫通するコンタクトホール111が設けられている。 The upper surface of the oxide semiconductor layer 109, the upper surfaces of the source electrode 103 and the drain electrode 104, and the upper surface of the gate insulating layer 110 in the third embodiment are covered with an interlayer insulating layer 105. The interlayer insulating layer 105 includes a lower non-fluorine organic resin layer 151 and an upper amorphous perfluoro resin layer 152. A pixel electrode 112 is provided on the upper surface of the interlayer insulating layer 105. A contact hole 111 that penetrates the interlayer insulating layer 105 is provided between the pixel electrode 112 and the drain electrode 104.
 基板102の材質は、第一実施形態の基板2の材質と同様である。基板102の上面に形成されたゲート電極106の材質は、第一実施形態のゲート電極6の材質と同様である。 The material of the substrate 102 is the same as the material of the substrate 2 of the first embodiment. The material of the gate electrode 106 formed on the upper surface of the substrate 102 is the same as the material of the gate electrode 6 of the first embodiment.
 基板102の上面、およびゲート電極106の上面を覆うように設けられた第三実施形態におけるゲート絶縁層110は、一層からなり、絶縁物質により形成されている。絶縁物質として無機絶縁物質を採用する場合は、Al、SiO、SiN、TiO等が適用可能である。また、絶縁物質として有機絶縁物質を採用する場合は、PI(ポリイミド)、PMMA(ポリメチルメタクリレート)、PVP(ポリパラビニルフェノール)等が適用可能である。なお、第三実施形態におけるゲート絶縁層110の材質としては、絶縁性能、耐性の観点から、無機絶縁物質を採用する方がより好ましい。 The gate insulating layer 110 in the third embodiment provided so as to cover the upper surface of the substrate 102 and the upper surface of the gate electrode 106 is composed of a single layer and is formed of an insulating material. In the case where an inorganic insulating material is employed as the insulating material, Al 2 O 3 , SiO 2 , SiN, TiO 2 or the like can be applied. When an organic insulating material is employed as the insulating material, PI (polyimide), PMMA (polymethyl methacrylate), PVP (polyparavinylphenol), or the like can be applied. In addition, as a material of the gate insulating layer 110 in 3rd embodiment, it is more preferable to employ | adopt an inorganic insulating material from a viewpoint of insulation performance and tolerance.
 第三実施形態におけるゲート絶縁層110の上面に離間して設けられたソース電極103、ドレイン電極104の材質は、第一実施形態のソース電極3、ドレイン電極4の材質と同様である。ソース電極103とドレイン電極104との間の第三実施形態におけるゲート絶縁層110の上面、ソース電極103の上面、ドレイン電極104の上面に設けられた酸化物半導体層109の材質は、第一実施形態、第二実施形態の酸化物半導体層9の材質と同様である。 The materials of the source electrode 103 and the drain electrode 104 provided on the upper surface of the gate insulating layer 110 in the third embodiment are the same as the materials of the source electrode 3 and the drain electrode 4 in the first embodiment. The material of the oxide semiconductor layer 109 provided on the upper surface of the gate insulating layer 110, the upper surface of the source electrode 103, and the upper surface of the drain electrode 104 in the third embodiment between the source electrode 103 and the drain electrode 104 is the first embodiment. The form is the same as the material of the oxide semiconductor layer 9 of the second embodiment.
 基板102、ソース電極103、ドレイン電極104、酸化物半導体層109の上面に設けられた層間絶縁層105は、第一実施形態におけるゲート絶縁層5と同様の構成である。層間絶縁層105は、下側の非フッ素系有機樹脂層151と上側のアモルファスパーフルオロ樹脂層152とからなる。第三実施形態において層間絶縁層105を形成している非フッ素系有機樹脂層151およびアモルファスパーフルオロ樹脂層152の材質は、第一実施形態においてゲート絶縁層5を形成している非フッ素系有機樹脂層51およびアモルファスパーフルオロ樹脂層52と同様である。 The interlayer insulating layer 105 provided on the upper surface of the substrate 102, the source electrode 103, the drain electrode 104, and the oxide semiconductor layer 109 has the same configuration as the gate insulating layer 5 in the first embodiment. The interlayer insulating layer 105 includes a lower non-fluorine organic resin layer 151 and an upper amorphous perfluoro resin layer 152. The materials of the non-fluorine organic resin layer 151 and the amorphous perfluoro resin layer 152 forming the interlayer insulating layer 105 in the third embodiment are the non-fluorine organic materials forming the gate insulating layer 5 in the first embodiment. This is the same as the resin layer 51 and the amorphous perfluoro resin layer 52.
 層間絶縁層105の上面に形成される画素電極112は、ITO(酸化インジウムスズ)により形成される。 The pixel electrode 112 formed on the upper surface of the interlayer insulating layer 105 is formed of ITO (indium tin oxide).
 次に、第三実施形態の酸化物薄膜トランジスタ100の製造方法について、図15乃至図22を参照して説明する。 Next, a method for manufacturing the oxide thin film transistor 100 according to the third embodiment will be described with reference to FIGS.
 第三実施形態の酸化物薄膜トランジスタ100の製造工程は、図15に示すように、ゲート電極形成工程(S101)と、ゲート絶縁層形成工程(S102)と、ソース・ドレイン電極形成工程(S103)と、半導体層形成工程(S104)と、層間絶縁層形成工程(S105)と、コンタクトホール形成工程(S106)と、画素電極形成工程(S107)とを備えている。層間絶縁層形成工程(S105)は、非フッ素系有機樹脂層形成工程(S151)とアモルファスパーフルオロ樹脂層形成工程(S152)とから構成されている。以下、各工程について具体的に説明する。 As shown in FIG. 15, the manufacturing process of the oxide thin film transistor 100 of the third embodiment includes a gate electrode formation step (S101), a gate insulating layer formation step (S102), a source / drain electrode formation step (S103), The semiconductor layer forming step (S104), the interlayer insulating layer forming step (S105), the contact hole forming step (S106), and the pixel electrode forming step (S107) are provided. The interlayer insulating layer forming step (S105) includes a non-fluorinated organic resin layer forming step (S151) and an amorphous perfluoro resin layer forming step (S152). Hereinafter, each step will be specifically described.
 初めに、ゲート電極形成工程(S101)が行われる。ゲート電極形成工程(S101)では、基板102の上面にゲート電極106が形成される。具体的には、まず、基板102を洗浄し、基板102の上面に、Ni薄膜が形成される。Ni薄膜の形成は、スパッタリング法により行われる。このときのターゲットとしてはNiが使用され、装置としてはDCスパッタ装置が用いられる。形成されたNi薄膜の上面に、フォトリソグラフィ法により、レジストパターンが形成され、エッチング法により、Ni薄膜がエッチングされる。最後に、不要となったフォトレジストがアセトン洗浄により除去される。こうして、図16に示すように、基板102の上面に、Niからなるゲート電極106を形成させることができる。 First, a gate electrode formation step (S101) is performed. In the gate electrode formation step (S101), the gate electrode 106 is formed on the upper surface of the substrate 102. Specifically, first, the substrate 102 is cleaned, and a Ni thin film is formed on the upper surface of the substrate 102. The Ni thin film is formed by a sputtering method. At this time, Ni is used as the target, and a DC sputtering apparatus is used as the apparatus. A resist pattern is formed on the upper surface of the formed Ni thin film by a photolithography method, and the Ni thin film is etched by an etching method. Finally, the unnecessary photoresist is removed by acetone cleaning. Thus, as shown in FIG. 16, the gate electrode 106 made of Ni can be formed on the upper surface of the substrate 102.
 次に、ゲート絶縁層形成工程が行われる(S102)。ゲート絶縁層形成工程(S102)では、図16に示すゲート電極106の上面、及び基板102の上面のうちのゲート電極106が設けられていない部位に、SiO膜が形成される。SiO膜の製膜は、スパッタリング法により行われ、ターゲットとしてはSiOが使用されるとともに、ArとOとの混合ガスを流しながら行われる。こうして、図17に示すように、ゲート電極106の上面、及び基板102の上面のうちのゲート電極106が設けられていない部位に、SiOからなる第三実施形態におけるゲート絶縁層110が形成される。 Next, a gate insulating layer forming step is performed (S102). In the gate insulating layer forming step (S102), an SiO 2 film is formed on the upper surface of the gate electrode 106 and the upper surface of the substrate 102 shown in FIG. The SiO 2 film is formed by a sputtering method, and SiO 2 is used as a target while flowing a mixed gas of Ar and O 2 . Thus, as shown in FIG. 17, the gate insulating layer 110 of the third embodiment made of SiO 2 is formed on the upper surface of the gate electrode 106 and the portion of the upper surface of the substrate 102 where the gate electrode 106 is not provided. The
 次に、ソース・ドレイン電極形成工程(S103)が行われる。ソース・ドレイン電極形成工程(S103)では、図17に示す第三実施形態におけるゲート絶縁層110の上面に、Ni薄膜を製膜し、パターニングして不要部分が除去されることにより、図18に示すように、ソース電極103およびドレイン電極104が形成される。形成条件は、ゲート電極106と同様であるため、説明を省略する。 Next, a source / drain electrode formation step (S103) is performed. In the source / drain electrode formation step (S103), an Ni thin film is formed on the upper surface of the gate insulating layer 110 in the third embodiment shown in FIG. As shown, a source electrode 103 and a drain electrode 104 are formed. Since the formation conditions are the same as those of the gate electrode 106, description thereof is omitted.
 次に、半導体層形成工程(S104)が行われる。半導体層形成工程(S104)では、図19に示すように、ソース電極103及びドレイン電極104の間の、第三実施形態におけるゲート絶縁層110の上面、ソース電極103の上面、ドレイン電極104の上面に、酸化物半導体層109が連続して形成される。半導体層形成工程(S104)では、初めに、図18に示すソース電極103の上面と、ドレイン電極104の上面と、第三実施形態におけるゲート絶縁層110の上面のうちのソース電極103、ドレイン電極104が設けられていない部位とを覆うように、InGaZnO膜が形成される。その後、InGaZnO膜がパターニングされて不要部分が除去されることにより、InGaZnOからなる酸化物半導体層109が形成される。InGaZnO膜の形成は、スパッタリング法により行われ、ターゲットとしてInGaZnOが用いられるとともに、ArとOとの混合ガスを流しながら行われる。InGaZnO膜を形成した後、フォトリソグラフィ法を用いてレジストパターンを形成し、InGaZnO膜をエッチングする。最後に、不要となったフォトレジストが、アセトン洗浄により除去される。こうして、図19に示すように、ソース電極103及びドレイン電極104の間の第三実施形態におけるゲート絶縁層110の上面、ソース電極103の上面、ドレイン電極104の上面に、InGaZnOからなる酸化物半導体層109を連続して形成させることができる。 Next, a semiconductor layer forming step (S104) is performed. In the semiconductor layer forming step (S104), as shown in FIG. 19, the upper surface of the gate insulating layer 110, the upper surface of the source electrode 103, and the upper surface of the drain electrode 104 between the source electrode 103 and the drain electrode 104 in the third embodiment. In addition, the oxide semiconductor layer 109 is continuously formed. In the semiconductor layer forming step (S104), first, the source electrode 103 and the drain electrode among the upper surface of the source electrode 103, the upper surface of the drain electrode 104, and the upper surface of the gate insulating layer 110 in the third embodiment shown in FIG. An InGaZnO 4 film is formed so as to cover a portion where 104 is not provided. After that, the InGaZnO 4 film is patterned to remove unnecessary portions, whereby the oxide semiconductor layer 109 made of InGaZnO 4 is formed. The InGaZnO 4 film is formed by a sputtering method, and InGaZnO 4 is used as a target and a mixed gas of Ar and O 2 is supplied. After the InGaZnO 4 film is formed, a resist pattern is formed using a photolithography method, and the InGaZnO 4 film is etched. Finally, the unnecessary photoresist is removed by acetone cleaning. Thus, as shown in FIG. 19, an oxide made of InGaZnO 4 is formed on the upper surface of the gate insulating layer 110, the upper surface of the source electrode 103, and the upper surface of the drain electrode 104 in the third embodiment between the source electrode 103 and the drain electrode 104. The semiconductor layer 109 can be formed continuously.
 次に、層間絶縁層形成工程(S105)が行われる。層間絶縁層形成工程(S105)は、図15に示すように、下側の非フッ素系有機樹脂層151を形成する非フッ素系有機樹脂層形成工程(S151)と、上側のアモルファスパーフルオロ樹脂層152を形成するアモルファスパーフルオロ樹脂層形成工程(S152)とからなる。 Next, an interlayer insulating layer forming step (S105) is performed. As shown in FIG. 15, the interlayer insulating layer forming step (S105) includes a non-fluorine organic resin layer forming step (S151) for forming the lower non-fluorine organic resin layer 151, and an upper amorphous perfluoro resin layer. And an amorphous perfluoro resin layer forming step (S152) for forming 152.
 非フッ素系有機樹脂層形成工程(S151)では、図20に示すように、酸化物半導体層109、ソース電極103、ドレイン電極104の各上面、及び第三実施形態におけるゲート絶縁層110の上面のうち酸化物半導体層109、ソース電極103、ドレイン電極104の設けられていない部位を覆うように、非フッ素系有機樹脂層151が形成される。非フッ素系有機樹脂層形成工程(S151)では、PVPを含有する非フッ素系有機樹脂層形成用溶液を、スピンコート法により、図19に示す酸化物半導体層109、ソース電極103、ドレイン電極104の各上面、及び第三実施形態におけるゲート絶縁層110の上面のうちの酸化物半導体層109、ソース電極103、ドレイン電極104の設けられていない部位に塗布した後、熱処理を行う。非フッ素系有機樹脂層形成用溶液は、PVP、メラミン-ホルムアルデヒド、プロピレングリコールモノメチルエーテルアセテートの混合溶液である。各材料の重量比は、PVP:メラミン-ホルムアルデヒド:プロピレングリコールモノメチルエーテルアセテート=1:2:10である。熱処理は、ホットプレートを用いて行われ、70℃で10分間加熱した後、150℃で10分間加熱し、最後に200℃で30分間加熱することにより行われる。 In the non-fluorine organic resin layer forming step (S151), as shown in FIG. 20, the upper surfaces of the oxide semiconductor layer 109, the source electrode 103, and the drain electrode 104, and the upper surface of the gate insulating layer 110 in the third embodiment. Among these, the non-fluorine organic resin layer 151 is formed so as to cover a portion where the oxide semiconductor layer 109, the source electrode 103, and the drain electrode 104 are not provided. In the non-fluorine-based organic resin layer forming step (S151), the non-fluorine-based organic resin layer forming solution containing PVP is spin-coated with the oxide semiconductor layer 109, the source electrode 103, and the drain electrode 104 shown in FIG. Each of these upper surfaces and the upper surface of the gate insulating layer 110 in the third embodiment are applied to a portion where the oxide semiconductor layer 109, the source electrode 103, and the drain electrode 104 are not provided, and then heat treatment is performed. The non-fluorine organic resin layer forming solution is a mixed solution of PVP, melamine-formaldehyde, and propylene glycol monomethyl ether acetate. The weight ratio of each material is PVP: melamine-formaldehyde: propylene glycol monomethyl ether acetate = 1: 2: 10. The heat treatment is performed using a hot plate, and is performed by heating at 70 ° C. for 10 minutes, then heating at 150 ° C. for 10 minutes, and finally heating at 200 ° C. for 30 minutes.
 アモルファスパーフルオロ樹脂層形成工程(S152)では、図21に示すように、非フッ素系有機樹脂層151の上面を覆うように、アモルファスパーフルオロ樹脂層152が形成される。アモルファスパーフルオロ樹脂層形成工程(S152)では、アモルファスパーフルオロ樹脂層形成用溶液を、スピンコート法により、基板2、ソース電極3、ドレイン電極4、酸化物半導体層9の上面に塗布した後、熱処理を行った。アモルファスパーフルオロ樹脂層形成用溶液は、スピンコート法用に調製された、旭硝子株式会社製の「サイトップ(登録商標)溶液」を用いた。熱処理は、ホットプレートを用いて行われ、70℃で10分間加熱した後、120℃で10分間加熱し、最後に200℃で10分間加熱することにより行われた。 In the amorphous perfluoro resin layer forming step (S152), as shown in FIG. 21, the amorphous perfluoro resin layer 152 is formed so as to cover the upper surface of the non-fluorine organic resin layer 151. In the amorphous perfluoro resin layer forming step (S152), after applying the amorphous perfluoro resin layer forming solution on the top surface of the substrate 2, the source electrode 3, the drain electrode 4, and the oxide semiconductor layer 9 by spin coating, Heat treatment was performed. As the amorphous perfluoro resin layer forming solution, “Cytop (registered trademark) solution” manufactured by Asahi Glass Co., Ltd., prepared for the spin coating method was used. The heat treatment was performed using a hot plate, heated at 70 ° C. for 10 minutes, then heated at 120 ° C. for 10 minutes, and finally heated at 200 ° C. for 10 minutes.
 次に、コンタクトホール形成工程(S106)が行われる。コンタクトホール形成工程(S106)では、非フッ素系有機樹脂層151とアモルファスパーフルオロ樹脂層152とを貫通するコンタクトホール111が形成される。コンタクトホール形成工程(S106)では、初めに、コンタクトホール111に対応する箇所に開口部を備えたレジストマスクを、図21に示すアモルファスパーフルオロ樹脂層152の上面に形成させる。そして、ドライエッチング法により、アモルファスパーフルオロ樹脂層152と非フッ素系有機樹脂層151とをエッチングする。エッチングガスには酸素が用いられる。こうして、図22に示すように、コンタクトホール111を形成させることができる。 Next, a contact hole forming step (S106) is performed. In the contact hole forming step (S106), a contact hole 111 penetrating the non-fluorine organic resin layer 151 and the amorphous perfluororesin layer 152 is formed. In the contact hole forming step (S106), first, a resist mask having openings at locations corresponding to the contact holes 111 is formed on the upper surface of the amorphous perfluororesin layer 152 shown in FIG. Then, the amorphous perfluoro resin layer 152 and the non-fluorine organic resin layer 151 are etched by a dry etching method. Oxygen is used as the etching gas. In this way, the contact hole 111 can be formed as shown in FIG.
 次に、画素電極形成工程が行われる(S107)。画素電極形成工程(S107)では、アモルファスパーフルオロ樹脂層152の上面に、ITO薄膜が形成される。その後、パターニングして不要部分が除去されることにより、ITOからなる画素電極112が形成される。ITO膜の形成は、スパッタリング法により行われる。ITO膜形成後、レジストパターンを形成し、ITO膜をエッチングする。そして、不要となったフォトレジストが、アセトン洗浄により除去される。こうして、図14に示すように、アモルファスパーフルオロ樹脂層152の上面に画素電極112を形成させることができる。 Next, a pixel electrode forming step is performed (S107). In the pixel electrode formation step (S107), an ITO thin film is formed on the upper surface of the amorphous perfluoro resin layer 152. Thereafter, unnecessary portions are removed by patterning to form pixel electrodes 112 made of ITO. The ITO film is formed by a sputtering method. After forming the ITO film, a resist pattern is formed and the ITO film is etched. Then, the unnecessary photoresist is removed by acetone cleaning. Thus, the pixel electrode 112 can be formed on the upper surface of the amorphous perfluororesin layer 152 as shown in FIG.
 以上詳述した、第三実施形態の酸化物薄膜トランジスタ100の製造方法によれば、酸化物半導体層109の上面に積層する層間絶縁層105を、酸化物半導体層109を覆う非フッ素系有機樹脂層151と、非フッ素系有機樹脂層151を覆うアモルファスパーフルオロ樹脂層152とから構成した。アモルファスパーフルオロ樹脂層152を層間絶縁層105の構成要素とすることにより、層間絶縁層105の形成後に熱処理を行った場合の酸化物薄膜トランジスタ100の特性変化を抑制できる。 According to the manufacturing method of the oxide thin film transistor 100 of the third embodiment described in detail above, the interlayer insulating layer 105 laminated on the upper surface of the oxide semiconductor layer 109 is a non-fluorine organic resin layer covering the oxide semiconductor layer 109. 151 and an amorphous perfluororesin layer 152 covering the non-fluorine organic resin layer 151. By using the amorphous perfluoro resin layer 152 as a constituent element of the interlayer insulating layer 105, a change in characteristics of the oxide thin film transistor 100 when heat treatment is performed after the formation of the interlayer insulating layer 105 can be suppressed.
 また、非フッ素系有機樹脂層151、およびアモルファスパーフルオロ樹脂層152を、塗布法により、低温形成している。そのため、大がかりな装置を用いることなく、簡単、且つ安価に、層間絶縁層105を形成することが可能である。しかも、層間絶縁層105の下面側に形成された酸化物半導体層109にダメージを与えることなく、層間絶縁層105を形成させることが可能である。さらに、耐熱性の低い可撓性プラスチック基板を基板として採用することができる。その場合には、可撓性を備える酸化物薄膜トランジスタの製造が可能となる。 Further, the non-fluorine organic resin layer 151 and the amorphous perfluoro resin layer 152 are formed at a low temperature by a coating method. Therefore, the interlayer insulating layer 105 can be formed easily and inexpensively without using a large-scale apparatus. In addition, the interlayer insulating layer 105 can be formed without damaging the oxide semiconductor layer 109 formed on the lower surface side of the interlayer insulating layer 105. Furthermore, a flexible plastic substrate having low heat resistance can be employed as the substrate. In that case, a flexible oxide thin film transistor can be manufactured.
 また、酸化物半導体層109の上面には、非フッ素系有機樹脂層151のみが接触する構成とし、非フッ素系有機樹脂層151の材質として、酸化物半導体に対する反応性の低いポリビニルフェノール(PVP)を採用した。よって、層間絶縁層105の形成過程において、酸化物半導体層109はダメージを受けることがない。そのため、酸化物半導体層109の半導体特性を維持することができ、良好な特性を有する酸化物薄膜トランジスタ100を形成することができる。 Further, only the non-fluorine organic resin layer 151 is in contact with the upper surface of the oxide semiconductor layer 109, and the material of the non-fluorine organic resin layer 151 is polyvinyl phenol (PVP) having low reactivity with respect to the oxide semiconductor. It was adopted. Therefore, the oxide semiconductor layer 109 is not damaged in the formation process of the interlayer insulating layer 105. Therefore, the semiconductor characteristics of the oxide semiconductor layer 109 can be maintained, and the oxide thin film transistor 100 having favorable characteristics can be formed.
 また、ソース電極103とドレイン電極104とが形成された後で、酸化物半導体層109が形成されている。そのため、ソース電極103やドレイン電極104が形成される際に、酸化物半導体層109がダメージを受けることがない。 Further, after the source electrode 103 and the drain electrode 104 are formed, the oxide semiconductor layer 109 is formed. Therefore, the oxide semiconductor layer 109 is not damaged when the source electrode 103 and the drain electrode 104 are formed.
 その上、酸化物半導体層109の材料として、InGaZnOを採用しているため、半導体層形成工程(S104)における製膜は、室温で行うことが可能である。そのため、可撓性を有するプラスチック基板を基板として採用することができる。その場合には、可撓性を備える酸化物薄膜トランジスタの製造が可能となる。しかも、高い電界効果移動度を持つ酸化物薄膜トランジスタを実現できる。 In addition, since InGaZnO 4 is used as a material for the oxide semiconductor layer 109, film formation in the semiconductor layer formation step (S104) can be performed at room temperature. Therefore, a flexible plastic substrate can be used as the substrate. In that case, a flexible oxide thin film transistor can be manufactured. In addition, an oxide thin film transistor having high field effect mobility can be realized.
 尚、本開示は、詳述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、酸化物薄膜トランジスタを構成する基板、ゲート電極、ソース電極、ドレイン電極、ゲート絶縁層、酸化物半導体層の材料、大きさ、形状は実施形態の場合に限定されず、本開示の要旨を逸脱しない範囲内において適宜変更可能である。 Note that the present disclosure is not limited to the embodiments described in detail, and various modifications may be made without departing from the scope of the present disclosure. For example, the materials, sizes, and shapes of the substrate, the gate electrode, the source electrode, the drain electrode, the gate insulating layer, and the oxide semiconductor layer included in the oxide thin film transistor are not limited to those in the embodiment and depart from the gist of the present disclosure. It can be appropriately changed within the range not to be.
 また、第一実施形態~第三実施形態では、ソース電極とドレイン電極とを形成させた後に酸化物半導体層を形成させた。しかし、酸化物半導体層を形成させた後にソース電極とドレイン電極とを形成させてもよい。この場合には、酸化物半導体層の形成過程で、ソース電極、ドレイン電極が酸化されることがないので、ソース電極とドレイン電極との材料を選択する際の選択の幅を広げることができる。 In the first to third embodiments, the oxide semiconductor layer is formed after the source electrode and the drain electrode are formed. However, the source electrode and the drain electrode may be formed after the oxide semiconductor layer is formed. In this case, since the source electrode and the drain electrode are not oxidized in the formation process of the oxide semiconductor layer, the selection range when selecting the material of the source electrode and the drain electrode can be widened.
 また、第三実施形態における層間絶縁層形成工程(S105)では、まず、酸化物半導体層109の上面に非フッ素系有機樹脂層151が形成され、その上面にアモルファスパーフルオロ樹脂層152を形成した。しかし、第二実施形態のゲート絶縁層形成工程(S30)と同様に、まず、酸化物半導体層109の上面にアモルファスパーフルオロ樹脂層152を形成し、その上面に非フッ素系有機樹脂層151を形成してもよい。この場合には、硬度の低いアモルファスパーフルオロ樹脂層152が、非フッ素系有機樹脂層151に覆われて外部に露出しない。また、非フッ素系有機樹脂層151の材質として、高い硬度を有する材質を選択すれば、層間絶縁層105の物理的耐性を向上させることができる。これにより、層間絶縁層105がダメージを受けることによる、酸化物薄膜トランジスタ100の特性の悪化を抑制できる。特に、層間絶縁層105を形成した後に行われる画素電極形成工程(S107)における層間絶縁層105へのダメージを軽減させ、良好な特性を有する酸化物薄膜トランジスタ100を得ることができる。 In the interlayer insulating layer forming step (S105) in the third embodiment, first, the non-fluorine organic resin layer 151 is formed on the top surface of the oxide semiconductor layer 109, and the amorphous perfluororesin layer 152 is formed on the top surface. . However, similarly to the gate insulating layer forming step (S30) of the second embodiment, first, the amorphous perfluoro resin layer 152 is formed on the upper surface of the oxide semiconductor layer 109, and the non-fluorine-based organic resin layer 151 is formed on the upper surface. You may form. In this case, the amorphous perfluoro resin layer 152 having low hardness is covered with the non-fluorine organic resin layer 151 and is not exposed to the outside. If a material having high hardness is selected as the material of the non-fluorine organic resin layer 151, the physical resistance of the interlayer insulating layer 105 can be improved. Thus, deterioration of the characteristics of the oxide thin film transistor 100 due to damage to the interlayer insulating layer 105 can be suppressed. In particular, damage to the interlayer insulating layer 105 in the pixel electrode formation step (S107) performed after forming the interlayer insulating layer 105 can be reduced, and the oxide thin film transistor 100 having favorable characteristics can be obtained.
 本開示の酸化物薄膜トランジスタ及び酸化物薄膜トランジスタの製造方法は、所謂ボトムゲート型またはトップゲート型の酸化物薄膜トランジスタ及びその製造方法に適用可能である。 The oxide thin film transistor and the manufacturing method of the oxide thin film transistor of the present disclosure can be applied to a so-called bottom gate type or top gate type oxide thin film transistor and a manufacturing method thereof.

Claims (13)

  1.  第1の絶縁層と、
     前記第1の絶縁層上面において、チャネル部を形成する酸化物半導体層と、
     前記チャネル部を介して互いに離間して設けられているソース電極及びドレイン電極と、
     前記酸化物半導体層の上面に設けられた第2の絶縁層とを備え、
     前記第2の絶縁層は、非フッ素系有機高分子からなる非フッ素系有機高分子層と、アモルファスパーフルオロ樹脂からなるアモルファスパーフルオロ樹脂層とを備えたことを特徴とする酸化物薄膜トランジスタ。
    A first insulating layer;
    An oxide semiconductor layer forming a channel portion on the top surface of the first insulating layer;
    A source electrode and a drain electrode provided apart from each other through the channel portion;
    A second insulating layer provided on an upper surface of the oxide semiconductor layer,
    The oxide thin film transistor, wherein the second insulating layer includes a non-fluorine organic polymer layer made of a non-fluorine organic polymer and an amorphous perfluoro resin layer made of an amorphous perfluoro resin.
  2.  前記非フッ素系有機高分子層は、ポリビニルフェノールを含有することを特徴とする請求項1に記載の酸化物薄膜トランジスタ。 2. The oxide thin film transistor according to claim 1, wherein the non-fluorine organic polymer layer contains polyvinylphenol.
  3.  前記酸化物半導体層は、In、Ga、Znの少なくともいずれか1種の元素を含む酸化物により形成されていることを特徴とする請求項1又は2に記載の酸化物薄膜トランジスタ。 3. The oxide thin film transistor according to claim 1, wherein the oxide semiconductor layer is formed of an oxide containing at least one element of In, Ga, and Zn.
  4.  前記第2の絶縁層は、
     前記酸化物半導体層の上面に設けられ、前記非フッ素系有機高分子からなる前記非フッ素系有機高分子層と、
     前記非フッ素系有機高分子層の上面に設けられ、前記アモルファスパーフルオロ樹脂からなる前記アモルファスパーフルオロ樹脂層とを備えたことを特徴とする請求項1乃至3のいずれかに記載の酸化物薄膜トランジスタ。
    The second insulating layer is
    The non-fluorine organic polymer layer comprising the non-fluorine organic polymer provided on the oxide semiconductor layer;
    4. The oxide thin film transistor according to claim 1, further comprising the amorphous perfluororesin layer made of the amorphous perfluororesin and provided on an upper surface of the non-fluorine organic polymer layer. 5. .
  5.  前記第2の絶縁層は、
     前記酸化物半導体層の上面に設けられ、前記アモルファスパーフルオロ樹脂からなる前記アモルファスパーフルオロ樹脂層と、
     前記アモルファスパーフルオロ樹脂層の上面に設けられ、前記非フッ素系有機高分子からなる前記非フッ素系有機高分子層とを備えたことを特徴とする請求項1乃至3のいずれかに記載の酸化物薄膜トランジスタ。
    The second insulating layer is
    The amorphous perfluoro resin layer provided on the top surface of the oxide semiconductor layer and made of the amorphous perfluoro resin;
    The oxidation according to any one of claims 1 to 3, further comprising: the non-fluorine organic polymer layer made of the non-fluorine organic polymer provided on an upper surface of the amorphous perfluoro resin layer. Thin film transistor.
  6.  前記酸化物薄膜トランジスタはトップゲート型であって、
     前記第1の絶縁層は基板であり、前記第2の絶縁層の上面には、ゲート電極が設けられることを特徴とする請求項1乃至5のいずれかに記載の酸化物薄膜トランジスタ。
    The oxide thin film transistor is a top gate type,
    6. The oxide thin film transistor according to claim 1, wherein the first insulating layer is a substrate, and a gate electrode is provided on an upper surface of the second insulating layer.
  7.  前記酸化物薄膜トランジスタはボトムゲート型であって、
     前記第1の絶縁層はゲート絶縁層であり、前記第2の絶縁層の上面には、画素電極が設けられることを特徴とする請求項1乃至5のいずれかに記載の酸化物薄膜トランジスタ。
    The oxide thin film transistor is a bottom gate type,
    The oxide thin film transistor according to claim 1, wherein the first insulating layer is a gate insulating layer, and a pixel electrode is provided on an upper surface of the second insulating layer.
  8.  第1の絶縁層の上面に酸化物半導体層を形成させる酸化物半導体層形成工程と、
     前記酸化物半導体層により形成されるチャネル部を介して互いに離間するソース電極及びドレイン電極を形成させるソース・ドレイン電極形成工程と、
     前記酸化物半導体層の上面に第2の絶縁層を形成させる第2絶縁層形成工程と
     を備え、
     前記第2絶縁層形成工程は、
     非フッ素系有機高分子からなる非フッ素系有機高分子層を形成させる非フッ素系有機高分子層形成工程と、
     アモルファスパーフルオロ樹脂からなるアモルファスパーフルオロ樹脂層を形成させるアモルファスパーフルオロ樹脂層形成工程とを備えたことを特徴とする酸化物薄膜トランジスタの製造方法。
    An oxide semiconductor layer forming step of forming an oxide semiconductor layer on the upper surface of the first insulating layer;
    A source / drain electrode forming step of forming a source electrode and a drain electrode separated from each other through a channel portion formed by the oxide semiconductor layer;
    A second insulating layer forming step of forming a second insulating layer on the upper surface of the oxide semiconductor layer,
    The second insulating layer forming step includes
    A non-fluorine organic polymer layer forming step of forming a non-fluorine organic polymer layer comprising a non-fluorine organic polymer;
    An oxide thin film transistor manufacturing method, comprising: an amorphous perfluoro resin layer forming step of forming an amorphous perfluoro resin layer made of an amorphous perfluoro resin.
  9.  前記非フッ素系有機高分子層形成工程では、ポリビニルフェノールを含有する溶液を塗布することにより前記非フッ素系有機高分子層を形成させることを特徴とする請求項8に記載の酸化物薄膜トランジスタの製造方法。 9. The oxide thin film transistor manufacturing method according to claim 8, wherein in the non-fluorine organic polymer layer forming step, the non-fluorine organic polymer layer is formed by applying a solution containing polyvinylphenol. Method.
  10.  前記第2絶縁層形成工程は、
     前記酸化物半導体層の上面に、前記非フッ素系有機高分子からなる前記非フッ素系有機高分子層を形成させる前記非フッ素系有機高分子層形成工程と、
     前記非フッ素系有機高分子層の上面に、前記アモルファスパーフルオロ樹脂からなる前記アモルファスパーフルオロ樹脂層を形成させる前記アモルファスパーフルオロ樹脂層形成工程とを備えたことを特徴とする請求項8又は9に記載の酸化物薄膜トランジスタの製造方法。
    The second insulating layer forming step includes
    The non-fluorine organic polymer layer forming step of forming the non-fluorine organic polymer layer made of the non-fluorine organic polymer on the top surface of the oxide semiconductor layer;
    The amorphous perfluoro resin layer forming step of forming the amorphous perfluoro resin layer made of the amorphous perfluoro resin on an upper surface of the non-fluorine organic polymer layer. The manufacturing method of the oxide thin-film transistor of description.
  11.  前記第2絶縁層形成工程は、
     前記酸化物半導体層の上面に、前記アモルファスパーフルオロ樹脂からなる前記アモルファスパーフルオロ樹脂層を形成させる前記アモルファスパーフルオロ樹脂層形成工程と、
     前記アモルファスパーフルオロ樹脂層の上面に、前記非フッ素系有機高分子からなる前記非フッ素系有機高分子層を形成させる前記非フッ素系有機高分子層形成工程とを備えたことを特徴とする請求項8又は9に記載の酸化物薄膜トランジスタの製造方法。
    The second insulating layer forming step includes
    The amorphous perfluoro resin layer forming step of forming the amorphous perfluoro resin layer made of the amorphous perfluoro resin on the upper surface of the oxide semiconductor layer;
    The non-fluorine organic polymer layer forming step of forming the non-fluorine organic polymer layer made of the non-fluorine organic polymer on an upper surface of the amorphous perfluoro resin layer. Item 10. A method for producing an oxide thin film transistor according to Item 8 or 9.
  12.  前記酸化物薄膜トランジスタはトップゲート型であって、
     前記第1の絶縁層は基板であり、
     前記第2の絶縁層の上面にゲート電極を形成させるゲート電極形成工程を、さらに備えることを特徴とする請求項8乃至11のいずれかに記載の酸化物薄膜トランジスタの製造方法。
    The oxide thin film transistor is a top gate type,
    The first insulating layer is a substrate;
    12. The method of manufacturing an oxide thin film transistor according to claim 8, further comprising a gate electrode forming step of forming a gate electrode on the upper surface of the second insulating layer.
  13.  前記酸化物薄膜トランジスタはボトムゲート型であって、
     基板上にゲート電極を形成させるゲート電極形成工程と、
     前記ゲート電極上面に、前記第1の絶縁層を形成させる第1絶縁層形成工程と、
     前記第2の絶縁層の上面に、画素電極を形成させる画素電極形成工程とを
     さらに備えることを特徴とする請求項8乃至11のいずれかに記載の酸化物薄膜トランジスタの製造方法。
    The oxide thin film transistor is a bottom gate type,
    A gate electrode forming step of forming a gate electrode on the substrate;
    A first insulating layer forming step of forming the first insulating layer on the gate electrode;
    The method for manufacturing an oxide thin film transistor according to claim 8, further comprising a pixel electrode forming step of forming a pixel electrode on the upper surface of the second insulating layer.
PCT/JP2009/056593 2008-09-03 2009-03-31 Oxide thin film transistor and method for manufacturing the same WO2010026798A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008225510A JP2010062276A (en) 2008-09-03 2008-09-03 Oxide thin-film transistor and method of manufacturing the same
JP2008-225510 2008-09-03

Publications (1)

Publication Number Publication Date
WO2010026798A1 true WO2010026798A1 (en) 2010-03-11

Family

ID=41796973

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056593 WO2010026798A1 (en) 2008-09-03 2009-03-31 Oxide thin film transistor and method for manufacturing the same

Country Status (2)

Country Link
JP (1) JP2010062276A (en)
WO (1) WO2010026798A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461007B2 (en) 2010-04-23 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8546225B2 (en) 2010-04-23 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8865534B2 (en) 2010-04-23 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2015201656A (en) * 2010-08-27 2015-11-12 株式会社半導体エネルギー研究所 Optical sensor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101975741B1 (en) * 2009-11-13 2019-05-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for packaging target material and method for mounting target
US9190522B2 (en) 2010-04-02 2015-11-17 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor
US9147768B2 (en) 2010-04-02 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device having an oxide semiconductor and a metal oxide film
KR20130055607A (en) 2010-04-23 2013-05-28 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Manufacturing method of semiconductor device
KR101754380B1 (en) 2010-04-23 2017-07-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing semiconductor device
JP2012256819A (en) * 2010-09-08 2012-12-27 Semiconductor Energy Lab Co Ltd Semiconductor device
US8871565B2 (en) * 2010-09-13 2014-10-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2014517524A (en) * 2011-06-01 2014-07-17 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフツング Hybrid bipolar TFT
JP5814712B2 (en) * 2011-09-15 2015-11-17 日本放送協会 Thin film device manufacturing method
US8748240B2 (en) 2011-12-22 2014-06-10 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2014082388A (en) 2012-10-17 2014-05-08 Semiconductor Energy Lab Co Ltd Semiconductor device
JP6059501B2 (en) 2012-10-17 2017-01-11 株式会社半導体エネルギー研究所 Method for manufacturing semiconductor device
JP6021586B2 (en) 2012-10-17 2016-11-09 株式会社半導体エネルギー研究所 Semiconductor device
KR102089347B1 (en) * 2013-10-08 2020-03-16 경북대학교 산학협력단 Non-volatile memory device and manufacturing method of the same
JP6468770B2 (en) * 2014-09-17 2019-02-13 公立大学法人大阪府立大学 Thin film transistor and manufacturing method thereof

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101979A (en) * 1977-02-17 1978-09-05 Fujitsu Ltd Semiconductor device
JPH1041519A (en) * 1996-03-26 1998-02-13 Lg Electron Inc Liquid crystal display device and its manufacture
JP2005513788A (en) * 2001-12-19 2005-05-12 アベシア・リミテッド Organic field effect transistor with organic dielectric
JP2007036259A (en) * 2005-07-27 2007-02-08 Samsung Electronics Co Ltd Thin film transistor substrate and method of making same
JP2007115807A (en) * 2005-10-19 2007-05-10 Toppan Printing Co Ltd Transistor
JP2007258218A (en) * 2006-03-20 2007-10-04 Toppan Printing Co Ltd Organic transistor, and its manufacturing method
JP2007311377A (en) * 2006-05-16 2007-11-29 Sony Corp Manufacturing method of thin-film transistor, thin-film transistor, and display
JP2007318025A (en) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd Organic semiconductor element and manufacturing method thereof element
JP2007318024A (en) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd Organic semiconductor element and manufacturing method thereof
JP2008065225A (en) * 2006-09-11 2008-03-21 Toppan Printing Co Ltd Thin-film transistor array, image display device using the same, and method for driving the image display device
JP2008072012A (en) * 2006-09-15 2008-03-27 Toppan Printing Co Ltd Thin-film transistor and manufacturing method thereof
JP2008098637A (en) * 2006-10-12 2008-04-24 Xerox Corp Thin-film transistor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53101979A (en) * 1977-02-17 1978-09-05 Fujitsu Ltd Semiconductor device
JPH1041519A (en) * 1996-03-26 1998-02-13 Lg Electron Inc Liquid crystal display device and its manufacture
JP2005513788A (en) * 2001-12-19 2005-05-12 アベシア・リミテッド Organic field effect transistor with organic dielectric
JP2007036259A (en) * 2005-07-27 2007-02-08 Samsung Electronics Co Ltd Thin film transistor substrate and method of making same
JP2007115807A (en) * 2005-10-19 2007-05-10 Toppan Printing Co Ltd Transistor
JP2007258218A (en) * 2006-03-20 2007-10-04 Toppan Printing Co Ltd Organic transistor, and its manufacturing method
JP2007311377A (en) * 2006-05-16 2007-11-29 Sony Corp Manufacturing method of thin-film transistor, thin-film transistor, and display
JP2007318025A (en) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd Organic semiconductor element and manufacturing method thereof element
JP2007318024A (en) * 2006-05-29 2007-12-06 Dainippon Printing Co Ltd Organic semiconductor element and manufacturing method thereof
JP2008065225A (en) * 2006-09-11 2008-03-21 Toppan Printing Co Ltd Thin-film transistor array, image display device using the same, and method for driving the image display device
JP2008072012A (en) * 2006-09-15 2008-03-27 Toppan Printing Co Ltd Thin-film transistor and manufacturing method thereof
JP2008098637A (en) * 2006-10-12 2008-04-24 Xerox Corp Thin-film transistor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8461007B2 (en) 2010-04-23 2013-06-11 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8546225B2 (en) 2010-04-23 2013-10-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US8865534B2 (en) 2010-04-23 2014-10-21 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9147754B2 (en) 2010-04-23 2015-09-29 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9202877B2 (en) 2010-04-23 2015-12-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9812533B2 (en) 2010-04-23 2017-11-07 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2015201656A (en) * 2010-08-27 2015-11-12 株式会社半導体エネルギー研究所 Optical sensor

Also Published As

Publication number Publication date
JP2010062276A (en) 2010-03-18

Similar Documents

Publication Publication Date Title
WO2010026798A1 (en) Oxide thin film transistor and method for manufacturing the same
JP4550030B2 (en) Organic thin film transistor and flat panel display device including the same
JP4454536B2 (en) Organic thin film transistor and manufacturing method thereof
US7727797B2 (en) Method for manufacturing organic thin film transistor substrate
JP4721972B2 (en) Thin film transistor substrate and method for manufacturing thin film transistor substrate
WO2009150886A1 (en) Oxide thin film transistor and method for manufacturing the same
KR20070015656A (en) Flat panel display and manufacturing method of flat panel display
US10312375B2 (en) Thin-film transistor, method for producing thin-film transistor and image display apparatus using thin-film transistor
US9093327B2 (en) Display panel device and method of manufacturing display panel device
US8916863B2 (en) Organic thin-film transistor and method of manufacturing organic thin-film transistor
JP5512144B2 (en) Thin film transistor and manufacturing method thereof
JP6887806B2 (en) Thin film transistor and its manufacturing method
WO2010092891A1 (en) Organic semiconductor element and method for manufacturing same
JP2011066269A (en) Oxide thin film transistor, method of manufacturing the same, and display using oxide thin film transistor
JP7163772B2 (en) Organic thin film transistor, manufacturing method thereof, and image display device
JP2010258126A (en) Thin-film transistor and method for manufacturing the same
JP2006253682A (en) Organic thin film transistor display panel and manufacturing method thereof
JP2011049192A (en) Oxide thin-film transistor substrate, method of manufacturing the same, and display device using oxide thin-film transistor substrate
WO2017208923A1 (en) Organic thin film transistor and image display device
JP2013004849A (en) Thin film transistor manufacturing method and roll thin film transistor
JP2013038194A (en) Organic transistor and manufacturing method thereof
JP2015185789A (en) Thin film transistor and manufacturing method of the same
JP2020031100A (en) Organic thin film transistor, manufacturing method therefor, and electronic device
KR101051075B1 (en) Organic thin film transistor array and manufacturing method thereof
WO2019078267A1 (en) Organic thin-film transistor, manufacturing method therefor, active matrix array and image display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09811327

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09811327

Country of ref document: EP

Kind code of ref document: A1