WO2010092891A1 - Organic semiconductor element and method for manufacturing same - Google Patents

Organic semiconductor element and method for manufacturing same Download PDF

Info

Publication number
WO2010092891A1
WO2010092891A1 PCT/JP2010/051519 JP2010051519W WO2010092891A1 WO 2010092891 A1 WO2010092891 A1 WO 2010092891A1 JP 2010051519 W JP2010051519 W JP 2010051519W WO 2010092891 A1 WO2010092891 A1 WO 2010092891A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
organic semiconductor
forming
glass coating
electrode
Prior art date
Application number
PCT/JP2010/051519
Other languages
French (fr)
Japanese (ja)
Inventor
栗田雅章
板垣元士
Original Assignee
ブラザー工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ブラザー工業株式会社 filed Critical ブラザー工業株式会社
Publication of WO2010092891A1 publication Critical patent/WO2010092891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/80Constructional details
    • H10K10/88Passivation; Containers; Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having a potential-jump barrier or a surface barrier
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/466Lateral bottom-gate IGFETs comprising only a single gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/123Connection of the pixel electrodes to the thin film transistors [TFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]

Definitions

  • the present invention relates to an organic semiconductor element and a method for manufacturing the same, and in particular, an organic semiconductor element in which a protective film is formed without damaging the organic semiconductor layer and without deteriorating device characteristics, and a method for manufacturing the same. It is about.
  • inorganic semiconductor materials such as silicon have been used for various semiconductor devices.
  • silicon-based inorganic semiconductor transistors using amorphous silicon or polycrystalline silicon as a semiconductor layer.
  • inorganic semiconductor devices require expensive manufacturing equipment such as vacuum equipment and high-purity materials for their production, there is a problem that the manufacturing cost increases, and heat treatment at high temperatures is required. There are restrictions on the substrates that can be used.
  • a device using an organic semiconductor can be manufactured by a coating method or a dipping method at a relatively low temperature, and can easily be enlarged at a low cost. Further, it can be formed on a flexible substrate having no heat resistance such as plastic. It is also stable against mechanical shock. For this reason, in recent years, research and development of organic semiconductor devices such as TFTs have been actively conducted assuming application to next-generation display devices.
  • the organic semiconductor layer deteriorates due to oxygen and moisture entering from the outside, and the semiconductor performance deteriorates. Therefore, in order to manufacture a highly reliable organic semiconductor device, it is necessary to form a structure that completely blocks the organic semiconductor layer from the outside by a protective film (passivation film) or the like.
  • an inorganic protective film such as a silicon nitride film or a silicon oxide film is generally formed as a protective film by a plasma CVD method or a sputtering method.
  • a plasma CVD method or a sputtering method.
  • damage due to plasma is likely to occur in the organic semiconductor layer, and when a protective film is formed by CVD or sputtering, damage due to plasma occurs in the organic semiconductor layer, degrading device characteristics. .
  • an organic film such as polyimide is generally applied by a coating method to form a protective layer.
  • an organic protective film to prevent intrusion of oxygen and moisture is inferior to that of the inorganic protective film.
  • Patent Document 1 a first protective film made of polyvinyl alcohol, polyvinylphenol, polymethyl methacrylate, polyimide, or the like is formed on the organic semiconductor layer by a coating method, a printing method, or the like, and the first protective film is covered.
  • a second protective film made of a silicon nitride film or a silicon oxide film by a CVD method or a sputtering method, the performance of preventing the entry of oxygen and moisture without causing damage to the organic semiconductor device Proposals for forming a high protective film have been made.
  • the threshold voltage as a transistor device increases due to the influence of polarity. For this reason, there is also a problem that the transistor characteristics deteriorate.
  • An object of the present invention is to provide an organic semiconductor element on which a protective film is formed without damaging the organic semiconductor layer as described above and without deteriorating device characteristics, and a method for manufacturing the same.
  • an organic semiconductor element includes a fluororesin layer, a water-soluble resin layer, and a glass coating layer on an organic semiconductor layer formed on an insulating layer. And are sequentially stacked.
  • An organic semiconductor element includes a gate electrode provided on a substrate, a gate insulating layer that is an insulating layer provided so as to cover the gate electrode, and the gate insulation.
  • An organic semiconductor element comprising: an organic semiconductor layer provided on an upper surface of a layer; and a source electrode and a drain electrode provided to be in contact with the organic semiconductor layer and spaced apart from each other.
  • a fluorine resin layer provided so as to cover each upper surface of the source electrode and the drain electrode, a water-soluble resin layer provided on the fluorine resin layer, and a glass coating layer provided on the water-soluble resin layer
  • a pixel electrode provided on the glass coating layer.
  • An organic semiconductor element is provided so as to be in contact with a substrate which is an insulating layer having an insulating function, an organic semiconductor layer provided on the substrate, and the organic semiconductor layer. And a source electrode and a drain electrode that are spaced apart from each other, a fluororesin layer provided so as to cover the upper surfaces of the organic semiconductor layer, the source electrode, and the drain electrode, and the fluororesin layer.
  • the water-soluble resin layer, the first glass coating layer provided on the water-soluble resin layer, the fluororesin layer, the water-soluble resin layer, and the first glass coating layer are laminated.
  • a gate electrode provided on the gate insulating layer facing the organic semiconductor layer, and provided to cover each upper surface of the first glass coating layer and the gate electrode.
  • a second glass coating layer characterized in that it is constituted by a pixel electrode provided on the second glass coating layer.
  • a method for manufacturing an organic semiconductor device comprising: a gate electrode forming step for forming a gate electrode on a substrate; and a gate insulating layer forming step for forming a gate insulating layer so as to cover the gate electrode.
  • an organic semiconductor layer forming step for forming an organic semiconductor layer on the gate insulating layer, and a source for forming a source electrode and a drain electrode provided in contact with the organic semiconductor layer and spaced apart from each other
  • a drain electrode forming step a fluororesin layer forming step of forming a fluororesin layer so as to cover each upper surface of the organic semiconductor layer, the source electrode and the drain electrode, and a hydrophilization treatment on the exposed surface of the fluororesin layer Fluororesin layer surface hydrophilization treatment step to be applied and water-soluble resin layer to form a water-soluble resin layer on the fluororesin layer whose exposed surface has been subjected to hydrophilization treatment
  • an organic semiconductor element manufacturing method comprising: an organic semiconductor layer forming step for forming an organic semiconductor layer on a substrate; A source / drain electrode forming step for forming a source electrode and a drain electrode spaced apart from each other, and a fluororesin layer for forming a fluororesin layer so as to cover each upper surface of the organic semiconductor layer, the source electrode, and the drain electrode Forming a hydrophilic resin layer on the exposed surface of the fluororesin layer, and forming a water-soluble resin layer on the top surface of the fluororesin layer on which the exposed surface has been hydrophilized
  • the organic semiconductor element of the invention according to claim 1 is a device in which a fluororesin layer, a water-soluble resin layer, and a glass coating layer are sequentially laminated on an organic semiconductor layer without damaging the organic semiconductor layer. An organic semiconductor element having excellent characteristics can be obtained.
  • the protective film can be formed without damaging the organic semiconductor layer by forming the fluororesin layer directly on the organic semiconductor layer. Further, by forming the glass coating layer, it is possible to form a protective film that is not damaged by the photoresist when the through hole is formed. Further, by forming the glass coating layer, the pixel electrode can be easily formed as compared with the case where the pixel electrode is formed on the water-soluble resin layer. Moreover, the damage to the organic-semiconductor layer at the time of glass coating layer formation can be reduced by forming a water-soluble resin layer in the middle of a fluororesin layer and a glass coating layer. As described above, it is possible to obtain an organic semiconductor element with little damage during formation, excellent device characteristics, and high workability.
  • a gate insulating laminate can be formed without damaging the organic semiconductor layer.
  • the pixel electrode can be easily formed as compared with the case where the pixel electrode is formed on the water-soluble resin layer.
  • the damage to the organic-semiconductor layer at the time of glass coating layer formation can be reduced by forming a water-soluble resin layer in the middle of a fluororesin layer and a 1st glass coating layer.
  • the second glass coating layer it is possible to form a protective film that is not damaged by the photoresist when the through hole is formed. As described above, it is possible to obtain an organic semiconductor element with little damage during formation, excellent device characteristics, and high workability.
  • the method for producing an organic semiconductor element of the invention according to claim 4 makes it possible to produce an organic semiconductor element having little process damage, excellent device characteristics, and high processability.
  • the method for producing an organic semiconductor element of the invention according to claim 5 makes it possible to produce an organic semiconductor element with little damage during formation, excellent device characteristics, and high workability.
  • FIG. 6 is a longitudinal sectional view of an organic semiconductor element 1a of Comparative Example 1.
  • FIG. 6 is a longitudinal sectional view of an organic semiconductor element 1b of Comparative Example 2.
  • FIG. It is a longitudinal cross-sectional view of the organic-semiconductor element 1c of the comparative example 3.
  • FIG. 3 is a voltage-current characteristic diagram of the organic semiconductor element 1 of the first embodiment. 6 is a voltage-current characteristic diagram of an organic semiconductor element 1a of Comparative Example 1.
  • FIG. 3 is a voltage-current characteristic diagram of the organic semiconductor element 1 of the first embodiment.
  • FIG. 6 is a voltage-current characteristic diagram of an organic semiconductor element 1b of Comparative Example 2.
  • FIG. 10 is a voltage-current characteristic diagram of an organic semiconductor element 1c of Comparative Example 3.
  • FIG. It is sectional drawing of the organic-semiconductor element 100 of 2nd Embodiment. It is a flowchart which shows the manufacturing process of the organic-semiconductor element 100 of 2nd Embodiment.
  • the organic semiconductor device 1 of the first embodiment is a so-called “bottom gate type” organic semiconductor device in which the gate electrode 3 is located below the source electrode 7 and the drain electrode 8.
  • the source electrode 7, the drain electrode 8, and the protective film 10 for the organic semiconductor layer 6 have a three-layer structure of a fluororesin layer 11, a water-soluble resin layer 12, and a glass coating layer 13. It has a special feature.
  • the lower side of the drawing (substrate 2 side) is the lower side
  • the upper side of the drawing is the upper side.
  • the lower side of the drawing is described as the lower side
  • the upper side of the drawing is described as the upper side.
  • An organic semiconductor element 1 shown in FIG. 1 has a plate-like substrate 2.
  • a gate electrode 3 is provided on the upper surface of the substrate 2.
  • a gate insulating layer 4 is laminated on the upper surface of the gate electrode 3 and the upper surface of the substrate 2 on which the gate electrode 3 is not provided.
  • a source electrode 7 and a drain electrode 8 are provided on the upper surface of the gate insulating layer 4 so as to be separated from each other. This spaced space is opposed to the gate electrode 3 with the gate insulating layer 4 interposed therebetween.
  • An organic semiconductor layer 6 is provided on the upper surface of the gate insulating layer 4 sandwiched between the source electrode 7 and the drain electrode 8 so as to be in contact with the gate electrode 7 and the drain electrode 8.
  • a protective film 10 is provided on the upper surface of the organic semiconductor layer 6, the source electrode 7, the drain electrode 8, and the gate insulating layer 4 where these are not provided.
  • the protective film 10 has a three-layer structure, and a fluororesin layer 11, a water-soluble resin layer 12, and a glass coating layer 13 are laminated in this order from the bottom.
  • a pixel electrode 21 is formed on the upper surface of the protective film 10. The pixel electrode 21 is electrically connected to the source electrode 7 through a contact hole 31.
  • the substrate 2 is a plate-like member having a flat surface.
  • Various materials can be applied as the material of the substrate 2, but when a conductive material is applied, it is necessary to provide an insulating film on the surface of the substrate 2.
  • an insulating material is used as the material of the substrate 2
  • a glass substrate, a silicon substrate, or a plastic substrate is used.
  • plastic substrate is particularly used. Examples of plastic materials include polyethersulfone (PES), polyethylene terephthalate (PET), polyimide (PI), polyethylene naphthalate (PEN), polyetherimide (PEI), polystyrene (PS), and polyvinyl chloride (PVC). ), Polyethylene (PE), polypropylene (PP) and the like.
  • a glass barrier film made of SiO 2 or SiNx is formed on the surface of the substrate 2.
  • a gate electrode 3 is provided on the upper surface of the substrate 2.
  • the material of the gate electrode 3 is a single metal such as Au, Ag, Cu, Pd, Al, Mo, Cr, Ti, Ta, Ni, Pt, W (tungsten), or a composite containing at least one of the metals.
  • a conductive oxide such as indium tin oxide (ITO), and a conductive polymer such as polyethylene dioxythiophene (PEDOT) and polyparaphenylene vinylene (PPV) are applicable.
  • the gate insulating layer is formed of an insulating material.
  • an inorganic insulating material Al 2 O 3 , SiO 2 , SiN, TiO 2, etc. can be applied.
  • an organic insulating material is employed as the insulating material, PI (polyimide), PMMA (polymethyl methacrylate), PVP (polyparavinylphenol), or the like can be applied.
  • the organic semiconductor layer 6 is provided on the upper surface of the gate insulating layer 4 so as to face each other with the gate electrode 3 and the gate insulating layer 4 interposed therebetween.
  • a source electrode 7 and a drain electrode 8 are provided so as to sandwich the organic semiconductor layer 6 therebetween.
  • the source electrode 7 and the drain electrode 8 are spaced apart from each other.
  • the organic semiconductor 6, the source electrode 7 and the drain electrode 8 are provided in contact with each other.
  • Examples of the material of the organic semiconductor layer 6 include acenes such as pentacene, tetracene, and anthracene, phthalocyanines such as copper phthalocyanine, polyalkylthiophenes such as poly (3-hexylthiophene), alkyl oligothiophenes, and the like.
  • the material of the source electrode 7 and the drain electrode 8 includes a single metal such as Au, Ag, Cu, Pd, Al, Mo, Cr, Ti, Ta, Ni, Pt, and W (tungsten), or at least one of the metals.
  • a single metal such as Au, Ag, Cu, Pd, Al, Mo, Cr, Ti, Ta, Ni, Pt, and W (tungsten), or at least one of the metals.
  • the laminated structure of multiple types of metals may be sufficient.
  • the protective film 10 is configured by laminating a lower fluororesin layer 11, a middle water-soluble resin layer 12, and an upper glass coating layer 13.
  • Examples of the material of the fluororesin layer 11 include polytetrafluoroethylene (for example, fluorosurf FG3030: manufactured by Fluoro Technology, Cytop: manufactured by Asahi Glass), 1,1,1,2,3,4,4,5,5,5. -Decafluoropentane (for example, fluorine plastic coat: manufactured by Fine Chemical Japan Co.) fluoroethylene propylene copolymer, perfluoroalkoxy fluorine, ethylene tetrafluoride ethylene and the like.
  • polytetrafluoroethylene for example, fluorosurf FG3030: manufactured by Fluoro Technology, Cytop: manufactured by Asahi Glass
  • -Decafluoropentane for example, fluorine plastic coat: manufactured by Fine Chemical Japan Co.
  • polyvinyl alcohol for example, Poval: manufactured by Kuraray Co., Ltd.
  • polyethylene oxide for example, Alcox: manufactured by Meisei Chemical Co., Ltd.
  • water-soluble polymers such as sodium polyacrylate, ethylene vinyl acetate emulsion, Water-soluble emulsions such as acrylic emulsion, vinyl acetate emulsion, and acrylic styrene emulsion are listed.
  • Examples of the material of the glass coating layer 13 include polysilazane (for example, Aquamica: manufactured by AZ Electronic Materials).
  • a pixel electrode 21 is provided on the upper surface of the protective film 10.
  • the pixel electrode 21 is made of ITO (indium tin oxide).
  • the manufacturing process of the organic semiconductor element 1 includes a gate electrode forming step (S1) for forming the gate electrode 3 on the upper surface of the substrate 2, and gate insulation so as to cover the upper surface of the gate electrode 3 and the substrate 2.
  • the protective film forming step (S5) includes a fluororesin layer forming step (S51) for forming the fluororesin layer 11, and a water soluble resin layer forming step (S52) for forming the water soluble resin layer 12 on the upper surface of the fluororesin layer 11. And a glass coating layer forming step (S53) for forming the glass coating layer 13 on the upper surface of the water-soluble resin layer 12.
  • a fluororesin layer forming step (S51) for forming the fluororesin layer 11
  • a water soluble resin layer forming step (S52) for forming the water soluble resin layer 12 on the upper surface of the fluororesin layer 11.
  • a glass coating layer forming step (S53) for forming the glass coating layer 13 on the upper surface of the water-soluble resin layer 12.
  • the gate electrode forming step of S1 is performed.
  • the gate electrode 3 is formed on the upper surface of the substrate 2.
  • the Cr thin film is formed on the upper surface of the substrate 2 after cleaning the substrate 2 made of glass.
  • the gate electrode 3 was formed by patterning the formed Cr thin film and removing an unnecessary part.
  • the Cr thin film was formed by a sputtering method. At this time, Cr was used as the target, and a DC sputtering apparatus was used as the apparatus.
  • a resist pattern was formed on the upper surface of the formed Cr thin film using a photolithography method, and then the Cr thin film was etched using an etching method. The unnecessary photoresist was removed by washing with acetone.
  • the step S2 of forming a gate insulating layer is performed.
  • a mixed solution obtained by dissolving polyvinyl phenol and melamine formaldehyde in polyethylene glycol monomethyl ether acetate was formed by spin coating so as to cover the upper surface of the substrate 2 provided with the gate electrode 3.
  • annealing treatment was performed in an environment of 180 ° C. for 2 hours.
  • the gate insulating layer 4 composed of polyvinylphenol crosslinked with melamine formaldehyde was formed on the upper surface of the substrate 2 provided with the gate electrode 3.
  • the source / drain electrode forming step of S3 is performed.
  • a Cr laminated thin film was formed on the upper surfaces of the organic semiconductor layer 6 and the gate insulating layer 4.
  • an Au thin film was formed, and finally a thin film (Au / Cr thin film) in which Au and Cr were laminated was formed.
  • a source electrode 7 and a drain electrode 8 are formed that are separated from each other with a portion facing the gate electrode 3 on the upper surface of the gate insulating layer 4 interposed therebetween. did.
  • the Au / Cr thin film was formed by a sputtering method.
  • Au and Cr were respectively used as targets, and a DC sputtering apparatus was used as an apparatus.
  • a resist pattern was formed on the upper surface of the formed Au / Cr thin film using a photolithography method, and then the Au / Cr thin film was etched using an etching method. The unnecessary photoresist was removed by washing with acetone.
  • the organic semiconductor layer forming step of S4 is performed.
  • the organic semiconductor layer 6 was formed in contact with the source electrode 7 and the drain electrode 8 at a position facing the gate electrode 3 on the gate insulating layer 4.
  • triisopropylsilylethynylpentacene was formed by an inkjet method. Thereafter, annealing treatment was performed for 5 minutes in a 120 ° C. environment.
  • the protective film forming step of S5 includes a fluororesin layer forming step (S51), a water-soluble resin layer forming step (S52), and a glass coating layer forming step (S53).
  • a fluorine plastic coat (manufactured by Fine Chemical Japan) was formed by a spin coat method so as to cover the upper surfaces of the source electrode 7, the drain electrode 8, and the organic semiconductor layer 6. Next, annealing was performed for 5 minutes in a 120 ° C. environment. Thus, the fluororesin layer 11 was formed.
  • the water-soluble resin layer forming step of S52 is performed.
  • the surface of the fluororesin layer 11 was hydrophilized by treating the surface of the fluororesin layer 11 with a plasma cleaner (low pressure plasma apparatus “FEMTO” manufactured by diener electronic) for 3 seconds.
  • a 5% by weight aqueous solution of Poval manufactured by Kuraray Co., Ltd.
  • annealing treatment was performed for 5 minutes in 120 degreeC environment.
  • the water-soluble resin layer 12 was formed.
  • the glass coating layer forming step of S53 is performed.
  • aquamica manufactured by AZ Electronic Materials
  • annealing treatment was performed for 5 minutes in 120 degreeC environment. In this way, the glass coating layer 13 was formed.
  • the contact hole forming step of S6 is performed.
  • a contact hole 31 that penetrates the fluororesin layer 11, the water-soluble resin layer 12, and the glass coating layer 13 is formed.
  • a resist mask having an opening at a location corresponding to the contact hole 31 is formed on the upper surface of the glass coating layer 13 by photolithography.
  • a part of the glass coating layer 13 and the water-soluble resin layer 12 is etched using buffered hydrofluoric acid.
  • the photoresist is stripped using acetone.
  • the remainder of the water-soluble resin layer 12 and the fluororesin layer 11 are etched by dry etching with oxygen plasma, using the glass coating layer 13 as a resist.
  • a contact hole 31 is thus formed.
  • the pixel electrode forming step of S7 is performed.
  • the pixel electrode 21 composed of ITO was formed by patterning to remove unnecessary portions.
  • the ITO film was formed by a sputtering method. After the ITO film was formed, a resist pattern was formed, the ITO film was etched, and unnecessary photoresist was removed by washing with acetone.
  • the curve a represents the voltage-current characteristics of the organic semiconductor elements 1, 1a, 1b, and 1c before the formation of the protective films 10, 10a, 10b, and 10c
  • the curve b represents the protective film 10.
  • the voltage-current characteristics of the organic semiconductor elements 1, 1a, 1b and 1c after the formation of 10a, 10b and 10c are shown.
  • the vertical axis represents the drain current value
  • the horizontal axis represents the gate voltage value. When these evaluations were performed, the drain voltage was 30V.
  • the organic semiconductor element 1 of the first embodiment has no change in TFT characteristics due to the formation of the protective film 10 (threshold voltage: 5 V remains unchanged, on / off ratio: 10 6 . Retention).
  • the organic semiconductor element 1a of Comparative Example 1 has a high threshold voltage (5V ⁇ 20V) and a decrease in on / off ratio (10 6 ⁇ 10 3 ). The transistor characteristics are getting worse.
  • the curve b is almost flat as shown in FIGS. This indicates that the organic semiconductor elements 1b and 1c of Comparative Examples 2 to 3 no longer operate as transistors due to the formation of the protective films 10b and 10c.
  • the organic semiconductor element 1 a of Comparative Example 1 has a structure in which the protective resin 10 is missing the fluororesin layer 11.
  • the water-soluble resin layer 12 having polarity directly on the organic semiconductor layer 6 it is presumed that the threshold voltage of the organic semiconductor increases and the on / off ratio decreases.
  • the organic semiconductor elements 1b and 1c of Comparative Examples 2 to 3 having a protective film having a structure without the water-soluble resin layer 12 are affected by the organic solvent used as the solvent when the glass coating layer 13 is formed. It is presumed that the organic semiconductor is damaged, and as a result, it does not operate as a transistor.
  • the protective film 10 is first formed from the fluororesin layer 11 so that the water-soluble resin layer 12 and the glass coating layer 13 are formed on the organic semiconductor layer 6.
  • the pixel electrode 21 can be easily formed as compared with the case where the pixel electrode 21 is formed on the water-soluble resin layer 12,
  • damage to the organic semiconductor layer 6 during the formation of the glass coating layer 13 can be reduced. A semiconductor element can be obtained.
  • the organic semiconductor element 100 of the second embodiment is a so-called “top gate type” organic semiconductor element in which the gate electrode 103 is located above the source electrode 107 and the drain electrode 108.
  • the organic semiconductor device 100 according to the second embodiment is characterized by having a gate insulating laminate 104 constituted by a three-layer structure of a fluororesin layer 110, a water-soluble resin layer 120, and a first glass coating layer 130.
  • An organic semiconductor element 100 shown in FIG. 10 has a plate-like substrate 2.
  • a source electrode 107 and a drain electrode 108 are provided apart from each other on the upper surface of the substrate 2.
  • An organic semiconductor layer 106 is provided on the upper surface of the substrate 2 between the source electrode 107 and the drain electrode 108 so as to be in contact with the source electrode 107 and the drain electrode 108.
  • a gate insulating laminate 104 is provided on the top surfaces of the organic semiconductor layer 106, the source electrode 107, and the drain electrode 108.
  • the gate insulating laminate 104 has a three-layer structure, and is provided by laminating a lower fluororesin layer 110, a middle water-soluble resin layer 120, and an upper first glass coating layer 130 in this order.
  • a gate electrode 103 is provided on the upper surface of the gate insulating laminate 104 facing the organic semiconductor layer 106 with the gate insulating laminate 104 interposed therebetween.
  • a second glass coating layer 140 is provided on the upper surface of the gate insulating laminate 104 where the gate electrode 103 and the gate electrode 103 are not provided.
  • a pixel electrode 121 is formed on the upper surface of the second glass coating layer 140, and the pixel electrode 121 is electrically connected to the source electrode 107 through a contact hole 131.
  • the gate electrode 103, the organic semiconductor layer 106, the source electrode 107, the drain electrode 108, the fluororesin layer 110, the water-soluble resin layer 120, the glass coating layer 130, and the pixel electrode 121 which are components of the organic semiconductor element of the second embodiment.
  • the material is a component of the organic semiconductor element 1 of the first embodiment, which is the gate electrode 3, the organic semiconductor layer 6, the source electrode 7, the drain electrode 8, the fluororesin layer 11, the water-soluble resin layer 12, and the glass coating layer. 13 and the pixel electrode 21, respectively.
  • Examples of the material of the second glass coating layer 140 include polysilazane (for example, Aquamica: manufactured by AZ Electronic Materials), which is the same as the first glass coating layer 130.
  • the manufacturing process of the organic semiconductor device 100 includes a source / drain electrode formation step (S101) in which the source electrode 107 and the drain electrode 108 are formed on the upper surface of the substrate 2 apart from each other, and the source electrode 107 and the drain electrode.
  • the gate insulating layer forming step (S103) includes a fluororesin layer forming step (S131) for forming the fluororesin layer 110, and a water soluble resin layer forming step (S132) for forming the water soluble resin layer 120 on the upper surface of the fluororesin layer 110. ), And a first glass coating layer forming step (S133) for forming the first glass coating layer 130 on the upper surface of the water-soluble resin layer 120.
  • S131 fluororesin layer forming step
  • S132 water soluble resin layer forming step
  • S133 first glass coating layer forming step
  • the source / drain electrode forming step of S101 is performed.
  • the source electrode 107 and the drain electrode 108 are formed apart from each other on the upper surface of the substrate 2.
  • the Au / Cr thin film is formed on the upper surface of the substrate 2 after cleaning the substrate 2 made of glass. Then, by patterning the formed Au / Cr thin film and removing unnecessary portions, the source electrode 107 and the drain electrode 108 were formed. Details are the same as in the source / drain electrode formation step (S4) in the first embodiment, and a description thereof will be omitted.
  • the organic semiconductor layer forming step of S102 is performed. Since this step is the same as the organic semiconductor layer forming step (S3) in the first embodiment, the description thereof is omitted.
  • the gate insulating layer forming step of S103 is performed.
  • This step includes a fluororesin layer forming step (S131), a water-soluble resin layer forming step (S132), and a first glass coating layer forming step (S133).
  • the fluororesin layer forming step (S131), the water-soluble resin layer forming step (S132), and the first glass coating layer forming step (S133) are respectively the fluororesin layer forming step (S51) and the water-soluble resin of the first embodiment. Since it is the same as the layer forming step (S52) and the glass coating layer forming step (S53), description thereof is omitted.
  • the gate electrode forming step of S104 is performed.
  • a Cr thin film was formed on the upper surface of the gate insulating laminate 104.
  • the gate electrode 103 was formed by patterning the formed Cr thin film and removing an unnecessary part. Details are the same as those in the gate electrode formation step (S1) in the first embodiment, and thus the description thereof is omitted.
  • the second glass coating layer forming step of S105 is performed.
  • the second glass coating layer 140 is formed so as to cover the gate electrode 103 and the gate insulating layer 104 of the second embodiment in which the gate electrode 103 is not formed.
  • aquamica manufactured by AZ Electronic Materials
  • the contact hole forming step of S106 is performed, and then the pixel electrode forming step of S107 is performed.
  • These steps are the same as the contact hole forming step (S6) and the pixel electrode forming step (S7) of the first embodiment, respectively, and thus description thereof is omitted.
  • the gate insulating laminate 104 is first formed from the fluororesin layer 110, thereby forming the water-soluble resin layer 120 and the glass coating layer 130 directly on the organic semiconductor layer 106.
  • the pixel electrode 121 can be easily formed as compared with the case where the pixel electrode 121 is formed on the water-soluble resin layer 120.
  • the water-soluble resin layer 120 is formed between the fluororesin layer 110 and the first glass coating layer 130, damage to the organic semiconductor layer 106 when the glass coating layer 130 is formed can be reduced, so that stable TFT characteristics can be obtained. An organic semiconductor element can be obtained.
  • the present invention is not limited to the embodiments described in detail, and various modifications may be made without departing from the scope of the present disclosure.
  • the materials, sizes, and shapes of the substrate, the gate electrode, the source electrode, the drain electrode, the gate insulating layer, and the organic semiconductor layer that constitute the organic semiconductor element are not limited to the embodiment, and do not depart from the gist of the present disclosure. It can be changed as appropriate within the range.
  • the organic semiconductor layer is formed after forming the source electrode and the drain electrode. However, after forming the organic semiconductor layer, the source electrode and the drain electrode are formed. May be.
  • the oxide thin film transistor and the method for manufacturing the oxide thin film transistor of the present invention can be applied to a so-called bottom gate type or top gate type oxide thin film transistor and a method for manufacturing the same.

Abstract

Disclosed is an organic semiconductor element wherein a protective film, which does not damage the organic semiconductor layer nor deteriorate the device characteristics, is formed.  Also disclosed is a method for manufacturing the organic semiconductor element.  Specifically disclosed is an organic semiconductor element (1) which comprises a substrate (2) and a gate electrode (3) that is formed on the upper surface of the substrate (2).  A gate insulating layer (4) is formed on the upper surface of the gate electrode (3) and the upper surface of the substrate (2).  A source electrode (7) and a drain electrode (8) are formed apart from each other on the upper surface of the gate insulating layer (4).  An organic semiconductor layer (6) is formed on the upper surface of the gate insulating layer (4) between the source electrode (7) and the drain electrode (8).  A protective film (10), which has a three-layer structure composed of a fluororesin layer (11), a water-soluble resin layer (12) and a glass coating layer (13) arranged in this order from the bottom, is formed on the upper surface of the organic semiconductor layer (6), the source electrode (7), the drain electrode (8) and the gate insulating layer (4).  A pixel electrode (21) is formed on the upper surface of the protective film (10), and the pixel electrode (21) is electrically connected to the source electrode (7) through a contact hole (31).

Description

有機半導体素子、及びその製造方法Organic semiconductor device and manufacturing method thereof
 本発明は、有機半導体素子、及びその製造方法に関するものであり、特に、有機半導体層にダメージを与えることなく、またデバイス特性を低下させることのない保護膜を形成した有機半導体素子及びその製造方法に関するものである。 The present invention relates to an organic semiconductor element and a method for manufacturing the same, and in particular, an organic semiconductor element in which a protective film is formed without damaging the organic semiconductor layer and without deteriorating device characteristics, and a method for manufacturing the same. It is about.
 従来、様々な半導体デバイスにはシリコン等の無機半導体材料が使用されてきた。例えば、液晶ディスプレイのアクティブマトリクス回路にスイッチング素子として広く使用されている薄膜トランジスタのほとんどが、半導体層としてアモルファスシリコンあるいは多結晶シリコンを用いるシリコン系の無機半導体トランジスタである。 Conventionally, inorganic semiconductor materials such as silicon have been used for various semiconductor devices. For example, most of thin film transistors widely used as switching elements in active matrix circuits of liquid crystal displays are silicon-based inorganic semiconductor transistors using amorphous silicon or polycrystalline silicon as a semiconductor layer.
 しかし、無機半導体デバイスは、その製造に真空装置などの高価な製造設備や高純度の材料を必要とするため、製造コストが高くなる問題点がある、また、高温での熱処理が必要となるため、使用できる基板に制約がある。 However, since inorganic semiconductor devices require expensive manufacturing equipment such as vacuum equipment and high-purity materials for their production, there is a problem that the manufacturing cost increases, and heat treatment at high temperatures is required. There are restrictions on the substrates that can be used.
 一方、有機半導体を使用したデバイスは、比較的低い温度下で塗布法や浸漬法などで製造でき、低コストで、容易に大面積化が可能である。また、プラスチックなどの耐熱性のないフレキシブルな基板などに形成することができる。また、機械的衝撃に対しても安定である。このため、近年、次世代の表示装置への応用を想定して、TFTなどの有機半導体デバイスの研究開発が盛んにおこなわれている。 On the other hand, a device using an organic semiconductor can be manufactured by a coating method or a dipping method at a relatively low temperature, and can easily be enlarged at a low cost. Further, it can be formed on a flexible substrate having no heat resistance such as plastic. It is also stable against mechanical shock. For this reason, in recent years, research and development of organic semiconductor devices such as TFTs have been actively conducted assuming application to next-generation display devices.
 しかし、有機半導体デバイスは、外部から侵入してくる酸素及び水分によって有機半導体層が変質し、半導体性能が劣化する。そのため、信頼性の高い有機半導体デバイスを作製するためには、保護膜(パッシベーション膜)などによって有機半導体層を外部から完全に遮断する構造を形成する必要がある。 However, in the organic semiconductor device, the organic semiconductor layer deteriorates due to oxygen and moisture entering from the outside, and the semiconductor performance deteriorates. Therefore, in order to manufacture a highly reliable organic semiconductor device, it is necessary to form a structure that completely blocks the organic semiconductor layer from the outside by a protective film (passivation film) or the like.
 このような場合、無機半導体デバイスでは、プラズマCVD法やスパッタリング法などにより、保護膜として窒化シリコン膜や酸化シリコン膜等の無機保護膜を形成するのが一般的である。しかし、有機半導体デバイスではプラズマによるダメージが有機半導体層に生じやすく、CVD法やスパッタリング法によって保護膜を形成すると、プラズマによるダメージが有機半導体層に生じ、かえってデバイス特性を劣化させてしまうことになる。 In such a case, in an inorganic semiconductor device, an inorganic protective film such as a silicon nitride film or a silicon oxide film is generally formed as a protective film by a plasma CVD method or a sputtering method. However, in organic semiconductor devices, damage due to plasma is likely to occur in the organic semiconductor layer, and when a protective film is formed by CVD or sputtering, damage due to plasma occurs in the organic semiconductor layer, degrading device characteristics. .
 これを避けるために、ポリイミド等の有機膜を塗布法にて塗布して保護層とすることが一般的に行われている。しかし、有機保護膜の酸素や水分の侵入を阻止する性能は、無機保護膜のそれに比べて劣っている。 In order to avoid this, an organic film such as polyimide is generally applied by a coating method to form a protective layer. However, the performance of the organic protective film to prevent intrusion of oxygen and moisture is inferior to that of the inorganic protective film.
 そこで、特許文献1では塗布法、印刷法などにより、ポリビニルアルコール、ポリビニルフェノール、ポリメタクリル酸メチル、ポリイミドなどによる第1の保護膜を有機半導体層上に形成し、前記第1の保護膜を被覆するようにCVD法やスパッタリング法により窒化シリコン膜や酸化シリコン膜による第2の保護膜を形成することで、プラズマによるダメージを有機半導体デバイスに与えることなく、酸素や水分の侵入を阻止する性能の高い保護膜を形成する提案がなされている。 Therefore, in Patent Document 1, a first protective film made of polyvinyl alcohol, polyvinylphenol, polymethyl methacrylate, polyimide, or the like is formed on the organic semiconductor layer by a coating method, a printing method, or the like, and the first protective film is covered. Thus, by forming a second protective film made of a silicon nitride film or a silicon oxide film by a CVD method or a sputtering method, the performance of preventing the entry of oxygen and moisture without causing damage to the organic semiconductor device Proposals for forming a high protective film have been made.
特開2007-53147号公報JP 2007-53147 A
 特許文献1に示されている構成においては、第1の保護膜を形成する際に、上述したような有機材料を、請求項15に示されているような、2-プロパノール、ブタノール、シクロペンタノン、1,4-ジオキサン、γ-ブチルラクトン、アニソール、ポリエチレングリコールモノメチルエーテルアセテートといった、有機半導体層を溶解させる性質が乏しい溶媒に溶解させ、その上で有機半導体層上に塗布、印刷等が行われている。 In the configuration shown in Patent Document 1, when forming the first protective film, the organic material as described above is replaced with 2-propanol, butanol, cyclopenta as shown in claim 15. Dissolve the organic semiconductor layer in a solvent with poor properties, such as non, 1,4-dioxane, γ-butyllactone, anisole, polyethylene glycol monomethyl ether acetate, and then apply, print, etc. on the organic semiconductor layer It has been broken.
 しかし、有機半導体層を溶解させる性質が乏しいとはいえ、これら溶媒は有機半導体層にダメージを与える結果となり、デバイス特性を保つという点において問題がある。 However, although the property of dissolving the organic semiconductor layer is poor, these solvents result in damage to the organic semiconductor layer and have a problem in maintaining device characteristics.
 また、ポリビニルアルコール等の極性のある樹脂を使用した場合、極性の影響で、トランジスタデバイスとしてのしきい電圧が高くなってしまう。このため、トランジスタ特性が低下してしまう問題もある。 Also, when a polar resin such as polyvinyl alcohol is used, the threshold voltage as a transistor device increases due to the influence of polarity. For this reason, there is also a problem that the transistor characteristics deteriorate.
 本発明は、上述したような有機半導体層にダメージを与えることなく、またデバイス特性を低下させることのない保護膜を形成した有機半導体素子及びその製造方法を提供することを目的とする。 An object of the present invention is to provide an organic semiconductor element on which a protective film is formed without damaging the organic semiconductor layer as described above and without deteriorating device characteristics, and a method for manufacturing the same.
 上記目的を達成するために、本発明の請求項1に係る発明の有機半導体素子は、絶縁層上に形成された有機半導体層上に、フッ素樹脂層と、水溶性樹脂層と、ガラスコーティング層とを順次積層して形成したことを特徴とする。 In order to achieve the above object, an organic semiconductor element according to a first aspect of the present invention includes a fluororesin layer, a water-soluble resin layer, and a glass coating layer on an organic semiconductor layer formed on an insulating layer. And are sequentially stacked.
 また、本発明の請求項2に係る発明の有機半導体素子は、基板上に設けられているゲート電極と、前記ゲート電極を覆うように設けられた絶縁層であるゲート絶縁層と、前記ゲート絶縁層の上面に設けられた有機半導体層と、前記有機半導体層に接触するよう設けられると共に、互いに離間して配置されたソース電極及びドレイン電極とにより構成される有機半導体素子において、前記有機半導体層、ソース電極及びドレイン電極の各上面を覆うようにして設けられたフッ素樹脂層と、前記フッ素樹脂層上に設けられた水溶性樹脂層と、前記水溶性樹脂層上に設けられたガラスコーティング層と、前記ガラスコーティング層上に設けられた画素電極とにより構成されることを特徴とする。 An organic semiconductor element according to a second aspect of the present invention includes a gate electrode provided on a substrate, a gate insulating layer that is an insulating layer provided so as to cover the gate electrode, and the gate insulation. An organic semiconductor element comprising: an organic semiconductor layer provided on an upper surface of a layer; and a source electrode and a drain electrode provided to be in contact with the organic semiconductor layer and spaced apart from each other. , A fluorine resin layer provided so as to cover each upper surface of the source electrode and the drain electrode, a water-soluble resin layer provided on the fluorine resin layer, and a glass coating layer provided on the water-soluble resin layer And a pixel electrode provided on the glass coating layer.
 また、本発明の請求項3に係る発明の有機半導体素子は、絶縁機能を有する絶縁層である基板と、前記基板上に設けられた有機半導体層と、前記有機半導体層に接触するよう設けられると共に、互いに離間して配置されたソース電極及びドレイン電極と、前記有機半導体層、ソース電極及びドレイン電極の各上面を覆うようにして設けられたフッ素樹脂層と、前記フッ素樹脂層上に設けられた水溶性樹脂層と、前記水溶性樹脂層上に設けられた第1のガラスコーティング層と、前記フッ素樹脂層と前記水溶性樹脂層と前記第1のガラスコーティング層とが積層されて形成されるゲート絶縁積層上の、前記有機半導体層と相対する場所に設けられたゲート電極と、前記第1のガラスコーティング層と前記ゲート電極の各上面を覆うように設けられた第2のガラスコーティング層と、前記第2のガラスコーティング層上に設けられた画素電極とにより構成されることを特徴とする。 An organic semiconductor element according to a third aspect of the present invention is provided so as to be in contact with a substrate which is an insulating layer having an insulating function, an organic semiconductor layer provided on the substrate, and the organic semiconductor layer. And a source electrode and a drain electrode that are spaced apart from each other, a fluororesin layer provided so as to cover the upper surfaces of the organic semiconductor layer, the source electrode, and the drain electrode, and the fluororesin layer. The water-soluble resin layer, the first glass coating layer provided on the water-soluble resin layer, the fluororesin layer, the water-soluble resin layer, and the first glass coating layer are laminated. A gate electrode provided on the gate insulating layer facing the organic semiconductor layer, and provided to cover each upper surface of the first glass coating layer and the gate electrode. A second glass coating layer, characterized in that it is constituted by a pixel electrode provided on the second glass coating layer.
 本発明の請求項4に係る発明の有機半導体素子の製造方法は、基板上にゲート電極を形成させるゲート電極形成工程と、前記ゲート電極を覆うようにゲート絶縁層を形成させるゲート絶縁層形成工程と、前記ゲート絶縁層上に有機半導体層を形成させる有機半導体層形成工程と、前記有機半導体層に接触するよう設けられると共に、互いに離間して配置されているソース電極及びドレイン電極を形成させるソース・ドレイン電極形成工程と、前記有機半導体層、ソース電極及びドレイン電極の各上面を覆うようにしてフッ素樹脂層を形成させるフッ素樹脂層形成工程と、前記フッ素樹脂層の露出面に親水化処理を施すフッ素樹脂層表面親水化処理工程と、露出面に親水化処理を施された前記フッ素樹脂層上に水溶性樹脂層を形成させる水溶性樹脂層形成工程と、前記水溶性樹脂層上にガラスコーティング層を形成させるガラスコーティング層形成工程と、前記ガラスコーティング層上に画素電極を形成させる画素電極形成工程と、により構成されることを特徴とする。 According to a fourth aspect of the present invention, there is provided a method for manufacturing an organic semiconductor device comprising: a gate electrode forming step for forming a gate electrode on a substrate; and a gate insulating layer forming step for forming a gate insulating layer so as to cover the gate electrode. And an organic semiconductor layer forming step for forming an organic semiconductor layer on the gate insulating layer, and a source for forming a source electrode and a drain electrode provided in contact with the organic semiconductor layer and spaced apart from each other A drain electrode forming step, a fluororesin layer forming step of forming a fluororesin layer so as to cover each upper surface of the organic semiconductor layer, the source electrode and the drain electrode, and a hydrophilization treatment on the exposed surface of the fluororesin layer Fluororesin layer surface hydrophilization treatment step to be applied and water-soluble resin layer to form a water-soluble resin layer on the fluororesin layer whose exposed surface has been subjected to hydrophilization treatment A resin layer forming step, a glass coating layer forming step for forming a glass coating layer on the water-soluble resin layer, and a pixel electrode forming step for forming a pixel electrode on the glass coating layer. And
 また、本発明の請求項5に係る発明の有機半導体素子の製造方法は、基板上に、有機半導体層を形成させる有機半導体層形成工程と、前記有機半導体層に接触するよう設けられると共に、互いに離間して配置されているソース電極及びドレイン電極を形成させるソース・ドレイン電極形成工程と、前記有機半導体層、ソース電極及びドレイン電極の各上面を覆うようにしてフッ素樹脂層を形成させるフッ素樹脂層形成工程と、前記フッ素樹脂層の露出面に親水化処理を施すフッ素樹脂層表面親水化処理工程と、露出面に親水化処理を施された前記フッ素樹脂層の上面に水溶性樹脂層を形成させる水溶性樹脂層形成工程と、前記水溶性樹脂層の上面に第1のガラスコーティング層を形成させる第1のガラスコーティング層形成工程と、前記第1のガラスコーティング層上の、前記有機半導体層と相対する場所にゲート電極を形成させるゲート電極形成工程と、前記第1のガラスコーティング層と前記ゲート電極の各上面を覆うように第2のガラスコーティング層を形成させる第2のガラスコーティング層形成工程と、前記第2のガラスコーティング層上面に画素電極を形成する画素電極形成工程と、により構成されることを特徴とする。 According to a fifth aspect of the present invention, there is provided an organic semiconductor element manufacturing method according to a fifth aspect of the present invention, comprising: an organic semiconductor layer forming step for forming an organic semiconductor layer on a substrate; A source / drain electrode forming step for forming a source electrode and a drain electrode spaced apart from each other, and a fluororesin layer for forming a fluororesin layer so as to cover each upper surface of the organic semiconductor layer, the source electrode, and the drain electrode Forming a hydrophilic resin layer on the exposed surface of the fluororesin layer, and forming a water-soluble resin layer on the top surface of the fluororesin layer on which the exposed surface has been hydrophilized A water-soluble resin layer forming step, a first glass coating layer forming step of forming a first glass coating layer on an upper surface of the water-soluble resin layer, and the first A gate electrode forming step of forming a gate electrode on the glass coating layer at a location facing the organic semiconductor layer, and a second glass coating so as to cover each upper surface of the first glass coating layer and the gate electrode The method includes a second glass coating layer forming step for forming a layer and a pixel electrode forming step for forming a pixel electrode on the upper surface of the second glass coating layer.
 請求項1に係る発明の有機半導体素子は、有機半導体層上に、フッ素樹脂層と、水溶性樹脂層と、ガラスコーティング層を順次積層することにより、有機半導体層にダメージを与えることなく、デバイス特性の優れた有機半導体素子を得ることができる。 The organic semiconductor element of the invention according to claim 1 is a device in which a fluororesin layer, a water-soluble resin layer, and a glass coating layer are sequentially laminated on an organic semiconductor layer without damaging the organic semiconductor layer. An organic semiconductor element having excellent characteristics can be obtained.
 請求項2に係る発明の有機半導体素子は、フッ素樹脂層を有機半導体層の直上に形成することにより、有機半導体層にダメージを与えずに保護膜が形成することができる。また、ガラスコーティング層を形成することにより、スルーホール形成時のフォトレジストによるダメージを受けない保護膜が形成することができる。また、ガラスコーティング層を形成することにより、水溶性樹脂層上に画素電極を形成する場合と比べて画素電極を容易に形成することが可能となる。また、フッ素樹脂層とガラスコーティング層の中間に水溶性樹脂層を形成することにより、ガラスコーティング層形成時の有機半導体層へのダメージを軽減することができる。以上のことにより、形成時のダメージが少なく、デバイス特性に優れ、加工性の高い有機半導体素子を得ることができる。 In the organic semiconductor element of the invention according to claim 2, the protective film can be formed without damaging the organic semiconductor layer by forming the fluororesin layer directly on the organic semiconductor layer. Further, by forming the glass coating layer, it is possible to form a protective film that is not damaged by the photoresist when the through hole is formed. Further, by forming the glass coating layer, the pixel electrode can be easily formed as compared with the case where the pixel electrode is formed on the water-soluble resin layer. Moreover, the damage to the organic-semiconductor layer at the time of glass coating layer formation can be reduced by forming a water-soluble resin layer in the middle of a fluororesin layer and a glass coating layer. As described above, it is possible to obtain an organic semiconductor element with little damage during formation, excellent device characteristics, and high workability.
 請求項3に係る発明の有機半導体素子は、フッ素樹脂層を有機半導体層の直上に形成することにより、有機半導体層にダメージを与えずにゲート絶縁積層が形成することができる。また、第1のガラスコーティング層を形成することにより、水溶性樹脂層上に画素電極を形成する場合と比べて、画素電極を容易に形成することが可能となる。また、フッ素樹脂層と第1のガラスコーティング層の中間に水溶性樹脂層を形成することにより、ガラスコーティング層形成時の有機半導体層へのダメージを軽減することができる。また、第2のガラスコーティング層を形成することにより、スルーホール形成時のフォトレジストによるダメージを受けない保護膜が形成することができる。以上のことにより、形成時のダメージが少なく、デバイス特性に優れ、加工性の高い有機半導体素子を得ることができる。 In the organic semiconductor element of the invention according to claim 3, by forming the fluororesin layer directly on the organic semiconductor layer, a gate insulating laminate can be formed without damaging the organic semiconductor layer. Further, by forming the first glass coating layer, the pixel electrode can be easily formed as compared with the case where the pixel electrode is formed on the water-soluble resin layer. Moreover, the damage to the organic-semiconductor layer at the time of glass coating layer formation can be reduced by forming a water-soluble resin layer in the middle of a fluororesin layer and a 1st glass coating layer. Further, by forming the second glass coating layer, it is possible to form a protective film that is not damaged by the photoresist when the through hole is formed. As described above, it is possible to obtain an organic semiconductor element with little damage during formation, excellent device characteristics, and high workability.
 請求項4に係る発明の有機半導体素子の製造方法は、形成時のダメージが少なく、デバイス特性に優れ、加工性の高い有機半導体素子を製造することが可能となる。 The method for producing an organic semiconductor element of the invention according to claim 4 makes it possible to produce an organic semiconductor element having little process damage, excellent device characteristics, and high processability.
 請求項5に係る発明の有機半導体素子の製造方法は、形成時のダメージが少なく、デバイス特性に優れ、加工性の高い有機半導体素子を製造することが可能となる。 The method for producing an organic semiconductor element of the invention according to claim 5 makes it possible to produce an organic semiconductor element with little damage during formation, excellent device characteristics, and high workability.
第1実施形態の有機半導体素子1の縦断面図である。It is a longitudinal cross-sectional view of the organic-semiconductor element 1 of 1st Embodiment. 第1実施形態の有機半導体素子1の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the organic-semiconductor element 1 of 1st Embodiment. 比較例1の有機半導体素子1aの縦断面図である。6 is a longitudinal sectional view of an organic semiconductor element 1a of Comparative Example 1. FIG. 比較例2の有機半導体素子1bの縦断面図である。6 is a longitudinal sectional view of an organic semiconductor element 1b of Comparative Example 2. FIG. 比較例3の有機半導体素子1cの縦断面図である。It is a longitudinal cross-sectional view of the organic-semiconductor element 1c of the comparative example 3. 第1実施形態の有機半導体素子1の電圧-電流特性図である。FIG. 3 is a voltage-current characteristic diagram of the organic semiconductor element 1 of the first embodiment. 比較例1の有機半導体素子1aの電圧-電流特性図である。6 is a voltage-current characteristic diagram of an organic semiconductor element 1a of Comparative Example 1. FIG. 比較例2の有機半導体素子1bの電圧-電流特性図である。6 is a voltage-current characteristic diagram of an organic semiconductor element 1b of Comparative Example 2. FIG. 比較例3の有機半導体素子1cの電圧-電流特性図である。10 is a voltage-current characteristic diagram of an organic semiconductor element 1c of Comparative Example 3. FIG. 第2実施形態の有機半導体素子100の断面図である。It is sectional drawing of the organic-semiconductor element 100 of 2nd Embodiment. 第2実施形態の有機半導体素子100の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the organic-semiconductor element 100 of 2nd Embodiment.
<第1実施形態>
 以下、本発明の有機半導体素子について、図面を参照して説明する。
<First Embodiment>
Hereinafter, the organic semiconductor element of the present invention will be described with reference to the drawings.
 第1実施形態の有機半導体素子1は、ゲート電極3がソース電極7やドレイン電極8よりも下側に位置する、所謂「ボトムゲート型」の有機半導体素子である。第1実施形態の有機半導体素子1は、ソース電極7、ドレイン電極8及び有機半導体層6の保護膜10が、フッ素樹脂層11、水溶性樹脂層12及びガラスコーティング層13の3層構造であることに特徴を有する。以下の説明では、図1において、図面下側(基板2側)を下側、図面上側を上側として説明する。なお、以降の図面においても同様に、図面下側を下側、図面上側を上側として説明する。 The organic semiconductor device 1 of the first embodiment is a so-called “bottom gate type” organic semiconductor device in which the gate electrode 3 is located below the source electrode 7 and the drain electrode 8. In the organic semiconductor device 1 of the first embodiment, the source electrode 7, the drain electrode 8, and the protective film 10 for the organic semiconductor layer 6 have a three-layer structure of a fluororesin layer 11, a water-soluble resin layer 12, and a glass coating layer 13. It has a special feature. In the following description, in FIG. 1, the lower side of the drawing (substrate 2 side) is the lower side, and the upper side of the drawing is the upper side. In the following drawings, similarly, the lower side of the drawing is described as the lower side, and the upper side of the drawing is described as the upper side.
 初めに、有機半導体素子1の断面構造について説明する。図1に示す有機半導体素子1は、板状の基板2を有する。基板2の上面にはゲート電極3が設けられている。ゲート電極3の上面及びゲート電極3の設けられていない基板2の上面にはゲート絶縁層4が積層されている。ゲート絶縁層4の上面には、ソース電極7とドレイン電極8が離間して設けられている。この離間しているスペースは、ゲート絶縁層4を挟んでゲート電極3と対向している。ソース電極7とドレイン電極8に挟まれるゲート絶縁層4の上面には前記ゲート電極7と前記ドレイン電極8とに接触するように有機半導体層6が設けられている。有機半導体層6、ソース電極7、ドレイン電極8、これらが設けられていないゲート絶縁層4の上面には保護膜10が設けられている。保護膜10は3層構造からなっており、下側からフッ素樹脂層11、水溶性樹脂層12、ガラスコーティング層13の順に積層されている。保護膜10の上面には画素電極21が形成されている。この画素電極21は、コンタクトホール31により、ソース電極7と導通している。 First, the cross-sectional structure of the organic semiconductor element 1 will be described. An organic semiconductor element 1 shown in FIG. 1 has a plate-like substrate 2. A gate electrode 3 is provided on the upper surface of the substrate 2. A gate insulating layer 4 is laminated on the upper surface of the gate electrode 3 and the upper surface of the substrate 2 on which the gate electrode 3 is not provided. A source electrode 7 and a drain electrode 8 are provided on the upper surface of the gate insulating layer 4 so as to be separated from each other. This spaced space is opposed to the gate electrode 3 with the gate insulating layer 4 interposed therebetween. An organic semiconductor layer 6 is provided on the upper surface of the gate insulating layer 4 sandwiched between the source electrode 7 and the drain electrode 8 so as to be in contact with the gate electrode 7 and the drain electrode 8. A protective film 10 is provided on the upper surface of the organic semiconductor layer 6, the source electrode 7, the drain electrode 8, and the gate insulating layer 4 where these are not provided. The protective film 10 has a three-layer structure, and a fluororesin layer 11, a water-soluble resin layer 12, and a glass coating layer 13 are laminated in this order from the bottom. A pixel electrode 21 is formed on the upper surface of the protective film 10. The pixel electrode 21 is electrically connected to the source electrode 7 through a contact hole 31.
 基板2は、表面が平坦である板状部材である。基板2の材質としては、各種材質が適用可能であるが、導電性の材質を適用する場合には、基板2の表面には絶縁膜を設ける必要がある。基板2の材質として絶縁性の材質が用いられる場合には、ガラス基板、シリコン基板、プラスチック基板が用いられる。基板2に可撓性を付与したい場合には、特にプラスチック基板を用いる。プラスチックの材質としては、例えば、ポリエーテルスルホン(PES)、ポリエチレンテレフタレート(PET)、ポリイミド(PI)、ポリエチレンナフタレート(PEN)、ポリエーテルイミド(PEI)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、ポリプロピレン(PP)等が挙げられる。基板2の耐水性を向上させる場合には、基板2の表面にSiO2やSiNxなどからなるガラスバリア膜が形成される。 The substrate 2 is a plate-like member having a flat surface. Various materials can be applied as the material of the substrate 2, but when a conductive material is applied, it is necessary to provide an insulating film on the surface of the substrate 2. When an insulating material is used as the material of the substrate 2, a glass substrate, a silicon substrate, or a plastic substrate is used. When it is desired to impart flexibility to the substrate 2, a plastic substrate is particularly used. Examples of plastic materials include polyethersulfone (PES), polyethylene terephthalate (PET), polyimide (PI), polyethylene naphthalate (PEN), polyetherimide (PEI), polystyrene (PS), and polyvinyl chloride (PVC). ), Polyethylene (PE), polypropylene (PP) and the like. In order to improve the water resistance of the substrate 2, a glass barrier film made of SiO 2 or SiNx is formed on the surface of the substrate 2.
 基板2の上面にはゲート電極3が設けられている。このゲート電極3の材質としては、Au,Ag,Cu,Pd,Al,Mo,Cr,Ti,Ta,Ni,Pt,W(タングステン)等の金属単体、または少なくともいずれかの金属を含む複合体、酸化インジウムスズ(ITO)などの導電性酸化物、ポリエチレンジオキシチオフェン(PEDOT)、ポリパラフェニレンビニレン(PPV)等の導電性ポリマーが適用可能である。 A gate electrode 3 is provided on the upper surface of the substrate 2. The material of the gate electrode 3 is a single metal such as Au, Ag, Cu, Pd, Al, Mo, Cr, Ti, Ta, Ni, Pt, W (tungsten), or a composite containing at least one of the metals. In addition, a conductive oxide such as indium tin oxide (ITO), and a conductive polymer such as polyethylene dioxythiophene (PEDOT) and polyparaphenylene vinylene (PPV) are applicable.
 ゲート電極3及びゲート電極3の設けられていない基板2の各上面は、ゲート絶縁層4によって覆われている。ゲート絶縁層は、絶縁物質により形成されている。絶縁物質として無機絶縁物質を採用する場合は、Al23,SiO2,SiN,TiO2等が適用可能である。また、絶縁物質として有機絶縁物質を採用する場合は、PI(ポリイミド)、PMMA(ポリメチルメタクリレート)、PVP(ポリパラビニルフェノール)等が適用可能である。 Each upper surface of the substrate 2 on which the gate electrode 3 and the gate electrode 3 are not provided is covered with a gate insulating layer 4. The gate insulating layer is formed of an insulating material. When an inorganic insulating material is employed as the insulating material, Al 2 O 3 , SiO 2 , SiN, TiO 2, etc. can be applied. When an organic insulating material is employed as the insulating material, PI (polyimide), PMMA (polymethyl methacrylate), PVP (polyparavinylphenol), or the like can be applied.
 ゲート絶縁層4の上面には、有機半導体層6が、ゲート電極3とゲート絶縁層4を挟んで対向して設けられている。また、有機半導体層6を間に挟むように、ソース電極7とドレイン電極8が設けられている。ソース電極7とドレイン電極8とは互いに離間して配置されている。有機半導体6とソース電極7、及びドレイン電極8は接触して設けられている。 The organic semiconductor layer 6 is provided on the upper surface of the gate insulating layer 4 so as to face each other with the gate electrode 3 and the gate insulating layer 4 interposed therebetween. A source electrode 7 and a drain electrode 8 are provided so as to sandwich the organic semiconductor layer 6 therebetween. The source electrode 7 and the drain electrode 8 are spaced apart from each other. The organic semiconductor 6, the source electrode 7 and the drain electrode 8 are provided in contact with each other.
 有機半導体層6の材質としては、ペンタセン、テトラセン、アントラセン等のアセン類、銅フタロシアニン等のフタロシアニン類、ポリ(3-ヘキシルチオフェン)等のポリアルキルチオフェン類、アルキルオリゴチオフェン類等が挙げられる。 Examples of the material of the organic semiconductor layer 6 include acenes such as pentacene, tetracene, and anthracene, phthalocyanines such as copper phthalocyanine, polyalkylthiophenes such as poly (3-hexylthiophene), alkyl oligothiophenes, and the like.
 ソース電極7及びドレイン電極8の材質は、Au,Ag,Cu,Pd,Al,Mo,Cr,Ti,Ta,Ni,Pt,W(タングステン)等の金属単体、または少なくともいずれかの金属を含む複合体、酸化インジウムスズ(ITO)などの導電性酸化物、ポリエチレンジオキシチオフェン(PEDOT)、ポリパラフェニレンビニレン(PPV)等の導電性ポリマーが適用可能である。また、複数種の金属の積層構造であってもよい。 The material of the source electrode 7 and the drain electrode 8 includes a single metal such as Au, Ag, Cu, Pd, Al, Mo, Cr, Ti, Ta, Ni, Pt, and W (tungsten), or at least one of the metals. A composite, a conductive oxide such as indium tin oxide (ITO), or a conductive polymer such as polyethylenedioxythiophene (PEDOT) or polyparaphenylene vinylene (PPV) is applicable. Moreover, the laminated structure of multiple types of metals may be sufficient.
 有機半導体層6、ソース電極7、ドレイン電極8、ゲート絶縁層4の各上面は、保護膜10によって覆われている。保護膜10は、下側のフッ素樹脂層11、中側の水溶性樹脂層12及び上側のガラスコーティング層13が積層されて構成されている。 Each upper surface of the organic semiconductor layer 6, the source electrode 7, the drain electrode 8, and the gate insulating layer 4 is covered with a protective film 10. The protective film 10 is configured by laminating a lower fluororesin layer 11, a middle water-soluble resin layer 12, and an upper glass coating layer 13.
 フッ素樹脂層11の材質としては、ポリテトラフルオロエチレン(例えばフロロサーフFG3030:フロロテクノロジー社製、サイトップ:旭硝子社製)、1,1,1,2,3,4,4,5,5,5-デカフルオロペンタン(例えばフッソプラコート:ファインケミカルジャパン社製)フルオロエチレンプロピレンコポリマー、ペルフルオロアルコキシフッ素、エチレン四フッ化エチレンなどが挙げられる。 Examples of the material of the fluororesin layer 11 include polytetrafluoroethylene (for example, fluorosurf FG3030: manufactured by Fluoro Technology, Cytop: manufactured by Asahi Glass), 1,1,1,2,3,4,4,5,5,5. -Decafluoropentane (for example, fluorine plastic coat: manufactured by Fine Chemical Japan Co.) fluoroethylene propylene copolymer, perfluoroalkoxy fluorine, ethylene tetrafluoride ethylene and the like.
 水溶性樹脂層12の材質としては、ポリビニルアルコール(例えばポバール:クラレ社製)、ポリエチレンオキサイド(例えばアルコックス:明成化学工業社製)、ポリアクリル酸ナトリウム等の水溶性ポリマー、エチレン酢酸ビニルエマルジョン、アクリルエマルジョン、酢酸ビニルエマルジョン、アクリルスチレンエマルジョン等の水溶性エマルジョンが挙げられる。 As the material of the water-soluble resin layer 12, polyvinyl alcohol (for example, Poval: manufactured by Kuraray Co., Ltd.), polyethylene oxide (for example, Alcox: manufactured by Meisei Chemical Co., Ltd.), water-soluble polymers such as sodium polyacrylate, ethylene vinyl acetate emulsion, Water-soluble emulsions such as acrylic emulsion, vinyl acetate emulsion, and acrylic styrene emulsion are listed.
 ガラスコーティング層13の材質としては、ポリシラザン(例えばアクアミカ:AZエレクトロニックマテリアルズ社製)等が挙げられる。 Examples of the material of the glass coating layer 13 include polysilazane (for example, Aquamica: manufactured by AZ Electronic Materials).
 保護膜10の上面には、画素電極21が設けられている。画素電極21は、ITO(酸化インジウムスズ)により形成される。 A pixel electrode 21 is provided on the upper surface of the protective film 10. The pixel electrode 21 is made of ITO (indium tin oxide).
 次に、有機半導体素子1の製造工程について説明する。有機半導体素子1の製造工程は、図2に示すように、基板2の上面にゲート電極3を形成するゲート電極形成工程(S1)と、ゲート電極3、基板2の上面を覆うようにゲート絶縁層4を形成するゲート絶縁層形成工程(S2)と、ソース電極7及びドレイン電極8を、ゲート絶縁層4上面のゲート電極3と対向した箇所を挟む形で離間して形成するソース・ドレイン電極形成工程(S3)と、ゲート絶縁層4上面の、ゲート電極3と対向した箇所に有機半導体層6を、ソース電極7及びドレイン電極8と接触させて形成する有機半導体層形成工程(S4)と、有機半導体層6、ソース電極7及びドレイン電極8を覆うように保護膜を形成する保護膜形成工程(S5)と、保護膜10にコンタクトホール31を形成するコンタクトホール形成工程(S6)と、コンタクトホール31と接続するように画素電極21を形成する画素電極形成工程(S7)とから構成されている。保護膜形成工程(S5)は、フッ素樹脂層11を形成するフッ素樹脂層形成工程(S51)と、フッ素樹脂層11の上面に水溶性樹脂層12を形成する水溶性樹脂層形成工程(S52)と、水溶性樹脂層12の上面にガラスコーティング層13を形成するガラスコーティング層形成工程(S53)とから構成されている。以下、各工程について実施例を挙げて説明する。 Next, the manufacturing process of the organic semiconductor element 1 will be described. As shown in FIG. 2, the manufacturing process of the organic semiconductor element 1 includes a gate electrode forming step (S1) for forming the gate electrode 3 on the upper surface of the substrate 2, and gate insulation so as to cover the upper surface of the gate electrode 3 and the substrate 2. The gate insulating layer forming step (S2) for forming the layer 4 and the source / drain electrodes formed by separating the source electrode 7 and the drain electrode 8 so as to sandwich the portion facing the gate electrode 3 on the upper surface of the gate insulating layer 4 A forming step (S3), and an organic semiconductor layer forming step (S4) in which the organic semiconductor layer 6 is formed in contact with the source electrode 7 and the drain electrode 8 at a position on the upper surface of the gate insulating layer 4 facing the gate electrode 3; A protective film forming step (S5) for forming a protective film so as to cover the organic semiconductor layer 6, the source electrode 7 and the drain electrode 8, and a contact hole formation for forming the contact hole 31 in the protective film 10 Extent and (S6), and is configured from the pixel electrode forming step of forming a pixel electrode 21 so as to be connected to the contact hole 31 (S7). The protective film forming step (S5) includes a fluororesin layer forming step (S51) for forming the fluororesin layer 11, and a water soluble resin layer forming step (S52) for forming the water soluble resin layer 12 on the upper surface of the fluororesin layer 11. And a glass coating layer forming step (S53) for forming the glass coating layer 13 on the upper surface of the water-soluble resin layer 12. Hereinafter, each step will be described with reference to examples.
 はじめに、S1のゲート電極形成工程が行われる。この工程では、基板2の上面にゲート電極3が形成される。本実施形態では、ガラスにより構成される基板2を洗浄後、基板2の上面にCr薄膜を形成した。そして、形成したCr薄膜のパターニングを行い、不要部分を除去することにより、ゲート電極3を形成した。Cr薄膜の製膜は、スパッタリング法によって行った。このときのターゲットとしてはCrを使用し、装置としてはDCスパッタ装置を用いた。形成されたCr薄膜の上面に、フォトリソグラフィ法を用いてレジストパターンを形成した後、エッチング法を用いてCr薄膜をエッチングした。不要となったフォトレジストは、アセトン洗浄により除去した。 First, the gate electrode forming step of S1 is performed. In this step, the gate electrode 3 is formed on the upper surface of the substrate 2. In this embodiment, the Cr thin film is formed on the upper surface of the substrate 2 after cleaning the substrate 2 made of glass. And the gate electrode 3 was formed by patterning the formed Cr thin film and removing an unnecessary part. The Cr thin film was formed by a sputtering method. At this time, Cr was used as the target, and a DC sputtering apparatus was used as the apparatus. A resist pattern was formed on the upper surface of the formed Cr thin film using a photolithography method, and then the Cr thin film was etched using an etching method. The unnecessary photoresist was removed by washing with acetone.
 次に、S2のゲート絶縁層形成工程が行われる。この工程では、ポリビニルフェノールとメラミンホルムアルデヒドをポリエチレングリコールモノメチルエーテルアセテートに溶解させてできた混合液を、ゲート電極3を備えた基板2の上面を覆うように、スピンコート法により成膜した。その後、アニール処理を180℃環境下にて2時間行った。こうして、ゲート電極3を備えた基板2の上面に、メラミンホルムアルデヒドで架橋されたポリビニルフェノールにより構成されるゲート絶縁層4を形成させた。 Next, the step S2 of forming a gate insulating layer is performed. In this step, a mixed solution obtained by dissolving polyvinyl phenol and melamine formaldehyde in polyethylene glycol monomethyl ether acetate was formed by spin coating so as to cover the upper surface of the substrate 2 provided with the gate electrode 3. Thereafter, annealing treatment was performed in an environment of 180 ° C. for 2 hours. Thus, the gate insulating layer 4 composed of polyvinylphenol crosslinked with melamine formaldehyde was formed on the upper surface of the substrate 2 provided with the gate electrode 3.
 次に、S3のソース・ドレイン電極形成工程が行われる。この工程では、まず有機半導体層6、ゲート絶縁層4の上面にCr積層薄膜を形成した。次いでAu薄膜を形成し、最終的にはAuとCrが積層された薄膜(Au/Cr薄膜)を形成した。そして、形成したAu/Cr薄膜のパターニングを行い、不要部分を除去することにより、ゲート絶縁層4上面のゲート電極3と対向した箇所を挟む形で離間した、ソース電極7及びドレイン電極8を形成した。Au/Cr薄膜の製膜は、スパッタリング法によって行った。このときのターゲットとしてはAu、Crをそれぞれ使用し、装置としてはDCスパッタ装置を用いた。形成されたAu/Cr薄膜の上面に、フォトリソグラフィ法を用いてレジストパターンを形成した後、エッチング法を用いてAu/Cr薄膜をエッチングした。不要となったフォトレジストは、アセトン洗浄により除去した。 Next, the source / drain electrode forming step of S3 is performed. In this step, first, a Cr laminated thin film was formed on the upper surfaces of the organic semiconductor layer 6 and the gate insulating layer 4. Next, an Au thin film was formed, and finally a thin film (Au / Cr thin film) in which Au and Cr were laminated was formed. Then, by patterning the formed Au / Cr thin film and removing unnecessary portions, a source electrode 7 and a drain electrode 8 are formed that are separated from each other with a portion facing the gate electrode 3 on the upper surface of the gate insulating layer 4 interposed therebetween. did. The Au / Cr thin film was formed by a sputtering method. At this time, Au and Cr were respectively used as targets, and a DC sputtering apparatus was used as an apparatus. A resist pattern was formed on the upper surface of the formed Au / Cr thin film using a photolithography method, and then the Au / Cr thin film was etched using an etching method. The unnecessary photoresist was removed by washing with acetone.
 次に、S4の有機半導体層形成工程が行われる。この工程では、ゲート絶縁層4上のゲート電極3と対向した位置にソース電極7及びドレイン電極8と接触させて、有機半導体層6を形成した。有機半導体層6としては、トリイソプロピルシリルエチニルペンタセンをインクジェット法にて形成した。その後、アニール処理を120℃環境下で5分間行った。 Next, the organic semiconductor layer forming step of S4 is performed. In this step, the organic semiconductor layer 6 was formed in contact with the source electrode 7 and the drain electrode 8 at a position facing the gate electrode 3 on the gate insulating layer 4. As the organic semiconductor layer 6, triisopropylsilylethynylpentacene was formed by an inkjet method. Thereafter, annealing treatment was performed for 5 minutes in a 120 ° C. environment.
 次に、S5の保護膜形成工程が行われる。S5の保護膜形成工程は、フッ素樹脂層形成工程(S51)と、水溶性樹脂層形成工程(S52)と、ガラスコーティング層形成工程(S53)とから構成されている。 Next, the protective film forming step of S5 is performed. The protective film forming step of S5 includes a fluororesin layer forming step (S51), a water-soluble resin layer forming step (S52), and a glass coating layer forming step (S53).
 S51のフッ素樹脂層形成工程では、ソース電極7、ドレイン電極8、有機半導体層6の上面を覆うように、フッソプラコート(ファインケミカルジャパン社製)をスピンコート法にて成膜した。次いでアニール処理を120℃環境下で5分間行った。こうして、フッ素樹脂層11を形成した。 In the fluororesin layer forming step of S51, a fluorine plastic coat (manufactured by Fine Chemical Japan) was formed by a spin coat method so as to cover the upper surfaces of the source electrode 7, the drain electrode 8, and the organic semiconductor layer 6. Next, annealing was performed for 5 minutes in a 120 ° C. environment. Thus, the fluororesin layer 11 was formed.
 次に、S52の水溶性樹脂層形成工程が行われる。この工程では、まず、フッ素樹脂層11の表面を、プラズマクリーナ(diener electronic社製低圧プラズマ装置「FEMTO」)にて3秒間処理することで、フッ素樹脂層11の表面を親水化処理した。次いで、ポバール(クラレ社製)5重量%水溶液をスピンコート法にて成膜した。さらにアニール処理を120℃環境下で5分間行った。こうして、水溶性樹脂層12を形成した。 Next, the water-soluble resin layer forming step of S52 is performed. In this step, first, the surface of the fluororesin layer 11 was hydrophilized by treating the surface of the fluororesin layer 11 with a plasma cleaner (low pressure plasma apparatus “FEMTO” manufactured by diener electronic) for 3 seconds. Next, a 5% by weight aqueous solution of Poval (manufactured by Kuraray Co., Ltd.) was formed by spin coating. Furthermore, annealing treatment was performed for 5 minutes in 120 degreeC environment. Thus, the water-soluble resin layer 12 was formed.
 次に、S53のガラスコーティング層形成工程が行われる。この工程では、アクアミカ(AZエレクトロニックマテリアルズ社製)をスピンコート法にて成膜した。さらにアニール処理を120℃環境下で5分間行った。こうして、ガラスコーティング層13を形成した。 Next, the glass coating layer forming step of S53 is performed. In this step, aquamica (manufactured by AZ Electronic Materials) was formed by spin coating. Furthermore, annealing treatment was performed for 5 minutes in 120 degreeC environment. In this way, the glass coating layer 13 was formed.
 次に、S6のコンタクトホール形成工程が行われる。この工程では、フッ素樹脂層11と水溶性樹脂層12とガラスコーティング層13とを貫通するコンタクトホール31が形成される。コンタクトホール形成工程(S6)では、初めに、コンタクトホール31に対応する箇所に開口部を備えたレジストマスクを、ガラスコーティング層13の上面にフォトリソグラフィ法にて形成させる。次に、バッファードフッ酸を使用して、ガラスコーティング層13及び水溶性樹脂層12の一部をエッチングする。ここでフォトレジストを、アセトンを使用して剥離する。そして、酸素プラズマにてドライエッチング法により、ガラスコーティング層13をレジスト代わりとして、水溶性樹脂層12の残りとフッ素樹脂層11とをエッチングする。こうしてコンタクトホール31が形成される。 Next, the contact hole forming step of S6 is performed. In this step, a contact hole 31 that penetrates the fluororesin layer 11, the water-soluble resin layer 12, and the glass coating layer 13 is formed. In the contact hole forming step (S 6), first, a resist mask having an opening at a location corresponding to the contact hole 31 is formed on the upper surface of the glass coating layer 13 by photolithography. Next, a part of the glass coating layer 13 and the water-soluble resin layer 12 is etched using buffered hydrofluoric acid. Here, the photoresist is stripped using acetone. Then, the remainder of the water-soluble resin layer 12 and the fluororesin layer 11 are etched by dry etching with oxygen plasma, using the glass coating layer 13 as a resist. A contact hole 31 is thus formed.
 次に、S7の画素電極形成工程が行われる。この工程では、ガラスコーティング層13の上面に、ITO薄膜が形成された後、パターニングして不要部分が除去されることにより、ITOにより構成される画素電極21が形成した。ITO膜の形成は、スパッタリング法によって行った。ITO膜形成後、レジストパターンを形成し、ITO膜をエッチングし、不要となったフォトレジストは、アセトン洗浄により除去した。 Next, the pixel electrode forming step of S7 is performed. In this step, after the ITO thin film was formed on the upper surface of the glass coating layer 13, the pixel electrode 21 composed of ITO was formed by patterning to remove unnecessary portions. The ITO film was formed by a sputtering method. After the ITO film was formed, a resist pattern was formed, the ITO film was etched, and unnecessary photoresist was removed by washing with acetone.
 また、各比較例の縦断面図を図3~5に図示した。 Also, longitudinal sectional views of each comparative example are shown in FIGS.
 なお、ガラスコーティング層13がなく、保護膜10の最上面をフッ素樹脂層11、または水溶性樹脂層12として、その上面に画素電極21を形成するような有機半導体素子1を製造することは、コンタクトホール形成工程において、ドライエッチングを適用した場合にはそのレジストの変質によりレジストの除去が困難になってしまうこと、ウエットエッチングを適用した場合には、フッ素樹脂はエッチングが不能であり、水溶性樹脂は水溶性であるが故にエッチングのレジスト除去工程において溶出してしまう危険性があること、また、水溶性樹脂上にはITO膜の付着が難しいこと、などの理由により、製造は困難であるので、比較例としては示さなかった。 Note that manufacturing the organic semiconductor element 1 without the glass coating layer 13 and forming the pixel electrode 21 on the upper surface of the protective film 10 with the uppermost surface of the protective film 10 as the fluororesin layer 11 or the water-soluble resin layer 12 In the contact hole formation process, when dry etching is applied, it becomes difficult to remove the resist due to the alteration of the resist, and when wet etching is applied, fluororesin cannot be etched and is water-soluble. Since the resin is water-soluble, there is a risk of elution in the resist removal process of etching, and it is difficult to produce an ITO film on the water-soluble resin because it is difficult to adhere to the ITO film. Therefore, it was not shown as a comparative example.
 次に、上述の製造方法によって形成された有機半導体素子1の効果を確認するため、有機半導体素子1の性能評価を行った。この性能評価では、比較例として、保護膜10aを水溶性樹脂層12とガラスコーティング層13とのみから形成した有機半導体素子1aに関する比較例1、保護膜10bをフッ素樹脂11とガラスコーティング層13とのみから形成した有機半導体素子1bに関する比較例2、及び、保護膜10cをガラスコーティング層13のみから形成した有機半導体素子1cに関する比較例3についても性能評価を行った。 Next, in order to confirm the effect of the organic semiconductor element 1 formed by the manufacturing method described above, performance evaluation of the organic semiconductor element 1 was performed. In this performance evaluation, as a comparative example, Comparative Example 1 relating to the organic semiconductor element 1a in which the protective film 10a is formed only from the water-soluble resin layer 12 and the glass coating layer 13, and the protective film 10b as the fluororesin 11 and the glass coating layer 13 are used. Performance evaluation was also performed for Comparative Example 2 related to the organic semiconductor element 1b formed only from the organic semiconductor element 1b and Comparative Example 3 related to the organic semiconductor element 1c formed only from the glass coating layer 13 of the protective film 10c.
 性能評価の方法および性能評価の結果について、図6乃至図9を参照して説明する。なお、図6乃至図9において、曲線aは、保護膜10、10a、10b、10c形成前の有機半導体素子1、1a、1b、1cの電圧-電流特性を示し、曲線bは、保護膜10、10a、10b、10c形成後の有機半導体素子1、1a、1b、1cの電圧-電流特性を示す。また、縦軸がドレイン電流値、横軸がゲート電圧値を示し、これらの評価を行った際のドレイン電圧は30Vであった。 The performance evaluation method and performance evaluation results will be described with reference to FIGS. 6 to 9, the curve a represents the voltage-current characteristics of the organic semiconductor elements 1, 1a, 1b, and 1c before the formation of the protective films 10, 10a, 10b, and 10c, and the curve b represents the protective film 10. The voltage-current characteristics of the organic semiconductor elements 1, 1a, 1b and 1c after the formation of 10a, 10b and 10c are shown. Further, the vertical axis represents the drain current value, and the horizontal axis represents the gate voltage value. When these evaluations were performed, the drain voltage was 30V.
 第1実施形態の有機半導体素子1は、図6に示した通り、保護膜10の形成によってTFT特性が変化することがない(しきい値電圧:5Vのまま変化なし、オンオフ比:106を保持)。一方、比較例1の有機半導体素子1aは、図7に示した通り、そのしきい値電圧が高くなって(5V→20V)しまい、かつオンオフ比の低下(106→103)も見られ、トランジスタ特性は悪化している。また、比較例2乃至3の有機半導体素子1b、1cは、図8、図9に示した通り、いずれも曲線bがほぼ平坦である。このことは、保護膜10b、10c形成により比較例2乃至3の有機半導体素子1b、1cがトランジスタとして動作しなくなってしまったことを示している。 As shown in FIG. 6, the organic semiconductor element 1 of the first embodiment has no change in TFT characteristics due to the formation of the protective film 10 (threshold voltage: 5 V remains unchanged, on / off ratio: 10 6 . Retention). On the other hand, as shown in FIG. 7, the organic semiconductor element 1a of Comparative Example 1 has a high threshold voltage (5V → 20V) and a decrease in on / off ratio (10 6 → 10 3 ). The transistor characteristics are getting worse. Further, in the organic semiconductor elements 1b and 1c of Comparative Examples 2 to 3, the curve b is almost flat as shown in FIGS. This indicates that the organic semiconductor elements 1b and 1c of Comparative Examples 2 to 3 no longer operate as transistors due to the formation of the protective films 10b and 10c.
 第1実施形態の有機半導体素子1と比較して、比較例1の有機半導体素子1aは、保護膜10にフッ素樹脂層11が欠けている構造となっている。極性を持つ水溶性樹脂層12を有機半導体層6の直上に形成することで、有機半導体のしきい値電圧が高くなり、オンオフ比が低下してしまうものと推測される。 Compared with the organic semiconductor element 1 of the first embodiment, the organic semiconductor element 1 a of Comparative Example 1 has a structure in which the protective resin 10 is missing the fluororesin layer 11. By forming the water-soluble resin layer 12 having polarity directly on the organic semiconductor layer 6, it is presumed that the threshold voltage of the organic semiconductor increases and the on / off ratio decreases.
 また、水溶性樹脂層12のない構造の保護膜を持つ比較例2乃至3の有機半導体素子1b、1cは、ガラスコーティング層13を形成する際に、その溶媒として使用する有機溶媒の影響で、有機半導体に対しダメージを与えてしまい、そのためにトランジスタとして動作しなくなってしまうものと推測される。 In addition, the organic semiconductor elements 1b and 1c of Comparative Examples 2 to 3 having a protective film having a structure without the water-soluble resin layer 12 are affected by the organic solvent used as the solvent when the glass coating layer 13 is formed. It is presumed that the organic semiconductor is damaged, and as a result, it does not operate as a transistor.
 以上説明したとおり、第1実施形態の有機半導体素子1は、その保護膜10を、まずフッ素樹脂層11から形成することにより、水溶性樹脂層12、ガラスコーティング層13を有機半導体層6上に直接形成するよりも有機半導体に対するダメージが少なく、また、ガラスコーティング層13を形成することにより、水溶性樹脂層12上に画素電極21を形成する場合と比べて画素電極21を容易に形成でき、また、フッ素樹脂層11とガラスコーティング層13の中間に水溶性樹脂層12を形成することによりガラスコーティング層13形成時の有機半導体層6へのダメージを軽減できるため、安定したTFT特性を持つ有機半導体素子を得ることができる。 As described above, in the organic semiconductor element 1 of the first embodiment, the protective film 10 is first formed from the fluororesin layer 11 so that the water-soluble resin layer 12 and the glass coating layer 13 are formed on the organic semiconductor layer 6. There is less damage to the organic semiconductor than directly forming, and by forming the glass coating layer 13, the pixel electrode 21 can be easily formed as compared with the case where the pixel electrode 21 is formed on the water-soluble resin layer 12, In addition, since the water-soluble resin layer 12 is formed between the fluororesin layer 11 and the glass coating layer 13, damage to the organic semiconductor layer 6 during the formation of the glass coating layer 13 can be reduced. A semiconductor element can be obtained.
<第2実施形態>
 次に、本発明の第2の実施形態の有機半導体素子について、図面を参照して説明する。
Second Embodiment
Next, the organic semiconductor element of the 2nd Embodiment of this invention is demonstrated with reference to drawings.
 第2実施形態の有機半導体素子100は、ゲート電極103がソース電極107やドレイン電極108よりも上側に位置する、所謂「トップゲート型」の有機半導体素子である。第2実施形態の有機半導体素子100は、フッ素樹脂層110、水溶性樹脂層120及び第1のガラスコーティング層130の3層構造により構成されるゲート絶縁積層104を持つことに特徴を有する。 The organic semiconductor element 100 of the second embodiment is a so-called “top gate type” organic semiconductor element in which the gate electrode 103 is located above the source electrode 107 and the drain electrode 108. The organic semiconductor device 100 according to the second embodiment is characterized by having a gate insulating laminate 104 constituted by a three-layer structure of a fluororesin layer 110, a water-soluble resin layer 120, and a first glass coating layer 130.
 初めに、有機半導体素子100の断面構造について説明する。図10に示す有機半導体素子100は、板状の基板2を有する。基板2の上面にはソース電極107、ドレイン電極108が離間して設けられている。ソース電極107とドレイン電極108に挟まれる基板2の上面には有機半導体層106がソース電極107とドレイン電極108に接触するように設けられている。有機半導体層106、ソース電極107、ドレイン電極108の上面にはゲート絶縁積層104が設けられている。ゲート絶縁積層104は3層構造からなっており、下側のフッ素樹脂層110、中側の水溶性樹脂層120、上側の第1のガラスコーティング層130の順に積層されて設けられている。ゲート絶縁積層104を挟んで有機半導体層106と対向した、ゲート絶縁積層104の上面にはゲート電極103が設けられている。ゲート電極103、及びゲート電極103が設けられていないゲート絶縁積層104の上面には第2のガラスコーティング層140が設けられている。第2のガラスコーティング層140の上面には画素電極121が形成されており、この画素電極121は、コンタクトホール131により、ソース電極107と導通している。 First, the cross-sectional structure of the organic semiconductor element 100 will be described. An organic semiconductor element 100 shown in FIG. 10 has a plate-like substrate 2. A source electrode 107 and a drain electrode 108 are provided apart from each other on the upper surface of the substrate 2. An organic semiconductor layer 106 is provided on the upper surface of the substrate 2 between the source electrode 107 and the drain electrode 108 so as to be in contact with the source electrode 107 and the drain electrode 108. A gate insulating laminate 104 is provided on the top surfaces of the organic semiconductor layer 106, the source electrode 107, and the drain electrode 108. The gate insulating laminate 104 has a three-layer structure, and is provided by laminating a lower fluororesin layer 110, a middle water-soluble resin layer 120, and an upper first glass coating layer 130 in this order. A gate electrode 103 is provided on the upper surface of the gate insulating laminate 104 facing the organic semiconductor layer 106 with the gate insulating laminate 104 interposed therebetween. A second glass coating layer 140 is provided on the upper surface of the gate insulating laminate 104 where the gate electrode 103 and the gate electrode 103 are not provided. A pixel electrode 121 is formed on the upper surface of the second glass coating layer 140, and the pixel electrode 121 is electrically connected to the source electrode 107 through a contact hole 131.
 第2実施形態の有機半導体素子の構成要素である、ゲート電極103、有機半導体層106、ソース電極107、ドレイン電極108、フッ素樹脂層110、水溶性樹脂層120、ガラスコーティング層130、画素電極121の材質は、第1実施形態の有機半導体素子1の構成要素である、ゲート電極3、有機半導体層6、ソース電極7、ドレイン電極8、フッ素樹脂層11、水溶性樹脂層12、ガラスコーティング層13、画素電極21とそれぞれ同様である。第2のガラスコーティング層140の材質は、第1のガラスコーティング層130と同様の、ポリシラザン(例えばアクアミカ:AZエレクトロニックマテリアルズ社製)等が挙げられる。 The gate electrode 103, the organic semiconductor layer 106, the source electrode 107, the drain electrode 108, the fluororesin layer 110, the water-soluble resin layer 120, the glass coating layer 130, and the pixel electrode 121, which are components of the organic semiconductor element of the second embodiment. The material is a component of the organic semiconductor element 1 of the first embodiment, which is the gate electrode 3, the organic semiconductor layer 6, the source electrode 7, the drain electrode 8, the fluororesin layer 11, the water-soluble resin layer 12, and the glass coating layer. 13 and the pixel electrode 21, respectively. Examples of the material of the second glass coating layer 140 include polysilazane (for example, Aquamica: manufactured by AZ Electronic Materials), which is the same as the first glass coating layer 130.
 次に、有機半導体素子100の製造工程について説明する。有機半導体素子100の製造工程は、図11に示すように、基板2の上面にソース電極107及びドレイン電極108を離間して形成するソース・ドレイン電極形成工程(S101)と、ソース電極107とドレイン電極108の間に有機半導体層106をソース電極107とドレイン電極108に接触するように形成する有機半導体層形成工程(S102)と、有機半導体層106、ソース電極107及びドレイン電極108を覆うようにゲート絶縁積層104を形成するゲート絶縁積層形成工程(S103)と、ゲート絶縁積層104上面の、有機半導体層106と対向した箇所にゲート電極103を形成するゲート電極形成工程(S104)と、ゲート電極103及びゲート電極103の形成されていないゲート絶縁積層104とを覆うように第2のガラスコーティング層140を形成する第2のガラスコーティング層形成工程(S105)と、ゲート絶縁積層104及び第2のガラスコーティング層140にコンタクトホール131を形成するコンタクトホール形成工程(S106)と、コンタクトホール131と接続するように画素電極121を形成する画素電極形成工程(S107)とから構成されている。ゲート絶縁積層形成工程(S103)は、フッ素樹脂層110を形成するフッ素樹脂層形成工程(S131)と、フッ素樹脂層110の上面に水溶性樹脂層120を形成する水溶性樹脂層形成工程(S132)と、水溶性樹脂層120の上面に第1のガラスコーティング層130を形成する第1のガラスコーティング層形成工程(S133)とから構成されている。以下、各工程について実施例を挙げて説明する。 Next, the manufacturing process of the organic semiconductor element 100 will be described. As shown in FIG. 11, the manufacturing process of the organic semiconductor device 100 includes a source / drain electrode formation step (S101) in which the source electrode 107 and the drain electrode 108 are formed on the upper surface of the substrate 2 apart from each other, and the source electrode 107 and the drain electrode. An organic semiconductor layer forming step (S102) for forming the organic semiconductor layer 106 in contact with the source electrode 107 and the drain electrode 108 between the electrodes 108, and so as to cover the organic semiconductor layer 106, the source electrode 107, and the drain electrode 108. A gate insulating layer forming step (S103) for forming the gate insulating layer 104, a gate electrode forming step (S104) for forming the gate electrode 103 at a location facing the organic semiconductor layer 106 on the upper surface of the gate insulating layer 104, and a gate electrode 103 and the gate insulating laminate 104 where the gate electrode 103 is not formed. The second glass coating layer forming step (S105) for forming the second glass coating layer 140 and the contact hole forming step (S106) for forming the contact hole 131 in the gate insulating laminate 104 and the second glass coating layer 140. ) And a pixel electrode formation step (S107) for forming the pixel electrode 121 so as to be connected to the contact hole 131. The gate insulating layer forming step (S103) includes a fluororesin layer forming step (S131) for forming the fluororesin layer 110, and a water soluble resin layer forming step (S132) for forming the water soluble resin layer 120 on the upper surface of the fluororesin layer 110. ), And a first glass coating layer forming step (S133) for forming the first glass coating layer 130 on the upper surface of the water-soluble resin layer 120. Hereinafter, each step will be described with reference to examples.
 はじめに、S101のソース・ドレイン電極形成工程が行われる。この工程では、基板2の上面にソース電極107及びドレイン電極108が離間して形成される。本実施形態では、ガラスにより構成される基板2を洗浄後、基板2の上面にAu/Cr薄膜を形成した。そして、形成したAu/Cr薄膜のパターニングを行い、不要部分を除去することにより、ソース電極107及びドレイン電極108を形成した。詳細については第1実施形態におけるソース・ドレイン電極形成工程(S4)と同様であるため、説明は省略する。 First, the source / drain electrode forming step of S101 is performed. In this step, the source electrode 107 and the drain electrode 108 are formed apart from each other on the upper surface of the substrate 2. In this embodiment, the Au / Cr thin film is formed on the upper surface of the substrate 2 after cleaning the substrate 2 made of glass. Then, by patterning the formed Au / Cr thin film and removing unnecessary portions, the source electrode 107 and the drain electrode 108 were formed. Details are the same as in the source / drain electrode formation step (S4) in the first embodiment, and a description thereof will be omitted.
 次に、S102の有機半導体層形成工程が行われる。この工程は、第1実施形態における有機半導体層形成工程(S3)と同様であるため、説明は省略する。 Next, the organic semiconductor layer forming step of S102 is performed. Since this step is the same as the organic semiconductor layer forming step (S3) in the first embodiment, the description thereof is omitted.
 次に、S103のゲート絶縁積層形成工程が行われる。この工程は、フッ素樹脂層形成工程(S131)、水溶性樹脂層形成工程(S132)、第1のガラスコーティング層形成工程(S133)により構成される。フッ素樹脂層形成工程(S131)、水溶性樹脂層形成工程(S132)、第1のガラスコーティング層形成工程(S133)はそれぞれ、第1実施形態のフッ素樹脂層形成工程(S51)、水溶性樹脂層形成工程(S52)、ガラスコーティング層形成工程(S53)と同様であるため、説明は省略する。 Next, the gate insulating layer forming step of S103 is performed. This step includes a fluororesin layer forming step (S131), a water-soluble resin layer forming step (S132), and a first glass coating layer forming step (S133). The fluororesin layer forming step (S131), the water-soluble resin layer forming step (S132), and the first glass coating layer forming step (S133) are respectively the fluororesin layer forming step (S51) and the water-soluble resin of the first embodiment. Since it is the same as the layer forming step (S52) and the glass coating layer forming step (S53), description thereof is omitted.
 次に、S104のゲート電極形成工程が行われる。この工程は、ゲート絶縁積層104の上面にCr薄膜を形成した。そして、形成したCr薄膜のパターニングを行い、不要部分を除去することにより、ゲート電極103を形成した。詳細については第1実施形態におけるゲート電極形成工程(S1)と同様であるため、説明は省略する。 Next, the gate electrode forming step of S104 is performed. In this step, a Cr thin film was formed on the upper surface of the gate insulating laminate 104. And the gate electrode 103 was formed by patterning the formed Cr thin film and removing an unnecessary part. Details are the same as those in the gate electrode formation step (S1) in the first embodiment, and thus the description thereof is omitted.
 次に、S105の第2のガラスコーティング層形成工程が行われる。S105の保護膜形成工程は、ゲート電極103及びゲート電極103の形成されていない第2実施形態のゲート絶縁層104を覆うように第2のガラスコーティング層140を形成した。具体的には、アクアミカ(AZエレクトロニックマテリアルズ社製)をスピンコート法にて成膜し、その後アニール処理を120℃環境下で5分間実施することによって形成した。 Next, the second glass coating layer forming step of S105 is performed. In the protective film forming step of S105, the second glass coating layer 140 is formed so as to cover the gate electrode 103 and the gate insulating layer 104 of the second embodiment in which the gate electrode 103 is not formed. Specifically, aquamica (manufactured by AZ Electronic Materials) was formed by spin coating, and then annealed for 5 minutes in a 120 ° C. environment.
 次に、S106のコンタクトホール形成工程が行われ、次いでS107の画素電極形成工程が行われる。これらの工程は、それぞれ第1実施形態のコンタクトホール形成工程(S6)及び画素電極形成工程(S7)と同様であるため、説明は省略する。 Next, the contact hole forming step of S106 is performed, and then the pixel electrode forming step of S107 is performed. These steps are the same as the contact hole forming step (S6) and the pixel electrode forming step (S7) of the first embodiment, respectively, and thus description thereof is omitted.
 第2実施形態の有機半導体素子100でも、第1実施形態の有機半導体素子1と同様の効果が得られる。第2実施形態の有機半導体素子100は、そのゲート絶縁積層104を、まずフッ素樹脂層110から形成することにより、水溶性樹脂層120、ガラスコーティング層130を有機半導体層106上に直接形成するよりも有機半導体に対するダメージが少なく、また、第1のガラスコーティング層130を形成することにより、水溶性樹脂層120上に画素電極121を形成する場合と比べて画素電極121を容易に形成でき、また、フッ素樹脂層110と第1のガラスコーティング層130の中間に水溶性樹脂層120を形成することによりガラスコーティング層130形成時の有機半導体層106へのダメージを軽減できるため、安定したTFT特性を持つ有機半導体素子を得ることができる。 Also in the organic semiconductor element 100 of the second embodiment, the same effect as that of the organic semiconductor element 1 of the first embodiment can be obtained. In the organic semiconductor device 100 of the second embodiment, the gate insulating laminate 104 is first formed from the fluororesin layer 110, thereby forming the water-soluble resin layer 120 and the glass coating layer 130 directly on the organic semiconductor layer 106. In addition, there is little damage to the organic semiconductor, and by forming the first glass coating layer 130, the pixel electrode 121 can be easily formed as compared with the case where the pixel electrode 121 is formed on the water-soluble resin layer 120. Since the water-soluble resin layer 120 is formed between the fluororesin layer 110 and the first glass coating layer 130, damage to the organic semiconductor layer 106 when the glass coating layer 130 is formed can be reduced, so that stable TFT characteristics can be obtained. An organic semiconductor element can be obtained.
 なお、本発明は、詳述した実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲内において種々変更を加えてもよい。例えば、有機半導体素子を構成する基板、ゲート電極、ソース電極、ドレイン電極、ゲート絶縁層、有機半導体層の材料、大きさ、形状は実施形態の場合に限定されず、本開示の要旨を逸脱しない範囲内において適宜変更可能である。 Note that the present invention is not limited to the embodiments described in detail, and various modifications may be made without departing from the scope of the present disclosure. For example, the materials, sizes, and shapes of the substrate, the gate electrode, the source electrode, the drain electrode, the gate insulating layer, and the organic semiconductor layer that constitute the organic semiconductor element are not limited to the embodiment, and do not depart from the gist of the present disclosure. It can be changed as appropriate within the range.
 また、第1実施形態及び第2実施形態では、ソース電極とドレイン電極とを形成させた後に有機半導体層を形成させたが、有機半導体層を形成させた後にソース電極とドレイン電極とを形成させてもよい。 In the first and second embodiments, the organic semiconductor layer is formed after forming the source electrode and the drain electrode. However, after forming the organic semiconductor layer, the source electrode and the drain electrode are formed. May be.
 本発明の酸化物薄膜トランジスタ及び酸化物薄膜トランジスタの製造方法は、所謂ボトムゲート型またはトップゲート型の酸化物薄膜トランジスタ及びその製造方法に適用可能である。 The oxide thin film transistor and the method for manufacturing the oxide thin film transistor of the present invention can be applied to a so-called bottom gate type or top gate type oxide thin film transistor and a method for manufacturing the same.
1   第1実施形態の有機半導体素子
2   基板
3   ゲート電極
4   ゲート絶縁層
6   有機半導体層
7   ソース電極
8   ドレイン電極
10  保護膜
11  フッ素樹脂層
12  水溶性樹脂層
13  ガラスコーティング層
21  画素電極
31  スルーホール
100 第2実施形態の有機半導体素子
103 ゲート電極
104 ゲート絶縁積層
106 有機半導体層
107 ソース電極
108 ドレイン電極
110 フッ素樹脂層
120 水溶性樹脂層
130 第1のガラスコーティング層
140 第2のガラスコーティング層
DESCRIPTION OF SYMBOLS 1 Organic-semiconductor element 2 of 1st Embodiment Substrate 3 Gate electrode 4 Gate insulating layer 6 Organic semiconductor layer 7 Source electrode 8 Drain electrode 10 Protective film 11 Fluororesin layer 12 Water-soluble resin layer 13 Glass coating layer 21 Pixel electrode 31 Through hole 100 Organic Semiconductor Element 103 of Second Embodiment Gate Electrode 104 Gate Insulating Stack 106 Organic Semiconductor Layer 107 Source Electrode 108 Drain Electrode 110 Fluoro Resin Layer 120 Water-soluble Resin Layer 130 First Glass Coating Layer 140 Second Glass Coating Layer

Claims (5)

  1.  絶縁機能を有する絶縁層の上面に設けられた有機半導体層上に、
     フッ素樹脂層と、水溶性樹脂層と、ガラスコーティング層とを順次積層して形成したことを特徴とする有機半導体素子。
    On the organic semiconductor layer provided on the upper surface of the insulating layer having an insulating function,
    An organic semiconductor element characterized by being formed by sequentially laminating a fluororesin layer, a water-soluble resin layer, and a glass coating layer.
  2.  基板上に設けられているゲート電極と、
     前記ゲート電極を覆うように設けられた絶縁層であるゲート絶縁層と、
     前記ゲート絶縁層の上面に設けられた有機半導体層と、
     前記有機半導体層に接触するよう設けられると共に、互いに離間して配置されたソース電極及びドレイン電極とにより構成される有機半導体素子において、
     前記有機半導体層、ソース電極及びドレイン電極の各上面を覆うようにして設けられたフッ素樹脂層と、
     前記フッ素樹脂層上に設けられた水溶性樹脂層と、
     前記水溶性樹脂層上に設けられたガラスコーティング層と、
     前記ガラスコーティング層上に設けられた画素電極と
     により構成されることを特徴とする有機半導体素子。
    A gate electrode provided on the substrate;
    A gate insulating layer which is an insulating layer provided so as to cover the gate electrode;
    An organic semiconductor layer provided on an upper surface of the gate insulating layer;
    In the organic semiconductor element that is provided so as to be in contact with the organic semiconductor layer and includes a source electrode and a drain electrode that are arranged apart from each other,
    A fluororesin layer provided so as to cover each upper surface of the organic semiconductor layer, the source electrode and the drain electrode;
    A water-soluble resin layer provided on the fluororesin layer;
    A glass coating layer provided on the water-soluble resin layer;
    An organic semiconductor element comprising: a pixel electrode provided on the glass coating layer.
  3.  絶縁機能を有する絶縁層である基板と、
     前記基板上に設けられた有機半導体層と、
     前記有機半導体層に接触するよう設けられると共に、互いに離間して配置されたソース電極及びドレイン電極と、
     前記有機半導体層、ソース電極及びドレイン電極の各上面を覆うようにして設けられたフッ素樹脂層と、
     前記フッ素樹脂層上に設けられた水溶性樹脂層と、
     前記水溶性樹脂層上に設けられた第1のガラスコーティング層と、
     前記フッ素樹脂層と前記水溶性樹脂層と前記第1のガラスコーティング層とが積層されて形成されるゲート絶縁積層上の、前記有機半導体層と相対する場所に設けられたゲート電極と、
     前記第1のガラスコーティング層と前記ゲート電極の各上面を覆うように設けられた第2のガラスコーティング層と、
     前記第2のガラスコーティング層上に設けられた画素電極と
     により構成されることを特徴とする有機半導体素子。
    A substrate which is an insulating layer having an insulating function;
    An organic semiconductor layer provided on the substrate;
    A source electrode and a drain electrode provided in contact with the organic semiconductor layer and spaced apart from each other;
    A fluororesin layer provided so as to cover each upper surface of the organic semiconductor layer, the source electrode and the drain electrode;
    A water-soluble resin layer provided on the fluororesin layer;
    A first glass coating layer provided on the water-soluble resin layer;
    A gate electrode provided at a location facing the organic semiconductor layer on a gate insulating laminate formed by laminating the fluororesin layer, the water-soluble resin layer, and the first glass coating layer;
    A second glass coating layer provided so as to cover each upper surface of the first glass coating layer and the gate electrode;
    An organic semiconductor element comprising: a pixel electrode provided on the second glass coating layer.
  4.  基板上にゲート電極を形成させるゲート電極形成工程と、
     前記ゲート電極を覆うようにゲート絶縁層を形成させるゲート絶縁層形成工程と、
     前記ゲート絶縁層上に有機半導体層を形成させる有機半導体層形成工程と、
     前記有機半導体層に接触するよう設けられると共に、互いに離間して配置されているソース電極及びドレイン電極を形成させるソース・ドレイン電極形成工程と、
     前記有機半導体層、ソース電極及びドレイン電極の各上面を覆うようにしてフッ素樹脂層を形成させるフッ素樹脂層形成工程と、
     前記フッ素樹脂層の露出面に親水化処理を施すフッ素樹脂層表面親水化処理工程と、
     露出面に親水化処理を施された前記フッ素樹脂層上に水溶性樹脂層を形成させる水溶性樹脂層形成工程と、
     前記水溶性樹脂層上にガラスコーティング層を形成させるガラスコーティング層形成工程と、
     前記ガラスコーティング層上に画素電極を形成させる画素電極形成工程と、
     により構成されることを特徴とする有機半導体素子の製造方法。
    A gate electrode forming step of forming a gate electrode on the substrate;
    A gate insulating layer forming step of forming a gate insulating layer so as to cover the gate electrode;
    An organic semiconductor layer forming step of forming an organic semiconductor layer on the gate insulating layer;
    A source / drain electrode forming step of forming a source electrode and a drain electrode provided in contact with the organic semiconductor layer and spaced apart from each other;
    A fluororesin layer forming step of forming a fluororesin layer so as to cover each upper surface of the organic semiconductor layer, the source electrode and the drain electrode;
    A fluororesin layer surface hydrophilization treatment step of hydrophilizing the exposed surface of the fluororesin layer;
    A water-soluble resin layer forming step of forming a water-soluble resin layer on the fluororesin layer subjected to hydrophilic treatment on the exposed surface;
    A glass coating layer forming step of forming a glass coating layer on the water-soluble resin layer;
    A pixel electrode forming step of forming a pixel electrode on the glass coating layer;
    The manufacturing method of the organic-semiconductor element characterized by these.
  5.  基板上に、有機半導体層を形成させる有機半導体層形成工程と、
     前記有機半導体層に接触するよう設けられると共に、互いに離間して配置されているソース電極及びドレイン電極を形成させるソース・ドレイン電極形成工程と、
     前記有機半導体層、ソース電極及びドレイン電極の各上面を覆うようにしてフッ素樹脂層を形成させるフッ素樹脂層形成工程と、
     前記フッ素樹脂層の露出面に親水化処理を施すフッ素樹脂層表面親水化処理工程と、
     露出面に親水化処理を施された前記フッ素樹脂層の上面に水溶性樹脂層を形成させる水溶性樹脂層形成工程と、
     前記水溶性樹脂層の上面に第1のガラスコーティング層を形成させる第1のガラスコーティング層形成工程と、
     前記第1のガラスコーティング層上の、前記有機半導体層と相対する場所にゲート電極を形成させるゲート電極形成工程と、
     前記第1のガラスコーティング層と前記ゲート電極の各上面を覆うように第2のガラスコーティング層を形成させる第2のガラスコーティング層形成工程と、
     前記第2のガラスコーティング層上面に画素電極を形成する画素電極形成工程と、
     により構成されることを特徴とする有機半導体素子の製造方法。
    An organic semiconductor layer forming step of forming an organic semiconductor layer on the substrate;
    A source / drain electrode forming step of forming a source electrode and a drain electrode provided in contact with the organic semiconductor layer and spaced apart from each other;
    A fluororesin layer forming step of forming a fluororesin layer so as to cover each upper surface of the organic semiconductor layer, the source electrode and the drain electrode;
    A fluororesin layer surface hydrophilization treatment step of hydrophilizing the exposed surface of the fluororesin layer;
    A water-soluble resin layer forming step of forming a water-soluble resin layer on the upper surface of the fluororesin layer subjected to hydrophilization treatment on the exposed surface;
    A first glass coating layer forming step of forming a first glass coating layer on the upper surface of the water-soluble resin layer;
    A gate electrode formation step of forming a gate electrode on the first glass coating layer at a location facing the organic semiconductor layer;
    A second glass coating layer forming step of forming a second glass coating layer so as to cover each upper surface of the first glass coating layer and the gate electrode;
    Forming a pixel electrode on the upper surface of the second glass coating layer; and
    The manufacturing method of the organic-semiconductor element characterized by these.
PCT/JP2010/051519 2009-02-10 2010-02-03 Organic semiconductor element and method for manufacturing same WO2010092891A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-028155 2009-02-10
JP2009028155A JP2010186768A (en) 2009-02-10 2009-02-10 Organic semiconductor element and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010092891A1 true WO2010092891A1 (en) 2010-08-19

Family

ID=42561733

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/051519 WO2010092891A1 (en) 2009-02-10 2010-02-03 Organic semiconductor element and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2010186768A (en)
WO (1) WO2010092891A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705990A (en) * 2013-10-08 2016-06-22 弗莱克因艾伯勒有限公司 Electronic devices including organic materials
CN111180583A (en) * 2019-10-15 2020-05-19 北京元芯碳基集成电路研究院 Transistor and method of manufacturing the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013105950A (en) 2011-11-15 2013-05-30 Sony Corp Semiconductor device and electronic equipment
US9023683B2 (en) * 2013-05-13 2015-05-05 Sharp Laboratories Of America, Inc. Organic semiconductor transistor with epoxy-based organic resin planarization layer
EP3527385B1 (en) 2018-02-19 2022-08-24 Heidelberger Druckmaschinen AG Method for operating an ink printer in alternating modes

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131259A (en) * 1992-11-04 2003-05-08 Seiko Epson Corp Active matrix substrate, and liquid crystal display device
JP2003203924A (en) * 2001-10-31 2003-07-18 Semiconductor Energy Lab Co Ltd Method for manufacturing field effect transistor
JP2006165555A (en) * 2004-12-09 2006-06-22 Seiko Epson Corp Self-alignment patterning method
JP2007053147A (en) * 2005-08-16 2007-03-01 Sony Corp Organic semiconductor device and its manufacturing method
WO2007099689A1 (en) * 2006-02-28 2007-09-07 Pioneer Corporation Organic transistor and method for manufacturing same
JP2007258218A (en) * 2006-03-20 2007-10-04 Toppan Printing Co Ltd Organic transistor, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003131259A (en) * 1992-11-04 2003-05-08 Seiko Epson Corp Active matrix substrate, and liquid crystal display device
JP2003203924A (en) * 2001-10-31 2003-07-18 Semiconductor Energy Lab Co Ltd Method for manufacturing field effect transistor
JP2006165555A (en) * 2004-12-09 2006-06-22 Seiko Epson Corp Self-alignment patterning method
JP2007053147A (en) * 2005-08-16 2007-03-01 Sony Corp Organic semiconductor device and its manufacturing method
WO2007099689A1 (en) * 2006-02-28 2007-09-07 Pioneer Corporation Organic transistor and method for manufacturing same
JP2007258218A (en) * 2006-03-20 2007-10-04 Toppan Printing Co Ltd Organic transistor, and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105705990A (en) * 2013-10-08 2016-06-22 弗莱克因艾伯勒有限公司 Electronic devices including organic materials
CN105705990B (en) * 2013-10-08 2020-09-29 弗莱克因艾伯勒有限公司 Electronic device comprising organic material
CN111180583A (en) * 2019-10-15 2020-05-19 北京元芯碳基集成电路研究院 Transistor and method of manufacturing the same

Also Published As

Publication number Publication date
JP2010186768A (en) 2010-08-26

Similar Documents

Publication Publication Date Title
WO2010026798A1 (en) Oxide thin film transistor and method for manufacturing the same
KR101065317B1 (en) Organic light emitting display apparatus and method of manufacturing thereof
JP4815765B2 (en) Method for manufacturing organic semiconductor device
JP5598410B2 (en) Organic semiconductor device manufacturing method and organic semiconductor device
US10312375B2 (en) Thin-film transistor, method for producing thin-film transistor and image display apparatus using thin-film transistor
WO2010092891A1 (en) Organic semiconductor element and method for manufacturing same
US20170222168A1 (en) Thin-film transistor and method of fabricating the same
US8623695B2 (en) Method for producing semiconductor device
WO2009150886A1 (en) Oxide thin film transistor and method for manufacturing the same
JP2011254091A (en) Organic semiconductor device and method of manufacturing the same
EP2871684B1 (en) Thin film transistor, method of manufacturing the same, and electronic device including the thin film transistor
EP1903609A2 (en) Method for manufacturing a thin film transistor array panel
US20080038881A1 (en) Thin Film Transistor Array Panel and Manufacturing Method Thereof
KR20100027828A (en) Organic thin film transistor display panel and method of manufacturing the same
JP2006148114A (en) Thin film transistor display panel that utilizes semiconductor and method for manufacturing the same
JP5891625B2 (en) Organic semiconductor device manufacturing method and organic semiconductor device
JP2011233587A (en) Organic transistor and method for manufacturing the same
KR102277814B1 (en) Thin film transistor and method of manufacturing the same and electronic device including the thin film transistor
TW202034402A (en) Conductor etching for producing thin-film transistor devices
JP7163772B2 (en) Organic thin film transistor, manufacturing method thereof, and image display device
CN102751448B (en) Semiconductor device and method for manufacturing the same
JP2010040999A (en) Organic semiconductor device, method of manufacturing the same, and organic el display
JP2006253682A (en) Organic thin film transistor display panel and manufacturing method thereof
US9484542B2 (en) Thin film transistor panel and method of manufacturing the same, and electronic device including the thin film transistor panel
JP2015185789A (en) Thin film transistor and manufacturing method of the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10741168

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10741168

Country of ref document: EP

Kind code of ref document: A1