WO2010025916A1 - Hochspannungstransformator - Google Patents

Hochspannungstransformator Download PDF

Info

Publication number
WO2010025916A1
WO2010025916A1 PCT/EP2009/006388 EP2009006388W WO2010025916A1 WO 2010025916 A1 WO2010025916 A1 WO 2010025916A1 EP 2009006388 W EP2009006388 W EP 2009006388W WO 2010025916 A1 WO2010025916 A1 WO 2010025916A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary winding
voltage
insulating
transformer
housing
Prior art date
Application number
PCT/EP2009/006388
Other languages
English (en)
French (fr)
Inventor
Rudolf Blank
Stefan Baldauf
Original Assignee
B2 Electronic Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by B2 Electronic Gmbh filed Critical B2 Electronic Gmbh
Priority to PL09778308T priority Critical patent/PL2319057T3/pl
Priority to ES09778308.8T priority patent/ES2657440T3/es
Priority to EP09778308.8A priority patent/EP2319057B1/de
Priority to CN2009801346678A priority patent/CN102144269B/zh
Publication of WO2010025916A1 publication Critical patent/WO2010025916A1/de
Priority to US13/039,612 priority patent/US8552737B2/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/321Insulating of coils, windings, or parts thereof using a fluid for insulating purposes only

Definitions

  • the present invention relates to a high-voltage transformer for providing an AC voltage in the kV range with at least one secondary winding which is wound on a coil carrying body surrounding a transformer core.
  • Such high voltage transformers are well known in the art. They are often part of a - if necessary.
  • Mobile - test or measuring device in which the tapped off at the at least one secondary winding high voltage serves as a test voltage for a component to be tested or for other measurement purposes.
  • an input alternating voltage is applied to a primary winding of the transformer, which surrounds a ferromagnetic core of the transformer, which consists, for example, of iron or an iron sheet packet.
  • the magnetic field induced thereby in the transformer core then in turn induces a secondary voltage on the at least one secondary winding which is dependent in its amplitude essentially on the ratio of the respective number of turns on the primary and secondary windings.
  • special care is required in connection with the electrical insulation of the transformer and the secondary winding.
  • High-voltage transformers of the type mentioned above are available with exactly one secondary winding whose output AC voltage is tapped against a ground signal.
  • high-voltage transformers with a total of two secondary windings are known, each of which provide a 180 ° relative to each other phase-shifted output voltage.
  • tapping the differential voltage can thus be obtained with identically designed secondary windings, a doubling of the tapped off at a secondary winding maximum voltage.
  • the secondary windings must thus be designed only for a smaller - or half the same - output voltage in an identical structure. It is to be expressly understood, however, that the present invention is not limited to any particular transformer arrangement or geometry.
  • a coil support body which carries the secondary winding and is made of electrically insulating material, as is known from the prior art, insulates the secondary winding - in relation to the coil geometry - radially inward against the transformer core.
  • the coil carrier body advantageously has a central bore, through which, for example, a leg of the transformer core is led.
  • essentially two different insulation concepts are known for further electrical insulation of the secondary winding, which in turn often already comprises insulated wires.
  • the so-called dry-type transformers the secondary winding is encapsulated by means of a casting resin which, after its hardening, also ensures outward insulation for sufficient electrical insulation of the secondary winding.
  • the total weight of the test or measuring device which is essentially determined by the weight of the transformer, is an important criterion.
  • the casting resin already makes a not inconsiderable contribution to the total weight of the transformer due to the layer thickness required for high-voltage insulation purposes and due to its density, which is usually in the range of about 1.3 to 1.7 g / cm 3 .
  • the use of comparatively thick wires for the secondary winding (s) also adversely contributes to the weight of a dry-type transformer.
  • a second variant of high-voltage transformers makes use of an insulating conductor for insulation purposes, which surrounds the entire transformer within a metal transformer housing.
  • An insulating oil or an insulating gas (frequently used under pressure), for example sulfur hexafluoride (SFe), is usually used here.
  • the entire transformer including transformer core and coils is surrounded by insulating oil. Due to the not insignificant thermal expansion of the insulation Oil in the operation of the transformer or at an increasing ambient temperature for other reasons, such oil-insulated transformers also, unless they are used as a stand with continuous and cooled oil circulation, provide a special expansion volume (eg in the form of an expansion vessel), in which the insulating oil expand if necessary, as is the case for example in the oil transformer according to DE 1 226 119. The amount of oil surrounding the entire transformer or the weight of the metallic housing contributes significantly to the overall weight of such a transformer.
  • the high-voltage transformer according to the invention is provided in addition to the features mentioned that he has the secondary winding encapsulating insulation housing for electrical insulation of the secondary winding which - based on the coil geometry according to (radially) inside - by the secondary winding supporting coil support body and - based on the coil geometry according to (radially) outside - is bewandet by a made of plastic and the secondary winding to form an annular gap enveloping enveloping body, wherein the annular gap between the secondary winding and enveloping body is filled with an insulating fluid.
  • the insulation housing for encapsulation of the secondary winding according to the invention must also be closed in the axial direction, ie on the opposite end faces of the insulation housing.
  • the insulating housing must also have suitable openings or openings, which are suitable to close or seal fluid-tight.
  • the insulation housing provided according to the invention encapsulates the secondary winding to form an outer annular gap filled with insulating fluid, in comparison to the high-voltage transformers known from the prior art, in which the entire transformer incl. lieröl is stored, the amount of insulating fluid used for insulation purposes, in particular insulating oil are reduced to a large extent. This is a first contribution to a weight saving realized in the context of the present invention. Further, the plastic envelope body due to the fact that a completely filled with insulating fluid annular gap surrounds the secondary winding, can be made with a significantly thinner wall thickness, as in the case of the resin jacket of a cast in the region of the secondary winding with dry resin transformer for purposes of adequate High voltage insulation is necessary.
  • the envelope of the inventively provided insulation housing can be injection-molded in a simple and cost-effective manner from plastic, without the need for a special high effort to avoid defects, as is the case when casting a secondary winding with casting resin.
  • the enveloping body is, after the secondary winding has been wound onto the coil carrier body, simply pushed over the secondary winding and hermetically sealed, ie fluid-tight, to an insulating housing.
  • the annular gap is filled by a suitable (and later to be closed) opening of the insulating housing with insulating fluid.
  • the increased fluidity of the non-hardening Isolierflu- ids located in the annular gap and compared to resin allows a defect-free in a simple manner electrical insulation of the secondary winding - even with small wire diameters of the secondary winding.
  • an insulating fluid that is, a non-hardening insulating oil or an insulating gas
  • a non-hardening insulating oil or an insulating gas can be used in a particularly advantageous manner to particularly thin wires for the secondary winding, which in particular allows a further reduction in weight compared with conventional dry-type transformers.
  • the encapsulation of the secondary winding through the insulating housing radially inward through the Spulentrag- body and radially outward by the - surrounding the insulating oil-filled annular envelope - takes place.
  • the transformer core or other components of the transformer are thus advantageously not directly in contact with the insulating fluid, which also contributes to the longest possible purity of the insulating fluid used.
  • the ferromagnetic transformer core is in direct contact with insulating oil, there is a continuously increasing contamination of the insulating (especially with conductive particles) with the result that this must be regularly renewed or cleaned.
  • the insulating fluid of a high-voltage transformer according to the invention either does not have to be at all over the life of the transformer or only be renewed after longer operating intervals.
  • the enveloping body or the insulating housing which is preferably closely enveloping the secondary winding to form an annular gap, also has a significantly reduced weight in comparison with previously known metal housings for oil-insulated transformers, both because of its smaller dimensions and because of the different choice of material.
  • a high-voltage transformer according to the invention is installed in a mobile test or measuring device - it is evident to provide a suitable cooling mechanism with which excessive heat development during operation of the transformer is counteracted. Especially in the case of mobile test or measuring devices of the type discussed below, however, the requirements for such a cooling mechanism are within reasonable limits, since, for example, providing a test voltage of 75 kV rms already with battery or battery-powered test equipment at a power of only 12 - 15 watts can be done.
  • the present invention is not should be limited to specific power ranges of the transformer or test / measuring device, although preferably an application of the teaching of the invention for test or measuring devices with a maximum test or measuring voltage of (at least) 75 kV rms (preferably 100 or even 200 kV rms) for outputs in the range of a few watts up to 100, 200 or even 300 watts is provided.
  • the present invention provides a much lighter as well as simple and inexpensive to manufacture high-voltage transformer, which is particularly suitable for mobile applications ready.
  • the high-voltage insulation for the secondary winding is provided to the outside both by the insulating fluid in the annular gap and by the enveloping body. It turns out, however, that in the context of the present invention for sufficient isolation of a high voltage in the kV range - at the same time comparatively thin wall thickness of the envelope (see below) - even in its gap width comparatively thin annular gap (ie a small amount of insulating oil) sufficient is.
  • the filled with insulating fluid annular gap around the secondary winding thus according to the invention has a considered in cross-section gap width of less than or equal to 20 mm, more preferably of less than or equal to 10 mm.
  • the relevant secondary winding proves even a gap width of about 3 mm - with a correspondingly low Isolieröl office and in conjunction with the insulating properties of a Kunststoffbüll stresses with a wall thickness in the order of about 5 mm - as suitable.
  • a constant gap width is maintained over the entire length of the secondary winding and within the cross section over the entire length of the annular gap.
  • the amount of insulating oil required can be reduced by up to 90%, which is obviously associated with a particularly significant weight reduction.
  • the invention provides that the enveloping body has a wall thickness of less than or equal to 20 mm, again advantageously less than or equal to 10 mm or less than or equal to approximately 5 mm. This proves to be sufficient - in particular in conjunction with the already mentioned width of the annular gap for the insulating fluid - for the desired isolation purpose at high voltages in the range of several 10 to a few 100 kV and in turn allows a considerable weight saving over the prior art, especially in comparison with conventional dry-type transformers.
  • the wall thickness of the tester can be used Insulation housing of about 15-20 mm and an annular gap width of about 20 mm already provided sufficient insulation through the insulation housing. At lower voltages, the numbers mentioned for the wall thickness of the envelope or the width of the annular gap can be reduced accordingly.
  • polypropylene is used in the context of the invention, which is particularly suitable for the present invention, in particular because of its good insulating properties and its low density of about 0.97 g / cm 3 .
  • a hermetically sealable Isolierfluideinyogllstutzen is provided on the insulation housing, through which the insulating fluid can be filled in the annular gap surrounding the secondary winding.
  • This is evidently preferably formed on the enveloping body radially surrounding the secondary winding, wherein, if necessary, an end-side arrangement may also be expedient.
  • the insulating fluid is filled before starting the transformer.
  • the insulating fluid can optionally be omitted and replaced by a new insulating fluid through the filler neck if necessary.
  • the filling is preferably carried out under vacuum.
  • the filler neck can preferably also be formed on one of the openings of the insulating housing, through which the low or high voltage side terminal of the secondary winding is led out of the housing.
  • the enveloping body is designed substantially tubular. This allows - especially in a cross-sectionally substantially circular geometry of the secondary winding - also a particularly compact and stable design of the insulating housing. It should be noted, however, that the present invention is generally not limited to a particular cross-sectional geometry of the transformer core or the secondary winding. A further preferred embodiment of the present invention provides that the secondary winding is made of a wire having a diameter of less than or equal to 0.2 mm or less than 0.1 mm.
  • the wire should already be equipped with its own insulation, eg in the form of paint insulation.
  • the inventive design of the claimed high-voltage transformer can even be used in a particularly preferred manner on even thinner winding wires with diameters of less than or equal to 0.05 mm, in particular wires with a diameter of about 0.04 mm.
  • Such wires are - already single or double lacquer-insulated - commercially available. They can be wound around the package carrier body using winding techniques known from the prior art, for example in layer or disk winding or other winding methods.
  • the coil carrier body and the enveloping body are made of the same plastic. This proves to be particularly advantageous if - for the formation of the To the invention encapsulation for the secondary winding - are welded together frontally.
  • encapsulation for the secondary winding - are welded together frontally.
  • radially extending edges may be provided for the frontal closure of the insulating housing, which are welded to the hermetic seal of the housing with the respective other component.
  • separate, end face to be arranged between the coil support body and the envelope and possibly.
  • end caps are used, which are welded with coil support body and enveloping body for fluid-tight encapsulation of the secondary winding together with insulating or sealed by suitable sealing means against them.
  • the insulating fluid is preferably used on the extent known from the prior art insulating oils. Compared with an insulating gas which is to be preferred for reasons of weight, there is the advantage that it does not have to be filled under overpressure into the insulating housing, so that the design requirements for the insulating housing are reduced.
  • the present invention also includes, in particular, a mobile, ie in particular portable, test or measuring device with a test or measuring device housing and a housing arranged within the test or measuring device housing.
  • a mobile, ie in particular portable, test or measuring device with a test or measuring device housing and a housing arranged within the test or measuring device housing.
  • the tester is a high voltage tester for testing the dielectric strength of insulating or other DUTs
  • the high voltage transformer to provide a test voltage acting as a secondary voltage of several 10 kV, in particular up to or at least 75, 100 or even 200 kV rms (rms voltage) is suitable.
  • a suitable test space shall be provided for the insulating oil to be tested.
  • two secondary windings are provided here.
  • this is advantageously an arrangement in which the secondary windings provide a - relative to each other - phase-shifted by 180 ° output voltage, the tapped differential voltage as a test voltage for testing the dielectric strength of test and located within the test room insulating oils application place. Since no particularly high currents must be conducted through the secondary winding for this purpose, can in this application in particular, be used on particularly thin wires (see above) for the secondary winding.
  • Such testing devices with battery operation and known from the prior art high-voltage transformers have been available (including battery and all other strigella beautician) exclusively with a total weight of over 25 kg. Only in the context of the present invention, it was possible to reduce their weight or mass to less than or equal to 25 kg.
  • the main reason for the realization of such a lightweight tester for providing voltages greater than 75 kV rms is the lightweight high-voltage transformer, which (including primary and secondary windings, transformer core and insulation housing including insulating oil) has a mass of less than 7.5 kg (in one preferred variant even only 6.5 kg) contributes to the total weight of the tester.
  • this weight reduction proves to be extremely important, since health and safety regulations in many countries require a weight limit for mobile devices, so that they may be worn by a person.
  • FIG. 1 is a perspective view of the essential components of an embodiment of a Hochnapssstransforma- sector according to the invention
  • Fig. 2 is a section through an insulating housing of the high voltage transformer of FIG. 1 and
  • Fig. 3 is a perspective view of an embodiment of a tester according to the invention, within which editachigepuruse the high voltage transformer of FIG. 1 is arranged.
  • the high-voltage transformer 1 shown in FIG. 1 comprises a ferromagnetic transformer core 2 around which two primary windings 3, 4 (designed as disk windings and separately insulated) are wound on different legs.
  • Fig. 1 shows two, each one leg of the transformer core 2 surrounding insulation housing 5, 6, each of which provides a low-voltage side terminal 7, 8 and a high-voltage side terminal 9, 10 for the respective insulation housing 5, 6 located secondary winding 12. All terminals 7, 8, 9, 10 are formed so that they are contacted with the relevant end of the secondary winding or that a corresponding contact can be passed through them.
  • the insulating housing 5 is bounded within the cutting plane radially inward by a plastic carrier body 11 consisting of plastic, which in turn surrounds a leg of the transformer core 2 (not shown in FIG. 2).
  • the secondary winding 12 is wound on the coil carrier 11 by means of a suitable winding method, the secondary winding 12 being surrounded by an envelope ring 14 which is likewise made of plastic and essentially tubular, forming the radially outer wall of the insulation housing 5 represents.
  • the annular gap 13 is or is filled with an insulating oil.
  • the low-voltage side terminal 7 for the secondary winding 12 is in the form of a nozzle 15 with a formed central opening 16 so that it can serve as Isolierölein spallstutzten simultaneously, for which purpose the annular gap 13 is filled through the opening 16 under negative pressure conditions with insulating oil.
  • the low-voltage side of the secondary winding 12 is contacted through the opening 16, wherein the terminal 7 or its opening 16 before starting the transformer 1, so after complete filling of the annular gap 13 with the insulating oil is sealed in a suitable manner.
  • the high voltage side terminal 9 on the insulation housing 5 under a protective sheath 17 has a corresponding nozzle 18, which in turn is equipped with a central, pointing to Hüllèvetown opening 19. Again, the electrical contacting of the high-voltage side end of the secondary winding 12 through the opening 19 therethrough, which is then sealed or sealed in a suitable manner. Also, this nozzle 18 can be used to fill the annular gap 13 with insulating oil.
  • the insulation housing 5 is of course also the front side on both sides, ie both in the direction of the adjacent primary winding 3 (see Fig. 1) and the opposite side completely fluid-tight manner, so that ultimately the secondary winding 12 and the secondary winding 12 within the annular gap thirteenth surrounding insulating oil completely encapsulated is.
  • the insulating oil does not come into contact with the transformer core 2.
  • Covering body 14 and coil support body 11 are made of the same plastic.
  • Fig. 3 finally shows a mobile, so portable high voltage tester 20 for testing the dielectric strength of insulating oils.
  • the test apparatus 20 has a test chamber 22, surrounded by a transparent housing and closable with a lid 21, which can be filled with the insulating oil to be tested.
  • two high-voltage electrodes 23, 24 facing each other are arranged, to which a test voltage of 75 kV rms is applied.
  • the test voltage is applied by means of a high-voltage transformer 1 shown in FIGS. 1 and 2, which is arranged inside the tester housing 25. These are the two

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Insulating Of Coils (AREA)

Abstract

Bei einem Hochspannungstransformator (1) zur Bereitstellung einer Wechselspannung im kV-Bereich mit wenigstens einer Sekundärwicklung (12), die auf einem einen Transformatorkern (2) umgebenden Spulentragkörper (11) aufgewickelt ist, ist zur elektrischen Isolierung der Sekundärwicklung (12) ein die Sekundärwicklung (12) kapselndes Isolationsgehäuse (5, 6) vorgesehen, welches durch den die Sekundärwicklung (12) tragenden Spulentragkörper (11) und durch einen aus Kunststoff hergestellten und die Sekundärwicklung (12) unter Ausbildung eines Ringspalts (13) umhüllenden Hüllkörper (14) bewandet ist, wobei der Ringspalt (13) zwischen Sekundärwicklung (12) und Hüllkörper (14) mit einem Isolierfluid befüllt ist. Dabei weisen der mit Isolierfluid befüllte Ringspalt (13) eine im Querschnitt betrachtete Spaltbreite von kleiner gleich 20 mm und der Hüllkörper (14) eine Wandstärke von kleiner gleich 20 mm auf, wobei der Kunststoff Polypropylen und kein separates Ausdehnungsvolumen für das Isolierfluid bereitgestellt ist.

Description

Hochspannungstransformator
Die vorliegende Erfindung betrifft einen Hochspannungstransformator zur Bereitstellung einer Wechselspannung im kV-Bereich mit wenigstens einer Sekundärwicklung, die auf einem einen Transformatorkern umgebenden Spu- lentragkörper aufgewickelt ist.
Solche Hochspannungstransformatoren sind aus dem Stand der Technik hinlänglich bekannt. Sie sind häufig Bestandteil eines - ggfs. mobilen - Prüf- oder Messgeräts, bei welchem die an der wenigstens einen Sekundärwicklung abgreifbare Hochspannung als Prüfspannung für ein zu prüfendes Bauteil oder für sonstige Messzwecke dient.
Dabei wird eine Eingangswechselspannung an einer Primärwicklung des Transformators angelegt, welche einen z.B. aus Eisen oder einem Eisenblechpaket bestehenden ferromagnetischen Kern des Transformators umgibt. Das hierdurch im Transformatorkern induzierte Magnetfeld induziert dann seinerseits eine - in ihrer Amplitude im wesentlichen von dem Verhältnis der jeweiligen Windungszahlen an Primär- und Sekundärwicklung abhängige - Sekundärspannung an der wenigstens einen Sekundärwicklung. Im vorliegend relevanten Hochspannungsbereich ist in Zusammenhang mit der elektrischen Isolation des Transformators bzw. der Sekundärwicklung besondere Sorgfalt angezeigt. Hochspannungstransformatoren der eingangs genannten Art gibt es mit genau einer Sekundärwicklung, deren Ausgangswechselspannung gegen ein Erdsignal abgegriffen wird. Außerdem sind Hochspannungstransformatoren mit insgesamt zwei Sekundärwicklungen bekannt, die jeweils eine um 180° relativ zueinander phasenverschobene Ausgangsspannung liefern. Durch Abgriff der Differenzspannung kann somit bei identisch gestalteten Sekundärwicklungen eine Verdopplung der an einer Sekundärwicklung abgreifbaren Maximalspannung erhalten werden. Die Sekundärwicklungen müssen somit jeweils nur für eine geringere - bzw. bei identischem Aufbau die halbe - Ausgangsspannung ausgelegt sein. Es sei jedoch ausdrücklich festgestellt, dass die vorliegende Erfindung nicht auf eine bestimmte Transformatoranordnung oder -geometrie beschränkt ist.
Ein die Sekundärwicklung tragender und aus elektrisch isolierendem Material hergestellter Spulentragkörper, wie er aus dem Stand der Technik bekannt ist, isoliert die Sekundärwicklung - bezogen auf die Spulengeometrie - nach radial innen gegen den Transformatorkern. Der Spulentragkörper weist hierzu vorteilhaft eine zentrale Bohrung auf, durch die z.B. ein Schenkel des Transformatorkerns hindurchgeführt ist. Im Stand der Technik sind zur weiteren elektrischen Isolierung der - häufig ihrerseits bereits aus isolierten Drähten bestehenden - Sekundärwicklung im Wesentlichen zwei verschiedene Isolationskonzepte bekannt. In einer ersten Variante, den so genannten Trockentransformatoren, wird die Sekundärwicklung mittels eines Gießharzes umgössen, welches nach seiner Aushärtung für eine ausreichende elektrische Isolierung der Sekundärwicklung auch nach außen hin sorgt. Bereits kleine Fehlstellen (z.B. Lufteinschlüsse oder Vakuumblasen, falls unter Vakuumbedingungen gegossen wird) in dem getrockneten Gießharz können jedoch - infolge eines Spannungsdurchschlags - zu einer meist irreparablen Zerstörung des Transformators führen. In Anbetracht der zähen Viskosität der im Stand der Technik bekannten Gießharze erfordert die möglichst ausschußfreie Herstellung solcher Trockentransformatoren großen Aufwand.
Ferner ist zu bedenken, dass bei Sekundärwicklungen von neuartigen Hochspannungstransformatoren gerne auf dünne Wickeldrähte zurückgegriffen wird, was mit der zähen Viskosität des Gießharzes nicht vereinbar ist. Das Gießharz ist dann nämlich nicht mehr mit ausreichender Sicherheit in der Lage, etwaige Lücken zwischen benachbarten Drähten ohne Ausbildung von Fehlstellen zu schließen. Deshalb wird bei Trockentransformatoren bereits vor dem Umgießen der Wicklung mit dem Harz gelegentlich auf eine "Vorimprägnierung" der Wicklung mit einem dünnflüssigeren Isoliermedium zurückgegriffen. Auch hierbei ist jedoch die Gefahr von unerwünschten Fehlstellen bzw. der zur Vermeidung von solch fehlerhaften Isolierungen zu betreibende Herstellungsaufwand sehr groß. Trockentransformatoren greifen daher zumeist auf vergleichsweise große Drahtdurchmesser für die Sekundärwicklung zurück.
Insbesondere bei der Verwendung von Hochspannungstransformatoren der eingangs genannten Art in mobilen Prüfoder Messgeräten stellt das wesentlich durch das Gewicht des Transformators bestimmte Gesamtgewicht des Prüf- oder Messgeräts ein wichtiges Kriterium dar.
Bei Trockentransformatoren der vorgenannten Art liefert bereits das Gießharz infolge der zu Hochspannungsisola- tionszwecken notwenigen Schichtdicke und infolge seiner Dichte, welche üblicherweise im Bereich von etwa 1,3 bis 1,7 g/cm3 liegt, einen nicht unerheblichen Beitrag zum Gesamtgewicht des Transformators. Die Verwendung vergleichsweise dicker Drähte für die Sekundärwicklung (en) trägt ebenfalls nachteilig zum Gewicht eines Trockentransformators bei.
Eine zweite Variante von Hochspannungstransformatoren bedient sich zu Isolationszwecken eines IsolationsfIu- ids, welches den gesamten Transformator innerhalb eines aus Metall bestehenden Transformatorgehäuses umgibt. Hierbei kommt zumeist ein Isolieröl oder ein - häufig unter Druck stehendes - Isoliergas (z.B. Schwefelhe- xafluorid (SFε)) zur Anwendung.
Hierbei ist der gesamte Transformator inkl. Transformatorkern und Spulen von Isolieröl umgeben. Infolge der nicht unerheblichen thermischen Ausdehnung des Isolier- öls beim Betrieb des Transformators oder bei einer sich aus sonstigen Gründen erhöhenden Umgebungstemperatur müssen solche ölisolierten Transformatoren ferner, sofern diese nicht als Standgeräte mit kontinuierlicher und gekühlter Ölumwälzung eingesetzt werden, ein spezielles Ausdehnungsvolumen (z.B. in Form eines Ausdehnungsgefäßes) bereitstellen, in welches sich das Isolieröl bei Bedarf ausdehnen kann, wie dies z.B. bei dem Öltransformator nach der DE 1 226 119 der Fall ist. Die den gesamten Transformator umgebende Ölmenge bzw. das Gewicht des metallischen Gehäuses trägt erheblich zum Gesamtgewicht eines solchen Transformators bei.
Weitere Öltransformatoren, die jedoch ebenfalls Mittel zur Bereitstellung eines separaten Ausdehnungsvolumens umfassen, sind aus der CH 470 738 und der DE 714 480 bekannt .
Vor diesem Hintergrund ist es die Aufgabe der vorliegenden Erfindung, einen Hochspannungstransformator der eingangs genannten Art so weiterzubilden, dass er unter Aspekten der Gewichtseinsparung bei gleichzeitig einfacher, kostengünstiger und zuverlässiger Bauweise den aus dem Stand der Technik bekannten Hochspannungstransformatoren überlegen ist.
Diese Aufgabe wird mit einem Hochspannungsspannungs- transformator nach Anspruch 1 gelöst. Bei dem erfindungsgemäßen Hochspannungstransformator ist in Ergänzung zu den eingangs genannten Merkmalen vorgesehen, dass er zur elektrischen Isolierung der Sekundärwicklung ein die Sekundärwicklung kapselndes Isolationsgehäuse aufweist, welches - bezogen auf die Spulengeometrie nach (radial) innen - durch den die Sekundärwicklung tragenden Spulentragkörper und - bezogen auf die Spulengeometrie nach (radial) außen - durch einen aus Kunststoff hergestellten und die Sekundärwicklung unter Ausbildung eines Ringspalts umhüllenden Hüllkörper bewandet ist, wobei der Ringspalt zwischen Sekundärwicklung und Hüllkörper mit einem Isolierfluid befüllt ist.
Dabei versteht sich von selbst, dass das Isolationsgehäuse zur erfindungsgemäßen Kapselung der Sekundärwicklung auch in axialer Richtung, also auf den einander gegenüberliegenden Stirnseiten des Isolationsgehäuses, verschlossen sein muss. Zur notwendigen (nieder- und hochspannungsseitigen) Kontaktierung der Sekundärwicklung muss das Isolationsgehäuse ferner geeignete Durchbrüche bzw. Öffnungen aufweisen, die auf geeignete Weise fluiddicht zu verschließen bzw. abzudichten sind.
Dadurch, dass das erfindungsgemäß vorgesehene Isolationsgehäuse die Sekundärwicklung unter Ausbildung eines äußeren, mit Isolierfluid befüllten Ringspalts kapselt, kann im Vergleich zu den aus dem Stand der Technik bekannten Hochspannungstransformatoren, bei welchen der gesamte Transformator inkl. Transformatorkern in Iso- lieröl gelagert ist, die zu Isolationszwecken verwendete Menge an Isolierfluid, insbesondere Isolieröl, in großem Ausmaß reduziert werden. Dies ist ein erster Beitrag zu einer im Rahmen der vorliegenden Erfindung realisierten Gewichtseinsparung. Ferner kann der aus Kunststoff bestehende Hüllkörper infolge des Umstands, dass darin ein vollständig mit Isolierfluid befüllter Ringspalt die Sekundärwicklung umgibt, mit einer erheblich dünneren Wandstärke hergestellt werden, als sie im Falle des Harzmantels eines im Bereich der Sekundärwicklung mit Gießharz umgossenen Trockentransformators zu Zwecken der hinreichenden Hochspannungsisolierung notwendig ist. Und schließlich kann der Hüllkörper des erfindungsgemäß vorgesehenen Isolationsgehäuses in einfacher und kostengünstiger Weise aus Kunststoff spritzgegossen werden, ohne dass es eines besonderes hohen Aufwands zur Vermeidung von Fehlstellen bedarf, wie dies beim Umgießen einer Sekundärwicklung mit Gießharz der Fall ist. Der Hüllkörper wird, nachdem die Sekundärwicklung auf den Spulentragkörper aufgewickelt wurde, einfach über die Sekundärwicklung geschoben und stirnseitig hermetisch, also fluiddicht, zu einem Isolationsgehäuse verschlossen. Der Ringspalt wird durch eine geeignete (und später zu verschließende) Öffnung des Isolationsgehäuses mit Isolierfluid befüllt.
Die gegenüber Gießharz erhöhte Fluidität des in dem Ringspalt befindlichen und nicht härtenden Isolierflu- ids erlaubt auf einfache Weise eine fehlstellenfreie elektrische Isolation der Sekundärwicklung - auch bei geringen Drahtdurchmessern der Sekundärwicklung.
Durch die Verwendung eines Isolierfluids, also eines nicht aushärtenden Isolieröls oder eines Isoliergases, kann ferner in besonders vorteilhafter Weise auf besonders dünne Drähte für die Sekundärwicklung zurückgegriffen werden, was insbesondere im Vergleich mit herkömmlichen Trockentransformatoren eine weitere Gewichtsreduktion erlaubt.
Es erweist sich im Übrigen als besonders vorteilhaft, dass die Kapselung der Sekundärwicklung durch das Isolationsgehäuse nach radial innen durch den Spulentrag- körper und nach radial außen durch den - den isolierölbefüllten Ringspalt umgebenden - Hüllkörper erfolgt. Der Transformatorkern oder weitere Komponenten des Transformators sind also in vorteilhafter Weise nicht unmittelbar mit dem Isolierfluid in Kontakt, was auch einer möglichst lange anhaltenden Reinheit des verwendeten Isolierfluids zuträglich ist. Im Stand der Technik, wo bei ölisolierten Transformatoren stets auch der ferromagnetische Transformatorkern in unmittelbarem Kontakt mit Isolieröl ist, kommt es zu einer kontinuierlich steigenden Verunreinigung des Isolieröls (insbesondere auch mit leitenden Partikeln) mit der Folge, dass dieses regelmäßig erneuert oder gereinigt werden muss. Das Isolierfluid eines erfindungsgemäßen Hochspannungstransformators muss demgegenüber über die Lebensdauer des Transformators entweder gar nicht oder erst nach längeren Betriebsintervallen erneuert werden. Außerdem hat sich gezeigt, dass infolge der Kapselung mittels eines Kunststoffhüllkörpers und infolge der im Vergleich zum Stand der Technik wesentlich geringeren Menge an Isolieröl, kein separates Ausdehnungsvolumen für das Isolieröl bereitgestellt werden muss, was gegenüber anderen ölisolierten Transformatoren aus dem Stand der Technik einen weiteren Vorteil darstellt.
Schließlich weist auch der die Sekundärwicklung unter Ausbildung eines Ringspalts bevorzugt eng umhüllende Hüllkörper bzw. das Isolationsgehäuse - sowohl wegen seiner geringeren Ausmaße als auch wegen der anderen Materialwahl - ein im Vergleich mit vorbekannten Metallgehäusen für ölisolierte Transformatoren deutlich reduziertes Gewicht auf.
Ersichtlich ist bei Bedarf - insbesondere wenn ein erfindungsgemäßer Hochspannungstransformator in einem mobilen Prüf- oder Messgerät verbaut ist - ein geeigneter Kühlmechanismus vorzusehen, mit dem einer übermäßigen Wärmeentwicklung beim Betrieb des Transformators entgegen gewirkt wird. Insbesondere im Fall mobiler Prüf- oder Messgeräte der weiter unten diskutierten Art halten sich jedoch die Anforderungen an einen solchen Kühlmechanismus in vertretbarem Rahmen, da z.B. die Bereitstellung einer Prüfspannung von 75 kV rms bereits mit batterie- bzw. akkubetriebenen Prüfgeräten bei einer Leistung von nur 12 - 15 Watt erfolgen kann. Auch hier gilt jedoch, dass die vorliegende Erfindung nicht auf spezifische Leistungsbereiche des Transformators bzw. Prüf-/Messgeräts beschränkt sein soll, wenngleich in bevorzugter Weise eine Anwendung der erfindungsgemäßen Lehre für Prüf- bzw. Messgeräte mit einer maximalen Prüf- bzw. MessSpannung von (wenigstens) 75 kV rms (bevorzugt auch 100 oder gar 200 kV rms) bei Leistungen im Bereich von wenigen Watt bis hin zu 100, 200 oder gar 300 Watt vorgesehen ist.
Im Ergebnis stellt die vorliegende Erfindung einen deutlich leichteren sowie einfach und kostengünstig herzustellenden Hochspannungstransformator, der sich insbesondere für mobile Anwendungen eignet, bereit.
Dem Grundsatz nach ist festzustellen, dass die Hochspannungsisolierung für die Sekundärwicklung nach außen hin sowohl durch das im Ringspalt befindliche Iso- lierfluid als auch durch den Hüllkörper erbracht wird. Es zeigt sich jedoch, dass im Rahmen der vorliegenden Erfindung zur hinreichenden Isolierung einer Hochspannung im kV-Bereich - bei gleichzeitig vergleichsweise dünner Wandstärke des Hüllkörpers (siehe unten) - auch ein in seiner Spaltbreite vergleichsweise dünner Ringspalt (also eine geringe Menge an Isolieröl) ausreichend ist. Der mit Isolierfluid befüllte Ringspalt um die Sekundärwicklung weist somit erfindungsgemäß eine im Querschnitt betrachtete Spaltbreite von kleiner gleich 20 mm, nochmals bevorzugt von kleiner gleich 10 mm auf. Für eine ausreichende Isolation von Wechselspannungen bis zu etwa 40 kV rms (Effektivspannung) an der betreffenden Sekundärwicklung erweist sich gar eine Spaltbreite von etwa 3 mm- bei entsprechend geringem Isolierölbedarf und in Zusammenwirkung mit den isolierenden Eigenschaften eines Kunststoffhüllkörpers mit einer Wandstärke in der Größenordnung von etwa 5 mm - als geeignet. Bevorzugt wird dabei über die gesamte Länge der Sekundärwicklung sowie innerhalb des Querschnitts über die gesamte Länge des Ringspaltes eine konstante Spaltbreite eingehalten. Im Vergleich zu herkömmlichen ölisolierten Hochspannungstransformationen für mobile Prüfgeräte kann hiermit die Menge an benötigtem Isolieröl um bis zu 90% verringert werden, was ersichtlich mit einer besonders deutlichen Gewichtsreduktion verbunden ist.
Ferner ist erfindungsgemäß vorgesehen, dass der Hüllkörper eine Wandstärke von kleiner gleich 20 mm, nochmals vorteilhaft kleiner gleich 10 mm bzw. gar kleiner oder in etwa gleich 5 mm aufweist. Dies erweist sich - insbesondere in Zusammenwirkung mit der bereits genannten Breite des Ringspalts für das Isolationsfluid - als ausreichend für den gewünschten Isolationszweck bei Hochspannungen im Bereich von mehreren 10 bis wenigen 100 kV und erlaubt wiederum eine beträchtliche Gewichtseinsparung gegenüber dem Stand der Technik, insbesondere im Vergleich mit herkömmlichen Trockentransformatoren. Für mobile Prüf- oder Messgeräte, die eine Spannung von bis zu 200 kV rms - verteilt auf zwei Sekundärwicklungen mit separaten Isolationsgehäusen - bereitstellen, kann mit einer Wandstärke des Isolationsgehäuses von etwa 15-20 mm und einer Ringspaltbreite von etwa 20 mm bereits eine ausreichende Isolierung durch das Isolationsgehäuse bereitgestellt werden. Bei geringeren Spannungen lassen sich die genannten Zahlen für die Wandstärke des Hüllkörpers bzw. die Breite des Ringspalts entsprechend reduzieren.
Als Kunststoff für den Hüllkörper bzw. das Isolationsgehäuse kommt im Rahmen der Erfindung Polypropylen zum Einsatz, welches sich insbesondere wegen seiner guten Isolationseigenschaften und seiner geringen Dichte von ca. 0,97 g/cm3 in besonderem Maße für die vorliegende Erfindung eignet.
In einer ersten bevorzugten Ausgestaltung der vorliegenden Erfindung ist am Isolationsgehäuse ein hermetisch verschließbarer Isolierfluideinfüllstutzen vorgesehen, durch welchen das Isolierfluid in den die Sekundärwicklung umgebenden Ringspalt eingefüllt werden kann. Dieser ist ersichtlich bevorzugt an dem die Sekundärwicklung radial umgebenden Hüllkörper ausgebildet, wobei ggfs. auch eine stirnseitige Anordnung sinnvoll sein kann. Durch den Einfüllstutzen wird das Isolierfluid vor Inbetriebnahme des Transformators eingefüllt. Ferner kann bevorzugt auch dafür Sorge getragen sein, dass das Isolierfluid durch den Einfüllstutzen bei entsprechendem Bedarf ggfs. auch ausgelassen und durch ein neues Isolierfluid ersetzt werden kann. Insbesondere im Fall der Verwendung eines Isolieröls erfolgt die Befüllung bevorzugt unter Vaku- um- bzw. Unterdruckbedingungen, so dass eine vollständige Befüllung des innerhalb des Isolationsgehäuses befindlichen Ringspalts mit Isolieröl gewährleistet ist. Im Falle der Verwendung eines Isoliergases kann dieses für eine hinreichende Isolierwirkung ggfs. auch unter einem gewissen Überdruck in das Isolationsgehäuse gepumpt werden, wobei dann auf eine ausreichende Überdruckfestigkeit des Isolationsgehäuses, insbesondere des Hüllkörpers geachtet werden muss.
Der Einfüllstützen kann bevorzugt auch an einer der Öffnungen des Isolationsgehäuses ausgebildet sein, durch die der nieder- oder hochspannungsseitige An- schluss der Sekundärwicklung aus dem Gehäuse herausgeführt ist.
Im Hinblick auf eine besonders einfach zu realisierende Geometrie des Isolationsgehäuses und einer besonders gleichmäßigen Druckverteilung durch das sich im Betrieb des Transformators innerhalb des Ringspalts (geringfügig) ausdehnende Isolieröl ist in einer bevorzugten Weiterbildung der Erfindung vorgesehen, dass der Hüllkörper im Wesentlichen rohrförmig ausgestaltet ist. Dies erlaubt - insbesondere bei einer im Querschnitt im Wesentlichen kreisförmigen Geometrie der Sekundärwicklung - auch eine besonders kompakte und stabile Bauform des Isolationsgehäuses. Es sei jedoch nochmals erwähnt, dass die vorliegende Erfindung generell nicht auf eine spezielle Querschnittsgeometrie des Transformatorkerns oder der Sekundärwicklung beschränkt ist. Eine weitere bevorzugte Ausführungsform der vorliegenden Erfindung sieht vor, dass die Sekundärwicklung aus einem Draht mit einem Durchmesser von kleiner gleich 0,2 mm oder kleiner gleich 0,1 mm hergestellte ist. Selbstverständlich sollte der Draht bereits mit einer eigenen Isolierung, z.B. in Form einer Lackisolierung, ausgestattet sein. Durch die erfindungsgemäße Ausgestaltung des beanspruchten Hochspannungstransformators kann sogar in einer besonders bevorzugten Weise auf nochmals dünnere Wickeldrähte mit Durchmessern von kleiner gleich 0,05 mm, insbesondere auf Drähte mit einem Durchmesser von etwa 0,04 mm zurückgegriffen werden. Solche Drähte sind - bereits einfach oder zweifach lackisoliert - kommerziell erhältlich. Sie können mit aus dem Stand der Technik bekannten Wickeltechniken, z.B. in Lagen- oder Scheibenwicklung oder anderen Wickelverfahren, um den Spulentragkörper gewickelt werden.
Bevorzugt werden dabei zur Erzeugung der gewünschten Wechselspannung im kV-Bereich Sekundärwicklung mit größer gleich 50.000, 100.000 oder gar 150.000 Windungen realisiert .
In einer abermals bevorzugten Weiterbildung der vorliegenden Erfindung ist vorgesehen, dass der Spulentragkörper und der Hüllkörper aus dem gleichen Kunststoff hergestellt sind. Dies erweist sich insbesondere dann als vorteilhaft, wenn diese - zur Ausbildung der erfin- dungsgemäßen Kapselung für die Sekundärwicklung - stirnseitig miteinander verschweißt werden. An dem sich im übirgen axial erstreckenden Spulentragkörper und/oder Hüllkörper können zur stirnseitigen Verschließung des Isolationsgehäuses geeignete, sich radial erstreckende Ränder vorgesehen sein, die zur hermetischen Versiegelung des Gehäuses mit dem jeweils anderen Bauteil verschweißt sind. Alternativ hierzu können jedoch auch separate, stirnseitig zwischen Spulentragkörper und Hüllkörper anzuordnende und ggfs. ebenfalls aus dem gleichen Kunststoff hergestellte Endkappen Verwendung finden, die mit Spulentragkörper und Hüllkörper zur fluiddichten Kapselung der Sekundärwicklung samt Isolierfluid verschweißt oder mittels geeigneter Dichtmittel gegen diese abgedichtet werden.
Als Isolierfluid wird bevorzugt auf die insoweit aus dem Stand der Technik bekannten Isolieröle zurückgegriffen. Gegenüber einem eigentlich aus Gewichtsgründen zu bevorzugenden Isoliergas ergibt sich dabei der Vorteil, dass dieses nicht unter Überdruck in das Isolationsgehäuse gefüllt werden muss, so dass sich die konstruktiven Anforderungen an das Isolationsgehäuse verringern.
Neben dem Hochspannungstransformator als solchen um- fasst die vorliegende Erfindung insbesondere auch ein mobiles, d.h. insbesondere tragbares, Prüf- oder Messgerät mit einem Prüf- bzw. Messgerätegehäuse und einem innerhalb des Prüf- bzw. Messgerätegehäuses angeordne- ten Hochspannungstransformator der vorbeschriebenen Art. Die zuvor beschriebenen Vorteile, insbesondere der Gewichtsreduktion gegenüber vorbekannten Transformatoren, kommen hier in besonderer Weise zum Tragen. Bei Prüfergeräten dieser Art ist entweder ein Akkubetrieb oder eine separate Spannungsversorgung über einen geeigneten Anschluss vorgesehen.
In besonderer Weiterbildung eines solchen Prüfgeräts ist im Rahmen der vorliegenden Erfindung vorgesehen, dass das Prüfgerät ein Hochspannungsprüfgerät zur Prüfung der Durchschlagsfestigkeit von Isolierölen oder sonstigen Prüflingen ist, wobei der Hochspannungstransformator zur Bereitstellung einer als Prüfspannung fungierenden Sekundärspannung von mehreren 10 kV, insbesondere bis zu bzw. wenigstens 75, 100 oder gar 200 kV rms (Effektivspannung), geeignet ist. Im Falle der Prüfung der Durchschlagsfestigkeit von Isolierölen ist ein geeigneter Testraum für das zu prüfende Iso- lieröl vorzusehen. Vorteilhaft sind hierbei zwei Sekundärwicklungen vorgesehen. Wie bereits eingangs erwähnt, handelt es sich hierbei vorteilhaft um eine Anordnung, bei welcher die Sekundärwicklungen eine - relativ zueinander - um 180° phasenverschobene Ausgangsspannung liefern, wobei die abgegriffene Differenzspannung als Prüfspannung zur Prüfung der Durchschlagsfestigkeit von zu testenden und innerhalb des Testraums befindlichen Isolierölen Anwendung findet. Da hierfür keine besonders hohen Stromstärken durch die Sekundärwicklung geleitet werden müssen, kann in diesem Anwendungsfall insbesondere auch auf besonders dünne Drähte (s.o.) für die Sekundärwicklung zurückgegriffen werden.
Solche Prüfgeräte mit Akkubetrieb und aus dem Stand der Technik bekannten Hochspannungstransformatoren waren bisher (inkl. Akku und aller sonstigen Prüfgerätebestandteile) ausschließlich mit einem Gesamtgewicht von über 25 kg verfügbar. Erst im Rahmen der vorliegenden Erfindung, gelang es, deren Gewicht bzw. Masse auf kleiner gleich 25 kg zu reduzieren. Hauptgrund für die Realisierung eines solchermaßen leichten Prüfgeräts zur Bereitstellung von Spannungen größer gleich 75 kV rms ist dabei der leichtgewichtige Hochspannungstransformator, der (inkl. Primär- und Sekundärwicklungen, Transformatorkern und Isolationsgehäuse samt Isolieröl) eine Masse von weniger als 7,5 kg (in einer bevorzugten Variante gar nur 6,5 kg) zum Gesamtgewicht des Prüfgeräts beiträgt. Diese Gewichtsreduktion erweist sich insbesondere deshalb als von außerordentlich großer Bedeutung, da Arbeitsschutzvorschriften in vielen Ländern eine Gewichtsbegrenzung für mobile Geräte fordern, damit diese von einer Person getragen werden dürfen.
Da der Transformator eines solchen Prüfgeräts zwei Sekundärwicklungen aufweist, ist es wiederum aus Gewichtsgründen von Vorteil, wenn jede Sekundärwicklung von einem separaten Isolationsgehäuse im Sinne der vorliegenden Erfindung gekapselt ist. Nachfolgend wird ein Ausführungsbeispiel der vorliegenden Erfindung anhand der Zeichnung näher erläutert. Dabei zeigt:
Fig. 1 eine perspektivische Ansicht der wesentlichen Komponenten eines Ausführungsbeispiels eines erfindungsgemäßen Hochspannungstransforma- tors,
Fig. 2 einen Schnitt durch ein Isolationsgehäuse des Hochspannungstransformators aus Fig. 1 und
Fig. 3 eine perspektivische Ansicht eines Ausführungsbeispiels eines erfindungsgemäßen Prüfgeräts, innerhalb dessen Prüfgerätegehäuse der Hochspannungstransformator aus Fig. 1 angeordnet ist.
Der in Fig. 1 dargestellte Hochspannungstransformator 1 umfasst einen ferromagnetischen Transformatorkern 2, um welchen an verschiedenen Schenkeln vorliegend zwei (als Scheibenwicklungen ausgebildete und separat isolierte) Primärwicklungen 3, 4 gewickelt sind.
Ferner zeigt Fig. 1 zwei, je einen Schenkel des Transformatorkerns 2 umgebende Isolationsgehäuse 5, 6, von denen jedes einen niederspannungsseitigen Anschluss 7, 8 und einen hochspannungsseitigen Anschluss 9, 10 für die im jeweiligen Isolationsgehäuse 5, 6 befindliche Sekundärwicklung 12 bereitstellt. Alle Anschlüsse 7, 8, 9, 10 sind so ausgebildet, dass sie mit dem betreffenden Ende der Sekundärwicklung kontaktiert sind bzw. dass eine entsprechende Kontaktierung durch sie hindurch geführt werden kann.
Dem Schnitt aus Fig. 2, welcher senkrecht zur Längsachse L des Isolationsgehäuses 5 und aus Gründen der besseren Übersichtlichkeit in zwei Schnittebenen sowohl durch den niederspannungsseitigen Anschluss 7 als auch durch den hochspannungsseitigen Anschluss 9 geführt ist, kann der genaue Aufbau des Isolationsgehäuses 5, welches baugleich zum zweiten Isolationsgehäuse 6 ist, entnommen werden.
Das Isolationsgehäuse 5 ist innerhalb der Schnittebene nach radial innen durch einen aus Kunststoff bestehenden Spulentragkörper 11 begrenzt bzw. bewandet, der seinerseits einen - in Fig. 2 nicht dargestellten - Schenkel des Transformatorkerns 2 umgibt. Auf dem Spu- lentragköprer 11 ist die Sekundärwicklung 12 mittels eines geeigneten Wickelverfahrens aufgewickelt, wobei die Sekundärwicklung 12 - unter Ausbildung eines Ringspalts 13 - von einem ebenfalls aus Kunststoff bestehenden und im Wesentlichen rohrförmigen Hüllkörper 14 umhüllt wird, der die radial äußere Bewandung des Isolationsgehäuses 5 darstellt.
Der Ringspalt 13 wird bzw. ist mit einem Isolieröl befüllt.
Der niederspannungsseitige Anschluss 7 für die Sekundärwicklung 12 ist in Form eines Stutzens 15 mit einer zentralen Öffnung 16 ausgebildet, so dass er gleichzeitig als Isolieröleinfüllstutzten dienen kann, wozu der Ringspalt 13 durch die Öffnung 16 unter Unterdruckbedingungen mit Isolieröl befüllt wird. Die Niederspannungsseite der Sekundärwicklung 12 wird durch die Öffnung 16 hindurch kontaktiert, wobei der Anschluss 7 bzw. dessen Öffnung 16 vor Inbetriebnahme des Transformators 1, also nach vollständiger Befüllung des Ringspalts 13 mit dem Isolieröl, auf geeignete Weise abgedichtet wird.
In analoger Weise weist auch der hochspannungsseitige Anschluss 9 am Isolationsgehäuse 5 unter einer Schutz- ummantelung 17 einen entsprechenden Stutzen 18 auf, der wiederum mit einer zentralen, bis zur Hüllkörperinnenseite weisenden Öffnung 19 ausgestattet ist. Auch hier erfolgt die elektrische Kontaktierung des hochspan- nungsseitigen Endes der Sekundärwicklung 12 durch die Öffnung 19 hindurch, die anschließend auf geeignete Weise zu versiegeln bzw. abzudichten ist. Auch dieser Stutzen 18 kann zum Befüllen des Ringspalts 13 mit Isolieröl verwendet werden.
Das Isolationsgehäuse 5 ist selbstverständlich auch stirnseitig beidseits, d.h. sowohl in Richtung zur benachbarten Primärwicklung 3 (vgl. Fig. 1) als auch zur entgegen gesetzten Seite, vollständig fluiddicht verschlossen, so dass letztlich die Sekundärwicklung 12 und das die Sekundärwicklung 12 innerhalb des Ringspalts 13 umgebende Isolieröl vollständig gekapselt ist. Das Isolieröl kommt dabei nicht in Kontakt mit dem Transformatorkern 2.
Hüllkörper 14 und Spulentragkörper 11 sind aus dem gleichen Kunststoff hergestellt.
Fig. 3 zeigt schließlich noch ein mobiles, also tragbares Hochspannungsprüfgerät 20 zur Prüfung der Durchschlagsfestigkeit von Isolierölen. Hierzu weist das Prüfgerät 20 einen - von einem durchsichtigen Gehäuse umgebenen und mit einem Deckel 21 verschließbaren - Testraum 22 auf, welcher mit dem zu testenden Isolieröl befüllt werden kann. Innerhalb des Testraums 22 sind zwei einander zuweisende Hochspannungselektroden 23, 24 angeordnet, an denen eine Prüfungsspannung von 75 kV rms angelegt wird.
Die PrüfSpannung wird mittels eines in den Fig.l und 2 dargestellten Hochspannungstransformators 1 aufgebracht, der innerhalb des Prüfgerätegehäuses 25 angeordnet ist. Hierzu sind die beiden
Hochspannungselektroden 23, 24 mit je einem der beiden Hochspannungsausgänge 9, 10 des Hochspannungstransformators kontaktiert. Hierzu dienen die - geeignet isolierten - Anschlusselemente 26, 27, die in das Prüfgerätegehäuse 25 hineinführen.

Claims

Patentansprüche
1. Hochspannungstransformator (1) zur Bereitstellung einer Wechselspannung im kV-Bereich mit wenigstens einer Sekundärwicklung (12), die auf einem einen Transformatorkern (2) umgebenden Spulentragkörper
(11) aufgewickelt ist, wobei zur elektrischen Isolierung der Sekundärwicklung (12) ein die Sekundärwicklung (12) kapselndes Isolationsgehäuse (5, 6) vorgesehen ist, welches durch den die Sekundärwicklung (12) tragenden Spulentragkörper (11) und durch einen aus Kunststoff hergestellten und die Sekundärwicklung
(12) unter Ausbildung eines Ringspalts (13) umhüllenden Hüllkörper (14) bewandet ist, wobei der Ringspalt (13) zwischen Sekundärwicklung (12) und Hüllkörper (14) mit einem Isolierfluid befüllt ist, wobei der mit Isolierfluid befüllte Ringspalt (13) eine im Querschnitt betrachtete Spaltbreite von kleiner gleich 20 mm aufweist, wobei der Hüllkörper (14) eine Wandstärke von kleiner gleich 20 mm aufweist, wobei der Kunststoff Polypropylen ist, und wobei kein separates Ausdehnungsvolumen für das Isolierfluid bereitgestellt ist.
2. Hochspannungstransformator (1) nach Anspruch 1, dadurch gekennzeichnet, dass das Isolationsgehäuse (5, 6) einen hermetisch verschließbaren Isolierfluideinfüllstutzen (15, 18) aufweist, durch welchen das Isolierfluid in den die Sekundärwicklung (12) innerhalb des Isolationsgehäuses (5, 6) umgebenden Ringspalt (13) eingefüllt wird.
3. Hochspannungstransformator (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Hüllkörper (14) im Wesentlichen rohrför- mig ausgestaltet ist.
4. Hochspannungstransformator (1) nach Anspruch 1, dadurch gekennzeichnet, dass die Sekundärwicklung (12) aus Draht mit einem Durchmesser kleiner gleich 0,2 mm besteht.
5. Hochspannungstransformator (1) nach Anspruch 4, dadurch gekennzeichnet, die Sekundärwicklung (12) größer gleich 50.000 Windungen umfasst.
6. Hochspannungstransformator (1) nach Anspruch 1, dadurch gekennzeichnet, dass der Spulentragkörper (11) aus dem gleichen Kunststoff wie der Hüllkörper (14) hergestellt und mit diesem stirnseitig verschweißt ist.
7. Hochspannungstransformator (1) nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass das Isolierfluid ein Isolieröl ist.
8. Mobiles Prüf- oder Messgerät (20) mit einem Prüfbzw. Messgerätgehäuse (25) und einem innerhalb des Prüf- bzw. Messgerätegehäuses (25) angeordneten Hochspannungstransformator (1) nach einem der vorangehenden Ansprüche.
9. Mobiles Prüfgerät (20) nach Anspruch 8, dadurch gekennzeichnet, dass das Prüfgerät ein Hochspannungsprüfgerät zur Prüfung der Durchschlagsfestigkeit von Isolierölen oder sonstigen Prüflingen ist, wobei der Hochspannungstransformator (1) zur Bereitstellung einer als Prüfspannung fungierenden Sekundärspannung von mehreren 10 kv rms (Effektivspannung) geeignet ist .
10. Mobiles Prüfgerät (20) nach Anspruch 9, dadurch gekennzeichnet, dass jede Sekundärwicklung (12) mittels eines separaten Isoliergehäuses (5, 6) im Sinne des Anspruchs 1 isoliert ist.
11. Mobiles Prüfgerät (20) nach einem der Ansprüche 8 bis 10, dadurch gekennzeichnet, dass das Prüfgerät (20) eine Gesamtmasse von 25 kg nicht überschreitet.
PCT/EP2009/006388 2008-09-05 2009-09-03 Hochspannungstransformator WO2010025916A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PL09778308T PL2319057T3 (pl) 2008-09-05 2009-09-03 Transformator wysokiego napięcia
ES09778308.8T ES2657440T3 (es) 2008-09-05 2009-09-03 Transformador de alta tensión
EP09778308.8A EP2319057B1 (de) 2008-09-05 2009-09-03 Hochspannungstransformator
CN2009801346678A CN102144269B (zh) 2008-09-05 2009-09-03 高压变压器
US13/039,612 US8552737B2 (en) 2008-09-05 2011-03-03 High-voltage transformer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008045846.5 2008-09-05
DE102008045846A DE102008045846A1 (de) 2008-09-05 2008-09-05 Hochspannungstransformator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/039,612 Continuation US8552737B2 (en) 2008-09-05 2011-03-03 High-voltage transformer

Publications (1)

Publication Number Publication Date
WO2010025916A1 true WO2010025916A1 (de) 2010-03-11

Family

ID=41412441

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/006388 WO2010025916A1 (de) 2008-09-05 2009-09-03 Hochspannungstransformator

Country Status (7)

Country Link
US (1) US8552737B2 (de)
EP (1) EP2319057B1 (de)
CN (1) CN102144269B (de)
DE (1) DE102008045846A1 (de)
ES (1) ES2657440T3 (de)
PL (1) PL2319057T3 (de)
WO (1) WO2010025916A1 (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007059289B4 (de) * 2007-12-08 2011-07-28 Maschinenfabrik Reinhausen GmbH, 93059 Vorrichtung zur Prüfung von Transformatoren
US10310006B2 (en) 2013-03-15 2019-06-04 Hubbell Incorporated DC high potential insulation breakdown test system and method
EP3024004A4 (de) * 2013-07-18 2017-04-05 Mitsubishi Electric Corporation Luftgekühlter reaktor
PL3102007T3 (pl) * 2014-01-28 2019-07-31 Sociedad Española De Electromedicina Y Calidad, S. A. Transformator wysokiego napięcia, wysokiej częstotliwości i dużej mocy
DE102014216280A1 (de) * 2014-08-15 2016-02-18 EnBW Energie Baden-Württemberg AG Verfahren zur spannungsfreien Wartung einerortsfesten Transformatorstation und mobileTransformatorstation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE714480C (de) * 1930-04-07 1941-11-29 Siemens Ag Leistungstransformator
CH470738A (de) * 1967-08-14 1969-03-31 Smit Nijmegen Electrotec Von einer Umhüllung umgebene Wicklung für einen Schenkel des magnetischen Kerns eines Transformators oder einer Drosselspule

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50687C (de) A. ScHÄFFER in Hamburg, Fährstr. 6. Auslösung der Kübelverschlufsklappe an selbstthätigen Waagen
US2440556A (en) * 1944-03-08 1948-04-27 Gen Electric Electrical apparatus
US2748356A (en) * 1951-07-26 1956-05-29 Electric Heat Control Company Electro-convection cooling of transformers and the like
GB991762A (en) * 1961-11-29 1965-05-12 Bruce Peebles & Co Ltd Improvements relating to transformers or reactors
DE1226119B (de) 1962-02-07 1966-10-06 Continental Elektro Ind Ag Einrichtung zur Regelung des Druckes des sich erwaermenden Arbeitsmittels in Dampferzeugern
DD50687A1 (de) * 1965-07-07 1966-10-05 Hochspannungsprüfeinrichtung
US3371299A (en) * 1966-02-10 1968-02-27 Westinghouse Electric Corp Transformer apparatus cooling system
AT333379B (de) * 1974-04-19 1976-11-25 Josef Ing Baur Behalter zur aufnahme von auf elektrisch durchschlagfestigkeit zu prufende isolier und/oder kuhlmedien
JPH0670922B2 (ja) * 1988-08-25 1994-09-07 日立金属株式会社 高電圧パルス発生装置用磁性部品
CN2200861Y (zh) * 1994-07-16 1995-06-14 刘洪珊 六—十万伏高压油浸变压器
US7023312B1 (en) * 2001-12-21 2006-04-04 Abb Technology Ag Integrated cooling duct for resin-encapsulated distribution transformer coils
US7161456B2 (en) * 2003-03-17 2007-01-09 Baker Hughes Incorporated Systems and methods for driving large capacity AC motors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE714480C (de) * 1930-04-07 1941-11-29 Siemens Ag Leistungstransformator
CH470738A (de) * 1967-08-14 1969-03-31 Smit Nijmegen Electrotec Von einer Umhüllung umgebene Wicklung für einen Schenkel des magnetischen Kerns eines Transformators oder einer Drosselspule
US3564472A (en) * 1967-08-14 1971-02-16 Smit Nijmegen Electrotec Windings for transformers or choke coils

Also Published As

Publication number Publication date
EP2319057A1 (de) 2011-05-11
US8552737B2 (en) 2013-10-08
EP2319057B1 (de) 2017-11-22
US20110148433A1 (en) 2011-06-23
CN102144269B (zh) 2012-09-19
PL2319057T3 (pl) 2018-04-30
CN102144269A (zh) 2011-08-03
ES2657440T3 (es) 2018-03-05
DE102008045846A1 (de) 2010-03-25

Similar Documents

Publication Publication Date Title
EP2319057B1 (de) Hochspannungstransformator
DE2354632C3 (de) Vakuumleistungsschalter
DE112010003127T5 (de) Spannungsumformer mit vakuumkondensator
EP3427276B1 (de) Transformator mit einsteckbaren hochspannungsdurchführungen
DE102010050684B4 (de) Hochspannungsisolator
EP2256753B1 (de) Stromleiter für eine Hochstromdurchführung
DE3523114C2 (de)
EP3320547A1 (de) Felgenelektrode und wicklungsanordnung eines messwandlers
DE683018C (de) Einleiterstromwandler mit zweiteiligem Durchfuehrungsisolator
DE1023807B (de) Mehrfachdurchfuehrung fuer gasdicht abgeschlossene elektrische Geraete und Maschinen
DE2452056A1 (de) Induktiver spannungswandler fuer eine mittels isoliergas vollisolierte, metallgekapselte hochspannungsschaltanlage
EP0653767B1 (de) Induktiver elektrischer Wandler für Mittelspannung
DE915711C (de) Magnetischer Kern fuer Kleintransformatoren
EP3631821A1 (de) Steckbare hochspannungsdurchführung und elektrisches gerät mit der steckbaren hochspannungsdurchführung
DE695259C (de) Hochspannungs-Messwandler, insbesondere Stromwandleine ohne isolierende Trennfugen ausgefuehrte Huelle vorgesehen ist
DE402723C (de) Isolation fuer Hochspannung fuehrende Wicklungen von Transformatoren, insbesondere Messtransformatoren, nach Patent 394552 bei Verwendung eines fluessigen hochwertigen Isolierstoffes
DE2202401B2 (de) Gekapselte gasisolierte Hochspannungsleitung
DE2115113B2 (de) Induktiver spannungswandler
DE4340020A1 (de) Induktiver elektrischer Wandler
DE731897C (de) Hochspannungstrockentransformator, insbesondere Spannungswandler
DE3806081A1 (de) Hochspannungsisolation von niederinduktiven leitungen fuer gepulste elektrische leistung
DE202020005966U1 (de) Hochspannungsisolator mit geometrischem Invarstabilisator
DE639724C (de) Messwandler, insbesondere Spannungswandler
DE3022070A1 (de) Schirmkoerper fuer bewickelte kernschenkel von transformatoren, drosselspulen u.dgl.
DE437273C (de) Stromwandler, insbesondere gleichzeitig als Hochspannungsdurchfuehrung dienender Stromwandler, bei welchem eine in den Oberspannungsleiter eingeschaltete, ring-foermige und statisch eingekapselte Oberspannungswicklung die Kernfenster des querliegenden Unterspannungssystems durchsetzt

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980134667.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09778308

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2009778308

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2009778308

Country of ref document: EP