WO2010024585A2 - 압전소자를 이용한 소형카메라 구동장치 - Google Patents

압전소자를 이용한 소형카메라 구동장치 Download PDF

Info

Publication number
WO2010024585A2
WO2010024585A2 PCT/KR2009/004753 KR2009004753W WO2010024585A2 WO 2010024585 A2 WO2010024585 A2 WO 2010024585A2 KR 2009004753 W KR2009004753 W KR 2009004753W WO 2010024585 A2 WO2010024585 A2 WO 2010024585A2
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric element
lens holder
movable member
driving
housing
Prior art date
Application number
PCT/KR2009/004753
Other languages
English (en)
French (fr)
Other versions
WO2010024585A3 (ko
Inventor
정회원
서종식
김요섭
Original Assignee
(주)하이소닉
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020080083202A external-priority patent/KR100997691B1/ko
Priority claimed from KR1020080083213A external-priority patent/KR100952084B1/ko
Priority claimed from KR1020080083201A external-priority patent/KR100952622B1/ko
Priority claimed from KR1020080083206A external-priority patent/KR100952621B1/ko
Application filed by (주)하이소닉 filed Critical (주)하이소닉
Publication of WO2010024585A2 publication Critical patent/WO2010024585A2/ko
Publication of WO2010024585A3 publication Critical patent/WO2010024585A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/08Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted to co-operate with a remote control mechanism

Definitions

  • the present invention relates to a small camera driving apparatus using a piezoelectric element, and more particularly, to a small camera driving apparatus using a piezoelectric element to transfer the lens by driving the lens holder in the vertical direction using the piezoelectric element.
  • a small communication device such as a mobile phone is equipped with a small camera device.
  • an actuator of the VCM method that generates a driving force for finely moving the lens holder using a coil that generates a magnetic field by application of a permanent magnet and a power source is known.
  • the actuator of the VCM method works well when the size of the lens holder is small or the weight is light, but when the size of the lens holder is large or the weight is heavy, there is a problem in that the operation force is weak and the operation is not good.
  • the VCM method supports the lens holder to an elastic body such as a leaf spring.
  • an elastic body such as a leaf spring.
  • a piezoelectric body by a single plate of a piezoelectric element is extremely weak, but a sufficient amount of electricity can be obtained by inserting a few sheets of metal foil.
  • This phenomenon is called the reverse piezoelectric effect, and a strong and stable mechanical vibration is obtained by this.
  • piezoelectric / electrical distortion motors also called ultrasonic motors
  • ultrasonic motors are types of drive sources that do not require magnets or windings.
  • Piezoelectric motors generate high driving speed at low speed and are not influenced by magnetic field, and because complex drive transmission parts such as gears and cams are rarely used, the structure is simple. It can be driven and precisely controlled to nanometers.
  • Piezoelectric linear motors are driven by traveling waves generated by flexural waves, and linear and horizontal vibrations are generated repeatedly by using actuators driven by a combination of longitudinal standing waves and transverse standing waves. There is a way to implement movement.
  • a vibrating wave generated in the elastic body is used by contacting the stator and the mover that are bonded to the elastic body of the piezoelectric ceramic, and the standing wave type motor uses a voltage having a frequency corresponding to the natural frequency of each stator. Is applied to the piezoelectric body to obtain a driving force from the vibration wave of the piezoelectric body.
  • the standing wave type motor is more efficient and the structure of the control circuit can be easily configured.
  • FIG. 1 and 2 is a schematic diagram showing the deformation of the piezoelectric element when the current is applied to the piezoelectric element
  • Figures 3 and 4 is a schematic diagram showing the deformation when the current is applied to the piezoelectric element in the state in which the piezoelectric element is coupled to the elastic body. to be.
  • 1 and 2 show a case in which the polarization directions of the piezoelectric elements are opposite to each other, and have a mechanical displacement of contraction or expansion.
  • the piezoelectric element 1 expands in the z direction and contracts in the x direction (1 '), and the polarization direction of the piezoelectric element 1
  • the piezoelectric element 1 expands in the x direction and contracts in the z direction (1 ").
  • FIG. 3 is a case where the polarization and the electric field of the piezoelectric element 1 are in the same direction, and the piezoelectric element 1 and the elastic body 10 are bent in the -z direction, and when the polarization and the electric field are in the opposite direction, as shown in FIG.
  • the piezoelectric element 1 and the elastic body 10 are bent in the direction.
  • the present invention provides a compact camera driving apparatus using a piezoelectric element that can be used for a camera equipped with a high pixel sensor because the lens holder works well, is more robust than the VCM method, and has a longer moving distance of the lens holder. There is this.
  • the lens holder is mounted and driven in the optical axis direction; A first piezoelectric element and a second piezoelectric element; And a movable member having a driving unit in contact with an outer circumferential surface of the lens holder, wherein the driving unit performs an elliptical displacement movement when a voltage having a phase difference of 90 degrees is applied to the first piezoelectric element and the second piezoelectric element.
  • the holder is driven in the optical axis direction.
  • the compact camera driving apparatus using the piezoelectric element of the present invention the housing; A lens holder embedded in the housing and mounted with a lens and driven in an optical axis direction; A movable member coupled to the housing and surrounding the lens holder; A driving part formed on the movable member and in contact with an outer circumferential surface of the lens holder; A first piezoelectric element and a second piezoelectric element mounted on the movable member; The first piezoelectric element and the second piezoelectric element is formed of an inertial body mounted on the upper or lower, the movable member is formed with an insertion hole through which the lens holder is inserted, the drive unit is the first piezoelectric element and the second When a voltage having a phase difference of 90 degrees is applied to the piezoelectric element, the lens holder is driven in the optical axis direction while performing an elliptical displacement movement.
  • the movable member is disposed in a direction perpendicular to the driving direction of the lens holder, and the driving part protrudes from the movable member and is formed to be parallel to the driving direction of the lens holder.
  • the diameter of the insertion hole is larger than the diameter of the lens holder, the outer peripheral surface of the lens holder is protruded in the direction of the drive unit is formed friction portion in contact with the drive unit.
  • the movable member has a square flat plate shape, and the movable member is fixedly coupled to both sides of the housing at one end thereof, and the first piezoelectric element and the second piezoelectric element are mounted at both ends of the movable member.
  • the driving part is formed between the first piezoelectric element and the insertion hole.
  • One side of the driving unit is integrally formed with the movable member, and both sides of the driving unit are spaced apart from the movable member.
  • the weight per unit area of the inertial body is greater than the weight per unit area of the movable member.
  • An elastic member is disposed between the outer circumferential surface of the lens holder and the side surface of the housing to couple the housing to press the lens holder in the direction of the driving unit.
  • a ball member is disposed on an outer circumferential surface of the lens holder, and the elastic member contacts the ball member to apply a force to the lens holder.
  • the first piezoelectric element and the second piezoelectric element vibrate in a driving direction of the lens holder.
  • the compact camera driving apparatus using the piezoelectric element of the present invention the housing; A lens holder embedded in the housing and mounted with a lens and driven in an optical axis direction; A first piezoelectric element and a second piezoelectric element mounted on the housing; One end is connected to the first piezoelectric element, the other end is connected to the second piezoelectric element, and the driving unit is formed of a movable member having a driving part in contact with the outer circumferential surface of the lens holder in the center, the driving unit and the first piezoelectric element When a voltage having a phase difference of 90 degrees is applied to the second piezoelectric element, the lens holder is driven in the optical axis direction while performing an elliptical displacement movement.
  • the first piezoelectric element and the second piezoelectric element are arranged in the driving direction of the lens holder, one end of the movable member is connected to the upper portion of the first piezoelectric element, and the other end is connected to the lower portion of the second piezoelectric element.
  • the driving unit protrudes in the direction of the lens holder.
  • the outer peripheral surface of the lens holder is protruded in the direction of the drive unit is formed with a friction portion in contact with the drive unit.
  • An elastic member is disposed between the outer circumferential surface of the lens holder and the side surface of the housing to couple the housing to press the lens holder in the direction of the driving unit.
  • a ball member is disposed on an outer circumferential surface of the lens holder, and the elastic member contacts the ball member to apply a force to the lens holder.
  • the first piezoelectric element and the second piezoelectric element vibrate in a direction perpendicular to the driving direction of the lens holder.
  • the lens holder is built in the lens and driven in the optical axis direction;
  • the piezoelectric element is arranged in the driving direction of the lens holder, and when a voltage having a phase difference of 90 degrees is applied to the first piezoelectric element and the second piezoelectric element, the lens holder is formed by the first and second piezoelectric elements. Is driven in the direction.
  • a lower portion of the first piezoelectric element and an upper portion of the second piezoelectric element are in contact with each other.
  • An elastic member is disposed on the outer circumferential surfaces of the first piezoelectric element and the second piezoelectric element to press the first piezoelectric element and the second piezoelectric element in the direction of the lens holder.
  • the first piezoelectric element and the second piezoelectric element vibrate in a driving direction of the lens holder.
  • the compact camera driving apparatus using the piezoelectric element of the present invention the housing; A lens holder embedded in the housing and mounted with a lens and driven in an optical axis direction; A movable member coupled to the housing; A driving part formed on the movable member and in contact with an outer circumferential surface of the lens holder; And a first piezoelectric element and a second piezoelectric element mounted on the movable member, one end and the other end of the movable member being coupled to the housing, respectively, and the driving unit being disposed between the first piezoelectric element and the second piezoelectric element.
  • the driving unit drives the lens holder in the optical axis direction while performing an elliptical displacement movement.
  • the movable member comprises: a first fixing part formed at one end and fixedly coupled to the housing; A first horizontal portion extending from the first fixing portion in a direction opposite to the lens holder; A first inclined portion extending obliquely from the first horizontal portion to the lens holder direction; A second fixing part formed at the other end and fixedly coupled to the housing; A second horizontal portion extending from the second fixing portion in a direction opposite to the lens holder; A second inclined portion extending obliquely from the second horizontal portion toward the lens holder; It consists of a connecting portion for interconnecting the first inclined portion and the second inclined portion.
  • the first piezoelectric element is mounted on the first inclined portion
  • the second piezoelectric element is mounted on the second inclined portion
  • the driving portion is mounted on the connection portion, and the driving portion is more wear resistant than the material of the movable member. It is made of strong material.
  • the outer peripheral surface of the lens holder is protruded in the direction of the drive unit is formed with a friction portion in contact with the drive unit.
  • An elastic member is disposed between the outer circumferential surface of the lens holder and the side surface of the housing to couple the housing to press the lens holder in the direction of the driving unit.
  • a ball member is disposed on an outer circumferential surface of the lens holder, and the elastic member contacts the ball member to apply a force to the lens holder.
  • the first piezoelectric element vibrates parallel to the first inclined portion
  • the second piezoelectric element vibrates parallel to the second inclined portion
  • the small camera driving apparatus using the piezoelectric element of the present invention as described above, even if the weight of the lens holder is heavy, it works well, is more robust than the VCM method, and the moving distance of the lens holder is long in the camera equipped with a high pixel sensor Can be used.
  • 1 and 2 is a schematic diagram showing a piezoelectric element deformation when a current is applied to the piezoelectric element
  • 3 and 4 are schematic views showing a deformation in the case where a current is applied to the piezoelectric element in a state in which the piezoelectric element is coupled to the elastic body;
  • FIG. 5 is a perspective view of a compact camera driving apparatus according to the first embodiment of the present invention.
  • FIG. 6 is an exploded perspective view in one direction of the compact camera driving apparatus according to the first embodiment of the present invention.
  • FIG. 7 is an exploded perspective view in another direction of the compact camera driving apparatus according to the first embodiment of the present invention.
  • FIG. 8 is a perspective view of the state excluding the housing in FIG.
  • FIG. 9 is a plan view of FIG. 8;
  • FIG. 10 is a state diagram showing the operation of the small camera driving apparatus according to the first embodiment of the present invention.
  • FIG. 11 is a perspective view of a compact camera driving apparatus according to a second embodiment of the present invention.
  • FIG. 12 is an exploded perspective view in one direction of a compact camera driving apparatus according to a second embodiment of the present invention.
  • FIG. 13 is an exploded perspective view of another direction of the compact camera driving apparatus according to the second embodiment of the present invention.
  • FIG. 14 is a perspective view of the state excluding the housing in FIG. 11,
  • FIG. 15 is a plan view of FIG. 14;
  • 16 is a state diagram showing an operation process of a small camera driving apparatus according to a second embodiment of the present invention.
  • FIG. 17 is a perspective view of a compact camera driving apparatus according to a third embodiment of the present invention.
  • FIG. 18 is an exploded perspective view of a compact camera driving apparatus according to a third embodiment of the present invention.
  • FIG. 19 is a state diagram showing an operation process of a compact camera driving apparatus according to a third embodiment of the present invention.
  • FIG. 20 is a perspective view of a compact camera driving apparatus according to a fourth embodiment of the present invention.
  • 21 is an exploded perspective view in one direction of a compact camera driving apparatus according to a fourth embodiment of the present invention.
  • FIG. 22 is an exploded perspective view of another direction of the compact camera driving apparatus according to the fourth embodiment of the present invention.
  • FIG. 23 is a perspective view of a state excluding the housing of FIG. 20;
  • FIG. 24 is a plan view of FIG. 23;
  • 25 is a state diagram showing the operation of the compact camera driving apparatus according to the fourth embodiment of the present invention.
  • FIG. 5 is a perspective view of a small camera driving apparatus according to a first embodiment of the present invention
  • Figure 6 is a one-way exploded perspective view of a small camera driving apparatus according to a first embodiment of the present invention
  • Figure 7 is a first view of the present invention Another direction exploded perspective view of the compact camera driving apparatus according to the embodiment
  • FIG. 8 is a perspective view of a state excluding the housing of FIG. 5, and
  • FIG. 9 is a plan view of FIG. 8.
  • the compact camera driving apparatus of the first embodiment includes a housing 1010, a lens holder 1020, a movable member 1030, a driver 1040, and a first device.
  • the housing 1010 is like a case and contains other components of the present embodiment.
  • the lens holder 1020 is cylindrically embedded in the housing 1010 and has a lens therein, and is driven in an optical axis direction, that is, a direction of light incident on the lens, that is, a vertical direction of the lens holder 1020. .
  • the movable member 1030 is made of a material such as stainless steel or iron plate in a flat plate shape, is coupled to the housing 1010 to surround the outer peripheral surface of the lens holder 1020.
  • an insertion hole 1035 for inserting the lens holder 1020 is formed in the movable member 1030.
  • the diameter of the insertion hole 1035 is slightly larger than the diameter of the lens holder 1020 in order to allow the lens holder 1020 to move freely in the optical axis direction, that is, the vertical direction.
  • the movable member 1030 is disposed in a direction perpendicular to the driving direction of the lens holder 1020, that is, parallel to the outer circumferential surface direction of the lens holder 1020.
  • the driving unit 1040 is formed in the movable member 1030 to contact an outer circumferential surface of the lens holder 1020.
  • the outer peripheral surface of the lens holder 1020 protrudes in the direction of the driving unit 1040 is formed with a friction portion 1022 in contact with the driving unit 1040.
  • the friction part 1022 may be formed in a flat plane, it is preferable that the friction part 1022 is formed to be bumpy or made of a material having a large coefficient of friction so as to generate a greater friction force with the driving part 1040.
  • the driving unit 1040 is integrally formed with the movable member 1030, and is formed to protrude upwardly, that is, formed in parallel with the driving direction of the lens holder 1020.
  • the first piezoelectric element 1050 and the second piezoelectric element 1060 are mounted to the movable member 1030, respectively.
  • the movable member 1030 is formed in the shape of a square flat plate.
  • the movable member 1030 has one end fixedly coupled to the housing 1010, and the other end of the first piezoelectric element (2). 1050 and the second piezoelectric element 1060 are mounted, respectively.
  • the first piezoelectric element 1050 and the second piezoelectric element 1060 are mounted on the movable member 1030 and vibrate in a driving direction of the lens holder 1020, that is, in a vertical direction.
  • a sinusoidal voltage having a sine curve is applied to the first piezoelectric element 1050 and the second piezoelectric element 1060 to move up and down.
  • the first piezoelectric element 1050 and the second piezoelectric element 1050 are moved.
  • Voltages applied to the piezoelectric elements 1060 are applied with a phase difference of 90 degrees to each other.
  • the inertial body 1070 is mounted on the upper or lower portion of the first piezoelectric element 1050 and the second piezoelectric element 1060 to serve to add an inertial force to the movable member 1030.
  • the inertial body 1070 is mounted on the first piezoelectric element 1050 and the second piezoelectric element 1060.
  • the weight per unit area of the inertial body 1070 is greater than the weight per unit area of the movable member 1030.
  • the movable member 1030 and the first piezoelectric element 1050 are caused by the inertial force of the inertial body 1070. And does not move in the same manner as the second piezoelectric element 1060, that is, does not expand or contract in the up and down direction in place, and moves while moving in the up and down direction.
  • the movable member 1030 periodically waved upwards or downwards. This will flow.
  • the phase difference between the voltages applied to the first piezoelectric element 1050 and the second piezoelectric element 1060 is set to 90 degrees, and the inertial body 1070 is mounted to integrally form the movable member 1030.
  • the drive unit 1040 is an elliptical displacement movement when viewed from the side.
  • the lens holder 1020 in contact with the driving unit 1040 is driven in the optical axis direction by the elliptic displacement movement of the driving unit 1040.
  • the driving unit 1040 is formed between the first piezoelectric element 1050 and the insertion hole 1035.
  • one side of the driving unit 1040 is in detail connected to the lower portion of the movable member 1030 integrally, and both sides of the driving unit 1040 are spaced apart from the movable member 1030.
  • the elastic member 1080 is coupled to the housing 1010 between the outer circumferential surface of the lens holder 1020 and the side surface of the housing 1010 to press the lens holder 1020 toward the driving unit 1040. Do it.
  • the elastic member 1080 is formed in a leaf spring shape.
  • the lens holder 1020 is formed by forming the elastic member 1080 in a leaf spring shape and mounting the lens holder 1020 to cover a part of an outer circumferential surface of the lens holder 1020 so that the lens holder 1020 is pressed toward the driving unit 1040. It may be to be in strong contact with the drive unit 1040 without flowing to the left and right.
  • a ball member 1090 is disposed on an outer circumferential surface of the lens holder 1020, and the elastic member 1080 contacts the ball member 1090 to apply a force to the lens holder 1020.
  • the elastic member 1080 is not directly in contact with the outer circumferential surface of the lens holder 1020, but is contacted through the ball member 1090, so that the elastic member 1080 is moved up and down in the lens holder 1020. Friction with can be minimized.
  • a seating portion 1024 is formed on the outer circumferential surface of the lens holder 1020 for mounting the ball member 1090.
  • FIG. 10 is a state diagram showing an operation process of the compact camera driving apparatus according to the first embodiment of the present invention.
  • the solid line indicates a state in which no voltage is applied to the first piezoelectric element 1050 and the second piezoelectric element 1060, and the dotted line with the color changes with the movable member 1030 and the driver according to time. 1040 is shown.
  • the voltage is applied to the first piezoelectric element 1050 and the second piezoelectric element 1060, but the voltage applied to the first piezoelectric element 1050 and the second piezoelectric element 1060 has a phase difference of 90 degrees.
  • the first piezoelectric element 1050 and the second piezoelectric element 1060 may vibrate while expanding or contracting in the vertical direction. do.
  • the movable member 1030 also expands or contracts in the vertical direction by vertical vibration of the first piezoelectric element 1050 and the second piezoelectric element 1060.
  • the movable member 1030 will only move in the vertical direction to expand or contract.
  • the inertial body 1070 is mounted on the first piezoelectric element 1050 and the second piezoelectric element 1060, and the first piezoelectric element 1050 is formed by the inertial force of the inertial body 1070.
  • the movable member 1030 causes the wave to move upward or downward.
  • the voltage applied to the first piezoelectric element 1050 and the second piezoelectric element 1060 has a phase difference of 90 degrees
  • the driving unit 1040 integrally formed with the movable member 1030 has an elliptical displacement.
  • the lens holder 1020 which is in contact with the driving unit 1040 by the friction unit 1022, moves upward or downward,
  • the zoom or focusing function of the subject can be performed.
  • the lens holder 1020 is pressed in the direction of the driving unit 1040 by the elastic member 1080, the driving unit 1040 and the friction unit 1022 may be more strongly in contact, thereby It is possible to prevent the lens holder 1020 from falling due to its own weight.
  • FIG. 11 is a perspective view of a compact camera driving apparatus according to a second embodiment of the present invention
  • FIG. 12 is an exploded perspective view of a compact camera driving apparatus according to a second embodiment of the present invention
  • FIG. 13 is a second perspective view of the present invention.
  • FIG. 14 is a perspective view of a state excluding the housing of FIG. 11, and
  • FIG. 15 is a plan view of FIG. 14.
  • the compact camera driving apparatus using the piezoelectric element of the second embodiment, the housing 2010, the lens holder 2020, the first piezoelectric element 2040, and the second The piezoelectric element 2050, the movable member 2030, the drive unit 2035, the elastic member 2070 and the like.
  • the housing 2010 is like a case, and contains other components of the second embodiment.
  • the lens holder 2020 is cylindrically embedded in the housing 2010 and has a lens therein, and is driven in an optical axis direction, that is, a direction of light incident on the lens, that is, in the vertical direction of the lens holder 2020. .
  • a friction part 2022 is formed on an outer circumferential surface of the lens holder 2020.
  • the friction part 2022 protrudes toward the driving part 2035 to be in contact with the driving part 2035 as described below.
  • the friction part 2022 may be formed in a flat plane, but in order to generate a greater friction force with the driving part 2035, it is preferable that the friction part 2022 is formed in a bumpy material or made of a material having a large friction coefficient.
  • the first piezoelectric element 2040 and the second piezoelectric element 2050 are fixedly mounted to the housing 2010.
  • the first piezoelectric element 2040 and the second piezoelectric element 2050 are arranged in a driving direction of the lens holder 2020, that is, in a vertical direction.
  • the first piezoelectric element 2040 is disposed at an upper portion
  • the second piezoelectric element 2050 is disposed so that an upper portion thereof is in contact with a lower portion of the first piezoelectric element 2040.
  • the first piezoelectric element 2040 and the second piezoelectric element 2050 are vertically aligned with respect to the driving direction of the lens holder 2020, that is, the vertical arrangement of the first piezoelectric element 2040 and the second piezoelectric element 2050. It vibrates in left and right directions perpendicular to the direction.
  • the movable member 2030 is made of an elastic material such as stainless steel or iron plate, one end is connected to the upper portion of the first piezoelectric element 2040, the other end is connected to the lower portion of the second piezoelectric element 2050. .
  • a driving unit 2035 is formed at the center of the movable member 2030 to contact the friction unit 2022 in detail in the outer circumferential surface of the lens holder 2020.
  • the driving unit 2035 protrudes toward the lens holder 2020, so that the overall shape of the movable member 2030, the first piezoelectric element 2040, and the second piezoelectric element 2050 is approximately triangular. .
  • the driving unit 2035 may be integrally formed with the movable member 2030 or may be manufactured separately and mounted.
  • the driving unit 2035 may be made of the same material as the movable member 2030, but preferably made of a material having excellent wear resistance.
  • a sinusoidal voltage having a sine curve is applied to the first piezoelectric element 2040 and the second piezoelectric element 2050 to move up and down, wherein the first piezoelectric element 2040 and the second piezoelectric element 2040 are applied.
  • Voltages applied to the piezoelectric elements 2050 are applied with a phase difference of 90 degrees to each other.
  • the movable member 2030 connected to the first piezoelectric element 2040 and the second piezoelectric element 2050 is To flow.
  • the driving unit 2035 protruding from the center of the movable member 2030 is displaced in an elliptical shape when viewed from the side.
  • the lens holder 2020 in contact with the driving unit 2035 through the friction unit 2022 is driven in the optical axis direction by the elliptical displacement movement of the driving unit 2035 as described above.
  • the elastic member 2070 is coupled to the housing 2010 between the outer circumferential surface of the lens holder 2020 and the side surface of the housing 2010 to press the lens holder 2020 toward the driving unit 2035. Do it.
  • the elastic member 2070 is formed in a leaf spring shape.
  • the lens holder 2020 is formed by forming the elastic member 2070 in a leaf spring shape and mounting the lens holder 2020 to cover a part of an outer circumferential surface of the lens holder 2020 so as to press the lens holder 2020 toward the driving unit 2035. It may be to be in strong contact with the drive unit 2035 without flowing left and right.
  • a ball member 2090 is disposed on the outer circumferential surface of the lens holder 2020, the elastic member 2070 is in contact with the ball member 2090 to apply a force to the lens holder 2020.
  • the elastic member 2070 is not directly in contact with the outer circumferential surface of the lens holder 2020, but is contacted through the ball member 2090, so that the elastic member 2070 is vertically moved in the lens holder 2020. Friction with can be minimized.
  • a seating portion 2024 is formed on the outer circumferential surface of the lens holder 2020 for mounting the ball member 2090.
  • 16 is a state diagram illustrating an operation process of a compact camera driving apparatus according to a second embodiment of the present invention.
  • the solid line indicates a state in which no voltage is applied to the first piezoelectric element 2040 and the second piezoelectric element 2050, and the dotted line containing the color changes with the movable member 2030 and the driver according to time. (2035) is shown.
  • a voltage is applied to the first piezoelectric element 2040 and the second piezoelectric element 2050, but the voltage applied to the first piezoelectric element 2040 and the second piezoelectric element 2050 has a phase difference of 90 degrees.
  • the first piezoelectric element 2040 and the second piezoelectric element 2050 are in a driving direction of the lens holder 2020. It vibrates left and right in the vertical direction with respect to the lens holder 2020 direction.
  • the movable member 2030 also flows due to the left and right vibrations of the first piezoelectric element 2040 and the second piezoelectric element 2050, and the driving unit 2035 is shown in FIG. Accordingly, since the voltage applied to the first piezoelectric element 2040 and the second piezoelectric element 2050 has a phase difference of 90 degrees, an elliptical displacement motion is performed.
  • the lens holder 2020 which is in contact with the driving unit 2035 by the friction unit 2022, moves upward or downward.
  • the zoom or focusing function of the subject can be performed.
  • the lens holder 2020 since the lens holder 2020 is pressed in the direction of the driving unit 2035 by the elastic member 2070, the driving unit 2035 and the friction unit 2022 may be more strongly in contact, thereby It is possible to prevent the lens holder 2020 from falling due to its own weight.
  • FIG. 17 is a perspective view of a compact camera driving apparatus according to a third embodiment of the present invention
  • FIG. 18 is an exploded perspective view of the compact camera driving apparatus according to the third embodiment of the present invention.
  • the compact camera driving apparatus using the piezoelectric element of the third embodiment includes a lens holder 3110, a first piezoelectric element 3120, and a second piezoelectric element 3130. And an elastic member 3140.
  • the lens holder 3110 has a lens in a cylindrical shape, and is driven in the optical axis direction, that is, the direction of light incident on the lens, that is, the vertical direction of the lens holder 3110.
  • the first piezoelectric element 3120 has a hollow cone shape and surrounds an upper portion of an outer circumferential surface of the lens holder 3110.
  • the second piezoelectric element 3130 has a hollow cone shape and surrounds a lower portion of an outer circumferential surface of the lens holder 3110.
  • the inner circumferential surfaces of the first piezoelectric element 3120 and the second piezoelectric element 3130 are fixedly coupled to an outer circumferential surface of the lens holder 3110 by an adhesive or the like.
  • the first piezoelectric element 3120 and the second piezoelectric element 3130 are arranged in a driving direction of the lens holder 3110, that is, in a vertical direction.
  • the first piezoelectric element 3120 is disposed on an upper portion thereof, and the second piezoelectric element 3120 is disposed above the second piezoelectric element 3120.
  • the piezoelectric element 3130 is disposed below.
  • the lower portion of the first piezoelectric element 3120 and the upper portion of the second piezoelectric element 3130 are in contact with each other.
  • the first piezoelectric element 3120 and the second piezoelectric element 3130 vibrate in a driving direction of the lens holder 3110, that is, in a vertical direction.
  • Vertical vibration of the first piezoelectric element 3120 and the second piezoelectric element 3130 is performed by applying a sine wave voltage having a sine curve.
  • the voltages applied to the first piezoelectric element 3120 and the second piezoelectric element 3130 are applied with a phase difference of 90 degrees to each other.
  • the lens holder 3110 moves along the optical axis direction together with the first piezoelectric element 3120 and the second piezoelectric element 3130 by the movement of the first piezoelectric element 3120 and the second piezoelectric element 3130. That is, the drive in the vertical direction.
  • the elastic member 3140 is mounted to surround the outer circumferential surfaces of the first piezoelectric element 3120 and the second piezoelectric element 3130, and the first piezoelectric element 3120 and the second piezoelectric element 3130 may be disposed on the lens. Pressing in the direction of the holder 3110.
  • the first piezoelectric element 3120 and the second piezoelectric element 3130 are supported by the elastic member 3140 when the first piezoelectric element 3120 and the second piezoelectric element 3130 vibrate.
  • Step 3140 is driven in the vertical direction with the lens holder 3110.
  • FIG. 19 is a state diagram showing the operation of the compact camera driving apparatus according to an embodiment of the present invention.
  • FIG. 19 (b) shows only individual deformations without considering deformations acting between the first piezoelectric element 3120 and the second piezoelectric element 3130, and FIG. 19 (b) shows the first piezoelectric element.
  • FIG. 3 shows an actual deformation state in consideration of mutual deformation that is performed by both the 3120 and the second piezoelectric element 3130 being coupled to the lens holder 3110.
  • voltages I and II are applied to the first piezoelectric element 3120 and the second piezoelectric element 3130, but the first piezoelectric element 3120 and the second piezoelectric element are applied.
  • the voltages I and II applied to the element 3130 have a phase difference of 90 degrees.
  • the first piezoelectric element 3120 maintains its original state, and the second piezoelectric element 3130 contracts in the vertical direction.
  • the elastic deformation amount of the lens holder 3110 is smaller than the deformation amount of the second piezoelectric element 3130.
  • lower portions of the lens holder 3110 on which the second piezoelectric element 3130 is mounted extend to both sides.
  • the constant voltage I applied to the first piezoelectric element 3120 increases from t1 to t2, and the reverse voltage II applied to the second piezoelectric element 3130 is weakened.
  • the first piezoelectric element 3120 when a constant voltage is applied to the first piezoelectric element 3120, the first piezoelectric element 3120 is extended in the vertical direction.
  • An inner circumferential surface of the first piezoelectric element 3120 is formed in the lens holder 3110. Since the lens holder 3110 is coupled to an outer circumferential surface and the elastic deformation amount is smaller than the deformation amount of the first piezoelectric element 3120, the second piezoelectric element is shown in FIGS. 19B and t1 and t2.
  • the upper portion of the lens holder 3110 on which the element 3130 is mounted is contracted from both sides to the inner side.
  • the first piezoelectric element 3120 and the second piezoelectric element 3130 extend or contract in both directions with a phase difference of 90 degrees.
  • the outer circumferential surface is upward in time. It can be seen that the strain is caused by the wave in the downward direction.
  • the first piezoelectric element 3120 and the second piezoelectric element 3130 are deformed and moved in an elliptical shape, the first piezoelectric element 3120 and the second piezoelectric element 3130 are It rises or falls on the elastic member 3140 surrounding the first piezoelectric element 3120 and the second piezoelectric element 3130.
  • the lens holder 3110 moves together with the first piezoelectric element 3120 and the second piezoelectric element 3130 in the vertical direction, thereby performing a zoom function of the lens or a focusing function of the subject.
  • FIG. 20 is a perspective view of a compact camera driving apparatus according to a fourth embodiment of the present invention
  • FIG. 21 is an exploded perspective view of a compact camera driving apparatus according to a fourth embodiment of the present invention
  • FIG. Another direction exploded perspective view of the compact camera driving apparatus according to the embodiment
  • FIG. 23 is a perspective view of a state excluding the housing of FIG. 20, and
  • FIG. 24 is a plan view of FIG. 23.
  • the compact camera driving apparatus using the piezoelectric element of the present invention includes a housing 4010, a lens holder 4020, a first piezoelectric element 4040, and a second piezoelectric element. 4050, the movable member 4030, the driving unit 4035, the elastic member 4060, and the like.
  • the housing 4010 is like a case, and contains other components of the fourth embodiment.
  • the lens holder 4020 is cylindrically embedded in the housing 4010 and has a lens therein, and is driven in an optical axis direction, that is, a direction of light incident on the lens, that is, a vertical direction of the lens holder 4020. .
  • a friction portion 4022 is formed on an outer circumferential surface of the lens holder 4020, and the friction portion 4022 protrudes toward the driving portion 4035 to be in contact with the driving portion 4035 as described below.
  • the friction part 4022 may be formed in a flat plane, it is preferable that the friction part 4022 is formed to be bumpy or made of a material having a large coefficient of friction so as to generate a greater friction force with the driving part 4035.
  • the movable member 4030 is made of a material such as stainless steel or iron plate, and is fixedly coupled to the housing 4010 at the side of the lens holder 4020.
  • the movable member 4030 is formed in a long bar plate shape, one end and the other end is arranged in the driving direction of the lens holder 4020 is fixedly coupled to the housing 4010.
  • the movable member 4030 has a first fixing portion 4031 formed at one end and fixedly coupled to the housing 4010, and extending in a direction opposite to the lens holder 4020 at the first fixing portion 4031.
  • a first horizontal portion 4032 formed therein, a first inclined portion 4033 extending obliquely from the first horizontal portion 4032 toward the lens holder 4020, and formed at the other end and fixed to the housing 4010
  • the second fixing part 4038 to be coupled, the second horizontal part 4037 extending in the opposite direction of the lens holder 4020 in the second fixing part 4038, and in the second horizontal part 4037
  • a second inclined portion 4036 extending obliquely toward the lens holder 4020 and a connecting portion 4034 connecting the first inclined portion 4033 and the second inclined portion 4036 to each other.
  • the first fixing part 4031 and the second fixing part 4038 are fixedly coupled to the housing 4010 by rivets or screws, respectively.
  • the first horizontal portion 4032 and the second horizontal portion 4037 are respectively bent from the first fixing portion 4031 and the second fixing portion 4038 and extended in a direction away from the lens holder 4020. have.
  • the first inclined portion 4033 and the second inclined portion 4036 extend inclined toward the lens holder 4020 in the first horizontal portion 4032 and the second horizontal portion 4037, respectively. Interconnected by the connecting portion 4034.
  • the first piezoelectric element 4040 and the second piezoelectric element 4050 are mounted to the movable member 4030.
  • first piezoelectric element 4040 is mounted on the first inclined portion 4033
  • second piezoelectric element 4050 is mounted on the second inclined portion 4036.
  • the driving part 4035 is mounted to the connection part 4034 of the movable member 4030 and protrudes toward the friction part 4022 of the lens holder 4020 to contact the friction part 4022.
  • the driver 4035 is disposed between the first piezoelectric element 4040 and the second piezoelectric element 4050.
  • the driving unit 4035 may be made of the same material as the movable member 4030, but preferably made of a material having excellent wear resistance.
  • the driving unit 4035 may be integrally formed with the movable member 4030, or may be separately manufactured and mounted.
  • the first piezoelectric element 4040 oscillates in parallel with the first inclined portion 4033
  • the second piezoelectric element 4050 oscillates in parallel with the second inclined portion 4036.
  • a sinusoidal voltage having a sin curve shape is applied to the first piezoelectric element 4040 and the second piezoelectric element 4050 to perform vertical movement.
  • the first piezoelectric element 4040 and the second piezoelectric element 4040 are applied.
  • Voltages applied to the piezoelectric elements 4050 are applied with a phase difference of 90 degrees to each other.
  • the first piezoelectric element 4040 and the second piezoelectric element 4050 vibrate in a direction parallel to the first inclined portion 4033 and the second inclined portion 4036, the first piezoelectric element ( The movable member 4030 on which the 4040 and the second piezoelectric element 4050 are mounted flows.
  • the driving portion 4035 formed on the connecting portion 4034 of the movable member 4030 is displaced in an elliptical shape when viewed from the side.
  • the lens holder 4020 in contact with the driving unit 4035 through the friction unit 4022 by the elliptical displacement movement of the driving unit 4035 is driven in the optical axis direction.
  • the elastic member 4060 is coupled to the housing 4010 between the outer circumferential surface of the lens holder 4020 and the side surface of the housing 4010 to pressurize the lens holder 4020 toward the driving unit 4035. Do it.
  • the elastic member 4060 is formed in a leaf spring shape.
  • the lens holder 4020 is formed by forming the elastic member 4060 in a leaf spring shape and mounting the lens holder 4020 to cover a part of an outer circumferential surface of the lens holder 4020 so that the lens holder 4020 is pressed toward the driving unit 4035. It may be to be in strong contact with the driving unit 4035 without flowing to the left and right.
  • a ball member 4065 is disposed on an outer circumferential surface of the lens holder 4020, and the elastic member 4060 contacts the ball member 4065 to apply a force to the lens holder 4020.
  • the elastic member 4060 is not in direct contact with the outer circumferential surface of the lens holder 4020, but is contacted through the ball member 4065, so that the elastic member 4060 is moved up and down in the lens holder 4020. Friction with can be minimized.
  • a seating portion 4024 for mounting the ball member 4065 is formed on an outer circumferential surface of the lens holder 4020.
  • 25 is a state diagram showing an operation process of the compact camera driving apparatus according to the fourth embodiment of the present invention.
  • the solid line indicates a state in which no voltage is applied to the first piezoelectric element 4040 and the second piezoelectric element 4050, and the dotted line with color is changed by the movable member 4030 and the driver. 4035 is shown.
  • a voltage is applied to the first piezoelectric element 4040 and the second piezoelectric element 4050, but the voltage applied to the first piezoelectric element 4040 and the second piezoelectric element 4050 has a phase difference of 90 degrees.
  • the first piezoelectric element 4040 and the second piezoelectric element 4050 are respectively connected to the first inclined portion 4033. It vibrates parallel to the second inclined portion 4036.
  • the movable member 4030 also flows due to the vibration of the first piezoelectric element 4040 and the second piezoelectric element 4050, and the driving unit 4035 is the first piezoelectric element. Since the voltage applied to the element 4040 and the second piezoelectric element 4050 has a phase difference of 90 degrees, an elliptical displacement motion is performed.
  • the lens holder 4020 which is in contact with the driving unit 4035 by the friction unit 4022 moves in the upward or downward direction.
  • the zoom or focusing function of the subject can be performed.
  • the lens holder 4020 since the lens holder 4020 is pressed in the direction of the driving unit 4035 by the elastic member 4060, the driving unit 4035 and the friction unit 4022 may be more strongly in contact, thereby It is possible to prevent the lens holder 4020 from falling due to its own weight.
  • the compact camera driving apparatus using the piezoelectric element of the present invention is not limited to the above-described embodiment, and may be variously modified and implemented within the scope of the technical idea of the present invention.
  • the small camera driving apparatus using the piezoelectric element of the present invention is applied to the driving apparatus of the small camera mounted on the portable terminal, and the lens holder can be driven in the vertical direction by using the piezoelectric element to transfer the lens.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lens Barrels (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

본 발명은 압전소자를 이용한 소형카메라 구동장치에 관한 것으로서, 특히 압전소자를 이용하여 렌즈홀더를 상하방향으로 구동시켜 렌즈를 이송시킬 수 있도록 하는 압전소자를 이용한 소형카메라 구동장치에 관한 것이다. 본 발명은, 렌즈가 장착되어 광축방향으로 구동되는 렌즈홀더와; 제1압전소자 및 제2압전소자와; 상기 렌즈홀더의 외주면에 접촉하는 구동부가 형성된 가동부재를 포함하여 이루어지되, 상기 구동부는 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 타원형의 변위 운동을 하면서 상기 렌즈홀더를 광축방향으로 구동시키는 것을 특징으로 한다.

Description

압전소자를 이용한 소형카메라 구동장치
본 발명은 압전소자를 이용한 소형카메라 구동장치에 관한 것으로서, 특히 압전소자를 이용하여 렌즈홀더를 상하방향으로 구동시켜 렌즈를 이송시킬 수 있도록 하는 압전소자를 이용한 소형카메라 구동장치에 관한 것이다.
휴대폰과 같은 소형의 통신기기에는 소형의 카메라장치가 장착된다.
최근에는 렌즈를 탑재한 렌즈 홀더를 광축 방향으로 구동시켜 피사체의 초점을 조절하는 자동 초점 조절 카메라의 보급이 증가하고 있다.
렌즈 홀더를 구동시키기 위한 구동원의 하나로서, 영구자석과 전원의 인가에 의해 자기장을 발생시키는 코일을 이용하여 렌즈 홀더를 미세하게 이동시키는 구동력을 발생시키는 VCM 방식의 액츄에이터가 알려져 있다.
그런데 VCM방식의 액츄에이터는 렌즈홀더의 크기가 작거나 무게가 경량인 경우에는 잘 작동되지만, 렌즈홀더의 크기가 커지거나 무게가 무거워지면 가동력이 약해 작동이 잘되지 않게 되는 문제점이 있다.
또한, VCM방식은 렌즈 홀더를 판스프링과 같은 탄성체에 지지시키게 되는데, 렌즈 홀더의 설치상태가 견고하지 못하여 낙하실험을 할 경우 불량제품이 많이 발생하고, 렌즈홀더의 이동거리가 짧아 고화소 센서를 사용한 카메라의 경우에는 사용하기가 곤란한 문제점이 있다.
한편, 최근에는 구조가 간단하고 저속으로 구동이 가능하며, 변위의 제한도 적은 압전소자를 이용하는 기술이 대두되었다.
일반적으로 압전소자 하나의 결정판에 의한 압전기는 극히 미약하나 금속박을 삽입하여 이것을 몇 장 겹치면 충분한 전기량을 얻을 수 있다.
이를 통해 기계적인 변형을 전기적으로 변환시킬 수 있어서, 마이크로폰이나 전축용 픽업 등에 오래전부터 이용되고 있다.
반대로, 압전성을 가지는 결정판에 고주파 전압을 걸면 판이 주기적으로 신축하며, 특히 전압의 주파수를 판의 고유진동수에 맞추면 공진(共振)하여 판이 강하게 진동한다.
이러한 현상을 역압전효과(逆壓電效果)라고 하며, 이것에 의해 강력하고 안정된 기계적인 진동이 얻어진다.
이러한 역압전효과에 의한 진동을 이용하여 선형 구동력을 얻는 것이 압전 선형 모터이다.
일반적으로 압전/전왜 모터는 초음파 모터라고도 불리며, 자석이나 권선을 필요로 하지 않는 형태의 구동원이다.
압전 모터는 저속의 높은 구동력을 발생시키며 자계의 영향을 받지 않을 뿐 아니라 기어, 캠 등의 복잡한 구동 전달 부품이 거의 사용되지 않으므로 그 구조가 간단하고, 진동에 의해 발생하는 음파는 초음파로서 않아 저소음으로 구동할 수 있으며, 나노미터까지 정밀한 위치제어를 할 수 있다는 특징이 있다.
압전 선형 모터는 굴곡파(flexural wave)에 의해 발생된 진행파로 구동되는 방식과, 종진동 정재파(standingwave)와 횡진동 정재파를 결합하여 구동되는 액츄에이터를 사용하여 수직과 수평진동을 반복적으로 발생시켜 선형 이동을 구현하는 방식이 있다.
진행파로 구동되는 선형모터의 경우 압전 세라믹을 금속의 탄성체에 맞붙인 고정자와 이동자를 마주 접촉시켜 탄성체에 발생하는 진동파를 이용하는 것이고, 정재파 방식의 모터는 각 고정자의 고유진동수에 해당하는 주파수의 전압을 압전체에 가하여 압전체의 진동파에서 구동력을 얻도록 구성된다.
정재파 방식의 모터가 더 고효율이며, 제어회로의 구조를 간단하게 구성할 수 있다.
이하, 도 1 내지 도 4을 참조하여 종래 기술에 따른 압전 선형 모터를 상세히 설명한다.
도 1 및 도 2는 압전소자에 전류가 인가된 경우의 압전소자 변형을 나타낸 개략도이고, 도 3 및 도 4은 압전소자가 탄성체와 결합한 상태에서 압전소자에 전류가 인가된 경우의 변형을 나타낸 개략도이다.
도 1 및 도 2에 나타낸 바와 같이, 압전소자(1)에 전원(30)을 연결하여 전압을 인가하면 압전소자(1)에 변형이 발생한다.
도 1과 도 2는 압전소자 각각의 분극 방향이 반대인 경우를 나타낸 것으로서 수축 또는 팽창의 기계적 변위를 갖는다.
즉, 압전소자(1)의 분극 방향과 인가되는 전압의 방향이 같은 경우 압전소자(1)는 z방향으로 팽창, x방향으로는 수축하게 되고(1'), 압전소자(1)의 분극 방향과 인가되는 전압의 방향이 반대가 되는 경우 압전소자(1)는 x방향으로 팽창, z방향으로는 수축하게 된다(1").
도 3 및 도 4에 나타낸 바와 같이, 상기의 압전소자(1)를 금속 탄성체(10)와 결합하는 경우, 압전소자와 탄성체의 탄성률 차에 의해, 팽창 또는 수축의 변형은 굴곡 변위로 바뀐다.
도 3는 압전소자(1)의 분극과 전계가 같은 방향인 경우로서 -z방향으로 압전소자(1)와 탄성체(10)가 휘어지며, 분극과 전계가 반대 방향인 경우에는 도 3와 같이 z방향으로 압전소자(1)와 탄성체(10)가 휘어진다.
본 발명은 렌즈홀더의 무게가 무거워도 잘 작동이 되고, VCM방식보다 견고하며, 렌즈홀더의 이동거리가 길어 고화소 센서를 장착한 카메라에 사용될 수 있는 압전소자를 이용한 소형카메라 구동장치를 제공하는데 그 목적이 있다.
상기 목적을 달성하기 위하여 본 발명의 압전소자를 이용한 소형카메라 구동장치는, 렌즈가 장착되어 광축방향으로 구동되는 렌즈홀더와; 제1압전소자 및 제2압전소자와; 상기 렌즈홀더의 외주면에 접촉하는 구동부가 형성된 가동부재를 포함하여 이루어지되, 상기 구동부는 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 타원형의 변위 운동을 하면서 상기 렌즈홀더를 광축방향으로 구동시키는 것을 특징으로 한다.
또한, 본 발명의 상기 압전소자를 이용한 소형카메라 구동장치는, 하우징과; 상기 하우징에 내장되고, 렌즈가 장착되어 광축방향으로 구동되는 렌즈홀더와; 상기 하우징에 결합되어 상기 렌즈홀더를 감싸는 가동부재와; 상기 가동부재에 형성되어 상기 렌즈홀더의 외주면과 접촉하는 구동부와; 상기 가동부재에 장착된 제1압전소자 및 제2압전소자와; 상기 제1압전소자 및 제2압전소자의 상부 또는 하부에 장착된 관성체로 이루어지되, 상기 가동부재에는 상기 렌즈홀더가 관통하여 삽입되는 삽입공이 형성되고, 상기 구동부는 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 타원형의 변위 운동을 하면서 상기 렌즈홀더를 광축방향으로 구동시킨다.
상기 가동부재는 상기 렌즈홀더의 구동방향에 대해 수직방향으로 배치되고, 상기 구동부는 상기 가동부재에 돌출되어 상기 렌즈홀더의 구동방향에 대해 평행하게 형성되어 배치된다.
상기 삽입공의 지름은 상기 렌즈홀더의 지름보다 크고, 상기 렌즈홀더의 외주면에는 상기 구동부 방향으로 돌출되어 상기 구동부와 접하는 마찰부가 형성된다.
상기 가동부재는 사각평판 형상으로 이루어지고, 상기 가동부재는 일단 양측은 상기 하우징에 고정 결합되며, 타단 양측에는 상기 제1압전소자와 제2압전소자가 각각 장착된다.
상기 구동부는 상기 제1압전소자와 상기 삽입공 사이에 형성된다.
상기 구동부는 일면이 상기 가동부재에 일체로 연결되어 형성되고, 상기 구동부의 양측은 상기 가동부재와 이격되어 있다.
상기 관성체의 단위면적당 중량은 상기 가동부재의 단위면적당 중량보다 크다.
상기 렌즈홀더의 외주면과 상기 하우징의 측면 사이에는 상기 하우징에 결합되어 상기 렌즈홀더를 상기 구동부 방향을 가압하는 탄성부재가 배치된다.
상기 렌즈홀더의 외주면에는 볼부재가 배치되고, 상기 탄성부재는 상기 볼부재와 접하여 상기 렌즈홀더에 힘을 가한다.
상기 제1압전소자 및 제2압전소자는 상기 렌즈홀더의 구동방향으로 진동한다.
또한, 본 발명의 상기 압전소자를 이용한 소형카메라 구동장치는, 하우징과; 상기 하우징에 내장되고, 렌즈가 장착되어 광축방향으로 구동되는 렌즈홀더와; 상기 하우징에 장착된 제1압전소자 및 제2압전소자와; 일단이 상기 제1압전소자에 연결되고, 타단이 상기 제2압전소자에 연결되며, 중심부에 상기 렌즈홀더의 외주면에 접촉하는 구동부가 형성된 가동부재로 이루어지되, 상기 구동부는 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 타원형의 변위 운동을 하면서 상기 렌즈홀더를 광축방향으로 구동시킨다.
상기 제1압전소자와 제2압전소자는 상기 렌즈홀더의 구동방향으로 배열되고, 상기 가동부재의 일단은 상기 제1압전소자의 상부에 연결되고, 타단은 상기 제2압전소자의 하부에 연결되며, 상기 구동부는 상기 렌즈홀더 방향으로 돌출 형성된다.
상기 렌즈홀더의 외주면에는 상기 구동부 방향으로 돌출되어 상기 구동부와 접하는 마찰부가 형성된다.
상기 렌즈홀더의 외주면과 상기 하우징의 측면 사이에는 상기 하우징에 결합되어 상기 렌즈홀더를 상기 구동부 방향을 가압하는 탄성부재가 배치된다.
상기 렌즈홀더의 외주면에는 볼부재가 배치되고, 상기 탄성부재는 상기 볼부재와 접하여 상기 렌즈홀더에 힘을 가한다.
상기 제1압전소자 및 제2압전소자는 상기 렌즈홀더의 구동방향에 대하여 수직방향으로 진동한다.
또한, 본 발명의 상기 압전소자를 이용한 소형카메라 구동장치는, 렌즈가 내장되어 광축방향으로 구동되는 렌즈홀더와; 상기 렌즈홀더의 외주면을 감싸면서 고정결합된 중공원형 형상의 제1압전소자와; 상기 렌즈홀더의 외주면을 감싸면서 고정결합된 중공원형 형상의 제2압전소자로 이루어지되, 상기 구동부가 형성된 가동부재는 상기 제1압전소자 및 제2압전소자이고, 상기 제1압전소자와 제2압전소자는 상기 렌즈홀더의 구동방향으로 배열되며, 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 상기 제1압전소자와 제2압전소자에 의해 상기 렌즈홀더는 광축방향으로 구동된다.
상기 제1압전소자의 하부와 상기 제2압전소자의 상부는 상호 접한다.
상기 제1압전소자 및 제2압전소자의 외주면에는 상기 제1압전소자 및 제2압전소자를 상기 렌즈홀더 방향으로 가압하는 탄성부재가 배치된다.
상기 제1압전소자 및 제2압전소자는 상기 렌즈홀더의 구동방향으로 진동한다.
또한, 본 발명의 상기 압전소자를 이용한 소형카메라 구동장치는, 하우징과; 상기 하우징에 내장되고, 렌즈가 장착되어 광축방향으로 구동되는 렌즈홀더와; 상기 하우징에 결합된 가동부재와; 상기 가동부재에 형성되어 상기 렌즈홀더의 외주면과 접촉하는 구동부와; 상기 가동부재에 장착된 제1압전소자 및 제2압전소자로 이루어지되, 상기 가동부재의 일단과 타단은 각각 상기 하우징에 결합되고, 상기 구동부는 상기 제1압전소자와 제2압전소자 사이에 배치되며, 상기 구동부는 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 타원형의 변위 운동을 하면서 상기 렌즈홀더를 광축방향으로 구동시킨다.
상기 가동부재의 일단과 타단은 상기 렌즈홀더의 구동방향으로 배열되고, 상기 가동부재는, 일단에 형성되어 상기 하우징에 고정결합되는 제1고정부와; 상기 제1고정부에서 상기 렌즈홀더의 반대방향으로 연장 형성된 제1수평부와; 상기 제1수평부에서 상기 렌즈홀더 방향으로 경사지게 연장 형성된 제1경사부와; 타단에 형성되어 상기 하우징에 고정결합되는 제2고정부와; 상기 제2고정부에서 상기 렌즈홀더의 반대방향으로 연장 형성된 제2수평부와; 상기 제2수평부에서 상기 렌즈홀더 방향으로 경사지게 연장 형성된 제2경사부와; 상기 제1경사부와 제2경사부를 상호 연결하는 연결부로 이루어진다.
상기 제1압전소자는 상기 제1경사부에 장착되고, 상기 제2압전소자는 상기 제2경사부에 장착되며, 상기 연결부에는 상기 구동부가 장착되되, 상기 구동부는 상기 가동부재의 재질보다 내마모성이 강한 재질로 이루어진다.
상기 렌즈홀더의 외주면에는 상기 구동부 방향으로 돌출되어 상기 구동부와 접하는 마찰부가 형성된다.
상기 렌즈홀더의 외주면과 상기 하우징의 측면 사이에는 상기 하우징에 결합되어 상기 렌즈홀더를 상기 구동부 방향을 가압하는 탄성부재가 배치된다.
상기 렌즈홀더의 외주면에는 볼부재가 배치되고, 상기 탄성부재는 상기 볼부재와 접하여 상기 렌즈홀더에 힘을 가한다.
상기 제1압전소자는 상기 제1경사부에 평행하게 진동하고, 상기 제2압전소자는 상기 제2경사부에 평행하게 진동한다.
이상에서 설명한 바와 같은 본 발명의 압전소자를 이용한 소형카메라 구동장치에 따르면, 렌즈홀더의 무게가 무거워도 잘 작동이 되고, VCM방식보다 견고하며, 렌즈홀더의 이동거리가 길어 고화소 센서를 장착한 카메라에 사용될 수 있다.
도 1 및 도 2는 압전소자에 전류가 인가된 경우의 압전소자 변형을 나타낸 개략도,
도 3 및 도 4는 압전소자가 탄성체와 결합한 상태에서 압전소자에 전류가 인가된 경우의 변형을 나타낸 개략도,
도 5는 본 발명의 제1실시예에 따른 소형카메라 구동장치의 사시도,
도 6은 본 발명의 제1실시예에 따른 소형카메라 구동장치의 일방향 분해사시도,
도 7은 본 발명의 제1실시예에 따른 소형카메라 구동장치의 타방향 분해사시도,
도 8은 도 5에서 하우징을 제외한 상태의 사시도,
도 9는 도 8의 평면도,
도 10은 본 발명의 제1실시예에 따른 소형카메라 구동장치의 작동과정을 도시한 상태도,
도 11은 본 발명의 제2실시예에 따른 소형카메라 구동장치의 사시도,
도 12는 본 발명의 제2실시예에 따른 소형카메라 구동장치의 일방향 분해사시도,
도 13은 본 발명의 제2실시예에 따른 소형카메라 구동장치의 타방향 분해사시도,
도 14는 도 11에서 하우징을 제외한 상태의 사시도,
도 15는 도 14의 평면도,
도 16은 본 발명의 제2실시예에 따른 소형카메라 구동장치의 작동과정을 도시한 상태도,
도 17은 본 발명의 제3실시예에 따른 소형카메라 구동장치의 사시도,
도 18은 본 발명의 제3실시예에 따른 소형카메라 구동장치의 분해사시도,
도 19는 본 발명의 제3실시예에 따른 소형카메라 구동장치의 작동과정을 도시한 상태도,
도 20은 본 발명의 제4실시예에 따른 소형카메라 구동장치의 사시도,
도 21은 본 발명의 제4실시예에 따른 소형카메라 구동장치의 일방향 분해사시도,
도 22는 본 발명의 제4실시예에 따른 소형카메라 구동장치의 타방향 분해사시도,
도 23은 도 20에서 하우징을 제외한 상태의 사시도,
도 24는 도 23의 평면도,
도 25는 본 발명의 제4실시예에 따른 소형카메라 구동장치의 작동과정을 도시한 상태도.
제1실시예
도 5는 본 발명의 제1실시예에 따른 소형카메라 구동장치의 사시도이고, 도 6은 본 발명의 제1실시예에 따른 소형카메라 구동장치의 일방향 분해사시도이며, 도 7은 본 발명의 제1실시예에 따른 소형카메라 구동장치의 타방향 분해사시도이고, 도 8은 도 5에서 하우징을 제외한 상태의 사시도이며, 도 9은 도 8의 평면도이다.
도 5 내지 도 9에 도시된 바와 같이, 본 제1실시예의 소형카메라 구동장치는, 하우징(1010)과, 렌즈홀더(1020)와, 가동부재(1030)와, 구동부(1040)와, 제1압전소자(1050)와, 제2압전소자(1060)와 관성체(1070), 탄성부재(1080) 등으로 이루어진다.
상기 하우징(1010)은 케이스와 같은 것으로써, 본 실시예의 다른 구성들을 내포한다.
상기 렌즈홀더(1020)는 원통형상으로 상기 하우징(1010)에 내장되고, 렌즈가 내장되어 있으며, 광축방향 즉 상기 렌즈에 입사되는 빛의 방향 다시 말해 상기 렌즈홀더(1020)의 상하방향으로 구동된다.
상기 가동부재(1030)는 스테인리스스틸 또는 철판과 같은 재질로 평판형상으로 이루어지되, 상기 하우징(1010)에 결합되어 상기 렌즈홀더(1020)의 외주면을 감싸고 있다.
이때, 상기 가동부재(1030)에는 상기 렌즈홀더(1020)가 삽입되기 위한 삽입공(1035)이 형성되어 있다.
그리고, 상기 삽입공(1035)의 지름은 상기 렌즈홀더(1020)가 광축방향 즉 상하방향으로 자유롭게 이동할 수 있도록 하기 위해 상기 렌즈홀더(1020)의 지름보다 약간 크게 형성한다.
상기 가동부재(1030)는 상기 렌즈홀더(1020)의 구동방향에 대해 수직방향 즉 상기 렌즈홀더(1020)의 외주면 방향으로 평행하게 배치된다.
상기 구동부(1040)는 상기 가동부재(1030)에 형성되어 상기 렌즈홀더(1020)의 외주면에 접촉한다.
이때, 상기 렌즈홀더(1020)의 외주면에는 상기 구동부(1040) 방향으로 돌출되어 상기 구동부(1040)와 접하는 마찰부(1022)가 형성된다.
상기 마찰부(1022)는 밋밋한 평면으로 형성할 수도 있지만, 상기 구동부(1040)와 보다 큰 마찰력을 발생하도록 하기 위해 울퉁불퉁하게 형성하거나 마찰계수가 큰 물질로 이루어지도록 함이 바람직하다.
상기 구동부(1040)는 상기 가동부재(1030)에 일체로 이루어지되, 상방향으로 돌출 형성 즉 상기 렌즈홀더(1020)의 구동방향에 대해 평행하게 형성되어 배치되도록 한다.
상기 제1압전소자(1050) 및 제2압전소자(1060)는 각각 상기 가동부재(1030)에 장착된다.
본 제1실시예에서 상기 가동부재(1030)는 사각평판 형상으로 형성되어 있는데, 상기 가동부재(1030)는 일단 양측은 상기 하우징(1010)에 고정 결합되고, 타단 양측에는 상기 제1압전소자(1050)와 제2압전소자(1060)가 각각 장착된다.
상기 제1압전소자(1050) 및 제2압전소자(1060)는 상기 가동부재(1030)에 장착되어 상기 렌즈홀더(1020)의 구동방향 즉 상하방향으로 진동한다.
상기 제1압전소자(1050)와 제2압전소자(1060)에는 후술하는 바와 같이, sine곡선 형태를 갖는 정현파 전압이 인가되어 상하운동을 하게 되는데, 이때 상기 제1압전소자(1050)와 제2압전소자(1060)에 인가되는 전압은 상호 90도의 위상차를 가지고 인가된다.
상기 관성체(1070)는 상기 제1압전소자(1050) 및 제2압전소자(1060)의 상부 또는 하부에 장착되어, 상기 가동부재(1030)에 관성력을 부가하는 역할을 한다.
본 제1실시예에서는 상기 관성체(1070)는 상기 제1압전소자(1050) 및 제2압전소자(1060)의 상부에 장착되었다.
상기 관성체(1070)의 단위면적당 중량은 상기 가동부재(1030)의 단위면적당 중량보다 크다.
따라서, 상기 제1압전소자(1050) 및 제2압전소자(1060)가 상하방향으로 진동할 경우 상기 관성체(1070)의 관성력에 의해, 상기 가동부재(1030) 상기 제1압전소자(1050) 및 제2압전소자(1060)와 동일하게 운동하지 않고 즉 제자리에서 상하방향으로 확장 또는 축소운동을 하지 않고, 상하방향으로 유동하면서 운동을 한다.
즉, 상기 제1압전소자(1050) 및 제2압전소자(1060)의 상하진동시 상기 관성체(1070)의 관성력에 의해 상기 가동부재(1030)는 주기적으로 상방향 또는 하방향으로 파도를 치듯이 유동하게 된다.
위와 같이, 상기 제1압전소자(1050)와 제2압전소자(1060)에 인가되는 전압의 위상차를 90도로 하고, 상기 관성체(1070)를 장착함으로써, 상기 가동부재(1030)에 일체로 형성된 상기 구동부(1040)는 측면에서 보았을 때 타원형의 변위운동을 하게 된다.
이로 인해 상기 구동부(1040)와 접촉하는 상기 렌즈홀더(1020)는 상기 구동부(1040)의 타원 변위운동에 의해 광축방향으로 구동되게 된다.
상기 구동부(1040)는 상기 제1압전소자(1050)와 상기 삽입공(1035) 사이에 형성된다.
이때, 상기 구동부(1040)는 일면 자세하게는 후면 하부가 상기 가동부재(1030)에 일체로 연결되어 있고, 상기 구동부(1040)의 양측은 상기 가동부재(1030)와 이격되어 있다.
이는 상기 구동부(1040)의 운동시 상기 구동부(1040)가 상기 가동부재(1030)와의 연결부위를 최소화하여 상기 구동부(1040)가 원활하게 운동할 수 있도록 하기 위함이다.
상기 탄성부재(1080)는 상기 렌즈홀더(1020)의 외주면과 상기 하우징(1010)의 측면 사이에서 상기 하우징(1010)에 결합되어 상기 렌즈홀더(1020)를 상기 구동부(1040) 방향을 가압하는 역할을 한다.
본 제1실시예에서는 상기 탄성부재(1080)을 판스프링 형상으로 형성하였다.
상기 탄성부재(1080)를 판스프링 형상으로 형성하고 상기 렌즈홀더(1020)가 상기 구동부(1040) 방향으로 가압되도록 상기 렌즈홀더(1020) 외주면의 일부를 감싸도록 장착함으로써, 상기 렌즈홀더(1020)가 좌우로 유동됨이 없이 상기 구동부(1040)에 강하게 접촉하도록 할 수 있다.
또한, 상기 렌즈홀더(1020)의 외주면에는 볼부재(1090)가 배치되고, 상기 탄성부재(1080)는 상기 볼부재(1090)와 접하여 상기 렌즈홀더(1020)에 힘을 가한다.
즉, 상기 탄성부재(1080)는 상기 렌즈홀더(1020)의 외주면에 직접 접하지 않고, 상기 볼부재(1090)를 통하여 접하기 때문에 상기 렌즈홀더(1020)의 상하운동시 상기 탄성부재(1080)와의 마찰을 최소화할 수 있다.
상기 렌즈홀더(1020)의 외주면에는 상기 볼부재(1090)가 안착되기 위한 안착부(1024)가 형성되어 있다.
이하, 상술한 구성으로 이루어진 본 제1실시예의 작동에 대하여 살펴본다.
도 10은 본 발명의 제1실시예에 따른 소형카메라 구동장치의 작동과정을 도시한 상태도이다.
도 10에서 실선은 상기 제1압전소자(1050) 및 제2압전소자(1060)에 전압을 인가하지 않은 상태를 표시한 것이고, 색채가 들어간 점선은 시간에 따라 변화된 상기 가동부재(1030) 및 구동부(1040)를 나타내고 있다.
상기 제1압전소자(1050)와 제2압전소자(1060)에 전압을 인가하되, 상기 제1압전소자(1050)와 제2압전소자(1060)에 인가되는 전압은 90도의 위상차를 갖도록 한다.
상기 제1압전소자(1050)와 제2압전소자(1060)에 전압이 인가됨에 따라서, 상기 제1압전소자(1050)와 제2압전소자(1060)는 상하방향으로 확장 또는 축소되면서 진동을 하게 된다.
상기 제1압전소자(1050) 및 제2압전소자(1060)의 상하진동에 의해 상기 가동부재(1030)도 상하방향으로 확장 또는 축소되는 운동을 한다.
만일, 상기 관성체(1070)가 없다면, 상기 가동부재(1030)는 제자리에서 상하방향으로 확장 또는 축소되는 운동만을 할 것이다.
그러나, 상기 제1압전소자(1050) 및 제2압전소자(1060)의 상부에는 상기 관성체(1070)가 장착되어 있는바, 상기 관성체(1070)의 관성력에 의해 상기 제1압전소자(1050) 및 제2압전소자(1060)의 상하진동시 상기 가동부재(1030)는 도 10에 도시된 바와 같이 상방향 또는 하방향으로 파동을 일으키며 유동을 하게 된다.
이때, 상기 제1압전소자(1050) 와 제2압전소자(1060)에 인가되는 전압은 90도의 위상차를 가지고 있는바, 상기 가동부재(1030)에 일체로 형성된 상기 구동부(1040)는 타원형의 변위운동을 하게 된다.
상기 구동부(1040)가 타원형상의 변위운동을 함에 따라서, 상기 마찰부(1022)에 의해 상기 구동부(1040)와 접촉하고 있는 상기 렌즈홀더(1020)는 상방향 또는 하방향으로 이동하게 되어, 렌즈의 줌 또는 피사체의 포커싱 기능을 수행할 수 있게 된다.
또한, 상기 렌즈홀더(1020)는 상기 탄성부재(1080)에 의해 상기 구동부(1040) 방향으로 가압되기 때문에, 상기 구동부(1040)와 마찰부(1022)가 더욱 강하게 접촉되도록 할 수 있고, 이로 인해 상기 렌즈홀더(1020)가 자중에 의해 하강하는 것을 방지할 수 있다.
이때, 상기 탄성부재(1080)는 상기 렌즈홀더(1020)를 볼부재(1090)를 통해 접촉하고 있기 때문에, 상기 렌즈홀더(1020)의 상하운동시 상기 렌즈홀더(1020)와 상기 탄성부재(1080) 사이에 많은 마찰이 발생하여 상하운동이 저해되는 것을 방지할 수 있다.
제2실시예
도 11은 본 발명의 제2실시예에 따른 소형카메라 구동장치의 사시도이고, 도 12는 본 발명의 제2실시예에 따른 소형카메라 구동장치의 일방향 분해사시도이며, 도 13은 본 발명의 제2실시예에 따른 소형카메라 구동장치의 타방향 분해사시도이고, 도 14는 도 11에서 하우징을 제외한 상태의 사시도이며, 도 15는 도 14의 평면도이다.
도 11 내지 도 15에 도시된 바와 같이, 본 제2실시예의 압전소자를 이용한 소형카메라 구동장치는, 하우징(2010)과, 렌즈홀더(2020)와, 제1압전소자(2040)와, 제2압전소자(2050)와, 가동부재(2030)와, 구동부(2035)와, 탄성부재(2070) 등으로 이루어진다.
상기 하우징(2010)은 케이스와 같은 것으로써, 본 제2실시예의 다른 구성들을 내포한다.
상기 렌즈홀더(2020)는 원통형상으로 상기 하우징(2010)에 내장되고, 렌즈가 내장되어 있으며, 광축방향 즉 상기 렌즈에 입사되는 빛의 방향 다시 말해 상기 렌즈홀더(2020)의 상하방향으로 구동된다.
상기 렌즈홀더(2020)의 외주면에는 마찰부(2022)가 형성되어 있는데, 상기 마찰부(2022)는 후술하는 바와 같이 상기 구동부(2035) 방향으로 돌출 형성되어 상기 구동부(2035)와 접한다.
상기 마찰부(2022)는 밋밋한 평면으로 형성할 수도 있지만, 상기 구동부(2035)와 보다 큰 마찰력을 발생하도록 하기 위해 울퉁불퉁하게 형성하거나 마찰계수가 큰 물질로 이루어지도록 함이 바람직하다.
상기 제1압전소자(2040) 및 제2압전소자(2050)는 상기 하우징(2010)에 고정 장착되어 있다.
상기 제1압전소자(2040)와 제2압전소자(2050)는 상호 상기 렌즈홀더(2020)의 구동방향 즉 상하방향으로 배열되어 있다.
자세하게는 상기 제1압전소자(2040)가 상부에 배치되고, 상기 제2압전소자(2050)는 상부가 상기 제1압전소자(2040)의 하부에 접하도록 배치된다.
상기 제1압전소자(2040)와 제2압전소자(2050)는 상기 렌즈홀더(2020)의 구동방향에 대하여 수직방향 즉 상기 제1압전소자(2040)와 제2압전소자(2050)의 상하배열 방향에 대한 수직방향인 좌우방향으로 진동을 한다.
상기 가동부재(2030)는 스테인리스스틸 또는 철판과 같은 탄성재질로 이루어지고, 일단이 상기 제1압전소자(2040)의 상부에 연결되고, 타단이 상기 제2압전소자(2050)의 하부에 연결된다.
그리고, 상기 가동부재(2030)의 중심부에는 상기 렌즈홀더(2020)의 외주면 자세하게는 상기 마찰부(2022)에 접촉하는 구동부(2035)가 형성되어 있다.
상기 구동부(2035)는 상기 렌즈홀더(2020) 방향으로 돌출 형성되어 있어, 상기 가동부재(2030), 제1압전소자(2040) 및 제2압전소자(2050) 전체적인 형상은 대략적으로 삼각형을 이루도록 한다.
상기 구동부(2035)는 상기 가동부재(2030)에 일체로 형성될 수도 있고, 별도로 제작되어 장착될 수 있다.
상기 구동부(2035)는 상기 가동부재(2030)와 동일한 재질로 이루어질 수도 있으나, 내마모성이 우수한 재질로 이루어지도록 함이 바람직하다.
상기 제1압전소자(2040)와 제2압전소자(2050)에는 후술하는 바와 같이, sine곡선 형태를 갖는 정현파 전압이 인가되어 상하운동을 하게 되는데, 이때 상기 제1압전소자(2040)와 제2압전소자(2050)에 인가되는 전압은 상호 90도의 위상차를 가지고 인가된다.
따라서, 상기 제1압전소자(2040) 및 제2압전소자(2050)가 좌우방향으로 진동할 경우 상기 제1압전소자(2040) 및 제2압전소자(2050)에 연결된 상기 가동부재(2030)는 유동을 한다.
이때, 상기 가동부재(2030)의 중심부에 돌출 형성된 상기 구동부(2035)는 측면에서 보았을 때 타원형상으로 변위운동을 한다.
즉, 상기 제1압전소자(2040)와 제2압전소자(2050)에 위상차가 90도를 가지는 전압이 인가되기 때문에, 상기 가동부재(2030)의 유동되고, 이로 인해 상기 구동부(2035)는 타원형상으로 변위운동을 한다.
위와 같은 상기 구동부(2035)의 타원형 변위운동에 의해 상기 마찰부(2022)를 통해 상기 구동부(2035)와 접촉하고 있는 상기 렌즈홀더(2020)는 광축방향으로 구동되게 된다.
상기 탄성부재(2070)는 상기 렌즈홀더(2020)의 외주면과 상기 하우징(2010)의 측면 사이에서 상기 하우징(2010)에 결합되어 상기 렌즈홀더(2020)를 상기 구동부(2035) 방향을 가압하는 역할을 한다.
본 제2실시예에서는 상기 탄성부재(2070)을 판스프링 형상으로 형성하였다.
상기 탄성부재(2070)를 판스프링 형상으로 형성하고 상기 렌즈홀더(2020)가 상기 구동부(2035) 방향으로 가압되도록 상기 렌즈홀더(2020) 외주면의 일부를 감싸도록 장착함으로써, 상기 렌즈홀더(2020)가 좌우로 유동됨이 없이 상기 구동부(2035)에 강하게 접촉하도록 할 수 있다.
또한, 상기 렌즈홀더(2020)의 외주면에는 볼부재(2090)가 배치되고, 상기 탄성부재(2070)는 상기 볼부재(2090)와 접하여 상기 렌즈홀더(2020)에 힘을 가한다.
즉, 상기 탄성부재(2070)는 상기 렌즈홀더(2020)의 외주면에 직접 접하지 않고, 상기 볼부재(2090)를 통하여 접하기 때문에 상기 렌즈홀더(2020)의 상하운동시 상기 탄성부재(2070)와의 마찰을 최소화할 수 있다.
상기 렌즈홀더(2020)의 외주면에는 상기 볼부재(2090)가 안착되기 위한 안착부(2024)가 형성되어 있다.
이하, 상술한 구성으로 이루어진 본 제2실시예의 작동에 대하여 살펴본다.
도 16은 본 발명의 제2실시예에 따른 소형카메라 구동장치의 작동과정을 도시한 상태도이다.
도 16에서 실선은 상기 제1압전소자(2040) 및 제2압전소자(2050)에 전압을 인가하지 않은 상태를 표시한 것이고, 색채가 들어간 점선은 시간에 따라 변화된 상기 가동부재(2030) 및 구동부(2035)를 나타내고 있다.
상기 제1압전소자(2040)와 제2압전소자(2050)에 전압을 인가하되, 상기 제1압전소자(2040)와 제2압전소자(2050)에 인가되는 전압은 90도의 위상차를 갖도록 한다.
상기 제1압전소자(2040)와 제2압전소자(2050)에 전압이 인가됨에 따라서, 상기 제1압전소자(2040)와 제2압전소자(2050)는 상기 렌즈홀더(2020)의 구동방향에 대한 수직방향 즉 상기 렌즈홀더(2020) 방향으로 좌우 진동을 하게 된다.
상기 제1압전소자(2040) 및 제2압전소자(2050)의 좌우진동에 의해 상기 가동부재(2030)도 유동을 하게 되고, 상기 구동부(2035)는 도 16에 도시된 바와 같이 시간이 지남에 따라 상기 제1압전소자(2040)와 제2압전소자(2050)에 인가되는 전압이 90도의 위상차를 가지고 있기 때문에 타원형을 그리는 변위운동을 한다.
상기 구동부(2035)가 타원형상의 변위운동을 함에 따라서, 상기 마찰부(2022)에 의해 상기 구동부(2035)와 접촉하고 있는 상기 렌즈홀더(2020)는 상방향 또는 하방향으로 이동하게 되어, 렌즈의 줌 또는 피사체의 포커싱 기능을 수행할 수 있게 된다.
또한, 상기 렌즈홀더(2020)는 상기 탄성부재(2070)에 의해 상기 구동부(2035) 방향으로 가압되기 때문에, 상기 구동부(2035)와 마찰부(2022)가 더욱 강하게 접촉되도록 할 수 있고, 이로 인해 상기 렌즈홀더(2020)가 자중에 의해 하강하는 것을 방지할 수 있다.
이때, 상기 탄성부재(2070)는 상기 렌즈홀더(2020)를 볼부재(2090)를 통해 접촉하고 있기 때문에, 상기 렌즈홀더(2020)의 상하운동시 상기 렌즈홀더(2020)와 상기 탄성부재(2070) 사이에 많은 마찰이 발생하여 상하운동이 저해되는 것을 방지할 수 있다.
제3실시예
도 17은 본 발명의 제3실시예에 따른 소형카메라 구동장치의 사시도이고, 도 18은 본 발명의 제3실시예에 따른 소형카메라 구동장치의 분해사시도이다.
도 17 및 도 18에 도시된 바와 같이, 본 제3실시예의 압전소자를 이용한 소형카메라 구동장치는, 렌즈홀더(3110)와, 제1압전소자(3120)와, 제2압전소자(3130)와, 탄성부재(3140) 등으로 이루어진다.
상기 렌즈홀더(3110)는 원통형상으로 렌즈가 내장되어 있으며, 광축방향 즉 상기 렌즈에 입사되는 빛의 방향 다시 말해 상기 렌즈홀더(3110)의 상하방향으로 구동된다.
상기 제1압전소자(3120)는 중공원형 형상으로 이루어져 있고, 상기 렌즈홀더(3110)의 외주면 중 상부를 감싸고 있다.
상기 제2압전소자(3130)는 중공원형 형상으로 이루어져 있고, 상기 렌즈홀더(3110)의 외주면 중 하부를 감싸고 있다.
상기 제1압전소자(3120) 및 제2압전소자(3130)의 내주면은 각각 상기 렌즈홀더(3110)의 외주면에 접착제 등에 의해 고정 결합된다.
상기 제1압전소자(3120)와 제2압전소자(3130)는 상기 렌즈홀더(3110)의 구동방향 즉 상하방향으로 배열되는데, 상기 제1압전소자(3120)가 상부에 배치되고, 상기 제2압전소자(3130)가 하부에 배치된다.
그리고, 상기 제1압전소자(3120)의 하부와 상기 제2압전소자(3130)의 상부는 상호 접하고 있다.
상기 제1압전소자(3120)와 제2압전소자(3130)는 상기 렌즈홀더(3110)의 구동방향 즉 상하방향으로 진동을 한다.
상기 제1압전소자(3120)와 제2압전소자(3130)의 상하 진동은 사인(sine)곡선 형태를 갖는 정현파 전압이 각각 인가되어 이루어진다.
이때, 상기 제1압전소자(3120)와 제2압전소자(3130)에 인가되는 전압은 상호 90도의 위상차를 가지고 인가된다.
이로 인해, 상기 제1압전소자(3120)와 제2압전소자(3130)의 운동에 의해 상기 렌즈홀더(3110)는 상기 제1압전소자(3120) 및 제2압전소자(3130)와 함께 광축방향 즉 상하방향으로 구동하게 된다.
상기 탄성부재(3140)는 상기 제1압전소자(3120) 및 제2압전소자(3130)의 외주면을 감싸도록 장착되어, 상기 제1압전소자(3120) 및 제2압전소자(3130)를 상기 렌즈홀더(3110) 방향으로 가압한다.
그리고, 상기 제1압전소자(3120) 및 제2압전소자(3130)의 진동시 상기 제1압전소자(3120) 및 제2압전소자(3130)는 상기 탄성부재(3140)에 지지되어 상기 탄성부재(3140)를 딛고 상기 렌즈홀더(3110)와 함께 상하방향으로 구동되게 된다.
이하, 상술한 구성으로 이루어진 본 발명의 작동과정에 대하여 설명한다.
도 19는 본 발명의 실시예에 따른 소형카메라 구동장치의 작동과정을 도시한 상태도이다.
(a)는 제1압전소자(3120) 및 제2압전소자(3130)에 인가되는 전압(Ⅰ,Ⅱ)을 시간에 따라 도시한 것이고, (b)는 전압의 인가에 따른 제1압전소자(3120)와 제2압전소자(3130)의 변형 상태를 개별적으로 도시한 것이고, (c)는 실제로 변형되는 제1압전소자(3120)와 제2압전소자(3130)의 상태를 도시한 것이다.
즉, 도 19(b)는 제1압전소자(3120)와 제2압전소자(3130) 상호간에 작용하는 변형을 고려하지 않고, 개별적인 변형만을 도시한 것이고, 도 19(b)는 제1압전소자(3120)와 제2압전소자(3130)가 모두 상기 렌즈홀더(3110)에 결합되어 있음으로써 작용하는 상호 변형을 고려한 실제 변형 상태를 도시한 것이다.
도 19(a)에 도시된 바와 같이, 상기 제1압전소자(3120)와 제2압전소자(3130)에 전압(Ⅰ,Ⅱ)을 인가하되, 상기 제1압전소자(3120)와 제2압전소자(3130)에 인가되는 전압(Ⅰ,Ⅱ)은 90도의 위상차를 갖도록 한다.
도 19(a)에 도시된 바와 같이 전압이 인가되기 시작하는 시점인 t=0 시점을 보면, 상기 제1압전소자(3120)에는 전압이 인가되지 않고, 상기 제2압전소자(3130)에는 역전압이 인가된다.
따라서, 상기 제1압전소자(3120)는 원상태를 유지하고, 상기 제2압전소자(3130)는 상하방향으로 수축하게 된다.
이때, 상기 제2압전소자(3130)의 내주면은 상기 렌즈홀더(3110)의 외주면에 결합되어 있고, 상기 렌즈홀더(3110)가 탄성변형량이 상기 제2압전소자(3130)의 변형량보다 작기 때문에, 도 19(b)에서 t=0인 시점에 도시된 바와 같이 상기 제2압전소자(3130)가 장착된 상기 렌즈홀더(3110)의 하부는 양측으로 확장된다.
그리고, 상기 제1압전소자(3120) 및 제2압전소자(3130)가 모두 상기 렌즈홀더(3110)의 외주면에 결합되어 있고, 상기 렌즈홀더(3110)는 일체로 이루어져 있어 외주면이 거의 직선적으로 변형되기 때문에, 실제 상기 렌즈홀더(3110)의 외주면에 결합된 상기 제1압전소자(3120) 및 제2압전소자(3130)는 도 19(c)에서 t=0인 시점에 도시된 바와 같이 윗부분이 작고 아랫부분이 길며 높이가 작은 사다리꼴 형상으로 변형된다.
t1을 거쳐 t2까지 상기 제1압전소자(3120)에 인가되는 정전압(Ⅰ)은 커지고, 상기 제2압전소자(3130)에 인가되는 역전압(Ⅱ)은 약해진다.
이때, 상기 제1압전소자(3120)에 정전압이 인가되면, 상기 제1압전소자(3120)는 상하방향으로 신장되게 되는데, 상기 제1압전소자(3120)의 내주면은 상기 렌즈홀더(3110)의 외주면에 결합되어 있고, 상기 렌즈홀더(3110)가 탄성변형량이 상기 제1압전소자(3120)의 변형량보다 작기 때문에, 도 19(b)에서 t1 및 도 t2 시점에 도시된 바와 같이 상기 제2압전소자(3130)가 장착된 상기 렌즈홀더(3110)의 상부는 양측에서 내측으로 수축된다.
그리고, 상기 제1압전소자(3120) 및 제2압전소자(3130)가 모두 상기 렌즈홀더(3110)의 외주면에 결합되어 있고, 상기 렌즈홀더(3110)는 일체로 이루어져 있어 외주면이 거의 직선적으로 변형되기 때문에, 실제 상기 렌즈홀더(3110)의 외주면에 결합된 상기 제1압전소자(3120) 및 제2압전소자(3130)는 도 19(c)에서 t=2인 시점에 도시된 바와 같이 윗부분이 작고 아랫부분이 길며 높이가 긴 사다리꼴 형상으로 변형된다.
위와 같은 동작과정을 통해, 상기 제1압전소자(3120) 및 제2압전소자(3130)는 90도의 위상차를 가지고 양측방향으로 확장 또는 수축운동을 한다.
t=0에서 t8까지 1주기 동안 상기 렌즈홀더(3110)가 장착되는 상기 제1압전소자(3120) 및 제2압전소자(3130)의 변형상태를 살펴 보면, 시간이 지남에 따라 외주면이 상방향에서 하방향으로 파동을 일으키며 변형되는 것을 알 수 있다.
즉, 상기 제1압전소자(3120) 및 제2압전소자(3130) 중 각 시간에 따라 최외곽에 위치하는 부분을 연결하면, 시간이 지남에 따라 최외곽에 위치하는 부분이 타원형상을 그리며 이동하는 것을 알 수 있다.
위와 같이, 상기 제1압전소자(3120) 및 제2압전소자(3130)의 최외곽 부분이 타원형상을 그리며 변형 이동되기 때문에, 상기 제1압전소자(3120) 및 제2압전소자(3130)는 상기 제1압전소자(3120) 및 제2압전소자(3130)를 감싸고 있는 상기 탄성부재(3140)를 딛고 상승 또는 하강하게 된다.
이로 인해, 상기 렌즈홀더(3110)는 상기 제1압전소자(3120) 및 제2압전소자(3130)와 함께 상하 방향으로 이동하게 되어, 렌즈의 줌 또는 피사체의 포커싱 기능을 수행할 수 있게 된다.
제4실시예
도 20은 본 발명의 제4실시예에 따른 소형카메라 구동장치의 사시도이고, 도 21은 본 발명의 제4실시예에 따른 소형카메라 구동장치의 일방향 분해사시도이며, 도 22는 본 발명의 제4실시예에 따른 소형카메라 구동장치의 타방향 분해사시도이고, 도 23은 도 20에서 하우징을 제외한 상태의 사시도이며, 도 24은 도 23의 평면도이다.
도 20 내지 도 24에 도시된 바와 같이, 본 발명의 압전소자를 이용한 소형카메라 구동장치는, 하우징(4010)과, 렌즈홀더(4020)와, 제1압전소자(4040)와, 제2압전소자(4050)와, 가동부재(4030)와, 구동부(4035)와, 탄성부재(4060) 등으로 이루어진다.
상기 하우징(4010)은 케이스와 같은 것으로써, 본 제4실시예의 다른 구성들을 내포한다.
상기 렌즈홀더(4020)는 원통형상으로 상기 하우징(4010)에 내장되고, 렌즈가 내장되어 있으며, 광축방향 즉 상기 렌즈에 입사되는 빛의 방향 다시 말해 상기 렌즈홀더(4020)의 상하방향으로 구동된다.
상기 렌즈홀더(4020)의 외주면에는 마찰부(4022)가 형성되어 있는데, 상기 마찰부(4022)는 후술하는 바와 같이 상기 구동부(4035) 방향으로 돌출 형성되어 상기 구동부(4035)와 접한다.
상기 마찰부(4022)는 밋밋한 평면으로 형성할 수도 있지만, 상기 구동부(4035)와 보다 큰 마찰력을 발생하도록 하기 위해 울퉁불퉁하게 형성하거나 마찰계수가 큰 물질로 이루어지도록 함이 바람직하다.
상기 가동부재(4030)는 스테인리스스틸 또는 철판과 같은 재질로 이루어지고, 상기 렌즈홀더(4020)의 측면에서 상기 하우징(4010)에 고정 결합된다.
상기 가동부재(4030)는 긴 막대평판 형상으로 이루어지고, 일단과 타단은 상기 렌즈홀더(4020)의 구동방향으로 배열되어 상기 하우징(4010)에 고정 결합된다.
상기 가동부재(4030)는, 일단에 형성되어 상기 하우징(4010)에 고정결합되는 제1고정부(4031)와, 상기 제1고정부(4031)에서 상기 렌즈홀더(4020)의 반대방향으로 연장 형성된 제1수평부(4032)와, 상기 제1수평부(4032)에서 상기 렌즈홀더(4020) 방향으로 경사지게 연장 형성된 제1경사부(4033)와, 타단에 형성되어 상기 하우징(4010)에 고정결합되는 제2고정부(4038)와, 상기 제2고정부(4038)에서 상기 렌즈홀더(4020)의 반대방향으로 연장 형성된 제2수평부(4037)와, 상기 제2수평부(4037)에서 상기 렌즈홀더(4020) 방향으로 경사지게 연장 형성된 제2경사부(4036)와, 상기 제1경사부(4033)와 제2경사부(4036)를 상호 연결하는 연결부(4034)로 이루어진다.
상기 제1고정부(4031)와 제2고정부(4038)는 각각 상기 하우징(4010)에 리벳 또는 나사 등에 의해 고정 결합된다.
상기 제1수평부(4032)와 제2수평부(4037)는 각각 상기 제1고정부(4031)와 제2고정부(4038)에서 절곡되어 상기 렌즈홀더(4020)로부터 멀어지는 방향으로 연장 형성되어 있다.
그리고, 상기 제1경사부(4033)와 제2경사부(4036)는 각각 상기 제1수평부(4032)와 제2수평부(4037)에서 상기 렌즈홀더(4020) 방향으로 경사지게 연장형성되어, 상기 연결부(4034)에 의해 상호 연결된다.
상기 제1압전소자(4040) 및 제2압전소자(4050)는 상기 가동부재(4030)에 장착된다.
자세하게는 상기 제1압전소자(4040)는 상기 제1경사부(4033)에 장착되고, 상기 제2압전소자(4050)는 상기 제2경사부(4036)에 장착된다.
상기 구동부(4035)는 상기 가동부재(4030)의 연결부(4034)에 장착되되, 상기 렌즈홀더(4020)의 마찰부(4022) 방향으로 돌출 형성되어 상기 마찰부(4022)에 접촉한다.
즉, 상기 구동부(4035)는 상기 제1압전소자(4040)와 제2압전소자(4050) 사이에 배치된다.
상기 구동부(4035)는 상기 가동부재(4030)와 동일한 재질로 이루어질 수도 있으나, 내마모성이 우수한 재질로 이루어지도록 함이 바람직하다.
상기 구동부(4035)는 상기 가동부재(4030)에 일체로 형성될 수도 있고, 별도로 제작되어 장착될 수도 있다.
상기 제1압전소자(4040)는 상기 제1경사부(4033)에 평행하게 진동하고, 상기 제2압전소자(4050)는 상기 제2경사부(4036)에 평행하게 진동한다.
상기 제1압전소자(4040)와 제2압전소자(4050)에는 후술하는 바와 같이, sin곡선 형태를 갖는 정현파 전압이 인가되어 상하운동을 하게 되는데, 이때 상기 제1압전소자(4040)와 제2압전소자(4050)에 인가되는 전압은 상호 90도의 위상차를 가지고 인가된다.
따라서, 상기 제1압전소자(4040) 및 제2압전소자(4050)가 각각 상기 제1경사부(4033)와 제2경사부(4036)에 평행한 방향으로 진동할 경우 상기 제1압전소자(4040) 및 제2압전소자(4050)가 장착된 상기 가동부재(4030)는 유동을 한다.
이때, 상기 가동부재(4030)의 연결부(4034)에 형성된 상기 구동부(4035)는 측면에서 보았을 때 타원형상으로 변위운동을 한다.
즉, 상기 제1압전소자(4040)와 제2압전소자(4050)에 위상차가 90도를 가지는 전압이 인가되기 때문에, 상기 가동부재(4030)의 유동되고, 이로 인해 상기 구동부(4035)는 타원형상으로 변위운동을 한다.
위와 같은 상기 구동부(4035)의 타원형 변위운동에 의해 상기 마찰부(4022)를 통해 상기 구동부(4035)와 접촉하고 있는 상기 렌즈홀더(4020)는 광축방향으로 구동되게 된다.
상기 탄성부재(4060)는 상기 렌즈홀더(4020)의 외주면과 상기 하우징(4010)의 측면 사이에서 상기 하우징(4010)에 결합되어 상기 렌즈홀더(4020)를 상기 구동부(4035) 방향을 가압하는 역할을 한다.
본 제4실시예에서는 상기 탄성부재(4060)을 판스프링 형상으로 형성하였다.
상기 탄성부재(4060)를 판스프링 형상으로 형성하고 상기 렌즈홀더(4020)가 상기 구동부(4035) 방향으로 가압되도록 상기 렌즈홀더(4020) 외주면의 일부를 감싸도록 장착함으로써, 상기 렌즈홀더(4020)가 좌우로 유동됨이 없이 상기 구동부(4035)에 강하게 접촉하도록 할 수 있다.
또한, 상기 렌즈홀더(4020)의 외주면에는 볼부재(4065)가 배치되고, 상기 탄성부재(4060)는 상기 볼부재(4065)와 접하여 상기 렌즈홀더(4020)에 힘을 가한다.
즉, 상기 탄성부재(4060)는 상기 렌즈홀더(4020)의 외주면에 직접 접하지 않고, 상기 볼부재(4065)를 통하여 접하기 때문에 상기 렌즈홀더(4020)의 상하운동시 상기 탄성부재(4060)와의 마찰을 최소화할 수 있다.
상기 렌즈홀더(4020)의 외주면에는 상기 볼부재(4065)가 안착되기 위한 안착부(4024)가 형성되어 있다.
이하, 상술한 구성으로 이루어진 본 제4실시예의 작동에 대하여 살펴본다.
도 25는 본 발명의 제4실시예에 따른 소형카메라 구동장치의 작동과정을 도시한 상태도이다.
도 25에서 실선은 상기 제1압전소자(4040) 및 제2압전소자(4050)에 전압을 인가하지 않은 상태를 표시한 것이고, 색채가 들어간 점선은 시간에 따라 변화된 상기 가동부재(4030) 및 구동부(4035)를 나타내고 있다.
상기 제1압전소자(4040)와 제2압전소자(4050)에 전압을 인가하되, 상기 제1압전소자(4040)와 제2압전소자(4050)에 인가되는 전압은 90도의 위상차를 갖도록 한다.
상기 제1압전소자(4040)와 제2압전소자(4050)에 전압이 인가됨에 따라서, 상기 제1압전소자(4040)와 제2압전소자(4050)는 각각 상기 제1경사부(4033)와 제2경사부(4036)에 평행하게 진동하게 된다.
도 25에 도시된 바와 같이, 상기 제1압전소자(4040) 및 제2압전소자(4050)의 진동에 의해 상기 가동부재(4030)도 유동을 하게 되고, 상기 구동부(4035)는 상기 제1압전소자(4040)와 제2압전소자(4050)에 인가되는 전압이 90도의 위상차를 가지고 있기 때문에 타원형을 그리는 변위운동을 한다.
상기 구동부(4035)가 타원형상의 변위운동을 함에 따라서, 상기 마찰부(4022)에 의해 상기 구동부(4035)와 접촉하고 있는 상기 렌즈홀더(4020)는 상방향 또는 하방향으로 이동하게 되어, 렌즈의 줌 또는 피사체의 포커싱 기능을 수행할 수 있게 된다.
또한, 상기 렌즈홀더(4020)는 상기 탄성부재(4060)에 의해 상기 구동부(4035) 방향으로 가압되기 때문에, 상기 구동부(4035)와 마찰부(4022)가 더욱 강하게 접촉되도록 할 수 있고, 이로 인해 상기 렌즈홀더(4020)가 자중에 의해 하강하는 것을 방지할 수 있다.
이때, 상기 탄성부재(4060)는 상기 렌즈홀더(4020)를 볼부재(4065)를 통해 접촉하고 있기 때문에, 상기 렌즈홀더(4020)의 상하운동시 상기 렌즈홀더(4020)와 상기 탄성부재(4060) 사이에 많은 마찰이 발생하여 상하운동이 저해되는 것을 방지할 수 있다.
본 발명인 압전소자를 이용한 소형카메라 구동장치는 전술한 실시예에 국한하지 않고, 본 발명의 기술 사상이 허용되는 범위 내에서 다양하게 변형하여 실시할 수 있다.
본 발명의 압전소자를 이용한 소형카메라 구동장치는, 휴대단말기에 장착되는 소형카메라의 구동장치에 적용되어, 압전소자를 이용하여 렌즈홀더를 상하방향으로 구동시켜 렌즈를 이송시킬 수 있다.

Claims (27)

  1. 렌즈가 장착되어 광축방향으로 구동되는 렌즈홀더와;
    제1압전소자 및 제2압전소자와;
    상기 렌즈홀더의 외주면에 접촉하는 구동부가 형성된 가동부재를 포함하여 이루어지되,
    상기 구동부는 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 타원형의 변위 운동을 하면서 상기 렌즈홀더를 광축방향으로 구동시키는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  2. 제 1항에 있어서,
    압전소자를 이용한 소형카메라 구동장치는,
    하우징과;
    상기 하우징에 내장되고, 렌즈가 장착되어 광축방향으로 구동되는 렌즈홀더와;
    상기 하우징에 결합되어 상기 렌즈홀더를 감싸는 가동부재와;
    상기 가동부재에 형성되어 상기 렌즈홀더의 외주면과 접촉하는 구동부와;
    상기 가동부재에 장착된 제1압전소자 및 제2압전소자와;
    상기 제1압전소자 및 제2압전소자의 상부 또는 하부에 장착된 관성체로 이루어지되,
    상기 가동부재에는 상기 렌즈홀더가 관통하여 삽입되는 삽입공이 형성되고,
    상기 구동부는 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 타원형의 변위 운동을 하면서 상기 렌즈홀더를 광축방향으로 구동시키는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  3. 제 2항에 있어서,
    상기 가동부재는 상기 렌즈홀더의 구동방향에 대해 수직방향으로 배치되고,
    상기 구동부는 상기 가동부재에 돌출되어 상기 렌즈홀더의 구동방향에 대해 평행하게 형성되어 배치된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  4. 제 2항에 있어서,
    상기 삽입공의 지름은 상기 렌즈홀더의 지름보다 크고,
    상기 렌즈홀더의 외주면에는 상기 구동부 방향으로 돌출되어 상기 구동부와 접하는 마찰부가 형성된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  5. 제 2항 또는 제 3항에 있어서,
    상기 가동부재는 사각평판 형상으로 이루어지고,
    상기 가동부재는 일단 양측은 상기 하우징에 고정 결합되며, 타단 양측에는 상기 제1압전소자와 제2압전소자가 각각 장착된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  6. 제 5항에 있어서,
    상기 구동부는 상기 제1압전소자와 상기 삽입공 사이에 형성된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  7. 제 2항 또는 제 3항에 있어서,
    상기 구동부는 일면이 상기 가동부재에 일체로 연결되어 형성되고,
    상기 구동부의 양측은 상기 가동부재와 이격되어 있는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  8. 제 2항 내지 제 4항 중 어느 한 항에 있어서,
    상기 렌즈홀더의 외주면과 상기 하우징의 측면 사이에는 상기 하우징에 결합되어 상기 렌즈홀더를 상기 구동부 방향을 가압하는 탄성부재가 배치된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  9. 제 8항에 있어서,
    상기 렌즈홀더의 외주면에는 볼부재가 배치되고,
    상기 탄성부재는 상기 볼부재와 접하여 상기 렌즈홀더에 힘을 가하는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  10. 제 2항 또는 제 3항에 있어서,
    상기 제1압전소자 및 제2압전소자는 상기 렌즈홀더의 구동방향으로 진동하는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  11. 제 1항에 있어서,
    압전소자를 이용한 소형카메라 구동장치,
    하우징과;
    상기 하우징에 내장되고, 렌즈가 장착되어 광축방향으로 구동되는 렌즈홀더와;
    상기 하우징에 장착된 제1압전소자 및 제2압전소자와;
    일단이 상기 제1압전소자에 연결되고, 타단이 상기 제2압전소자에 연결되며, 중심부에 상기 렌즈홀더의 외주면에 접촉하는 구동부가 형성된 가동부재로 이루어지되,
    상기 구동부는 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 타원형의 변위 운동을 하면서 상기 렌즈홀더를 광축방향으로 구동시키는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  12. 제 11항에 있어서,
    상기 제1압전소자와 제2압전소자는 상기 렌즈홀더의 구동방향으로 배열되고,
    상기 가동부재의 일단은 상기 제1압전소자의 상부에 연결되고, 타단은 상기 제2압전소자의 하부에 연결되며,
    상기 구동부는 상기 렌즈홀더 방향으로 돌출 형성된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  13. 제 11항에 있어서,
    상기 렌즈홀더의 외주면에는 상기 구동부 방향으로 돌출되어 상기 구동부와 접하는 마찰부가 형성된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  14. 제 11항 내지 제 13항 중 어느 한 항에 있어서,
    상기 렌즈홀더의 외주면과 상기 하우징의 측면 사이에는 상기 하우징에 결합되어 상기 렌즈홀더를 상기 구동부 방향을 가압하는 탄성부재가 배치된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  15. 제 14항에 있어서,
    상기 렌즈홀더의 외주면에는 볼부재가 배치되고,
    상기 탄성부재는 상기 볼부재와 접하여 상기 렌즈홀더에 힘을 가하는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  16. 제 11항 또는 제 12항에 있어서,
    상기 제1압전소자 및 제2압전소자는 상기 렌즈홀더의 구동방향에 대하여 수직방향으로 진동하는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  17. 제 1항에 있어서,
    압전소자를 이용한 소형카메라 구동장치는,
    렌즈가 내장되어 광축방향으로 구동되는 렌즈홀더와;
    상기 렌즈홀더의 외주면을 감싸면서 고정결합된 중공원형 형상의 제1압전소자와;
    상기 렌즈홀더의 외주면을 감싸면서 고정결합된 중공원형 형상의 제2압전소자로 이루어지되,
    상기 구동부가 형성된 가동부재는 상기 제1압전소자 및 제2압전소자이고,
    상기 제1압전소자와 제2압전소자는 상기 렌즈홀더의 구동방향으로 배열되며,
    상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 상기 제1압전소자와 제2압전소자에 의해 상기 렌즈홀더는 광축방향으로 구동되는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  18. 제 17항에 있어서,
    상기 제1압전소자의 하부와 상기 제2압전소자의 상부는 상호 접하는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  19. 제 17항 또는 제 18항에 있어서,
    상기 제1압전소자 및 제2압전소자의 외주면에는 상기 제1압전소자 및 제2압전소자를 상기 렌즈홀더 방향으로 가압하는 탄성부재가 배치된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  20. 제 19항에 있어서,
    상기 제1압전소자 및 제2압전소자는 상기 렌즈홀더의 구동방향으로 진동하는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  21. 제 1항에 있어서,
    압전소자를 이용한 소형카메라 구동장치는,
    하우징과;
    상기 하우징에 내장되고, 렌즈가 장착되어 광축방향으로 구동되는 렌즈홀더와;
    상기 하우징에 결합된 가동부재와;
    상기 가동부재에 형성되어 상기 렌즈홀더의 외주면과 접촉하는 구동부와;
    상기 가동부재에 장착된 제1압전소자 및 제2압전소자로 이루어지되,
    상기 가동부재의 일단과 타단은 각각 상기 하우징에 결합되고,
    상기 구동부는 상기 제1압전소자와 제2압전소자 사이에 배치되며,
    상기 구동부는 상기 제1압전소자와 제2압전소자에 90도의 위상차를 갖는 전압이 인가되면 타원형의 변위 운동을 하면서 상기 렌즈홀더를 광축방향으로 구동시키는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  22. 제 21항에 있어서,
    상기 가동부재의 일단과 타단은 상기 렌즈홀더의 구동방향으로 배열되고,
    상기 가동부재는,
    일단에 형성되어 상기 하우징에 고정결합되는 제1고정부와;
    상기 제1고정부에서 상기 렌즈홀더의 반대방향으로 연장 형성된 제1수평부와;
    상기 제1수평부에서 상기 렌즈홀더 방향으로 경사지게 연장 형성된 제1경사부와;
    타단에 형성되어 상기 하우징에 고정결합되는 제2고정부와;
    상기 제2고정부에서 상기 렌즈홀더의 반대방향으로 연장 형성된 제2수평부와;
    상기 제2수평부에서 상기 렌즈홀더 방향으로 경사지게 연장 형성된 제2경사부와;
    상기 제1경사부와 제2경사부를 상호 연결하는 연결부로 이루어진 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  23. 제 22항에 있어서,
    상기 제1압전소자는 상기 제1경사부에 장착되고,
    상기 제2압전소자는 상기 제2경사부에 장착되며,
    상기 연결부에는 상기 구동부가 장착되되,
    상기 구동부는 상기 가동부재의 재질보다 내마모성이 강한 재질로 이루어진 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  24. 제 21항에 있어서,
    상기 렌즈홀더의 외주면에는 상기 구동부 방향으로 돌출되어 상기 구동부와 접하는 마찰부가 형성된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  25. 제 21항 내지 제 24항 중 어느 한 항에 있어서,
    상기 렌즈홀더의 외주면과 상기 하우징의 측면 사이에는 상기 하우징에 결합되어 상기 렌즈홀더를 상기 구동부 방향을 가압하는 탄성부재가 배치된 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  26. 제 25항에 있어서,
    상기 렌즈홀더의 외주면에는 볼부재가 배치되고,
    상기 탄성부재는 상기 볼부재와 접하여 상기 렌즈홀더에 힘을 가하는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
  27. 제 23항에 있어서,
    상기 제1압전소자는 상기 제1경사부에 평행하게 진동하고,
    상기 제2압전소자는 상기 제2경사부에 평행하게 진동하는 것을 특징으로 하는 압전소자를 이용한 소형카메라 구동장치.
PCT/KR2009/004753 2008-08-26 2009-08-26 압전소자를 이용한 소형카메라 구동장치 WO2010024585A2 (ko)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2008-0083202 2008-08-26
KR10-2008-0083201 2008-08-26
KR10-2008-0083213 2008-08-26
KR1020080083202A KR100997691B1 (ko) 2008-08-26 2008-08-26 압전소자를 이용한 소형카메라 구동장치
KR1020080083213A KR100952084B1 (ko) 2008-08-26 2008-08-26 압전소자를 이용한 소형카메라 구동장치
KR1020080083201A KR100952622B1 (ko) 2008-08-26 2008-08-26 압전소자를 이용한 소형카메라 구동장치
KR1020080083206A KR100952621B1 (ko) 2008-08-26 2008-08-26 압전소자를 이용한 소형카메라 구동장치
KR10-2008-0083206 2008-08-26

Publications (2)

Publication Number Publication Date
WO2010024585A2 true WO2010024585A2 (ko) 2010-03-04
WO2010024585A3 WO2010024585A3 (ko) 2010-06-24

Family

ID=41722108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004753 WO2010024585A2 (ko) 2008-08-26 2009-08-26 압전소자를 이용한 소형카메라 구동장치

Country Status (1)

Country Link
WO (1) WO2010024585A2 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307969A (zh) * 2017-07-26 2019-02-05 日本电产三协株式会社 带抖动修正功能的光学单元

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120840A (ja) * 2002-09-24 2004-04-15 Minolta Co Ltd 駆動回路及び駆動装置
JP2007003990A (ja) * 2005-06-27 2007-01-11 Konica Minolta Opto Inc レンズ鏡胴及び撮像装置
KR100817470B1 (ko) * 2006-10-24 2008-03-31 한국과학기술연구원 압전 선형 모터

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004120840A (ja) * 2002-09-24 2004-04-15 Minolta Co Ltd 駆動回路及び駆動装置
JP2007003990A (ja) * 2005-06-27 2007-01-11 Konica Minolta Opto Inc レンズ鏡胴及び撮像装置
KR100817470B1 (ko) * 2006-10-24 2008-03-31 한국과학기술연구원 압전 선형 모터

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109307969A (zh) * 2017-07-26 2019-02-05 日本电产三协株式会社 带抖动修正功能的光学单元

Also Published As

Publication number Publication date
WO2010024585A3 (ko) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2011155809A2 (ko) 소형 카메라 엑츄에이터 및 소형 입체영상 촬영장치
WO2017191927A1 (en) Dual camera module and method for controlling the same
WO2017003140A1 (ko) 듀얼 카메라 모듈 및 광학기기
WO2012060521A1 (en) Voice coil motor and driving method thereof
WO2013168898A1 (en) Voice coil motor
WO2018052228A1 (ko) 듀얼 카메라 모듈, 광학 장치, 카메라 모듈 및 카메라 모듈의 동작 방법
WO2020050650A1 (ko) 카메라 모듈
WO2017007249A1 (ko) 카메라 모듈 및 광학기기
WO2016126061A1 (ko) 렌즈 구동장치 및 이를 포함하는 카메라 모듈
WO2018212616A1 (ko) 카메라 모듈
WO2013051806A2 (ko) 압전소자가 장착된 바이브레이터
WO2018182239A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2020242202A1 (ko) 카메라 모듈
WO2014171799A1 (ko) 멤스 소자
WO2022203412A1 (ko) 액추에이터 장치
WO2018186673A1 (ko) 렌즈 구동 장치 및 이를 포함하는 카메라 모듈 및 광학 기기
WO2017196023A1 (en) Camera module and auto focusing method thereof
WO2021221410A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2021054725A1 (ko) 카메라 모듈
WO2010024585A2 (ko) 압전소자를 이용한 소형카메라 구동장치
WO2020242039A1 (ko) 액체렌즈
WO2015152528A1 (ko) 카메라용 광학렌즈 시스템
WO2010058985A2 (ko) 다층 압전소자와 압전소자를 이용한 구동체와 이를 이용한 소형카메라 구동장치
WO2021206484A1 (ko) 카메라 액추에이터 및 이를 포함하는 카메라 모듈
WO2018216945A1 (ko) 렌즈 구동 장치, 및 이를 포함하는 카메라 모듈 및 광학 기기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810190

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09810190

Country of ref document: EP

Kind code of ref document: A2