WO2010023932A1 - 画像情報記録方法及び画像情報照合システム - Google Patents

画像情報記録方法及び画像情報照合システム Download PDF

Info

Publication number
WO2010023932A1
WO2010023932A1 PCT/JP2009/004195 JP2009004195W WO2010023932A1 WO 2010023932 A1 WO2010023932 A1 WO 2010023932A1 JP 2009004195 W JP2009004195 W JP 2009004195W WO 2010023932 A1 WO2010023932 A1 WO 2010023932A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
recording
image information
image
information
Prior art date
Application number
PCT/JP2009/004195
Other languages
English (en)
French (fr)
Inventor
小舘香椎子
渡邉恵理子
Original Assignee
Kodate Kashiko
Watanabe Eriko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kodate Kashiko, Watanabe Eriko filed Critical Kodate Kashiko
Publication of WO2010023932A1 publication Critical patent/WO2010023932A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/16Processes or apparatus for producing holograms using Fourier transform
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2210/00Object characteristics
    • G03H2210/40Synthetic representation, i.e. digital or optical object decomposition
    • G03H2210/45Representation of the decomposed object

Definitions

  • the present invention relates to an image information recording method and an image information collation system for collating a certain image with another image using optical correlation, and in particular, for performing optical correlation calculation of two images using holography.
  • the present invention relates to an image information recording method and an image information collating system.
  • Patent Document 1 a collinear holographic memory that records a volume type (thick) hologram by causing the reference beam and the information beam to interfere with each other on the same axis.
  • Patent Document 1 information light spatially modulated by a spatial light modulator and reference light are coaxially arranged and irradiated onto a recording medium.
  • a hologram formed by interference between information light and reference light irradiated on the holographic recording medium causes a photoreaction to occur in the photosensitive material in the hologram recording layer of the holographic recording medium, and the hologram is formed on the hologram recording layer. Let it settle.
  • the collinear holographic memory records and reproduces while rotating a disk-shaped holographic recording medium, so it has high compatibility with existing optical disc technologies such as DVD and CD, and the optical system can be simplified and miniaturized.
  • an address system similar to existing DVDs and CDs, servo technology, and the like are also incorporated, and it is expected as a next-generation recording system because strict alignment can be realized.
  • the hologram when recording a hologram on a recording medium, the hologram can be multiplexed and recorded so as to partially overlap the already recorded hologram.
  • the recording density and recording capacity of the holographic recording medium can be improved in accordance with the hologram interval (hologram pitch) when performing multiple recording.
  • Non-patent Document 1 when writing a hologram, one pixel of the spatial light modulator is turned on as reference light, a face image is displayed in the vicinity thereof as information light, and these lights are Fourier transformed by an objective lens. Holograms are recorded by overlapping and interfering in the recording medium. Further, at the time of optical correlation calculation, the face image to be searched for is displayed at the same position as at the time of writing, thereby detecting light reproduced from the hologram and performing correlation calculation.
  • a volume type (thick) hologram which is such a collinear holographic memory
  • the reference light is reproduced from the hologram, and the intensity of the reference light increases as the degree of similarity increases.
  • the emitted light can be used as a correlation value.
  • the video sharing service is a service in which video data uploaded by a certain user is shared so that it can be downloaded to other users so that the video can be disclosed and viewed.
  • This video sharing service posts tens of thousands of video data per day, and the video data currently contains many illegal ones that infringe copyrights. .
  • movies, TV programs, live images, promotional videos, etc. are uploaded without permission from the copyright holder.
  • the recording density of the holographic recording medium is increased, That is, the number of holograms per unit area may be increased.
  • the object of the present invention is to achieve high accuracy, high density and high speed in an image information recording method and an image information collation system. Furthermore, an object of the present invention is to provide an image information collation system that can collate general images (including moving images) other than face images. Another object of the present invention is to provide an image information collation system that enables effective censoring of a general image that can be viewed on a site on a network using such a system.
  • the image information recording method of the present invention is a method of recording image information as a hologram on a holographic recording medium, and at least a division process for dividing the image information to be recorded into a plurality of blocks and a plurality of blocks as predetermined.
  • Generates two-dimensional pattern information for recording by performing random encoding processing that rearranges according to a random transform array, and generates object light by spatially modulating light based on the two-dimensional pattern information for recording.
  • the holographic recording medium is irradiated with the Fourier transform image and the recording reference light, and a hologram formed by the Fourier transform image of the object light and the recording reference light is recorded on the holographic recording medium.
  • the image information collation system of the present invention is an image information collation system that collates certain image information with image information recorded on a holographic recording medium. And at least a division process for dividing the block into a plurality of blocks and a random encoding process for rearranging the plurality of blocks according to a predetermined random transformation array to generate two-dimensional pattern information for recording, and the two-dimensional pattern information for recording.
  • the light is spatially modulated to generate object light
  • the holographic recording medium is irradiated with the Fourier transform image of the object light and the recording reference light, and the Fourier transform image of the object light and the recording reference light are used.
  • a hologram to be formed is recorded, and at least a division process and a random encoding process are performed on the image information to be verified.
  • Hologram in which two-dimensional pattern information for combination is generated, light is spatially modulated based on the two-dimensional pattern information for verification to generate verification light, and a Fourier transform image of the verification light is recorded on a holographic recording medium
  • the light intensity of the reproduction light reproduced from the hologram is detected by a reproduction light detector, and the recorded image information and the image information to be collated are collated using the value of the light intensity of the reproduction light.
  • the dividing process divides the image information to be recorded and the image to be collated into a plurality of blocks having the same shape including a plurality of pixels of 4 pixels to 400 pixels. May be.
  • the image information is preferably subjected to image processing and edge enhancement processing for changing to a predetermined resolution before the division processing.
  • the two-dimensional pattern information for recording and the two-dimensional pattern information for collation are the image information to be recorded and the shape of the image information to be collated by random encoding processing. It is preferable that they are generated by being rearranged in regions having different shapes.
  • the two-dimensional pattern information for recording is divided into a plurality of separated areas, and is generated based on the two-dimensional pattern information for recording divided into the plurality of separated areas.
  • the recording reference light is disposed between the plurality of separated regions of the object light and the holographic recording medium is irradiated with a Fourier transform image of the recording reference light.
  • the two-dimensional pattern information for collation is divided into a plurality of separated areas, and based on the two-dimensional pattern information for collation divided into the plurality of separated areas. It is preferable that verification light is generated.
  • the image information recording method or the image information collation system of the present invention As a result of using the image information recording method or the image information collation system of the present invention, a large amount of photosensitive material in the hologram recording layer of the holographic recording medium is consumed locally due to a biased composition or the like. Then, when the photosensitive material of the part is depleted and then another hologram is multiplex-recorded, the problem that the hologram cannot be recorded for the part can be alleviated, and the reliability can be improved.
  • the recording pitch and collation speed can be improved by shortening the hologram pitch for multiple recording. Other effects will be described in the following embodiments.
  • FIGS. 1 and (B) are schematic diagrams showing the display surface and recording operation in the spatial light modulator during recording, and (C) and (D) are the display surface and verification operation in the spatial light modulator during verification.
  • Schematic shown Diagram showing a general image and its Fourier transform image
  • Flow chart for generating two-dimensional pattern information (A) And (B) is a figure which shows an example of the random transformation array of the division number 24
  • A) And (B) is a figure which shows another example of the random conversion arrangement
  • FIGS. 4A to 4C are diagrams showing the relationship between the arrangement position of the reference light and the interference fringes written on the hologram.
  • (A) and (B) are other schematic diagrams showing the display surface in the spatial light modulator
  • (C) is a diagram showing two-dimensional pattern information for recording that has been subjected to random encoding processing
  • (D) is a random code Showing image information before image processing
  • Schematic diagram showing two-dimensional pattern information for recording and reference light pattern The figure which shows the two-dimensional pattern information generated by changing the number of divisions, and its Fourier transform image
  • (A) And (B) is another schematic diagram which shows the display surface in a spatial light modulator.
  • (A) is the experimental result of Example 2
  • (B) is a figure which shows the experimental result of Example 3.
  • FIGS. 1A and 1B are schematic diagrams showing a display surface and a recording operation in the spatial light modulator 43 during recording.
  • FIGS. 1C and 1D are diagrams of the spatial light modulator 43 during verification. It is the schematic which shows a display surface and collation operation
  • the display surface of the spatial light modulator 43 is arranged at a position conjugate with the entrance pupil plane 34 or the entrance pupil plane of the objective lens 50, and the holographic recording medium 20 is arranged near the focal position of the objective lens 50.
  • the holographic recording medium 20 is a reflective recording medium in which a hologram recording layer 21 containing a photosensitive material is sandwiched between a surface protective layer 22 and a reflective layer 23.
  • the recording two-dimensional pattern information 31 input from the information processing apparatus is displayed in a partial region 43a of the spatial light modulator 43, and is emitted from the light source.
  • the object light 32 is generated by spatially modulating the light.
  • the spatial light modulator 43 generates the reference light 33 by displaying the pattern of the reference light in the other part of the region 43b and modulating the light from the light source.
  • At least one region 43b of the spatial light modulator 43 is arranged around the region 43a.
  • the object beam 32 and the reference beam 33 are Fourier-transformed by the objective lens 50 and interfere with each other in the thick hologram recording layer 21 of the recording medium 20, and the interference fringes 24 are recorded in three dimensions on the thick hologram recording layer 21 (that is, A volume hologram is formed).
  • the object light 32 and the reference light 33 are diffracted by the spatial light modulator to be a set of diverging light from each pixel, and the diverging light from each pixel in the object light and the reference light is converted into parallel light by the objective lens 50.
  • the converged object light and the reference light can be crossed as a whole, and interference fringes can be formed (see FIG. 1B).
  • the reference light 33 is used for determining the result of optical correlation calculation between the image information for verification and the recorded image information at the time of verification, and the ease of detection affects the verification speed.
  • a method of detecting the light intensity of the reference light is preferable.
  • the reference beam 33 is preferably Fourier-transformed by an objective lens when irradiated on the recording medium.
  • the reference light is generated using the spatial light modulator 43, but reference light generation means may be provided separately from the spatial light modulator 43.
  • the reference light and the object light coaxial before entering the objective lens it can be a collinear optical system, or the reference light crosses the object light in the holographic recording medium.
  • the interference fringes between the Fourier transform image of the object light and the real space image of the reference light are recorded by the two-beam interference type optical system.
  • the two-beam interference optical system it is possible to record the interference fringes between the Fourier transform image of the object light and the Fourier transform image of the reference light by irradiating the reference light using another objective lens.
  • the reference light pattern is not limited to the shape shown in FIG.
  • the collation two input from the information processing apparatus is displayed in the area 43a in which the recording two-dimensional pattern information 31 of the spatial light modulator 43 is displayed.
  • Dimensional pattern information 35 is displayed, and collation light 36 is generated by spatially modulating light from the light source.
  • the collation light 36 is Fourier transformed by the objective lens 50, interferes with the interference fringes 24 recorded on the thick hologram recording layer 21 of the recording medium 20, and reproduces the reproduction light 37.
  • the light intensity of the reproduction light 37 is detected by the reproduction light detector 53.
  • the two-dimensional pattern information 31 and 35 for recording and verification are generated by performing a division process and a random encoding process on at least the image information.
  • a division process and a random encoding process on at least the image information.
  • the cause of the rapid increase in the error rate in the comparison of the general image is presumed to be that the general image is different from the face image and has various features depending on the image.
  • the face image for the collation system is usually taken from the front of the face, and the general composition is fixed, but the general image is taken of a person, taken of a landscape, animated
  • the composition is not fixed.
  • the Fourier transform image of the general image actually recorded on the holographic recording medium varies greatly depending on the image.
  • the Fourier transform image is a frequency image. If the origin is the center, the center is a low frequency component, and the closer to the end of the image, the higher the frequency component.
  • FIG. 2 shows a general image on which three types of preprocessing have been performed in the upper stage, and shows their Fourier transform images in the lower stage.
  • the general image on the left in FIG. 2 the subject is arranged uniformly over the entire screen, and the Fourier transform image is spread over almost the whole although the light at the center is strong.
  • the general image in the center of FIG. 2 has a composition in which the subject is biased to the lower side of the screen.
  • the general image on the right side of FIG. 2 has a composition in which the subject is biased to the left side of the screen.
  • the Fourier transform image light is concentrated in the center and in the lateral direction.
  • At least a division process for dividing the image to be recorded into a plurality of blocks and a random encoding process for rearranging the plurality of blocks according to a predetermined random transformation array are performed. For this reason, when the object light is generated by spatially modulating the light based on the two-dimensional pattern information for recording, the Fourier transform image of the object light has a relatively high frequency component and is slightly shifted from the center. The light spreads all the way to the edge of the image.
  • 2D shows the two-dimensional pattern information for recording subjected to the digitization processing, and the lower part shows their Fourier transform images.
  • the lower part of FIG. 3 by performing random encoding processing, weak light spreads over a wide range in the Fourier transform image, so that the entire hologram is uniformly recorded, and the reliability of collation can be improved. Further, since the photosensitive material in the hologram recording layer is consumed for averaging, the error rate can be lowered even if the hologram pitch for multiple recording is shortened, so that the recording density and collation speed can be improved.
  • the image information may be divided into all pixels, but it is preferable to divide the image information into blocks composed of a plurality of pixels of 4 pixels or more and 400 pixels or less.
  • By dividing into blocks composed of a plurality of pixels it is possible to improve the accuracy at the time of collation as compared with the case of dividing into all the pixels and performing random encoding.
  • One reason for this is presumed to be that the permissible range of misalignment of each image is expanded by the block unit of random encoding. If randomization is performed by dividing into all the pixels, if there is a displacement in the irradiation position between recording and collation, for example, if a displacement of one pixel occurs, there is no correlation between adjacent pixels.
  • the size of the block does not depend on the size of the image information, and is preferably 4 pixels or more and 400 pixels or less.
  • the shape of the block is preferably rectangular or square for ease of rearrangement.
  • the number of pixels on each side is a divisor of the number of pixels on the corresponding side of the image information.
  • the number of pixels on one side is the common divisor of the vertical and horizontal sides of the image information. If all the blocks have the same size and the same shape, division processing and random encoding processing are easy, but different sizes and / or different shapes are also possible.
  • FIG. 4 shows a flowchart for generating two-dimensional pattern information.
  • the size or number of blocks to be divided by the division process is set in advance, the division number n is obtained, and random conversion arrays 1 to n are created.
  • FIG. 5A is an example of a random conversion array with 24 divisions.
  • the left side of FIG. 5A is an array before conversion, and blocks 1 to 24 are regularly arranged.
  • the right side of FIG. 5A is an array converted by a random conversion array, and blocks 1 to 24 are randomly arranged.
  • the information processing apparatus 30 acquires the image information 38 (S1), necessary preprocessing is performed on the image information to be recorded (S2).
  • the preprocessing for example, one or more of gray scale processing, binary image processing, image processing for changing resolution, trimming processing for cutting out part of an image, edge enhancement processing, and the like can be performed.
  • the edge enhancement process clarifies the composition element that is a feature of the image information, it is preferable to execute the edge enhancement process before the division and random encoding process.
  • the image processing for changing to a predetermined resolution is useful for standardizing the image information to be recorded when image information of various resolutions is recorded. Each of these preprocessing will be described later.
  • the division number n is obtained by (resolution of image information) / (number of pixels of one block).
  • the division number n is the same division number for at least image information registered in the same database.
  • databases having different division numbers n may be provided according to the type of image information to be registered. For example, a landscape composition database is expected to have a large composition deviation, so the number of divisions is increased.
  • An animation movie database is expected to have a composition bias, so the number of divisions is reduced, and a face image database is divided. It is preferable to reflect the feature of the image information registered in each database in the number of divisions, such as not.
  • FIG. 5B shows an example in which a random encoding process is performed using the random transform array shown in FIG.
  • the image information 38 on the right side of FIG. 5B is obtained by dividing the image information 38 on the left side of FIG. 5B into 24 parts and rearranging it into an arrangement as shown on the right side of FIG.
  • the shape of the two-dimensional pattern information can be freely changed by rearranging in a region having a shape different from the shape of the image information, for example, a rectangle, a square, another polygon, a circle, an annular shape, It can be set to a square ring or the like.
  • a region having a shape different from the shape of the image information for example, a rectangle, a square, another polygon, a circle, an annular shape, It can be set to a square ring or the like.
  • both the image information on the left side of FIG. 5B and the generated two-dimensional pattern information on the right side of FIG. 5B are the same rectangle, but for example, as shown in FIG.
  • the substantially circular two-dimensional pattern information may be generated by arranging in a circular region.
  • Other pre-processing includes gray scale processing, binary image processing, image processing for changing resolution, trimming processing for cutting out part of an image, edge enhancement processing, and the like.
  • the amount of image information to be recorded is large, if it is used as it is as two-dimensional pattern information for recording, the calculation time becomes long and a huge recording capacity is required. For this reason, it is preferable to perform preprocessing for reducing the amount of information on the image information to be recorded. Further, it is preferable to perform preprocessing in order to standardize image information to be recorded to a predetermined resolution and image quality.
  • the two-dimensional pattern information for verification is preferably generated by the same method as the two-dimensional pattern information for recording used for forming the recorded hologram.
  • the preprocessing it is preferable to perform a binary imaging process when generating two-dimensional pattern information for recording or verification.
  • the binary imaging process is a process for converting each pixel into an image displayed in two colors of white and black (0 and 1).
  • image information such as a general photograph, each pixel has at least a gray scale.
  • Gradation information (8 bits), and in many cases, color information (24 bits) of color, so that binary image processing is performed, so that the capacity of two-dimensional pattern information for recording or verification Can be significantly reduced.
  • Binary image processing methods can be broadly classified into two types: fixed threshold method and region specification method.
  • the former is a method of determining a binarization threshold value with a certain grayscale gradation value
  • the latter is a method in which the binary ratio of the entire image is determined first, and the binary value is determined from the density value histogram.
  • This is a method for determining the threshold value.
  • the binarization threshold is T
  • the element of each pixel of the original image is f (i, j)
  • the element of each pixel of the binary image is g (i, j)
  • the following equation (1) Can be defined.
  • the image information is color
  • the color information of the color is first removed and changed to a gray scale with only gradation information, and binarized.
  • the image processing to change the resolution for the image information to be recorded and the image information to be collated, the trimming processing to cut out a part of the image, Edge enhancement processing or the like may be performed.
  • the edge enhancement process is intended to clarify the composition elements that are the characteristics of the image information, it is preferable to execute the edge enhancement process before the random encoding process. More preferably, since part of the image information is lost by the binary imaging process, the edge enhancement process is executed before the binary imaging process. Further, the process of changing to a predetermined resolution needs to be executed before the random encoding process when the block size is specified by the number of pixels in the random encoding process.
  • Binary image processing is irreversible conversion that basically only deletes information, unlike data format conversion processing, compression processing, and encryption processing. That is, the data format conversion processing, compression processing, and encryption processing have information that can be inversely converted in their own or another file in order to restore the original frame image. However, the binary image processing simply discards the color information and gradation information that the original frame image had, and the binary image itself cannot be restored to the original frame image.
  • image processing for reducing the resolution, trimming processing for cutting out part of an image, and edge enhancement processing are basically irreversible conversions that only delete information.
  • the failure to restore the original recorded image information is a fatal problem in the information recording / reproducing apparatus, but it is not a big problem in the image information recording / collation system for the purpose of collating information. In the case of collating only whether or not the image information to be collated is registered in the database, it is not necessary to restore the recorded image information from the recorded hologram.
  • the hologram address information is acquired, and the hologram address information corresponding to the identification information of the recorded image information If the correspondence relationship is recorded on another recording medium (semiconductor memory, hard disk drive, optical medium, etc.), the address information of the hologram having a high correlation value is obtained at the time of collation, and then recorded on another recording medium. From the correspondence, identification information of image information that matches or is similar to the collated image information can be specified.
  • the identification information is information for specifying image information, such as the title, identification number, author, capacity, date of creation or data format of the image information.
  • the image information recording collation system of the present invention can directly detect the correlation value (similarity) with the two-dimensional pattern information for collation generated from the image information to be collated, and thus can be applied to various applications. . For example, it is possible not only to collate images that match a collation image but also to perform fuzzy collation that collates similar images. Further, if biometric information such as a face, fingerprint, vein, iris, etc. is recorded as image information to be recorded, it can be used in a management / authentication system using biometric authentication.
  • the image information recording and collating system of the present invention records moving image data protected in advance as a database as a database, and collates still images of moving image data that can be viewed on a site on a network with the database.
  • illegal moving image data can be identified and censored.
  • FIG. 7 is a schematic configuration diagram showing an embodiment of the image information recording collation system of the present invention.
  • the image information recording collation system 1 includes a system for recording image information on a holographic recording medium and a system for collating recorded image information, and includes a holographic recording medium 20, an information processing apparatus 30, and an optical system. System 40.
  • a holographic recording medium 20 is a reflective recording medium in which a hologram recording layer 21 containing a photosensitive material is sandwiched between a surface protective layer 22 and a reflective layer 23.
  • a hologram 24 formed by causing object light and reference light to interfere with each other is recorded.
  • the holographic recording medium 20 includes address information for specifying the position of the hologram 24 and / or servo information for performing alignment (servo) (hereinafter referred to as “address information” by combining address information and servo information). It is preferable to have an address layer on which is recorded. For example, as information such as an address, pits may be formed by an uneven shape provided on the surface of the reflective layer 23, and the reflective layer 23 may be used as an address layer. When a glass substrate is used as the surface protective layer 22 of the holographic recording medium 20, shrinkage due to a temperature change or the like can be suppressed. As the reflective layer 23, a metal material such as aluminum can be used.
  • the holographic recording medium 20 is held by a recording medium holding mechanism (not shown).
  • a rotation driving device is attached to the recording medium holding mechanism so that the recording medium 20 can be rotated.
  • the holographic recording medium 20 and the optical system 40 are configured to be relatively movable in order to perform alignment (servo). When the holographic recording medium 20 is moved, the X axis and the Y axis are used. Alternatively, a drive device that moves in the Z-axis direction is attached.
  • the X-axis direction is an arbitrary direction perpendicular to the optical axis
  • the Y-axis direction is a direction perpendicular to the optical axis and the X-axis direction
  • the Z-axis direction is a direction parallel to the optical axis.
  • the servo may be performed by moving the optical system 40.
  • the image information record collation system In order to increase the recording speed and the collation speed, it is preferable to record and collate while rotating the holographic recording medium 20.
  • the image information collation system In the image information record collation system, the image information collation system is required to be quicker in processing speed. Therefore, it is particularly preferable to collate while rotating at the time of collation where quickness is required.
  • the recording of image information is a finite process with an upper limit on the amount of information registered in the database, although image information may be added sequentially.
  • searching or collating image information it is required to determine whether image information to be searched or collated exists in the database as soon as possible after the search or collation target is input.
  • the shape of the holographic recording medium 20 is preferably a disk shape, but may be configured to be rotated as another shape, for example, a rectangular card shape. Furthermore, tracking servo can be performed by moving the optical system or the recording medium in the radial direction while rotating the recording medium.
  • the information processing apparatus 30 performs various types of information processing executed by the information record collating system. For example, the information processing apparatus 30 generates two-dimensional pattern information for recording from image information to be recorded, generates two-dimensional pattern information for verification from image information to be verified, and identifies information for identifying recorded image information (identifies image information). Information) and the address information of the corresponding hologram are recorded and reproduced, servo control based on the servo information, and calculation of a correlation value at the time of collation.
  • the information processing apparatus 30 can be shared by a plurality of image information recording / collating systems. For example, a plurality of image information collating systems including a plurality of optical systems 40 for collating a plurality of recording media in parallel. In this case, the optical system 40 and the recording medium may be provided independently for each image information collating system, and the information processing apparatus 30 may be provided in common.
  • the information processing apparatus 30 reproduces the moving image information and extracts a still image of a frame to be recorded from the reproduced moving image. Then, necessary preprocessing and random encoding processing are performed on the extracted still image to generate two-dimensional pattern information for recording, and the two-dimensional pattern information for recording is output to the spatial light modulator 43. If the number of frames to be recorded is increased, the accuracy of collation can be increased. However, the number of interference fringes to be recorded increases accordingly, so that the required recording capacity increases and the time required for recording and collation also increases. .
  • Number of frames / second is preferably variable.
  • general video data that has been digitized is compressed using VBR (Variable Bit Rate), and the bit rate is high in scenes with rapid changes and the bit rate in scenes with little change. Since it is low, fps may be changed based on the bit rate of the video.
  • VBR Very Bit Rate
  • the optical system 40 irradiates object light to record image information on the holographic recording medium 20, or uses optical correlation calculation between image information for verification and image information recorded on the holographic recording medium 20. Therefore, it is possible to detect the reproduction light by irradiating the collation light for collation.
  • the optical system 40 includes a hologram light source 41, a mirror 42, a spatial light modulator 43, a polarization beam splitter 44, a first relay lens 45, a mirror 46, a second relay lens 47, a beam splitter 48, and a quarter wavelength.
  • a plate 49, an objective lens 50, an aperture 51, a condenser lens 52, and a reproduction light detector 53 are provided.
  • the optical path (including the optical path of the reproduction light) at the time of recording and verification is indicated by a dotted line, and the optical path of the address light is indicated by a one-dot chain line.
  • the hologram light source 41 serves as a light source for object light and reference light for recording a hologram and a light source for collation light for collating image information.
  • a high-power pulse laser that intermittently emits laser light used.
  • a pulse laser can instantaneously generate very strong power by a mode-locking method or a Q-switch method in which phases are aligned at a plurality of wavelengths and oscillated simultaneously.
  • a solid-state laser such as a YAG laser or a gas laser such as a He—Ne laser can be used.
  • the hologram light source 41 selects light having a wavelength at which the photosensitive material in the hologram recording layer 21 of the holographic recording medium 20 exhibits sensitivity.
  • a light source for recording the hologram and a light source for collating image information may be separately provided.
  • a light source for recording a hologram a high-power pulse laser is required, but as a light source for collating image information, the light intensity of the collation light is weaker than the object light and reference light at the time of recording. Therefore, a CW laser (Continuous wave laser) can be used.
  • the CW laser has a lower instantaneous power than the pulse laser, but can continue to irradiate light with a certain intensity, and is small, light, and inexpensive.
  • a collation light source When a collation light source is separately provided, light having a wavelength that interferes with the hologram recorded in the hologram recording layer 21 is used, and light having the same wavelength as that of the light from the recording light source is preferably selected.
  • a CW laser In an image information collating system that does not record image information but only retrieves, only a CW laser may be provided as a light source for collating image information.
  • the spatial light modulator 43 has a plurality of pixels and can modulate the light spatially by changing the attribute of the light for each pixel.
  • the spatial light modulator 43 is a liquid crystal display device or a DMD (Digital Micromirror). Device) can be used.
  • the DMD Digital Micromirror
  • the object light and the reference light are generated by displaying the recording two-dimensional pattern information on a part of the display area of the spatial light modulator 43 and displaying the reference light pattern on the other part of the display area.
  • the collation light can be generated by displaying the collation two-dimensional pattern information in the display area in which the spatial light modulator 43 displays the two-dimensional pattern information for recording.
  • At least one reference light pattern is arranged around a display area (area 43a in FIG. 1) on which the recording two-dimensional pattern information of the spatial light modulator 43 is displayed.
  • a pattern of the reference light a region of several pixels to several hundred pixels in a lump may be set as an on-pixel, and the reference light may be uniform light having no intensity distribution.
  • a plurality of light sources having a spatially modulated intensity distribution may be provided, or light having a spatially modulated intensity distribution by a pattern of on pixels and off pixels in a wider area may be used.
  • the two-dimensional pattern information for recording may be divided into a plurality of separated areas, and at least a part of the reference light may be arranged in the separated areas.
  • the reproduction light detector is simply arranged at the position where the reproduction light is imaged without providing the aperture 51 and the condenser lens 52. Can detect the light intensity of the reproduction light.
  • an area 43b is an area of 4 pixels (2 ⁇ 2 pixels) which is disposed above the area 43a where the recording two-dimensional pattern information 31 is displayed and is extremely smaller than the area 43a. .
  • the reference light 33 diverges like a point light source and interferes with the object light 32 to form interference fringes.
  • FIG. 8 is a diagram showing the relationship between the arrangement position of the region 43b and the interference fringes written on the hologram.
  • FIG. 8A shows interference fringes when recording is performed with the region 43b arranged on the left side of the region 43a.
  • FIG. 8B shows interference fringes when recording is performed with the region 43b disposed below the region 43a.
  • the interference fringes are interference between the point light source-like reference light 33 by the region 43b and the object light 32 generated by the region 43a, so that the optical path difference between the reference light 33 and the object light 32 is an integral multiple of the wavelength ⁇ . Stripes appear in the direction. Therefore, the direction of the interference fringes differs depending on where the region 43b comes from the region 43a. Also, as shown in FIG. 8C, when the region 43b is arranged so that the interference fringes appear in different directions, a two-dimensional interference fringe is formed.
  • the allowable shift value of the two-dimensional pattern information 35 for matching at the time of matching can be increased.
  • the range in which the reference light can be reproduced is widened.
  • FIG. 9A is another schematic diagram showing a display surface of the spatial light modulator 43, and 400 pixels (shown by dotted lines) around a region 43a (shown by a dotted line) where the recording two-dimensional pattern information 31 is displayed. Twelve areas 43b in which reference light (20 ⁇ 20 pixels) is displayed are arranged.
  • the size of the region 43b is 400 pixels and the number of the regions 43b is 12. However, the size and number of the regions 43b can be changed as appropriate.
  • the area 43a of the spatial light modulator in which the recording two-dimensional pattern information 31 is displayed is divided into a plurality of spaced areas, and the recording two The dimension pattern information 31 may be divided and displayed in a plurality of spaced areas, and at least a part of the area 43b in which the reference light pattern is displayed is disposed between the plurality of spaced areas.
  • FIG. 9B is a diagram illustrating a state in which the region 43a of the spatial light modulator 43 is divided and the region 43b is arranged therebetween, and FIG. 9C is subjected to random encoding processing before the division.
  • FIG. 9D is a diagram showing the two-dimensional pattern information 31 for recording, and FIG.
  • FIG. 9D is a diagram showing the image information 38 before the random encoding process.
  • the image information 38 is divided into 24 equal parts along the dotted line in FIG. 9D and is subjected to random encoding processing to generate the two-dimensional pattern information 31 for recording in FIG. 9C.
  • the area 43a where the recording two-dimensional pattern information 31 is displayed is divided into four, and the recording two-dimensional pattern information 31 is displayed divided into four.
  • Thirteen regions 43b on which a 400 pixel (20 ⁇ 20 pixel) reference light pattern is displayed are arranged above and below the cross between the regions 43a.
  • the area 43b in which the reference light pattern is displayed includes a plurality of rectangular areas, but the cross between the areas 43a and the surrounding “rice” area are The region 43b may be used, the entire “rice” -shaped region may be used as the reference light, or the pixels in the region 43b may be randomly turned on.
  • the two-dimensional pattern information 31 for recording is displayed by being divided into a plurality of spaced areas, and at least a part of the area 43b in which the reference light pattern is displayed is arranged between the areas.
  • the threshold range can be widened.
  • FIG. 10 is still another schematic diagram illustrating the pattern of the two-dimensional pattern information 31 for recording and the reference light 33.
  • the two-dimensional pattern information 31 for circular recording is arranged at the center, and 40 patterns of the reference light 33 of 100 pixels (10 ⁇ 10 pixels) are arranged around it.
  • the two-dimensional pattern information 31 for circular recording is divided into four parts, and the pattern of the reference light 33 of 100 pixels (10 ⁇ 10 pixels) is formed in a cross shape in the cross part therebetween. 40 are arranged.
  • the reference light 33 has 40 patterns having a size of 100 pixels, but the size and number can be changed as appropriate.
  • FIG. 10A the two-dimensional pattern information 31 for circular recording is arranged at the center, and 40 patterns of the reference light 33 of 100 pixels (10 ⁇ 10 pixels) are arranged around it.
  • the two-dimensional pattern information 31 for circular recording is divided into four parts, and the pattern of the reference light 33 of 100 pixels (10 ⁇ 10 pixels) is formed in a cross shape in the cross part therebetween. 40 are arranged.
  • the circular recording two-dimensional pattern information 31 is arranged at the center, and the random pattern reference light 33 is arranged around the two-dimensional pattern information 31 for circular recording.
  • an annular two-dimensional pattern information 31 is arranged, and a circular random pattern reference light 33 is arranged inside thereof.
  • the reference beam 33 may be a random pattern.
  • the reference light shape opening may be arranged on the optical axis as a mask for shielding the two-dimensional pattern information at the time of collation and allowing the reference light to pass. So it becomes easier to design.
  • the central portion has less aberration of the objective lens and the like, and the influence of the aberration can be reduced on the reproduced reference light.
  • the polarization beam splitter 44 transmits one of orthogonal polarization directions and reflects the other, transmits object light, reference light, and collation light toward the recording medium 20, and reproduces reproduction light reproduced by the recording medium. Reflected toward the photodetector 53.
  • the configuration may be such that the object light, the reference light, and the collation light are reflected toward the recording medium 20 and the reproduction light that is directed toward the reproduction light detector 53 is transmitted.
  • the first and second relay lenses 45 and 47 form the image displayed on the spatial light modulator 43 on the focal plane of the objective lens 50.
  • the objective lens 50 is used.
  • the spatial modulation pattern of the object light, the reference light, and the collation light needs to be imaged on the entrance pupil plane.
  • the mirror 46 is disposed at the focal position between the first and second relay lenses 45 and 47, and reflects the object light, the reference light, and the collation light to reduce the size of the optical system 40. Is provided.
  • the beam splitter 48 is for directing light from the addressing laser 60 toward the recording medium 20.
  • the quarter-wave plate 49 converts linearly polarized light into circularly polarized light, and the linearly polarized light can be rotated 90 degrees by transmitting twice.
  • the reference light is transmitted by the quarter-wave plate 49 through the polarization beam splitter 44 when irradiated, and is reflected by the polarization beam splitter 44 when reproduced as reproduction light.
  • the objective lens 50 performs Fourier transform on the object light and the reference light and irradiates the hologram recording layer 21 of the recording medium 20 to record the hologram formed by causing the object light and the reference light to interfere with each other on the hologram recording layer.
  • the objective lens 50 irradiates the hologram 24 recorded on the hologram recording layer 21 of the recording medium 20 by Fourier-transforming the verification light.
  • the reproduction light reproduced by the interference between the verification light and the hologram 24 travels from the recording medium 20 toward the objective lens 50 and passes through the objective lens 50.
  • the aperture 51 has an opening that blocks the collation light reflected by the recording medium 20 and allows only the reproduced light to pass through the reproduction light detector 53. It is preferable to arrange the aperture 51 in the focal plane of the first relay lens 45 because noise due to the diffracted light of the verification light can be reduced.
  • the opening is provided at the center of the aperture 51, but the opening is not limited to the center, and the aperture 51 may be provided with a shape through which the reproduction light can pass at a position where the reproduction light passes. .
  • a plurality of apertures may be provided in the aperture 51, and when the reproduction light is spatially modulated (that is, the reference light at the time of recording is spatially represented by two-dimensional pattern information).
  • an opening having a shape similar to the pattern of the reference light may be provided.
  • the reproduction light detector 53 detects the light intensity of the reproduced light that has been reproduced.
  • the reproduction light detector 53 serves as a photoelectron multiplier. It is possible to use a photosensor with extremely high sensitivity such as a photomultiplier tube (PMT) or an inexpensive and small semiconductor detector such as a pin photodiode, a CMOS sensor, or a CCD sensor.
  • PMT photomultiplier tube
  • CCD CCD sensor
  • the reproducing light detecting means of the conventional optical information recording / reproducing apparatus using a hologram needs a CMOS sensor or a CCD sensor in which light detecting elements are two-dimensionally arranged in order to reproduce two-dimensional pattern information. Since the reproducing light detector 53 of the present invention only needs to detect the light intensity of the reproduced light that has been reproduced, a light detector having a single light detecting element can be used. Also, when the reproduction light pattern is spatially modulated and has an intensity distribution (that is, when there are a plurality of reference lights at the time of recording or when spatially modulated by two-dimensional pattern information), If it is larger than the light receiving area of the reproduction light detector, as shown in FIG.
  • the condensing lens 52 Even if the reproduction light pattern is smaller than the light receiving area of the reproduction light detector, the reliability can be improved by using the condensing lens 52. Even with a photodetector that can detect the light intensity distribution in which the light detection elements are two-dimensionally arranged, the light intensity of the reproduction light can be detected by summing the intensities of all the light detection elements. It can be used as the detector 53.
  • the reproducing light detector 53 of the present invention only needs to detect the light intensity of the reproduced light that has been reproduced. Therefore, it is possible to use a pin photodiode or PMT having a transfer speed of several Mbps to several Gbps, and an ultra-high speed. Can be verified.
  • Conventional CMOS sensors and CCD sensors with two-dimensionally arranged photodetection elements have a frame rate of about 30 fps to 1000 fps, so only 30 to 1000 holograms can be reproduced per second. The performance of the element limited the playback speed.
  • the address laser 60, the beam splitter 61, the mirror 62, and the address photodetector 63 are used to specify and align the irradiation position by acquiring information such as an address from the address layer when the recording medium 20 is provided with an address layer. Used for.
  • the addressing laser 60 a wavelength at which the photosensitive material of the hologram recording layer 21 is not exposed is preferable, and it is preferable to use a semiconductor laser having a relatively long wavelength such as red light.
  • the address photodetector 63 an inexpensive and small semiconductor detector can be used.
  • the address light emitted from the addressing laser 60 passes through the beam splitter 61 and is reflected by the mirror 62, further reflected by the beam splitter 48, passes through the quarter-wave plate 49, and is recorded by the objective lens 50.
  • 20 address layers are irradiated.
  • the reflected light that has acquired information such as address by the address layer of the recording medium 20 passes through the optical systems 50, 49, 48, 62 in the reverse direction, is reflected by the beam splitter 61, and is detected by the address photodetector 63.
  • the light emitted from the hologram light source 41 is shaped into substantially parallel light having a larger cross section than the display surface of the spatial light modulator 43 by a beam shaping optical system (not shown).
  • the beam shaping optical system include a collimator lens that processes diverging light into parallel light, and a beam expander that increases the aperture of the beam.
  • the substantially parallel light is reflected toward the spatial light modulator 43 by the mirror 42 and spatially modulated by the recording two-dimensional pattern information and the reference light pattern displayed on the spatial light modulator 43, and the object light and A reference beam is generated.
  • the object light and the reference light pass through the polarization beam splitter 44, are transmitted by the first and second relay lenses 45 and 47, are reflected by the mirror 46, and pass through the beam splitter 48, and are divided into quarters.
  • the light is converted into circularly polarized light by the single wavelength plate 49, Fourier-transformed by the objective lens 50, and irradiated on the hologram recording layer 21 of the recording medium 20.
  • the hologram formed by the interference between the object beam and the reference beam is recorded on the hologram recording layer 21.
  • the hologram is recorded by the high-power object light and reference light that are instantaneously irradiated.
  • a plurality of holograms can be recorded while rotating the recording medium 20. That is, when the rotating recording medium 20 is irradiated with pulsed object light and reference light, the first pulse of object light and reference light is instantaneously applied to a predetermined position of the rotating recording medium 20, Then, the next pulse of the object beam and the reference beam are instantaneously irradiated to another position of the recording medium 20 moved from the first hologram by the rotation, and the next hologram is recorded.
  • the optical system 40 by continuously moving the optical system 40 in the radial direction from the center of rotation while rotating the recording medium 20, it is possible to record a plurality of holograms arranged in a spiral shape on the entire surface of the recording medium 20. Holograms can be recorded at a relatively high speed. If the optical system 40 is moved stepwise in the radial direction from the center of rotation while rotating the recording medium 20, a plurality of holograms can be concentrically arranged and recorded.
  • the light emitted from the hologram light source 41 is made into substantially parallel light by a beam shaping optical system (not shown), and the substantially parallel light is reflected by the mirror 42 toward the spatial light modulator 43 and displayed on the spatial light modulator 43. Spatial modulation is performed by the collated two-dimensional pattern information, and collation light is generated.
  • the verification light passes through the polarization beam splitter 44, is transmitted by the first and second relay lenses 45 and 47, is reflected by the mirror 46, and passes through the beam splitter 48, and is a quarter-wave plate.
  • the light is converted into circularly polarized light by 49, and is subjected to Fourier transform by the objective lens 50 and irradiated onto the hologram 24 recorded on the hologram recording layer 21 of the recording medium 20.
  • the hologram 24 and the collation light interfere with each other, and the reproduction light corresponding to the reference light at the time of recording is reproduced.
  • the reproduction light reflected by the reflection layer 23 is emitted from the recording medium 20, and in the direction opposite to that at the time of irradiation, the objective lens 50, the quarter-wave plate 49, the beam splitter 48, the second relay lens 47, and the mirror.
  • the light then enters the polarization beam splitter 44 through 46 and the first relay lens 45.
  • the reproduction light is equivalent to the reference light at the time of recording, and the reference light passes through the quarter-wave plate 49 and is converted into circularly polarized light when irradiated onto the recording medium 20.
  • the reproduction light after the quarter-wave plate 49 is linearly polarized light having a polarization direction orthogonal to the reference light.
  • the reproduction light is reflected by the polarization beam splitter 44 that has transmitted the reference light, passes through the aperture 51, and is condensed on the reproduction light detector 53 by the condenser lens 52.
  • the verification light reflected by the reflective layer 23 is emitted from the recording medium 20 and reflected by the polarization beam splitter 44 through the same optical system as the reproduction light, but is blocked by the aperture 51.
  • the light intensity of the reproduction light changes in accordance with the correlation value (similarity) between the two-dimensional pattern information for recording when the hologram 24 is recorded and the two-dimensional pattern information for collation of the collation light.
  • the recording medium 20 When a CW laser is used as a light source for verification, the recording medium 20 is rotated while irradiating the verification light, thereby continuously irradiating a plurality of holograms arranged and recorded in the circumferential direction.
  • the rotation speed of the recording medium 20 can be increased, and the collation speed (image information transfer speed) can be increased.
  • a plurality of holograms recorded on the entire surface of the recording medium 20 can be collated at high speed by moving the optical system 40 continuously or stepwise in the radial direction from the center of rotation while rotating the recording medium 20. it can.
  • FIGS. 11 and 12 show two-dimensional pattern information generated by changing the number of divisions and a Fourier transform image on the right side thereof.
  • FIG. 11A shows a binary image in which color image information is subjected to grayscale processing for removing color information, edge enhancement processing is performed, and binarization processing is further performed. In FIG. 11A, random encoding processing is not performed, and the resolution of the binary image is 240 ⁇ 180 pixels.
  • FIG. 11B shows two-dimensional pattern information obtained by dividing the binary image of FIG. 11A into 12 equal parts by 60 ⁇ 60 pixel blocks and rearranging the binary image according to a random transformation array. Similarly, the binary image of FIG.
  • FIG. 11A is divided into 108 equal parts in a 20 ⁇ 20 pixel block in FIG. 11C, and 432 etc. in a 10 ⁇ 10 pixel block in FIG. 11D.
  • FIG. 12E is a 5 ⁇ 5 pixel block divided into 1728 equal parts
  • FIG. 12F is a 3 ⁇ 3 pixel block divided into 4800 equal parts
  • FIG. I s a 2 ⁇ 2 pixel block divided into 10800 equal parts
  • FIG. 12H shows two-dimensional pattern information divided in units of one pixel and rearranged according to a random conversion array.
  • the autocorrelation error rate was obtained using 30 similar images in which the resolution was slightly changed or the presence or absence of subtitles was changed. In order to confirm reproducibility, these recording and verification processes were repeated four times for each two-dimensional pattern information. Prior to this experiment, the error rate was examined under the same conditions except that the hologram pitch was 20 ⁇ m. However, the error rate was 0 for all the two-dimensional pattern information including those not subjected to the random encoding process. Is obtained.
  • FIG. 14A shows the experimental results of Example 2, and shows the error rate in the database recorded by each random encoding process.
  • the error rate includes a registered image rejection rate (FRR: False Rejection Rate) when a registered image is mistakenly recognized as unregistered, and another image acceptance rate (FAR: FalsealAcceptance Rate) when a different image is mistakenly recorded. ) And the error rate when the registered image rejection rate FRR and the other image acceptance rate FAR intersect, that is, EER (Equal Error Rate). When the EER has a certain range, the range is called a threshold range. Table 1 shows the error rate and threshold range of each experiment in FIG.
  • Example 3 An experiment was performed under the same conditions as in Example 2 except that the reference light pattern shown in FIG. 13B was used.
  • the two-dimensional pattern information for recording is displayed in the central area 43a of 240 ⁇ 180 pixels, and the reference light pattern is displayed in the area 42b of 10 ⁇ 10 pixels around the area 43a.
  • a total of 40 pieces of reference light were arranged in a space of 12 pixels from the region 43a, 12 pieces in the vertical direction and 8 pieces in the horizontal direction.
  • FIG. 14B shows the experimental results of Example 3, and shows the error rate in the database recorded by each random encoding process.
  • the vertical axis is the error rate
  • the horizontal axis is the size of the divided blocks.
  • Table 2 shows the error rate and the threshold range of each experiment in FIG.
  • the size of the block to be divided is preferably 4 pixels or more and 400 pixels or less.
  • the EER is preferably as small as possible. If the EER is 0%, the registered image rejection rate FRR and the other image acceptance rate FAR are 0%, and no error occurs theoretically. Further, the width of the threshold range indicates the reliability of collation, and the wider the value, the higher the reliability of collation. However, in order to make it possible to collate similar images, the threshold value may be dared to be smaller than the threshold region, and the other image acceptance rate FAR may be increased.
  • FIG. 15 shows the experimental results of Example 4 and shows the error rate in the database recorded by each random encoding process.
  • the vertical axis represents an error rate
  • the horizontal axis represents a threshold value related to a normalized correlation value (light intensity of reference light).
  • the data that rises to the right in FIG. 15 is the registered image rejection rate FRR, and is 0% when the threshold is 0, that is, when any detection result is recognized as a recorded image (however, the other image acceptance rate FAR is the maximum). And the error rate increases as the threshold value increases.
  • the data on the lower right in FIG. 15 is the other image acceptance rate FAR, which is maximum when the threshold is 0, that is, when any detection result is recognized as a recorded image, and the error rate decreases as the threshold increases.
  • EER was 0% and the threshold range was 0.01.

Abstract

【課題】画像情報記録方法および画像情報照合システムにおいて、高精度化、または高密度化及び高速化する。 【解決手段】ホログラフィック記録媒体に画像情報をホログラムとして記録する方法であって、記録する画像情報に対し、少なくとも、複数のブロックに分割する分割処理及び複数のブロックを所定のランダム変換配列に従って並び替えるランダム符号化処理を行って記録用の二次元パターン情報を生成し、記録用の二次元パターン情報に基づいて光を空間的に変調して物体光を生成し、物体光のフーリエ変換像及び記録用参照光をホログラフィック記録媒体に照射して、物体光のフーリエ変換像と記録用参照光とによって形成されるホログラムをホログラフィック記録媒体に記録する。

Description

画像情報記録方法及び画像情報照合システム
 本発明は、光相関を利用して、ある画像と他の画像を照合するための画像情報記録方法及び画像情報照合システムに関し、特に、ホログラフィを利用して2つの画像の光相関演算を行うための画像情報記録方法及び画像情報照合システムに関するものである。
 従来の画像や動画の検索技術としては、画像や動画にキーワードを設定しておき、検索者がキーワードを入力して、キーワードに合致する画像や動画を検索する技術が大半であった。しかし、キーワードを用いた検索方法では、設定したキーワードが不適切であった場合には、適切な検索をすることができない点が問題だった。さらに、キーワードの設定には、個人差が存在し、また個人の主観の違いや表現の違いによってキーワードが必ずしも一致しない点でも問題であり、さらにキーワードが一致した場合には、目的の画像や動画以外の動画であっても検索されてしまう点でも問題がある。
 このため、画像や動画をより高精度に行うためには、入力情報にも画像を用いた2次元データ同士の相関により検索を行うことが望まれる。従来の光相関を利用する画像検索技術は、大量の記録された画像データから入力された画像を検索するにあたって、厚みのない液晶素子や薄いホログラムなどを表示素子として光相関を用いるものがあった。しかし、液晶素子は、大量の記録された画像データを切り替えながら光相関を行うが、画像の切り替えに電気制御が必要であり、1回の相関にかかる時間が制限される。また、記録媒体から蓄積された画像を液晶表示素子に転送してから光相関を行うため転送速度によっても光相関の速度が制限されていた。また、薄いホログラムでは記録容量や記録密度を上げることが困難であった。
 他方で、ホログラムの干渉縞の間隔に比べて記録層の膜厚が大きい体積型(厚い)ホログラムを利用した場合には、記録容量や記録密度を上げることが可能であるが、ホログラムを記録するための光学系が複雑であり、記録時と再生時とで同一の波長及び同一の入射角の参照光が必要であり、厳密な位置合わせ及び照射条件が要求されるため、実用化には大きな課題が残っていた。
 しかし、最近、同軸上で参照光と情報光を干渉させて体積型(厚い)ホログラムを記録するコリニア方式のホログラフィックメモリが開発されてきた(特許文献1)。コリニア方式の光情報記録再生装置は、空間光変調器によって空間的に変調された情報光と参照光とが同軸上に配置されて記録媒体に照射される。ホログラフィック記録媒体に照射された情報光と参照光とを干渉させて形成されたホログラムによって、ホログラフィック記録媒体のホログラム記録層内の感光性材料に光反応を生じさせ、ホログラム記録層にホログラムを定着させる。コリニア方式のホログラフィックメモリは、ディスク状のホログラフィック記録媒体を回転させながら記録再生するので、既存のDVDやCDなどの光ディスク技術と親和性が高く、光学系を簡易且つ小型化することが可能であること、また既存のDVDやCDに類似したアドレス方式やサーボ技術なども取り入れられており、厳密な位置合わせが実現可能であることから、次世代の記録方式として期待されている。
 コリニア方式のホログラフィックメモリでは、記録媒体にホログラムを記録する際に、既に記録されたホログラムに対し、一部が重なるようにホログラムを多重させて記録することができる。この多重記録を行うことにより、多重記録する際のホログラムの間隔(ホログラムピッチ)に応じて、ホログラフィック記録媒体の記録密度及び記録容量を向上させることができる。
 さらに、このようなコリニア式のホログラフィックメモリである体積型(厚い)ホログラムを用いることにより光相関演算を行って顔画像を照合することが提案されている(非特許文献1)。非特許文献1では、ホログラムの書き込み時には、空間光変調器の1画素をオン状態として参照光とし、その付近に顔画像を表示して情報光とし、それらの光を対物レンズによってフーリエ変換して記録媒体中で重ね合わせて干渉させホログラムを記録している。また、光相関演算時には、書き込み時と同じ位置に検索したい顔画像を表示することにより、ホログラムから再生された光を検出して相関演算を行っていた。ホログラムとして記録された顔画像と検索したい顔画像とが同一又は類似していると、ホログラムからは参照光が再生され、かかる参照光の強度は、類似度が高い程強くなるので、ホログラムから再生された光を相関値として利用することができる。
 ところで、近年、小説、音楽、映画、写真など情報のデジタル化及びインターネットの普及に伴いインターネット上での著作権侵害が問題視されている。これは、情報をデジタル化することにより、品質を落とさず正確に複製することが可能であり、また情報の編集、翻案などの二次利用や三次利用が容易であること、さらにインターネットを通じて公衆送信できることから、他人の著作物を利用しやすい環境であることに起因する。特に、企業等の団体だけではなく、各個人においてもこれらの環境下にあるため、著作権侵害の予防、管理を困難なものとしている。
 最近、インターネット上で動画を共有する動画共有サービスが提供されているが、この動画共有サービスにおいて著作権侵害が大きな問題となっている。動画共有サービスとは、あるユーザーがアップロードした動画データを共有化することで、他のユーザーにもダウンロード可能な状態とさせ、動画を公開、閲覧できるようにしたサービスである。この動画共有サービスには、一日に何万件もの動画データが投稿されており、それらの動画データの中には、著作権を侵害する違法なものも多数含まれているのが現状である。例えば、映画、テレビ番組、ライブ映像、プロモーションビデオなどが著作権者に無断でアップロードされている。
 従来、動画共有サービスにおける著作権の管理は、利用規約などに著作権を侵害する動画データの投稿を禁止する旨を記載するだけで、各ユーザーの倫理に委ねており、特別な検閲システムを設けていなかった。仮に違法な動画データがアップロードされた場合であっても、第三者から違法な動画データとして指摘されたものについて削除するだけであった。著作権者などは、動画データを再生して、視認することによって違法な動画データを検索し、通報していたが、日々何万件も増加する動画データの全てを確認することは現実的ではなかった。しかも、違法な動画データは、通報して削除されても、ユーザーによって再び投稿されることが多く、従来の対策は実効的なものではなかった。
特許第3403068号公報
「全光型超高速光相関による画像検索エンジン」 Optics Japan 2005 講演予稿集 pp260-261、2005年 渡邉恵理子他
 非特許文献1の顔画像を照合するためのシステムでは、ホログラフィック記録媒体を回転させながら画像を照合しているので、照合速度を向上させるためには、ホログラフィック記録媒体の記録密度を高く、即ち単位面積当たりのホログラムの数を多くすればよい。そして、ホログラフィック記録媒体の記録密度を高くするには、前述したとおり、多重記録におけるホログラムピッチを短くすればよい。
 ところで、本発明者らが、非特許文献1の顔画像を照合するためのシステムを用いて、顔画像以外のあらゆる画像(以下「一般画像」という)の照合を試みたところ、一般画像の照合結果は、顔画像の照合結果に比べてエラーレートが高くなってしまった。特に、記録密度を高くするため、多重記録のホログラムピッチを短くしていくと、一般画像のエラーレートが急増し、精度が低下してしまい高密度化及び高速化できないことが判明した。
 本発明は、画像情報記録方法および画像情報照合システムにおいて、高精度化、または高密度化及び高速化を目的とする。さらに、本発明は、顔画像以外の一般画像(その動画も含む)を照合できる画像情報照合システムを提供することを目的とする。また、かかるシステムを用いて、ネットワーク上のサイトにおいて閲覧可能な状態とされる一般画像に対して、実効的な検閲を可能とする画像情報照合システムを提供することを目的の一つとする。
 本発明の画像情報記録方法は、ホログラフィック記録媒体に画像情報をホログラムとして記録する方法であって、記録する画像情報に対し、少なくとも、複数のブロックに分割する分割処理及び複数のブロックを所定のランダム変換配列に従って並び替えるランダム符号化処理を行って記録用の二次元パターン情報を生成し、記録用の二次元パターン情報に基づいて光を空間的に変調して物体光を生成し、物体光のフーリエ変換像及び記録用参照光をホログラフィック記録媒体に照射して、物体光のフーリエ変換像と記録用参照光とによって形成されるホログラムをホログラフィック記録媒体に記録することを特徴とする。
 また、本発明の画像情報照合システムは、ある画像情報とホログラフィック記録媒体に記録された画像情報とを照合する画像情報照合システムであって、ホログラフィック記録媒体には、記録する画像情報に対し、少なくとも、複数のブロックに分割する分割処理及び複数のブロックを所定のランダム変換配列に従って並び替えるランダム符号化処理を行って記録用の二次元パターン情報を生成し、記録用の二次元パターン情報に基づいて光を空間的に変調して物体光を生成し、物体光のフーリエ変換像及び記録用参照光をホログラフィック記録媒体に照射して、物体光のフーリエ変換像と記録用参照光とによって形成されるホログラムが記録されており、照合する画像情報に対し、少なくとも、分割処理及びランダム符号化処理を行って照合用の二次元パターン情報を生成し、照合用の二次元パターン情報に基づいて光を空間的に変調して照合光を生成し、照合光のフーリエ変換像をホログラフィック記録媒体に記録されたホログラムに照射し、ホログラムから再生された再生光の光強度を再生光検出器によって検出し、再生光の光強度の値を用いて記録された画像情報と照合する画像情報とを照合することを特徴とする。
 さらに、上記画像情報記録方法又は画像情報照合システムにおいて、分割処理は、記録する画像情報や照合する画像を4画素以上400画素以下の複数の画素から構成される同一形状の複数のブロックに分割してもよい。
 さらに、上記画像情報記録方法又は画像情報照合システムにおいて、画像情報は、分割処理の前に、所定の解像度に変更する画像処理及びエッジ強調処理が行われることが好ましい。
 さらに、上記画像情報記録方法又は画像情報照合システムにおいて、記録用の二次元パターン情報及び照合用の二次元パターン情報は、ランダム符号化処理によって、記録する画像情報及び照合する画像情報の形状とは異なる形状の領域内に並び替えられて生成されることが好ましい。
 さらに、上記画像情報記録方法において、記録用の二次元パターン情報は、複数の離間した領域に分割されており、複数の離間した領域に分割された記録用の二次元パターン情報に基づいて生成された物体光の複数の離間した領域の間に、記録用参照光が配置され、記録用参照光のフーリエ変換像がホログラフィック記録媒体に照射されることが好ましい。この場合、上記画像情報照合システムにおいては、照合用の二次元パターン情報は、複数の離間した領域に分割されており、複数の離間した領域に分割された照合用の二次元パターン情報に基づいて照合光が生成されることが好ましい。
 本発明の画像情報記録方法又は画像情報照合システムを利用することにより、偏った構図等に起因して、局所的に、ホログラフィック記録媒体のホログラム記録層における感光材料を大量に消費してしまう結果、当該部分の感光材料が枯渇し、その後、別のホログラムを多重記録する際に、当該部分についてはホログラムを記録することができなくなるという問題を緩和して、信頼性を高めることができ、また多重記録のホログラムピッチを短くして記録密度及び照合速度を向上させることができる。その他の効果については、以下の実施の形態において記載する。
(A)及び(B)は、記録時の空間光変調器における表示面及び記録動作を示す概略図、(C)及び(D)は、照合時の空間光変調器における表示面及び照合動作を示す概略図 一般画像とそのフーリエ変換像を示す図 ランダム符号化処理を施した二次元パターン情報とそのフーリエ変換像を示す図 二次元パターン情報を生成するためのフローチャート (A)及び(B)は分割数24のランダム変換配列の一例を示す図 (A)及び(B)は分割数24のランダム変換配列の他の一例を示す図 本発明の画像情報記録照合システムを示す概略構成図データベースの照合結果を示す図 (A)~(C)は参照光の配置位置とホログラムに書き込まれる干渉縞との関係を表す図 (A)及び(B)は空間光変調器における表示面を示す他の概略図、(C)はランダム符号化処理されている記録用の二次元パターン情報を示す図、(D)はランダム符号化処理する前の画像情報を示す図 記録用の二次元パターン情報及び参照光のパターンを示す概略図 分割数を変えて生成された二次元パターン情報及びそのフーリエ変換像を示す図 分割数を変えて生成された二次元パターン情報及びそのフーリエ変換像を示す図 (A)及び(B)は空間光変調器における表示面を示す他の概略図 (A)は実施例2の実験結果、(B)は実施例3の実験結果を示す図 実施例4の実験結果を示す図
 以下、本発明の実施の形態を図面を参照して説明するが、本発明は下記例に限定されるものではない。最初に、本発明の原理及び画像処理について説明し、次に、具体的な画像情報記録照合システムの構成及び動作について説明し、その後、実施例及び応用例を説明する。
 図1(A)及び(B)は、記録時の空間光変調器43における表示面及び記録動作を示す概略図であり、(C)及び(D)は、照合時の空間光変調器43における表示面及び照合動作を示す概略図である。図1において、対物レンズ50の入射瞳面34または入射瞳面と共役な位置に、空間光変調器43の表示面が配置され、対物レンズ50の焦点位置近傍にホログラフィック記録媒体20が配置されている。ホログラフィック記録媒体20は、表面保護層22と反射層23との間に感光材料を含有するホログラム記録層21を挟み込んだ反射型の記録媒体である。
 記録時には、図1(A)及び(B)に示すように、空間光変調器43の一部の領域43aに情報処理装置から入力された記録用の二次元パターン情報31が表示され、光源からの光を空間的に変調することで物体光32が生成される。また、空間光変調器43は、他の一部の領域43bに参照光のパターンを表示して、光源からの光を変調することで参照光33を生成する。空間光変調器43の領域43bは、領域43aの周囲に少なくとも一つ配置される。そして、物体光32及び参照光33は、対物レンズ50によってフーリエ変換され、記録媒体20の厚いホログラム記録層21において干渉し、干渉縞24が厚いホログラム記録層21に立体的に記録される(つまり、体積ホログラムが形成される)。物体光32及び参照光33は、空間光変調器によって回折されることで各画素からの発散光の集合となり、その物体光及び参照光における各画素からの発散光が対物レンズ50によって平行光として記録媒体20に照射されることで、全体としては収束する物体光と参照光とを交差させることができ、干渉縞を形成することができる(図1(B)参照)。その後、他の記録用の二次元パターン情報について、ホログラム記録層21の異なる位置に、一部を重畳させて順次記録していくことにより、多重記録することができる。このように、物体光と参照光とを同一の空間光変調器43によって生成することにより、物体光及び参照光の位相を揃えることができ、強い干渉縞を形成することができる。
 参照光33は、照合時においては、照合用画像情報と記録された画像情報との光相関演算の結果を判定するものであり、その検出の容易性が照合速度に影響する。光相関演算の結果としては、参照光の光強度を検出する方式とすることが好ましい。本発明において、参照光33は、記録媒体に照射される際に、対物レンズによってフーリエ変換されることが好ましいが、フーリエ変換せずに実空間像を物体光のフーリエ変換像と干渉させてもよい。図1の画像情報記録照合システムでは、空間光変調器43を用いて参照光を生成したが、空間光変調器43とは別に参照光生成手段を設けてもよい。例えば、光源41からの光をビームスプリッタによって二光束に分離し、そのうちの一方を空間光変調器43に照射して物体光を生成し、他方を記録媒体に照射して参照光とする構成でもよい。この場合、対物レンズに入射する前に、参照光と物体光とを同軸とすることで、コリニア方式の光学系とすることもできるし、ホログラフィック記録媒体において物体光と交差するように参照光をそのまま照射すれば、二光束干渉型の光学系によって、物体光のフーリエ変換像と参照光の実空間像との干渉縞が記録される。なお、二光束干渉型の光学系において、別の対物レンズを用いて参照光を照射して、物体光のフーリエ変換像と参照光のフーリエ変換像との干渉縞を記録することもできる。なお、参照光のパターンについては、図1の形状に限定されるものではない。
 照合時には、図1(C)及び(D)に示すように、空間光変調器43の記録用の二次元パターン情報31が表示された領域43aに、情報処理装置から入力された照合用の二次元パターン情報35が表示され、光源からの光を空間的に変調することで照合光36を生成する。照合光36は、対物レンズ50によってフーリエ変換され、記録媒体20の厚いホログラム記録層21に記録された干渉縞24と干渉し、再生光37を再生する。再生光37は、再生光検出器53によってその光強度が検出される。
 本発明では、記録用及び照合用の二次元パターン情報31、35は、少なくとも、画像情報に対し、分割処理及びランダム符号化処理を実行して生成される。ここで、分割処理及びランダム符号化処理の作用及び構成について、図2~図4を用いて、詳しく説明する。
 従来技術において、一般画像の照合においてエラーレートが急増した原因は、一般画像が、顔画像とは異なり、画像により特徴が様々であることに起因すると推測される。すなわち、照合システム用の顔画像としては、通常、顔を正面から撮影したものが用いられ、大体の構図が定まっているが、一般画像は、人物を撮影したもの、風景を撮影したもの、アニメやドラマの画像など様々であり、その構図が定まっていない。このため、実際にホログラフィック記録媒体に記録される一般画像のフーリエ変換像も画像により大きく異なる。フーリエ変換像は周波数画像であり、原点を中心部とすると、中心部が低周波成分であり、画像の端に近い程、高周波成分となる。
 図2は、上段に3種類の前処理が施された一般画像を示し、下段にそれらのフーリエ変換像を示すものである。図2左の一般画像は画面全体に均等に被写体が配置されており、そのフーリエ変換像は中心部の光が強いもののほぼ全体に広がっている。これに対し、図2中央の一般画像は画面の下側に被写体が偏った構図であり、そのフーリエ変換像は、中心部とその縦方向に光が集中している。図2右の一般画像は画面の左側に被写体が偏った構図であり、そのフーリエ変換像は、中心部とその横方向に光が集中している。
 図2中央および右のように、フーリエ変換像の光強度が偏っていると、光強度が強い部分において、局所的に、ホログラフィック記録媒体のホログラム記録層における感光材料を大量に消費してしまう。この結果、当該部分の感光材料が枯渇し、その後、別のホログラムを多重記録する際に、当該部分についてはホログラムを記録することができなくなる。このように推測すると、ホログラムピッチを短くした時にエラーレートが急増したことの説明が付く。
 本発明では、記録する画像に対し、少なくとも、複数のブロックに分割する分割処理及び複数のブロックを所定のランダム変換配列に従って並び替えるランダム符号化処理が行われる。このため、記録用の二次元パターン情報に基づいて光を空間的に変調して物体光を生成すると、物体光のフーリエ変換像は、比較的高周波成分が多く、中心を少しずれたところから、画像の端まで全体的に光が広がる。図3上段は、それぞれ図2上段の3種類の前処理が施された一般画像に対し、2×2=4画素のブロックに分割する分割処理を行い、複数のブロックをランダムに並び替えるランダム符号化処理を行った記録用の二次元パターン情報を示し、下段は、それらのフーリエ変換像を示す。図3下段から明らかなように、ランダム符号化処理を行うことで、フーリエ変換像は、弱い光が広範囲に広がるので、ホログラム全体が一様に記録され、照合の信頼性を高めることができる。また、ホログラム記録層における感光材料が平均化に消費されるため、多重記録のホログラムピッチを短くしても、エラーレートを低くできるので、記録密度及び照合速度を向上させることができる。
 ここで、分割処理は、画像情報を全ての画素に分割してもよいが、画像情報を4画素以上400画素以下の複数の画素から構成されるブロックに分割することが好ましい。複数の画素からなるブロックに分割することで、全ての画素に分割してランダム符号化した場合に比べて、照合した際の精度を向上させることができる。その理由の一つは、ランダム符号化のブロック単位によって、各画像の位置ずれに対する許容範囲が広がるためであると推測している。全ての画素に分割してランダム化をすると、記録時と照合時とで照射位置に位置ずれが生じていた場合、例えば1画素分の位置ずれが発生した場合、隣接する画素に相関がないため、まったく異なる画像となってしまう。しかし複数の画素からなるブロック単位で区切っておく事で、ある程度の位置ずれに対する許容が可能になる。ただし、一つのブロックが大きいと、構図の偏りによるフーリエ変換像の偏りを均一化することができず、多重記録した際の信頼性が低下してしまう。ブロックの大きさは、画像情報の大きさに依存せず、4画素以上400画素以下であることが好ましい。
 ブロックの形状としては、並び替えの容易性から、長方形または正方形とすることが好ましい。長方形の場合は、各辺の画素数は、画像情報の対応する辺の画素数の約数とし、正方形の場合は、一辺の画素数は、画像情報の縦及び横の公約数とする。全てのブロックを同じ大きさ、同一形状とすると分割処理及びランダム符号化処理が容易であるが、異なる大きさ及び/又は異なる形状とすることも可能である。例えば、2×2=4画素の正方形のブロックと2×4=8画素の長方形のブロックとを2:1の割合で分割したり、2×2=4画素の正方形のブロックと、1×4=4画素の長方形のブロックとに分割したり、2×2=4画素の正方形のブロックと、4×4=16画素の正方形のブロックとに分割させたりすることも可能である。
 図4は、二次元パターン情報を生成するためのフローチャートを示す。分割及びランダム符号化処理を開始する前に、予め、分割処理によって分割されるブロックの大きさまたは数を設定し、分割数nを求め、1~nまでのランダム変換配列を作成しておく。図5(A)は分割数24のランダム変換配列の一例である。図5(A)の左側は、変換前の配列であり、1~24までのブロックが規則的に配置されている。図5(A)の右側は、ランダム変換配列によって変換された配列であり、1~24までのブロックがランダムに配置されている。
 まず、情報処理装置30が画像情報38を取得すると(S1)、記録する画像情報に対し、必要な前処理を行う(S2)。前処理としては、例えば、グレースケール化処理、2値画像化処理、解像度を変更する画像処理、画像の一部を切り取るトリミング処理、エッジ強調処理等の一つ若しくは複数を行うことができる。特に、エッジ強調処理は、画像情報の特徴である構図の要素を明らかにするものであるから、分割及びランダム符号化処理の前に実行することが好ましい。また、所定の解像度に変更する画像処理は、種々の解像度の画像情報を記録する場合に、記録する画像情報を規格化するのに役立つ。なお、これらの各前処理については後述する。
 次に、予め設定された分割数nに画像情報を分割する分割処理を行う(S3)。分割数nは、(画像情報の解像度)/(1ブロックの画素数)で求まる。分割数nは、少なくとも同一のデータベースに登録する画像情報については同じ分割数とする。なお、登録される画像情報の種類に応じて、分割数nの異なるデータベースを設けてもよい。例えば、風景画のデータベースについては構図の大きな偏りが予想されるので分割数を多くし、アニメ動画のデータベースについては構図の偏りが予想されるので分割数を少なくし、顔画像のデータベースについては分割しない等、それぞれのデータベースに登録される画像情報の特徴を分割数に反映させることが好ましい。
 そして、分割した各ブロックに対し、図5(A)左に示す順番に1~24の番号を振り(S4)、図5(A)右に示すような配列に並び替え、二次元パターン情報31を生成し、空間光変調器43に出力する(S5)。図5(B)は、図5(A)のランダム変換配列によってランダム符号化処理を施した例を示す。図5(B)の左側の画像情報38に対し24分割し、それを図5(A)右に示すような配列に並び替えたものが図5(B)の右側の画像である。
 また、ランダム符号化処理において、画像情報の形状とは異なる形状の領域内に並び替えることにより、二次元パターン情報の形状を自由に、例えば長方形、正方形、その他の多角形、円形、円環状、四角環状などに設定することができる。図5においては、図5(B)左側の画像情報も、図5(B)右側の生成された二次元パターン情報も、同じ長方形であるが、例えば、図6(A)に示すような略円形の領域に配列させて、図6(B)に示すように、略円形の二次元パターン情報を生成してもよい。
 その他の前処理としては、グレースケール化処理、2値画像化処理、解像度を変更する画像処理、画像の一部を切り取るトリミング処理、エッジ強調処理等である。記録する画像情報の情報量が多い場合、そのまま記録用の二次元パターン情報として利用すると、演算時間が長くなり、膨大な記録容量が必要となる。このため、記録する画像情報に対し、情報量を減らす前処理を行うことが好ましい。また、記録する画像情報を所定の解像度、画質に規格化するためにも前処理を行うことが好ましい。照合用の二次元パターン情報は、記録されたホログラムの形成に使用された記録用の二次元パターン情報と同じ方法で生成されることが好ましい。
 前処理として、記録用又は照合用の二次元パターン情報を生成する際に、2値画像化処理を行うことが好ましい。2値画像化処理とは、各画素を白と黒(0と1)の2色によって表示される画像に変換する処理であり、一般的な写真などの画像情報は、各画素が少なくともグレースケールの階調情報(8ビット)、多くの場合はカラーの色情報(24ビット)を有しているので、2値画像化処理を行うことで、記録用又は照合用の二次元パターン情報の容量を著しく減少させることができる。2値画像化処理された2値の記録用の二次元パターン情報と、同じく2値画像化処理された2値の照合用の二次元パターン情報とを相関演算して照合すると、フルカラーの画像同士やグレースケールの画像同士を相関演算した時よりも、演算速度が速くなることは勿論であるが、照合精度も向上することがあり、2値画像化処理は極めて有用な処理である。しかも、2値画像化処理された画像の演算量は軽量であるから、LSIなどの集積回路によってハードウェアとして専用の演算装置を作製することも可能である。
 2値画像化処理の手法としては、固定しきい値法と領域指定法の2種類に大別することができる。前者はグレースケール階調のある値で2値化のしきい値を決定する方法であり、後者はまず、画像全体の2値の割合を先に決めておき、濃度値のヒストグラムから、2値化のしきい値を定める方法である。2値化のしきい値をT、原画像の各画素の要素をf(i,j)、2値画像の各画素の要素をg(i,j)とすると、下記数式(1)のように定義できる。なお、画像情報がカラーの場合は、まずカラーの色情報を取り除き階調情報だけのグレースケールに変更して、2値化すればよい。
Figure JPOXMLDOC01-appb-M000001
 また、2値画像化処理ではなく、若しくは2値画像化処理の前後に加えて、記録する画像情報や照合する画像情報に対し、解像度を変更する画像処理、画像の一部を切り取るトリミング処理、エッジ強調処理などを行ってもよい。
 特に、エッジ強調処理は、画像情報の特徴である構図の要素を明らかにするものであるから、ランダム符号化処理の前に実行することが好ましい。さらに好ましくは、2値画像化処理によって画像情報の一部が失われてしまうので、エッジ強調処理は、2値画像化処理の前に実行する。また、所定の解像度に変更する処理は、ランダム符号化処理において、ブロックの大きさを画素数で特定する場合には、ランダム符号化処理の前に実行する必要がある。
 2値画像化処理は、データ形式の変換処理、圧縮処理及び暗号化処理とは異なり、基本的に情報を削除するだけの不可逆な変換である。すなわち、データ形式の変換処理、圧縮処理及び暗号化処理は、元のフレーム画像に復元するため、逆変換できるような情報を自ら又は別ファイルに有している。しかし、2値画像化処理は、元のフレーム画像が持っていた色情報及び階調情報を捨て去るだけであり、2値画像それ自体では元のフレーム画像に復元することができない。また、解像度を低くする画像処理、画像の一部を切り取るトリミング処理、エッジ強調処理も基本的に情報を削除するだけの不可逆な変換である。
 元の記録する画像情報に復元できないことは、情報記録再生装置では致命的な問題点であるが、情報の照合を目的とする画像情報記録照合システムにおいては大きな問題とはならない。照合する画像情報がデータベースに登録されているか否かだけを照合する場合であれば、記録されているホログラムから記録する画像情報に復元させる必要はない。また、照合する画像情報を特定したい場合には、記録用の二次元パターン情報を記録する際に、ホログラムのアドレス情報を取得して、記録した画像情報の識別情報と対応するホログラムのアドレス情報との対応関係を別の記録媒体(半導体メモリー、ハードディスクドライブ、光メディア等)に記録しておけば、照合時に、相関値の高いホログラムのアドレス情報を取得することによって、別の記録媒体に記録した上記対応関係から、照合した画像情報と一致又は類似する画像情報の識別情報を特定することができる。なお、識別情報とは、画像情報を特定するための情報であり、例えば画像情報のタイトル、識別番号、著作者、容量、作成年月日又はデータ形式等である。
 本発明の画像情報記録照合システムは、照合する画像情報から生成された照合用の二次元パターン情報との相関値(類似度)を直接検出できるので、様々な用途に応用することが可能である。例えば、照合画像と一致する画像を照合するだけではなく、類似する画像を照合する曖昧照合を行うことができる。また、記録する画像情報として、顔、指紋、静脈、虹彩などのバイオメトリクス情報を記録すれば、バイオメトリクス認証を利用した管理・認証システムに利用することができる。
 さらに、動画データから抽出された静止画像をデータベースとして記録するにより、動画データの照合も可能であり、動画フィルタリングシステムを構築することも可能である。本発明の画像情報記録照合システムは、予め著作権により保護されている動画データをデータベースとして記録しておき、ネットワーク上のサイトにおいて閲覧可能な状態とされる動画データの静止画像をデータベースと照合することにより、違法な動画データを特定することができ、検閲することができる。
 次に、より具体的な画像情報記録照合システムの構成及び動作について説明する。図7は、本発明の画像情報記録照合システムの一実施形態を示す概略構成図である。画像情報記録照合システム1は、ホログラフィック記録媒体に画像情報を記録するシステムと記録された画像情報の照合とを行うシステムとを具備しており、ホログラフィック記録媒体20、情報処理装置30及び光学系40とを有している。
 図7において、ホログラフィック記録媒体20は、表面保護層22と反射層23との間に感光材料を含有するホログラム記録層21を挟み込んだ反射型の記録媒体である。ホログラフィック記録媒体20のホログラム記録層21には、物体光と参照光とを干渉させて形成されたホログラム24が記録される。ホログラム記録層21の厚さをホログラムの干渉縞の間隔に比べて大きく設計し、ホログラムをホログラム記録層21の厚み方向に立体的に記録することにより、画像情報を体積型のホログラム(厚いホログラムともいう)として記録することができる。また、ホログラフィック記録媒体20は、ホログラム24の位置を特定するためのアドレス情報及び/又は位置合わせ(サーボ)を行うためのサーボ情報(以下、アドレス情報とサーボ情報を合わせて「アドレス等情報」と呼ぶ)が記録されたアドレス層を備えていることが好ましい。例えば、アドレス等情報として、反射層23の表面に設けられた凹凸形状によってピットを形成し、反射層23をアドレス層としてもよい。ホログラフィック記録媒体20の表面保護層22として、ガラス基板を利用すると、温度変化等による収縮等を抑えることができる。反射層23としてはアルミニウム等の金属材料を利用することができる。
 ホログラフィック記録媒体20は、記録媒体保持機構(図示せず)によって保持されており、好ましくは、記録媒体保持機構に回転駆動装置を取付け、記録媒体20を回転可能な構成とする。さらに、ホログラフィック記録媒体20及び光学系40は、位置合わせ(サーボ)を行うために、相対的に移動可能に構成されており、ホログラフィック記録媒体20を移動させる場合は、X軸、Y軸又はZ軸方向に移動する駆動装置を取付ける。X軸方向は光軸に対して垂直な任意の方向、Y軸方向は光軸及びX軸方向に対して垂直な方向、Z軸方向は、光軸と平行な方向を指す。なお、光学系40を移動させてサーボを行ってもよい。
 記録速度及び照合速度を高めるためには、ホログラフィック記録媒体20を回転させながら記録及び照合することが好ましい。画像情報記録照合システムにおいて、画像情報照合システムの方が処理速度に迅速性が求められるので、特に、迅速性が求められる照合時において回転させながら照合することが好ましい。画像情報の記録は、画像情報が逐次追加される可能性はあるが、データベースに登録される情報量を上限とする有限な処理である。これに対し、画像情報の検索や照合時には、検索や照合対象が入力された後、できるだけ早くデータベース内に検索や照合対象の画像情報が存在するか否かを判別することが求められる。しかも、顔認証や指紋認証などのバイオメトリクス認証を利用した管理システムにおける本人確認のように、同じ検索対象を何度も検索する必要があり、無限に検索処理は実行されることがある。このため、照合処理においてより迅速性が求められるのである。この場合、ホログラフィック記録媒体20の形状としては、円盤状とすることが好ましいが、その他の形状、例えば矩形のカード状として回転させる構成であってもよい。さらに、記録媒体を回転させつつ、光学系又は記録媒体を半径方向に移動させてトラッキングサーボを行うことができる。
 情報処理装置30は、情報記録照合システムで実行される各種の情報処理を行う。例えば、情報処理装置30は、記録する画像情報から記録用の二次元パターン情報の生成、照合する画像情報から照合用の二次元パターン情報の生成、記録した画像情報の識別情報(画像情報を特定するための情報)と対応するホログラムのアドレス情報との対応関係の記録及び再生、サーボ情報に基づくサーボ制御、照合時における相関値の演算等を行う。また、情報処理装置30は、複数の画像情報記録照合システムにおいて共通させることができ、例えば複数の記録媒体を並列的に照合するために、複数の光学系40を備えた複数の画像情報照合システムを構築する場合に、光学系40及び記録媒体は個々の画像情報照合システムに独立して設け、情報処理装置30は共通して設けてもよい。
 また、動画情報を記録する場合、情報処理装置30は、動画情報を再生し、再生動画像から記録するフレームの静止画像を抽出する。そして、抽出された静止画像に対し、必要な前処理及びランダム符号化処理を行い記録用の二次元パターン情報を生成し、記録用の二次元パターン情報を空間光変調器43に出力する。記録するフレーム数を増やすと、照合の精度を高めることができるが、その分、記録する干渉縞の数が増えるので必要とされる記録容量が増加し、また記録及び照合に要する時間も長くなる。このため、動画データから記録するフレームを抽出する場合に、変化の激しい場面では記録するフレーム数を増やし、変化の少ない場面では記録するフレーム数を減らして、記録する単位時間あたりのフレーム数(fps:フレーム数/秒)を可変とすることが好ましい。例えば、一般的なデジタル化された動画データは、VBR(Variable Bit Rate:可変ビットレート)を利用して圧縮されており、変化の激しい場面ではビットレートが高く、変化の少ない場面ではビットレートが低いので、映像のビットレートに基づいてfpsを変更してもよい。
 光学系40は、ホログラフィック記録媒体20に画像情報を記録するために物体光を照射したり、照合用の画像情報とホログラフィック記録媒体20に記録されている画像情報とを光相関演算を用いて照合するために照合光を照射し、再生光を検出することができる。光学系40は、ホログラム用光源41、ミラー42、空間光変調器43、偏光ビームスプリッタ44、第1のリレーレンズ45、ミラー46、第2のリレーレンズ47、ビームスプリッタ48、四分の一波長板49、対物レンズ50、アパーチャー51、集光レンズ52、再生光検出器53を有している。さらに、アドレス用レーザー60、ビームスプリッタ61、ミラー62及びアドレス光検出器63を有していることが好ましい。図7において、記録時及び照合時の光路(再生光の光路を含む)を点線で、アドレス光の光路を一点鎖線で示している。
 ホログラム用光源41は、ホログラムを記録するための物体光及び参照光の光源及び画像情報を照合するための照合光の光源となるものであり、断続的にレーザー光を出す高出力のパルスレーザーが使用される。パルスレーザーは、複数の波長で位相をそろえて同時に発振させるモード同期法やQスイッチ法によって瞬間的に非常に強いパワーを出すことができる。ホログラム用光源41としては、例えば、YAGレーザーなどの固体レーザやHe-Neレーザーなどの気体レーザーを使用することができる。ホログラム用光源41は、ホログラフィック記録媒体20のホログラム記録層21内の感光材料が感度を示す波長の光を選択する。なお、ホログラムを記録するための光源と画像情報を照合するための光源とを別途設けてもよい。ホログラムを記録するための光源としては、高出力のパルスレーザーが必要であるが、画像情報を照合するための光源としては、記録時の物体光及び参照光に比べて照合光の光強度が弱くてもよいので、CWレーザー(Continuous wave laser)を利用することができる。CWレーザーは、パルスレーザーと比べると瞬間的なパワーは低いが、一定の強度の光を照射し続けることができ、小型、軽量及び安価である。照合用光源を別途設ける場合は、ホログラム記録層21内に記録されたホログラムと干渉する波長の光を使用し、好ましくは記録用光源からの光の波長と同じ波長の光を選択する。なお、画像情報を記録せず、検索するだけの画像情報照合システムにおいては、画像情報を照合するための光源としてCWレーザーだけを設ければよい。
 空間光変調器43は、複数の画素を有し、各画素毎に光の属性を変化させることで、光を空間的に変調することができるものであり、例えば液晶表示装置やDMD(Digital Micromirror Device)を利用することができる。図7においては空間光変調器43としてDMDを用いているため、ミラー42によって、ホログラム用光源41からの光を空間光変調器43に向けて反射させている。空間光変調器43の一部の表示領域に記録用の二次元パターン情報を表示し、他の一部の表示領域に参照光のパターンを表示させることにより、物体光及び参照光を生成することができる。また、空間光変調器43の記録用の二次元パターン情報を表示した表示領域に照合用の二次元パターン情報を表示させることにより、照合光を生成することができる。
 参照光のパターンは、空間光変調器43の記録用の二次元パターン情報を表示した表示領域(図1の領域43a)の周囲に少なくとも一つ配置される。参照光のパターンとしては、一塊の数画素~数百画素の領域をオン画素とし、参照光を強度分布のない一様な光としてもよいし、かかる一塊の数画素~数百画素の領域を複数設けて、全体として空間的に変調された強度分布を有する光としてもよいし、更に広い領域において、オン画素とオフ画素からなるパターンによって空間的に変調された強度分布を有する光としてもよい。また、記録用の二次元パターン情報を複数の離間した領域に分割し、その離間した領域に参照光の少なくとも一部を配置してもよい。再生光のパターンの大きさを再生光検出器の受光領域よりも小さくすれば、アパーチャー51や集光レンズ52を設けなくても、再生光の結像する位置に再生光検出器を配置するだけで再生光の光強度を検出できる。
 図1(A)において、領域43bは、記録用の二次元パターン情報31が表示される領域43aの上方に配置され、領域43aに比べて極めて小さい4画素(2×2画素)の領域である。このため、参照光33は点光源のように発散し、物体光32と干渉して干渉縞を形成する。図8は領域43bの配置位置とホログラムに書き込まれる干渉縞との関係を表す図である。図8(A)は、領域43bを領域43aの左側に配置して記録した場合の干渉縞である。図8(B)は、領域43bを領域43aの下側に配置して記録した場合の干渉縞である。図8(C)は、領域43bを領域43aの左側および下側に配置して記録した場合の干渉縞である。干渉縞は、領域43bによる点光源状の参照光33と領域43aによって生成される物体光32との干渉であることから、参照光33と物体光32の光路差が波長λの整数倍となる方向に縞が現れる。従って、領域43bが領域43aに対してどの位置に来るかによって干渉縞の方向が異なる。また、図8(C)のように、それぞれ異なる方向に干渉縞が現れるように領域43bを配置すると、2次元の干渉縞が形成される。このように2次元の干渉縞とすることにより、照合時における照合用の二次元パターン情報35のシフト許容値を大きくすることができる。つまり、照合用の二次元パターン情報35が記録用の二次元パターン情報31に対して上下左右に位置がずれていたとしても、参照光を再生できる範囲が広がるのである。
 図9(A)に示すように、参照光のパターンを複数箇所に表示して、複数の参照光によって干渉縞を形成してもよい。図9(A)は、空間光変調器43における表示面を示す他の概略図であり、記録用の二次元パターン情報31が表示される領域43a(点線で示す)の周囲に、400画素(20×20画素)の参照光が表示される領域43bが12個配置されている。図9(A)では、領域43bの大きさを400画素、領域43bの数を12個としたが、領域43bの大きさと数は適宜変更することができる。
 さらに好ましくは、図9(B)に示すように、記録用の二次元パターン情報31が表示される空間光変調器の領域43aは、複数の離間した領域に分割されており、記録用の二次元パターン情報31が複数の離間した領域に分割されて表示され、複数の離間した領域の間に、参照光のパターンが表示される領域43bの少なくとも一部が配置されているとよい。図9(B)は、空間光変調器43の領域43aを分割し、その間に領域43bを配置した状態を示す図であり、図9(C)は、分割前のランダム符号化処理されている記録用の二次元パターン情報31を示す図であり、図9(D)は、ランダム符号化処理する前の画像情報38を示す図である。画像情報38は、図9(D)の点線で24等分に分割され、ランダム符号化処理されて図9(C)の記録用の二次元パターン情報31が生成される。
 図9(B)においては、記録用の二次元パターン情報31が表示される領域43aは、4つに分割されており、記録用の二次元パターン情報31は4分割して表示される。領域43aの間の十字部分とその上下に、400画素(20×20画素)の参照光のパターンが表示される領域43bが13個配置されている。なお、図9においては、参照光のパターンが表示される領域43bは、複数の四角形状の領域が配置されているが、領域43aの間の十字部分とその周囲の「田」状の領域を領域43bとしてもよいし、その「田」状の領域全体を参照光としてもよいし、領域43b内の画素をランダムにオン状態としてもよい。このように、複数の離間した領域に分割して記録用の二次元パターン情報31を表示し、その間の領域に、参照光のパターンが表示される領域43bの少なくとも一部を配置することにより、閾値範囲を広くすることができる。
 図10は、記録用の二次元パターン情報31及び参照光33のパターンを示すさらに他の概略図である。図10(A)は、円形の記録用の二次元パターン情報31を中心に配置して、その周囲に、100画素(10×10画素)の参照光33のパターンを40個配置している。図10(B)は、円形の記録用の二次元パターン情報31を4つに分割して配置し、その間の十字部分に、100画素(10×10画素)の参照光33のパターンを十字状に40個配置している。なお、図10(A)及び(B)では、参照光33として、100画素の大きさのパターンを40個としたが、大きさと数は適宜変更することができる。図10(C)は、円形の記録用の二次元パターン情報31を中心に配置して、その周囲に、円環状にランダムパターンの参照光33を配置している。また、図10(D)は、円環状の二次元パターン情報31を配置し、その内側に円形のランダムパターンの参照光33を配置している。図10(C)及び(D)に示すように、参照光33はランダムパターンであってもよい。図10(D)のように、中心に参照光を配置すると、照合時において二次元パターン情報を遮光し、参照光を通過させるマスクとして、参照光の形状の開口を光軸に配置すればよいだけなので、設計が容易になる。さらに、中心部分の方が対物レンズなどの収差が少なく、再生される参照光について収差の影響を減らすことができる。
 偏光ビームスプリッタ44は直交する偏光方向の一方を透過し、他方を反射するものであり、記録媒体20に向かう物体光、参照光及び照合光を透過し、記録媒体によって再生された再生光を再生光検出器53向けて反射する。光学系の構成によっては、物体光、参照光及び照合光を記録媒体20に向けて反射し、再生光検出器53に向かう再生光を透過する構成であってもよい。
 第1及び第2のリレーレンズ45、47は、空間光変調器43に表示された画像を対物レンズ50の焦点面に結像させる。対物レンズ50によってフーリエ変換された物体光及びフーリエ変換された参照光とを記録媒体において干渉させてホログラムを記録する場合やホログラムに対しフーリエ変換された照合光を照射する場合には、対物レンズ50の入射瞳面において物体光、参照光及び照合光の空間変調パターンが結像されている必要がある。ミラー46は、第1及び第2のリレーレンズ45、47間の焦点位置に配置されており、物体光、参照光及び照合光を反射して、光学系40の大きさを小型化するために設けられている。
 ビームスプリッタ48は、アドレス用レーザー60からの光を記録媒体20に向けるためのものである。四分の一波長板49は、直線偏光を円偏光に変換するものであり、2回透過させることで直線偏光を90度回転させることができる。この四分の一波長板49によって参照光は、照射時には偏光ビームスプリッタ44を透過し、再生光として再生された時には偏光ビームスプリッタ44によって反射される。
 対物レンズ50は、物体光及び参照光をフーリエ変換して記録媒体20のホログラム記録層21に照射して、ホログラム記録層に物体光と参照光とを干渉させて形成されたホログラムを記録する。また、対物レンズ50は、照合光をフーリエ変換して記録媒体20のホログラム記録層21に記録されたホログラム24に照射する。照合光とホログラム24との干渉により再生された再生光は、記録媒体20から対物レンズ50に向かって進行し、対物レンズ50を通過する。
 アパーチャー51は、記録媒体20で反射された照合光を遮光し、再生された再生光のみを再生光検出器53に通過させる開口を有している。アパーチャー51を第1のリレーレンズ45の焦点面に配置すると、照合光の回折光によるノイズを低減することができ好ましい。図7においては、アパーチャー51の中心に開口が設けられているが、中心に限られるものではなく、再生光が通過する位置に、再生光が通過できる形状の開口をアパーチャー51に設ければよい。例えば、再生光が複数の場合は、アパーチャー51に複数の開口を設ければよいし、再生光が空間的に変調されている場合(つまり、記録時における参照光が二次元パターン情報で空間的に変調されている場合)は、参照光のパターンと相似の形状の開口を設ければよい。
 再生光検出器53は、再生された再生光の光強度を検出するものである。再生光のパターンが再生光検出器の受光領域よりも小さい場合(つまり、記録時における参照光のパターンが再生光検出器の受光領域よりも小さい場合)は、再生光検出器53として、光電子倍増管(photomultiplier tube:PMT)のような非常に感度の高い光検出素子や、安価で小型な半導体検出器、例えばピンフォトダイオード、CMOSセンサ、CCDセンサ等を利用することができる。従来のホログラムを用いた光情報記録再生装置の再生光検出手段は、二次元パターン情報を再生するため、光検出素子が二次元的に配置されたCMOSセンサやCCDセンサが必要であったが、本発明の再生光検出器53は、再生された再生光の光強度を検出するだけでよいので光検出素子が一つの光検出器を利用することができる。また、再生光のパターンが空間的に変調されており強度分布を有している場合(つまり、記録時における参照光が複数の場合や二次元パターン情報で空間的に変調されている場合)や再生光検出器の受光領域よりも大きい場合は、図7に示すように、集光レンズ52によって集光することで、光検出素子が一つの光電子倍増管や半導体検出器を採用することができる。また、再生光のパターンが再生光検出器の受光領域よりも小さい場合であっても、集光レンズ52を利用すれば信頼性を高めることができる。なお、光検出素子が二次元的に配置された光強度分布を検出できる光検出器でも、全ての光検出素子の強度を総和することで再生光の光強度を検出することができ、再生光検出器53として利用できる。
 このように、本発明の再生光検出器53では、再生された再生光の光強度を検出するだけでよいので、数Mbpsから数Gbpsの転送速度のピンフォトダイオードやPMTを利用でき、超高速で照合を実行することができる。従来の光検出素子が二次元的に配置されたCMOSセンサやCCDセンサは、フレームレートが30fpsから1000fps程度であったため、1秒間に30~1000個のホログラムしか再生することができず、光検出素子の性能が再生速度を制限していた。
 アドレス用レーザー60、ビームスプリッタ61、ミラー62及びアドレス光検出器63は、記録媒体20にアドレス層を設けた時に、アドレス層からアドレス等情報を取得して照射位置を特定したり位置合わせするために使用される。アドレス用レーザー60としては、ホログラム記録層21の感光材料が感光しない波長が好ましく、赤色光等の比較的長波長の半導体レーザを利用することが好ましい。アドレス光検出器63としては、安価で小型な半導体検出器を使用することができる。
 続いて、アドレス用レーザー60によるアドレス等情報を取得する動作を簡単に説明する。アドレス用レーザー60から照射されたアドレス光は、ビームスプリッタ61を透過してミラー62によって反射され、さらにビームスプリッタ48によって反射され、四分の一波長板49を透過し、対物レンズ50によって記録媒体20のアドレス層に照射される。記録媒体20のアドレス層によってアドレス等情報を取得した反射光は、光学系50、49、48、62を逆方向に通過し、ビームスプリッタ61によって反射され、アドレス光検出器63で検出される。
 次に、図7の画像情報記録照合システムにおける画像情報記録システムとしての動作を簡単に説明する。ホログラム用光源41から照射された光は、図示しないビーム成形光学系によって、空間光変調器43の表示面よりも大きな断面を有する略平行光に成形される。ビーム成形光学系としては、たとえば発散光を平行光に加工するコリメータレンズや、ビームの口径を大きくするビームエキスパンダーなどが含まれる。略平行光は、ミラー42によって空間光変調器43に向かって反射され、空間光変調器43に表示された記録用の二次元パターン情報及び参照光のパターンによって空間的に変調され、物体光及び参照光が生成される。そして、物体光及び参照光は、偏光ビームスプリッタ44を透過し、第1及び第2のリレーレンズ45、47によって伝達され、その途中ミラー46によって反射され、ビームスプリッタ48を透過し、四分の一波長板49によって円偏光に変換され、対物レンズ50によってフーリエ変換されて記録媒体20のホログラム記録層21に照射される。この結果、ホログラム記録層21には、物体光と参照光との干渉によって形成されたホログラムが記録される。
 ここで、本発明の画像情報記録システムでは、ホログラム用光源41として高出力のパルスレーザーを使用しているため、瞬間的に照射される高出力の物体光及び参照光によってホログラムが記録されるので、記録媒体20を回転させながら複数のホログラムを記録できる。すなわち、回転する記録媒体20に対し、パルス状の物体光及び参照光を照射すると、最初のパルスの物体光及び参照光は、回転する記録媒体20の所定の位置に瞬間的に照射され、最初のホログラムが記録され、次のパルスの物体光及び参照光は、回転により最初のホログラムから移動した記録媒体20の別の位置に瞬間的に照射され、次のホログラムが記録される。そして、記録媒体20を回転させながら光学系40を回転の中心から半径方向に連続的に移動させることにより、複数のホログラムを螺旋状に配列させて記録することができ、記録媒体20の全面にホログラムを比較的高速で記録することができる。なお、記録媒体20を回転させながら光学系40を回転の中心から半径方向に段階的に移動させれば、複数のホログラムを同心円状に配列させて記録することができる。
 さらに、図7の画像情報記録照合システムにおける画像情報照合システムとしての動作を簡単に説明する。ホログラム用光源41から照射された光は、図示しないビーム成形光学系によって略平行光とされ、略平行光は、ミラー42によって空間光変調器43に向かって反射され、空間光変調器43に表示された照合用の二次元パターン情報によって空間的に変調され、照合光が生成される。そして、照合光は、偏光ビームスプリッタ44を透過し、第1及び第2のリレーレンズ45、47によって伝達され、その途中ミラー46によって反射され、ビームスプリッタ48を透過し、四分の一波長板49によって円偏光に変換され、対物レンズ50によってフーリエ変換されて記録媒体20のホログラム記録層21に記録されたホログラム24に照射される。この結果、ホログラム24と照合光とが干渉して、記録時の参照光に相当する再生光が再生される。
 反射層23で反射された再生光は、記録媒体20から射出され、照射時とは反対方向に、対物レンズ50、四分の一波長板49、ビームスプリッタ48、第2のリレーレンズ47、ミラー46及び第1のリレーレンズ45を経て、偏光ビームスプリッタ44に入射する。再生光は、記録時の参照光に相当するものであり、参照光は記録媒体20に照射される際に四分の一波長板49を通過して円偏光に変換されていたので、再度、再生光として四分の一波長板49を通過することにより、四分の一波長板49以降の再生光は、参照光とは直交する偏光方向の直線偏光となっている。このため、再生光は、参照光を透過した偏光ビームスプリッタ44によって反射され、アパーチャー51を通過し、集光レンズ52によって再生光検出器53に集光される。なお、反射層23で反射された照合光は、記録媒体20から射出され、再生光と同様の光学系を経て偏光ビームスプリッタ44によって反射されるが、アパーチャー51によって遮光される。
 再生光の光強度は、ホログラム24を記録したときの記録用の二次元パターン情報と照合光の照合用の二次元パターン情報との相関値(類似度)に応じて変化し、光強度の値が大きいほど二つの二次元パターン情報が類似していることになる。したがって、再生光の光強度が、予め実験等によって定めたしきい値を超えた場合に、照合した画像情報と一致又は類似した画像情報がデータベースに記録されていると識別することができる。そして、しきい値を超えた再生光を再生したホログラムのアドレス情報を特定し、アドレス情報から、記録した画像情報の識別情報を特定すれば、照合した画像情報に一致又は類似した画像情報の識別情報を出力することもできる。なお、複数の再生光の光強度がしきい値を超えた場合には、光強度の大きなものから類似する照合結果として出力することが好ましい。
 照合用の光源としてCWレーザーを使用すると、照合光を照射しながら記録媒体20を回転させることにより、円周方向に配列して記録された複数のホログラムに対し、連続的に照合光を照射することができ、各ホログラムからの再生光の光強度も連続的に検出できるので、記録媒体20の回転速度を速くすることができ、さらに照合速度(画像情報の転送速度)も速くすることができる。そして、記録媒体20を回転させながら光学系40を回転の中心から半径方向に連続的又は段階的に移動させることにより、記録媒体20の全面に記録された複数のホログラムを高速で照合することができる。照合用光源としてパルスレーザーを使用した場合には、各ホログラムが照合光の照射位置を通過するタイミングとパルスレーザーの周波数とを同期させる必要があり、回転速度の制限となり、また照射位置ずれが誤差となり、信頼性が低下してしまう。
 [実施例1]図11及び図12には、分割数を変えて生成された二次元パターン情報及びその右側にフーリエ変換像を示す。図11(A)は、カラー画像情報に対し、色情報を取り除くグレースケール化処理を施した後、エッジ強調処理を施し、さらに2値化処理を行った2値画像である。図11(A)では、ランダム符号化処理を行っておらず、2値画像の解像度は240×180画素であった。図11(B)は、図11(A)の2値画像に対し、60×60画素のブロックで12等分に分割し、ランダム変換配列に従って並び替えた二次元パターン情報である。同様に、図11(A)の2値画像に対し、図11(C)は20×20画素のブロックで108等分に分割し、図11(D)は10×10画素のブロックで432等分に分割し、図12(E)は5×5画素のブロックで1728等分に分割し、図12(F)は3×3画素のブロックで4800等分に分割し、図12(G)は2×2画素のブロックで10800等分に分割し、図12(H)は1画素単位で分割し、それぞれランダム変換配列に従って並び替えた二次元パターン情報である。
 [実施例2]図11及び図12から、ブロックの画素サイズを小さくすると、フーリエ変換像の均一性が向上することが判る。これらの二次元パターン情報の違いによる照合結果への影響について実験した。
 実験は、30枚の記録用の画像情報を用意し、それぞれ図11及び図12の8通りのランダム符号化処理を施した二次元パターン情報を生成し、図13(A)に示す参照光のパターンを使用して、ホログラフィック記録媒体に10μmのホログラムピッチで多重記録した。図13(A)では、中心の240×180画素の領域43aに記録用の二次元パターン情報が表示され、領域43aの周囲において、20×20画素の領域42bに参照光のパターンが表示される。参照光は、領域43aから12画素分の間を空け、上下に6個ずつ、左右に5個ずつ、計22個配置した。そして、30枚の記録用の画像情報について、それぞれ解像度を微妙に変えたり、字幕のありなしなどを変更した30枚の類似画像を用いて自己相関のエラーレートを求めた。再現性を確認するため、これらの記録及び照合処理を各二次元パターン情報毎に4回繰り返した。なお、本実験に先だって、ホログラムピッチを20μmとした以外は同じ条件でエラーレートを調べたが、ランダム符号化処理を行っていないものを含む全ての二次元パターン情報について、エラーレートが0という結果が得られている。
 図14(A)は、実施例2の実験結果であり、各ランダム符号化処理で記録したデータベースにおけるエラーレートを示す図である。図14において、縦軸はエラーレートで、横軸は分割したブロックのサイズである。エラーレートは、登録された画像を未登録と誤認した時の登録画像拒否率(FRR:False Rejection Rate)及び異なる画像を記録された画像と誤認した時の他画像受入率(FAR:False Acceptance Rate)から求められ、登録画像拒否率FRRと他画像受入率FARとが交差する時のエラーレート、すなわちEER(Equal Error Rate)である。EERが一定の範囲を有する時にその範囲を閾値範囲と呼ぶ。図14(A)の各実験のエラーレート及び閾値範囲を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 図14(A)及び表1において、分割なし及び60×60=3600画素のブロックに分割した場合は、エラーレートが極めて高くなっている。また、1画素単位で分割した場合は、分割なしに比べるとエラーレートが低くなっているが、エラーレートが0%にはなっていない。それら以外の4~400画素で分割した場合は、少なくとも一回はEERが0%となっている。
 [実施例3]図13(B)に示す参照光のパターンを使用した点を除いて、実施例2と同様の条件で実験した。図13(B)では、中心の240×180画素の領域43aに記録用の二次元パターン情報が表示され、領域43aの周囲において、10×10画素の領域42bに参照光のパターンが表示される。参照光は、領域43aから12画素分の間を空け、上下に12個ずつ、左右に8個ずつ、計40個配置した。
 図14(B)は、実施例3の実験結果であり、各ランダム符号化処理で記録したデータベースにおけるエラーレートを示す図である。図14(B)において、縦軸はエラーレートで、横軸は分割したブロックのサイズである。図14(B)の各実験のエラーレート及び閾値範囲を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 図14(B)及び表2においても、分割なし及び60×60=3600画素のブロックに分割した場合は、エラーレートが極めて高くなる。また、1画素単位で分割した場合も、分割なしに比べるとエラーレートが低くなっているが、エラーレートが高いときがある。20×20=400画素のブロックに分割した場合は、エラーレートが0%にはならなかったものの分割なしの結果に比べてエラーレートが低くなっており、信頼性が向上している。また、それら以外の4~100画素で分割した場合は、少なくとも一回はEERが0%となっている。
 これらの結果から、分割するブロックのサイズとして、4画素以上400画素以下とすることが好ましい。なお、EERは小さいほど好ましく、EERが0%であれば、登録画像拒否率FRRも他画像受入率FARも0%であり、理論上はエラーが発生しない。また閾値範囲の広さは照合の信頼性を示し、広いほど照合の信頼性が高いことを意味する。しかし、類似した画像の照合も可能とするために、敢えて閾値を閾値領域よりも小さい値として、他画像受入率FARを高くしてもよい。
 [実施例4]本実施例では、図10(A)に示すように、円形の記録用の二次元パターン情報31を用いて実験した。240×180画素の2値画像に対し、2×2=4画素のブロックに分割し、それを直径234画素の円形の領域にランダムに配置することによって、記録用の二次元パターン情報31を生成した。そして、記録用の二次元パターン情報31の周囲に、100画素(10×10画素)の参照光33のパターンを40個配置した。30枚の記録用の画像情報をそれぞれ前処理によって240×180画素の2値画像に変換したものを2×2=4画素のブロックに分割し、それを直径234画素の円形の領域にランダムに配置することによって、記録用の二次元パターン情報31を生成した。なお、二次元パターン情報31と参照光33との間は、12画素分の間を空けた。そして、30枚の記録用の画像情報に類似する類似画像を用いて自己相関のエラーレートを求めた。
 図15は、実施例4の実験結果であり、各ランダム符号化処理で記録したデータベースにおけるエラーレートを示す図である。図15において、縦軸はエラーレートで、横軸は規格化された相関値(参照光の光強度)に関する閾値である。図15における右上がりのデータは登録画像拒否率FRRであり、閾値が0の場合、すなわち、どの検出結果も記録されている画像と認識する場合は0%(ただし、他画像受入率FARは最大となる)であり、閾値が高くなるとエラーレートも高くなる。図15における右下がりのデータは、他画像受入率FARであり、閾値が0の場合、すなわち、どの検出結果も記録されている画像と認識する場合に最大となり、閾値が高くなるとエラーレートが低くなる。図15においてEERは0%であり、閾値範囲は0.01であった。
1 画像情報記録照合システム
20 ホログラフィック記録媒体
21 ホログラム記録層
22 表面保護層
23 反射層
24 ホログラム
30 情報処理装置
31 記録用二次元パターン情報
32 物体光
33 参照光
35 照合用二次元パターン情報
36 照合光
37 再生光
38 画像情報
40 光学系
41 ホログラム用光源
43 空間光変調器
50 対物レンズ
53 再生光検出器

Claims (10)

  1.  ホログラフィック記録媒体に画像情報をホログラムとして記録する方法であって、
     記録する画像情報に対し、少なくとも、複数のブロックに分割する分割処理及び前記複数のブロックを所定のランダム変換配列に従って並び替えるランダム符号化処理を行って記録用の二次元パターン情報を生成し、
     前記記録用の二次元パターン情報に基づいて光を空間的に変調して物体光を生成し、
     前記物体光のフーリエ変換像及び記録用参照光を前記ホログラフィック記録媒体に照射して、前記物体光のフーリエ変換像と前記記録用参照光とによって形成されるホログラムをホログラフィック記録媒体に記録することを特徴とする画像情報記録方法。
  2.  前記分割処理は、前記記録する画像情報を4画素以上400画素以下の複数の画素から構成される同一形状の複数のブロックに分割することを特徴とする請求項1に記載の画像情報記録方法。
  3.  前記記録する画像情報は、前記分割処理の前に、所定の解像度に変更する画像処理及びエッジ強調処理が行われることを特徴とする請求項1または2に記載の画像情報記録方法。
  4.  前記二次元パターン情報は、前記ランダム符号化処理によって、前記記録する画像情報の形状とは異なる形状の領域内に並び替えられて生成されることを特徴とする請求項1乃至3の何れか1項に記載の画像情報記録方法。
  5.  前記記録用の二次元パターン情報は、複数の離間した領域に分割されており、複数の離間した領域に分割された記録用の二次元パターン情報に基づいて生成された物体光の前記複数の離間した領域の間に、前記記録用参照光が配置され、前記記録用参照光のフーリエ変換像がホログラフィック記録媒体に照射されることを特徴とする請求項1乃至4の何れか1項に記載の画像情報記録方法。
  6.  照合する画像情報とホログラフィック記録媒体に記録された画像情報とを照合する画像情報照合システムであって、
     前記ホログラフィック記録媒体には、記録する画像情報に対し、少なくとも、複数のブロックに分割する分割処理及び前記複数のブロックを所定のランダム変換配列に従って並び替えるランダム符号化処理を行って記録用の二次元パターン情報を生成し、前記記録用の二次元パターン情報に基づいて光を空間的に変調して物体光を生成し、前記物体光のフーリエ変換像及び記録用参照光を前記ホログラフィック記録媒体に照射して、前記物体光のフーリエ変換像と前記記録用参照光とによって形成されるホログラムが記録されており、
     照合する画像情報に対し、少なくとも、前記分割処理及び前記ランダム符号化処理を行って照合用の二次元パターン情報を生成し、
     前記照合用の二次元パターン情報に基づいて光を空間的に変調して照合光を生成し、
     前記照合光のフーリエ変換像を前記ホログラフィック記録媒体に記録されたホログラムに照射し、
     前記ホログラムから再生された再生光の光強度を再生光検出器によって検出し、
     前記再生光の光強度の値を用いて前記記録された画像情報と前記照合する画像情報とを照合することを特徴とする画像情報照合システム。
  7.  前記分割処理は、前記記録する画像情報を4画素以上400画素以下の複数の画素から構成される同一形状の複数のブロックに分割することを特徴とする請求項6に記載の画像情報照合システム。
  8.  前記照合する画像は、前記分割処理の前に、所定の解像度に変更する画像処理及びエッジ強調処理が行われることを特徴とする請求項6または7に記載の画像情報照合システム。
  9.  前記記録用の二次元パターン情報及び前記照合用の二次元パターン情報は、前記ランダム符号化処理によって、前記記録する画像情報及び前記照合する画像情報の形状とは異なる形状の領域内に並び替えられて生成されることを特徴とする請求項6乃至8の何れか1項に記載の画像情報照合システム。
  10.  前記記録用の二次元パターン情報は、複数の離間した領域に分割されており、複数の離間した領域に分割された記録用の二次元パターン情報に基づいて生成された物体光の前記複数の離間した領域の間に、前記記録用参照光が配置され、前記記録用参照光のフーリエ変換像がホログラフィック記録媒体に照射され、
     前記照合用の二次元パターン情報は、複数の離間した領域に分割されており、複数の離間した領域に分割された照合用の二次元パターン情報に基づいて照合光が生成されることを特徴とする請求項6乃至9の何れか1項に記載の画像情報照合システム。
PCT/JP2009/004195 2008-09-01 2009-08-28 画像情報記録方法及び画像情報照合システム WO2010023932A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008223318A JP2010060605A (ja) 2008-09-01 2008-09-01 画像情報記録方法及び画像情報照合システム
JP2008-223318 2008-09-01

Publications (1)

Publication Number Publication Date
WO2010023932A1 true WO2010023932A1 (ja) 2010-03-04

Family

ID=41721113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/004195 WO2010023932A1 (ja) 2008-09-01 2009-08-28 画像情報記録方法及び画像情報照合システム

Country Status (2)

Country Link
JP (1) JP2010060605A (ja)
WO (1) WO2010023932A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101123216B1 (ko) 2010-12-13 2012-03-07 한국과학기술원 진폭위상형 컴퓨터 홀로그램의 기록방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263161A (ja) * 1995-03-27 1996-10-11 Olympus Optical Co Ltd 画像演算装置
JP2007257802A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 光記録方法、光記録装置及び光記録媒体
JP2009216759A (ja) * 2008-03-07 2009-09-24 Univ Waseda 画像情報検索システム及び画像情報記録検索システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08263161A (ja) * 1995-03-27 1996-10-11 Olympus Optical Co Ltd 画像演算装置
JP2007257802A (ja) * 2006-03-24 2007-10-04 Fujifilm Corp 光記録方法、光記録装置及び光記録媒体
JP2009216759A (ja) * 2008-03-07 2009-09-24 Univ Waseda 画像情報検索システム及び画像情報記録検索システム

Also Published As

Publication number Publication date
JP2010060605A (ja) 2010-03-18

Similar Documents

Publication Publication Date Title
US8045423B2 (en) Search method
US7869106B2 (en) Holographic recording method, holographic recording apparatus, holographic recording and reproducing method, holographic recording and reproducing apparatus, and holographic recording medium
KR100477783B1 (ko) 홀로그래피프로세스및홀로그래피어레이의복제프로세스
JP4033208B2 (ja) ホログラム記録方法及びホログラム記録装置
US7843791B2 (en) Optical information processing method and optical information reproducing method using multiplexing schemes capable of improving a density of recorded optical information
JP4281097B2 (ja) 動画データの照合システム
JP2007156801A (ja) 光情報記録方法及び再生方法
WO2010023932A1 (ja) 画像情報記録方法及び画像情報照合システム
JP2009216759A (ja) 画像情報検索システム及び画像情報記録検索システム
JP5325583B2 (ja) 動画データベースの作製方法、動画データベースに動画データを登録するための登録システム及びプログラム
Watanabe et al. High-speed holographic correlation system by a time-division recording method for copyright content management on the internet
US20040179252A1 (en) Holographic recording and reproducing apparatus
TW200823895A (en) Method and system for parallel optical decoding of digital phase image to intensity image
JP4669927B2 (ja) 光情報記録方法および光情報再生方法
Horimai et al. A novel collinear optical setup for holographic data storage system
JP2007122800A (ja) 光情報記録装置、記録方法、再生装置および再生方法
JP2012141378A (ja) 検索システム及びそこで使用されるホログラフィック記録媒体
WO2009110094A1 (ja) 画像情報検索システム及び画像情報記録検索システム
JP5380643B2 (ja) 動画データの照合システム
JP2008282374A (ja) 画像データの照合システム
Watanabe et al. Ultra-high-speed compact optical correlation system using holographic disc
JP2007058043A (ja) 光情報記録方法および光情報記録媒体
JP2010027188A (ja) 記録再生装置、記録装置、再生装置、記録再生方法、記録方法、再生方法
JP2007087549A (ja) 光情報記録方法
JP2012141693A (ja) 画像検索システム及び画像検索プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09809587

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09809587

Country of ref document: EP

Kind code of ref document: A1