WO2009110094A1 - 画像情報検索システム及び画像情報記録検索システム - Google Patents

画像情報検索システム及び画像情報記録検索システム Download PDF

Info

Publication number
WO2009110094A1
WO2009110094A1 PCT/JP2008/054160 JP2008054160W WO2009110094A1 WO 2009110094 A1 WO2009110094 A1 WO 2009110094A1 JP 2008054160 W JP2008054160 W JP 2008054160W WO 2009110094 A1 WO2009110094 A1 WO 2009110094A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
image information
recording
information
hologram
Prior art date
Application number
PCT/JP2008/054160
Other languages
English (en)
French (fr)
Inventor
小舘 香椎子
恵理子 渡邉
Original Assignee
学校法人 早稲田大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 早稲田大学 filed Critical 学校法人 早稲田大学
Priority to PCT/JP2008/054160 priority Critical patent/WO2009110094A1/ja
Publication of WO2009110094A1 publication Critical patent/WO2009110094A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/004Recording, reproducing or erasing methods; Read, write or erase circuits therefor
    • G11B7/0065Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2286Particular reconstruction light ; Beam properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0066Adaptation of holography to specific applications for wavefront matching wherein the hologram is arranged to convert a predetermined wavefront into a comprehensive wave, e.g. associative memory
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/02Details of features involved during the holographic process; Replication of holograms without interference recording
    • G03H2001/0208Individual components other than the hologram
    • G03H2001/0224Active addressable light modulator, i.e. Spatial Light Modulator [SLM]
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/35Transverse intensity distribution of the light beam

Definitions

  • the present invention relates to an image information retrieval system and an image information recording / retrieval system for retrieving image information using optical correlation, and more particularly to using an image information retrieval system and holography for retrieving image information of a hologram recorded using holography.
  • the present invention relates to an image information recording / retrieval system that records image information and retrieves image information of a recorded hologram.
  • a collinear holographic memory that records a volume type (thick) hologram by causing the reference beam and the information beam to interfere with each other on the same axis has been developed (Patent Document 1).
  • a collinear optical information recording / reproducing apparatus has a configuration in which information light spatially modulated by a spatial light modulator and reference light are coaxially arranged and irradiated onto a recording medium, such as an existing DVD or CD
  • the optical system is highly compatible with the optical disc technology, the optical system can be simplified and miniaturized, and the address method and servo technology similar to the existing DVD and CD are also incorporated, so that precise alignment is possible. Since it is feasible, it is expected as a next-generation recording method.
  • Non-patent Document 1 a collinear optical information recording / reproducing apparatus is used both when writing a hologram and when calculating optical correlation (when searching for image information).
  • a collinear optical information recording / reproducing apparatus is used both when writing a hologram and when calculating optical correlation (when searching for image information).
  • one pixel of the spatial light modulator is turned on and used as reference light, image information is displayed in the vicinity thereof as information light, and the light is Fourier transformed by an objective lens in a recording medium.
  • a hologram is recorded by overlapping and interfering.
  • an image desired to be retrieved is displayed at the same position as at the time of writing, thereby detecting light reproduced from the hologram and performing correlation calculation. If the image information recorded as a hologram and the image information to be retrieved are the same or similar, the reference light is reproduced from the hologram, and the intensity of the reference light increases as the degree of similarity increases. The emitted light can be used as a correlation value.
  • a Q-switch solid-state laser such as a high-power pulse laser, for example, a YAG laser
  • a hologram is used as a light source for recording and reproducing a hologram.
  • the collinear optical information recording / reproducing apparatus records and reproduces while rotating the recording medium in order to increase the recording speed and the reproducing speed. It was necessary to apply high energy in a short time using a short, high power laser. Further, since a volume hologram is recorded in the film thickness direction of the recording layer, a certain amount of light energy is required to cause the photosensitive material in the recording layer dispersed in the film thickness direction to react with light.
  • the recording medium In order to record a volume hologram on a recording medium using a photosensitive material of 500 ⁇ m as the photosensitive layer, it is necessary to irradiate about 3 ⁇ J of light energy for recording one hologram.
  • the recording medium When the recording medium is rotated at 600 rpm (rotation / minute), the time during which light can be substantially irradiated is 20 ⁇ sec. Therefore, the recording medium must be irradiated with light having a power of about 150 mW. For this reason, when considering the light utilization efficiency of the spatial light modulator and other optical systems, the light source requires an output of 10 times or more the power applied to the hologram. Since the output of a general semiconductor laser is about 100 mW at most from several mW, it has been difficult to record / reproduce with respect to a rotating recording medium using a low-power semiconductor laser.
  • a low-power laser can be used, but even if one hologram is recorded or reproduced in 1 millisecond, The movement and alignment time needs at least 100 milliseconds. If holograms are recorded at intervals of 10 ⁇ m on a circle with a diameter of 120 mm, 37699 holograms per circle (120 ⁇ ⁇ ⁇ 10 ⁇ 3 ) can be recorded, but the step-and-go method requires about 1 hour per circle. turn into.
  • a semiconductor laser is mounted in an optical pickup that irradiates and receives light on a recording medium, and the optical pickup is moved in the radial direction of the disk-shaped recording medium to perform tracking servo. It was a configuration to do.
  • the collinear optical information recording / reproducing apparatus of Patent Document 1 also employs such a CD or DVD tracking servo configuration, and performs tracking servo by moving the optical pickup.
  • the collinear optical information recording / reproducing device is equipped with a high-power pulse laser, the light source is much larger and heavier than a semiconductor laser. This is not practical as a practical product, regardless of whether it is an experimental device.
  • the drive system required to move and control the position of the optical pickup also becomes large.
  • high-power pulse lasers and large drive systems are expensive, and there are also problems to be improved in this respect.
  • the optical information recording / reproducing apparatus using the high-power pulse laser is not suitable for mass production as a general-purpose machine.
  • an object of the present invention is to provide an image information search system and an image information record search system that solve at least a part of the above-described problems.
  • the information recording / retrieval system comprises a system for recording image information to be collated for search and creating a database and a system for performing a search for recorded image information.
  • the image information recording / retrieval system includes the image information retrieval system, and the description related to the retrieval of the image information record / retrieval system is also applied to the image information retrieval system.
  • a photosensitive material in the hologram recording layer is formed by a hologram formed by irradiating a recording medium with information light carrying image information and reference light, and causing the information light and reference light to interfere with each other. It is necessary to cause a photoreaction to fix the hologram on the hologram recording layer.
  • a recording medium whose storage capacity is full due to the recording of a hologram cannot record image information any more, but is used as a target for search as a database in which image information is stored. Thus, when further image information is recorded, it is recorded on another recording medium.
  • the recording of the image information is a finite process with an upper limit on the amount of information registered in the database, although image information may be added sequentially. That is, once recorded image information does not need to be recorded again basically.
  • the recorded hologram is irradiated with search light, and the intensity of the reproduction light reproduced from the hologram is detected as a correlation value.
  • searching for image information it is preferable to be able to determine whether or not the searched image information exists in the verification target as soon as possible after the search target is input.
  • the database to be collated is recorded on a plurality of recording media depending on the amount of information, and in order to search all the collating targets, the plurality of recording media must be irradiated with search light. Further, the same search object needs to be searched many times as in the identity verification in a management system using biometric authentication such as face authentication or fingerprint authentication, and search processing may be executed infinitely.
  • the image information recording system requires strong light energy to cause a photoreaction in the photosensitive material in the hologram recording layer and fix the hologram, but the image information retrieval system simply detects the intensity of the reproduction light.
  • light energy that is weaker than that at the time of recording is sufficient.
  • the light energy of the search light merely detects the intensity of the reproduction light, and a weak light energy is sufficient as compared with a conventional information recording / reproduction apparatus that detects the intensity distribution of the reproduction light.
  • the recording medium whose storage capacity is full is not used any more in the image information recording system, and is used only in the image information retrieval system.
  • the present invention is characterized by adopting a configuration suitable for each characteristic in the image information recording system and the image information retrieval system in consideration of the difference between these operations and characteristics. It aims at improving the processing speed at the time of the required search.
  • the image information retrieval system of the present invention is an image information retrieval system for retrieving image information recorded on a holographic recording medium having a hologram recording layer,
  • the layer records a hologram formed by interference between the reference light and information light spatially modulated by the recording two-dimensional pattern information.
  • the light emitted from the CW laser is searched for the second light.
  • the search light is generated by spatial modulation according to the dimensional pattern information, the search light is applied to the hologram recorded on the hologram recording layer while rotating the holographic recording medium, and the light intensity of the reproduction light reproduced from the hologram is increased.
  • Two-dimensional pattern information for recording and two-dimensional pattern information for search using the value of the light intensity of the reproduced light detected by the reproducing light detector Wherein the matching.
  • the reproducing light detector is preferably a photomultiplier tube, and more preferably has means for condensing the reproducing light to the reproducing light detector.
  • the image information recording / retrieval system of the present invention is an image information recording / retrieval system that records image information on a holographic recording medium having a hologram recording layer and retrieves the recorded image information, and is emitted from a pulse laser.
  • the generated light is spatially modulated with the two-dimensional pattern information for recording to generate information light
  • the hologram recording layer of the holographic recording medium is irradiated with reference light and information light while rotating the holographic recording medium.
  • the search light is generated and the hologram is recorded with the search light on the hologram recording layer while rotating the holographic recording medium.
  • the reproduction light detector detects the light intensity of the reproduction light that has been irradiated and reproduced from the hologram, and the two-dimensional pattern information for recording and the two-dimensional pattern information for search are obtained using the value of the light intensity of the reproduction light. And an image information retrieval system for collation.
  • the reproduction light detector is preferably a photomultiplier tube, and the image information retrieval system includes means for condensing the reproduction light on the reproduction light detector. It is more preferable.
  • the two-dimensional pattern information for recording may be created by performing an irreversible conversion process for deleting part of the information on the recorded image information.
  • the image information recording system and the image information retrieval system are configured by devices having at least different optical systems, and the image information retrieval system is compared with the number of image information recording systems. It is preferable that the number of is large.
  • the image information retrieval system of the present invention uses the value of the light intensity of the reproduction light to collate the two-dimensional pattern information for recording with the two-dimensional pattern information for retrieval.
  • the optical pickup equipped with the optical system can be made light and small, so that the optical pickup can be moved quickly and the movement can be easily controlled. Since the drive system necessary for moving the optical pickup can also be reduced in weight and size, the entire image information retrieval system can be reduced in weight and size. In addition, the manufacturing cost of the image information search system 2 can be reduced by using an inexpensive CW laser.
  • the image information recording / retrieval system of the present invention uses a high output pulse laser as a light source in the image information recording system, and uses a low output CW laser as a light source in the image information search system.
  • Holograms can be accurately recorded with a pulse laser, and image information can be quickly retrieved with a low-power CW laser.
  • the image information retrieval system can obtain the excellent effects as described above.
  • Other effects of the image information search system and image information record search system of the present invention will be described in the following embodiments.
  • Schematic configuration diagram showing an image information record retrieval system of the present invention Schematic configuration diagram showing an image information retrieval system of the present invention
  • Schematic block diagram showing another image information record retrieval system of the present invention (A) is a diagram showing the display surface of the spatial light modulator at the time of recording, (B) is a diagram showing the display surface of the spatial light modulator at the time of search, (C) is a diagram showing the pattern of the reproduction light Diagram showing database search results Diagram showing error rate in database
  • the image information recording / retrieval system of the present invention can directly detect the correlation value (similarity) with the two-dimensional pattern information for retrieval generated from the image information to be retrieved, and can be applied to various applications. . For example, it is possible not only to search for an image that matches the search image, but also to perform an ambiguous search that searches for a similar image. Further, if biometric information such as a face, fingerprint, vein, iris, etc. is recorded as image information to be recorded, it can be used in a management / authentication system using biometric authentication.
  • the video sharing service is a service in which video data uploaded by a certain user is shared so that it can be downloaded to other users so that the video can be disclosed and viewed.
  • This video sharing service posts tens of thousands of video data per day, and the video data currently contains many illegal ones that infringe copyrights. . For example, movies, TV programs, live images, promotional videos, etc. are uploaded without permission from the copyright holder.
  • the image information recording / retrieval system of the present invention records moving image data protected by copyright in advance as a database, and compares the still image of the moving image data that can be viewed on a site on the network with the database. Thus, illegal moving image data can be identified and censored.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of an image information recording / retrieval system according to the present invention.
  • the image information recording / retrieval system 1 includes a system for recording image information to be collated for retrieval and creating a database, and a system for retrieving recorded image information.
  • the holographic recording medium 20, The information processing apparatus 30 and the optical system 40 are included.
  • the optical system 40 of the image information recording / retrieval system 1 in FIG. 1 has a configuration in which a recording light source 41 and a retrieval light source 54 can be selected and used, and image information recording and image information retrieval in one apparatus. Is possible.
  • a holographic recording medium 20 is a reflective recording medium in which a hologram recording layer 21 containing a photosensitive material is sandwiched between a surface protective layer 22 and a reflective layer 23.
  • a hologram 24 formed by causing information light and reference light to interfere with each other is recorded on the hologram recording layer 21 of the holographic recording medium 20.
  • image information can be stored in a volume hologram (also known as a thick hologram). Can be recorded.
  • the holographic recording medium 20 includes address information for specifying the position of the hologram 24 and / or servo information for performing alignment (servo) (hereinafter referred to as “address information” by combining address information and servo information). It is preferable to have an address layer on which is recorded. For example, as information such as an address, pits may be formed by an uneven shape provided on the surface of the reflective layer 23, and the reflective layer 23 may be used as an address layer. When a glass substrate is used as the surface protective layer 22 of the holographic recording medium 20, shrinkage due to a temperature change or the like can be suppressed. As the reflective layer 23, a metal material such as aluminum can be used.
  • the holographic recording medium 20 is held by a recording medium holding mechanism 25.
  • a rotation driving device is attached to the recording medium holding mechanism 25 so that the recording medium 20 can be rotated.
  • the holographic recording medium 20 is configured to be movable relative to the optical system in order to perform alignment (servo).
  • the holographic recording medium 20 is moved, the X axis and the Y axis are used.
  • a drive device that moves in the Z-axis direction is attached.
  • the X-axis direction is an arbitrary direction perpendicular to the optical axis
  • the Y-axis direction is a direction perpendicular to the optical axis and the X-axis direction
  • the Z-axis direction is a direction parallel to the optical axis.
  • the image information recording / retrieval system is preferably searched while being rotated at the time of a search requiring quickness because the image information search system requires quickness in processing speed.
  • the shape of the holographic recording medium 20 is preferably a disk shape, but may be configured to be rotated as another shape, for example, a rectangular card shape.
  • tracking servo can be performed by moving the optical system or the recording medium in the radial direction while rotating the recording medium.
  • the information processing apparatus 30 performs various types of information processing executed by the information record search system. For example, the information processing apparatus 30 generates two-dimensional pattern information for recording from image information to be recorded, generates two-dimensional pattern information for search from image information to be searched, and identifies information for identifying recorded image information (identifies image information). Information) and the address information of the corresponding hologram are recorded and reproduced, servo control based on the servo information, calculation of a correlation value at the time of search, and the like.
  • the information processing apparatus 30 can be shared by a plurality of image information recording / retrieval systems. For example, a plurality of image information retrieval systems including a plurality of optical systems 40 for retrieving a plurality of recording media in parallel. In this case, the optical system 40 and the recording medium may be provided independently for each image information search system, and the information processing apparatus 30 may be provided in common.
  • the two-dimensional pattern information for recording is generated by processing the image information to be recorded as it is or by preprocessing the image information to be recorded.
  • the amount of image information to be recorded is large, if it is used as it is as two-dimensional pattern information for recording, the calculation time becomes long and a huge recording capacity is required. For this reason, it is preferable to perform preprocessing for reducing the amount of information on the image information to be recorded. Further, it is preferable to perform preprocessing in order to standardize image information to be recorded to a predetermined resolution and image quality.
  • the two-dimensional pattern information for search is preferably generated by the same method as the two-dimensional pattern information for recording used to form the recorded hologram.
  • preprocessing for example, binary imaging processing, image processing for changing resolution, trimming processing for cutting out a part of an image, and edge enhancement processing can be performed.
  • the binary imaging process is a process for converting each pixel into an image displayed in two colors of white and black (0 and 1).
  • image information such as a general photograph, each pixel has at least a gray scale.
  • Gradation information (8 bits), and in many cases, color information (24 bits) of color, so that binary image processing is performed, so that the capacity of two-dimensional pattern information for recording or retrieval is obtained. Can be significantly reduced.
  • a fixed threshold method There are two types of binary imaging processing methods: a fixed threshold method and a region designation method.
  • the former is a method of determining a binarization threshold value with a certain grayscale gradation value
  • the latter is a method in which the binary ratio of the entire image is determined first, and the binary value is determined from the density value histogram. This is a method for determining the threshold value.
  • the binarization threshold is T
  • the element of each pixel of the original image is f (i, j)
  • the element of each pixel of the binary image is g (i, j)
  • the following equation (1) Can be defined.
  • the image information is color
  • the color information of the color is first removed and changed to a gray scale with only gradation information, and binarized.
  • image processing for changing the resolution for image information to be recorded and image information to be searched, trimming processing for cropping a part of the image, Edge enhancement processing or the like may be performed.
  • Binary image processing is irreversible conversion that basically only deletes information, unlike data format conversion processing, compression processing, and encryption processing. That is, the data format conversion processing, compression processing, and encryption processing have information that can be inversely converted in their own or another file in order to restore the original frame image. However, the binary image processing simply discards the color information and gradation information that the original frame image had, and the binary image itself cannot be restored to the original frame image.
  • image processing for reducing the resolution, trimming processing for cutting out part of an image, and edge enhancement processing are basically irreversible conversions that only delete information.
  • the address information of the hologram with a high correlation value is obtained at the time of search, and the information is recorded on another recording medium.
  • identification information of image information that matches or is similar to the searched image information can be specified.
  • the identification information is information for specifying image information, such as the title, identification number, author, capacity, date of creation or data format of the image information.
  • the optical system 40 irradiates information light in order to record image information on the holographic recording medium 20, or uses optical correlation calculation between image information for search and image information recorded in the holographic recording medium 20. Therefore, the search light can be emitted to detect the reproduction light.
  • the optical system 40 includes a recording light source 41 and a search light source 54, and further includes a collimator lens 42, a mirror 43, a beam splitter 44, a mirror 45, a spatial light modulator 46, a polarization beam splitter 47, and a first relay lens. 48, mirror 49, second relay lens 50, beam splitter 51, quarter-wave plate 52, objective lens 53, collimator lens 55, shutter 56, aperture 57, condenser lens 58, reproduction light detector 59 is doing.
  • the optical path at the time of recording is indicated by a solid line
  • the optical path at the time of search is indicated by a dotted line
  • the optical path of address light is indicated by a one-dot chain line.
  • the recording light source 41 serves as a light source for information light and reference light for recording a hologram, and a high-power pulse laser that intermittently emits laser light is used.
  • a pulse laser can instantaneously generate very strong power by a mode-locking method or a Q-switch method in which phases are aligned at a plurality of wavelengths and oscillated simultaneously.
  • the recording light source 41 for example, a solid-state laser such as a YAG laser or a gas laser such as a He—Ne laser can be used.
  • the recording light source 41 selects light having a wavelength at which the photosensitive material in the hologram recording layer 21 of the holographic recording medium 20 exhibits sensitivity.
  • the search light source 54 serves as a search light source for searching image information, and a CW laser (Continuous wave laser) that continuously emits laser light is used.
  • the CW laser has a lower instantaneous power than the pulse laser, but can continue to irradiate light with a certain intensity.
  • As the search light source 54 it is preferable to use a semiconductor laser that is smaller, lighter, and less expensive than a pulse laser.
  • the search light source 54 uses light having a wavelength that interferes with the hologram recorded in the hologram recording layer 21, and preferably selects light having the same wavelength as that of the light from the recording light source 41.
  • the collimator lens 42 makes divergent light emitted from the recording light source 41 substantially parallel light
  • the collimator lens 55 makes divergent light emitted from the search light source 54 substantially parallel light.
  • the shutter 56 controls irradiation of light emitted from the search light source 54 that is a CW laser.
  • the shutter 56 is shielded as an off state until reaching a predetermined position, and is turned on when the predetermined position is reached. Irradiate as
  • the mirror 43 and the beam splitter 44 are arranged so that the light emitted from the recording light source 41 and the light emitted from the search light source 54 have the same optical axis.
  • the mirror 43 and the beam splitter 44 other means for coaxially combining the light emitted from the recording light source 41 and the light emitted from the search light source 54 may be employed.
  • the recording light source 41 and the search light source 54 may be provided so as to be movable, and the arrangement of both may be exchanged during recording and search.
  • the spatial light modulator 46 has a plurality of pixels and can modulate the light spatially by changing the attribute of the light for each pixel.
  • the spatial light modulator 46 is a liquid crystal display device or a DMD (Digital Micromirror). Device) can be used.
  • the DMD Digital Micromirror
  • the information light and the reference light are generated by displaying the recording two-dimensional pattern information on a part of the display area of the spatial light modulator 46 and displaying the pattern of the reference light on the other part of the display area.
  • the search light can be generated by displaying the two-dimensional pattern information for search in the display area where the two-dimensional pattern information for recording of the spatial light modulator 46 is displayed.
  • At least one reference light pattern is arranged around the display area on which the spatial light modulator 46 displays the two-dimensional pattern information for recording.
  • a pattern of the reference light a region of several pixels to several hundred pixels in a lump may be set as an on-pixel, and the reference light may be uniform light having no intensity distribution, or a region of several pixels to several hundred pixels in a lump may be used.
  • a plurality of light sources having a spatially modulated intensity distribution may be provided, or light having a spatially modulated intensity distribution by a pattern of on pixels and off pixels in a wider area may be used. .
  • the reproduction light detector is simply arranged at the position where the reproduction light is imaged without providing the aperture 57 and the condenser lens 58. Can detect the light intensity of the reproduction light.
  • the polarization beam splitter 47 transmits one of orthogonal polarization directions and reflects the other, transmits information light, reference light, and search light directed to the recording medium 20, and reproduces reproduction light reproduced by the recording medium. Reflected toward the photodetector 59. Depending on the configuration of the optical system, the information light, the reference light, and the search light may be reflected toward the recording medium 20 and the reproduction light directed to the reproduction light detector 59 may be transmitted.
  • the first and second relay lenses 48 and 50 form an image displayed on the spatial light modulator 46 on the focal plane of the objective lens 53.
  • the objective lens 53 is used.
  • the spatial modulation pattern of the information beam, the reference beam and the search beam needs to be imaged on the entrance pupil plane.
  • the mirror 49 is disposed at the focal position between the first and second relay lenses 48 and 50, and reflects the information light, the reference light, and the search light to reduce the size of the optical system 40. Is provided.
  • the beam splitter 51 is for directing light from the addressing laser 60 toward the recording medium 20.
  • the quarter wave plate 52 converts linearly polarized light into circularly polarized light, and can rotate the linearly polarized light by 90 degrees by transmitting twice.
  • the reference light is transmitted through the polarization beam splitter 47 when irradiated by the quarter-wave plate 52 and reflected by the polarization beam splitter 47 when reproduced as reproduction light.
  • the objective lens 53 performs Fourier transform on the information light and the reference light and irradiates the hologram recording layer 21 of the recording medium 20 to record the hologram formed by causing the information light and the reference light to interfere with each other on the hologram recording layer. Further, the objective lens 53 irradiates the hologram 24 recorded on the hologram recording layer 21 of the recording medium 20 by Fourier transforming the search light. The reproduction light reproduced by the interference between the search light and the hologram 24 travels from the recording medium 20 toward the objective lens 53 and passes through the objective lens 53.
  • the aperture 57 has an opening that blocks the search light reflected by the recording medium 20 and allows only the reproduced reproduction light to pass through the reproduction light detector 59. It is preferable to arrange the aperture 57 in the focal plane of the first relay lens 48 because noise due to the diffracted light of the search light can be reduced.
  • the opening is provided at the center of the aperture 57, but the opening is not limited to the center, and an opening having a shape that allows the reproduction light to pass through may be provided at the position through which the reproduction light passes. .
  • a plurality of apertures may be provided in the aperture 57, and when the reproduction light is spatially modulated (that is, the reference light at the time of recording is spatially represented by two-dimensional pattern information).
  • the reproduction light is spatially modulated (that is, the reference light at the time of recording is spatially represented by two-dimensional pattern information).
  • an opening having a shape similar to the pattern of the reference light may be provided.
  • the reproduction light detector 59 detects the light intensity of the reproduced light that has been reproduced.
  • the reproduction light detector 59 serves as a photoelectron multiplier. It is possible to use a photosensor with extremely high sensitivity such as a photomultiplier tube (PMT) or an inexpensive and small semiconductor detector such as a pin photodiode, a CMOS sensor, or a CCD sensor.
  • PMT photomultiplier tube
  • CCD CCD sensor
  • the reproducing light detecting means of the conventional optical information recording / reproducing apparatus using a hologram needs a CMOS sensor or a CCD sensor in which light detecting elements are two-dimensionally arranged in order to reproduce two-dimensional pattern information. Since the reproducing light detector 59 of the present invention only needs to detect the light intensity of the reproduced light that has been reproduced, a light detector having a single light detecting element can be used. Also, when the reproduction light pattern is spatially modulated and has an intensity distribution (that is, when there are a plurality of reference lights at the time of recording or when spatially modulated by two-dimensional pattern information), When it is larger than the light receiving area of the reproduction light detector, as shown in FIG.
  • the light detecting element by condensing by a condensing lens 58.
  • the reliability can be improved by using the condensing lens 58.
  • the light intensity of the reproduction light can be detected by summing the intensities of all the light detection elements. It can be used as the detector 59.
  • the reproducing light detector 59 of the present invention only needs to detect the light intensity of the reproduced light that has been reproduced. Therefore, a pin photodiode or PMT having a transfer speed of several Mbps to several Gbps can be used, and it is extremely You can perform a search with Conventional CMOS sensors and CCD sensors with two-dimensionally arranged photodetection elements have a frame rate of about 30 fps to 1000 fps, so only 30 to 1000 holograms can be reproduced per second. The performance of the element limited the playback speed.
  • the address laser 60, the beam splitter 61, the mirror 62, and the address photodetector 63 are used to specify and align the irradiation position by acquiring information such as an address from the address layer when the recording medium 20 is provided with an address layer. Used for.
  • the addressing laser 60 a wavelength at which the photosensitive material of the hologram recording layer 21 is not exposed is preferable, and it is preferable to use a semiconductor laser having a relatively long wavelength such as red light.
  • the address photodetector 63 an inexpensive and small semiconductor detector can be used.
  • the address light emitted from the addressing laser 60 is transmitted through the beam splitter 61, reflected by the mirror 62, further reflected by the beam splitter 51, transmitted through the quarter-wave plate 52, and recorded by the objective lens 53.
  • 20 address layers are irradiated.
  • the reflected light that has acquired information such as an address by the address layer of the recording medium 20 passes through the optical systems 53, 52, 51, 62 in the opposite direction, is reflected by the beam splitter 61, and is detected by the address photodetector 63.
  • the light emitted from the recording light source 41 is made substantially parallel light by the collimator lens 42, reflected by the mirror 43 and the beam splitter 44, and has the same optical axis as the light emitted from the search light source 54.
  • the substantially parallel light is reflected toward the spatial light modulator 46 by the mirror 45, and is spatially modulated by the recording two-dimensional pattern information and the reference light pattern displayed on the spatial light modulator 46.
  • a reference beam is generated.
  • the information light and the reference light are transmitted through the polarization beam splitter 47, transmitted by the first and second relay lenses 48 and 50, reflected by the mirror 49, and transmitted through the beam splitter 51, and are divided into four quarters. It is converted into circularly polarized light by the single wavelength plate 52, Fourier-transformed by the objective lens 53, and irradiated on the hologram recording layer 21 of the recording medium 20. As a result, the hologram formed by the interference between the information light and the reference light is recorded on the hologram recording layer 21.
  • a hologram is recorded by high-power information light and reference light that are instantaneously irradiated.
  • a plurality of holograms can be recorded while rotating the recording medium 20. That is, when the rotating recording medium 20 is irradiated with pulsed information light and reference light, the first pulse of information light and reference light is instantaneously irradiated to a predetermined position of the rotating recording medium 20, Next information light and reference light of the next pulse are instantaneously irradiated to another position of the recording medium 20 moved from the first hologram by rotation, and the next hologram is recorded.
  • the optical system 40 by continuously moving the optical system 40 in the radial direction from the center of rotation while rotating the recording medium 20, it is possible to record a plurality of holograms arranged in a spiral shape on the entire surface of the recording medium 20. Holograms can be recorded at a relatively high speed. If the optical system 40 is moved stepwise in the radial direction from the center of rotation while rotating the recording medium 20, a plurality of holograms can be concentrically arranged and recorded.
  • the light emitted from the search light source 54 is made into substantially parallel light by the collimator lens 55 and passes through the shutter 56 when the shutter 56 is in the ON state. Thereafter, the substantially parallel light passes through the beam splitter 44, is reflected toward the spatial light modulator 46 by the mirror 45, and is spatially modulated by the two-dimensional pattern information for search displayed on the spatial light modulator 46. Search light is generated. Then, the search light passes through the polarization beam splitter 47, is transmitted by the first and second relay lenses 48 and 50, is reflected by the mirror 49, and passes through the beam splitter 51, and is a quarter-wave plate.
  • the hologram 24 and the search light interfere with each other, and the reproduction light corresponding to the reference light at the time of recording is reproduced.
  • the reproduction light reflected by the reflection layer 23 is emitted from the recording medium 20, and in the direction opposite to that at the time of irradiation, the objective lens 53, the quarter-wave plate 52, the beam splitter 51, the second relay lens 50, and the mirror.
  • the light enters the polarizing beam splitter 47 through 49 and the first relay lens 48.
  • the reproduction light corresponds to the reference light at the time of recording, and the reference light passes through the quarter-wave plate 52 and is converted into circularly polarized light when irradiated onto the recording medium 20, so that again, By passing through the quarter-wave plate 52 as the reproduction light, the reproduction light after the quarter-wave plate 52 is linearly polarized light having a polarization direction orthogonal to the reference light.
  • the reproduction light is reflected by the polarizing beam splitter 47 that has transmitted the reference light, passes through the aperture 57, and is collected by the reproduction light detector 59 by the condenser lens 58.
  • the search light reflected by the reflection layer 23 is emitted from the recording medium 20 and reflected by the polarization beam splitter 47 through the same optical system as the reproduction light, but is blocked by the aperture 57.
  • the light intensity of the reproduction light changes according to the correlation value (similarity) between the two-dimensional pattern information for recording when the hologram 24 is recorded and the two-dimensional pattern information for searching the search light, and the value of the light intensity The larger the is, the more similar the two two-dimensional pattern information is. Therefore, when the light intensity of the reproduction light exceeds a threshold value determined in advance through experiments or the like, it can be identified that image information that matches or is similar to the searched image information is recorded in the database. Then, if the address information of the hologram that has reproduced the reproduction light exceeding the threshold value is specified, and the identification information of the recorded image information is specified from the address information, the identification of the image information that matches or is similar to the searched image information Information can also be output. When the light intensities of a plurality of reproduction lights exceed a threshold value, it is preferable to output similar search results from those having a large light intensity.
  • the recording medium 20 is rotated while irradiating the search light, and is recorded in the circumferential direction. Further, the search light can be continuously irradiated to the plurality of holograms, and the light intensity of the reproduction light from each hologram can be continuously detected, so that the rotation speed of the recording medium 20 can be increased, The search speed (image information transfer speed) can also be increased. A plurality of holograms recorded on the entire surface of the recording medium 20 can be searched at high speed by moving the optical system 40 continuously or stepwise in the radial direction from the center of rotation while rotating the recording medium 20. it can.
  • a pulse laser is used as the search light source 54, it is necessary to synchronize the timing at which each hologram passes the search light irradiation position and the frequency of the pulse laser, which limits the rotation speed, and the irradiation position. Deviation becomes an error and reliability is lowered.
  • FIG. 2 and 3 are schematic configuration diagrams showing another embodiment of the image information recording / retrieval system according to the present invention.
  • the image information retrieval system and the image information recording system are independently configured by different devices. is there.
  • FIG. 2 is a schematic configuration diagram of the image information search system 2
  • FIG. 3 is a schematic configuration diagram of the image information recording system.
  • the relationship in which the image information search system 2 as shown in FIG. 2 and the image information recording system as shown in FIG. 3 constitute the image information record search system is that the recording medium 20 on which the image information is recorded in the image information recording system 3 is used. It can be used for searching in the image information search system 2.
  • the same reference numerals are given to the same components as those in the image information recording / retrieval system 1 in FIG. 1, and detailed description thereof will be omitted.
  • the image information retrieval system 2 in FIG. 2 is a system for retrieving image information recorded in the recording medium 20, and includes a holographic recording medium 20, an information processing apparatus 30, and an optical system 40 '.
  • the holographic recording medium 20 in FIG. 2 the recording medium 20 on which the image information is recorded in the image information recording / retrieval system 1 in FIG. 1 or the image information recording system 3 in FIG. 3 can be used.
  • the optical system 40 ′ can detect the reproduction light by irradiating the holographic recording medium 20 with search light.
  • the optical system 40 ′ includes a search light source 54, a collimator lens 55, a shutter 56, a mirror 45, a spatial light modulator 46, a polarization beam splitter 47, a first relay lens 48, a mirror 49, a second relay lens 50, a beam.
  • a splitter 51, a quarter-wave plate 52, an objective lens 53, an aperture 57, a condenser lens 58, and a reproduction light detector 59 are included. Further, it preferably has an address laser 60, a beam splitter 61, a mirror 62, and an address photodetector 63.
  • the optical path at the time of search is indicated by a solid line
  • the optical path of the address light is indicated by a one-dot chain line.
  • the light emitted from the search light source 54 is made substantially parallel light by the collimator lens 55, and passes through the shutter 56 when the shutter 56 is in the on state. Thereafter, the substantially parallel light is reflected toward the spatial light modulator 46 by the mirror 45 and is spatially modulated by the two-dimensional pattern information for search displayed on the spatial light modulator 46 to generate search light. . Then, the search light passes through the polarization beam splitter 47, is transmitted by the first and second relay lenses 48 and 50, is reflected by the mirror 49, and passes through the beam splitter 51, and is a quarter-wave plate.
  • the hologram 24 and the search light interfere with each other, and the reproduction light corresponding to the reference light at the time of recording is reproduced.
  • the reproduction light reflected by the reflection layer 23 is emitted from the recording medium 20, and in the direction opposite to that at the time of irradiation, the objective lens 53, the quarter-wave plate 52, the beam splitter 51, the second relay lens 50, and the mirror. 49 and the first relay lens 48, reflected by the polarization beam splitter 47, passed through the aperture 57, and collected by the condenser lens 58 on the reproduction light detector 59.
  • the search light reflected by the reflection layer 23 is emitted from the recording medium 20 and reflected by the polarization beam splitter 47 through the same optical system as the reproduction light, but is blocked by the aperture 57.
  • the recording medium 20 is rotated while irradiating the search light, so that a plurality of images arranged in the circumferential direction are recorded.
  • the hologram can be continuously irradiated with search light, and the light intensity of the reproduction light from each hologram can also be detected continuously, so that the rotation speed of the recording medium 20 can be increased, Furthermore, the search speed (image information transfer speed) can be increased.
  • the optical pickup equipped with the optical system 40 'of the image information retrieval system 2 can be made lighter and smaller than those using a conventional pulse laser. The optical pickup can be moved quickly, and the movement can be easily controlled.
  • the entire image information retrieval system 2 can be reduced in weight and size.
  • the manufacturing cost of the image information search system 2 can be reduced by using an inexpensive CW laser.
  • the CW laser consumes less power than the pulse laser, it is also useful in this respect.
  • the image information recording system 3 of FIG. 3 is a system for recording image information to be recorded on the holographic recording medium 20, and includes the holographic recording medium 20, an information processing device 30, and an optical system 40 ′′.
  • the system 40 ′′ can irradiate information light and reference light to record image information on the holographic recording medium 20.
  • the optical system 40 ′′ includes a recording light source 41, a collimator lens 42, a mirror 45, a spatial light modulator 46, a polarization beam splitter 47, a first relay lens 48, a mirror 49, a second relay lens 50, a beam splitter 51, It has a quarter-wave plate 52 and an objective lens 53.
  • it preferably has an address laser 60, a beam splitter 61, a mirror 62, and an address photodetector 63.
  • the optical path is indicated by a solid line, and the optical path of address light is indicated by a one-dot chain line.
  • the light emitted from the recording light source 41 is made substantially parallel light by the collimator lens 42, and the substantially parallel light is reflected by the mirror 45 toward the spatial light modulator 46,
  • the information light and the reference light are generated by being spatially modulated by the recording two-dimensional pattern information and the reference light pattern displayed on the light modulator 46.
  • the information light and the reference light are transmitted through the polarization beam splitter 47, transmitted by the first and second relay lenses 48 and 50, reflected by the mirror 49, and transmitted through the beam splitter 51, and are divided into four quarters.
  • a high-power pulse laser is used as the recording light source 41. Therefore, by rotating the recording medium 20 and irradiating information light and reference light, A plurality of holograms can be arranged and recorded in the direction. Further, since only the recording process needs to be controlled with respect to the rotational speed of the recording medium 20 and the moving speed of the optical system 40 ′′, the image information recording / retrieval system 1 in FIG. Compared to a conventional optical information recording / reproducing apparatus capable of recording / reproducing holograms, the control is easier, and parts necessary only for searching and reproducing are not required, so that the manufacturing cost of the image information recording system 3 is reduced. be able to.
  • FIG. 4 is a schematic block diagram of an image information recording / retrieval system 4 using the image information retrieval system 2 as shown in FIG. 2 and the image information recording system 3 as shown in FIG.
  • the image information recording / retrieval system 4 shown in FIG. 4A is composed of one image information recording system 3 and three image information retrieval systems 2.
  • the image information recording / retrieval system 4 in FIG. 4B is also composed of one image information recording system 3 and three image information retrieval systems 2, but in FIG. Is provided in common in each image information search system 2 and image information recording system 3.
  • FIG. Is provided in common in each image information search system 2 and image information recording system 3.
  • the image information to be recorded is recorded on the recording medium 20 in the image information recording system 3.
  • the recording medium 20 on which the information is recorded is moved to one of the image information retrieval systems 2 and used for retrieval.
  • Each information processing apparatus 30 in FIG. 4A may be connected by a network.
  • a certain database A is recorded over a plurality of recording media and each of the recording media is searched by different image information search systems 2, it is preferable to connect the information processing apparatuses 30.
  • the ratio between the image information search system 2 and the image information recording system 3 increases the ratio of the image information recording system 3 when the information amount or frequency to be recorded is large. What is necessary is just to increase the ratio of the information search system 2.
  • an image information recording / retrieval system 1 configured as a single unit as shown in FIG. In this case, when the image information recording / retrieval system 1 does not record image information, a retrieval process can be performed, and the retrieval processing capability of the entire image information recording / retrieval system 4 can be improved.
  • Example 1 As shown in FIG. 1, an image information recording / retrieval system having a configuration in which a light source for recording and a light source for retrieval can be selected and used in one apparatus was produced.
  • a photomultiplier tube was adopted as a high-sensitivity photosensor for the reproduction light detector.
  • an optical system for acquiring information such as addresses from the address layer is also employed, and a 655 nm ⁇ 5 nm red laser was used as the addressing laser.
  • the apparatus is configured to be able to hold a reflective holographic recording medium having a diameter of 120 mm, and the recording medium can be rotated at a rotational speed of up to 2000 rpm by a rotation driving device.
  • the hologram recording layer of the holographic recording medium has a thickness of 500 ⁇ m, and a DMD having 320 ⁇ 240 pixels was used as the spatial light modulator.
  • FIG. 5A is a diagram showing a display surface of the spatial light modulator at the time of recording.
  • the right face image is two-dimensional pattern information 71 for recording, and a 2 ⁇ 2 pixel on-state in a substantially central lump.
  • a pixel region is a reference light pattern 72.
  • the condensing lens 58 in the image information recording / retrieval system of FIG. 1 is omitted, and reproduction is performed near the aperture 57 aperture. It can also be set as the structure which has arrange
  • the holographic recording medium is rotated at 300 rpm, pulse laser light is emitted from a Q switch type Nd: YAG laser, and based on the reference light pattern 72 and the first face image as shown in FIG.
  • a reference light and spatially modulated information light are generated in the spatial light modulator displaying the two-dimensional pattern information 71 for recording, and the reference light and information light are irradiated to the holographic recording medium by the objective lens,
  • a first hologram was recorded on the hologram recording layer.
  • the recording two-dimensional pattern information 71 displayed on the spatial light modulator the recording two-dimensional pattern information based on the second face image is displayed.
  • the second hologram was recorded at a position moved by 10 ⁇ m.
  • the hologram Since the hologram has a diameter of several hundred ⁇ m, the first hologram and the second hologram are shift-multiplexed with a part of them superimposed. Similarly, up to 30 holograms based on the face image were recorded, and 30 holograms that were shift-multiplex recorded at a pitch of 10 ⁇ m could be obtained.
  • FIG. 5B is a diagram showing the display surface of the spatial light modulator at the time of search, and the two-dimensional pattern for search is displayed in the area where the two-dimensional pattern information 71 for recording is displayed in FIG. Information 73 is displayed.
  • the holographic recording medium is rotated at 300 rpm, laser light is continuously emitted from a 0.2 W CW laser that is a light source for search, and two-dimensional pattern information for search as shown in FIG.
  • the spatial light modulator on which the reference numeral 73 is displayed generates search light that is spatially modulated, and the search light is continuously applied to 30 holograms recorded on the hologram recording layer of the holographic recording medium by the objective lens. did.
  • the reproduction light reproduced from each hologram has its light intensity value continuously detected by the reproduction light detector.
  • FIG. 5C shows a reproduction light pattern 74 formed on the exit pupil plane of the objective lens, which has the same shape as the reference light during recording.
  • FIG. 6 shows a search result when one of the recorded 30 pieces of image information is searched as a search image
  • the vertical axis is a correlation value (reproduction light intensity) in an arbitrary unit.
  • the horizontal axis is a correlation map (time).
  • the correlation values continuously detected are reproduced by reproducing light when each hologram is irradiated to form a peak, but only one peak 81 having a clearly high correlation value exists. This peak 81 is obtained when a hologram is reproduced when the same image information as the search image is recorded.
  • FIG. 6 shows that it is possible to collate whether or not the search image is registered in the database by comparing the correlation value with a preset threshold value. For example, in FIG.
  • the search image is registered in the database when the obtained correlation value is larger than the threshold value 82, and the search is performed when the correlation value is smaller. It can be determined that the image for use is not registered in the database. Further, the search image can be specified by specifying the hologram that has generated the reproduction light larger than the threshold value. In FIG. 6, in the searched area, 20 holograms that failed to be recorded or 20 dummy holograms were recorded in addition to 30 holograms based on 30 pieces of image information, so 50 correlation value peaks were detected. Has been.
  • FIG. 7 is a diagram showing an error rate in the database of the 30 face images.
  • the vertical axis is the error rate
  • the horizontal axis is a threshold value related to a normalized correlation value (light intensity of reference light).
  • the error rate is composed of two data. One is a registered image rejection rate (FRR: False Rejection Rate) when a recorded image is mistakenly recognized as not recorded, and the other is a different image. Is the other image acceptance rate (FAR: False Acceptance Rate).
  • FRR False Rejection Rate
  • FAR False Acceptance Rate
  • the registered image rejection rate FRR and the other image acceptance rate FAR are each determined from the correctness / error rate of the matching result when the threshold value is changed.
  • FIG. 7 shows the registered image rejection rate FRR when the threshold value is changed with respect to the correlation value obtained by checking the recorded 30 face images as 30 pieces of search image information with the database, and others. It is a result of image acceptance rate FAR.
  • the registered image rejection rate FRR is data that rises to the right in FIG. 7. If the threshold value is 0, that is, if any detection result is recognized as a recorded image, the registered image rejection rate FRR is 0% (however, the other image acceptance rate FAR is The error rate increases as the threshold value increases.
  • the other-image acceptance rate FAR is data that is downward-sloping in FIG. 7, and is maximized when the threshold is 0, that is, when any detection result is recognized as a recorded image, and the error rate decreases as the threshold increases. Become.
  • the value at which the registered image rejection rate FRR and the other image acceptance rate FAR intersect is a threshold value for which both the registered image rejection rate FRR and the other image acceptance rate FAR are both small.
  • the error rate at that time is EER (Equal Error Rate).
  • EER Equal Error Rate
  • the range is called a threshold region. The smaller the EER, the better. If the EER is 0%, both the registered image rejection rate FRR and the other image acceptance rate FAR are 0%, and no error occurs theoretically.
  • the width of the threshold area indicates the reliability of matching, and the wider the threshold area, the higher the reliability of matching.
  • the threshold region range 83 is indicated by a one-dot chain line. In order to make it possible to collate similar images, the threshold value that is actually set is outside the threshold value range, and is smaller than the minimum value of the threshold value region.
  • the rejection rate FRR may be reduced.
  • Such a search at 300 rpm means that the recording medium rotates 5 times per second, and if holograms are recorded at intervals of 10 ⁇ m on a circumference of 120 mm in diameter, 37699 holograms (120 ⁇ ⁇ ⁇ 10 ⁇ 3 ) per revolution Since the maximum information amount of each hologram is 320 ⁇ 240 bits, which is the number of display pixels of the spatial light modulator, data of a maximum of about 14 Gbits (5 ⁇ 37699 ⁇ 320 ⁇ 240) was searched in one second. It will be.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Recording Or Reproduction (AREA)
  • Holo Graphy (AREA)

Abstract

【課題】ホログラフィを用いて記録された画像情報を検索する際に、検索速度を速くした画像情報検索システムを提供する。 【解決手段】ホログラフィック記録媒体20のホログラム記録層21には、参照光と記録用の二次元パターン情報によって空間的に変調された情報光とを干渉させて形成されたホログラム24が記録されており、CWレーザー54から射出された光を検索用の二次元パターン情報によって空間的に変調して検索光を生成し、検索光をホログラム記録層に記録されたホログラムに照射し、記録媒体のホログラムから再生された再生光の光強度を再生光検出器59によって検出し、再生光の光強度の値を用いて記録用の二次元パターン情報と検索用の二次元パターン情報とを照合する。

Description

画像情報検索システム及び画像情報記録検索システム
 本発明は、光相関を利用して画像情報を検索する画像情報検索システム及び画像情報記録検索システムに関し、特にホログラフィを用いて記録されたホログラムの画像情報を検索する画像情報検索システム及びホログラフィを用いて画像情報を記録し、記録されたホログラムの画像情報を検索する画像情報記録検索システムに関するものである。
 従来の光相関を利用する画像検索技術には、大量の記録された画像データから入力された画像を検索するにあたって、液晶素子や厚みのない薄いホログラムなどを表示素子として光相関を用いたものがあった。しかし、液晶素子は、大量の記録された画像データを切り替えながら光相関を行うが、画像の切り替えに電気制御が必要であり、1回の相関にかかる時間が制限される。また、記録媒体から蓄積された画像を液晶表示素子に転送してから光相関を行うため転送速度によっても光相関の速度が制限されていた。また、薄いホログラムでは記録容量や記録密度を上げることが困難であった。
 他方で、ホログラムの干渉縞の間隔に比べて記録層の膜厚が大きい体積型(厚い)ホログラムを利用した場合には、記録容量や記録密度を上げることが可能であるが、ホログラムを記録するための光学系が複雑であり、記録時と再生時とで同一の波長及び同一の入射角の参照光が必要であり、厳密な位置合わせ及び照射条件が要求されるため、実用化には大きな課題が残っていた。
 しかし、最近、同軸上で参照光と情報光を干渉させて体積型(厚い)ホログラムを記録するコリニア方式のホログラフィックメモリが開発されてきた(特許文献1)。コリニア方式の光情報記録再生装置は、空間光変調器によって空間的に変調された情報光と参照光とが同軸上に配置されて記録媒体に照射される構成であり、既存のDVDやCDなどの光ディスク技術と親和性が高く、光学系を簡易且つ小型化することが可能であること、また既存のDVDやCDに類似したアドレス方式やサーボ技術なども取り入れられており、厳密な位置合わせが実現可能であることから、次世代の記録方式として期待されている。
 さらに、このようなコリニア式のホログラフィックメモリである体積型(厚い)ホログラムを用いることにより光相関演算を行って画像情報を検索することが提案されている(非特許文献1)。非特許文献1では、ホログラムの書き込み時も光相関演算時(画像情報の検索時)も、コリニア方式の光情報記録再生装置を使用している。ホログラムの書き込み時には、空間光変調器の1画素をオン状態として参照光として利用し、その付近に画像情報を表示して情報光とし、それらの光を対物レンズによってフーリエ変換して記録媒体中で重ね合わせて干渉させホログラムを記録している。また、光相関演算時には、書き込み時と同じ位置に検索したい画像を表示することにより、ホログラムから再生された光を検出して相関演算を行っていた。ホログラムとして記録された画像情報と検索したい画像情報とが同一又は類似していると、ホログラムからは参照光が再生され、かかる参照光の強度は、類似度が高い程強くなるので、ホログラムから再生された光を相関値として利用することができる。
特許第3403068号公報 「全光型超高速光相関による画像検索エンジン」 Optics Japan 2005 講演予稿集 pp260-261、2005年 渡邉恵理子他
 以上説明したようなコリニア方式の光情報記録再生装置では、ホログラムを記録及び再生するための光源として、高出力のパルスレーザー、例えば、YAGレーザーなどのQスイッチ固体レーザが使用されていた。その理由の一つは、コリニア方式の光情報記録再生装置は、記録速度及び再生速度を高速化するために、記録媒体を回転させながら記録及び再生しているので、レーザー光を照射できる時間が短く、高出力のレーザーを使用して短時間で高エネルギーを与える必要があった。また、記録層の膜厚方向に体積的なホログラムを記録するため、膜厚方向に分散している記録層中の感光性物質を光によって反応させるためにある程度の光エネルギーが必要であった。さらに、再生時においては、ホログラムによる回折効率(再生効率)が悪く照射した光に対して再生される再生光の強度が200分の1程度になってしまうため、高い光エネルギーが必要であった。特に、光情報記録再生装置では、情報が空間的に変調された情報光の光強度分布によって表現されており、再生時には、空間的に変調された再生光の光強度分布を検出する必要があるので、正確に再生光の光強度分布を再生するため、再生光の光強度を高くしなければならず、必然的に照射する光の強度もより高いものとする必要があった。
 例えば、感光層として500μmの感光材料を使用した記録媒体に体積型のホログラムを記録するためには、1ホログラムの記録に対し、約3μJの光エネルギーを照射する必要がある。600rpm(回転/分)で記録媒体を回転させた場合、実質的に光を照射できる時間は20μ秒間であるから、約150mWのパワーの光を記録媒体に照射しなければならない。このため、空間光変調器やその他の光学系による光利用効率を考えると、光源としては、ホログラムに照射されるパワーの10倍以上の出力が必要になる。一般的な半導体レーザーの出力は数mWから大きくても100mW程度であるから、回転する記録媒体に対し、低出力の半導体レーザーを使用して記録再生することは困難であった。
 なお、記録媒体を停止した状態で記録及び再生するステップ&ゴー方式の場合、低出力のレーザーを使用することもできるが、1ミリ秒で1ホログラムを記録や再生したとしても、記録再生後の移動や位置合わせの時間が少なくとも100ミリ秒は必要である。直径120mmの円周上に10μm間隔でホログラムを記録すると、1周当たり37699個(120×π÷10-3)のホログラムを記録できるが、ステップ&ゴー方式では1周当たり約1時間も必要となってしまう。
 従来のCDやDVDにおいては、記録媒体に対して光の照射及び受光を行う光ピックアップ内に半導体レーザーを搭載して、光ピックアップをディスク状の記録媒体の半径方向に移動させて、トラッキングサーボを行う構成であった。特許文献1のコリニア方式の光情報記録再生装置においても、かかるCDやDVDのトラッキングサーボの構成を採用しており、光ピックアップを移動させてトラッキングサーボ等を行っている。しかしながら、コリニア方式の光情報記録再生装置では、高出力のパルスレーザーを搭載しているため、光源が半導体レーザーと比較して非常に大型であり、しかも重いので、光ピックアップを移動させてトラッキングサーボを行うことは実験用の装置であればともかく、実用品としては現実的なものではなかった。さらに、光源それ自体の大きさ及び重量に加えて、光ピックアップの位置を移動及び制御するために必要な駆動系も大型なものとなってしまう。しかも、大きく重い光ピックアップを高い精度で位置合わせするためには困難であり且つ時間もかかったので、記録再生速度が遅くなり、信頼性も低下してしまう。また、高出力のパルスレーザーや大型の駆動系は高価であり、この点においても改善すべき課題が存在した。このように、高出力のパルスレーザを用いた光情報記録再生装置は、汎用機として大量生産するには不向きなものであった。
 以上の背景技術を鑑みて、本発明は、上記の課題の少なくとも一部を解決した画像情報検索システム及び画像情報記録検索システムを提供することを目的とする。
 情報記録検索システムは、検索の照合対象となる画像情報を記録してデータベースを作成するシステムと記録された画像情報の検索とを行うシステムとを具備するものであるが、本発明者らは、情報の記録処理と情報の検索処理とで動作及び特性が異なる点に着目した。なお、本明細書において、画像情報記録検索システムは画像情報検索システムを含むものであり、画像情報記録検索システムの検索に関する記載は画像情報検索システムにも適用される。
 画像情報を記録する場合、画像情報を担持した情報光と、参照光とを記録媒体に照射し、情報光と参照光とを干渉させて形成されたホログラムによって、ホログラム記録層内の感光性材料に光反応を生じさせ、ホログラム記録層にホログラムを定着させる必要がある。そして、ホログラムが記録されることで記憶容量が一杯となった記録媒体は、それ以上、画像情報を記録することはできないが、画像情報が蓄積されたデータベースとして検索の照合対象として使用されるものであり、更なる画像情報を記録する場合は、別の記録媒体に記録されることになる。また、画像情報の記録は、画像情報が逐次追加される可能性はあるが、データベースに登録される情報量を上限とする有限な処理である。つまり、一度記録された画像情報は、基本的には再度記録する必要がない。
 一方、画像情報を検索する場合、記録されたホログラムに対し、検索光を照射してホログラムから再生される再生光の強度を相関値として検出する。そして、画像情報の検索時には、検索対象が入力された後、できるだけ早く照合対象内に検索した画像情報が存在するか否かを判別できることが好ましい。また、照合対象であるデータベースは、情報量によっては複数の記録媒体に記録されており、全ての照合対象を検索するためには複数の記録媒体に対して検索光を照射しなければならない。さらに、例えば顔認証や指紋認証などのバイオメトリクス認証を利用した管理システムにおける本人確認のように、同じ検索対象を何度も検索する必要があり、無限に検索処理は実行されることがある。
 画像情報記録システムには、ホログラム記録層内の感光性材料に光反応を生じさせホログラムを定着させるために強い光エネルギーが必要であるが、画像情報検索システムでは、単に再生光の強度を検出するだけであり、記録時と比較して弱い光エネルギーでよい。なお、検索光の光エネルギーは、単に再生光の強度を検出するだけであり、再生光の強度分布を検出する従来の情報記録再生装置と比較しても、弱い光エネルギーで十分である。また、画像情報検索システムでは、直ちに照合対象内に検索した画像情報が存在するか否かを判別する必要があり、画像情報記録システムと比較すると、迅速性が求められる。さらに、記憶容量が一杯となった記録媒体は、画像情報記録システムではそれ以上利用せず、画像情報検索システムでのみ利用される。
 本発明では、これらの動作及び特性の違いを考慮して、画像情報記録システムと画像情報検索システムとでそれぞれの特性に見合った構成を採用することを特徴とするものであり、特に迅速性の要求される検索時における処理速度の向上を目指したものである。
 以上の点を鑑みて、本発明の画像情報検索システムは、ホログラム記録層を備えたホログラフィック記録媒体に記録された画像情報を検索する画像情報検索システムであって、ホログラフィック記録媒体のホログラム記録層には、参照光と記録用の二次元パターン情報によって空間的に変調された情報光とを干渉させて形成されたホログラムが記録されており、CWレーザーから射出された光を検索用の二次元パターン情報によって空間的に変調して検索光を生成し、ホログラフィック記録媒体を回転させながら検索光をホログラム記録層に記録されたホログラムに照射し、ホログラムから再生された再生光の光強度を再生光検出器によって検出し、再生光の光強度の値を用いて記録用の二次元パターン情報と検索用の二次元パターン情報とを照合することを特徴とする。
 さらに、上記本発明の画像情報検索システムにおいて、再生光検出器が、光電子倍増管であることが好ましく、再生光を再生光検出器に対し集光する手段を有することがより好ましい。
 また、本発明の画像情報記録検索システムは、ホログラム記録層を備えたホログラフィック記録媒体に画像情報を記録し、記録された画像情報を検索する画像情報記録検索システムであって、パルスレーザーから射出された光を記録用の二次元パターン情報によって空間的に変調して情報光を生成し、ホログラフィック記録媒体を回転させながら参照光と情報光とをホログラフィック記録媒体のホログラム記録層に照射して、ホログラム記録層に参照光と情報光とを干渉させて形成されたホログラムを記録する画像情報記録システムと、CWレーザーから射出された光を検索用の二次元パターン情報によって空間的に変調して検索光を生成し、ホログラフィック記録媒体を回転させながら検索光をホログラム記録層に記録されたホログラムに照射し、当該ホログラムから再生された再生光の光強度を再生光検出器によって検出し、再生光の光強度の値を用いて記録用の二次元パターン情報と検索用の二次元パターン情報とを照合する画像情報検索システムとを有することを特徴とする。
 さらに、上記本発明の画像情報検索システムにおいて、再生光検出器が、光電子倍増管であることが好ましく、画像情報検索システムは、再生光を再生光検出器に対し集光する手段を備えていることがより好ましい。
 さらに、上記本発明の画像情報検索システムにおいて、記録用の二次元パターン情報は、記録する画像情報に対し、情報の一部を削除する不可逆な変換処理を行って作成されてもよい。
 さらに、上記本発明の画像情報検索システムにおいて、画像情報記録システムと画像情報検索システムとは、少なくとも光学系が異なる装置で構成されており、画像情報記録システムの数と比較して画像情報検索システムの数が多いことが好ましい。
 本発明の画像情報検索システムは、再生光の光強度の値を用いて記録用の二次元パターン情報と検索用の二次元パターン情報とを照合するものであるから、低出力のCWレーザーを光源として利用することができ、ホログラフィック記録媒体を回転させながら検索光をホログラム記録層に記録されたホログラムに照射し、ホログラムから再生された再生光の光強度を再生光検出器によって検出することで、ホログラム記録層に記録された複数のホログラムを連続的に再生し、照合することができる。このため、本発明の画像情報検索システムでは、記録媒体の回転速度を速くすることができ、さらに検索速度(画像情報の転送速度)も速くすることができる。また、軽量で小型のCWレーザーを使用することにより、光学系を搭載した光ピックアップを軽量で小型とすることができるので、光ピックアップを素早く移動させることができ、しかも移動の制御も容易であり、光ピックアップを移動させるために必要な駆動系も軽量化及び小型化できるので、画像情報検索システム全体を軽量化及び小型化することができる。加えて、安価なCWレーザーを使用することにより、画像情報検索システム2の製造コストを安くすることができる。
 また、本発明の画像情報記録検索システムは、画像情報記録システムでは高出力のパルスレーザーを光源として利用し、画像情報検索システムでは低出力のCWレーザーを光源として利用しているため、高出力のパルスレーザーによってホログラムを正確に記録し、低出力のCWレーザーによって画像情報を迅速に検索することができる。特に、画像情報検索システムでは上述したような優れた効果を得ることができる。その他の本発明の画像情報検索システム及び画像情報記録検索システムの効果については、以下の実施の形態において記載する。
本発明の画像情報記録検索システムを示す概略構成図 本発明の画像情報検索システムを示す概略構成図 本発明の画像情報記録システムを示す概略構成図 本発明の他の画像情報記録検索システムを示す概略ブロック図 (A)は記録時における空間光変調器の表示面を示す図、(B)は検索時における空間光変調器の表示面を示す図、(C)は再生光のパターンを示す図 データベースの検索結果を示す図 データベースにおけるエラーレートを示す図
 以下、本発明の実施の形態を図面を参照して説明するが、本発明は下記例に限定されるものではない。本発明の画像情報記録検索システムは、検索する画像情報から生成された検索用の二次元パターン情報との相関値(類似度)を直接検出できるので、様々な用途に応用することが可能である。例えば、検索画像と一致する画像を検索するだけではなく、類似する画像を検索する曖昧検索を行うことができる。また、記録する画像情報として、顔、指紋、静脈、虹彩などのバイオメトリクス情報を記録すれば、バイオメトリクス認証を利用した管理・認証システムに利用することができる。
 さらに、動画データから抽出された静止画像をデータベースとして記録するにより、動画データの照合も可能であり、動画フィルタリングシステムを構築することも可能である。最近、インターネット上で動画を共有する動画共有サービスが提供されているが、この動画共有サービスにおいて著作権侵害が大きな問題となっている。動画共有サービスとは、あるユーザーがアップロードした動画データを共有化することで、他のユーザーにもダウンロード可能な状態とさせ、動画を公開、閲覧できるようにしたサービスである。この動画共有サービスには、一日に何万件もの動画データが投稿されており、それらの動画データの中には、著作権を侵害する違法なものも多数含まれているのが現状である。例えば、映画、テレビ番組、ライブ映像、プロモーションビデオなどが著作権者に無断でアップロードされている。本発明の画像情報記録検索システムは、予め著作権により保護されている動画データをデータベースとして記録しておき、ネットワーク上のサイトにおいて閲覧可能な状態とされる動画データの静止画像をデータベースと照合することにより、違法な動画データを特定することができ、検閲することができる。
 図1は、本発明の画像情報記録検索システムの一実施形態を示す概略構成図である。画像情報記録検索システム1は、検索の照合対象となる画像情報を記録してデータベースを作成するシステムと記録された画像情報の検索とを行うシステムとを具備しており、ホログラフィック記録媒体20、情報処理装置30及び光学系40とを有している。図1の画像情報記録検索システム1の光学系40は、記録用の光源41と検索用の光源54を選択して使用できる構成であり、1台の装置において画像情報の記録及び画像情報の検索が可能である。
 図1において、ホログラフィック記録媒体20は、表面保護層22と反射層23との間に感光材料を含有するホログラム記録層21を挟み込んだ反射型の記録媒体である。ホログラフィック記録媒体20のホログラム記録層21には、情報光と参照光とを干渉させて形成されたホログラム24が記録される。ホログラム記録層21の厚さをホログラムの干渉縞の間隔に比べて大きく設計し、ホログラムをホログラム記録層21の厚み方向に立体的に記録することにより、画像情報を体積型のホログラム(厚いホログラムともいう)として記録することができる。また、ホログラフィック記録媒体20は、ホログラム24の位置を特定するためのアドレス情報及び/又は位置合わせ(サーボ)を行うためのサーボ情報(以下、アドレス情報とサーボ情報を合わせて「アドレス等情報」と呼ぶ)が記録されたアドレス層を備えていることが好ましい。例えば、アドレス等情報として、反射層23の表面に設けられた凹凸形状によってピットを形成し、反射層23をアドレス層としてもよい。ホログラフィック記録媒体20の表面保護層22として、ガラス基板を利用すると、温度変化等による収縮等を抑えることができる。反射層23としてはアルミニウム等の金属材料を利用することができる。
 ホログラフィック記録媒体20は、記録媒体保持機構25によって保持されており、好ましくは、記録媒体保持機構25に回転駆動装置を取付け、記録媒体20を回転可能な構成とする。さらに、ホログラフィック記録媒体20は、位置合わせ(サーボ)を行うために、光学系に対し相対的に移動可能に構成されており、ホログラフィック記録媒体20を移動させる場合は、X軸、Y軸又はZ軸方向に移動する駆動装置を取付ける。なお、X軸方向は光軸に対して垂直な任意の方向、Y軸方向は光軸及びX軸方向に対して垂直な方向、Z軸方向は、光軸と平行な方向を指す。記録速度及び検索速度を高めるためには、ホログラフィック記録媒体20を回転させながら記録及び検索することが好ましい。前述したとおり、画像情報記録検索システムは、画像情報検索システムの方が処理速度に迅速性が求められるので、特に、迅速性が求められる検索時において回転させながら検索することが好ましい。この場合、ホログラフィック記録媒体20の形状としては、円盤状とすることが好ましいが、その他の形状、例えば矩形のカード状として回転させる構成であってもよい。さらに、記録媒体を回転させつつ、光学系又は記録媒体を半径方向に移動させてトラッキングサーボを行うことができる。
 情報処理装置30は、情報記録検索システムで実行される各種の情報処理を行う。例えば、情報処理装置30は、記録する画像情報から記録用の二次元パターン情報の生成、検索する画像情報から検索用の二次元パターン情報の生成、記録した画像情報の識別情報(画像情報を特定するための情報)と対応するホログラムのアドレス情報との対応関係の記録及び再生、サーボ情報に基づくサーボ制御、検索時における相関値の演算等を行う。また、情報処理装置30は、複数の画像情報記録検索システムにおいて共通させることができ、例えば複数の記録媒体を並列的に検索するために、複数の光学系40を備えた複数の画像情報検索システムを構築する場合に、光学系40及び記録媒体は個々の画像情報検索システムに独立して設け、情報処理装置30は共通して設けてもよい。
 記録用の二次元パターン情報は、記録する画像情報をそのまま、或いは記録する画像情報に前処理により加工して生成される。記録する画像情報の情報量が多い場合、そのまま記録用の二次元パターン情報として利用すると、演算時間が長くなり、膨大な記録容量が必要となる。このため、記録する画像情報に対し、情報量を減らす前処理を行うことが好ましい。また、記録する画像情報を所定の解像度、画質に規格化するためにも前処理を行うことが好ましい。検索用の二次元パターン情報は、記録されたホログラムの形成に使用された記録用の二次元パターン情報と同じ方法で生成されることが好ましい。前処理として、例えば、2値画像化処理、解像度を変更する画像処理、画像の一部を切り取るトリミング処理、エッジ強調処理を行うことができる。
 特に、記録用又は検索用の二次元パターン情報を生成する際に、2値画像化処理を行うことが好ましい。2値画像化処理とは、各画素を白と黒(0と1)の2色によって表示される画像に変換する処理であり、一般的な写真などの画像情報は、各画素が少なくともグレースケールの階調情報(8ビット)、多くの場合はカラーの色情報(24ビット)を有しているので、2値画像化処理を行うことで、記録用又は検索用の二次元パターン情報の容量を著しく減少させることができる。2値画像化処理された2値の記録用の二次元パターン情報と、同じく2値画像化処理された2値の検索用の二次元パターン情報とを相関演算して照合すると、フルカラーの画像同士やグレースケールの画像同士を相関演算した時よりも、演算速度が速くなることは勿論であるが、照合精度も向上することがあり、2値画像化処理は極めて有用な処理である。しかも、2値画像化処理された画像の演算量は軽量であるから、LSIなどの集積回路によってハードウェアとして専用の演算装置を作製することも可能である。
 2値画像化処理の手法としては、固定しきい値法と領域指定法の2種類に大別することができる。前者はグレースケール階調のある値で2値化のしきい値を決定する方法であり、後者はまず、画像全体の2値の割合を先に決めておき、濃度値のヒストグラムから、2値化のしきい値を定める方法である。2値化のしきい値をT、原画像の各画素の要素をf(i,j)、2値画像の各画素の要素をg(i,j)とすると、下記数式(1)のように定義できる。なお、画像情報がカラーの場合は、まずカラーの色情報を取り除き階調情報だけのグレースケールに変更して、2値化すればよい。
Figure JPOXMLDOC01-appb-M000001
    (1)
 また、2値画像化処理ではなく、若しくは2値画像化処理の前後に加えて、記録する画像情報や検索する画像情報に対し、解像度を変更する画像処理、画像の一部を切り取るトリミング処理、エッジ強調処理などを行ってもよい。
 2値画像化処理は、データ形式の変換処理、圧縮処理及び暗号化処理とは異なり、基本的に情報を削除するだけの不可逆な変換である。すなわち、データ形式の変換処理、圧縮処理及び暗号化処理は、元のフレーム画像に復元するため、逆変換できるような情報を自ら又は別ファイルに有している。しかし、2値画像化処理は、元のフレーム画像が持っていた色情報及び階調情報を捨て去るだけであり、2値画像それ自体では元のフレーム画像に復元することができない。また、解像度を低くする画像処理、画像の一部を切り取るトリミング処理、エッジ強調処理も基本的に情報を削除するだけの不可逆な変換である。
 元の記録する画像情報に復元できないことは、情報記録再生装置では致命的な問題点であるが、情報の検索を目的とする画像情報記録検索システムにおいては大きな問題とはならない。検索する画像情報がデータベースに登録されているか否かだけを照合する場合であれば、記録されているホログラムから記録する画像情報に復元させる必要はない。また、検索する画像情報を特定したい場合には、記録用の二次元パターン情報を記録する際に、ホログラムのアドレス情報を取得して、記録した画像情報の識別情報と対応するホログラムのアドレス情報との対応関係を別の記録媒体(半導体メモリー、ハードディスクドライブ、光メディア等)に記録しておけば、検索時に、相関値の高いホログラムのアドレス情報を取得することによって、別の記録媒体に記録した上記対応関係から、検索した画像情報と一致又は類似する画像情報の識別情報を特定することができる。なお、識別情報とは、画像情報を特定するための情報であり、例えば画像情報のタイトル、識別番号、著作者、容量、作成年月日又はデータ形式等である。
 光学系40は、ホログラフィック記録媒体20に画像情報を記録するために情報光を照射したり、検索用の画像情報とホログラフィック記録媒体20に記録されている画像情報とを光相関演算を用いて照合するために検索光を照射し、再生光を検出することができる。光学系40は、記録用光源41及び検索用光源54を有し、さらに、コリメータレンズ42、ミラー43、ビームスプリッタ44、ミラー45、空間光変調器46、偏光ビームスプリッタ47、第1のリレーレンズ48、ミラー49、第2のリレーレンズ50、ビームスプリッタ51、四分の一波長板52、対物レンズ53、コリメータレンズ55、シャッタ56、アパーチャー57、集光レンズ58、再生光検出器59を有している。さらにアドレス用レーザー60、ビームスプリッタ61、ミラー62及びアドレス光検出器63を有していることが好ましい。図1において、記録時の光路を実線で、検索時の光路(再生光の光路を含む)を点線で、アドレス光の光路を一点鎖線で示している。
 記録用光源41は、ホログラムを記録するための情報光及び参照光の光源となるものであり、断続的にレーザー光を出す高出力のパルスレーザーが使用される。パルスレーザーは、複数の波長で位相をそろえて同時に発振させるモード同期法やQスイッチ法によって瞬間的に非常に強いパワーを出すことができる。記録用光源41としては、例えば、YAGレーザーなどの固体レーザやHe-Neレーザーなどの気体レーザーを使用することができる。記録用光源41は、ホログラフィック記録媒体20のホログラム記録層21内の感光材料が感度を示す波長の光を選択する。
 検索用光源54は、画像情報を検索するための検索光の光源となるものであり、連続的にレーザー光を出すCWレーザー(Continuous wave laser)が使用される。CWレーザーは、パルスレーザーと比べると瞬間的なパワーは低いが、一定の強度の光を照射し続けることができる。検索用光源54としては、パルスレーザーと比較して、小型、軽量及び安価である半導体レーザーを使用することが好ましい。検索用光源54は、ホログラム記録層21内に記録されたホログラムと干渉する波長の光を使用し、好ましくは記録用光源41からの光の波長と同じ波長の光を選択する。
 コリメータレンズ42は、記録用光源41から射出された発散光を略平行光とするものであり、コリメータレンズ55は、検索用光源54から射出された発散光を略平行光とするものである。シャッタ56は、CWレーザーである検索用光源54から射出される光の照射を制御するものであり、所定の位置に到達するまでの間、オフ状態として遮光し、所定の位置に到達したらオン状態として照射する。
 ミラー43及びビームスプリッタ44は、記録用光源41から射出された光と検索用光源54から射出された光とを同じ光軸にするために配置されている。ミラー43及びビームスプリッタ44に代えて、記録用光源41から射出された光と検索用光源54から射出された光とを同軸にする他の手段を採用することもできる。例えば、ミラー43によって、記録用光源41からの光を反射させるのではなく、検索用光源54から射出された光を反射させ、ビームスプリッタ44によって記録用光源41からの光と同軸とする構成としてもよいし、記録用光源41と検索用光源54を移動可能に設けて、記録時と検索時で両者の配置を交換させる構成としてもよい。
 空間光変調器46は、複数の画素を有し、各画素毎に光の属性を変化させることで、光を空間的に変調することができるものであり、例えば液晶表示装置やDMD(Digital Micromirror Device)を利用することができる。図1においては空間光変調器46としてDMDを用いているため、ミラー45によって、記録用光源41又は検索用光源54からの光を空間光変調器46に向けて反射させている。空間光変調器46の一部の表示領域に記録用の二次元パターン情報を表示し、他の一部の表示領域に参照光のパターンを表示させることにより、情報光及び参照光を生成することができる。また、空間光変調器46の記録用の二次元パターン情報を表示した表示領域に検索用の二次元パターン情報を表示させることにより、検索光を生成することができる。
 参照光のパターンは、空間光変調器46の記録用の二次元パターン情報を表示した表示領域の周囲に少なくとも一つ配置される。参照光のパターンとしては、一塊の数画素~数百画素の領域をオン画素とし、参照光を強度分布のない一様な光としてもよいし、かかる一塊の数画素~数百画素の領域を複数設けて、全体として空間的に変調された強度分布を有する光としてもよいし、更に広い領域において、オン画素とオフ画素からなるパターンによって空間的に変調された強度分布を有する光としてもよい。再生光のパターンの大きさを再生光検出器の受光領域よりも小さくすれば、アパーチャー57や集光レンズ58を設けなくても、再生光の結像する位置に再生光検出器を配置するだけで再生光の光強度を検出できる。
 偏光ビームスプリッタ47は直交する偏光方向の一方を透過し、他方を反射するものであり、記録媒体20に向かう情報光、参照光及び検索光を透過し、記録媒体によって再生された再生光を再生光検出器59に向けて反射する。光学系の構成によっては、情報光、参照光及び検索光を記録媒体20に向けて反射し、再生光検出器59に向かう再生光を透過する構成であってもよい。
 第1及び第2のリレーレンズ48、50は、空間光変調器46に表示された画像を対物レンズ53の焦点面に結像させる。対物レンズ53によってフーリエ変換された情報光及びフーリエ変換された参照光とを記録媒体において干渉させてホログラムを記録する場合やホログラムに対しフーリエ変換された検索光を照射する場合には、対物レンズ53の入射瞳面において情報光、参照光及び検索光の空間変調パターンが結像されている必要がある。ミラー49は、第1及び第2のリレーレンズ48、50間の焦点位置に配置されており、情報光、参照光及び検索光を反射して、光学系40の大きさを小型化するために設けられている。
 ビームスプリッタ51は、アドレス用レーザー60からの光を記録媒体20に向けるためのものである。四分の一波長板52は、直線偏光を円偏光に変換するものであり、2回透過させることで直線偏光を90度回転させることができる。この四分の一波長板52によって参照光は、照射時には偏光ビームスプリッタ47を透過し、再生光として再生された時には偏光ビームスプリッタ47によって反射される。
 対物レンズ53は、情報光及び参照光をフーリエ変換して記録媒体20のホログラム記録層21に照射して、ホログラム記録層に情報光と参照光とを干渉させて形成されたホログラムを記録する。また、対物レンズ53は、検索光をフーリエ変換して記録媒体20のホログラム記録層21に記録されたホログラム24に照射する。検索光とホログラム24との干渉により再生された再生光は、記録媒体20から対物レンズ53に向かって進行し、対物レンズ53を通過する。
 アパーチャー57は、記録媒体20で反射された検索光を遮光し、再生された再生光のみを再生光検出器59に通過させる開口を有している。アパーチャー57を第1のリレーレンズ48の焦点面に配置すると、検索光の回折光によるノイズを低減することができ好ましい。図1においては、アパーチャー57の中心に開口が設けられているが、中心に限られるものではなく、再生光が通過する位置に、再生光が通過できる形状の開口をアパーチャー57に設ければよい。例えば、再生光が複数の場合は、アパーチャー57に複数の開口を設ければよいし、再生光が空間的に変調されている場合(つまり、記録時における参照光が二次元パターン情報で空間的に変調されている場合)は、参照光のパターンと相似の形状の開口を設ければよい。
 再生光検出器59は、再生された再生光の光強度を検出するものである。再生光のパターンが再生光検出器の受光領域よりも小さい場合(つまり、記録時における参照光のパターンが再生光検出器の受光領域よりも小さい場合)は、再生光検出器59として、光電子倍増管(photomultiplier tube:PMT)のような非常に感度の高い光検出素子や、安価で小型な半導体検出器、例えばピンフォトダイオード、CMOSセンサ、CCDセンサ等を利用することができる。従来のホログラムを用いた光情報記録再生装置の再生光検出手段は、二次元パターン情報を再生するため、光検出素子が二次元的に配置されたCMOSセンサやCCDセンサが必要であったが、本発明の再生光検出器59は、再生された再生光の光強度を検出するだけでよいので光検出素子が一つの光検出器を利用することができる。また、再生光のパターンが空間的に変調されており強度分布を有している場合(つまり、記録時における参照光が複数の場合や二次元パターン情報で空間的に変調されている場合)や再生光検出器の受光領域よりも大きい場合は、図1に示すように、集光レンズ58によって集光することで、光検出素子が一つの光電子倍増管や半導体検出器を採用することができる。また、再生光のパターンが再生光検出器の受光領域よりも小さい場合であっても、集光レンズ58を利用すれば信頼性を高めることができる。なお、光検出素子が二次元的に配置された光強度分布を検出できる光検出器でも、全ての光検出素子の強度を総和することで再生光の光強度を検出することができ、再生光検出器59として利用できる。
 このように、本発明の再生光検出器59では、再生された再生光の光強度を検出するだけでよいので、数Mbpsから数Gbpsの転送速度のピンフォトダイオードやPMTを利用でき、超高速で検索を実行することができる。従来の光検出素子が二次元的に配置されたCMOSセンサやCCDセンサは、フレームレートが30fpsから1000fps程度であったため、1秒間に30~1000個のホログラムしか再生することができず、光検出素子の性能が再生速度を制限していた。
 アドレス用レーザー60、ビームスプリッタ61、ミラー62及びアドレス光検出器63は、記録媒体20にアドレス層を設けた時に、アドレス層からアドレス等情報を取得して照射位置を特定したり位置合わせするために使用される。アドレス用レーザー60としては、ホログラム記録層21の感光材料が感光しない波長が好ましく、赤色光等の比較的長波長の半導体レーザを利用することが好ましい。アドレス光検出器63としては、安価で小型な半導体検出器を使用することができる。
 続いて、アドレス用レーザー60によるアドレス等情報を取得する動作を簡単に説明する。アドレス用レーザー60から照射されたアドレス光は、ビームスプリッタ61を透過してミラー62によって反射され、さらにビームスプリッタ51によって反射され、四分の一波長板52を透過し、対物レンズ53によって記録媒体20のアドレス層に照射される。記録媒体20のアドレス層によってアドレス等情報を取得した反射光は、光学系53、52、51、62を逆方向に通過し、ビームスプリッタ61によって反射され、アドレス光検出器63で検出される。
 次に、図1の画像情報記録検索システムにおける画像情報記録システムとしての動作を簡単に説明する。記録用光源41から照射された光は、コリメータレンズ42によって略平行光とされ、ミラー43及びビームスプリッタ44によって反射され、検索用光源54から射出された光と同じ光軸とされる。略平行光は、ミラー45によって空間光変調器46に向かって反射され、空間光変調器46に表示された記録用の二次元パターン情報及び参照光のパターンによって空間的に変調され、情報光及び参照光が生成される。そして、情報光及び参照光は、偏光ビームスプリッタ47を透過し、第1及び第2のリレーレンズ48、50によって伝達され、その途中ミラー49によって反射され、ビームスプリッタ51を透過し、四分の一波長板52によって円偏光に変換され、対物レンズ53によってフーリエ変換されて記録媒体20のホログラム記録層21に照射される。この結果、ホログラム記録層21には、情報光と参照光との干渉によって形成されたホログラムが記録される。
 ここで、本発明の画像情報記録システムでは、記録用光源41として高出力のパルスレーザーを使用しているため、瞬間的に照射される高出力の情報光及び参照光によってホログラムが記録されるので、記録媒体20を回転させながら複数のホログラムを記録できる。すなわち、回転する記録媒体20に対し、パルス状の情報光及び参照光を照射すると、最初のパルスの情報光及び参照光は、回転する記録媒体20の所定の位置に瞬間的に照射され、最初のホログラムが記録され、次のパルスの情報光及び参照光は、回転により最初のホログラムから移動した記録媒体20の別の位置に瞬間的に照射され、次のホログラムが記録される。そして、記録媒体20を回転させながら光学系40を回転の中心から半径方向に連続的に移動させることにより、複数のホログラムを螺旋状に配列させて記録することができ、記録媒体20の全面にホログラムを比較的高速で記録することができる。なお、記録媒体20を回転させながら光学系40を回転の中心から半径方向に段階的に移動させれば、複数のホログラムを同心円状に配列させて記録することができる。
 さらに、図1の画像情報記録検索システムにおける画像情報検索システムとしての動作を簡単に説明する。検索用光源54から照射された光は、コリメータレンズ55によって略平行光とされ、シャッタ56がオン状態の時にシャッタ56を通過する。その後、略平行光は、ビームスプリッタ44を通過し、ミラー45によって空間光変調器46に向かって反射され、空間光変調器46に表示された検索用の二次元パターン情報によって空間的に変調され、検索光が生成される。そして、検索光は、偏光ビームスプリッタ47を透過し、第1及び第2のリレーレンズ48、50によって伝達され、その途中ミラー49によって反射され、ビームスプリッタ51を透過し、四分の一波長板52によって円偏光に変換され、対物レンズ53によってフーリエ変換されて記録媒体20のホログラム記録層21に記録されたホログラム24に照射される。この結果、ホログラム24と検索光とが干渉して、記録時の参照光に相当する再生光が再生される。
 反射層23で反射された再生光は、記録媒体20から射出され、照射時とは反対方向に、対物レンズ53、四分の一波長板52、ビームスプリッタ51、第2のリレーレンズ50、ミラー49及び第1のリレーレンズ48を経て、偏光ビームスプリッタ47に入射する。再生光は、記録時の参照光に相当するものであり、参照光は記録媒体20に照射される際に四分の一波長板52を通過して円偏光に変換されていたので、再度、再生光として四分の一波長板52を通過することにより、四分の一波長板52以降の再生光は、参照光とは直交する偏光方向の直線偏光となっている。このため、再生光は、参照光を透過した偏光ビームスプリッタ47によって反射され、アパーチャー57を通過し、集光レンズ58によって再生光検出器59に集光される。なお、反射層23で反射された検索光は、記録媒体20から射出され、再生光と同様の光学系を経て偏光ビームスプリッタ47によって反射されるが、アパーチャー57によって遮光される。
 再生光の光強度は、ホログラム24を記録したときの記録用の二次元パターン情報と検索光の検索用の二次元パターン情報との相関値(類似度)に応じて変化し、光強度の値が大きいほど二つの二次元パターン情報が類似していることになる。したがって、再生光の光強度が、予め実験等によって定めたしきい値を超えた場合に、検索した画像情報と一致又は類似した画像情報がデータベースに記録されていると識別することができる。そして、しきい値を超えた再生光を再生したホログラムのアドレス情報を特定し、アドレス情報から、記録した画像情報の識別情報を特定すれば、検索した画像情報に一致又は類似した画像情報の識別情報を出力することもできる。なお、複数の再生光の光強度がしきい値を超えた場合には、光強度の大きなものから類似する検索結果として出力することが好ましい。
 ここで、本発明の画像情報検索システムでは、検索用光源54としてCWレーザーを使用しているため、検索光を照射しながら記録媒体20を回転させることにより、円周方向に配列して記録された複数のホログラムに対し、連続的に検索光を照射することができ、各ホログラムからの再生光の光強度も連続的に検出できるので、記録媒体20の回転速度を速くすることができ、さらに検索速度(画像情報の転送速度)も速くすることができる。そして、記録媒体20を回転させながら光学系40を回転の中心から半径方向に連続的又は段階的に移動させることにより、記録媒体20の全面に記録された複数のホログラムを高速で検索することができる。仮に、検索用光源54としてパルスレーザーを使用した場合には、各ホログラムが検索光の照射位置を通過するタイミングとパルスレーザーの周波数とを同期させる必要があり、回転速度の制限となり、また照射位置ずれが誤差となり、信頼性が低下してしまう。
 図2及び図3は、本発明の画像情報記録検索システムの他の実施形態を示す概略構成図であり、画像情報検索システムと画像情報記録システムとが別々の装置で独立に構成された例である。図2は画像情報検索システム2の概略構成図であり、図3は画像情報記録システムの概略構成図である。図2のような画像情報検索システム2と図3のような画像情報記録システムとが画像情報記録検索システムを構成する関係とは、画像情報記録システム3において画像情報が記録された記録媒体20を画像情報検索システム2において検索に使用できることである。なお、図2及び図3において、図1の画像情報記録検索システム1と共通する構成には同じ符号を付し、詳細な説明を省略する。
 図2の画像情報検索システム2は、記録媒体20に記録された画像情報の検索を行うシステムであり、ホログラフィック記録媒体20、情報処理装置30及び光学系40’とを有している。図2のホログラフィック記録媒体20としては、図1の画像情報記録検索システム1や図3の画像情報記録システム3において画像情報が記録された記録媒体20を使用することができる。光学系40’は、ホログラフィック記録媒体20に検索光を照射して再生光を検出することができる。光学系40’は、検索用光源54、コリメータレンズ55、シャッタ56、ミラー45、空間光変調器46、偏光ビームスプリッタ47、第1のリレーレンズ48、ミラー49、第2のリレーレンズ50、ビームスプリッタ51、四分の一波長板52、対物レンズ53、アパーチャー57、集光レンズ58、再生光検出器59を有している。さらにアドレス用レーザー60、ビームスプリッタ61、ミラー62及びアドレス光検出器63を有していることが好ましい。図2において、検索時の光路(再生光の光路を含む)を実線で、アドレス光の光路を一点鎖線で示している。
 図2の画像情報検索システム2において、検索用光源54から照射された光は、コリメータレンズ55によって略平行光とされ、シャッタ56がオン状態の時にシャッタ56を通過する。その後、略平行光は、ミラー45によって空間光変調器46に向かって反射され、空間光変調器46に表示された検索用の二次元パターン情報によって空間的に変調され、検索光が生成される。そして、検索光は、偏光ビームスプリッタ47を透過し、第1及び第2のリレーレンズ48、50によって伝達され、その途中ミラー49によって反射され、ビームスプリッタ51を透過し、四分の一波長板52によって円偏光に変換され、対物レンズ53によってフーリエ変換されて記録媒体20のホログラム記録層21に記録されたホログラム24に照射される。この結果、ホログラム24と検索光とが干渉して、記録時の参照光に相当する再生光が再生される。
 反射層23で反射された再生光は、記録媒体20から射出され、照射時とは反対方向に、対物レンズ53、四分の一波長板52、ビームスプリッタ51、第2のリレーレンズ50、ミラー49及び第1のリレーレンズ48を経て、偏光ビームスプリッタ47によって反射され、アパーチャー57を通過し、集光レンズ58によって再生光検出器59に集光される。なお、反射層23で反射された検索光は、記録媒体20から射出され、再生光と同様の光学系を経て偏光ビームスプリッタ47によって反射されるが、アパーチャー57によって遮光される。
 本発明の画像情報検索システム2では、検索用光源54としてCWレーザーを使用しているため、検索光を照射しながら記録媒体20を回転させることにより、円周方向に配列して記録された複数のホログラムに対し、連続的に検索光を照射することができ、各ホログラムからの再生光の光強度も連続的に検出することができるので、記録媒体20の回転速度を速くすることができ、さらに検索速度(画像情報の転送速度)も速くすることができる。さらに、軽量で小型のCWレーザーを使用することにより、画像情報検索システム2の光学系40’を搭載した光ピックアップも従来のパルスレーザーを使用したものに比べて軽量で小型とすることができるので、光ピックアップを素早く移動させることができ、しかも移動の制御も容易である。加えて、光ピックアップを移動させるために必要な駆動系も軽量化及び小型化できるので、画像情報検索システム2全体を軽量化及び小型化することができる。しかも、安価なCWレーザーを使用することにより、画像情報検索システム2の製造コストを安くすることができる。また、CWレーザーはパルスレーザーに比べて消費電力が小さいので、この点においても有用である。
 図3の画像情報記録システム3は、記録する画像情報をホログラフィック記録媒体20に記録するシステムであり、ホログラフィック記録媒体20、情報処理装置30及び光学系40”とを有している。光学系40”は、ホログラフィック記録媒体20に画像情報を記録するために情報光及び参照光を照射することができる。光学系40”は、記録用光源41、コリメータレンズ42、ミラー45、空間光変調器46、偏光ビームスプリッタ47、第1のリレーレンズ48、ミラー49、第2のリレーレンズ50、ビームスプリッタ51、四分の一波長板52、対物レンズ53を有している。さらにアドレス用レーザー60、ビームスプリッタ61、ミラー62及びアドレス光検出器63を有していることが好ましい。図3において、記録時の光路を実線で、アドレス光の光路を一点鎖線で示している。
 図3の画像情報記録システムにおいて、記録用光源41から照射された光は、コリメータレンズ42によって略平行光とされ、略平行光は、ミラー45によって空間光変調器46に向かって反射され、空間光変調器46に表示された記録用の二次元パターン情報及び参照光のパターンによって空間的に変調され、情報光及び参照光が生成される。そして、情報光及び参照光は、偏光ビームスプリッタ47を透過し、第1及び第2のリレーレンズ48、50によって伝達され、その途中ミラー49によって反射され、ビームスプリッタ51を透過し、四分の一波長板52によって円偏光に変換され、対物レンズ53によってフーリエ変換されて記録媒体20のホログラム記録層21に照射される。この結果、ホログラム記録層21には、情報光と参照光との干渉によって形成されたホログラムが記録される。
 本発明の画像情報記録システム3では、記録用光源41として高出力のパルスレーザーを使用しているため、記録媒体20を回転させながら、情報光及び参照光を照射することることにより、円周方向に複数のホログラムを配列させて記録することができる。また、記録媒体20の回転速度や光学系40”の移動速度などについて、記録処理の制御だけを行えばよいので、記録処理及び検索処理の両方が必要な図1の画像情報記録検索システム1やホログラムの記録再生を行うことができる従来の光情報記録再生装置に比べて、制御が容易であり、また検索や再生のみに必要な部品が不要なので、画像情報記録システム3の製造コストを安くすることができる。
 図4は、図2に示すような画像情報検索システム2と図3に示すような画像情報記録システム3とを用いた画像情報記録検索システム4の概略ブロック図である。図4(A)の画像情報記録検索システム4は、1台の画像情報記録システム3と3台の画像情報検索システム2とから構成されている。図4(B)の画像情報記録検索システム4も、1台の画像情報記録システム3と3台の画像情報検索システム2とから構成されているが、図4(B)では、情報処理装置30を各画像情報検索システム2及び画像情報記録システム3で共通に一つ設けた構成である。このように、画像情報記録システム3の数と比較して画像情報検索システム2の数を多くすることにより、複数枚の記録媒体に記録されたデータベースの検索を同時に実行できる。複数枚の記録媒体に記録されたデータベースとしては、あるデータベースAが複数枚の記録媒体にわたって記録されていてもよいし、各記録媒体にそれぞれ異なるデータベースA,B,Cが記録されていてもよい。
 図4(A)及び(B)の画像情報記録検索システム4では、記録する画像情報は、画像情報記録システム3において、記録媒体20に記録される。情報が記録された記録媒体20は、何れかの画像情報検索システム2に移動され、検索に利用される。図4(A)の各情報処理装置30は、ネットワークによって接続されていてもよい。特に、あるデータベースAが複数枚の記録媒体にわたって記録されており、それぞれの記録媒体を異なる画像情報検索システム2で検索する場合は、各情報処理装置30を接続させることが好ましい。
 図4(A)及び(B)のような画像情報記録検索システム4は、画像情報の検索用サーバーとして利用することができる。画像情報検索システム2と画像情報記録システム3の割合は、記録する情報量又は頻度が多い場合には、画像情報記録システム3の割合を増やし、検索する情報量又は頻度が多い場合には、画像情報検索システム2の割合を増やせばよい。
 なお、画像情報記録システム3の代わりに、図1に示したような1台で構成された画像情報記録検索システム1を採用することもできる。この場合、画像情報記録検索システム1が画像情報を記録していないときは、検索処理を行うことができ、画像情報記録検索システム4全体における検索処理能力を向上させることができる。
[実施例]
 図1に示すように、1台の装置において記録用の光源と検索用の光源を選択して使用できる構成の画像情報記録検索システムを作製した。記録用の光源には、波長約532nmの最大光出力8WパルスのQスイッチ方式Nd:YAGレーザーを使用し、検索用の光源には、波長約532nmの0.2WのCWレーザーを使用した。再生光検出器には、高感度光センサーとして、光電子倍増管を採用した。ちなみに、アドレス層からアドレス等情報を取得するための光学系も採用しており、アドレス用レーザーには、655nm±5nmの赤色レーザーを使用した。装置は、直径120mmの反射型のホログラフィック記録媒体を保持可能に構成されており、回転駆動装置によって記録媒体を2000rpmまでの回転速度で回転させることが可能である。なお、ホログラフィック記録媒体のホログラム記録層は500μmの厚みであり、空間光変調器としては、320×240の画素数のDMDを使用した。
 この画像情報記録検索システムを用いて記録する画像情報として30枚の顔画像を記録してデータベースを作成した。記録する顔画像は、前処理により、64×128画素の2値画像に変換されて記録用の二次元パターン情報とされている。図5(A)は、記録時における空間光変調器の表示面を示す図であり、右側の顔画像が記録用の二次元パターン情報71であり、略中央の一塊の2×2画素のオン画素の領域が参照光のパターン72である。なお、本実施例においては、参照光として、一塊の2×2画素の輝点を用いたので、図1の画像情報記録検索システムにおける集光レンズ58を省略し、アパーチャー57の開口近傍に再生光検出器59を配置した構成とすることもできる。
 まず、ホログラフィック記録媒体を300rpmで回転させ、Qスイッチ方式Nd:YAGレーザーからパルスレーザー光を射出し、図5(A)のように、参照光のパターン72と1枚目の顔画像に基づく記録用の二次元パターン情報71が表示された空間光変調器において参照光と空間的に変調された情報光とを生成し、対物レンズによって参照光と情報光をホログラフィック記録媒体に照射し、ホログラム記録層に第1のホログラムを記録した。次に、空間光変調器に表示される記録用の二次元パターン情報71として、2枚目の顔画像に基づく記録用の二次元パターン情報を表示して、先ほどのホログラムに対して、トラック方向に10μmだけ移動させた位置に第2のホログラムを記録した。ホログラムの直径は数百μmあるので、第1のホログラムと第2のホログラムとは一部重畳したシフト多重となっている。以下同様に30枚目の顔画像に基づくホログラムまで記録し、10μmピッチでシフト多重記録された30個のホログラムを得ることができた。
 この30個のホログラムが記録されたホログラフィック記録媒体を検索する。検索する画像情報は、記録時における記録用の二次元パターン情報を生成するときと同じ前処理によって、画像サイズ64×128画素の2値画像に変換されて検索用の二次元パターン情報が生成される。図5(B)は、検索時における空間光変調器の表示面を示す図であり、図5(A)において記録用の二次元パターン情報71が表示された領域に、検索用の二次元パターン情報73が表示される。
 検索時には、ホログラフィック記録媒体を300rpmで回転させ、検索用光源である0.2WのCWレーザーから連続的にレーザー光を照射し、図5(B)のように、検索用の二次元パターン情報73が表示された空間光変調器において空間的に変調された検索光を生成し、対物レンズによって検索光をホログラフィック記録媒体のホログラム記録層に記録された30個のホログラムに対し連続的に照射した。そして、各ホログラムから再生された再生光は、再生光検出器によって光強度の値が連続的に検出される。図5(C)は、対物レンズの射出瞳面に結像した再生光のパターン74であり、記録時における参照光と同じ形状である。
 図6は、記録した30枚の画像情報のうちの1枚を検索用画像として検索したときの検索結果を示すものであり、縦軸は任意単位の相関値(再生光の強度)であり、横軸は相関マップ(時間)である。連続的に検出された相関値は、各ホログラムに照射されたときに再生光が再生されてピークが形成されるが、一つだけ明らかに相関値の高いピーク81が存在する。このピーク81は、検索用画像と同じ画像情報を記録したときのホログラムを再生したときに得られたものである。図6から、相関値を予め設定された閾値と比較することにより、検索用画像がデータベースに登録されているか否かを照合できることを示している。例えば、図6において、点線で示す相関値を閾値82として設定しておけば、得られた相関値が、閾値82よりも大きい場合は検索用画像がデータベースに登録されており、小さい場合は検索用画像がデータベースに登録されていないと判断できる。さらに、閾値よりも大きい再生光を発生させたホログラムを特定することで、検索用画像の特定も可能である。なお、図6において、検索した領域には、30枚の画像情報に基づく30個のホログラムに加え、記録に失敗したホログラムやダミーのホログラムが20個記録されていたため、50の相関値ピークが検出されている。
 図7は、上記30枚の顔画像のデータベースにおけるエラーレートを示す図であり、縦軸はエラーレートで、横軸は規格化された相関値(参照光の光強度)に関する閾値である。エラーレートは、2つのデータから構成されており、一方は、記録されている画像を記録されていないと誤認した時の登録画像拒否率(FRR:False Rejection Rate)であり、他方は、異なる画像を記録された画像と誤認した時の他画像受入率(FAR:False Acceptance Rate)である。登録画像拒否率FRR及び他画像受入率FARは、それぞれ閾値を変化させた時の照合結果の正誤率から求められる。図7は、記録された30枚の顔画像をそれぞれ30枚の検索用の画像情報として、データベースと照合して取得した相関値に対し、閾値を変化させた時の登録画像拒否率FRR及び他画像受入率FARの結果である。
 登録画像拒否率FRRは、図7における右上がりのデータであり、閾値が0の場合、すなわち、どの検出結果も記録されている画像と認識する場合は0%(ただし、他画像受入率FARは最大となる)であり、閾値が高くなるとエラーレートも高くなる。他画像受入率FARは、図7における右下がりのデータであり、閾値が0の場合、すなわち、どの検出結果も記録されている画像と認識する場合に最大となり、閾値が高くなるとエラーレートが低くなる。登録画像拒否率FRRと他画像受入率FARとが交差する値は、登録画像拒否率FRRと他画像受入率FARの双方が共に小さくなる閾値であり、その時のエラーレートをEER(Equal Error Rate)と呼び、EERが一定の範囲を有する時にその範囲を閾値領域と呼ぶ。EERは小さいほど好ましく、EERが0%であれば、登録画像拒否率FRRも他画像受入率FARも0%であり、理論上はエラーが発生しない。閾値領域の広さは照合の信頼性を示し、広いほど照合の信頼性が高いことを意味する。図7において、閾値領域の範囲83を一点鎖線で示す。なお、類似した画像の照合も可能とするために、敢えて実際に設定する閾値を閾値領域の範囲外であり、閾値領域の最小値よりも小さい値として、他画像受入率FARを高く、登録画像拒否率FRRを小さくしてもよい。
 図7に示すとおり、300rpmで検索した結果、EER0%、閾値領域0.9という非常に良好な検索結果を得ることができた。かかる300rpmの検索は、1秒間に記録媒体が5回転することになり、直径120mmの円周上に10μm間隔でホログラムを記録すると、1周当たり37699個(120×π÷10-3)のホログラムを記録でき、各ホログラムの最大情報量は空間光変調器の表示画素数である320×240ビットであるから、1秒間で最大約14Gビット(5×37699×320×240)のデータを検索したことになる。これは、コンピュータによる情報演算を用いた検索処理であれば、14Gbpsのデータ転送速度が必要であることを意味している。しかし、本発明の画像情報検索システムにおいては、相関値である再生光の光強度の値を検出するだけでよいので、14Gbpsのデータ転送速度のシステムを構築する必要がなく、せいぜい数Mbpsのデータ転送速度の再生光検出器を利用すれば検索できるのである。 

Claims (8)

  1.  ホログラム記録層を備えたホログラフィック記録媒体に記録された画像情報を検索する画像情報検索システムであって、
     前記ホログラフィック記録媒体のホログラム記録層には、参照光と記録用の二次元パターン情報によって空間的に変調された情報光とを干渉させて形成されたホログラムが記録されており、
     CWレーザーから射出された光を検索用の二次元パターン情報によって空間的に変調して検索光を生成し、
     前記ホログラフィック記録媒体を回転させながら前記検索光を前記ホログラム記録層に記録されたホログラムに照射し、
     前記ホログラムから再生された再生光の光強度を再生光検出器によって検出し、
     前記再生光の光強度の値を用いて前記記録用の二次元パターン情報と前記検索用の二次元パターン情報とを照合することを特徴とする画像情報検索システム。
  2.  前記再生光検出器が、光電子倍増管であることを特徴とする請求項1に記載の画像情報検索システム。
  3.  前記再生光を前記再生光検出器に対し集光する手段を有することを特徴とする請求項1又は2に記載の画像情報検索システム。
  4.  ホログラム記録層を備えたホログラフィック記録媒体に画像情報を記録し、記録された画像情報を検索する画像情報記録検索システムであって、
     パルスレーザーから射出された光を記録用の二次元パターン情報によって空間的に変調して情報光を生成し、前記ホログラフィック記録媒体を回転させながら参照光と前記情報光とを前記ホログラフィック記録媒体のホログラム記録層に照射して、前記ホログラム記録層に前記参照光と前記情報光とを干渉させて形成されたホログラムを記録する画像情報記録システムと、
     CWレーザーから射出された光を検索用の二次元パターン情報によって空間的に変調して検索光を生成し、前記ホログラフィック記録媒体を回転させながら前記検索光を前記ホログラム記録層に記録されたホログラムに照射し、当該ホログラムから再生された再生光の光強度を再生光検出器によって検出し、前記再生光の光強度の値を用いて前記記録用の二次元パターン情報と前記検索用の二次元パターン情報とを照合する画像情報検索システムとを有することを特徴とする画像情報記録検索システム。
  5.  前記再生光検出器が、光電子倍増管であることを特徴とする請求項1に記載の画像情報記録検索システム。
  6.  前記画像情報検索システムは、前記再生光を前記再生光検出器に対し集光する手段を備えたことを特徴とする請求項4又は5に記載の画像情報記録検索システム。
  7.  前記記録用の二次元パターン情報は、記録する画像情報に対し、情報の一部を削除する不可逆な変換処理を行って作成されることを特徴とする請求項4乃至6の何れか1項に記載の画像情報記録検索システム。
  8.  前記画像情報記録システムと前記画像情報検索システムとは、少なくとも光学系が異なる装置で構成されており、前記画像情報記録システムの数と比較して前記画像情報検索システムの数が多いことを特徴とする請求項4乃至7の何れか1項に記載の画像情報記録検索システム。
PCT/JP2008/054160 2008-03-07 2008-03-07 画像情報検索システム及び画像情報記録検索システム WO2009110094A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/054160 WO2009110094A1 (ja) 2008-03-07 2008-03-07 画像情報検索システム及び画像情報記録検索システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/054160 WO2009110094A1 (ja) 2008-03-07 2008-03-07 画像情報検索システム及び画像情報記録検索システム

Publications (1)

Publication Number Publication Date
WO2009110094A1 true WO2009110094A1 (ja) 2009-09-11

Family

ID=41055673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054160 WO2009110094A1 (ja) 2008-03-07 2008-03-07 画像情報検索システム及び画像情報記録検索システム

Country Status (1)

Country Link
WO (1) WO2009110094A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149685A (ja) * 1986-11-24 1988-06-22 チバ−ガイギ アクチェンゲゼルシャフト 情報の光学的記録および読み出し方法
JP2005099416A (ja) * 2003-09-25 2005-04-14 Fuji Photo Film Co Ltd ホログラム記録方法及びホログラム記録材料
JP2007149264A (ja) * 2005-11-29 2007-06-14 Canon Inc 光情報処理装置およびベリファイ方法
JP2008027518A (ja) * 2006-07-21 2008-02-07 Fujifilm Corp 光記録方法及び光記録装置、並びに、光記録媒体、光再生方法及び光再生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63149685A (ja) * 1986-11-24 1988-06-22 チバ−ガイギ アクチェンゲゼルシャフト 情報の光学的記録および読み出し方法
JP2005099416A (ja) * 2003-09-25 2005-04-14 Fuji Photo Film Co Ltd ホログラム記録方法及びホログラム記録材料
JP2007149264A (ja) * 2005-11-29 2007-06-14 Canon Inc 光情報処理装置およびベリファイ方法
JP2008027518A (ja) * 2006-07-21 2008-02-07 Fujifilm Corp 光記録方法及び光記録装置、並びに、光記録媒体、光再生方法及び光再生装置

Similar Documents

Publication Publication Date Title
US8045423B2 (en) Search method
US7715072B2 (en) Hologram retrieval method and holographic recording and reproducing apparatus
US20040165518A1 (en) Optical information-recording medium, optical information recording apparatus and optical information reproducing apparatus including optical information-recording medium and method for manufacturing polarization changing layer
US7869106B2 (en) Holographic recording method, holographic recording apparatus, holographic recording and reproducing method, holographic recording and reproducing apparatus, and holographic recording medium
EP2631909A1 (en) Holographic memory reproduction device and holographic memory reproduction method, demodulation device and demodulation method, and observation device and observation method
JP2006277873A (ja) ホログラム記録再生装置
JP2009216759A (ja) 画像情報検索システム及び画像情報記録検索システム
JP2016219088A (ja) ホログラム記録再生方法およびホログラム記録再生装置
TWI312993B (en) Optical information processing apparatus and optical information recording and reproducing methods using the same
TW200814032A (en) Optical information reproducing apparatus and optical information reproducing method using the same
WO2009110094A1 (ja) 画像情報検索システム及び画像情報記録検索システム
WO2010023932A1 (ja) 画像情報記録方法及び画像情報照合システム
Watanabe et al. Ultrahigh-speed optical correlation system using holographic disc
JP2011253600A (ja) 光情報記録再生装置及び光情報記録再生方法
JP4050650B2 (ja) 光情報再生装置、ならびにその実現に利用可能でコンピュータ読み取り可能なプログラムを格納した記録媒体
JP4730815B2 (ja) 記録方法、再生方法、及び光情報再生装置
Watanabe et al. High-speed holographic correlation system by a time-division recording method for copyright content management on the internet
JP4770762B2 (ja) 個人認証装置および個人認証方法
JP3962888B2 (ja) 光記録方法、光記録装置、光再生方法および光再生装置
JP3812626B2 (ja) 光読み取り方法および光読み取り装置
Watanabe et al. Ultra-high-speed compact optical correlation system using holographic disc
JP2012141693A (ja) 画像検索システム及び画像検索プログラム
JP2012141378A (ja) 検索システム及びそこで使用されるホログラフィック記録媒体
JP5008464B2 (ja) 画像データの照合システム
KR100626948B1 (ko) 홀로그래픽 디지털 데이터 저장시스템의 재생 장치 및 그방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08721578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08721578

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP