WO2010023740A1 - 海水の淡水化方法 - Google Patents

海水の淡水化方法 Download PDF

Info

Publication number
WO2010023740A1
WO2010023740A1 PCT/JP2008/065358 JP2008065358W WO2010023740A1 WO 2010023740 A1 WO2010023740 A1 WO 2010023740A1 JP 2008065358 W JP2008065358 W JP 2008065358W WO 2010023740 A1 WO2010023740 A1 WO 2010023740A1
Authority
WO
WIPO (PCT)
Prior art keywords
seawater
water
filtration
reduced water
filtration layer
Prior art date
Application number
PCT/JP2008/065358
Other languages
English (en)
French (fr)
Inventor
誠助 田邊
Original Assignee
Tanabe Seisuke
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seisuke filed Critical Tanabe Seisuke
Priority to PCT/JP2008/065358 priority Critical patent/WO2010023740A1/ja
Publication of WO2010023740A1 publication Critical patent/WO2010023740A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination

Definitions

  • the present invention relates to a seawater desalination method that removes salt from seawater and can be used for drinking water, industrial water, and agricultural water.
  • seawater desalination has been in operation in recent years, such as a multi-stage flash method that heats and evaporates the seawater and cools it again to fresh water, and a method that uses the temperature difference between the ocean and deep water.
  • a method that applies pressure to seawater passes it through a kind of filtration membrane called reverse osmosis membrane (RO membrane), concentrates and discards the salinity of seawater, and begins to rinse the seawater.
  • RO membrane reverse osmosis membrane
  • the flash method is inferior in energy efficiency.
  • the method using a reverse osmosis membrane (RO membrane) is prone to clogging, and thus requires careful pretreatment, and there are drawbacks such as costs for maintenance and equipment. JP 9-10766 A
  • the chemical treatment in the seawater combines the chemical treatment in the acid adjustment step and the reduction adjustment step with the physical treatment in the separation step using the filtration layer of rice husk charcoal and the filtration step using the adsorption filtration layer. It is an object of the present invention to provide a seawater desalination method capable of removing the salt content contained in water at low cost.
  • the present invention mixes an oxidizing agent with seawater, adjusts the acidic water to pH 2 or lower, and mixes the reducing agent with acidic water after the acidic adjusting step,
  • a reduction adjustment step for adjusting to reduced water having a pH of 11 or more a separation step for separating the solid substances contained in the reduced water by passing through a filtration layer of rice husk charcoal after the reduction adjustment step, and after the separation step
  • the reduced water from which solid substances have been removed is passed through an adsorption filtration layer in which a plurality of ore particles such as zeolite, barley stone, electrolytic stone, and basalt are mixed with rice husk charcoal, and the salt contained in the reduced water is removed.
  • a seawater desalination method is constituted by a filtration step of adsorbing and removing the destroyed substances.
  • seawater can be desalinated in an acid adjustment step, a reduction adjustment step, a separation step using a filtration layer of rice husk charcoal, and a filtration step using an adsorption filtration layer. Seawater can be desalinated at low cost.
  • animal or phytoplankton, bacteria and pathogens contained in seawater can be killed by chemical treatment in the acid adjustment step and the reduction adjustment step.
  • Claim 2 can provide the same effects as in the above (1) to (3), and can be made into easy-to-drink drinking water in which components such as minerals are added to the desalinated water by the adjustment step of the filtration step. .
  • FIG. 3 is a process diagram of the best first embodiment for carrying out the present invention.
  • 1 is a schematic diagram of the best first embodiment for carrying out the present invention.
  • reference numeral 1 denotes a seawater desalination method according to the present invention, wherein seawater is processed into fresh water that can be used for drinking water, industrial water, agricultural water, and the like.
  • the seawater desalination method 1 includes an acid adjustment step 5 in which an oxidant 3 such as hydrochloric acid, nitric acid, sulfuric acid or the like is mixed with seawater 2 while stirring to adjust to an acidic water 4 having a pH of 2 or less, and this acidity.
  • a reducing agent 6 such as calcium hydroxide and reduced mineral water is mixed with stirring in the acidic water 4 to adjust the reduced water 7 having a pH of 11 or more, and the reduction adjustment step 8.
  • the reduced water 7 is passed through the filtration layer 9 of rice husk charcoal to separate the solid material contained in the reduced water 7, and the reduced water 7A from which the solid material has been removed after the separation step 10
  • a plurality of ore powder particles, such as rocks is passed through an adsorption filter layer 11 mixed, the material that destroyed salt contained in the reduced water 7A is composed of a filtration step 12 for adsorbing and removing.
  • the acid adjustment step 5 moves the seawater 2 into an acid treatment container 15 provided with a salinity meter 14 with a seawater pump 13 until the float 16 rises to a preset position.
  • the oxidant 3 in the oxidant storage tank 18 is supplied and mixed by the oxidant supply pump 19 while stirring the seawater 2 supplied into the acid treatment container 15 by the stirrer 17, and the PH is adjusted by the PH meter 20.
  • the acid water 4 is adjusted so that the oxidation-reduction potential of the ORP meter 21 is 450 mV or more at 2 or less.
  • the reduction adjusting step 8 moves the acidic water 4 in the acidic treatment container 15 into the reduction treatment container 23 by the submersible pump 22 until the float 24 rises to a preset position.
  • the reducing agent 6 in the reducing agent storage tank 26 is supplied and mixed with the reducing agent supply pump 27 while stirring the acidic water 4 supplied into the reduction processing vessel 23 with the stirrer 25, mixed, and PH Is adjusted to reduced water 7 having an oxidation-reduction potential of 100 mV or less.
  • the separation step 10 floats the reduced water 7 in the reduction treatment vessel 23 into the separation vessel 30 through which the filtered layer 9 of rice husk charcoal can be passed by the submersible pump 29.
  • the solid substance contained in the reduced water 7A can be separated by the filtration layer 9 of rice husk kun charcoal.
  • the filtration step 12 uses reduced water 7B from which the solid material in the separation container 30 has been separated into rice husk charcoal by an underwater pump 32 such as zeolite, barley stone, electrolytic stone, basalt, etc.
  • an underwater pump 32 such as zeolite, barley stone, electrolytic stone, basalt, etc.
  • An adsorption process 35 for adsorbing and removing a substance that destroys the salt contained in 7B, and a substance that destroys the salt in the adsorption filtration container 33, and the fresh water 36 adsorbed and removed by the submersible pump 37 Float into the adjustment filtration vessel 42 equipped with the stirrer 39, the PH meter 40 and the salinity concentration meter 41 that can pass through the adjustment filtration layer 38 mixed with a plurality of natural stones such as zeolite. 3 is adjusted until it rises to a preset position so that the fresh water 36 produced in the adsorption step 35 contains minerals and the like, and is adjusted to a drinking water 44 that is easy to drink. Yes.
  • the drinking water 44 made in the adjustment filtration container 42 is supplied to a storage tank etc. with the submersible pump 45.
  • FIG. the seawater pump 13 is automatically turned on and off by the float 16 in the acid treatment vessel 15, and when the seawater pump 13 is off, the stirrer 17 and the oxidant supply pump 19 are driven.
  • the PH meter 20 reaches a preset value
  • the oxidant supply pump 19 is automatically stopped.
  • the submersible pump 22 in the acidic treatment container 15 is driven to guide the acidic water 4 in the acidic treatment container 15 into the reduction treatment container 23.
  • the seawater pump 13 is driven, the agitator 25 and the reducing agent supply pump 27 are driven, and the PH meter 28 is set in advance.
  • the reducing agent supply pump 27 is automatically stopped.
  • the submersible pump 29 is driven to guide the reducing water 7 in the reduction processing container 23 into the separation container 30, and when the submersible pump 29 in the reduction processing container 23 is stopped by the float 31,
  • the submersible pump 32 in the separation container 30 is driven to supply reduced water from which the solid substance has been separated into the adsorption filtration container 33, and the submersible pump 32 in the separation container 30 is stopped by the float 34 in the adsorption filtration container 33.
  • the submersible pump 32 in the separation container 30 is stopped, the submersible pump 37 in the adsorption filtration container 33 is driven to supply fresh water into the adjustment filtration container 42 and pass through the adjustment filtration layer 38 to contain minerals and the like. Can be used for drinking water. By such operation, seawater can be automatically made into fresh water drinking water. [Different forms for carrying out the invention]
  • FIGS. 7 to 12 different modes for carrying out the present invention shown in FIGS. 7 to 12 will be described.
  • the same components as those in the best mode for carrying out the present invention are designated by the same reference numerals and redundant description is omitted. To do.
  • the second embodiment for carrying out the present invention shown in FIGS. 7 to 9 is mainly different from the best first embodiment for carrying out the present invention in the filtration step 12A, which is the filtration step 12A. Is performed only in the adsorption step 35 using the adsorption filtration layer 11. Even seawater desalination method 1A using such a filtration step 12A can be processed into fresh water that can be used for industrial water or agricultural water.
  • the third embodiment for carrying out the present invention shown in FIG. 10 to FIG. 12 is mainly different from the best first embodiment for carrying out the present invention in that the husk charcoal filtration layer 9 and the adsorption Using the filtration container 46 in which the filtration layer 11 and the adjustment filtration layer 38 can be arranged in the vertical direction, the reduced water 7 after the reduction adjustment step 8 sequentially passes through the rice husk charcoal filtration layer 9, the adsorption filtration layer 11 and the adjustment filtration layer 38.
  • the seawater desalination method 1B configured in this way is also capable of performing the filtration step 12B using the separation step 10, the adsorption step 35, and the adjustment step 47.
  • the submersible pump, the float, etc. which are used by the separation process 10 and the filtration processes 12 and 12A become unnecessary, and the reduction of the cost of equipment can be aimed at.
  • the present invention is used in the manufacturing industry of plants for desalinating seawater.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

 本発明の海水の淡水化方法は、海水に酸化剤を混合して、PHが2以下の酸性水に調整する酸性調整工程と、この酸性調整工程後に酸性水に還元剤を混合して、PHが11以上の還元水に調整する還元調整工程と、この還元調整工程後に籾殻くん炭のろ過層を通過させて還元水中に含まれている固形物質を分離する分離工程と、この分離工程後に固形物質が除去された還元水を籾殻くん炭にゼオライト、麦飯石、電解石、玄武岩等の複数個の鉱石粉粒を混ぜた吸着ろ過層を通過させて、還元水中に含まれている塩分を破壊した物質を吸着除去するろ過工程とで構成され、海水を酸性調整工程と還元調整工程の化学処理と、籾殻くん炭のろ過層を用いた分離工程および吸着ろ過層を用いたろ過工程の物理処理を組み合わせた化学物理処理により、海水中に含有する塩分を低コストで除去することができる海水の淡水化方法を得るにある。

Description

海水の淡水化方法
 本発明は海水中の塩分を除去し、飲料水や工業用水、農業用水にも活用することができる海水の淡水化方法に関する。
従来、海水の淡水化には海水を熱して蒸発させ、再び冷やして真水にする多段フラッシュ方法、海洋上と深層水の温度差を利用した方法も、近年稼動をしているようだ。
また、海水に圧力をかけて逆浸透膜(RO膜)と 呼ばれるろ過膜の一種に通し、海水の塩分を濃縮して捨て、海水を漉しだす方法などがある。逆浸透膜(RO膜)を使う方法と比べてフラッシュ法はエネルギー効率に劣る。
逆浸透膜(RO膜)を使う方法は、目詰まりを起こしやすいため入念な前処理の必要があり、整備、設備にコストがかかるなどの難点がある。  
特開平9-10766
  本発明は海水を酸性調整工程と還元調整工程の化学処理と、籾殻くん炭のろ過層を用いた分離工程および吸着ろ過層を用いたろ過工程の物理処理を組み合わせた化学物理処理により、海水中に含有する塩分を低コストで除去することができる海水の淡水化方法を提供することを目的としている。
 本発明の前記ならびにそのほかの目的と新規な特徴は次の説明を添付図面と照らし合わせて読むと、より完全に明らかになるであろう。
 ただし、図面はもっぱら解説のためのものであって、本発明の技術的範囲を限定するものではない。
上記目的を達成するために、本発明は海水に酸化剤を混合して、PHが2以下の酸性水に調整する酸性調整工程と、この酸性調整工程後に酸性水に還元剤を混合して、PHが11以上の還元水に調整する還元調整工程と、この還元調整工程後に籾殻くん炭のろ過層を通過させて還元水中に含まれている固形物質を分離する分離工程と、この分離工程後に固形物質が除去された還元水を籾殻くん炭にゼオライト、麦飯石、電解石、玄武岩等の複数個の鉱石粉粒を混ぜた吸着ろ過層を通過させて、還元水中に含まれている塩分を破壊した物質を吸着除去するろ過工程とで海水の淡水化方法を構成している。
 以上の説明から明らかなように、本発明にあっては次に列挙する効果が得られる。
(1)海水を酸化剤を用いた酸性調整工程と、還元剤を用いた還元調整工程で海水に含有する塩分を破壊することができ、籾殻くん炭のろ過層を通過させる分離工程および吸着ろ過層を用いたろ過工程で、海水中の固形物質や塩分を破壊した物質を吸着除去して淡水にすることができる。
 したがって、化学処理と物理処理の組み合わせで、海水を淡水化することができる。
(2)前記(1)によって、酸性調整工程、還元調整工程、籾殻くん炭のろ過層を用いた分離工程および吸着ろ過層を用いたろ過工程で、海水を淡水化できるので、短時間で、低コストで海水を淡水化することができる。
(3)前記(1)により、海水中に含まれる動物性や植物性のプランクトンやバクテリア、病原菌を酸性調整工程および還元調整工程の化学処理によって、死滅させることができる。
(4)請求項2も前記(1)~(3)と同様な効果が得られるとともに、ろ過工程の調整工程によって、淡水化した水にミネラル等の成分が付与された飲みやすい飲料水にできる。
(5)請求項3も前記(1)~(3)と同様な効果が得られるとともに、還元調整工程で酸化還元電位差を350mv以上とすることで、塩分の分解の促進や、安定的に塩分除去を行なうことができる。 
本発明を実施するための最良の第1の形態の工程図。 本発明を実施するための最良の第1の形態の概略図。 本発明を実施するための最良の第1の形態の酸性調整工程の説明図。 本発明を実施するための最良の第1の形態の還元調整工程の説明図。 本発明を実施するための最良の第1の形態の分離工程の説明図。 本発明を実施するための最良の第1の形態のろ過工程の説明図。 本発明を実施するための第2の形態の工程図。 本発明を実施するための第2の形態の概略図。 本発明を実施するための第2の形態のろ過工程の説明図。 本発明を実施するための第3の形態の工程図。 本発明を実施するための第3の形態の概略図。 本発明を実施するための第3の形態のろ過容器の説明図。
符号の説明
1、1A、1B:海水の淡水化方法、
2:海水、                                        3:酸化剤、
4:酸性水、                                             5:酸性調整工程、            
6:還元剤、                                                7、7A、7B:還元水、
8:還元調整工程、                                    9:籾殻くん炭ろ過層、
10:分離工程、                            11:吸着ろ過層、
12、12A、12B:ろ過工程、
13:海水ポンプ、                                    14:塩分濃度計、
15:酸性処理容器、                    16:フロート、
17:撹拌機、                                18:酸性剤収納タンク、
19:酸性剤供給ポンプ、                        20:PH計、
21:ORP計、                            22:水中ポンプ、
23:還元処理容器、                    24:フロート、
25:撹拌機、                                26:還元剤収納タンク、
27:還元剤供給ポンプ、                        28:PH計、
29:水中ポンプ、                                    30:分離容器、
31:フロート、                            32:水中ポンプ、            
33:吸着ろ過容器、                    34:フロート、
35:吸着工程、                            36:淡水、
37:水中ポンプ、                                    38:調整ろ過層、
39:撹拌機、                                40:PH計、
41:塩分濃度計、                                    42:調整ろ過容器、
43:フロート、                            44:飲料水、
45:水中ポンプ、                                    46:ろ過容器、
47:調整工程。
 以下、図面に示す本発明を実施するための最良の形態により、本発明を詳細に説明する。
 図1ないし図6に示す本発明を実施するための最良の第1の形態において、1は海水を飲料水、工業用水、農業用水等に使用できる淡水に処理する本発明の海水の淡水化方法で、この海水の淡水化方法1は海水2に塩酸、硝酸、硫酸等の酸化剤3を撹拌しながら混合して、PHが2以下の酸性水4に調整する酸性調整工程5と、この酸性調整工程5後に酸性水4に水酸化カルシウム、還元ミネラル水等の還元剤6を撹拌しながら混合して、PHが11以上の還元水7に調整する還元調整工程8と、この還元調整工程8後に還元水7を籾殻くん炭のろ過層9を通過させて、還元水7中に含まれている固形物質を分離する分離工程10と、この分離工程10後に固形物質が除去された還元水7Aを籾殻くん炭にゼオライト、麦飯石、電解石、玄武岩等の複数個の鉱石粉粒を混ぜた吸着ろ過層11を通過させ、還元水7A中に含まれている塩分を破壊した物質を吸着除去するろ過工程12とで構成されている。
 前記酸性調整工程5は図2および図3に示すように、海水2を海水ポンプ13で塩分濃度計14が設けられた酸性処理容器15内へ、フロート16があらかじめ設定された位置まで上昇するまで供給し、撹拌機17で酸性処理容器15内へ供給された海水2を撹拌しながら酸化剤収納タンク18の酸化剤3を酸化剤供給ポンプ19で供給して混合し、PH計20でPHが2以下で、ORP計21の酸化還元電位が450mv以上となる酸性水4に調整する。
 前記還元調整工程8は図2および図4に示すように、前記酸性処理容器15内の酸性水4を水中ポンプ22で還元処理容器23内へ、フロート24があらかじめ設定された位置まで上昇するまで供給し、撹拌機25で還元処理容器23内へ供給された酸性水4を撹拌しながら還元剤収納タンク26の還元剤6を還元剤供給ポンプ27で供給し、混合し、PH計28でPHが11以上で、酸化還元電位が100mv以下となる還元水7に調整する。
 前記分離工程10は図2および図5に示すように、前記還元処理容器23内の還元水7を水中ポンプ29で籾殻くん炭のろ過層9を通過させることができる分離容器30内へ、フロート31があらかじめ設定された位置まで上昇するまで供給することで、籾殻くん炭のろ過層9で還元水7A中に含まれている固形物質を分離することができる。
前記ろ過工程12は図2および図6に示すように、前記分離容器30内の固形物質が分離された還元水7Bを水中ポンプ32で籾殻くん炭にゼオライト、麦飯石、電解石、玄武岩等の複数個の鉱石粉粒を混ぜた吸着ろ過層11を通過させることができる吸着ろ過容器33内へ、フロート34があらかじめ設定された位置まで上昇するまで供給することで、吸着ろ過層11で還元水7B中に含まれている塩分を破壊した物質を吸着除去する吸着工程35と、前記吸着ろ過容器33内の塩分を破壊した物質を、吸着除去された淡水36を水中ポンプ37で珊瑚礁、麦飯石、ゼオライト等の複数個の天然石を混合した調整ろ過層38を通過させることができる撹拌機39、PH計40および塩分濃度計41を備える調整ろ過容器42内へ、フロート43があらかじめ設定された位置まで上昇するまで供給することで、前記吸着工程35で作られた淡水36にミネラル等を含ませて、飲みやすい飲料水44に調整する調整工程47とで構成されている。
なお、調整ろ過容器42内で作られた飲料水44は、水中ポンプ45で貯蔵タンク等へ供給される。
また、酸性処理容器15内のフロート16によって、海水ポンプ13のON、OFFを自動的に行ない、海水ポンプ13がOFFの時に撹拌機17の駆動と、酸化剤供給ポンプ19の駆動を行なわせるとともに、PH計20があらかじめ設定された値となると自動的に酸化剤供給ポンプ19を停止させる。
酸化剤供給ポンプ19が停止すると、酸性処理容器15内の水中ポンプ22が駆動して酸性処理容器15内の酸性水4を還元処理容器23内へ導く。
還元処理容器23内のフロート24で水中ポンプ22が停止すると、海水ポンプ13が駆動するとともに、撹拌機25の駆動と還元剤供給ポンプ27の駆動を行なわせるとともに、PH計28があらかじめ設定された値となると、自動的に還元剤供給ポンプ27を停止させる。
還元剤供給ポンプ27が停止すると水中ポンプ29が駆動して、還元処理容器23内の還元水7を分離容器30内へ導き、フロート31で還元処理容器23内の水中ポンプ29を停止させると、分離容器30内の水中ポンプ32が駆動して吸着ろ過容器33内へ固形物質が分離された還元水を供給し、吸着ろ過容器33内のフロート34で分離容器30内の水中ポンプ32を停止させる。
 分離容器30内の水中ポンプ32が停止すると、吸着ろ過容器33内の水中ポンプ37が駆動して調整ろ過容器42内へ淡水を供給し、調整ろ過層38を通過することでミネラル等を含んだ飲料水にできる。
 このような操作で、自動的に海水を淡水の飲料水にすることができる。
 [発明を実施するための異なる形態]
 次に、図7ないし図12に示す本発明を実施するための異なる形態につき説明する。なお、これらの本発明を実施するための異なる形態の説明に当って、前記本発明を実施するための最良の第1の形態と同一構成部分には同一符号を付して重複する説明を省略する。
 図7ないし図9に示す本発明を実施するための第2の形態において、前記本発明を実施するための最良の第1の形態と主に異なる点は、ろ過工程12Aで、このろ過工程12Aは吸着ろ過層11を用いた吸着工程35だけで行なっている。
このようなろ過工程12Aを用いた海水の淡水化方法1Aでも、工業用水や農業用水に使用することができる淡水に処理することができる。
 図10ないし図12に示す本発明を実施するための第3の形態において、前記本発明を実施するための最良の第1の形態と主に異なる点は、籾殻くん炭のろ過層9、吸着ろ過層11および調整ろ過層38を上下方向に配置できるろ過容器46を用い、還元調整工程8後の還元水7を籾殻くん炭のろ過層9、吸着ろ過層11および調整ろ過層38を順次通過させて、分離工程10および吸着工程35、調整工程47を用いたろ過工程12Bを行なえるようにした点で、このように構成した海水の淡水化方法1Bでも、前記本発明を実施するための最良の第1の形態と同様な作用効果が得られる。
 なお、この方法を用いることにより、分離工程10やろ過工程12、12Aで使用する水中ポンプやフロート等が不要となり、設備のコストの低減を図ることができる。
 本発明は海水を淡水化するプラントの製造産業で利用される。

Claims (3)

  1. 海水に酸化剤を混合して、PHが2以下の酸性水に調整する酸性調整工程と、この酸性調整工程後に酸性水に還元剤を混合して、PHが11以上の還元水に調整する還元調整工程と、この還元調整工程後に籾殻くん炭のろ過層を通過させて還元水中に含まれている固形物質を分離する分離工程と、この分離工程後に固形物質が除去された還元水を籾殻くん炭にゼオライト、麦飯石、電解石、玄武岩等の複数個の鉱石粉粒を混ぜた吸着ろ過層を通過させて、還元水中に含まれている塩分を破壊した物質を吸着除去するろ過工程とからなることを特徴とする海水の淡水化方法。
  2. ろ過工程は分離工程後に固形物質が除去された還元水を籾殻くん炭にゼオライト、麦飯石、電解石、玄武岩等の複数個の鉱石粉粒を混ぜた吸着ろ過層を通過させて、還元水中に含まれている塩分を破壊した物質を吸着させる吸着工程と、この吸着工程で塩分を破壊した物質を吸着した後、珊瑚礁、麦飯石、ゼオライト等の複数個の天然石を混合した調整ろ過層を通過させて、飲みやすい飲料水に調整する調整工程とからなることを特徴とする請求項1記載の海水の淡水化方法。
  3. 還元調整工程では酸化還元電位差を350mv以上としたことを特徴とする請求項1記載の海水の淡水化方法。 
PCT/JP2008/065358 2008-08-28 2008-08-28 海水の淡水化方法 WO2010023740A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065358 WO2010023740A1 (ja) 2008-08-28 2008-08-28 海水の淡水化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/065358 WO2010023740A1 (ja) 2008-08-28 2008-08-28 海水の淡水化方法

Publications (1)

Publication Number Publication Date
WO2010023740A1 true WO2010023740A1 (ja) 2010-03-04

Family

ID=41720929

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/065358 WO2010023740A1 (ja) 2008-08-28 2008-08-28 海水の淡水化方法

Country Status (1)

Country Link
WO (1) WO2010023740A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013532113A (ja) * 2010-06-21 2013-08-15 ヴェーエムエー・ゲゼルシャフト・フューア・ヴィンドクラフトベトリーベン・ミーアヴァッセレントザルツング・エムベーハー 未処理の塩水を用いることによる塩化水素またはその水溶液の製造方法、これにより製造された製造物、この製造物の使用、および電気透析システム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107717A (ja) * 1986-10-24 1988-05-12 Akinori Ooki ろ過材
JPS6447492A (en) * 1987-08-12 1989-02-21 Jun Nasu Separation of salt in seawater
JPH07144188A (ja) * 1991-08-23 1995-06-06 Kumamoto Daido Gas Kk 水浄化用組成物
JP2002001329A (ja) * 2000-06-27 2002-01-08 Akio Henmi 海洋深層水よりミネラルウォーターを製造する方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63107717A (ja) * 1986-10-24 1988-05-12 Akinori Ooki ろ過材
JPS6447492A (en) * 1987-08-12 1989-02-21 Jun Nasu Separation of salt in seawater
JPH07144188A (ja) * 1991-08-23 1995-06-06 Kumamoto Daido Gas Kk 水浄化用組成物
JP2002001329A (ja) * 2000-06-27 2002-01-08 Akio Henmi 海洋深層水よりミネラルウォーターを製造する方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013532113A (ja) * 2010-06-21 2013-08-15 ヴェーエムエー・ゲゼルシャフト・フューア・ヴィンドクラフトベトリーベン・ミーアヴァッセレントザルツング・エムベーハー 未処理の塩水を用いることによる塩化水素またはその水溶液の製造方法、これにより製造された製造物、この製造物の使用、および電気透析システム
US9108844B2 (en) 2010-06-21 2015-08-18 WME Gesellschaft für windkraftbetriebene Meerwasserentsalzung mbH Method for producing hydrogen chloride or an aqueous solution thereof using untreated salt water, thus produced product, use of the product and electrodialysis system

Similar Documents

Publication Publication Date Title
US20110062079A1 (en) Process for treating water by a nanofiltration or reverse osmosis membrane system enabling high conversion rates due to the elimination of organic matter
CN108585262B (zh) 净化水的方法以及适用于所述方法的设备
WO2007138327A1 (en) Method of providing a supply of water of controlled salinity and water treatment system
JP2006192422A (ja) 水中のホウ素含有量を低減させて飲用に適した水を製造する方法
EP2586748A1 (en) Freshwater-generating device, and freshwater-generating method
WO2013031689A1 (ja) 放射性物質および/または重金属含有水の浄化方法および浄化装置
AU2018321819B2 (en) Treatment of saline water for agricultural and potable use
Wang et al. Organics removal from ROC by PAC accumulative countercurrent two-stage adsorption-MF hybrid process–A laboratory-scale study
KR101896227B1 (ko) 해양 심층수 또는 염지하수로부터 고경도의 미네랄 워터를 제조하는 방법
Wittmann et al. Water treatment
JP2011056411A (ja) 被処理水の淡水化システムおよび淡水化方法
WO2010023740A1 (ja) 海水の淡水化方法
AU2014363130A1 (en) Process for treating concentrated brine
US20140251907A1 (en) Method for separating radioactive nuclides by means of ceramic filter membranes
EP2581347A1 (en) Fresh water-generating device and fresh water-generating method
JP5604913B2 (ja) 水処理方法及び超純水製造方法
JP4977652B2 (ja) 塩類含有水の淡水化方法及びそのための装置
Pontié et al. Seawater, Brackish Waters, and Natural Waters Treatment with Hybrid Membrane Processes
JP2007185624A (ja) 移動式脱塩浄化処理装置及び脱塩浄化処理方法
WO2013061057A1 (en) Water treatment methods and systems
JP6118668B2 (ja) 水処理システム
JP7094674B2 (ja) 有機性排水の処理方法及び処理装置
KULKARNI et al. Use of granular activated carbon for the treatment of sea water
JP6900641B2 (ja) 除菌水の製造方法および除菌水の製造システム
Aaron et al. Hybrid membrane technology for waste treatment and resource recovery from aquaculture effluent

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08809433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112 (1) EPC (EPO FORM 1205A DATED 14-07-2011)

122 Ep: pct application non-entry in european phase

Ref document number: 08809433

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP