WO2010022847A1 - Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung - Google Patents

Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung Download PDF

Info

Publication number
WO2010022847A1
WO2010022847A1 PCT/EP2009/005639 EP2009005639W WO2010022847A1 WO 2010022847 A1 WO2010022847 A1 WO 2010022847A1 EP 2009005639 W EP2009005639 W EP 2009005639W WO 2010022847 A1 WO2010022847 A1 WO 2010022847A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymers
organic
units
radicals
formula
Prior art date
Application number
PCT/EP2009/005639
Other languages
English (en)
French (fr)
Inventor
Susanne Heun
Aurélie LUDEMANN
Rémi Manouk ANEMIAN
Niels Schulte
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to US13/002,055 priority Critical patent/US8580395B2/en
Priority to EP09777642.1A priority patent/EP2315792B1/de
Priority to KR1020107029603A priority patent/KR101726002B1/ko
Priority to CN200980125454.9A priority patent/CN102076729B/zh
Priority to JP2011524219A priority patent/JP5714488B2/ja
Publication of WO2010022847A1 publication Critical patent/WO2010022847A1/de

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/34Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
    • C08G2261/342Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms
    • C08G2261/3422Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing only carbon atoms conjugated, e.g. PPV-type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/52Luminescence
    • C08G2261/522Luminescence fluorescent
    • C08G2261/5222Luminescence fluorescent electrofluorescent
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1408Carbocyclic compounds
    • C09K2211/1416Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/14Macromolecular compounds
    • C09K2211/1441Heterocyclic
    • C09K2211/1458Heterocyclic containing sulfur as the only heteroatom
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/30Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • Electroluminescent polymers process for their preparation and their use
  • OLED Organic Light Emitting Diode
  • PLED Polymer Light Emitting Diode
  • polymers such as poly-para-phenylenes (PPP)
  • PPP poly-para-phenylenes
  • PPP poly-para-phenylenes
  • Polyfluorene, poly-spirobifluorene, poly-phenanthrene, poly-dihydrophenanthrene and poly-indenofluorene derivatives are also been proposed.
  • OLED organic light-emitting diode
  • the lifetime of the green and especially the blue-emitting polymers for many applications is not optimal.
  • WO 2005/030827 A1 discloses polymers which emit white light.
  • green-emitting comonomers are, inter alia, vinylarylene of the following general formula wherein Ar is an optionally substituted, aromatic or heteroaromatic ring system. These units should contain at least one electron-rich or electron-rich substituent containing ring system Ar, such as thiophene, furan, pyrrole or phenyl substituted with alkoxy, aryloxy or amino groups.
  • the concrete examples of WO 2005/030827 A1 disclose a monomer of the following formula
  • One of the objects of the present invention was therefore to provide electroluminescent polymers which have improved efficiency and a longer service life and, above all, also allow blue emission color in the polymer.
  • This object is achieved according to the invention by the provision of electroluminescent polymers which contain 0.01 to 100 mol% of one or more structural units of the formula (I) and / or (II).
  • the electroluminescent polymers comprising structural units of the formula (I) and / or (II) have very good properties. In particular, they show very high efficiencies and increase lifetimes by several orders of magnitude compared to previous reference systems.
  • the new structural units are particularly suitable as emitters, but depending on the substitution pattern also as a polymer skeleton, hole conductor or electron conductor.
  • the present invention thus provides polymers containing from 0.01 to 100 mol%, preferably from 0.01 to 50 mol%, particularly preferably from 0.1 to 25 mol%, of one or more structural units of the formula (I) and / or (II)
  • R in each occurrence, identically or differently, is H, halogen, a straight-chain, branched or cyclic alkyl chain having 1 to 22 C atoms, in which also one or more nonadjacent C atoms is represented by -O-, -S-, -CO -, -CO-O-, -O-CO- or -O-CO-O- may be replaced, wherein one or more H atoms may be replaced by fluorine, an aryl, aryloxy, heteroaryl or heteroaryloxy group with 5 to 40 C-atoms, which may also be substituted by one or more non-aromatic radicals R 1-10; where two or more radicals R together and / or with further radicals R 1-10 a can form aromatic or aliphatic, mono- or polycyclic ring system which can also form a fused ring system with the benzene ring or the thiophene ring in formula (I) or (II),
  • X is S or O, preferably S, and
  • R 1 to R 10 is a linkage in the polymer.
  • the polymer contains 0.01 to 50 mol% of one or more structural units of the formula (I) or (II), particularly preferably 0.01 to 50 mol% of a structural unit of the formula (I) or (II) and in particular 0.01 to 50 mol% of a structural unit of the formula (I).
  • one, two, three or four, preferably one, two or three, of the radicals R 1 to R 10 are a linkage in the polymer, more preferably two of the radicals R 1 to R 10 are a linkage in the polymer.
  • radicals R 1 to R 10 signify a linkage in the polymer
  • one of the radicals R 1 to R 3 is a linkage in the polymer and one of the radicals R 4 to R 8 is a linkage in the polymer.
  • the two radicals R 1 and R 6 are the linkage in the polymer.
  • polymer is to be understood as meaning both polymeric compounds, oligomeric compounds and dendrimers.
  • the polymeric compounds according to the invention preferably have 10 to 10,000, more preferably 20 to 5000, and especially 50 to 2000 repeating units.
  • the oligomeric compounds according to the invention preferably have 2 to 9 repeat units.
  • the branching factor of the polymers is between 0 (linear polymer, without branching points) and 1 (fully branched dendrimer).
  • the polymers according to the invention are either conjugated, partially conjugated or non-conjugated polymers. Preference is given to conjugated or partially conjugated polymers.
  • the structural units of the formula (I) and / or (II) can be incorporated according to the invention into the main or the side chain of the polymer.
  • the structural units of the formula (I) and / or (II) are in conjugation with the polymer main chain or that they are non-conjugated to the polymer
  • Polymer backbone are.
  • the structural units of the formula (I) and / or (II) are incorporated into the main chain of the polymer.
  • Conjugated polymers in the context of the present application are polymers which contain in the main chain mainly sp 2 -hybridized (or optionally also sp-hybridized) carbon atoms, which may also be replaced by corresponding heteroatoms, which in the simplest case means alternating presence of double and single bonds in the main chain, but also polymers with units such as meta-linked phenylene in the sense of this
  • conjugated dendrimers units such as simple alkyl bridges, (thio) ether, ester, amide or imide linkages are clearly defined as non-conjugated segments.
  • dendrimer in the present application is to be understood as meaning a highly branched compound which is composed of a multifunctional center (core) to which branched monomers are bonded in a regular structure, so that a tree-like structure is obtained. Both the center and the monomers can assume any branched structures consisting of purely organic units as well as organometallic compounds or coordination compounds.
  • core multifunctional center
  • dendrimer is to be understood as meaning e.g. by M. Fischer and F. Vögtle (Angew Chem, Int Ed., 1999, 38, 885).
  • units of the formula (I) and / or (II) are in conjugation with the polymer main chain. This can be achieved, on the one hand, by incorporating these units in the main chain of the polymer so as to retain the conjugation of the polymer as described above. On the other hand, these units can also be linked in the side chain of the polymer so that there is a conjugation to the main chain of the polymer. This is for example the case when the link with the main chain only on sp 2 -hybridized (or optionally also sp hybridized) carbon atoms may also be replaced by corresponding heteroatoms occurs.
  • linking is effected by units such as, for example, simple (thio) ether bridges, esters, amides or alkylene chains
  • the units of the formula (I) and / or (II) are defined as non-conjugated to the main chain.
  • the conjugated, partially conjugated or nonconjugated polymers and dendrimers according to the invention particularly preferably contain from 0.1 to 25 mol% and in particular from 1 to 15 mol% of one or more units of the formula (I) and / or (II).
  • the terms "alkyl”, “aryl”, “heteroaryl”, etc. also include polyvalent groups, for example, alkylene, arylene and heteroarylene.
  • hydrocarbon radical means a carbon radical which additionally contains one or more H atoms and optionally one or more heteroatoms such as, for example, N, O, S, P 1 Si, Se, As, Te or Ge.
  • a carbon or hydrocarbon radical may be a saturated or unsaturated group. Unsaturated groups are, for example, aryl, alkenyl or alkynyl groups.
  • a carbon or hydrocarbon radical having more than 3 C atoms may be straight-chain, branched and / or cyclic, and may also have spiro linkages or fused rings.
  • Preferred carbon and hydrocarbon radicals are optionally substituted alkyl, alkenyl, alkynyl, alkoxy, alkylcarbonyl, alkoxycarbonyl, alkylcarbonyloxy and alkoxycarbonyloxy having 1 to 40, preferably 1 to 25, particularly preferably 1 to 18 carbon atoms, optionally substituted aryl or aryloxy having 6 to 40, preferably 6 to 25 carbon atoms, or optionally substituted alkylaryl, arylalkyl, alkylaryloxy, arylalkyloxy, arylcarbonyl, aryloxycarbonyl, arylcarbonyloxy and aryloxycarbonyloxy having 6 to 40, preferably 6 to 25 carbon atoms.
  • carbon and hydrocarbon radicals are C 1 -C 4 0 alkyl, C 2 -C 4 O alkenyl, C 2 -C 40 alkynyl, C 3 -C 40 allyl, C 4 -C 40 alkyldienyl, C 4 -C 40 polyenyl, C 6 - C 40 aryl, C 6 -C 40 alkylaryl, C 6 -C 40 arylalkyl, C 6 -C 40 alkylaryloxy, C 6 -C 40 arylalkyloxy, C 3 -C 40 heteroaryl, C 4 -C 40 cycloalkyl, C 4 -C 40 cycloalkenyl, etc.
  • Particularly preferred are C 1 -C 22 alkyl, C 2 -C 22
  • carbon and hydrocarbon radicals are straight-chain, branched or cyclic alkyl radicals having 1 to 40, preferably 1 to 22, carbon atoms which are unsubstituted or substituted by F, Cl,
  • Preferred alkyl groups are e.g. Methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, s-butyl, t-butyl, 2-methylbutyl, n-pentyl, s-pentyl, cyclopentyl, n-hexyl, cyclohexyl, 2-ethylhexyl, n- Heptyl, cycloheptyl, n-octyl, cyclooctyl, dodecanyl, trifluoromethyl, perfluoro-n-butyl, 2,2,2-trifluoroethyl, perfluorooctyl and perfluorohexyl.
  • Preferred alkenyl groups are e.g. Ethenyl, propenyl, butenyl, pentenyl, cyclopentenyl, hexenyl, cyclohexenyl, heptenyl, cycloheptenyl, octenyl and cyclooctenyl.
  • Preferred alkynyl groups are e.g. Ethynyl, propynyl, butynyl, pentynyl, hexynyl and octynyl.
  • Preferred alkoxy groups are e.g. Methoxy, ethoxy, 2-methoxyethoxy, n-propoxy, i-propoxy, n-butoxy, i-butoxy, s-butoxy, t-butoxy, 2-methylbutoxy, n-pentoxy, n-hexoxy, n-heptoxy and n- octoxy.
  • Preferred amino groups are e.g. Dimethylamine, methylamine, methylphenylamine and phenylamine.
  • heteroaryl groups may also be substituted by alkyl, alkoxy, thioalkyl, fluorine, fluoroalkyl or other aryl or heteroaryl groups.
  • the aryl, heteroaryl, carbon and hydrocarbon radicals optionally have one or more substituents, which are preferably selected from the group consisting of SiIyI, sulfo, sulfonyl, formyl, amine, imine, nitrile, mercapto, nitro, halogen, C 1 -12 alkyl, C ⁇ -12 aryl, CM 2 alkoxy, hydroxy or combinations of these groups.
  • Halogen means F, Cl, Br or I.
  • Aryl (oxy) - and heteroaryl (oxy) radicals are preferably mono- or polysubstituted, as defined above.
  • polymers comprising structural units of the formula (I) selected from the following sub-formulas:
  • Group 5 units that improve the transition from the so-called singlet to triplet state
  • Group 7 units typically used as backbone
  • Group 8 units which influence the film morphological properties and / or the rheological properties of the resulting polymers.
  • these arylamines and heterocycles lead to a HOMO in the polymer of greater than -5.8 eV (at vacuum level), more preferably greater than -5.5 eV.
  • the polymers according to the invention comprise units from group 3 in which structures which increase hole mobility and which electron mobility increase (ie units from groups 1 and 2) are directly bonded to one another or contain structures which increase both hole mobility and electron mobility. Some of these units can serve as emitters and shift the emission color to green, yellow or red. Their use is thus suitable, for example, for the production of other emission colors from originally blue-emitting polymers.
  • Group 6 structural units are, in addition to the above, those having at least one more aromatic or other conjugated structure other than those mentioned above. Groups fall, i. which only slightly affect the charge carrier mobilities, which are not organometallic complexes or which do not affect the
  • Aromatic structures having from 6 to 40 carbon atoms or else tolan, stilbene or bisstyrylarylene derivatives which may each be substituted by one or more radicals R are preferred.
  • Particularly preferred is the incorporation of 1, 4 phenylene, 1, 4-naphthylene, 1, 4 or 9,10-anthrylene, 1, 6, 2,7- or 4,9-pyrenylene, 3rd , 9- or 3,10-perylenylene, 4,4'-biphenylylene, 4,4 "terphenylylene, 4,4'-bi-1, 1'-naphthylylene, 4,4'-tolanylene-, 4 , 4'-stilbenylene, 4,4'-bisstyrylarylene, benzothiadiazole and corresponding oxygen derivatives, quinoxaline, phenothiazine, phenoxazine, dihydrophenazine, bis (thiophenyl) arylene, oligo (thiophenylene), phenazine, Rubrene, pentacene or perylene derivatives, which are preferably substituted, or preferably conjugated push-pull systems (systems substituted with donor and acceptor
  • Group 7 structural units are units containing aromatic structures having from 6 to 40 carbon atoms, which are typically used as a backbone polymer. These are, for example, 4,5-dihydropyrene derivatives, 4,5,9,10-tetrahydropyrene derivatives, fluorene derivatives, 9,9'-spirobifluorene derivatives, phenanthrene derivatives, 9,10-dihydrophenanethane derivatives, 5,7-dihydrodibenzooxepine derivatives and cis- and trans-indenofluorene derivatives , Group 8 structural units are those which influence the film morphological properties and / or the rheological properties of the polymers, for example siloxanes, long alkyl chains or fluorinated groups, but also particularly rigid or flexible units, such as liquid-crystalline units or crosslinkable groups.
  • polymers according to the invention which, in addition to structural units of the formula (I) and / or (II), additionally contain one or more units selected from groups 1 to 8. It may also be preferred if more than one structural unit from a group is present at the same time.
  • polymers according to the invention which, in addition to at least one structural unit of the formula (I) and / or (II), also contain units from group 7, more preferably at least 50 mol% of these units.
  • the polymers according to the invention contain units which improve the charge transport or the charge injection, that is to say units from group 1 and / or 2; particularly preferred is a proportion of 0.5 to 30 mol% of these units; very particular preference is given to a proportion of 1 to 10 mol% of these units.
  • the polymers according to the invention contain structural units from group 7 and units from group 1 and / or 2, in particular at least 50 mol% units from group 7 and 0.5 to 30 mol% units from group 1 and / or 2.
  • the necessary solubility of the polymers is ensured, above all, by the substituents on the various repeat units, both the substituent R 1'10 on the structural units of the formula (I) and / or (II), and by substituents on the other repeat units.
  • copolymers according to the invention may have random, alternating or block-like structures or else several of these
  • the polymers according to the invention having structural units of the formula (I) and / or (II) are readily accessible in high yields. They preferably show blue luminescence in the solid.
  • the polymers according to the invention have advantageous properties, in particular high lifetimes, high efficiencies and good color coordinates.
  • the polymers according to the invention are generally prepared by polymerization of one or more types of monomer, of which at least one monomer in the polymer leads to structural units of the formula (I) and / or (II). Suitable polymerization reactions are known in the art and described in the literature. Particularly suitable and preferred polymerization reactions leading to CC or CN links are:
  • the C-C linkages are preferably selected from the groups of SUZUKI coupling, YAMAMOTO coupling and STILLE coupling; the C-N linkage is preferably a HARTWIG-BUCHWALD coupling.
  • the present invention thus also provides a process for the preparation of the polymers according to the invention, which is characterized in that it can be prepared by polymerization according to SUZUKI,
  • the dendrimers according to the invention can be prepared according to methods known to the person skilled in the art or in analogy thereto. Suitable methods are described in the literature, such as in Frechet, Jean MJ; Hawker, Craig J., "Hyperbranched polyphenylenes and hyperbranched polyesters: new soluble, three-dimensional, reactive polymers", Reactive & Functional Polymers (1995), 26 (1-3), 127-36; Janssen, HM; Meijer, E.W., "The synthesis and characterization of dendritic molecules", Materials Science and Technology (1999), 20 (Synthesis of Polymers), 403-458; Tomalia, Donald A., “Dendrimer molecules”, Scientific American (1995), 272 (5), 62-6, WO 02/067343 A1 and WO 2005/026144 A1.
  • the present invention thus furthermore relates to compounds of the formulas (III) and (IV)
  • the functional groups are preferably selected from Cl, Br, I, O-tosylate, O-triflate, O-SO 2 R 2 , B (OR 2 ) 2 and Sn (R 2 ) 3 , more preferably from Br, I and B.
  • R 2 is the same or different H, an aliphatic or aromatic hydrocarbon radical on each occurrence with 1 to 20 carbon atoms, and where two or more radicals R 2 can also form a ring system with one another.
  • polymers of the invention may also be preferred not to use as a pure substance, but as a blend with other polymeric, oligomeric, dendritic or low molecular weight substances. These may e.g. improve the electronic properties or emit yourself.
  • blend above and below a mixture containing at least one polymeric component is referred to.
  • the invention furthermore relates to solutions and formulations of one or more polymers or blends according to the invention in one or more solvents. How such solutions can be prepared is known to the person skilled in the art and described, for example, in WO 02/072714 A1, WO 03/019694 A2 and the literature cited therein. These solutions can be used to prepare thin polymer layers, for example, by area coating methods (eg, spin-coating) or by printing methods (eg, inkjet printing).
  • area coating methods eg, spin-coating
  • printing methods eg, inkjet printing
  • Polymers comprising structural units of the formula (I) and / or (II) which contain one or more polymerisable and thus crosslinkable groups are particularly suitable for the production of films or coatings, in particular for the production of structured coatings, e.g. by thermal or photoinduced in situ polymerization and in situ crosslinking, such as in situ UV photopolymerization or photopatteming.
  • Particularly preferred for such applications are polymers according to the invention having one or more crosslinkable groups selected from acrylate, methacrylate, vinyl, epoxy and oxetane.
  • both corresponding polymers can be used in pure substance, but it can also be used formulations or blends of these polymers as described above.
  • binders are, for example, polystyrene, polycarbonate, polyacrylates, polyvinyl butyral and similar, optoelectronically neutral polymers.
  • Suitable and preferred solvents are, for example, toluene, anisole, xylene, methyl benzoate, dimethylanisole, mesitylene, tetralin, veratrole and tetrahydrofuran.
  • the polymers, blends and formulations according to the invention can be used in electronic or optoelectronic devices or for their preparation.
  • OLED Light-emitting diodes
  • PLED polymeric organic light-emitting diodes
  • OLEDs or PLEDs can be produced is known to the person skilled in the art and is disclosed, for example, as a general method in detail in WO 2004/070772 A2, which is to be adapted accordingly for the one-to-one.
  • the polymers according to the invention are very particularly suitable as electroluminescent materials in PLEDs or displays produced in this way.
  • electroluminescent materials in the context of the present invention are materials that can be used as the active layer.
  • Active layer means that the layer is able to emit light upon application of an electric field (light-emitting layer) and / or that it improves the injection and / or transport of the positive and / or negative charges (charge injection or charge transport layer).
  • the present invention also relates to electronic or optoelectronic components, preferably organic or polymeric organic light emitting diodes (OLED, PLED), organic field effect transistors (OFETs), organic integrated circuits (O-ICs), organic thin film transistors (TFTs), organic Solar cells (O-SCs), organic laser diodes (O-lasers), organic photovoltaic (OPV) elements or devices or organic photoreceptors (OPCs), particularly preferred organic or polymeric organic light-emitting diodes, in particular polymeric organic light-emitting diodes, having one or more active layers, wherein at least one of these active layers contains one or more polymers according to the invention.
  • the active layer may be, for example, a light-emitting layer, a
  • the main aim is the use of the polymers according to the invention in relation to PLEDs and corresponding displays.
  • the polymers according to the invention are used as semiconductors also for the further uses described above in other electronic devices.
  • PLED polymeric organic light-emitting diode
  • the ITO structure indium-tin-oxide, a transparent, conductive anode
  • the ITO structure was applied by sputtering in a pattern on Sodalimeglas that result in the vapor-deposited at the end of the manufacturing process cathode 4 pixels x 2 x 2 mm.
  • an interlayer typically a hole-dominated polymer, here HIL-012 from Merck
  • inert gas atmosphere nitrogen or argon
  • 65 nm of the polymer layers of toluene solutions concentration interlayer 5 g / l, for the polymers P1 to P3 and V1 8 g / l each.
  • Layers are baked at 180 ° C for at least 10 minutes.
  • the Ba / Al cathode is evaporated in the specified pattern by means of a vapor deposition mask (high-purity metals from Aldrich, especially barium 99.99% (order No. 474711); vapor-deposition systems from Lesker, above, typical vacuum level 5 ⁇ 10 -6 mbar).
  • a vapor deposition mask high-purity metals from Aldrich, especially barium 99.99% (order No. 474711); vapor-deposition systems from Lesker, above, typical vacuum level 5 ⁇ 10 -6 mbar.
  • the devices are clamped in holders specially made for the substrate size and contacted via spring contacts.
  • a photodiode with eye-tracking filter can be placed directly on the measuring holder in order to exclude the influence of extraneous light.
  • the typical measurement setup is shown in FIG.
  • the voltages are from 0 to max. 20 V in 0.2 V increments and lowered again. For each measurement point, the current through the device and the photocurrent obtained by the photodiode is measured. In this way one obtains the IVL data of the test devices. Important parameters are the measured maximum efficiency ("Max. Eff.” In cd / A) and the voltage required for 100 cd / m 2 .
  • the life of the devices is measured in a very similar to the initial evaluation measurement setup so that an initial luminance is set (eg 1000 cd / m 2 ).
  • the current required for this luminance is kept constant, while typically the voltage increases and the luminance decreases.
  • the lifetime is reached when the initial luminance has dropped to 50% of the initial value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

Die vorliegende Erfindung betrifft elektrolumineszierende Polymere, die als Wiederholungseinheiten 2-Vinylthiophenylbenzolderivate enthalten, Verfahren zu ihrer Herstellung, Blends und Formulierungen enthaltend diese Polymere sowie die Verwendung dieser Polymere in elektronischen Vorrichtungen, insbesondere in organischen Leuchtdioden, sogenannten OLEDs.

Description

Elektrolumineszierende Polymere, Verfahren zu ihrer Herstellung sowie ihre Verwendung
Die vorliegende Erfindung betrifft elektrolumineszierende Polymere, die 0,01 bis 100 mol% einer oder mehrerer Struktureinheiten der Formel (I) und/oder (II) enthalten, Verfahren zu ihrer Herstellung, Blends und Formulierungen enthaltend diese Polymere sowie die Verwendung dieser Polymere in elektronischen Vorrichtungen, insbesondere in organischen Leuchtdioden, sogenannten OLEDs (OLED = Organic Light Emitting Diode). Die erfindungsgemäßen Polymere zeigen eine verbesserte
Effizienz und eine höhere Lebensdauer, insbesondere bei Verwendung in OLEDs.
Konjugierte Polymere werden bereits seit langem intensiv als vielversprechende Materialien in OLEDs untersucht. OLEDs, die als organische Materialien Polymere aufweisen, werden dabei häufig auch als PLEDs (PLED = Polymer Light Emitting Diode) bezeichnet. Ihre einfache Herstellung verspricht eine kostengünstige Herstellung von entsprechenden Leuchtdioden.
Da PLEDs meist nur aus einer lichtemittierenden Schicht bestehen, werden Polymere benötigt, die möglichst sämtliche Funktionen (Ladungsinjektion, Ladungstransport, Rekombination) einer OLED in sich vereinigen können. Um diese Anforderungen zu erfüllen, werden während der Polymerisation unterschiedliche Monomere eingesetzt, die die entsprechenden Funktionen übernehmen. So ist es für die Erzeugung aller drei Emissionsfarben in der Regel nötig, bestimmte Comonomere in die entsprechenden Polymere einzupolymerisieren (vgl. z.B. WO 00/46321 A1 , WO 03/020790 A2 und WO 02/077060 A1 ). So ist beispielsweise ausgehend von einem blau emittierenden Grundpolymer ("backbone") die Erzeugung der beiden anderen Primärfarben Rot und Grün möglich.
Als Polymere für vollfarbige Anzeigeelemente (Full-Colour-Displays) wurden bereits verschiedene Materialklassen, wie zum Beispiel PoIy- para-Phenylene (PPP), vorgeschlagen bzw. entwickelt. So kommen zum Beispiel Poly-Fluoren-, Poly-Spirobifluoren-, Poly-Phenanthren-, PoIy- Dihydrophenanthren- und PoIy-I ndenofluoren-Derivate in Betracht. Auch Polymere, die eine Kombination der genannten Strukturelemente enthalten, wurden bereits vorgeschlagen.
Die wichtigsten Kriterien einer OLED sind Effizienz, Farbe und Lebensdauer. Da diese Eigenschaften maßgeblich durch den/die verwendeten Emitter bestimmt werden, werden Verbesserungen der Emitter gegenüber den aus dem Stand der Technik bekannten Materialien weiterhin benötigt.
Insbesondere ist die Lebensdauer der grün und vor allem der blau emittierenden Polymere für viele Anwendungen noch nicht optimal. Gleiches gilt für die Effizienz der rot emittierenden Polymeren.
In der WO 2005/030827 A1 werden Polymere offenbart, die weißes Licht emittieren. Als grün emittierende Comonomere werden dabei unter anderem Vinylaryleneinheiten der folgenden allgemeinen Formel
Figure imgf000003_0002
vorgeschlagen, worin Ar ein optional substituiertes, aromatisches oder heteroaromatisches Ringsystem ist. Dabei sollen diese Einheiten mindestens ein elektronenreiches oder elektronenreiche Substituenten aufweisendes Ringsystem Ar enthalten, wie z.B. Thiophen, Furan, Pyrrol oder mit Alkoxy-, Aryloxy- oder Aminogruppen substituiertes Phenyl. Die konkreten Beispiele der WO 2005/030827 A1 offenbaren ein Monomer der folgenden Formel
Figure imgf000003_0001
mit zwei Thiophen-2,5-diylgruppen und einer 1 ,4-Dialkoxy-phenylgruppe. Mit Vinylarylenverbindungen aus dem Stand der Technik können in Bezug auf kürzere Wellenlängen nur grüne Emittereinheiten erhalten werden, die zusätzlich bei Verwendung von höheren Konzentrationen im Polymer eine Verschiebung der Emissionsfarbe zu Gelb zeigen. Andere Farben, vor allem blau, sind mit den aus dem Stand der Technik bekannten Emittern nicht zu realisieren. Außerdem zeigen die Emitter aus dem Stand der Technik eine erhöhte Oxidationsempfindlichkeit in Lösung und sind daher schwer aufzureinigen.
Eine der Aufgaben der vorliegenden Erfindung war daher die Bereitstellung von elektrolumineszierenden Polymeren, welche eine verbesserte Effizienz und eine höhere Lebensdauer aufweisen und vor allem auch blaue Emissionsfarbe im Polymer ermöglichen. Diese Aufgabe wird erfindungsgemäß gelöst durch die Bereitstellung von elektrolumineszierenden Polymeren, die 0,01 bis 100 mol% einer oder mehrerer Struktureinheiten der Formel (I) und/oder (II) enthalten.
Überraschenderweise wurde gefunden, dass die elektrolumineszierenden Polymere enthaltend Struktureinheiten der Formel (I) und/oder (II), sehr gute Eigenschaften aufweisen. Insbesondere zeigen sie sehr hohe Effizienzen und erhöhen die Lebensdauern um mehrere Größenordnungen im Vergleich zu bisherigen Referenz-Systemen. Die neuen Struktureinheiten eignen sich insbesondere als Emitter, aber je nach Substitutions- muster auch als Polymer-Grundgerüst, Lochleiter oder Elektronenleiter.
Gegenstand der vorliegenden Erfindung sind somit Polymere enthaltend 0,01 bis 100 mol%, vorzugsweise 0,01 bis 50 mol%, besonders bevorzugt 0,1 bis 25 mol%, einer oder mehrerer Struktureinheiten der Formel (I) und/oder (II)
Figure imgf000004_0001
Figure imgf000005_0001
wobei die verwendeten Symbole und Indices die folgenden Bedeutungen besitzen:
R1 bis R 10 sind unabhängig voneinander, gleich oder verschieden, H, Halogen (F, Cl, Br, I), -CN, -NO2, -NCS, -NCO, -OCN, -SCN, -SF5, -Si(R)3 oder eine geradkettige, verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 22 C-Atomen, in der auch ein oder mehrere nicht benachbarte C-Atome durch -C(R)=C(R)-, -C≡C-, -N(R)-, -O-, -S-, -CO-, -CO-O-, -O-CO- oder -O-CO-O- ersetzt sein können, wobei auch ein oder mehrere H-Atome durch Fluor ersetzt sein können, eine Aryl-, Aryloxy-, Heteroaryl- oder Heteroaryloxygruppe mit 5 bis 40 C- Atomen, welche auch durch ein oder mehrere nichtaromatische Reste R1-10 substituiert sein kann, wobei auch zwei oder mehrere Reste, vorzugsweise benachbarte Reste, der Reste R1-10 miteinander ein aliphatisches oder aromatisches, mono- oder polycyclisches Ringsystem bilden können, welches auch mit dem Benzolring oder dem Thiophenring in Formel (I) oder (II) ein kondensiertes Ringsystem bilden kann,
R ist bei jedem Auftreten, gleich oder verschieden H, Halogen, eine geradkettige, verzweigte oder cyclische Alkylkette mit 1 bis 22 C-Atomen, in der auch ein oder mehrere nicht benachbarte C-Atome durch -O-, -S-, -CO-, -CO-O-, -O-CO- oder -O-CO-O- ersetzt sein können, wobei auch ein oder mehrere H-Atome durch Fluor ersetzt sein können, eine Aryl-, Aryloxy-, Heteroaryl- oder Heteroaryloxygruppe mit 5 bis 40 C-Atomen, welche auch durch ein oder mehrere nicht-aromatische Reste R1-10 substituiert sein kann; wobei auch zwei oder mehrere Reste R miteinander und/oder mit weiteren Resten R1-10 ein aromatisches oder aliphatisches, mono- oder polycyclisches Ringsystem bilden können, welches auch mit dem Benzolring oder dem Thiophenring in Formel (I) oder (II) ein kondensiertes Ringsystem bilden kann,
X ist S oder O, vorzugsweise S, und
worin mindestens einer der Reste R1 bis R10 eine Verknüpfung im Polymer bedeutet.
In einer bevorzugten Ausführungsform enthält das Poiymer 0,01 bis 50 mol% einer oder mehrerer Struktureinheiten der Formel (I) oder (II), besonders bevorzugt 0,01 bis 50 mol% einer Struktureinheit der Formel (I) oder (II) und insbesondere 0,01 bis 50 mol% einer Struktureinheit der Formel (I).
In einer weiteren bevorzugten Ausführungsform bedeuten einer, zwei, drei oder vier, vorzugsweise einer, zwei oder drei, der Reste R1 bis R10 eine Verknüpfung im Polymer, besonders bevorzugt bedeuten zwei der Reste R1 bis R10 eine Verknüpfung im Polymer.
Wenn zwei der Reste R1 bis R10 eine Verknüpfung im Polymer bedeuten, ist es bevorzugt, wenn einer der Reste R1 bis R3 eine Verknüpfung im Polymer bedeutet und einer der Reste R4 bis R8 eine Verknüpfung im Polymer bedeutet. Besonders bevorzugt bedeuten die beiden Reste R1 und R6 die Verknüpfung im Polymer.
In der vorliegenden Anmeldung sind unter dem Begriff Polymer sowohl polymere Verbindungen, oligomere Verbindungen sowie Dendrimere zu verstehen. Die erfindungsgemäßen polymeren Verbindungen weisen vorzugsweise 10 bis 10000, besonders bevorzugt 20 bis 5000 und insbesondere 50 bis 2000 Wiederholungseinheiten auf. Die erfindungsgemäßen oligomeren Verbindungen weisen vorzugsweise 2 bis 9 Wiederholungseinheiten auf. Der Verzweigungs-Faktor der Polymeren liegt dabei zwischen 0 (lineares Polymer, ohne Verzweigungsstellen) und 1 (vollständig verzweigtes Dendrimer). Bei den erfindungsgemäßen Polymeren handelt es sich entweder um konjugierte, teilkonjugierte oder nicht-konjugierte Polymere. Bevorzugt sind konjugierte oder teilkonjugierte Polymere.
Die Struktureinheiten der Formel (I) und/oder (II) können erfindungsgemäß in die Haupt- oder in die Seitenkette des Polymers eingebaut werden. Bei Einbau in die Seitenkette besteht die Möglichkeit, dass die Struktureinheiten der Formel (I) und/oder (II) in Konjugation mit der Polymerhauptkette stehen oder dass sie nicht-konjugiert zur
Polymerhauptkette sind. Vorzugsweise werden die Struktureinheiten der Formel (I) und/oder (II) in die Hauptkette des Polymers eingebaut.
„Konjugierte Polymere" im Sinne der vorliegenden Anmeldung sind Polymere, die in der Hauptkette hauptsächlich sp2-hybridisierte (bzw. gegebenenfalls auch sp-hybridisierte) Kohlenstoffatome, die auch durch entsprechende Heteroatome ersetzt sein können, enthalten. Dies bedeutet im einfachsten Fall abwechselndes Vorliegen von Doppel- und Einfachbindungen in der Hauptkette, aber auch Polymere mit Einheiten wie beispielsweise meta-verknüpftes Phenylen sollen im Sinne dieser
Anmeldung als konjugierte Polymere gelten. „Hauptsächlich" meint, dass natürlich (unwillkürlich) auftretende Defekte, die zu Konjugationsunterbrechungen führen, den Begriff "konjugiertes Polymer" nicht entwerten. Des Weiteren wird in dieser Anmeldung ebenfalls als konjugiert bezeichnet, wenn sich in der Hauptkette beispielsweise
Arylamineinheiten, Arylphosphineinheiten, bestimmte Heterocyclen (d. h. Konjugation über N-, O- oder S-Atome) und/oder metallorganische Komplexe (d. h. Konjugation über das Metallatom) befinden. Analoges gilt für konjugierte Dendrimere. Hingegen werden Einheiten wie beispielsweise einfache Alkylbrücken, (Thio)Ether-, Ester-, Amid- oder Imidverknüpfungen eindeutig als nicht-konjugierte Segmente definiert. Unter einem teilkonjugierten Polymer im Sinne der vorliegenden Anmeldung soll ein Polymer verstanden werden, das konjugierte Regionen enthält, die durch nicht konjugierte Abschnitte, gezielte Konjugationsunterbrecher (z.B. Abstandsgruppen) oder Verzweigungen voneinander getrennt sind, z.B. in dem längere konjugierte Abschnitte in der Hauptkette durch nicht-konjugierte Abschnitte unterbrochen sind, bzw. das längere konjugierte Abschnitte in den Seitenketten eines in der Hauptkette nicht-konjugierten Polymers enthält. Konjugierte und teilkonjugierte Polymere können auch konjugierte, teilkonjugierte oder sonstige Dendrimere enthalten.
Unter dem Begriff "Dendrimer" soll in der vorliegenden Anmeldung eine hochverzweigte Verbindung verstanden werden, die aus einem multifunktionellen Zentrum (core) aufgebaut ist, an das in einem regelmäßigen Aufbau verzweigte Monomere gebunden werden, so dass eine baumartige Struktur erhalten wird. Dabei können sowohl das Zentrum als auch die Monomere beliebige verzweigte Strukturen annehmen, die sowohl aus rein organischen Einheiten als auch Organometall- verbindungen oder Koordinationsverbindungen bestehen. "Dendrimer" soll hier allgemein so verstanden werden, wie dies z.B. von M. Fischer und F. Vögtle (Angew. Chem., Int. Ed. 1999, 38, 885) beschrieben ist.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung stehen Einheiten der Formel (I) und/oder (II) in Konjugation mit der Polymerhauptkette. Dies kann einerseits dadurch erreicht werden, dass diese Einheiten in die Hauptkette des Polymers so eingebaut werden, dass dadurch die Konjugation des Polymers, wie oben beschrieben, erhalten bleibt. Andererseits können diese Einheiten auch in die Seitenkette des Polymers so verknüpft werden, dass eine Konjugation zur Hauptkette des Polymers besteht. Dies ist z.B. der Fall, wenn die Verknüpfung mit der Hauptkette nur über sp2-hybridisierte (bzw. gegebenenfalls auch über sp-hybridisierte) Kohlenstoffatome, die auch durch entsprechende Heteroatome ersetzt sein können, erfolgt. Erfolgt die Verknüpfung jedoch durch Einheiten, wie z.B. einfache (Thio)Ether- brücken, Ester, Amide oder Alkylenketten, so sind die Einheiten der Formel (I) und/oder (II) als nicht-konjugiert zur Hauptkette definiert.
Die erfindungsgemäßen konjugierten, teilkonjugierten oder nicht- konjugierten Polymere und Dendrimere enthalten besonders bevorzugt von 0,1 bis 25 mol% und insbesondere 1 bis 15 mol%, einer oder mehrerer Einheiten der Formel (I) und/oder (II). Die Begriffe "Alkyl", "Aryl", "Heteroaryl" etc. umfassen auch mehrbindige Gruppen, beispielsweise Alkylen, Arylen und Heteroarylen.
Der Begriff "Kohlenstoffrest" bedeutet vor- und nachstehend einen ein- oder mehrbindigen organischen Rest enthaltend mindestens ein Kohlenstoffatom, wobei dieser entweder keine weiteren Atome enthält (z.B. -C=C-), oder gegebenenfalls ein oder mehrere weitere Atome wie beispielsweise N, O, S, P, Si, Se, As, Te oder Ge enthält (z.B. Carbonyl). Der Begriff "Kohlenwasserstoffrest" bedeutet einen Kohlenstoffrest, der zusätzlich ein oder mehrere H-Atome und gegebenenfalls ein oder mehrere Heteroatome wie beispielsweise N, O, S, P1 Si, Se, As, Te oder Ge enthält.
Ein Kohlenstoff- oder Kohlenwasserstoffrest kann eine gesättigte oder ungesättigte Gruppe sein. Ungesättigte Gruppen sind beispielsweise Aryl-, Alkenyl- oder Alkinylgruppen. Ein Kohlenstoff- oder Kohlenwasserstoffrest mit mehr als 3 C-Atomen kann geradkettig, verzweigt und/oder cyclisch sein, und kann auch Spiroverknüpfungen oder kondensierte Ringe aufweisen.
Bevorzugte Kohlenstoff- und Kohlenwasserstoffreste sind gegebenenfalls substituiertes Alkyl, Alkenyl, Alkinyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy und Alkoxycarbonyloxy mit 1 bis 40, vorzugsweise 1 bis 25, besonders bevorzugt 1 bis 18 C-Atomen, gegebenenfalls substituiertes Aryl oder Aryloxy mit 6 bis 40, vorzugsweise 6 bis 25 C- Atomen, oder gegebenenfalls substituiertes Alkylaryl, Arylalkyl, Alkylaryloxy, Arylalkyloxy, Arylcarbonyl, Aryloxycarbonyl, Arylcarbonyloxy und Aryloxycarbonyloxy mit 6 bis 40, vorzugsweise 6 bis 25 C-Atomen.
Weitere bevorzugte Kohlenstoff- und Kohlenwasserstoffreste sind CrC4O Alkyl, C2-C4O Alkenyl, C2-C40 Alkinyl, C3-C40 AIIyI, C4-C40 Alkyldienyl, C4-C40 Polyenyl, C6-C40 Aryl, C6-C40 Alkylaryl, C6-C40 Arylalkyl, C6-C40 Alkylaryloxy, C6-C40 Arylalkyloxy, C3-C40 Heteroaryl, C4-C40 Cycloalkyl, C4- C40 Cycloalkenyl, etc.. Besonders bevorzugt sind C1-C22 Alkyl, C2-C22
Alkenyl, C2-C22 Alkinyl, C3-C22 AIIyI, C4-C22 Alkyldienyl, C6-C12 Aryl, C6-C20 Arylalkyl und C4-C-20 Heteroaryl.
Weitere bevorzugte Kohlenstoff- und Kohlenwasserstoffreste sind geradkettige, verzweigte oder cyclische Alkylreste mit 1 bis 40, vorzugsweise 1 bis 22 C-Atomen, welche unsubstituiert oder durch F, Cl,
Br, I oder CN ein- oder mehrfach substituiert sind, und worin ein oder mehrere nicht benachbarte CH2-Gruppen jeweils unabhängig voneinander durch -C(R)=C(R)-, -C≡C-, -N(R)-, -O-, -S-, -CO-, -CO-O-, -O-CO- und/oder -O-CO-O- so ersetzt sein können, dass O- und/oder S-Atome nicht direkt miteinander verknüpft sind, wobei R die oben angegebene Bedeutung hat.
Bevorzugte Alkylgruppen sind z.B. Methyl, Ethyl, n-Propyl, Isopropyl, n- Butyl, Isobutyl, s-Butyl, t-Butyl, 2-Methylbutyl, n-Pentyl, s-Pentyl, Cyclopentyl, n-Hexyl, Cyclohexyl, 2-Ethylhexyl, n-Heptyl, Cycloheptyl, n- Octyl, Cyclooctyl, Dodecanyl, Trifluormethyl, Perfluor-n-butyl, 2,2,2- Trifluorethyl, Perfluoroctyl und Perfluorhexyl.
Bevorzugte Alkenylgruppen sind z.B. Ethenyl, Propenyl, Butenyl, Pentenyl, Cyclopentenyl, Hexenyl, Cyclohexenyl, Heptenyl, Cycloheptenyl, Octenyl und Cyclooctenyl.
Bevorzugte Alkinylgruppen sind z.B. Ethinyl, Propinyl, Butinyl, Pentinyl, Hexinyl und Octinyl.
Bevorzugte Alkoxygruppen sind z.B. Methoxy, Ethoxy, 2-Methoxyethoxy, n-Propoxy, i-Propoxy, n-Butoxy, i-Butoxy, s-Butoxy, t-Butoxy, 2- Methylbutoxy, n-Pentoxy, n-Hexoxy, n-Heptoxy und n-Octoxy.
Bevorzugte Aminogruppen sind z.B. Dimethylamin, Methylamin, Methylphenylamin und Phenylamin.
Der Begriff "Aryl" bedeutet eine aromatische Kohlenstoffgruppe oder eine davon abgeleitete Gruppe. Der Begriff "Heteroaryl" bedeutet "Aryl" gemäß vorstehender Definition, enthaltend ein oder mehrere Heteroatome. Unter einem aromatischen bzw. heteroaromatischen Ringsystem im Sinne der vorliegenden Erfindung soll ein System verstanden werden, das nicht notwendigerweise nur aromatische bzw. heteroaromatische Gruppen enthält, sondern in dem auch mehrere aromatische bzw. hetero- aromatische Gruppen durch eine kurze nicht-aromatische Einheit (< 10 % der von H verschiedenen Atome, vorzugsweise < 5 % der von H verschiedenen Atome), wie beispielsweise C (sp3-hybridisiert), O und/oder N, unterbrochen sein können. So sollen beispielsweise auch Systeme wie 9,9' Spirobifluoren, 9,9-Diarylfluoren und Triarylamin als aromatische Ringsysteme verstanden werden.
Arylgruppen können monocyclisch oder polycyclisch sein, d.h. sie können einen Ring (z.B. Phenyl) oder zwei oder mehr Ringe aufweisen, welche auch kondensiert (z.B. Naphthyl) oder kovalent verknüpft sein können (z.B. Biphenyl), oder eine Kombination von kondensierten und verknüpften Ringen beinhalten. Bevorzugt sind vollständig konjugierte Arylgruppen.
Bevorzugte Arylgruppen sind z.B. Phenyl, Biphenyl, Triphenyl, [i
Figure imgf000011_0001
Naphthyl, Anthracen, Binaphthyl, Phenanthren, Dihydrophenanthren, Pyren, Dihydropyren, Chrysen, Perylen, Tetracen, Pentacen, Benzpyren, Fluoren, Inden, Indenofluoren und Spirobifluoren.
Bevorzugte Heteroarylgruppen sind z.B. 5-gliedrige Ringe wie z.B. Pyrrol, Pyrazol, Imidazol, 1 ,2,3-Triazol, 1,2,4-Triazol, Tetrazol. Furan., Thiophen, Selenophen, Oxazol, Isoxazol, 1 ,2-Thiazol, 1 ,3-Thiazol, 1 ,2,3-Oxadiazol, 1 ,2,4-Oxadiazol, 1 ,2,5-Oxadiazol, 1,3,4-Oxadiazol, 1 ,2,3-Thiadiazol, 1 ,2,4- Thiadiazol, 1 ,2,5-Thiadiazol, 1 ,3,4-Thiadiazol, 6-gliedrige Ringe wie z.B. Pyridin, Pyridazin, Pyrimidin, Pyrazin, 1 ,3,5-Triazin, 1 ,2,4-Triazin, 1 ,2,3- Triazin, 1 ,2,4,5-Tetrazin, 1 ,2,3,4-Tetrazin, 1 ,2,3,5-Tetrazin, oder kondensierte Gruppen wie z.B. Indol, Isoindol, Indolizin, Indazol, Benzimidazol, Benzotriazol, Purin, Naphthimidazol, Phenanthrimidazol, Pyridimidazol, Pyrazinimidazol, Chinoxalinimidazol, Benzoxazol, Naphthoxazol, Anthroxazol, Phenanthroxazol, Isoxazol, Benzothiazol, Benzofuran, Isobenzofuran, Dibenzofuran, Chinolin, Isochinolin, Pteridin, Benzo-5,6-chinolin, Benzo-6,7-chinolin, Benzo-7,8-chinolin, Benzoisochinolin, Acridin, Phenothiazin, Phenoxazin, Benzopyridazin, Benzopyrimidin, Chinoxalin, Phenazin, Naphthyridin, Azacarbazol, Benzocarbolin, Phenanthridin, Phenanthrolin, Thieno[2,3b]thiophen, Thieno[3,2b]thiophen, Dithienothiophen, Isobenzothiophen, Dibenzo- thiophen, Benzothiadiazothiophen oder Kombinationen dieser Gruppen.
Die Heteroarylgruppen können auch mit Alkyl, Alkoxy, Thioalkyl, Fluor, Fluoralkyl oder weiteren Aryl- oder Heteroarylgruppen substituiert sein.
Die Aryl-, Heteroaryl-, Kohlenstoff- und Kohlenwasserstoffreste weisen gegebenenfalls einen oder mehrere Substituenten auf, welche vorzugsweise ausgewählt sind aus der Gruppe bestehend aus SiIyI, Sulfo, Sulfonyl, Formyl, Amin, Imin, Nitril, Mercapto, Nitro, Halogen, C1-12 Alkyl, Cβ-12 Aryl, C-M2 Alkoxy, Hydroxy oder Kombinationen dieser Gruppen.
Bevorzugte Substituenten sind beispielsweise löslichkeitsfördernde
Gruppen wie Alkyl oder Alkoxy, elektronenziehende Gruppen wie Fluor, Nitro oder Nitril, oder Substituenten zur Erhöhung der Glastemperatur (Tg) im Polymer, insbesondere voluminöse Gruppen wie z.B. t-Butyl oder gegebenenfalls substituierte Arylgruppen.
Besonders bevorzugte Substituenten sind z.B. F, Cl, Br, I1 -CN, -NO2, -NCO, -NCS, -OCN1 -SCN, -C(=O)N(R)2, -C(=O)Y1, -C(=O)R und -N(R)22 worin R die oben angegebene Bedeutung hat und Y1 Halogen bedeutet, optional substituiertes SiIyI, Aryl mit 4 bis 40, vorzugsweise 6 bis 20 C- Atomen, und geradkettiges oder verzweigtes Alkyl, Alkoxy, Alkylcarbonyl, Alkoxycarbonyl, Alkylcarbonyloxy oder Alkoxycarbonyloxy mit 1 bis 22 C- Atomen, worin ein oder mehrere H-Atome gegebenenfalls durch F oder Cl ersetzt sein können.
"Halogen" bedeutet F, Cl, Br oder I.
Aryl(oxy)- und Heteroaryl(oxy)reste sind vorzugsweise ein- oder mehrfach, wie oben definiert, substituiert. Ganz besonders bevorzugt sind Polymere enthaltend Struktureinheiten der Formel (I) ausgewählt aus den folgenden Unterformeln:
Figure imgf000013_0001
Figure imgf000014_0001
wobei die gestrichelten Linien am Thiophen- und am Phenylring die Verknüpfung im Poiymer darsteiien (und keine Methylgruppen). Mögiiche und/oder bevorzugte weitere Substituenten R sind der Übersichtlichkeit wegen nicht angegeben.
Für Polymere enthaltend Struktureinheiten der Formel (II) sind die gleichen Unterformeln ganz besonders bevorzugt, wie oben für die Struktureinheiten der Formel (I) abgebildet.
Die erfindungsgemäßen Polymere können neben einer oder mehrerer Struktureinheiten der Formel (I) und/oder (II) noch weitere Struktureinheiten enthalten. Dies sind u. a. solche, wie sie z.B. in der WO 02/077060 A1 und in der WO 2005/014689 A2 offenbart und umfangreich aufgelistet sind. Diese werden via Zitat als Bestandteil der vorliegenden Erfindung betrachtet. Die weiteren Struktureinheiten können beispielsweise aus den folgenden Klassen stammen:
Gruppe 1 : Einheiten, welche die Lochinjektions- und/oder Lochtransporteigenschaften der Polymere beeinflussen;
Gruppe 2: Einheiten, welche die Elektroneninjektions- und/oder Elektronentransporteigenschaften der Polymere beeinflussen;
Gruppe 3: Einheiten, die Kombinationen von Einzeleinheiten der Gruppe 1 und Gruppe 2 aufweisen; Gruppe 4: Einheiten, welche die Emissionscharakteristik insoweit verändern, dass Elektrophosphoreszenz statt Elektrofluoreszenz erhalten werden kann;
Gruppe 5: Einheiten, welche den Übergang vom so genannten Singulett- zum Triplettzustand verbessern;
Gruppe 6: Einheiten, welche die Emissionsfarbe der resultierenden Polymere beeinflussen;
Gruppe 7: Einheiten, welche typischerweise als Backbone verwendet werden;
Gruppe 8: Einheiten, welche die filmmorphologischen Eigenschaften und/oder die rheologischen der resultierenden Polymere beeinflussen.
Bevorzugte erfindungsgemäße Polymere sind solche, bei denen mindestens eine Struktureinheit Ladungstransporteigenschaften aufweist, d.h. die Einheiten aus den Gruppe 1 und/oder 2 enthalten.
Struktureinheiten aus der Gruppe 1 , die Lochinjektions- und/oder Lochtransporteigenschaften aufweisen, sind beispielsweise Triarylamin-, Benzidin-, Tetraaryl-para-phenylendiamin-, Triarylphosphin-, Phenothiazin-, Phenoxazin-, Dihydrophenazin-, Thianthren-, Dibenzo- para-dioxin-, Phenoxathiin-, Carbazol-, Azulen-, Thiophen-, Pyrrol- und Furanderivate und weitere O-, S- oder N-haltige Heterocyclen mit hoch liegendem HOMO (HOMO = höchstes besetztes Molekülorbital). Vorzugsweise führen diese Arylamine und Heterocyclen zu einem HOMO im Polymer von mehr als -5,8 eV (gegen Vakuumlevel), besonders bevorzugt von mehr als -5,5 eV.
Struktureinheiten aus der Gruppe 2, die Elektroneninjektions- und/oder Elektronentransporteigenschaften aufweisen, sind beispielsweise Pyridin-, Pyrimidin-, Pyridazin-, Pyrazin-, Oxadiazol-, Chinolin-, Chinoxalin-,
Anthracen-, Benzanthracen-, Pyren-, Perylen-, Benzimidazol-, Triazin-, Keton-, Phosphinoxid- und Phenazinderivate, aber auch Triarylborane und weitere O-, S- oder N-haltige Heterocyclen mit niedrig liegendem LUMO (LUMO = niedrigstes unbesetztes Molekülorbital). Vorzugsweise führen diese Einheiten im Polymer zu einem LUMO von weniger als -2,5 eV (gegen Vakuumlevel), besonders bevorzugt von weniger als -2,7 eV.
Es kann bevorzugt sein, wenn in den erfindungsgemäßen Polymeren Einheiten aus der Gruppe 3 enthalten sind, in denen Strukturen, welche die Lochmobilität und welche die Elektronenmobilität erhöhen (also Einheiten aus Gruppe 1 und 2), direkt aneinander gebunden sind oder Strukturen enthalten sind, die sowohl die Lochmobilität als auch die Elektronenmobilität erhöhen. Einige dieser Einheiten können als Emitter dienen und verschieben die Emissionsfarbe ins Grüne, Gelbe oder Rote. Ihre Verwendung eignet sich also beispielsweise für die Erzeugung anderer Emissionsfarben aus ursprünglich blau emittierenden Polymeren.
Struktureinheiten aus der Gruppe 4 sind solche, welche auch bei Raumtemperatur mit hoher Effizienz aus dem Triplettzustand Licht emittieren können, also Elektrophosphoreszenz statt Elektrofluoreszenz zeigen, was häufig eine Steigerung der Energieeffizienz bewirkt. Hierfür eignen sich zunächst Verbindungen, welche Schweratome mit einer Ordnungszahl von mehr als 36 enthalten. Bevorzugt sind Verbindungen, welche d- oder f-Übergangsmetalle enthalten, die die o.g. Bedingung erfüllen. Besonders bevorzugt sind hier entsprechende Struktureinheiten, welche Elemente der Gruppe 8 bis 10 (Ru, Os, Rh, Ir, Pd, Pt) enthalten. Als Struktureinheiten für die erfindungsgemäßen Polymeren kommen hier z.B. verschiedene Komplexe in Frage, wie sie z.B. in der WO 02/068435 A1 , der WO 02/081488 A1 , der EP 1239526 A2 und der WO 2004/026886 A2 offenbart werden. Entsprechende Monomere werden in der WO 02/068435 A1 und in der WO 2005/042548 A1 offenbart.
Struktureinheiten der Gruppe 5 sind solche, welche den Übergang vom Singulett- zum Triplettzustand verbessern und welche, unterstützend zu den Strukturelementen der Gruppe 4 eingesetzt, die Phosphoreszenz- eigenschaften dieser Strukturelemente verbessern. Hierfür kommen insbesondere Carbazol- und überbrückte Carbazoldimereinheiten in Frage, wie sie z.B. in der WO 2004/070772 A2 und der WO 2004/113468 A1 offenbart werden. Weiterhin kommen hierfür Ketone, Phosphinoxide, Sulfoxide, Sulfone, Silan-Derivate und ähnliche Verbindungen in Frage, wie sie z.B. in der WO 2005/040302 A1 offenbart werden.
Struktureinheiten der Gruppe 6 sind neben den oben genannten solche, die mindestens noch eine weitere aromatische oder eine andere konjugierte Struktur aufweisen, welche nicht unter die o.g. Gruppen fallen, d.h. die die Ladungsträgermobilitäten nur wenig beeinflussen, die keine metallorganischen Komplexe sind oder die keinen Einfluss auf den
Singulett-Triplett-Übergang haben. Derartige Strukturelemente können die Emissionsfarbe der resultierenden Polymere beeinflussen. Je nach Einheit können sie daher auch als Emitter eingesetzt werden. Bevorzugt sind dabei aromatische Strukturen mit 6 bis 40 C-Atomen oder auch Tolan-, Stilben- oder Bisstyrylarylenderivate, die jeweils mit einem oder mehreren Resten R substituiert sein können. Besonders bevorzugt ist dabei der Einbau von 1 ,4 Phenylen-, 1 ,4-Naphthylen-, 1 ,4- oder 9,10- Anthrylen-, 1 ,6-, 2,7- oder 4,9-Pyrenylen-, 3,9- oder 3,10- Perylenylen-, 4,4'-Biphenylylen-, 4,4" Terphenylylen-, 4,4'-Bi-1 ,1'-naphthylylen-, 4,4'- Tolanylen-, 4,4'-Stilbenylen-, 4,4" Bisstyrylarylen-, Benzothiadiazol- und entsprechenden Sauerstoffderivaten, Chinoxalin-, Phenothiazin-, Phenoxazin-, Dihydrophenazin-, Bis(thiophenyl)arylen-, Oligo(thiophen- ylen)-, Phenazin-, Rubren-, Pentacen- oder Perylenderivaten, die vorzugsweise substituiert sind, oder vorzugsweise konjugierte Push-Pull- Systeme (Systeme, die mit Donor- und Akzeptorsubstituenten substituiert sind) oder Systeme wie Squarine oder Chinacridone, die vorzugsweise substituiert sind.
Struktureinheiten der Gruppe 7 sind Einheiten, die aromatische Strukturen mit 6 bis 40 C-Atomen beinhalten, welche typischerweise als Polymergrundgerüst (Backbone) verwendet werden. Dies sind beispielsweise 4,5- Dihydropyrenderivate, 4,5,9,10-Tetrahydropyrenderivate, Fluorenderivate, 9,9'-Spirobifluorenderivate, Phenanthrenderivate, 9,10-Dihydrophenan- threnderivate, 5,7-Dihydrodibenzooxepinderivate und eis- und trans- Indenofluorenderivate. Struktureinheiten der Gruppe 8 sind solche, die die filmmorphologischen Eigenschaften und/oder die rheologischen der Polymere beeinflussen, wie z.B. Siloxane, lange Alkylketten oder fluorierte Gruppen, aber auch besonders steife oder flexible Einheiten, wie z.B. flüssigkristallbildende Einheiten oder vernetzbare Gruppen.
Bevorzugt sind erfindungsgemäße Polymere, die gleichzeitig neben Struktureinheiten der Formel (I) und/oder (II) zusätzlich noch ein oder mehrere Einheiten ausgewählt aus den Gruppen 1 bis 8 enthalten. Es kann ebenfalls bevorzugt sein, wenn gleichzeitig mehr als eine Struktureinheit aus einer Gruppe vorliegt.
Aber auch ein kleinerer Anteil der emittierenden Einheiten, insbesondere grün und rot emittierender Einheiten, kann bevorzugt sein, beispielsweise zur Synthese von weiß emittierenden Copolymeren. Wie weiß emittierende Copolymere synthetisiert werden können, ist im Detail z.B. in der WO 2005/030827 A1 und WO 2005/030828 A1 offenbart.
Bevorzugt sind dabei erfindungsgemäße Polymere, die neben mindestens einer Struktureinheit der Formel (I) und/oder (II) noch Einheiten aus der Gruppe 7 enthalten, besonders bevorzugt mindestens 50 mol% dieser Einheiten.
Ebenfalls bevorzugt ist es, wenn die erfindungsgemäßen Polymere Einheiten enthalten, die den Ladungstransport oder die Ladungsinjektion verbessern, also Einheiten aus der Gruppe 1 und/oder 2; besonders bevorzugt ist ein Anteil von 0,5 bis 30 mol% dieser Einheiten; ganz besonders bevorzugt ist ein Anteil von 1 bis 10 mol% dieser Einheiten.
Besonders bevorzugt ist es weiterhin, wenn die erfindungsgemäßen Polymere Struktureinheiten aus der Gruppe 7 und Einheiten aus der Gruppe 1 und/oder 2 enthalten, insbesondere mindestens 50 mol% Einheiten aus der Gruppe 7 und 0,5 bis 30 mol% Einheiten aus der Gruppe 1 und/oder 2. Die nötige Löslichkeit der Polymere wird vor allem durch die Substituenten an den verschiedenen Wiederholungseinheiten gewährleistet, sowohl den Substituenten R1'10 an den Struktureinheiten der Formel (I) und/oder (II), als auch durch Substituenten an den anderen Wiederholungseinheiten.
Die erfindungsgemäßen Polymere sind entweder Homopolymere aus Struktureinheiten der Formel (I) und/oder (II) oder Copolymere. Die erfindungsgemäßen Polymere können linear, verzweigt oder vernetzt sein. Erfindungsgemäße Copolymere können dabei neben einer oder mehreren Struktureinheiten der Formel (I) und/oder (II), oder deren bevorzugten Unterformeln, potentiell eine oder mehrere weitere Strukturen aus den oben aufgeführten Gruppen 1 bis 8 besitzen.
Die erfindungsgemäßen Copolymere können statistische, alternierende oder blockartige Strukturen aufweisen oder auch mehrere dieser
Strukturen abwechselnd besitzen. Wie Copolymere mit blockartigen Strukturen erhalten werden können und welche weiteren Strukturelemente dafür besonders bevorzugt sind, ist beispielsweise ausführlich in der WO 2005/014688 A2 beschrieben. Diese ist via Zitat Bestandteil der vorliegenden Anmeldung. Ebenso sei an dieser Stelle nochmals hervorgehoben, dass das Polymer auch dendritische Strukturen haben kann.
Die erfindungsgemäßen Polymere mit Struktureinheiten der Formel (I) und/oder (II) sind gut und in hohen Ausbeuten zugänglich. Sie zeigen im Feststoff vorzugsweise blaue Lumineszenz.
Die erfindungsgemäßen Polymere weisen vorteilhafte Eigenschaften, insbesondere hohe Lebensdauern, hohe Effizienzen und gute Farbkoordinaten auf.
Die erfindungsgemäßen Polymere werden in der Regel durch Polymerisation von einer oder mehreren Monomersorten hergestellt, von denen mindestens ein Monomer im Polymer zu Struktureinheiten der Formel (I) und/oder (II) führt. Geeignete Polymerisationsreaktionen sind dem Fachmann bekannt und in der Literatur beschrieben. Besonders geeignete und bevorzugte Polymerisationsreaktionen, die zu C-C- bzw. C-N-Verknüpfungen führen, sind folgende:
(A) Polymerisation gemäß SUZUKI;
(B) Polymerisation gemäß YAMAMOTO; (C) Polymerisation gemäß STILLE;
(D) Polymerisation gemäß HECK;
(E) Polymerisation gemäß NEGISHI;
(F) Polymerisation gemäß SONOGASHIRA;
(G) Polymerisation gemäß HIYAMA; und (H) Polymerisation gemäß HARTWIG-BUCHWALD.
Wie die Polymerisation nach diesen Methoden durchgeführt werden kann und wie die Polymere dann vom Reaktionsmedium abgetrennt und aufgereinigt werden können, ist dem Fachmann bekannt und in der Literatur, beispielsweise in der WO 03/048225 A2, der WO 2004/037887 A2 und der WO 2004/037887 A2 im Detail beschrieben.
Die C-C-Verknüpfungen sind vorzugsweise ausgewählt aus den Gruppen der SUZUKI-Kupplung, der YAMAMOTO-Kupplung und der STILLE- Kupplung; die C-N-Verknüpfung ist vorzugsweise eine Kupplung gemäß HARTWIG-BUCHWALD.
Gegenstand der vorliegenden Erfindung ist somit auch ein Verfahren zur Herstellung der erfindungsgemäßen Polymeren, das dadurch gekennzeichnet ist, dass sie durch Polymerisation gemäß SUZUKI,
Polymerisation gemäß YAMAMOTO, Polymerisation gemäß STILLE oder Polymerisation gemäß HARTWIG-BUCHWALD hergestellt werden.
Die erfindungsgemäßen Dendrimere können gemäß dem Fachmann bekannten Verfahren oder in Analogie dazu hergestellt werden. Geeignete Verfahren sind in der Literatur beschrieben, wie z.B. in Frechet, Jean M. J.; Hawker, Craig J., "Hyperbranched polyphenylene and hyperbranched Polyesters: new soluble, three-dimensional, reactive polymers", Reactive & Functional Polymers (1995), 26(1-3), 127-36; Janssen, H. M.; Meijer, E. w., "The synthesis and characterization of dendritic molecules", Materials Science and Technology (1999), 20 (Synthesis of Polymers), 403-458; Tomalia, Donald A., "Dendrimer molecules", Scientific American (1995), 272(5), 62-6, WO 02/067343 A1 und WO 2005/026144 A1.
Zur Synthese der erfindungsgemäßen Polymere werden die entsprechenden Monomere benötigt. Monomere, die in den erfindungsgemäßen Polymeren zu Struktureinheiten der Formel (I) oder (II) führen, sind 2-Vinylthiophenylbenzolderivate, die gegebenenfalls entsprechend substituiert sind und an einer, zwei, drei oder vier, vorzugsweise 2 Positionen geeignete Funktionalitäten aufweisen, die es erlauben, diese Monomereinheit in das Polymer einzubauen. Diese Monomere sind neu und daher ebenfalls Gegenstand der vorliegenden Erfindung.
Gegenstand der vorliegenden Erfindung sind somit weiterhin Verbindungen der Formel (III) und (IV),
Figure imgf000021_0001
die dadurch gekennzeichnet sind, dass zwei der Reste R1 bis R10, gleich oder verschieden, funktionelle Gruppen sind, die unter Bedingungen der C-C- bzw. C-N-Verknüpfungen polymerisieren, wobei die weiteren Symbole und Indices dieselbe Bedeutung wie in Bezug auf die Struktureinheiten der Formel (I) und (II) haben.
Vorzugsweise sind die funktionellen Gruppen ausgewählt aus Cl, Br, I, O-Tosylat, O-Triflat, 0-SO2R2, B(OR2)2 und Sn(R2)3, besonders bevorzugt aus Br, I und B(OR2)2, wobei R2 bei jedem Auftreten gleich oder verschieden H, ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen ist, und wobei zwei oder mehrere Reste R2 auch miteinander ein Ringsystem bilden können.
Dabei gilt für die bifunktionellen monomeren Verbindungen der Formel (IM) und (IV) dieselbe Bevorzugung wie sie für die Struktureinheiten der
Formel (I) und (II) oben beschrieben ist.
Die Synthese der oben beschriebenen Einheiten aus der Gruppe 1 bis 8 sowie der weiteren emittierenden Einheiten ist dem Fachmann bekannt und in der Literatur, z.B. in der WO 2005/014689 A2, der WO 2005/030827 A1 und WO 2005/030828 A1 , beschrieben. Diese Dokumente und die darin zitierte Literatur sind via Zitat Bestandteil der vorliegenden Anmeldung.
Es kann außerdem bevorzugt sein, die erfindungsgemäßen Polymere nicht als Reinsubstanz, sondern als Blend (Mischung) zusammen mit weiteren beliebigen polymeren, oligomeren, dendritischen oder niedermolekularen Substanzen zu verwenden. Diese können z.B. die elektronischen Eigenschaften verbessern oder selber emittieren. Als "Blend" wird vor- und nachstehend eine Mischung enthaltend mindestens eine polymere Komponente bezeichnet.
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit ein Polymer Blend enthaltend ein oder mehrere erfindungsgemäße Polymere, sowie eine oder mehrere weitere polymere, oligomere, dendritische oder niedermolekulare Substanzen.
Gegenstand der Erfindung sind weiterhin Lösungen und Formulierungen aus einem oder mehreren erfindungsgemäßen Polymeren oder Blends in einem oder mehreren Lösungsmitteln. Wie solche Lösungen hergestellt werden können, ist dem Fachmann bekannt und beispielsweise in der WO 02/072714 A1 , der WO 03/019694 A2 und der darin zitierten Literatur beschrieben. Diese Lösungen können verwendet werden, um dünne Polymerschichten herzustellen, zum Beispiel durch Flächenbeschichtungsverfahren (z.B. Spin-coating) oder durch Druckverfahren (z.B. InkJet Printing).
Polymere enthaltend Struktureinheiten der Formel (I) und/oder (II), welche eine oder mehrere polymerisierbare, und damit vernetzbare Gruppen enthalten, eignen sich besonders zur Herstellung von Filmen oder Beschichtungen, insbesondere zur Herstellung von strukturierten Beschichtungen, z.B. durch thermische oder lichtinduzierte in-situ- Polymerisation und in-situ-Vernetzung, wie beispielsweise in-situ-UV- Photopolymerisation oder Photopatteming. Besonders bevorzugt für solche Anwendungen sind erfindungsgemäße Polymere mit einer oder mehreren vernetzbaren Gruppen, ausgewählt aus Acrylat, Methacrylat, Vinyl, Epoxy und Oxetan. Dabei können sowohl entsprechende Polymere in Reinsubstanz verwendet werden, es können aber auch Formulierungen oder Blends dieser Polymere wie oben beschrieben verwendet werden. Diese können mit oder ohne Zusatz von Lösungsmitteln und/oder Bindemitteln verwendet werden. Geeignete Materialien, Verfahren und Vorrichtungen für die oben beschriebenen Methoden sind z.B. in der WO 2005/083812 A2 offenbart. Mögliche Bindemittel sind beispielsweise Polystyrol, Polycarbonat, Polyacrylate, Polyvinylbutyral und ähnliche, optoelektronisch neutrale Polymere.
Geeignete und bevorzugte Lösungsmittel sind beispielsweise Toluol, Anisol, XyIoI, Methylbenzoat, Dimethylanisol, Mesitylen, Tetralin, Veratrol und Tetrahydrofuran.
Die erfindungsgemäßen Polymere, Blends und Formulierungen können in elektronischen oder optoelektronischen Vorrichtungen bzw. zu deren Herstellung verwendet werden.
Ein weiterer Gegenstand der vorliegenden Erfindung ist somit die Verwendung der erfindungsgemäßen Polymeren, Blends und Formulierungen in elektronischen oder optoelektronischen Vorrichtungen, vorzugsweise in organischen bzw. polymeren organischen Leuchtdioden (OLED, PLED), organischen Feld-Effekt-Transistoren (OFETs), organischen integrierten Schaltungen (O-ICs), organischen Dünnfilmtransistoren (TFTs), organischen Solarzellen (O-SCs), organischen Laserdioden (O-Laser), organischen photovoltaischen (OPV) Elementen oder Vorrichtungen oder organischen Photorezeptoren (OPCs), besonders bevorzugt in organischen bzw. polymeren organischen
Leuchtdioden (OLED, PLED), insbesondere in polymeren organischen Leuchtdioden (PLED).
Wie OLEDs bzw. PLEDs hergestellt werden können, ist dem Fachmann bekannt und wird beispielsweise als allgemeines Verfahren ausführlich in der WO 2004/070772 A2 offenbart, das entsprechend für den Einzeifaii anzupassen ist.
Wie oben beschrieben, eignen sich die erfindungsgemäßen Polymeren ganz besonders als Elektrolumineszenzmaterialien in derart hergestellten PLEDs oder Displays.
Als Elektrolumineszenzmaterialien im Sinne der vorliegenden Erfindung gelten Materialien, die als aktive Schicht Verwendung finden können. Aktive Schicht bedeutet, dass die Schicht befähigt ist, bei Anlegen eines elektrischen Feldes Licht abzustrahlen (lichtemittierende Schicht) und/oder dass sie die Injektion und/oder den Transport der positiven und/oder negativen Ladungen verbessert (Ladungsinjektions- oder Ladungstransportschicht).
Ein bevorzugter Gegenstand der vorliegenden Erfindung ist daher auch die Verwendung der erfindungsgemäßen Polymeren oder Blends in einer PLED, insbesondere als Elektrolumineszenzmaterial.
Gegenstand der vorliegenden Erfindung sind ferner elektronische oder optoelektronische Bauteile, vorzugsweise organische bzw. polymere organische Leuchtdioden (OLED, PLED), organische Feld-Effekt- Transistoren (OFETs), organische integrierte Schaltungen (O-ICs), organische Dünnfilmtransistoren (TFTs), organische Solarzellen (O-SCs), organische Laserdioden (O-Laser), organische photovoltaische (OPV) Elemente oder Vorrichtungen oder organische Photorezeptoren (OPCs), besonders bevorzugt organische bzw. polymere organische Leuchtdioden, insbesondere polymere organische Leuchtdioden, mit einer oder mehreren aktiven Schichten, wobei mindestens eine dieser aktiven Schichten ein oder mehrere erfindungsgemäße Polymere enthält. Die aktive Schicht kann beispielsweise eine lichtemittierende Schicht, eine
Ladungstransportschicht und/oder eine Ladungsinjektionsschicht sein.
Im vorliegenden Anmeldungstext und auch in den im Weiteren folgenden Beispielen wird hauptsächlich auf die Verwendung der erfindungs- gemäßen Polymeren in Bezug auf PLEDs und entsprechende Displays abgezielt. Trotz dieser Beschränkung der Beschreibung ist es für den Fachmann ohne weiteres erfinderisches Zutun möglich, die erfindungsgemäßen Polymere als Halbleiter auch für die weiteren, oben beschriebenen Verwendungen in anderen elektronischen Vorrichtungen zu benutzen.
Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie einzuschränken. Insbesondere sind die darin beschriebenen Merkmale, Eigenschaften und Vorteile der dem betreffenden Beispiel zu Grunde liegenden definierten Verbindungen auch auf andere, nicht im Detail aufgeführte, aber unter den Schutzbereich der Ansprüche fallende Verbindungen anwendbar, sofern an anderer Stelle nichts Gegenteiliges gesagt wird.
Beispiele 1 und 2: Monomer-Beispiele
Beispiel 1
Herstellung von 4-(5-Brom-2-vinylthiophenyl)-1-brombenzol 3
Die Verbindung wird wie folgt hergestellt:
Figure imgf000026_0001
1.1 (4-Brombenzvl)-phosphonsäurediethylester 2
Figure imgf000026_0002
40,69 g (1 molares Äquivalent, 163 mmol) 4-Brombenzylbromid 1 werden in 28,3 ml (1 molares Äquivalent, 163 mmol) Triethylphosphit bis zur Beendigung der Gasentwicklung auf 16O°C erhitzt. Der Ansatz wird unter Vakuum destilliert und der verbleibende Rückstand in Form eines öis 2 (48,87 g, 98 %) wird ohne weitere Reinigung in die Folgereaktion eingesetzt.
1H NMR (CDCI3, δ (ppm), J (Hz)): 1 ,25 (t, 6H, J = 7,1 ), 3,07 (s, 1 H), 3,11 (S, 1 H), 4,01 (m, 4H), 7,17 (d, 2H, J = 8,4), 7,43 (d, 2H, J = 8,4). 1.2 4-(5-Brom-2-vinylthiophenyl)-1 -brombenzol 3
Figure imgf000027_0001
30 g (1 molares Äquivalent, 98 mmol) (4-Brombenzyl)-phosphonsäure- diethylester 2 werden in 500 ml Dimethylformamid (DMF) vorgelegt, unter Schutzgas bei ca. O°C mit 18,78 g Natrium fe/t-butylat (2 molare Äquivalente, 196 mmol) versetzt und nach 30 Minuten Rührzeit bei 0°C eine Lösung von 21 ,61 g (1 ,1 molare Äquivalente, 107 mmol) 5-Brom-2- carbaldehydthiophen in 150 ml DMF langsam bei 0°C zugetropft. Nach 1
Stunde wird bei 5°C 200 ml Ethanol und 150 ml Wasser zugetropft, bei
Raumtemperatur über Nacht gerührt, der Niederschlag abgesaugt, mit Methanol gewaschen und getrocknet. Nach Umkristallisation aus Methanol erhält man das Produkt 3 (18,23 g, 54 %). 1
1H NMR (CDCI3, δ (ppm), J (Hz)): 6,74 (d, 1 H, J = 16), 6,81 (d, 1 H, J =
3,9), 6,96 (d, 1H, J = 3,9), 7,09 (d, 1H, J = 16), 7,31 (d, 2H, J = 8,5), 7,45 (d, 2H, J = 8,5).
Beispiel 2
Herstellung von 4-(5-Brom-2-vinylthiophenyl)-3-(2.5-dimethylphen-1 -yl)-1 - brombenzol 10
Die Verbindung wird wie folgt hergestellt:
Figure imgf000028_0001
Natriumperiodat (0,5 molare Äquivalente, 102,5 g, 0,48 mol) und lod (0,3 molare Äquivalente, 81 ,6 g, 0,32 mol) werden in Essigsäure (700 ml) und Essigsäureanhydrid (340 ml) suspendiert. Der Ansatz wird dann auf 10°C gekühlt und bei dieser Temperatur wird Schwefelsäure (2,9 molare Äquivalente, 142 ml, 2,66 mol) langsam zugetropft. Bei Raumtemperatur wird anschließend 4-Bromtoluol 5 (1 molares Äquivalent, 160,7 g, 0,94 mol) langsam zugetropft und der Ansatz wird über Nacht gerührt. Nach Zugabe von gekühltem Wasser (1000 ml) und einer Lösung aus Na2SO3 (169 g in 1000 ml) wird die Mischung mit Dichlormethan (DCM) ausgeschüttelt. Die organische Phase wird mit Wasser gewaschen, getrocknet und einrotiert. Das Produkt 6 (188,0 g, 67 %) erhält man durch Vakuum-Destillation in Form einer Flüssigkeit. 1H NMR (CDCI3, δ (ppm), J (Hz)): 2,39 (s, 3H)1 7,10 (d, 1 H, J = 8,2), 7,37 (dd, 1 H, J1 = 2,0, J2 = 8,2), 7,95 (d, 1 H, J = 2,0).
2.2 2-lod-4-brom-brommethylbenzol 7
Figure imgf000029_0001
Zu einer Lösung aus 2-lod-4-bromtoluol 6 (1 molares Äquivalent, 100,3 g, 338 mmol) in Chlorbenzol (1200 ml) werden N-Bromsuccinimid (NBS) (1 ,1 molare Äquivalente, 66,5 g, 373 mmol) und Benzylperoxid (0,006 molare Äquivalente, 450,7 mg, 1 ,9 mmol) zugegeben. Der Ansatz wird dann über Nacht am Rückfluss gerührt. Nachdem das Lösungsmittel abrotiert ist, werden Ethylacetat und Wasser zugegeben. Die wässrige Phase wird mit Ethylacetat ausgeschüttelt. Die organische Phase wird mit Wasser ausgeschüttelt, getrocknet und einrotiert. Man erhält das Produkt 7 (30,7 g, 24 %) durch Umkristallisation aus Ethanol (50 ml) in Form eines weißen Pulvers.
1H NMR (CDCI3, δ (ppm), J (Hz)): 4,54 (s, 2H), 7,34 (d, 1 H, J = 8,1 ), 7,47 (dd, 1 H, J1 = 1 ,9, J2 = 8,1 ), 8,01 (d, 1 H, J = 1 ,9).
2.3 4-Brom-2-(2.5-dimethylphen-1-vl)-brommethylbenzol 8
8 Eine Lösung aus 2-lod-4-brom-brommethylbenzol 7 (1 molares Äquivalent, 30,5 g, 81 mmol), 2,5-Dimethylphenylboronsäure (1 molares Äquivalent, 12,2 g, 81 mmol) und Kaliumcarbonat (5 molare Äquivalente, 56 g, 405 mmol) in Toluol (420 ml) und Wasser (360 ml) wird während 30 Minuten unter Schutzgas gerührt. Pd(PPh3)4 (0,005 molare Äquivalente,
458 mg, 0,4 mmol) wird zugegeben und der Ansatz wird während 17 Stunden am Rückfluss gerührt. Die Mischung wird mit Toluol ausgeschüttelt. Die organische Phase wird getrocknet und einrotiert. Das Produkt 8 (9,28 g, 32 %) erhält man durch Reinigung über eine Kieselgel- Säule (Laufmittel: Heptan) in Form eines leicht gelblichen Öls.
1H NMR (CDCI3, δ (ppm), J (Hz)): 2,06 (s, 3H), 2,35 (s, 3H), 4,08 (d, 1 H, J = 9,4), 4,31(d,1H, J = 9,4), 6,99 (s, 1H), 7,13 (d, 1H, J = 7,7 ), 7,18 (d, 1H, J = 7,7 ), 7,25 (d,1 H, J = 2,0), 7,40 (d,1 H, J = 8,3), 7,44 (dd,1 H, J1 = 2,0, J2 = 8,3).
2.4 r4-Brom-2-(2,5-dimethylphen-1-yl)-benzyl]-phosphonsäurediethyl- ester 9
Figure imgf000030_0001
8,29 g (1 molares Äquivalent, 23 mmol) 4-Brom-2-(2,5-dimethylphen-1-yl)- brommethylbenzol 8 werden in 4,4 ml (1 ,1 molare Äquivalente, 26 mmol) Triethylphosphit bis zur Beendigung der Gasentwicklung auf 180°C erhitzt. Der Ansatz wird unter Vakuum destilliert und der verbleibende Rückstand in Form eines farblosen Öls 9 (8,6 g, 89 %) wird ohne weitere Reinigung in die Folgereaktion eingesetzt. 1H NMR (CDCI3, δ (ppm), J (Hz)): 1 ,20-1 ,24 (m, 6H), 2,01 (s, 3H), 2,33 (s, 3H), 3,01-2,83 (m, 2H), 3,97-3,90 (m, 4H), 6,96 (s, 1H)1 7,09 (d, 1 H, J = 7,9), 7,14 (d, 1 H, J = 7,7), 7,30 (s, 1 H), 7,44 (dd, 1 H, J1 = 2,2, J2 = 8,4), 7,48 (dd, 1 H1 Ji = 2f5, J2 = 8,4).
2.5 4-(5-Brom-2-vinylthiophenyl)-3-(2,5-dimethylphen-1 -yl)-1 -brombenzol
10
Figure imgf000031_0001
6,06 g (1 molares Äquivalent, 15 mmol) [4-Brom-2-(2,5-dimethylphen-1- yl)-benzyl]-phosphonsäurediethylester 9 werden in 70 ml DMF vorgelegt, unter Schutzgas bei ca. O°C mit 3,12 g Natrium tert-butylat (2,2 molare Äquivalente, 33 mmol) versetzt und nach 40 Minuten Rührzeit bei 0°C eine Lösung von 2,99 g (1 ,1 molare Äquivalente, 16 mmol) 5-Brom-2- carbaldehydthiophen in 40 ml DMF langsam bei 0°C zugetropft. Nach 2 Stunden wird bei 5CC Ethanol und Wasser zugetropft, bei Raumtemperatur über Nacht gerührt und der Ansatz mit DCM ausgeschüttelt. Die organischen Phasen werden getrennt, mit Wasser gewaschen, getrocknet und einrotiert. Nach ümkristaiiisation aus Acetonitril erhält man das Produkt 10 (1 ,29 g, 20 %) in Form eines leicht gelblichen Pulvers.
1H NMR (CDCI3, δ (ppm), J (Hz)): 2,01 (s, 3H), 2,36 (s, 3H), 6,42 (d, 1H, J = 16,0), 6,69 (d, 1 H1 J = 3,7), 6,88 (d, 1 H, J = 3,8), 6,94 (s, 1 H), 6,99 (d, 1H1 J = 16,0), 7,17-7,12 (m, 2H), 7,34 (d, 1H1 J = 2,0), 7,46 (dd, 1H1 J1 = 8,6, J2 = 2,0) 7,53 (d, 1 H, J = 8,6). Beispiele 3 bis 6: Polymer-Beispiele
Die erfindungsgemäßen Polymere P1 bis P3 sowie das Vergleichspolymer V1 werden unter Verwendung der folgenden Monomeren (Prozentangaben = mol%) durch SUZUKI-Kupplung gemäß der WO 03/048225 A2 synthetisiert.
Beispiel 3 (Polymer P1 )
Figure imgf000032_0001
Figure imgf000033_0001
Beispiele 7 bis 10: Device-Beispiele
Herstellung von PLEDs
Die Herstellung einer polymeren organischen Leuchtdiode (PLED) ist in der Literatur bereits vielfach beschrieben (z.B. in der WO 2004/037887 A2). Um die vorliegende Erfindung beispielhaft zu erläutern, werden PLEDs mit den Polymeren P1 bis P3 sowie dem Vergleichspolymer V1 durch Spincoating hergestellt. Eine typische Device hat den in Figur 1 dargestellten Aufbau.
Dazu werden speziell angefertigte Substrate der Firma Technoprint in einem eigens zu diesem Zweck designten Layout verwendet (Figur 2, Abbildung links: Auf den Glasträger aufgebrachte ITO-Struktur, Abbildung rechts: Vollständige elektronische Struktur mit ITO, aufgedampter
Kathode und optionaler Metallisierung der Zuleitungen). Die ITO-Struktur (Indium-Zinn-Oxid, eine transparente, leitfähige Anode) wurde durch Sputtern in einem solchen Muster auf Sodalimeglas aufgebracht, dass sich mit der am Ende des Herstellungsprozesses aufgedampften Kathode 4 Pixel ä 2 x 2 mm ergeben.
Die Substrate werden im Reinraum mit Dl Wasser und einem Detergens (Deconex 15 PF) gereinigt und dann durch eine UV/Ozon-Plasmabehandlung aktiviert. Danach wird ebenfalls im Reinraum eine 80 nm Schicht PEDOT (PEDOT ist ein Polythiophen-Derivat (Baytron P VAI
4083sp.) von H. C. Starck, Goslar, das als wässrige Dispersion geliefert wird) durch Spin-Coating aufgebracht. Die benötigte Spinrate hängt vom Verdünnungsgrad und der spezifischen Spincoater-Geometrie ab (typisch für 80 nm: 4500 rpm). Um Restwasser aus der Schicht zu entfernen, werden die Substrate für 10 Minuten bei 180°C auf einer Heizplatte ausgeheizt. Danach werden unter Inertgasatmosphäre (Stickstoff bzw. Argon) zunächst 20 nm einer Interlayer (typischerweise ein lochdominiertes Polymer, hier HIL-012 von Merck) und dann 65 nm der Polymerschichten aus Toluollösungen (Konzentration Interlayer 5 g/l, für die Polymere P1 bis P3 und V1 jeweils 8 g/l) aufgebracht. Beide
Schichten werden bei 180°C mindestens 10 Minuten ausgeheizt. Danach wird die Ba/Al-Kathode im angegebenen Muster durch eine Aufdampfmaske aufgedampft (hochreine Metalle von Aldrich, besonders Barium 99,99 % (Best-Nr. 474711); Aufdampfanlagen von Lesker o.a., typischer Vakuumlevel 5 x 10-6 mbar). Um vor allem die Kathode vor Luft und Luftfeuchtigkeit zu schützen, wird die Device abschließend verkapselt.
Die Verkapselung der Device erfolgt, indem ein kommerziell erhältliches Deckglas über der pixelierten Fläche verklebt wird. Anschließend wird die Device charakterisiert.
Dazu werden die Devices in für die Substratgröße eigens angefertigte Halter eingespannt und mitteis Federkontakten kontaktiert. Eine Photodiode mit Augenverlaufsfilter kann direkt auf den Messhalter aufgesetzt werden, um Einflüsse von Fremdlicht auszuschließen. Der typische Messaufbau ist in Figur 3 dargestellt.
Typischerweise werden die Spannungen von 0 bis max. 20 V in 0,2 V- Schritten erhöht und wieder erniedrigt. Für jeden Messpunkt wird der Strom durch die Device sowie der erhaltene Photostrom von der Photodiode gemessen. Auf diese Art und Weise erhält man die IVL-Daten der Testdevices. Wichtige Kenngrößen sind die gemessene maximale Effizienz („Max. Eff." in cd/A) und die für 100 cd/m2 benötigte Spannung.
Um außerdem die Farbe und das genaue Elektrolumineszenzspektrum der Testdevices zu kennen, wird nach der ersten Messung nochmals die für 100 cd/m2 benötigte Spannung angelegt und die Photodiode durch einen Spektrum-Messkopf ersetzt. Dieser ist durch eine Lichtleitfaser mit einem Spektrometer (Ocean Optics) verbunden. Aus dem gemessenen Spektrum können die Farbkoordinaten (CIE: Commission International de l'eclairage, Normalbetrachter von 1931 ) abgeleitet werden.
Für die Einsatzfähigkeit der Materialien von besonderer Bedeutung ist die Lebensdauer der Devices. Diese wird in einem der Erstevaluierung sehr ähnlichen Messaufbau so gemessen, dass eine Anfangsleuchtdichte eingestellt wird (z.B. 1000 cd/m2). Der für diese Leuchtdichte benötigte Strom wird konstant gehalten, während typischerweise die Spannung ansteigt und die Leuchtdichte abnimmt. Die Lebensdauer ist erreicht, wenn die Anfangsleuchtdichte auf 50% des Ausgangswertes abgesunken ist.
Die Ergebnisse, die bei Verwendung der Polymeren P1 bis P3 sowie V1 in PLEDs erhalten werden, sind in Tabelle 1 zusammengefasst.
Figure imgf000036_0001
Wie man aus den Ergebnissen erkennen kann, stellen die Polymere P1 bis P3 eine deutliche Verbesserung in Effizienz und Lebensdauer gegenüber dem Vergleichspolymer dar. Dadurch sind die neuen, erfindungsgemäßen Polymere deutlich besser für den Einsatz in Displays und Beleuchtungsanwendungen geeignet als Polymere gemäß dem Stand der Technik.

Claims

Patentansprüche
1. Polymere enthaltend 0,01 bis 100 mol% einer oder mehrerer Struktureinheiten der Formel (I) und/oder (II)
Figure imgf000037_0001
wobei die verwendeten Symbole und Indices die folgenden Bedeutungen besitzen:
R1 bis R10 sind unabhängig voneinander, gleich oder verschieden, H, Halogen (F, Cl, Br, I), -CN, -NO2, -NCS, -NCO, -OCN, -SCN, -SF5, -Si(R)3 oder eine geradkettige, verzweigte oder cyclische Alkyl- oder Alkoxygruppe mit 1 bis 22 C- Atomen, in der auch ein oder mehrere nicht benachbarte C-Atome durch -C(R)=C(R)-, -C≡C-, -N(R)-, -O-, -S-, -CO-, -CO-O-, -O-CO- oder -O-CO-O- ersetzt sein können, wobei auch ein oder mehrere H-Atome durch Fluor ersetzt sein können, eine Aryl-, Aryloxy-, Heteroaryl- oder Heteroaryloxygruppe mit 5 bis 40 C-Atomen, welche auch durch ein oder mehrere nicht-aromatische Reste R1-10 substituiert sein kann, wobei auch zwei oder mehrere Reste der Reste R1-10 miteinander ein aliphatisches oder aromatisches, mono- oder polycyclisches Ringsystem bilden können, welches auch mit dem Benzolring oder dem Thiophenring in Formel (I) und/oder (II) ein kondensiertes Ringsystem bilden kann, R ist bei jedem Auftreten, gleich oder verschieden H,
Halogen, eine geradkettige, verzweigte oder cyclische Alkylkette mit 1 bis 22 C-Atomen, in der auch ein oder mehrere nicht benachbarte C-Atome durch -O-, -S-, -CO-,
-CO-O-, -O-CO- oder -O-CO-O- ersetzt sein können, wobei auch ein oder mehrere H-Atome durch Fluor ersetzt sein können, eine Aryl-, Aryloxy-, Heteroaryl- oder Heteroaryloxygruppe mit 5 bis 40 C-Atomen, welche auch durch ein oder mehrere nicht-aromatische Reste R1'10 substituiert sein kann; wobei auch zwei oder mehrere Reste R miteinander und/oder mit weiteren Resten R1'10 ein aromatisches oder aliphatisches, mono- oder polycyclisches Ringsystem bilden können, welches auch mit dem Benzolring oder dem Thiophenring in Formel (I) und/oder (II) ein kondensiertes Ringsystem bilden kann,
X ist S oder O, und
worin mindestens einer der Reste R1 bis R10 eine Verknüpfung im
Polymer bedeutet.
2. Polymere nach Anspruch 1 , dadurch gekennzeichnet, dass sie neben den Einheiten der Formel (I) und/oder (II) noch weitere Struktureinheiten enthalten.
3. Polymere nach Anspruch 2, dadurch gekennzeichnet dass die weiteren Struktureinheiten, die Lochinjektions- und/oder Lochtransporteigenschaften aufweisen, ausgewählt sind aus den Gruppen der Triarylamin-, Benzidin-, Tetraaryl-para-phenylen- diamin-, Triarylphosphin-, Phenothiazin-, Phenoxazin-, Dihydrophenazin-, Thianthren-, Dibenzo-para-dioxin-, Phenoxathiin-, Carbazol-, Azulen-, Thiophen-, Pyrrol- und Furanderivate und weiterer O-, S- oder N-haltiger Heterocyclen mit hoch liegendem HOMO.
4. Polymere nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die weiteren Struktureinheiten, die Elektroneninjektions- und/oder Elektronentransporteigenschaften aufweisen, ausgewählt sind aus den Gruppen der Pyridin-, Pyrimidin-, Pyridazin-, Pyrazin-, Oxadiazol-, Chinolin-, Chinoxalin-, Anthracen-, Benzanthracen-,
Pyren-, Perylen-, Benzimidazol-, Triazin-, Keton-, Phosphinoxid- und Phenazinderivate, aber auch Triarylborane und weiterer O-, S- oder N-haltiger Heterocyclen mit niedrig liegendem LUMO.
5. Polymere nach einem oder mehreren der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die weiteren Strukturelemente die Emissionscharakteristik insoweit verändern, dass Elektro- phosphoreszenz statt Elektrofluoreszenz erhalten werden kann.
6. Polymere nach einem oder mehreren der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass die weiteren Strukturelemente, die den Übergang vom Singulett- zum Triplettzustand verbessern, ausgewählt sind aus den Klassen der Carbazol- und überbrückten Carbazoldimereinheiten, Ketone, Phosphinoxide, Sulfoxide, Sulfone und Silan-Derivate.
7. Polymere nach einem oder mehreren der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die weiteren Strukturelementen, die die die Emissionsfarbe der Polymere beeinflussen, ausgewählt sind aus den Klassen der 1 ,4-Phenylen-, 1 ,4-Naphthylen-, 1 ,4- oder 9, 10-
Anthryien-, 1 ,6-, 2,7- oder 4,9-Pyrenyien-, 3,9- oder 3,10- Perylenylen-, 4,4'-Biphenylylen-, 4,4"-Terphenylylen-, 4,4'-Bi-I 11- naphthylylen-, 4,4'-Tolanylen-, 4,4'-Stilbenylen-, 4,4"-Bisstyryl- arylen-, Benzothiadiazol- und entsprechenden Sauerstoffderivaten, Chinoxalin-, Phenothiazin-, Phenoxazin-, Dihydrophenazin-,
Bis(thiophenyl)arylen-, Oligo(thiophenylen)-, Phenazin-, Rubren-, Pentacen- und Perylenderivaten.
8. Polymere nach einem oder mehreren der Ansprüche 2 bis 7, dadurch gekennzeichnet, dass die weiteren Strukturelementen, die typischerweise als Backbone verwendet werden, ausgewählt sind aus den Klassen der 4,5-Dihydropyren-, 4,5,9,10-Tetrahydropyτen-, Fluoren-, 9,9'-Spirobifluoren-, Phenanthren-, 9,10-Dihydro- phenanthren-, 5,7-Dihydrodibenzooxepin- und eis- und trans- Indenofluorenderivate.
9. Verfahren zur Herstellung der Polymere nach einem oder mehreren der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass sie durch Polymerisation gemäß SUZUKI, Polymerisation gemäß YAMAMOTO, Polymerisation gemäß STILLE oder Polymerisation o gemäß HARTWIG-BUCHWALD hergestellt werden.
10. Verbindungen der Formel (IM) und (IV),
Figure imgf000040_0001
5 dadurch gekennzeichnet, dass zwei der Reste R1 bis R10, gleich oder verschieden, funktionelle Gruppen sind, die unter Bedingungen der C-C- bzw. C-N-Verknüpfungen copolymerisieren, wobei die weiteren Symbole und Indices dieselbe Bedeutung haben, wie in Anspruch 1 in Bezug auf die Struktureinheiten (I) und (II) angegeben.
11. Verbindungen der Formel (III) und (IV) nach Anspruch 10, dadurch gekennzeichnet, dass die funktionellen Gruppen ausgewählt sind aus Cl, Br, I1 O-Tosylat, O-Triflat, 0-SO2R2, B(OR2)2 und Sn(R2 )3, wobei R2 bei jedem Auftreten gleich oder verschieden H, ein aliphatischer oder aromatischer Kohlenwasserstoffrest mit 1 bis 20 C-Atomen ist, und wobei zwei oder mehrere der Reste R2 auch miteinander ein Ringsystem bilden können.
12. Mischungen (Blends) aus einem oder mehreren Polymeren nach einem oder mehreren der Ansprüche 1 bis 8 mit weiteren polymeren, oligomeren, dendritischen und/oder niedermolekularen Substanzen.
13. Lösungen und Formulierungen aus einem oder mehreren Polymeren nach einem oder mehreren der Ansprüche 1 bis 8 oder aus Blends o nach Anspruch 12 in einem oder mehreren Lösungsmitteln.
14. Organische elektronische Vorrichtung mit einer oder mehreren aktiven Schichten, dadurch gekennzeichnet, dass mindestens eine dieser aktiven Schichten ein oder mehrere Polymere nach einem 5 oder mehreren der Ansprüche 1 bis 8 oder Blends nach Anspruch 12 enthält.
15. Organische elektronische Vorrichtung nach Anspruch 14, dadurch gekennzeichnet, dass es sich um organische bzw. polymere 0 organische Leuchtdioden (OLED, PLED), organische integrierte
Schaltungen (O-IC), organische Feld-Effekt-Transistoren (OFET), organische Dünnfilmtransistoren (OTFT), organische Solarzellen (O- SC), organische Laserdioden (O-Laser), organische photo-voltaische (OPV) Elemente oder Vorrichtungen oder organische 5 Photorezeptoren (OPCs) handelt.
PCT/EP2009/005639 2008-08-29 2009-08-04 Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung WO2010022847A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/002,055 US8580395B2 (en) 2008-08-29 2009-08-04 Electroluminescent polymers, method for the production thereof, and use thereof
EP09777642.1A EP2315792B1 (de) 2008-08-29 2009-08-04 Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung
KR1020107029603A KR101726002B1 (ko) 2008-08-29 2009-08-04 전계발광 중합체, 이의 제조 방법 및 이의 용도
CN200980125454.9A CN102076729B (zh) 2008-08-29 2009-08-04 电致发光聚合物、其制备方法及其应用
JP2011524219A JP5714488B2 (ja) 2008-08-29 2009-08-04 エレクトロルミネセンスポリマー、その調製方法およびその使用

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008044868A DE102008044868A1 (de) 2008-08-29 2008-08-29 Elektrolumineszierende Polymere, Verfahren zu ihrer Herstellung sowie ihre Verwendung
DE102008044868.0 2008-08-29

Publications (1)

Publication Number Publication Date
WO2010022847A1 true WO2010022847A1 (de) 2010-03-04

Family

ID=41136787

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/005639 WO2010022847A1 (de) 2008-08-29 2009-08-04 Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung

Country Status (7)

Country Link
US (1) US8580395B2 (de)
EP (1) EP2315792B1 (de)
JP (1) JP5714488B2 (de)
KR (1) KR101726002B1 (de)
CN (1) CN102076729B (de)
DE (1) DE102008044868A1 (de)
WO (1) WO2010022847A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295756A (zh) * 2010-06-25 2011-12-28 海洋王照明科技股份有限公司 含咔唑卟啉-噻吩并噻二唑共聚物及其制备方法和应用
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
WO2015014427A1 (de) 2013-07-29 2015-02-05 Merck Patent Gmbh Elektrooptische vorrichtung und deren verwendung
CN109897040A (zh) * 2019-03-13 2019-06-18 南京高光半导体材料有限公司 一种新型有机化合物以及包含此物质的有机电致发光器件
CN117659054A (zh) * 2024-01-18 2024-03-08 电子科技大学 一种多臂有机光电小分子及其制备方法和应用

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009041289A1 (de) * 2009-09-16 2011-03-17 Merck Patent Gmbh Organische Elektrolumineszenzvorrichtung
WO2011119374A1 (en) * 2010-03-25 2011-09-29 Polyera Corporation Conjugated polymers and devices incorporating same
CN105431910B (zh) 2013-08-12 2018-03-06 科迪华公司 用于可印刷有机发光二极管油墨制剂的基于酯的溶剂体系
CN103606631A (zh) * 2013-10-26 2014-02-26 溧阳市东大技术转移中心有限公司 一种具有空穴传输层的聚合物发光二极管
CN106558654B (zh) * 2015-09-30 2020-01-14 北京鼎材科技有限公司 一种苯并吩嗪衍生物及其在有机电致发光器件中的应用
CN109790136B (zh) 2016-12-22 2024-01-12 广州华睿光电材料有限公司 含呋喃交联基团的聚合物及其应用
CN108084407B (zh) * 2017-12-13 2019-12-03 华南协同创新研究院 含9,9,10,10-四氧-噻蒽七元稠环单元的聚合物及其制备方法与应用
US11359106B2 (en) 2019-05-13 2022-06-14 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Inkjet printing ink and application thereof
CN110157241A (zh) * 2019-05-13 2019-08-23 深圳市华星光电半导体显示技术有限公司 一种喷墨打印墨水及其应用
KR20240029426A (ko) 2022-08-26 2024-03-05 국립부경대학교 산학협력단 전자 수송 특성이 개질된 신규 유기 단분자 화합물 및 이를 포함하는 소자
KR20240031733A (ko) 2022-09-01 2024-03-08 국립부경대학교 산학협력단 정공 수송 특성이 개질된 신규 유기 단분자 화합물 및 이를 포함하는 소자

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077060A1 (de) * 2001-03-24 2002-10-03 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend spirobifluoren-einheiten und fluoren-einheiten und deren verwendung
WO2003016430A1 (en) * 2001-08-16 2003-02-27 Iljin Diamond Co., Ltd. Light-emitting fluorene-based copolymers, el devices comprising the same and method of synthesis thereof.
WO2008011953A1 (en) * 2006-07-25 2008-01-31 Merck Patent Gmbh Polymer blends and their use in organic light emitting devices

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59510507D1 (de) * 1994-09-30 2003-01-23 Covion Organic Semiconductors Poly(paraphenylenvinylen)-derivate und ihre verwendung als elektrolumineszenzmaterialien
KR0176331B1 (ko) * 1996-05-16 1999-04-01 박원훈 전계 발광 소자용 플로렌계 교대 공중합체 및 이를 발광재료로 사용한 전계 발광 소자
US6353083B1 (en) 1999-02-04 2002-03-05 The Dow Chemical Company Fluorene copolymers and devices made therefrom
GB0104177D0 (en) 2001-02-20 2001-04-11 Isis Innovation Aryl-aryl dendrimers
DE10109027A1 (de) 2001-02-24 2002-09-05 Covion Organic Semiconductors Rhodium- und Iridium-Komplexe
JP4438042B2 (ja) 2001-03-08 2010-03-24 キヤノン株式会社 金属配位化合物、電界発光素子及び表示装置
KR100939468B1 (ko) 2001-03-10 2010-01-29 메르크 파텐트 게엠베하 유기 반도체 용액 및 분산액
DE10116962A1 (de) 2001-04-05 2002-10-10 Covion Organic Semiconductors Rhodium- und Iridium-Komplexe
DE10141624A1 (de) 2001-08-24 2003-03-06 Covion Organic Semiconductors Lösungen polymerer Halbleiter
DE10143353A1 (de) 2001-09-04 2003-03-20 Covion Organic Semiconductors Konjugierte Polymere enthaltend Spirobifluoren-Einheiten und deren Verwendung
DE10159946A1 (de) 2001-12-06 2003-06-18 Covion Organic Semiconductors Prozess zur Herstellung von Aryl-Aryl gekoppelten Verbindungen
DE10238903A1 (de) 2002-08-24 2004-03-04 Covion Organic Semiconductors Gmbh Rhodium- und Iridium-Komplexe
DE10249723A1 (de) 2002-10-25 2004-05-06 Covion Organic Semiconductors Gmbh Arylamin-Einheiten enthaltende konjugierte Polymere, deren Darstellung und Verwendung
DE10304819A1 (de) 2003-02-06 2004-08-19 Covion Organic Semiconductors Gmbh Carbazol-enthaltende konjugierte Polymere und Blends, deren Darstellung und Verwendung
DE10328627A1 (de) 2003-06-26 2005-02-17 Covion Organic Semiconductors Gmbh Neue Materialien für die Elektrolumineszenz
DE10337346A1 (de) 2003-08-12 2005-03-31 Covion Organic Semiconductors Gmbh Konjugierte Polymere enthaltend Dihydrophenanthren-Einheiten und deren Verwendung
DE10337077A1 (de) 2003-08-12 2005-03-10 Covion Organic Semiconductors Konjugierte Copolymere, deren Darstellung und Verwendung
GB2424222B (en) 2003-09-12 2009-05-06 Sumitomo Chemical Co Dendrimer compound and organic luminescent device employing the same
DE10343606A1 (de) 2003-09-20 2005-04-14 Covion Organic Semiconductors Gmbh Weiß emittierende Copolymere, deren Darstellung und Verwendung
KR101141465B1 (ko) 2003-09-20 2012-05-07 메르크 파텐트 게엠베하 공액 중합체, 그의 제조 및 그의 용도
EP1675930B1 (de) 2003-10-22 2018-05-30 Merck Patent GmbH Neue materialien für die elektrolumineszenz und deren verwendung
DE10349033A1 (de) 2003-10-22 2005-05-25 Covion Organic Semiconductors Gmbh Neue Materialien für die Elektrolumineszenz und deren Verwendung
DE10350606A1 (de) 2003-10-30 2005-06-09 Covion Organic Semiconductors Gmbh Verfahren zur Herstellung heteroleptischer, ortho-metallierter Organometall-Verbindungen
DE102004009355A1 (de) 2004-02-26 2005-09-15 Covion Organic Semiconductors Gmbh Verfahren zur Vernetzung organischer Halbleiter
DE102004020298A1 (de) * 2004-04-26 2005-11-10 Covion Organic Semiconductors Gmbh Elektrolumineszierende Polymere und deren Verwendung
DE102006035041A1 (de) * 2006-07-28 2008-01-31 Merck Patent Gmbh 1,4-Bis(2-thienylvinyl)benzolderivate und ihre Verwendung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002077060A1 (de) * 2001-03-24 2002-10-03 Covion Organic Semiconductors Gmbh Konjugierte polymere enthaltend spirobifluoren-einheiten und fluoren-einheiten und deren verwendung
WO2003016430A1 (en) * 2001-08-16 2003-02-27 Iljin Diamond Co., Ltd. Light-emitting fluorene-based copolymers, el devices comprising the same and method of synthesis thereof.
WO2008011953A1 (en) * 2006-07-25 2008-01-31 Merck Patent Gmbh Polymer blends and their use in organic light emitting devices

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CUIHUA XUE: "Novel p-phenylene-vinylene-dithienylene type copolymer", SYNTHETIC METALS, vol. 145, 2 June 2006 (2006-06-02), Amsterdam, pages 67 - 73, XP002550735 *
HWANG D-H ET AL: "Band gap tuning of new light emitting conjugated polymers", OPTICAL MATERIALS, ELSEVIER SCIENCE PUBLISHERS B.V. AMSTERDAM, NL, vol. 21, no. 1-3, 1 January 2003 (2003-01-01), pages 199 - 203, XP004395421, ISSN: 0925-3467 *
PAWEL WAGNER: "Synthesis and characterization of novel styryl-substituted oligothienylenevinylenes", TETRAHEDRON, vol. 62, 10 January 2006 (2006-01-10), Amsterdam, pages 2190 - 2199, XP002550736 *
YASUTOSHI WATANABE: "Synthesis and Physical Properties of Side-Chain Type Liquid Crystalline Poly(arylenevinylene)s", MACROMOLECULES, vol. 30, 1997, usa, pages 1857 - 1859, XP002550737 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102295756A (zh) * 2010-06-25 2011-12-28 海洋王照明科技股份有限公司 含咔唑卟啉-噻吩并噻二唑共聚物及其制备方法和应用
CN102295756B (zh) * 2010-06-25 2013-01-02 海洋王照明科技股份有限公司 含咔唑卟啉-噻吩并噻二唑共聚物及其制备方法和应用
WO2013013754A1 (en) 2011-07-25 2013-01-31 Merck Patent Gmbh Copolymers with functionalized side chains
WO2015014427A1 (de) 2013-07-29 2015-02-05 Merck Patent Gmbh Elektrooptische vorrichtung und deren verwendung
CN109897040A (zh) * 2019-03-13 2019-06-18 南京高光半导体材料有限公司 一种新型有机化合物以及包含此物质的有机电致发光器件
CN117659054A (zh) * 2024-01-18 2024-03-08 电子科技大学 一种多臂有机光电小分子及其制备方法和应用
CN117659054B (zh) * 2024-01-18 2024-03-29 电子科技大学 一种多臂有机光电小分子及其制备方法和应用

Also Published As

Publication number Publication date
CN102076729A (zh) 2011-05-25
KR101726002B1 (ko) 2017-04-11
DE102008044868A1 (de) 2010-03-04
US8580395B2 (en) 2013-11-12
EP2315792B1 (de) 2016-02-17
CN102076729B (zh) 2014-07-30
JP2012500868A (ja) 2012-01-12
US20110108824A1 (en) 2011-05-12
KR20110047173A (ko) 2011-05-06
EP2315792A1 (de) 2011-05-04
JP5714488B2 (ja) 2015-05-07

Similar Documents

Publication Publication Date Title
EP2315792B1 (de) Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung
EP2401316B1 (de) Polymer mit aldehydgruppen, umsetzung sowie vernetzung dieses polymers, vernetztes polymer sowie elektrolumineszenzvorrichtung enthaltend dieses polymer
EP1961016B1 (de) Konjugierte polymere enthaltend triarylamin-arylvinylen-einheiten, deren darstellung und verwendung
EP2052006B1 (de) Konjugierte polymere, verfahren zu deren herstellung sowie deren verwendung
WO2011098205A1 (de) Elektrolumineszierende polymere, verfahren zu ihrer herstellung sowie ihre verwendung
DE102009023156A1 (de) Polymere, die substituierte Indenofluorenderivate als Struktureinheit enthalten, Verfahren zu deren Herstellung sowie deren Verwendung
WO2010136111A1 (de) Zusammensetzung, enthaltend mindestens eine emitterverbindung und mindestens ein polymer mit konjugationsunterbrechenden einheiten
EP2046785B1 (de) 1,4-bis(2-thienylvinyl)benzolderivate und ihre verwendung
WO2010149258A1 (de) Polymere enthaltend substituierte anthracenyleinheiten, blends enthaltend diese polymere sowie vorrichtungen enthaltend diese polymere oder blends
WO2014000860A1 (de) Polymere enthaltend 2,7-pyren-struktureinheiten
WO2012019724A1 (de) Polymere mit carbazol-struktureinheiten
WO2012013310A1 (de) Polymere enthaltend substituierte benzodithiopheneinheiten, blends enthaltend diese polymere sowie vorrichtungen enthaltend diese polymere oder blends
WO2010097156A1 (de) Vernetzbare und vernetzte polymere, verfahren zu deren herstellung sowie deren verwendung
WO2012034626A1 (de) Materialien für organische elektrolumineszenzvorrichtungen
EP2601237B1 (de) Polymere mit struktureinheiten, die elektronen-transport-eigenschaften aufweisen
EP2328950A1 (de) Neue polymere mit niedriger polydispersität
EP2817350A2 (de) Polymere enthaltend dibenzocycloheptan-struktureinheiten
WO2011009522A2 (de) Materialien für elektronische vorrichtungen
DE102009059985A1 (de) Polymer mit Aldehydgruppen, Umsetzung sowie Vernetzung dieses Polymers, vernetztes Polymer sowie Elektrolumineszenzvorrichtung enthaltend dieses Polymer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125454.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09777642

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009777642

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011524219

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20107029603

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13002055

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE