WO2010021168A1 - リニアモータ装置 - Google Patents

リニアモータ装置 Download PDF

Info

Publication number
WO2010021168A1
WO2010021168A1 PCT/JP2009/054770 JP2009054770W WO2010021168A1 WO 2010021168 A1 WO2010021168 A1 WO 2010021168A1 JP 2009054770 W JP2009054770 W JP 2009054770W WO 2010021168 A1 WO2010021168 A1 WO 2010021168A1
Authority
WO
WIPO (PCT)
Prior art keywords
armature
linear motor
field
motor device
excitation
Prior art date
Application number
PCT/JP2009/054770
Other languages
English (en)
French (fr)
Inventor
透 鹿山
克利 山中
Original Assignee
株式会社安川電機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社安川電機 filed Critical 株式会社安川電機
Priority to JP2010525619A priority Critical patent/JP4811798B2/ja
Priority to CN2009801092031A priority patent/CN101971483B/zh
Publication of WO2010021168A1 publication Critical patent/WO2010021168A1/ja
Priority to US12/987,958 priority patent/US8384317B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/30Structural association with control circuits or drive circuits
    • H02K11/33Drive circuits, e.g. power electronics
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K16/00Machines with more than one rotor or stator
    • H02K16/04Machines with one rotor and two stators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/062Linear motors of the induction type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/06Linear motors
    • H02P25/064Linear motors of the synchronous type
    • H02P25/066Linear motors of the synchronous type of the stepping type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/006Controlling linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators

Definitions

  • the present invention relates to a movable magnet that moves a permanent magnet by selectively exciting a plurality of armatures in a linear motor device used in a linear motion mechanism of a precision device such as a semiconductor manufacturing device, a liquid crystal manufacturing device, or a machine tool.
  • the present invention relates to a linear motor device.
  • the movable magnet type linear motor device is provided with a plurality of coils (armatures) in the stator, and is selectively excited to move the field permanent magnet as the mover.
  • armatures coils
  • There are general technical problems such as downsizing of the apparatus in the long stroke, suppression of heat generation or high efficiency due to copper loss generated by a plurality of coils (armatures), and suppression of thrust ripple during excitation switching.
  • the conventional first linear motor device is configured by arranging a plurality of coils on a stator and providing the same number of switches as the coils between the plurality of coils and a current amplifier (for example, Patent Document 1). .
  • the conventional second linear motor device has a plurality of coils arranged on the stator, and a switch is provided between the same number of current amplifiers connected to each coil and a controller that gives a current control command to the current amplifiers. (For example, patent document 2).
  • a plurality of coils are arranged in the stator, a switch is provided between the current amplifier and the lead start end side of the coil, and further between the lead end end side of the coil.
  • a switch is provided (for example, Patent Document 3).
  • Patent Documents 1 to 3 are configured to switch the excitation for each coil, the span of the excitation switching section is short, and the switching is finely performed according to the movement of the mover. It is characterized by going. Therefore, this method is effective for applications that require precise movement within a stroke of 1 m.
  • the conventional fourth linear motor device is configured by disposing a plurality of armatures having a plurality of coils on a stator and providing a switch between the current amplifier and the armature (for example, Patent Documents). 3).
  • the conventional fifth linear motor device is configured by arranging a plurality of armatures having a plurality of coils in a stator and connecting the same number of current amplifiers as the armatures to each armature (for example, Patent Document 5).
  • Patent Documents 4 and 5 are configured to switch excitation for each armature, the excitation switching section is relatively long, and a large span according to the movement of the mover. It is characterized by switching with. For this reason, this is an effective method for applications where the stroke is several tens of meters or more.
  • Japanese Patent Laid-Open No. 2001-119916 page 4-8, FIG. 13
  • JP 2001-85503 A page 3-5, FIG. 1
  • JP 2006-87230 A page 5-6, FIG. 1
  • Japanese Patent No. 3329873 page 8-10, FIG. 5) JP-A-4-229092 (page 2-3, FIG. 1)
  • the conventional linear motor device has the following problems.
  • the stator of the linear motor becomes longer, and the number of coils and switches greatly increases.
  • the number of coils is 100 or more. That is, 100 or more switches are provided, and furthermore, 100 or more cables connecting the coil and the switch are provided.
  • the size of the entire linear motor device becomes a problem, and the high cost due to the increase in the number of switches and cables becomes a problem.
  • the configurations of the conventional fourth and fifth linear motor devices are configured by connecting a large number of coils in series even if the linear motor stator is lengthened in accordance with the stroke. It can be lengthened. That is, since the excitation is switched for each armature having a long excitation switching section, the above problem can be solved without increasing the number of switches and cables.
  • this configuration when the mover straddles two armatures, a large difference (unbalance) occurs in the induced voltage generated in each phase coil by the permanent magnet of the mover, and a circulating current flows.
  • This circulating current becomes a disturbance of the current control system, and a thrust ripple is generated when current corresponding to a predetermined thrust cannot be supplied to each armature to be excited.
  • Such thrust ripple can be fatal to the desired accuracy when the linear motor device is applied to precision devices (eg, semiconductor manufacturing devices, liquid crystal manufacturing devices, machine tools, etc.), and is improved. There was a need for.
  • the movable magnet type linear motor device that selectively excites a plurality of armatures and moves a permanent magnet according to the present invention aims to reduce the size of the device itself even if the stroke becomes long. Moreover, this linear motor apparatus aims at reducing heat_generation
  • the invention according to claim 1 is composed of a multi-phase armature having a plurality of coils and a field having a plurality of permanent magnets, and the plurality of armatures are arranged in a line in the moving direction of the field.
  • a controller that outputs an excitation switching signal for each current amplifier so as not to straddle the armature with which the field is excited.
  • the armature excitation operation is sequentially performed based on the control command and the relative position.
  • the relationship between the length of the magnetic field of the linear motor and the length per armature is excited by the controller. Is preset so that the field does not straddle.
  • the movement direction length per armature is La
  • the movement direction length of the field is Lm
  • the maximum number of excitations is P, (P + 1) ⁇ La ⁇ Lm ⁇ (P + 2) ⁇ La It will be.
  • the controller according to the first aspect of the present invention smoothly applies the thrust applied to the armature during the excitation start process from 0 to a predetermined thrust value according to the relative position.
  • the thrust applied to the armature in the excitation end process is changed smoothly from a predetermined thrust value to zero according to the relative position.
  • the controller in the invention described in claim 1 is such that the sum of the thrust command values between the armatures in the excitation start process or the excitation end process is always constant. To do.
  • the controller according to the first aspect of the invention changes the number of excitations of the armature according to the magnitude of the thrust generated in the field.
  • the invention according to claim 7 comprises a multi-phase armature having a plurality of coils and a field having a plurality of permanent magnets, and the plurality of armatures are arranged in a predetermined row in the moving direction of the field.
  • a linear motor arranged in a predetermined parallel number having a shift amount, a position detector for detecting a relative position of the field with respect to the armature, and a current amplifier for supplying current to the same number of coils as the armature;
  • a control command is given to the current amplifier, and excitation switching is performed for each current amplifier so as not to straddle the armature excited by the field
  • a controller that outputs a signal, and sequentially performs the exciting operation of the armature based on the control command and the relative position.
  • the invention according to claim 8 is the armature in which the relationship between the length of the field of the linear motor and the length per armature in the invention according to claim 7 is excited by the controller. Is preset so that the field does not straddle.
  • the parallel number of the armatures is Q
  • the moving direction length per armature is La
  • the movement of the field is performed.
  • the controller according to the seventh aspect of the present invention smoothly applies the thrust applied to the armature in the excitation start process from 0 to a predetermined thrust value according to the relative position.
  • the thrust applied to the armature in the excitation end process is changed smoothly from a predetermined thrust value to zero according to the relative position.
  • the controller in the invention described in claim 7 is such that the sum of the thrust command values between the armatures in the excitation start process or the excitation end process is always constant. To do.
  • the controller according to the seventh aspect of the invention changes the number of excitations of the armature according to the magnitude of the thrust generated in the field.
  • the armature is switched for each armature composed of a large number of coils and the field does not straddle the excited armature. And set the length of the field. Therefore, even if the stroke becomes long, it is small and heat generation can be reduced, and further, the braking force due to the circulating current can be eliminated.
  • the length of the armature and the field is set so that the field does not straddle the excited armature, The same effect as that of the first aspect can be obtained.
  • the linear motor device can be miniaturized.
  • the thrust command given to the armature at the start of excitation is smoothly changed according to the relative position from 0 to a predetermined thrust command value, and the excitation end Since the thrust command given to the armature is smoothly changed from a predetermined thrust command value to zero according to the relative position, there is no abrupt change of the thrust command, and a linear motor device free from shock at the time of excitation switching can be provided.
  • the linearity does not cause excessive power supply and thrust shortage.
  • a motor device can be provided.
  • 1 is an overall configuration diagram of a linear motor device showing a first embodiment of the present invention.
  • 1 is a configuration diagram of a stator and a mover of a linear motor device according to a first embodiment of the present invention.
  • Overall configuration diagram of a linear motor device showing a second embodiment of the present invention Configuration diagram of stator and mover of linear motor device showing second embodiment of the present invention
  • FIG. 1 is an overall configuration diagram of a linear motor device showing a first embodiment of the present invention.
  • 1 is a mover
  • 10 is a stator
  • 14 is a position detector
  • 15 is a controller
  • a 1 to An are armatures
  • B 1 to B n are current amplifiers.
  • FIG. 2 is a configuration diagram of the stator 10 and the mover 1 of the linear motor device according to the first embodiment.
  • 11 denotes a coil
  • Lm is the moving direction length of the mover 1
  • La is a moving direction length of the armature A 1 ⁇ A n.
  • 2A is a diagram showing the relative positional relationship of the mover 1 with respect to the stator 10
  • FIG. 2B shows the connection between the armatures A 1 to An and the current amplifiers B 1 to B n.
  • FIG. 1 is a mover
  • 10 is a stator
  • 14 is a position detector
  • 15 is a controller
  • a 1 to An are armatures
  • the mover 1 is composed of a permanent magnet 2 that forms a plurality of field magnetic poles.
  • the mover 1 can be moved relative to the stator 10 via a predetermined gap by a support mechanism (not shown).
  • the stator 10 includes a plurality of n armature A 1 ⁇ A n are configured in a row, the armature A 1 ⁇ A n, from the six coils 11 forming the armature winding of each of the three phases It is configured.
  • Coil 11 is between those of the same phase are connected in series, the starting end are connected to the current amplifier B 1 ⁇ B n of a plurality of n (the same number as the armature A 1 ⁇ A n), the neutral its end, each Connected as dots.
  • the controller 15 Based on the mover position information obtained by the position detector 14 and the actual current information obtained by the current detector (not shown), the controller 15 compares the phase of the current with the thrust command value. A command value for amplitude is generated.
  • Current amplifier B 1 ⁇ B n supplies a three-phase current to the armature A 1 ⁇ A n on the basis of the current command value.
  • the position detector 14 for example, a Hall element, a linear encoder, a laser interferometer, or the like is used.
  • the moving direction length of the armature A 1 ⁇ A n La the maximum excitation number of the armature A 1 ⁇ A n P, the moving direction length of the mover 1 and Lm, (P + 1) ⁇ La ⁇ Lm ⁇ (P + 2) ⁇ La It is comprised so that.
  • the maximum number of excitations P 2, 3 ⁇ La ⁇ Lm ⁇ 4 ⁇ La It is.
  • FIG. 3 is a diagram showing the excitation operation of the linear motor device according to the first embodiment of the present invention.
  • FIGS. 3 (a) to 3 (c) sequentially move the mover 1 from left to right in FIG.
  • FIG. 6 shows the excitation operation of the armatures A 1 to A 4 when they are performed.
  • FIG. 3D is a diagram showing a switching sequence of the armatures A 1 to A 4 .
  • the slanted numbers in the mover 1 represent the number of permanent magnets 2 that form field magnetic poles.
  • the mover 1 moves to the right, turned OFF comes the excitation of the armature A 1 to the position of FIG. 3 (b), ON the excitation of the armature A 3.
  • the mover 1 is opposite to A 3 in the armature A 1.
  • the mover 1 faces both the armature A 2 and A 4 .
  • the horizontal axis represents the center position of the mover 1.
  • the position of the mover 1 is accurately detected by the position detector 14 in FIG. 1, and the controller 15 in FIG. 1 turns on and off the excitation of each armature based on the position information. Timing is generated. In this way, the armature excitation operation according to the movement of the mover is performed.
  • FIGS. 3A to 3D when the excitation is switched (states (b) and (c)), the armature that is turned on / off is always inside the mover 1. It can be seen that the excitation is switched on and off without the field straddling the excited armature.
  • the linear motor device configured as described above switches the excitation ON / OFF for each armature composed of a large number of coils, and prevents the field from straddling the excited armature. And the length of the magnetic field (the length of three coils 11 in FIG. 2 and the length of four permanent magnets 2 (four poles) in FIG. 2 are matched). Since the switching is OFF, the heat generation can be reduced even if the stroke becomes long, and the braking force due to the circulating current can be eliminated.
  • FIG. 4 is an overall configuration diagram of a linear motor device showing a second embodiment.
  • 20 is a stator and 21 is a mover.
  • FIG. 5 is a configuration diagram of the stator 20 and the mover 21 of the linear motor device according to the second embodiment.
  • FIG. 5A is a diagram showing the relative positional relationship of the mover 21 with respect to the stator 20, and
  • FIG. 5B shows the connection between the armatures A 1 to An and the current amplifiers B 1 to B n.
  • omitted since the structure which attached
  • the second embodiment differs from the first embodiment in the configuration of the stator 20 and the length of the mover 21 in the field movement direction associated therewith.
  • the stator 20 has a plurality of n armature A 1 ⁇ A n are arranged structure in a predetermined number of parallel with a predetermined column shift amount, the armature A 1 ⁇ A n is form armature windings of three phases 6 coils 11 are formed.
  • the moving direction of the armature A 1 ⁇ A n Q the number of columns, armature A 1 ⁇ A n La movement direction length of the armature A 1 ⁇ A n maximum excitation number of P, the movable element 21
  • the length is Lm
  • the child A 2 is arranged so as to be shifted by 3 coils (shift amount ⁇ L) with respect to the coil of A 1 in the first row.
  • the coil 11 of the first row and the armature A 1 in the second row and the A 2 are overlapped coils of the same phase, so that the thrust reduction does not occur due to a deviation of the shift amount [Delta] L.
  • FIG. 6 is a diagram showing the excitation operation of the linear motor device according to the second embodiment of the present invention.
  • FIGS. 6 (a) to 6 (c) show the movement of the movable element 21 from left to right in FIG.
  • FIG. 6 shows the excitation operation of the armatures A 1 to A 5 when they are performed.
  • FIG. 6D is a diagram showing a switching sequence of the armatures A 1 to A 4 .
  • or 5 has the same effect, it abbreviate
  • the movable element 21 moves to the right, and OFF the excitation comes when the armature A 1 to the position of FIG. 6 (b), ON the excitation of the armature A 4.
  • the mover 21 faces both the armature A 1 and A 4 .
  • the movable element 21 moves to the right, and OFF the excitation comes when the armature A 2 to the position of FIG. 6 (c), the ON excitation of the armature A 5.
  • the movable element 21 is also opposed to A 5 to armature A 2.
  • the horizontal axis represents the center position of the mover 21.
  • the position of the mover 21 is accurately detected by the position detector 14 in FIG. 4, and the controller 15 in FIG. 4 turns on and off the excitation of each armature based on the position information. Timing is generated. In this way, the armature excitation operation according to the movement of the mover is performed.
  • the armature that is turned on / off is always the same. It can be seen that the excitation is switched on / off without the field straddling the armature being excited, which is inside the mover 1.
  • the linear motor device configured as described above sets the length of the armature and the field so that the field does not straddle the excited armature, the same effect as in the first embodiment. Can be obtained. Furthermore, since the armatures are arranged in Q rows in parallel and are arranged so as to be shifted from each other, the field length Lm can be reduced compared to the first embodiment even if the armature length La is the same. That is, the linear motor device can be miniaturized.
  • FIG. 7 is a diagram showing the excitation operation and thrust command of the linear motor device according to the third embodiment.
  • FIGS. 7A to 7D show the same excitation operation as that in the first embodiment ( FIG. 7 (e) shows thrust commands to the armatures A 1 to A 4 in the controller 15 in FIG. 1 or FIG. .
  • the excitation start process and the excitation end process it is expressed as a thrust command in a constant acceleration state in which the thrust generated in the mover 1 is always constant.
  • or 6 has the same effect, it abbreviate
  • Example 3 differs from Example 1 and Example 2 in that the thrust applied to the armature in the excitation start process is smoothly changed from 0 to a predetermined thrust value according to the relative position, and in the excitation end process.
  • the thrust applied to the armature is smoothly changed from a predetermined thrust value to zero according to the relative position.
  • the thrust command In the process of starting excitation to each armature, the thrust command is smoothly changed from 0 to a predetermined thrust value according to the relative position, and in the process of ending excitation to each armature, the thrust command is changed from the predetermined thrust value. It is smoothly changed to zero according to the relative position.
  • the amount (inclination) for smoothly changing the thrust command may be determined as appropriate, but in order to keep the thrust generated in the mover 1 constant, the controller 15 in FIG. 1 or FIG.
  • the sum of the thrust command values between the children is always kept constant.
  • FIG. 8 is a diagram illustrating the excitation operation of the linear motor device according to the fourth embodiment.
  • FIGS. 8A to 8D are diagrams in which the mover 21 is sequentially moved from left to right in FIG. The excitation operation of the armatures A 1 to A 5 is shown.
  • FIG. 8E is a diagram showing a switching sequence of the armatures A 1 to A 4 .
  • the fourth embodiment differs from the first to third embodiments in that the number of excitations of the armature is changed in accordance with the magnitude of the thrust generated in the mover.
  • the number of excitations of the armature is increased in the acceleration / deceleration section of the mover 21 where a large thrust command value is required, and the number of excitations of the armature is increased in the constant speed section of the mover 21 that may be a relatively small thrust command value. It's something to reduce.
  • FIG. 8 (a) to 8 (c) are sections in which a large thrust command value is required when the mover 21 is accelerated.
  • FIG. 8 (a) 3 pieces of the armature A 1 and A 2 and A 3 facing the movable element 21 is energized. Then, the mover 1 moves to the right, and OFF the excitation of the armature A 1 come to the position of FIG. 8 (b), ON the excitation of the armature A 4. Up to this point, the process is the same as in the second embodiment.
  • FIG. 8C shows a moment when the acceleration changes to a constant speed (constant speed), and is a section in which the mover 21 becomes a constant speed and decreases until the thrust command value falls below the reference value for changing the number of excitations.
  • FIG. 8D shows a section in which the mover 21 is moving at a constant speed (constant speed), and the thrust command value remains below the reference value for changing the number of excitations.
  • OFF the excitation of the armature A 4 turning ON the excitation of the armature A 5. The number of excitations remains one.
  • the reference value for changing the number of excitations may be determined in advance according to a mechanism system (not shown) in which the linear motor is arranged and the driving specification, or based on the mover speed or the mover position at the time of driving. You may decide at any time.
  • the number-of-excitations change with respect to Example 2 was demonstrated as a 4th Example, it cannot be overemphasized that it is applicable similarly to Example 1.
  • FIG. The number of excitations to be changed is changed within the range of the maximum excitation number P. Since the linear motor device configured as described above changes the number of excitations of the armature according to the magnitude of the thrust generated in the field, the linear motor device does not cause excessive power supply and thrust shortage Can provide.
  • the present invention changes not only the precision device such as a semiconductor manufacturing device, a liquid crystal manufacturing device, and a machine tool, but also an elevator device and various conveyances by changing the size of the armature and the capacity of the current amplifier according to the stroke and the thrust. It can also be applied to applications such as devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Linear Motors (AREA)
  • Control Of Linear Motors (AREA)

Abstract

 ストロークが長くなっても小形で、発熱を低減でき、さらに、循環電流に起因した制動力も無くすことができるリニアモータ装置を提供する。  複数個の電機子(A~A)を界磁(1)の移動方向に1列に配置し、前記電機子と同数個の電流アンプ(B~B)を備え、制御器(15)が、励磁する前記電機子を前記界磁がまたがないように、前記電流アンプ毎に励磁切替信号を出力する。

Description

リニアモータ装置
 本発明は、半導体製造装置、液晶製造装置、工作機械などの精密装置の直動機構に使用されているリニアモータ装置において、複数の電機子を選択的に励磁して永久磁石を移動させる可動磁石形のリニアモータ装置に関する。
 可動磁石形のリニアモータ装置は、固定子に複数のコイル(電機子)を備えてこれらを選択的に励磁して、可動子である界磁の永久磁石を移動させるように動作制御されていて、長ストローク化における装置の小型化、複数のコイル(電機子)が発生する銅損による発熱抑制または高効率化、励磁切替時の推力リプル抑制のような一般的な技術課題がある。
 従来の第1のリニアモータ装置は、固定子に複数のコイルを配置し、その複数のコイルと電流アンプとの間にコイルと同数のスイッチを設けて構成している(例えば、特許文献1)。また、従来の第2のリニアモータ装置は、固定子に複数のコイルを配置し、各コイルにつないだ同数の電流アンプと、電流アンプに電流制御指令を与えるコントローラとの間にスイッチを設けて構成している(例えば、特許文献2)。また、従来の第3のリニアモータ装置は、固定子に複数のコイルを配置し、電流アンプとコイルのリード始端側との間にスイッチを設け、さらに、コイルのリード終端側との間にもスイッチを設けて構成している(例えば、特許文献3)。
 このように従来の第1~3のリニアモータ装置(特許文献1~3)は、コイル毎に励磁を切替える構成であり、励磁切替え区間のスパンが短く、可動子の移動に合わせて細かく切替えていくことを特徴としている。そのため、ストロークが1m以内の精密な移動を必要とする用途に有効な方式である。 
 また、従来の第4のリニアモータ装置は、固定子に複数のコイルを有した電機子を複数個配置し、電流アンプと電機子の間にスイッチを設けて構成している(例えば、特許文献3)。また、従来の第5のリニアモータ装置は、固定子に複数のコイルを有した電機子を複数個配置し、電機子と同数の電流アンプを各電機子につないで構成している(例えば、特許文献5)。
 このように従来の第4、5のリニアモータ装置(特許文献4、5)は、電機子毎に励磁を切替える構成であり、励磁切替え区間が比較的長く、可動子の移動に合わせて大きなスパンで切替えていくことを特徴としている。そのため、ストロークが数十m以上の長い用途に有効な方式である。
特開2001-119916号公報(第4-8頁、図13) 特開2001-85503号公報(第3-5頁、図1) 特開2006-87230号公報(第5-6頁、図1) 特許第3329873号公報(第8-10頁、図5) 特開平4-229092号公報(第2-3頁、図1)
 従来のリニアモータ装置には次のような問題があった。
 従来の第1~3のリニアモータ装置(特許文献1~3)の構成は、移動距離が数m程度に長くなるとリニアモータの固定子が長くなり、コイルとスイッチの数に大幅に増える。例えば、ストロークが5mのリニアモータの場合、コイルのピッチを50mmとしても固定子は5m以上となり、その結果、コイル数は100個以上になる。つまり、100個以上のスイッチを備え、さらに、コイルとスイッチをつなぐケーブルを100本以上持つことになる。このような構成では、リニアモータ装置全体の大形化が問題となり、さらに、スイッチとケーブルの増数によるコスト高が問題となった。
 一方、従来の第4、5のリニアモータ装置(特許文献4、5)の構成は、ストロークに合わせリニアモータの固定子を長くしても、多数のコイルを直列に結線して構成した電機子そのものを長くすることできる。つまり、励磁切替え区間の長い電機子ごとに励磁を切替えるので、スイッチやケーブルを増やすことなく、上記の問題を解消できる。しかし、この構成は2つの電機子を可動子がまたぐ際に、可動子の永久磁石によって各相コイルに発生する誘起電圧に大きな差(アンバランス)が生じ、循環電流が流れる。この循環電流は電流制御系の外乱となり、励磁する各電機子に所定の推力に応じた電流を供給できなくなることにより推力リプルが発生する。このような推力リプルは、リニアモータ装置を精密装置(例えば、半導体製造装置、液晶製造装置、工作機械など)に適用する場合、所望の精度に対して致命的な影響となる恐れがあり、改善の必要があった。
 本発明の複数の電機子を選択的に励磁して永久磁石を移動させる可動磁石形のリニアモータ装置は、ストロークが長くなっても装置自体の構成を小形化できることを目的とする。また、このリニアモータ装置は、発熱を低減できることを目的とする。更に、このリニアモータ装置は、循環電流に起因した制動力を無くすことができることを目的とする。
 上記問題を解決するため、本発明は、次のように構成したのである。
 請求項1に記載の発明は、複数のコイルを有する多相の電機子および複数の永久磁石を有する界磁から構成し、複数個の前記電機子を前記界磁の移動方向に1列に配置するリニアモータと、前記電機子に対する前記界磁の相対位置を検出する位置検出器と、前記電機子と同数個の前記コイルに電流を供給する電流アンプと、前記界磁を前記電機子に対して相対的に移動させるために前記電流アンプに制御指令を与えると共に、前記界磁が励磁する前記電機子をまたがないように前記電流アンプ毎に励磁切替信号を出力する制御器と、を備え、前記制御指令および前記相対位置に基づいて前記電機子の励磁動作を順次行なうものである。
 また、請求項2に記載の発明は、請求項1記載の発明における前記リニアモータの前記界磁の長さと前記電機子1個当たりの長さとの関係が、前記制御器により励磁する前記電機子を前記界磁がまたがないように予め設定されたものである。
 また、請求項3に記載の発明は、請求項1記載の発明における前記リニアモータが、前記電機子1個当たりの移動方向長をLa、前記界磁の移動方向長をLm、前記電機子の最大励磁数をPとした場合、
   (P+1)×La ≦ Lm < (P+2)×La
となるものである。
 また、請求項4に記載の発明は、請求項1記載の発明における前記制御器が、励磁開始過程における前記電機子に与える推力を、前記相対位置に応じて0から所定の推力値まで滑らかに変化させ、かつ、励磁終了過程における前記電機子に与える推力を、前記相対位置に応じて所定の推力値からゼロまで滑らかに変化させるものである。
 また、請求項5に記載の発明は、請求項1記載の発明における前記制御器が、励磁開始過程または励磁終了過程における前記電機子相互間の推力指令値の総和を、常に一定となるようにするものである。
 また、請求項6に記載の発明は、請求項1記載の発明における前記制御器が、前記電機子の励磁数を、前記界磁に発生させる推力の大きさに応じて変更するものである。
 請求項7に記載の発明は、複数のコイルを有する多相の電機子および複数の永久磁石を有する界磁から構成し、複数個の前記電機子を前記界磁の移動方向に、所定の列ずらし量をもつ所定の並列数に配置するリニアモータと、前記電機子に対する前記界磁の相対位置を検出する位置検出器と、前記電機子と同数個の前記コイルに電流を供給する電流アンプと、前記界磁を前記電機子に対して相対的に移動させるために前記電流アンプに制御指令を与えると共に、前記界磁が励磁する前記電機子をまたがないように前記電流アンプ毎に励磁切替信号を出力する制御器と、を備え、前記制御指令および前記相対位置に基づいて前記電機子の励磁動作を順次行なうものである。
 また、請求項8に記載の発明は、請求項7記載の発明における前記リニアモータの前記界磁の長さと前記電機子1個当たりの長さとの関係が、前記制御器により励磁する前記電機子を前記界磁がまたがないように予め設定されたものである。
 また、請求項9に記載の発明は、請求項7記載の発明における前記リニアモータが、前記電機子の並列数をQ、前記電機子1個当たりの移動方向長をLa、前記界磁の移動方向長をLm、前記電機子の最大励磁数をPとした場合、
   (P+Q)×La/Q ≦ Lm < (P+Q+1)×La/Q
となるものであるとともに、前記電機子の各列のずらし量ΔLが、
    ΔL = La/Q
であるものである。
 また、請求項10に記載の発明は、請求項7記載の発明における前記制御器が、励磁開始過程における前記電機子に与える推力を、前記相対位置に応じて0から所定の推力値まで滑らかに変化させ、かつ、励磁終了過程における前記電機子に与える推力を、前記相対位置に応じて所定の推力値からゼロまで滑らかに変化させるものである。
 また、請求項11に記載の発明は、請求項7記載の発明における前記制御器が、励磁開始過程または励磁終了過程における前記電機子相互間の推力指令値の総和を、常に一定となるようにするものである。
 また、請求項12に記載の発明は、請求項7記載の発明における前記制御器が、前記電機子の励磁数を、前記界磁に発生させる推力の大きさに応じて変更するものである。
 請求項1乃至3のいずれか1つに記載の発明によると、多数のコイルで構成した電機子ごとに励磁を切替えるとともに、励磁されている電機子を界磁がまたぐことがないように電機子と界磁の長さを設定している。よって、ストロークが長くなっても小形で、発熱を低減でき、さらに、循環電流に起因した制動力も無くすことができる。
 また、請求項7乃至9のいずれか1つに記載の発明によると、励磁されている電機子を界磁がまたぐことがないように電機子と界磁の長さを設定しているので、請求項1と同様の効果を得ることができる。さらに、電機子をQ列並行させ、各列をずらして配置させているので、請求項1に比べると、電機子長Laが同じであっても界磁長Lmを小さくできる。つまり、リニアモータ装置を小形化できる。
 また、請求項4、5、10、11に記載の発明によると、励磁開始の電機子に与える推力指令を0から所定の推力指令値まで相対位置に応じて滑らかに変化させ、励磁終了の前記電機子に与える推力指令を所定の推力指令値からゼロまで相対位置に応じて滑らかに変化させているので、推力指令の急激な変化がなく、励磁切替え時にショックのないリニアモータ装置を提供できる。
 さらに、請求項6、12に記載の発明によると、界磁に発生させる推力の大きさに応じて電機子の励磁数を変えているので、余分な電力供給と推力不足を起こすことのないリニアモータ装置を提供できる。
本発明の第1実施例を示すリニアモータ装置の全体構成図 本発明の第1実施例を示すリニアモータ装置の固定子と可動子の構成図 本発明の第1実施例を示すリニアモータ装置の励磁動作を示す図 本発明の第2実施例を示すリニアモータ装置の全体構成図 本発明の第2実施例を示すリニアモータ装置の固定子と可動子の構成図 本発明の第2実施例を示すリニアモータ装置の励磁動作を示す図 本発明の第3実施例を示すリニアモータ装置の励磁動作および推力指令を示す図 本発明の第4実施例を示すリニアモータ装置の励磁動作を示す図
符号の説明
 1、21 可動子
 2 永久磁石
10、20 固定子
11 コイル
14 位置検出器
15 制御器
~A 電機子
~B 電流アンプ
 以下、本発明の実施の形態について図を参照して説明する。
 図1は、本発明の第1実施例を示すリニアモータ装置の全体構成図である。図において、1は可動子、10は固定子、14は位置検出器、15は制御器、A~Aは電機子、B~Bは電流アンプである。また、図2は、第1実施例を示すリニアモータ装置の固定子10と可動子1の構成図である。図において、2は永久磁石、11はコイル、Lmは可動子1の移動方向長、Laは電機子A~Aの移動方向長である。また、図2(a)は固定子10に対する可動子1の相対位置関係を示す図であり、図2(b)は電機子A~Aと電流アンプB~Bとの接続を示す図である。
 可動子1は、複数の界磁磁極を形成する永久磁石2から構成されている。可動子1は、図示しない支持機構により、固定子10と所定の空隙を介して相対移動できるようになっている。固定子10は、複数n個の電機子A~Aが一列に並んで構成され、電機子A~Aは、それぞれ3相の電機子巻線を形成する6個のコイル11から構成されている。コイル11は同相のもの同士が直列につながっており、その始端が複数n個(電機子A~Aと同数)の電流アンプB~Bにつながっており、その終端がそれぞれ中性点として接続されている。制御器15は、位置検出器14で得られた可動子位置情報と電流検出器(図示なし)で得られた実電流情報をもとに、推力指令値と照らして合わせて、電流の位相と振幅の指令値を生成する。電流アンプB~Bはその電流指令値をもとに電機子A~Aへ3相電流を供給する。また、位置検出器14には例えばホール素子、リニアエンコーダ、レーザー干渉計等が用いられる。
 ここで、電機子A~Aの移動方向長をLa、電機子A~Aの最大励磁数をP、可動子1の移動方向長をLmとした場合、
   (P+1)×La ≦ Lm < (P+2)×La
となるように構成されている。実施例1では、最大励磁数P=2としているので、
   3×La ≦ Lm < 4×La
である。この関係式を満たすように、可動子1の移動方向長Lmは、
   Lm = 3.5×La
に設定している。また、コイル11の3個分の長さと永久磁石2の4個(4極)分の長さが一致するように、コイル11と永久磁石2の長さを設定しており、電機子A~Aは、それぞれコイル11が6個で構成されているため、電機子の移動方向長Laあたりの永久磁石2の個数は8個となる。よって、可動子1の永久磁石2は、全部で28個(=3.5×8個)となっている。
 以上のような構成において、電機子の励磁動作を説明する。
 図3は、本発明の第1実施例を示すリニアモータ装置の励磁動作を示す図であって、図3(a)~(c)は、図1において可動子1を順に左から右へ移動させた場合の電機子A~Aの励磁動作を示したものである。また、図3(d)は、電機子A~Aの切替えシーケンスを示す図である。なお、可動子1内の斜数字は、界磁磁極を形成する永久磁石2の数を表している。
 まず、図3(a)では、可動子1に対向した電機子AとAを励磁しており、電機子の励磁数は2個である(最大励磁数P=2)。次に、可動子1が右へ移動し、図3(b)の位置にくると電機子Aの励磁をOFFし、電機子Aの励磁をONする。このとき、可動子1は電機子AにもAにも対向している。続いて、更に可動子1が右へ移動し、図3(c)の位置にくると電機子Aの励磁をOFFし、電機子Aの励磁をONする。このとき、可動子1は電機子AにもAにも対向している。
 図3(d)において、横軸は可動子1の中心位置を表している。ここで、可動子1の位置は、図1における位置検出器14により正確に検出されており、図1における制御器15が、その位置情報をもとに各電機子の励磁のONとOFFのタイミングを生成している。このようにして、可動子の移動に応じた電機子の励磁動作が行なわれる。
 ここで、図3(a)~(d)を見れば、励磁が切替えられるとき((b)と(c)の状態)において励磁ON/OFFされる電機子は必ず可動子1の内側に入っており、励磁されている電機子を界磁がまたがずに励磁のON/OFFを切替えられていることが分かる。
 以上のように構成されたリニアモータ装置は、多数のコイルで構成した電機子毎に励磁のON/OFFを切替えるとともに、励磁されている電機子を界磁がまたぐことがないように、電機子と界磁の長さを設定して(図2におけるコイル11の3個分の長さと永久磁石2の4個(4極)分の長さが一致するようにしている)、励磁のON/OFFを切替えるため、ストロークが長くなっても小形で、発熱を低減でき、さらに、循環電流に起因した制動力も無くすことができる。
 次に、第2の実施例について示す。
 図4は、第2の実施例を示すリニアモータ装置の全体構成図である。図において、20は固定子、21は可動子である。また、図5は、第2の実施例を示すリニアモータ装置の固定子20と可動子21の構成図である。また、図5(a)は固定子20に対する可動子21の相対位置関係を示す図であり、図5(b)は電機子A~Aと電流アンプB~Bとの接続を示す図である。なお、図1乃至3と同一の符号を付している構成は、同様の作用効果をもつものであるため説明を省略する。第2実施例が、第1の実施例と異なる点は、固定子20の構成とそれに伴う可動子21の界磁移動方向の長さである。
 固定子20は、複数n個の電機子A~Aが所定の列ずらし量をもつ所定の並列数に配置構成され、電機子A~Aは3相の電機子巻線を形成する6個のコイル11から構成されている。ここで、電機子A~Aの列数をQ、電機子A~Aの移動方向長をLa、電機子A~Aの最大励磁数をP、可動子21の移動方向長をLmとした場合、
   (P+Q)×La/Q ≦ Lm < (P+Q+1)×La/Q
となるように構成されている。さらに、電機子A~Aの各列のずらし量ΔLを
    ΔL = La/Q
として構成されている。実施例2では、列数Q=2、最大励磁数P=3としているので、
   2.5×La ≦ Lm < 3×La
である。この関係式を満たすように、可動子21の移動方向長Lmは、
   Lm = 2.75×La
に設定している。また、各列のずらし量ΔLは、
   ΔL = La/2
となっている。
 このように、可動子21の移動方向長Lmは、実施例1(3×La ≦ Lm < 4×La、Lm = 3.5×La)に比べ小さくなっている。また、実施例1と同様に、コイル11の3個分の長さと永久磁石2の4個(4極)分の長さが一致するように、コイル11と永久磁石2の長さを設定しており、電機子A~Aは、それぞれコイル11が6個で構成されているため、電機子の移動方向長Laあたりの永久磁石2の個数は8個となる。よって、可動子21の永久磁石2の個数は、全部で22個(=2.75×8個)となっている。
 また、A~Aの各電機子は、6個のコイル11で構成されているので、ずらし量ΔL(= La/2)に相当するコイル数は3個であり、2列目の電機子Aは、1列目のAのコイルに対し3コイル(ずらし量ΔL)分だけずらして配置されている。つまり、1列目と2列目の電機子AとAのコイル11は、同相のコイルが重なり合っており、ずらし量ΔLのずれにより推力低下が起きないようになっている。
 以上のような構成において、電機子の励磁動作を説明する。
 図6は、本発明の第2実施例を示すリニアモータ装置の励磁動作を示す図であって、図6(a)~(c)は、図4において可動子21を順に左から右へ移動させた場合の電機子A~Aの励磁動作を示したものである。また、図6(d)は、電機子A~Aの切替えシーケンスを示す図である。なお、図1乃至5と同一の符号を付している構成は、同様の作用効果をもつものであるため説明を省略する。
 まず、図6(a)では、可動子21に対向した電機子AとAとAの3個を励磁しており、電機子の励磁数は3個である(最大励磁数P=3)。次に、可動子21が右へ移動し、図6(b)の位置にくると電機子Aの励磁をOFFし、電機子Aの励磁をONする。このとき、可動子21は電機子AにもAにも対向している。続いて、更に、可動子21が右へ移動し、図6(c)の位置にくると電機子Aの励磁をOFFし、電機子Aの励磁をONする。このとき、可動子21は電機子AにもAにも対向している。
 図6(d)において、横軸は可動子21の中心位置を表している。ここで、可動子21の位置は、図4における位置検出器14により正確に検出されており、図4における制御器15が、その位置情報をもとに各電機子の励磁のONとOFFのタイミングを生成している。このようにして、可動子の移動に応じた電機子の励磁動作が行なわれる。
 ここで、実施例1と同様に、図6(a)~(d)を見れば、励磁が切替えられるとき((b)と(c)の状態)において励磁ON/OFFされる電機子は必ず可動子1の内側に入っており、励磁されている電機子を界磁がまたがずに励磁のON/OFFを切替えられていることが分かる。
 以上のように構成されたリニアモータ装置は、励磁されている電機子を界磁がまたぐことがないように電機子と界磁の長さを設定しているので、実施例1と同様の効果を得ることができる。さらに、電機子をQ列並行させ、各列をずらして配置させているので、実施例1に比べると、電機子長Laが同じであっても界磁長Lmを小さくできる。つまり、リニアモータ装置を小形化できる。
 次に、第3の実施例について示す。
 図7は、第3の実施例を示すリニアモータ装置の励磁動作および推力指令を示す図であって、図7(a)~(d)は、実施例1と同じ励磁動作を表したもの(図3(a)~(d)に相当)であり、図7(e)は、図1または図4における制御器15内の電機子A~Aへの推力指令を表したものである。ここでは、励磁開始過程および励磁終了過程において、可動子1に発生させる推力を常に一定とする等加速度状態の推力指令として表している。なお、図1乃至6と同一の符号を付している構成は、同様の作用効果をもつものであるため説明を省略する。実施例3が実施例1や実施例2と異なる点は、励磁開始過程における電機子に与える推力を、0から所定の推力値まで相対位置に応じて滑らかに変化させ、かつ、励磁終了過程における電機子に与える推力を、所定の推力値からゼロまで相対位置に応じて滑らかに変化させている点である。
 各電機子への励磁開始過程において、推力指令を0から所定の推力値まで相対位置に応じて滑らかに変化させ、かつ、各電機子への励磁終了過程において、推力指令を所定の推力値からゼロまで相対位置に応じて滑らかに変化させている。
 ここで、推力指令を滑らかに変化させる量(傾き)は適宜決定すればよいが、可動子1に発生させる推力を常に一定とするために、図1または図4における制御器15が、各電機子相互間の推力指令値の総和が、常に一定となるようにするものである。
 なお、第3の実施例として実施例1に対する推力指令を滑らかに変化させることについて説明したが、実施例2に対しても同様に適用できることは言うまでもない。
 以上のように構成されたリニアモータ装置は、推力指令の急激な変化がなく、励磁切替え時にショックがなく、推力リプルを抑制できるリニアモータ装置を提供できる。
 次に第4の実施例について示す。
 図8は、第4の実施例を示すリニアモータ装置の励磁動作を示す図であって、図8(a)~(d)は、図4において可動子21を順に左から右へ移動させた場合の電機子A~Aの励磁動作を示したものである。また、図8(e)は、電機子A~Aの切替えシーケンスを示す図である。なお、図1乃至7と同一の符号を付している構成は、同様の作用効果をもつものであるため説明を省略する。実施例4が実施例1~3と異なる点は、可動子に発生させる推力の大きさに応じて、電機子の励磁数を変えている点である。すなわち、大きな推力指令値が必要とされる可動子21の加減速区間では電機子の励磁数を多くし、比較的小さな推力指令値でよい可動子21の一定速区間では電機子の励磁数を少なくするものである。
 図8(a)~(c)までは可動子21の加速時であり、大きな推力指令値が必要とされる区間である。図8(a)では、可動子21に対向した電機子AとAとAの3個が励磁されている。次に、可動子1が右へ移動し、図8(b)の位置にくると電機子Aの励磁をOFFし、電機子Aの励磁をONする。ここまでは、実施例2と同じである。次に、図8(c)は加速から一定速(等速)に変わる瞬間であり、可動子21が一定速となり、推力指令値が励磁数変更の基準値を下回るまで低下する区間である。このとき、電機子AとAの励磁をOFFし、電機子Aのみの励磁をONした状態となる。次に、図8(d)は可動子21が一定速(等速)で移動している区間であり、推力指令値は励磁数変更の基準値を下回ったままの状態である。電機子Aの励磁をOFFし、電機子Aの励磁をONする。励磁数は1個のままとなっている。
 ここで、励磁数変更の基準値は、リニアモータを配置する機構系(図示しない)や駆動する仕様に応じて予め決定してもよいし、駆動時の可動子速度または可動子位置に基づいて随時決定してもよい。
 なお、第4の実施例として実施例2に対する励磁数変更について説明したが、実施例1に対しても同様に適用できることは言うまでもない。また、変更する励磁数は、最大励磁数Pの範囲内で変えるものである。
 以上のように構成されたリニアモータ装置は、界磁に発生させる推力の大きさに応じて電機子の励磁数を変えているので、余分な電力供給と推力不足を起こすことのないリニアモータ装置を提供できる。
 以上の実施例では、位置検出器を用いた例で説明したが、この位置検出器を無くし、可動子の位置を推定しながら電機子を励磁して可動子を移動させたり、V/f駆動で電機子を励磁して可動子を移動させるようにしても本発明の効果が得られることは言うまでもない。また、固定子上に可動子1台の例で説明したが、可動子を複数台搭載して、それぞれ独立した制御で移動させても本発明の効果が得られることは言うまでも無い。また、電機子と電流アンプをケーブルでつなぐ構成で示したが、電機子と電流アンプを一体に構成しリニアモータ装置の小形化を図っても、本発明の効果が得られることは言うまでも無い。
 本発明は、ストロークや推力の大きさに応じて電機子の大きさと電流アンプの容量を変えることで、半導体製造装置、液晶製造装置、工作機械などの精密装置だけでなく、エレベータ装置、各種搬送装置といった用途にも適用できる。

Claims (12)

  1.  複数のコイルを有する多相の電機子および複数の永久磁石を有する界磁から構成し、複数個の前記電機子を前記界磁の移動方向に1列に配置するリニアモータと、
     前記電機子に対する前記界磁の相対位置を検出する位置検出器と、
     前記電機子と同数個の前記コイルに電流を供給する電流アンプと、
     前記界磁を前記電機子に対して相対的に移動させるために前記電流アンプに制御指令を与えると共に、前記界磁が励磁する前記電機子をまたがないように前記電流アンプ毎に励磁切替信号を出力する制御器と、を備え、
     前記制御指令および前記相対位置に基づいて前記電機子の励磁動作を順次行なうことを特徴としたリニアモータ装置。
  2.  前記リニアモータの前記界磁の長さと前記電機子1個当たりの長さとの関係が、前記制御器により励磁する前記電機子を前記界磁がまたがないように予め設定されたものであることを特徴とした請求項1記載のリニアモータ装置。
  3.  前記リニアモータが、前記電機子1個当たりの移動方向長をLa、前記界磁の移動方向長をLm、前記電機子の最大励磁数をPとした場合、
       (P+1)×La ≦ Lm < (P+2)×La
    となるものであることを特徴とした請求項1記載のリニアモータ装置。
  4.  前記制御器が、励磁開始過程における前記電機子に与える推力を、前記相対位置に応じて0から所定の推力値まで滑らかに変化させ、かつ、励磁終了過程における前記電機子に与える推力を、前記相対位置に応じて所定の推力値からゼロまで滑らかに変化させることを特徴とした請求項1記載のリニアモータ装置。
  5.  前記制御器が、励磁開始過程または励磁終了過程における前記電機子相互間の推力指令値の総和を、常に一定となるようにすることを特徴とした請求項1記載のリニアモータ装置。
  6.  前記制御器が、前記電機子の励磁数を、前記界磁に発生させる推力の大きさに応じて変更することを特徴とした請求項1記載のリニアモータ装置。
  7.  複数のコイルを有する多相の電機子および複数の永久磁石を有する界磁から構成し、複数個の前記電機子を前記界磁の移動方向に、所定の列ずらし量をもつ所定の並列数に配置するリニアモータと、
     前記電機子に対する前記界磁の相対位置を検出する位置検出器と、
     前記電機子と同数個の前記コイルに電流を供給する電流アンプと、
     前記界磁を前記電機子に対して相対的に移動させるために前記電流アンプに制御指令を与えると共に、前記界磁が励磁する前記電機子をまたがないように前記電流アンプ毎に励磁切替信号を出力する制御器と、を備え、
     前記制御指令および前記相対位置に基づいて前記電機子の励磁動作を順次行なうことを特徴としたリニアモータ装置。
  8.  前記リニアモータの前記界磁の長さと前記電機子1個当たりの長さとの関係が、前記制御器により励磁する前記電機子を前記界磁がまたがないように予め設定されたものであることを特徴とした請求項7記載のリニアモータ装置。
  9.  前記リニアモータが、前記電機子の並列数をQ、前記電機子1個当たりの移動方向長をLa、前記界磁の移動方向長をLm、前記電機子の最大励磁数をPとした場合、
       (P+Q)×La/Q ≦ Lm < (P+Q+1)×La/Q
    となるものであるとともに、
     前記電機子の各列のずらし量ΔLが、
        ΔL = La/Q
    であることを特徴とした請求項7記載のリニアモータ装置。
  10.  前記制御器が、励磁開始過程における前記電機子に与える推力を、前記相対位置に応じて0から所定の推力値まで滑らかに変化させ、かつ、励磁終了過程における前記電機子に与える推力を、前記相対位置に応じて所定の推力値からゼロまで滑らかに変化させることを特徴とした請求項7記載のリニアモータ装置。
  11.  前記制御器が、励磁開始過程または励磁終了過程における前記電機子相互間の推力指令値の総和を、常に一定となるようにすることを特徴とした請求項7記載のリニアモータ装置。
  12.  前記制御器が、前記電機子の励磁数を、前記界磁に発生させる推力の大きさに応じて変更することを特徴とした請求項7記載のリニアモータ装置。
PCT/JP2009/054770 2008-08-19 2009-03-12 リニアモータ装置 WO2010021168A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2010525619A JP4811798B2 (ja) 2008-08-19 2009-03-12 リニアモータ装置
CN2009801092031A CN101971483B (zh) 2008-08-19 2009-03-12 直线电动机装置
US12/987,958 US8384317B2 (en) 2008-08-19 2011-01-10 Linear motor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008210284 2008-08-19
JP2008-210284 2008-08-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/987,958 Continuation US8384317B2 (en) 2008-08-19 2011-01-10 Linear motor device

Publications (1)

Publication Number Publication Date
WO2010021168A1 true WO2010021168A1 (ja) 2010-02-25

Family

ID=41707051

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/054770 WO2010021168A1 (ja) 2008-08-19 2009-03-12 リニアモータ装置

Country Status (4)

Country Link
US (1) US8384317B2 (ja)
JP (1) JP4811798B2 (ja)
CN (1) CN101971483B (ja)
WO (1) WO2010021168A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103891114B (zh) 2011-10-27 2018-01-02 不列颠哥伦比亚大学 位移装置及其制造、使用和控制方法
JP6373992B2 (ja) 2013-08-06 2018-08-15 ザ・ユニバーシティ・オブ・ブリティッシュ・コロンビア 変位デバイスおよび方法とそれに関連付けられた運動を検出し推定するための装置
CN103973074B (zh) * 2014-05-23 2016-09-28 清华大学 一种动铁式直线电机单盘式线圈切换装置及方法
WO2015179962A1 (en) 2014-05-30 2015-12-03 The University Of British Columbia Displacement devices and methods for fabrication, use and control of same
EP3152822B1 (en) 2014-06-07 2019-08-07 The University Of British Columbia Methods and systems for controllably moving multiple moveable stages in a displacement device
EP3155712A4 (en) 2014-06-14 2018-02-21 The University Of British Columbia Displacement devices, moveable stages for displacement devices and methods for fabrication, use and control of same
CN107135665B (zh) 2014-09-24 2020-02-18 泰克宣技术有限公司 产生用于音频振动的阻尼电磁致动平面运动的系统和方法
EP3320606B1 (en) 2015-07-06 2023-06-07 The University Of British Columbia Method and system for controllably moving one or more moveable stages in a displacement device
US10573139B2 (en) 2015-09-16 2020-02-25 Taction Technology, Inc. Tactile transducer with digital signal processing for improved fidelity
CN108539949B (zh) 2017-03-01 2020-07-31 台达电子工业股份有限公司 动磁式移载平台

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290347A (ja) * 1986-06-09 1987-12-17 Fujitsu Ltd 多極型直流リニアモ−タ
JPH04229092A (ja) * 1990-12-26 1992-08-18 Kajima Corp リニア同期モータ
JP2002199782A (ja) * 2000-12-27 2002-07-12 Nikon Corp リニアモータ装置、これを用いたステージ装置、露光装置、これを用いて製造されたデバイス、リニアモータの駆動方法、ステージ装置の駆動方法、露光方法、及び、デバイスの製造方法。
JP3329873B2 (ja) * 1993-03-10 2002-09-30 三菱電機株式会社 ロープレスエレベータ装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5913091A (en) * 1996-05-21 1999-06-15 Minolta Co., Ltd. Image reading apparatus
US5920164A (en) * 1996-10-31 1999-07-06 Mfm Technology, Inc. Brushless linear motor
US6590355B1 (en) 1999-06-07 2003-07-08 Nikon Corporation Linear motor device, stage device, and exposure apparatus
JP2001119916A (ja) 1999-10-12 2001-04-27 Nikon Corp リニアモータ装置、これを用いたステージ装置、露光装置、リニアモータの駆動方法、ステージ装置の駆動方法、露光方法、及び、デバイスの製造方法。
JP2001085503A (ja) 1999-09-17 2001-03-30 Canon Inc ステージ装置およびこれを用いた露光装置ならびにデバイス製造方法
JP2002064968A (ja) * 2000-08-21 2002-02-28 Nippon Thompson Co Ltd 可動コイル型リニアモータを内蔵したスライド装置
US6570273B2 (en) * 2001-01-08 2003-05-27 Nikon Corporation Electric linear motor
JP4683369B2 (ja) 2004-09-15 2011-05-18 株式会社安川電機 リニアモータの制御装置
JP4552573B2 (ja) 2004-09-16 2010-09-29 株式会社安川電機 リニアモータ装置
KR100984604B1 (ko) 2004-10-01 2010-09-30 가부시키가이샤 야스카와덴키 리니어 모터 시스템

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62290347A (ja) * 1986-06-09 1987-12-17 Fujitsu Ltd 多極型直流リニアモ−タ
JPH04229092A (ja) * 1990-12-26 1992-08-18 Kajima Corp リニア同期モータ
JP3329873B2 (ja) * 1993-03-10 2002-09-30 三菱電機株式会社 ロープレスエレベータ装置
JP2002199782A (ja) * 2000-12-27 2002-07-12 Nikon Corp リニアモータ装置、これを用いたステージ装置、露光装置、これを用いて製造されたデバイス、リニアモータの駆動方法、ステージ装置の駆動方法、露光方法、及び、デバイスの製造方法。

Also Published As

Publication number Publication date
US20110101896A1 (en) 2011-05-05
JPWO2010021168A1 (ja) 2012-01-26
CN101971483A (zh) 2011-02-09
US8384317B2 (en) 2013-02-26
JP4811798B2 (ja) 2011-11-09
CN101971483B (zh) 2013-06-12

Similar Documents

Publication Publication Date Title
JP4811798B2 (ja) リニアモータ装置
JP5956993B2 (ja) リニアモータ
JP5404029B2 (ja) リニア電動機
JP4938355B2 (ja) リニアモータ
US7944095B2 (en) Linear motor with integrally formed stator
JP4473088B2 (ja) リニアモータ
WO2009128321A1 (ja) 多自由度アクチュエータおよびステージ装置
CN101278467A (zh) 线性同步电动机以及线性电动机促动器
WO2009119810A1 (ja) サーボモータの位置制御装置
JP2010130740A (ja) マグネット可動型リニアモータ
JP5289799B2 (ja) リニアモータ
US8164223B2 (en) Linear motor mounting structure
JP5488836B2 (ja) リニアモータ
CN101517887B (zh) 多台交流线性电动机的控制方法、多台交流线性电动机驱动装置和多台交流线性电动机系统
WO2012127687A1 (ja) リニアモータ駆動装置
CN107925336B (zh) 横向磁通线性电机
US20020117905A1 (en) Linear actuator
JP2005253259A (ja) リニア電磁アクチュエータ
US20180083522A1 (en) Cornering linear motor
JP3824060B2 (ja) リニアモータ
JP3944471B2 (ja) 駆動装置及びそれを用いたxyテーブル
JP4552573B2 (ja) リニアモータ装置
JP2005295678A (ja) リニアドライブシステム
JP2010057338A (ja) 可動子、電機子及びアクチュエータ
JP2005210794A (ja) リニア電磁アクチュエータ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980109203.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010525619

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808104

Country of ref document: EP

Kind code of ref document: A1