WO2010020175A1 - 信号汇聚、解汇聚的装置、方法及系统 - Google Patents

信号汇聚、解汇聚的装置、方法及系统 Download PDF

Info

Publication number
WO2010020175A1
WO2010020175A1 PCT/CN2009/073323 CN2009073323W WO2010020175A1 WO 2010020175 A1 WO2010020175 A1 WO 2010020175A1 CN 2009073323 W CN2009073323 W CN 2009073323W WO 2010020175 A1 WO2010020175 A1 WO 2010020175A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
service
odux
gbit
module
Prior art date
Application number
PCT/CN2009/073323
Other languages
English (en)
French (fr)
Inventor
涂勇
孙萍
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2010020175A1 publication Critical patent/WO2010020175A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1664Optical Transport Network [OTN] carrying hybrid payloads, e.g. different types of packets or carrying frames and packets in the paylaod
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols

Definitions

  • the present invention relates to the field of optical communication, and in particular, to a device, method and system for convergence and de-aggregation of four-way 10G service signals.
  • BACKGROUND With the development of optical communication technologies, the transmission rate is rapidly increased, and the transmission distance is longer and longer.
  • OTN optical transport network
  • the 40G optical transport network (OTN) transmission will be widely used in the near future.
  • OTN optical transport network
  • synchronous transport module (synchronous transport module, cylinder called STM) 64 (9.953Gbps), 10 Gigabit Ethernet - Bureau i or network (10 Giga bit Ethernet, cylinder Called 10GE LAN) (10.3125Gbps), 8G Fibre Channel (Fibre Channel 800, FC800) (8.5Gbps), 10G Fibre Channel (Fibre Channel 1200, FC1200) (10.51875Gbps), OTU2 (10.709Gbps) ), bps is a bit per second, and the rates of various services are small. Therefore, each aggregation application is a combination of four different types of 10G services into one OTU3 service, so that the convergence of the five 10G services is Five aggregation devices are required.
  • STM64 please refer to the International Telecommunications Union-Telecommunications Standardization Sector (ITU-T) G.707, 64 for the rate class.
  • ITU-T International Telecommunications Union-Telecommunications Standardization Sector
  • 10GE LAN see the Institute for Electrical and Electronic Engineers (IEEE) 802.3 standard
  • FC800/FC1200 see the ANSI FC-PI standard
  • OTU2 see ITU-T. G.709 standard.
  • an object of the present invention is to provide a device, method and system for signal aggregation and de-aggregation for four-way 10G services to solve the prior art.
  • the lack of a technical solution for multi-channel hybrid aggregation of different types of 10G service signals in an OTN network results in a technical problem that greatly increases the hardware cost of completing the aggregation function.
  • a signal aggregation apparatus for four-way 10G services is provided.
  • the device comprises: four optical channel transport unit (ODC) generating modules, each of the four ODUx generating modules and one of the four connected 10G service signals respectively. Connected and rate-matched a connected 10G service signal, and then outputs an ODUx signal with a preset rate and type, the ODUx signal is an ODU2, ODUle or ODU2e signal, and the four ODUx outputs of the above four ODUx generation modules
  • ODC optical channel transport unit
  • the optical channel data unit ODUx generating module includes: a plurality of first rate adaptation modules, where different first rate adaptation modules correspond to 10G service signals of different service types, and are used to adjust corresponding service types.
  • the rate of the 10G service signal, and the output of the adjusted signal, 4 according to the corresponding service type, the adjusted signal is the ODUx signal or the signal to be processed by the ODUx framing;
  • the first service selection module is used to The first rate adaptation module selects a first rate adaptation module corresponding to the service type of the connected 10G service signal to adjust the rate of the current path 10G service signal;
  • the optical channel data unit ODUx framing module And when the signal output by the selected first rate adaptation module is subjected to framing processing, loading the signal output by the selected first rate adaptation module into the ODU frame, and outputting the ODUx signal.
  • the plurality of first rate adaptation modules comprise at least two of the following first rate adaptation modules: a first SDH (Synchronous Digital Hierarchy) rate adaptation module, for 9.953 Gbits/second (bit/s; or bps, bit per second))
  • the rate of the 10G service signal of the STM64 is adjusted to 10.3125 Gbit/s, or the signal of 9.953 Gbit/s is directly output
  • the first FC800 rate adaptation module is used for Adjust the rate of the 8.5 Gbit/s FC800 10G service signal to 9.953 Gbit/- or 10.3125 Gbit/-
  • the first 10GE LAN rate adaptation module is configured to adjust the rate of the 10.3125 Gbit/s 10GE LAN 10G service signal to 9.953 Gbit/s, or directly output the 10.3125 Gbit/s signal
  • a matching module for adjusting the rate of the 10G service signal of the 10.512875 Gbit/s FC1200 to 9.953 Gbit/s or 10.3 Gbit/s
  • Each of the ODTU23 generating modules is respectively connected to one of the four optical channel data unit ODUx generating modules and configured to generate an ODTU23 or an overspeed ODTU23 for the ODUx signal input by the optical channel data unit ODUx generating module; the optical channel payload unit 3 (Optical Channel Transport Unit, called OPU3) / Overspeed OPU3 framing module, used to generate four ODTU23/overspeed ODTU23 signals generated by four ODTU23/overspeed ODTU23 generation modules, and aggregate to generate OPU3 or overspeed OPU3 signals;
  • OPU3 Optical Channel Transport Unit
  • ODU3/overspeed ODU3 framing module used to generate ODU3 or overspeed ODU3 signals from OPU3 or overspeed OPU3 signals;
  • OTU3/overspeed OTU3 framing module for generating OTU3 or overspeed OTU3 signals from ODU3 or overspeed ODU3 signals.
  • the OTU3/overspeed OTU3 framing module generates an OTU3 signal;
  • the ODUx signal input to the asynchronous aggregation module is an ODUle signal, the OTU3/overspeed OTU3 framing module generates the first Overspeed OTU3 signal, the first overspeed OTU3 signal ⁇ rate is 255/236 ⁇ 237/238 ⁇ 10.3125 ⁇ 4 G port
  • the ODUx signal input to the asynchronous aggregation module is ODU2e
  • the OTU3/overspeed OTU3 framing module generates a second overspeed OTU3 signal, and the rate of the second overspeed OTU3 signal is 255/236 x 10.3125 X 4 Gbit/s.
  • an apparatus for deconvolution is provided.
  • the device according to the present invention is used for de-aggregating an OTU3 or an overspeed OTU3 signal generated by aggregating four 10G service signals, including: an asynchronous de-aggregation module, configured to de-aggregate an OTU3 or an over-speed OTU3 signal to generate a four-way ODUx signals of the same rate and type, ODUx signals are ODU2, ODUle or ODU2e signals; four 10G service recovery modules, each of the four 10G service recovery modules and one of the four ODUx signals generated by the asynchronous de-aggregation module Connected and used to adjust the connected ODUx signal to the original 10G service signal before convergence by rate adaptation.
  • the asynchronous solution aggregation module includes:
  • OTU3/overspeed OTU3 decapsulation module for decapsulating OTU3 or overspeed OTU3 signals and generating ODU3 or overspeed ODU3 signals;
  • ODU3/overspeed ODU3 decapsulation module used to decapsulate ODU3 or overspeed ODU3, and generate OPU3 or overspeed OPU3 signal;
  • OPU3/overspeed OPU3 asynchronous solution aggregation module, used to deconverge OPU3 or overspeed OPU3 signals, and generate four ODTU23 or overspeed ODTU23 signals; four ODTU23/overspeed ODTU23 adjustment modules, each of four ODTU23/overspeed ODTU23 adjustment modules The signals are respectively connected to one of the four ODTU23 or overspeed ODTU23 signals and used to adjust the rate of the ODTU23 or the overspeed ODTU23 signal to ODUx for output.
  • the 10G service recovery module includes: an ODUx demapping module, configured to unpack the frame structure of the input ODUx signal when the service type of the 10G service signal to be recovered needs to be deframed, and output the deframed frame Signal; wherein, when the input ODUx signal is an ODU2 signal, the ODU2 frame structure of the ODU2 signal is Unwrapping, forming and outputting a signal of 9.953 Gbit/s rate; when the input ODUx signal is an ODU2e or ODUle signal, unwrapping the frame structure of the ODU2e or ODUle signal to form and output a 10.3125 Gbit/-rate signal; a plurality of second rate adaptation modules, the different second rate adaptation modules corresponding to different service types to recover the 10G service signal, used for rate adjustment of the input signal, to output the original 10G service signal before convergence, wherein According to the service type of the 10G service signal to be recovered, the signal received by the second rate adaptation module is the deframe signal input by the ODUx
  • the plurality of second rate adaptation modules comprise at least two of the following second rate adaptation modules: a second SDH rate adaptation module, configured to receive 10.3125 Gbit/s or 9.953 G of the ODUx deframing module input.
  • the 10.3125 Gbit/s signal is adjusted to 9.953 Gbit/s SDH signal output, or 9.953 Gbit/s is output directly;
  • the second FC800 rate adaptation module is used to receive the ODUx deframe module input 10.3125 Gbit/s or 9.953 Gbit/s signal, and adjust the 10.3125 Gbit/s or 9.953 Gbit/s signal to 8.5 Gbit/s FC800 service signal output;
  • the second 10GE LAN rate adaptation module Used to receive ODUx deframing module input
  • the matching module is configured to receive the 10.3125 Gbit/s or 9.953 Gbit/s signal input by the ODUx demapping module, and adjust the 9.953 Gbit/s or 10.3 Gbit/s signal to the 10.51875 Gbit/s FC1200 service signal.
  • the second OTU2 rate adaptation module is configured to receive the ODUx signal input by the asynchronous de-aggregation module when the service type of the 10G service signal to be recovered is the OTU2 service, and when the ODUx signal is the ODU2 signal, the OUD2 signal is ODU2 frame becomes OTU2 through overhead and FEC encoding Signal output; when the ODUx signal is ODU2e or ODUle signal, the ODU2e or ODUle signal is adjusted to the ODU2 signal, and the adjusted ODU2 frame of the ODU2 signal is encoded by the overhead and FEC, and becomes the OTU2 signal output.
  • a method of signal convergence is provided.
  • the method according to the present invention is applied to a four-way 10G service, including: performing rate adaptation on each 10G service signal according to the service type of each of the input four 10G service signals to be converted into a preset rate and A type of ODUx signal, where the ODU signal is an ODU2, ODUle or ODU2e signal, and the converted four-way ODU signals have the same rate and type; the converted four-way ODUx signals are aggregated onto one OTU3 or overspeed OTU3.
  • the step of performing rate adaptation on each of the 10G service signals and converting to the ODUx signal includes: selecting, from a plurality of preset first rate adaptation modules, a service type corresponding to the current 10G service signal.
  • the first rate adaptation module adjusts the rate of the current 10G service signal; after the adjustment, if the adjusted signal needs to be framed, the adjusted signal is loaded into the ODUx frame, and then output. ODUx signal; If the adjusted signal does not need to be framed, the adjusted signal is directly output.
  • the plurality of first rate adaptation modules comprise at least two of the following first rate adaptation modules: a first SDH rate adaptation module, configured to adjust a rate of a 9.53 Gbit/s STM64 10G service signal The signal is 10.3125 Gbit/s, or directly outputs 9.953 Gbit/s; the first FC800 rate adaptation module is used to adjust the rate of the 8.5 Gbit/sec FC800 10G service signal to 9.953 Gbit/s or 10.3125 Gbit/s; The first 10GE LAN rate adaptation module is used to adjust the rate of the 10G LAN 10G service signal of 10.3125 Gbit/s to 9.953 Gbit/s, or directly output 10.3125 Gbit/ Second-second signal; the first FC1200 rate adaptation module is configured to adjust the rate of the 10G service signal of the 10.512875 Gbit/s FC1200 to 9.953 Gbit/s or 10.3 Gbit/s; the first OTU2 rate adaptation module, For decapsulating the OTU2 service signal of 10.709 Gbit/s and
  • a method of signal deaggregation is provided.
  • the method according to the present invention is used for de-aggregating an OTU3 or an overspeed OTU3 signal generated by aggregating four 10G service signals, including: de-aggregating an OTU3 or an overspeed OTU3 signal to generate four ODUx signals having the same rate and type,
  • the ODUx signal is an ODU2, ODUle or ODU2e signal.
  • each ODUx signal is rate-adjusted to be converted into the original 10G service signal before convergence.
  • the rate adaptation of each ODUx signal to the original 10G service signal before convergence includes: determining whether the current path ODUx signal needs to be deframed; if yes, deframing the current path ODUx signal Processing, and after performing the de-frame processing, selecting a second rate adaptation module corresponding to the service type of the current path 10G service signal to be recovered from the plurality of second rate adaptation modules that are preset
  • the frame processed signal is adjusted in rate, so that the adjusted signal is restored to the original 10G service signal of the current path before convergence; otherwise, the current current to be restored is selected from a plurality of preset second rate adaptation modules.
  • the second rate adaptation module corresponding to the service type of the 10G service signal performs rate adjustment on the ODUx signal, so that the adjusted signal is restored to the original 10G service signal of the current path before convergence;
  • the deframe processing if the input ODUx signal is the ODU2 signal, the ODU2 frame structure of the ODU2 signal is unwrapped, and a signal of 9.953 Gbit/s rate is formed and output;
  • the input ODU signal is ODU2e Or the ODUle signal, the frame structure of the ODU2e or ODUle signal is unwrapped, and a signal of 10.3125 Gbit/s rate is formed and output.
  • the plurality of second rate adaptation modules comprise at least two of the following second rate adaptation modules: a second SDH rate adaptation module, configured to adjust the input 10.3125 Gbit/s signal to 9.953 Gbits/ The second SDH signal output, or the input 9.953 Gbit/s signal is directly output; the second FC800 rate adaptation module is used to adjust the input 10.3125 Gbit/s or 9.953 Gbit/s signal to 8.5 Gbit/ Second FC800 service signal output; The second 10GE LAN rate adaptation module is used to adjust the input 9.953 Gbit/s signal to 10.3125 Gbit/s 10GE LAN service signal output, or the input 10.3125 Gbit/s Direct output; the second FC1200 rate adaptation module is configured to adjust the input 9.953 Gbit/s or 10.3125 Gbit/s signal to 10.51875 Gbit/s FC1200 service signal output; the second OTU2 rate adaptation module, The input ODUx signal is converted into an OTU2 signal output; wherein, if the input ODUx signal is an O
  • a service transmission system comprises: a convergence device and a deaggregation device.
  • the convergence device is configured to implement aggregation of four 10G service signals, including: four optical channel data unit ODUx generation modules, each of the four ODUx generation modules and one of the four access 10G service signals respectively.
  • the four-way ODU signals have the same rate and type; the asynchronous aggregation module is used to aggregate the output four-way ODUx signals onto one OTU3 or overspeed OTU3.
  • the de-aggregation device is configured to converge the OTU3 or the over-speed OTU3 generated by the aggregation device into four-way 10G service signals, including: an asynchronous de-aggregation module, configured to de-aggregate the OTU3 or the over-speed OTU3 signal to generate a four-way ODUx signal; Four 10G service recovery modules, each of the four 10G service recovery modules are connected to one of the four ODUx signals generated by the asynchronous de-aggregation module and used to adjust the connected one-way ODUx signals to be aggregated before the convergence. 10G business signal.
  • each of the four 10G service signals to be aggregated is rate-adapted by the four optical channel data unit ODUx generating modules, and the rate is made.
  • Each of the adapted outputs has the same rate and type of ODUx signals, and then the four ODUx signals are aggregated to one OTU3 or overspeed OTU3 through the asynchronous aggregation module, thereby implementing 10G service signals for multiple different service types.
  • Hybrid aggregation greatly enhances application flexibility and reduces the variety of boards and total system cost.
  • the OTU3/overspeed OTU3 asynchronous de-aggregation module is used to deconverge the generated OTU3 or overspeed OTU3 signals to generate four ODUx signals with the same rate and type, and recover with four 10G services.
  • the module performs rate adaptation on each ODUx signal, and adjusts the ODUx signal to the original 10G service signal before convergence, so that the convergence signal generated by the mixed aggregation of 10G service signals of different service types can be deconvolved. And restore the original business signal.
  • FIG. 1 is a schematic structural diagram of an apparatus for collecting four-way 10G service signals according to an embodiment of the present invention
  • 2 is a schematic structural diagram of an ODUx generation module according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of an ODUx generation module according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of a configuration of an ODUx generation module according to an embodiment of the present invention
  • 5 is a schematic structural diagram of a de-aggregation device according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of an asynchronous de-aggregation module according to an embodiment of the present invention
  • FIG. 7 is a 10G service according to an embodiment of the present invention.
  • FIG. 8 is a specific implementation of a 10G service recovery module according to an embodiment of the present invention;
  • FIG. 9 is a structure of a four-way STM64, FC800, and OTU2 arbitrary hybrid aggregation device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a de-aggregation device that aggregates aggregated signals generated by any mixed aggregation of four STM64, FC800, and OTU2 into four original STM64, FC800, and OTU2 signals according to an embodiment of the present invention
  • FIG. 12 is a schematic flowchart of a method for merging four-way 10G service signals according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram of signal de-aggregation according to an embodiment of the present invention.
  • Method schematic flow DETAILED DESCRIPTION OF THE INVENTION Function Overview
  • the processing principles of the scheme are as follows: Four optical channel data units ODUx are generated.
  • the module, each of the four ODUx generating modules is respectively connected to one of the four channels of the accessed 10G service signals and is used for rate adaptation of the connected 10G service signals, and outputs the preset rate and type.
  • the ODUx signal, the ODUx signal is the ODU2, ODUle or ODU2e signal, and the four ODU signals output by the four ODUx generating modules have the same rate and type;
  • the asynchronous aggregation module is used to aggregate the output four-way ODUx signals into one OTU3 or overspeed. OTU3.
  • the embodiment of the present invention implements hybrid aggregation of multiple 10G service signals of different service types, which greatly enhances application flexibility and reduces the types and systems of the boards. Total cost. It should be noted that the embodiments in the present application and the features in the embodiments may be combined with each other without conflict.
  • the invention will be described in detail below with reference to the drawings in conjunction with the embodiments.
  • the steps illustrated in the flowchart of the drawings may be performed in a computer system such as a set of computer executable instructions, and although the logical order is illustrated in the flowchart, in some cases The steps shown or described may be performed in an order different from that herein.
  • FIG. 1 is a schematic structural diagram of an apparatus for merging four-way 10G service signals according to an embodiment of the present invention.
  • the aggregation device of this embodiment includes: four optical channel data units ODUx generating modules 101-104 and an asynchronous aggregation module 105. The device will be described in detail below.
  • each of the four ODUx generating modules is respectively connected to one of the connected four 10G service signals and used to connect one connected 10G service signal Rate adaptation, and output an ODUx signal with a preset rate and kind to the asynchronous aggregation module 105, wherein the ODUx signal is an ODU2, ODUle or ODU2e signal, and the four ODU signals output by the four ODUx generation modules have the same rate and type; asynchronous aggregation module 105, a signal for four ODUx ⁇ 1 converge the output to one or OTU3 OTU3 overspeed.
  • the four-way 10G service signals that are accessed include: 10G service signals from the first branch to the fourth branch.
  • k l , 2 , 3 in OTUk, representing the rate class, and the detailed definition of OTUk can be found in ITU-T G.709.
  • the ODU generation module is described in more detail below.
  • ODU2 is defined in ITU-T G.709 at a rate of 10.037 Gps;
  • ODUle is a special optical channel data unit ODU, defined in ITU-T Supplement 43, at a rate of 10.3558 Gbit/s, ie;
  • ODU2e in ITU- As defined in T Supplement 43, the rate is 10.3995 Gbit/s.
  • the function of the ODUx generation module is to obtain the same 4-way ODUx (ODU2 or the same rate and frame format) after the rate adaptation is performed on different 10G services accessed by the client side.
  • the ODUx generation module can contain up to five types of service adaptation and framing functions: STM64, FC800, FC1200, 10GE LAN, OTU2 (optical transmission unit 2). In actual applications, it is not necessary to implement all five types according to actual needs. , only choose 2 to 5 kinds of requirements to achieve.
  • the outputs of the four ODUx generation modules shown in Figure 1 are the same rate, the same type of ODUx.
  • FIG. 2 is a schematic structural diagram of an ODUx generation module according to an embodiment of the present invention. As shown in FIG. 2, the ODUx generating module 200 according to the embodiment of the present invention includes: a plurality of first rate adaptation modules 201, a first service selection module 202, and an optical channel data unit ODUx framing module 203.
  • the plurality of first rate adaptation modules 201, the different first rate adaptation modules correspond to 10G service signals of different service types, are used to adjust the rate of the 10G service signals of the corresponding service type, and output the adjusted signals, and then output the adjusted signals.
  • the adjusted signal is an ODUx signal or a signal that needs to be subjected to ODUx framing processing according to the corresponding service type.
  • the first service selection module 202 is configured to select and connect the plurality of first rate adaptation modules.
  • the first rate adaptation module corresponding to the service type of the 10G service signal adjusts the rate of the current 10G service signal;
  • the optical channel data unit ODUx framing module 203 is configured to output at the selected first rate adaptation module.
  • the signal output by the selected first rate adaptation module is loaded into the ODUx frame, and the ODUx signal is output.
  • four different 10G services can be aggregated into the same OTU3 service.
  • the embodiment of the present invention can implement hybrid access of multiple 10G services on the customer side by adding a service selection module and a service rate adaptation module, which greatly enhances application flexibility and reduces the single The type of board and the total cost of the system.
  • the number and type of the first rate adaptation modules included in the four ODUx generation modules may be the same or different according to the service type of the 10G service signal to be processed.
  • the multiple first rate adaptation modules included in the ODUx generation module include at least two of the following first rate adaptation modules: a first SDH rate adaptation module, corresponding to the STM64 service, It is used to adjust the rate of the 10G service signal of 9.53 Gbit/s STM64 to 10.3125 Gbit/s, or directly output the signal of 9.953 Gbit/s, that is, if the output rate requirement is 9.953 Gbit/s, the module can be directly connected;
  • An FC800 rate adaptation module corresponding to the FC800 service, is configured to adjust the rate of the 10G service signal of the 8.5 Gbit/s FC800 to 9.953 Gbit/s or 10.3125 Gbit/s;
  • the first 10GE LAN rate adaptation module corresponding to the 10GE LAN service, is configured to adjust the rate of the 10G service signal of the 10.3125 Gbit/s 10GE LAN to 9.953 Gbit/s, or directly output the signal of 10.3125 Gbit/s, that is, If the output rate requirement is 10.
  • 10.51875 Gbit/s FC1200 10G service signal rate adjustment is 9.953 Gbit/s or 10.3125 Gbit/s;
  • the first OTU2 rate adaptation module corresponding to the OTU2 service, is used to solve the 10.709 Gbit/s OTU2 service signal Encapsulating, and adjusting the rate to an ODU2, ODUle, or ODU2e signal; wherein, the first SDH rate adaptation module, the first FC800 rate adaptation module, the first 10GE LAN rate adaptation module, and the first FC1200 rate adaptation
  • the adjustment signal output by the module needs to be input into the ODUx framing module for framing processing; and if the input ODUx framing module is 9.953 Gbit/s signal, the 9.953 Gbit/s signal is loaded into the ODU2 frame structure; if the input ODUx is The frame module is 10.3125 Gbit/s, and the 10.3125 Gbit/s signal is loaded into the ODU2e or ODUle frame structure.
  • FIG. 3 illustrates a specific implementation of an ODUx generation module in accordance with an embodiment of the present invention.
  • the ODUx generation module includes the foregoing five first rate adaptation modules, which can implement hybrid aggregation of five types of 10G service signals. After inputting a 10G service signal, selecting a channel corresponding to the service type according to the service type of the 10G service signal, and performing rate adaptation on the 10G service signal by using the first rate adaptation module corresponding to the service type. After being adapted, the output is directly output to the asynchronous aggregation module or processed by the framing module and then output to the asynchronous aggregation module (not shown in FIG. 3) to be aggregated with signals of other branches.
  • a channel corresponding to the type of service can be selected by a service selection switch.
  • the selection of the corresponding channel can be implemented by the first service selection switch 301, the second service selection switch 302, and the third service selection switch 303.
  • the states of the three service selection switches are determined.
  • the three service selection switches may be linked.
  • the first service selection switch 301 is selected to switch to the first rate adaptation module corresponding to the service type, and the first rate adaptation module performs rate adaptation on the service signal, and then outputs
  • the first rate adaptation module is a first SDH rate adaptation module, a first FC800 rate adaptation module, a first 10GE LAN rate adaptation module, or a first
  • the output signal is selected by the second service.
  • the ODU framing module is connected, and the output signal is loaded into the corresponding frame structure by the ODUx framing module, and output to the asynchronous aggregation module (not shown in FIG. 3) to converge with signals of other branches;
  • the first rate adaptation module is a first OTU2 rate adaptation module, and the output signal is directly output to the asynchronous aggregation module (not shown in FIG. 3) to communicate with other branches without going through the processing of the framing module.
  • the signal is aggregated.
  • the third service selection switch 303 selects whether to aggregate the signals output by the ODUx framing module or select the signals output by the first OTU2 rate adaptation module to be aggregated.
  • FIG. 4 is a schematic structural diagram of an asynchronous aggregation module according to an embodiment of the present invention. As shown in FIG.
  • the asynchronous aggregation module includes: four ODTU23/overspeed ODTU23 generation modules 401 ⁇ 404, OPU3/overspeed OPU3 framing module 405, ODU3/overspeed ODU3 framing module 406, and OTU3/overspeed OTU3 framing module 407
  • OPU3/overspeed OPU3 framing module 405 OPU3/overspeed OPU3 framing module 406
  • OTU3/overspeed OTU3 framing module 407 The structure will be described in detail below.
  • each of the four ODTU23/overspeed ODTU23 generation modules are respectively connected to one of the four optical channel data unit ODUx generation modules and used to connect the connected optical channel data
  • the unit ODUx generates the ODUx signal input by the module, and generates an ODTU23 or an overspeed ODTU23 according to the asynchronous aggregation mode of ITU-T G.709; an OPU3/overspeed OPU3 framing module 405, which is used to generate four ODTU23/overspeed ODTU23 generating modules.
  • the ODTU23 or the overspeed ODTU23 signal is aggregated to generate the optical channel payload unit 3, that is, the OPU3 or the overspeed OPU3 signal according to the asynchronous aggregation mode of ITU-T G.709; the ODU3/overspeed ODU3 framing module 406 is used for the OPU3 or the overspeed OPU3.
  • Signal, according to ITU-T G.709 asynchronous aggregation mode generate ODU3 or overspeed ODU3 signal;
  • OTU3/speed OTU3 framing module 407 used to transmit ODU3 or overspeed ODU3 signal according to ITU-T G.709 asynchronous aggregation mode , generate OTU3 or overspeed OTU3 signal.
  • the ODTU23 (Optical Channel Data Tributary Unit 2 into 3 (ODTU23), optical channel data tributary units 2 to 3) refers to the data channel unit in which ODU2 is multiplexed into the OPU3 process.
  • OPU3 is defined in the standard ITU-T G.709.
  • ODTU23 is defined in the standard ITU-T G.709 Amendment 1. If the input four branch signals are all ODU2, the asynchronous aggregation module of this embodiment becomes ODTU23, then generates OPU3, then generates ODU3, and finally generates OTU3.
  • OTU3 The rate is 255/236 x 9.953 280 ⁇ 4 Gbit/s.
  • the asynchronous aggregation module of this embodiment becomes the first overspeed ODTU23, that is, the overspeed ODTU23(l); then the first overspeed OPU3 is generated, that is, the overspeed OPU3(l); The first overspeed ODU3 is generated, that is, the overspeed ODU3(l); finally, the first overspeed OTU3 is generated, that is, the overspeed OTU3(l).
  • the speed of the overspeed OTU3(l) is 255/236 x 237/238 x 10.312 5 x 4 Gbit/s.
  • the OTU3(1) is defined by the embodiment of the present invention, and the frame structure of the OTU3(1) is exactly the same as that of the OTU3, except that the rate changes. If the input four branch signals are all ODU2e, the asynchronous aggregation module of this embodiment becomes the second overspeed ODTU23, that is, the overspeed ODTU23(2); then the second overspeed OPU3 is generated, that is, the overspeed OPU3(2); Generate a second overspeed ODU3, that is, overspeed ODU3 (2); finally generate a second overspeed OTU3, that is, overspeed OTU3 (2).
  • the speed of the overspeed OTU3(2) is 255/236 x 10.312 5 x 4 Gbit/s.
  • the OTU3(2) is defined by the embodiment of the present invention, and the frame structure of the OTU3(2) is exactly the same as the OTU3, except that the rate changes.
  • the deaggregation device is configured to acquire the OTU3 or the overspeed OTU3 signal generated by the convergence of the four 10G service signals for deconvergence.
  • FIG. 5 is a schematic structural diagram of a device for de-aggregation according to an embodiment of the present invention. As shown in FIG. 5, the de-aggregation device includes: an asynchronous de-aggregation module 501 and four 10G service recovery modules 502-505. The device is described in detail.
  • the asynchronous de-aggregation module 501 is configured to de-aggregate the OTU3 or the over-speed OTU3 signal to generate four ODUx signals of the same rate and type, and the ODUx signal is an ODU2, ODUle or ODU2e signal; four 10G service recovery modules 502-505, Each of the four 10G service recovery modules is connected to one of the four ODUx signals generated by the asynchronous de-aggregation module and is used to adjust the connected one-way ODUx signal to the original 10G service signal before convergence by rate adaptation. As shown in FIG. 5, the recovered four-way 10G service signals include: 10G service signals of the first branch to the fourth branch.
  • FIG. 6 is a schematic structural diagram of an asynchronous de-aggregation module according to an embodiment of the present invention. As shown in FIG.
  • the asynchronous de-aggregation module includes: an OTU3/overspeed OTU3 de-encapsulation module 601, an ODU3/overspeed ODU3 de-encapsulation module 602, an OPU3/overspeed OPU3 asynchronous de-aggregation module 603, and four ODTU23/overspeed ODTU23 adjustment module 604 ⁇ 607.
  • the structure will be described in detail below.
  • the OTU3/overspeed OTU3 decapsulation module 601 is configured to decapsulate the OTU3 or the overspeed OTU3 signal, and generate an ODU3 or an overspeed ODU3 signal, for example, generating an ODU3 or an overspeed ODU3 signal according to the asynchronous solution aggregation mode of ITU-T G.7.9;
  • the ODU3/overspeed ODU3 decapsulation module 602 is configured to decapsulate the ODU3 or the overspeed ODU3, and generate an OPU3 or overspeed OPU3 signal according to the asynchronous de-aggregation method according to ITU-T G.7.9; OPU3/overspeed OPU3 asynchronous solution aggregation
  • the module 603 is configured to de-aggregate the OPU3 or the overspeed OPU3 signal, and generate a four-way ODTU23 or overspeed ODTU23 signal according to the asynchronous solution aggregation mode according to ITU-T G.7.9; four ODTU23/overspeed
  • the asynchronous solution aggregation mode of 7.9 captures the rate of the ODTU23 or overspeed ODTU23 signal to the ODU for output. If the input OTU3 is a standard OTU3 signal defined by ITU-T G.709, the rate is 255/236 ⁇ 9.953 280 ⁇ 4 Gbit/s, then the asynchronous de-aggregation module of this embodiment becomes ODU3, and then OPU3 is generated. After that, ODTU23 is generated, and finally four-way ODU2 is generated, and the rate of each ODU2 is 10.3558 Gbit/s.
  • the asynchronous de-aggregation module of this embodiment becomes the overspeed ODU3 (2), and then the overspeed OPU3 (2) is generated. After that, the overspeed ODTU23 (2) is generated, and finally four ODU2e are generated, and the rate ⁇ P of each ODU2e is 10.3995 Gbit/s.
  • FIG. 7 is a schematic structural diagram of a 10G service recovery module according to an embodiment of the present invention. As shown in FIG. 7, the 10G service recovery module 700 includes: an ODUx deframing module 701, a plurality of second rate adaptation modules 702, and a second service selection module 703. The structure will be described in detail below.
  • the ODUx demapping module 701 is configured to: when the service type of the 10G service signal to be recovered needs to be deframed, undo the frame structure of the input ODUx signal, and output the de-framed signal; When the input ODUx signal is the ODU2 signal, the ODU2 frame structure of the ODU2 signal is unlocked to form and output a signal of 9.953 Gbit/s; when the input ODUx signal is an ODU2e or ODUle signal, the ODU2e or ODUle signal is used.
  • the frame structure is unwrapped, and a signal of a rate of 10.3125 Gbit/s is formed and outputted; a plurality of second rate adaptation modules 702, different second rate adaptation modules corresponding to different service types to recover 10G service signals, for
  • the input signal is rate-adjusted to output the original 10G service signal before convergence, wherein the signal received by the second rate adaptation module is input by the ODUx de-frame module according to the service type of the 10G service signal to be recovered.
  • a second service selection module 703 configured to select, from the plurality of second rate adaptation modules, a second rate corresponding to a service type of the 10G service signal to be restored currently
  • the module is configured to output the original 10G service signal before convergence.
  • the number and type of the second rate adaptation modules included in the four 10G service recovery modules may be the same or different according to the service type of the 10G service signal to be restored.
  • the multiple rate adaptation modules included in the foregoing 10G service recovery module include at least two of the following second rate adaptation modules: a second SDH rate adaptation module, configured to receive an ODUx deframe. Module input 10.3125
  • the signal is adjusted to 8.5 Gbit/s FC800 service signal output; the second 10GE LAN rate adaptation module is used to receive the 10.3125 Gbit/s or 9.953 Gbit/s signal input by the ODUx deframing module; if the received is 9.953 Gbit/s The signal adjusts the 9.953 Gbit/s signal to 10.3125 Gbit/s 10GE LAN service signal output; if the received signal is 10.3125 Gbit/s, the ⁇ 1 10.3125 Gbit/s signal is directly output; the second FC1200 rate adaptation module , used to receive the 10.3125 Gbit/s or 9.953 Gbit/s signal input by the ODUx demapping module, and adjust the 9.953 Gbit/s or 10.3125 Gbit/s signal to the FC1200 service signal output of 10.51875 Gbit/s; the second OTU2 rate is suitable Distribution module, used in the industry of 10G service signals to be restored When the service type is OTU2 service, the ODUx signal input by the asynchronous de-
  • FIG. 8 is a specific implementation of a 10G service recovery module according to an embodiment of the present invention. As shown in FIG. 8 , the 10G service recovery module includes the foregoing five second rate adaptation modules, and the convergence signal generated by the hybrid aggregation of the five types of 10G service signals can be performed by selecting a corresponding second rate adaptation module.
  • the service recovery module receives an ODUx service signal input by the asynchronous de-aggregation module (not shown in FIG. 8), and selects a channel corresponding to the service type according to the service type of the original 10G service signal to be recovered by the ODUx service signal.
  • the rate modulation of the ODUx service signal is performed by using a second rate adaptation module corresponding to the service type to recover the original 10G service signal.
  • a recovery channel corresponding to the 10G service signal to be recovered may be selected by a service selection switch.
  • the embodiment of the present invention can also implement the selection of the corresponding channel by using the fourth service selection switch 801, the fifth service selection switch 802, and the sixth service selection switch 803.
  • the states of the three service selection switches are determined.
  • the three service selection switches may be linked.
  • the ODUx service signal is selected and input into the ODUx de-frame module through the fourth switch 801, and the corresponding part is input by the ODUx de-frame module.
  • FIG. 9 is a schematic structural diagram of a four-way STM64, FC800, and OTU2 any hybrid aggregation device according to an embodiment of the present invention. As shown in FIG.
  • the 10G service signal to be aggregated only includes
  • the three service types may include only the corresponding first STM64 rate adaptation module, the first FC800 rate adaptation module, and the first OTU2 rate adaptation module.
  • any one 10G service passes through the service selection switch and accesses the first rate adaptation module that matches its service type.
  • the branch may omit the first SDH rate adaptation module; if the input is the FC800 industry
  • the rate of the 8.5 Gbit/s FC800 service is adjusted to 9.953 Gbit/s through the first FC800 rate adaptation module. After the above two services are matched by the rate, they all become 9.953 Gbit/s, and then enter.
  • the ODU2 framing module generates the ODU2; if the input service is OTU2, the input service directly enters the first OTU2 rate adaptation module, and after the OTU2 overhead and the FEC code are removed, the ODU2 service is formed; after the ODU2 service passes the service selection switch, the ODTU23 is generated. Module, generating ODTU23 service.
  • the four-way ODTU23 service obtains the OPU3 service in the OPU3 asynchronous aggregation module; the OPU3 is changed into the ODU3 through the ODU3 framing module; the OTU3 is converted into the OTU3 by the OTU3 framing module, and the output OTU3 service is obtained. .
  • 10 is a schematic structural diagram of a de-aggregation device that aggregates aggregated signals generated by any mixed aggregation of four STM64, FC800, and OTU2 into four original STM64, FC800, and OTU2 signals according to an embodiment of the present invention, as shown in FIG.
  • the 10G service signal to be recovered includes only three service types, only the corresponding second STM64 rate adaptation module, the second FC800 rate adaptation module, and the second OTU2 rate may be included.
  • the module is configured to recover 10G service signals of the original three service types.
  • the input OTU3 service enters the OTU3 de-encapsulation module; the OTU3 de-encapsulated module converts the input OTU3 into ODU3; the ODU3 de-encapsulation module converts the input ODU3 into OPU3; and the OPU3 asynchronous de-aggregation module
  • the input OPU3 is split into four ODTUs 23; the input ODTU23 is changed to ODU2 by the ODTU23 adjustment module; and the ODU2 is sent to the ODU2 deframing module when the original 10G service to be restored is SDH or FC800 through the service selection switch.
  • the 10G service to be restored is OTU2, the ODU2 is sent to the second OTU2 rate adaptation module.
  • the ODU2 demapping module is configured to unpack the payload in the ODU2 to obtain a service of 9.953 Gbps, and the second SDH rate adaptation module is configured to obtain an SDH service from the 9.953 Gbps signal, if the ODUx deframing module is input to The second SDH rate adaptation module is an SDH signal, and the second SDH rate adaptation module can be omitted; the second FC800 rate adaptation module is configured to obtain an 8.5G FC800 service from the 9.953 Gbps signal;
  • the matching module is used to add the ODU2 to the OTU2 overhead and the FEC code to obtain the output OTU2 signal.
  • the embodiment of the present invention further provides a service transmission system, where the system includes: a convergence device and a de-aggregation device, and a convergence device, configured to implement aggregation of four 10G service signals, including: four optical channel data units ODUx generation
  • the module, each of the four ODUx generating modules is respectively connected to one of the connected four 10G service signals and used to connect to the connected 10G service signals.
  • the rate is adapted, and the ODUx signal with the preset rate and type is output, wherein the ODUx signal is the ODU2, ODUle or ODU2e signal, and the four ODU signals output by the four ODUx generating modules have the same rate and type; the asynchronous aggregation module uses
  • the four-way ODUx signals are aggregated to an OTU3 or an over-speed OTU3.
  • the de-aggregation device is configured to aggregate the OTU3 or the over-speed OTU3 generated by the aggregation device into four 10G service signals, including: an asynchronous solution aggregation module.
  • FIG. 11 is a schematic flowchart diagram of a method for hybrid aggregation of four-way 10G service signals according to an embodiment of the present invention. As shown in FIG.
  • the aggregation method includes the following steps 1101 to 1102: Step 1101: Rate-adapte each 10G service signal according to the service type of each of the input four-way 10G service signals to convert to a pre- The rate and type of ODUx signals are set, the ODUx signals are ODU2, ODUle or ODU2e signals, and the converted four-way ODUx signals have the same rate and type; Step 1102, the converted four-way ODUx signals are aggregated to one OTU3 or overspeed. On OTU3.
  • the step of performing rate adaptation on each of the 10G service signals and converting to the ODUx signal includes: selecting, from a plurality of preset first rate adaptation modules, a service type corresponding to the current 10G service signal.
  • the first rate adaptation module adjusts the rate of the current 10G service signal; after the adjustment, if the adjusted signal needs to be framed, the adjusted signal is loaded into the ODUx frame, and then output. ODUx signal; If the adjusted signal does not need to be framed, the adjusted signal is directly output.
  • the plurality of first rate adaptation modules comprise the following first rate adaptation module?
  • the first SDH rate adaptation module is configured to adjust the rate of the 10G service signal of the 9.53 Gbit/s STM64 to 10.3125 Gbit/s, or directly output the signal of 9.953 Gbit/s; the first FC800 rate adaptation module, The rate of the 10G service signal of the 8.5 Gbit/s FC800 is adjusted to 9.953 Gbit/s or 10.3125 Gbit/s; the first 10GE LAN rate adaptation module is used to 10GE service signals of 10.3125 Gbit/s 10GE LAN The rate is adjusted to 9.953 Gbit/s, or directly outputs 10.3125 Gbit/s.
  • the first FC1200 rate adaptation module is used to adjust the rate of the 10G service signal of the 10.51875 Gbit/s FC1200 to 9.953 Gbit/s or 10.3125.
  • the first OTU2 rate adaptation module is configured to decapsulate the 10.709 Gbit/s OTU2 service signal and adjust the rate to an ODU2, ODUle, or ODU2e signal; wherein, the first SDH rate adaptation module,
  • the adjustment signals output by the first FC800 rate adaptation module, the first 10GE LAN rate adaptation module, and the first FC1200 rate adaptation module are subjected to framing processing; and if the input ODUx framing module is 9.953 Gbit/s signal , will be 9.953Gbit / s letter Charged ODU2 frame structure; ODUx framing module if the input of 10.3125Gbit / s signal, the 10.3125Gbit / s signals or ODU2e charged ODUle frame structure.
  • FIG. 12 is a schematic flowchart of a signal deaggregation method according to an embodiment of the present invention, where the de-aggregation method is used for de-aggregating an OTU3 or an over-speed OTU3 signal generated by convergence of four 10G service signals.
  • the de-aggregation method includes the following steps 1201 to 1202: Step 1201: De-converge the OTU3 or the over-speed OTU3 signal to generate four ODUx signals with the same rate and type, and the ODUx signal is ODU2, ODUle or ODU2e. Signal 120.
  • Step 1201 Rate-modify each ODUx signal according to the service type of each of the four 10G service signals to be restored to be converted into the original 10G service signal before convergence.
  • each ODUx signal is rate-adapted and converted to the original 10G before convergence.
  • the step of the service signal includes: determining whether the current path ODUx signal needs to be de-framed; if yes, performing de-frame processing on the current path ODUx signal, and after performing the de-frame processing, adapting from the preset multiple second rate In the module, selecting a second rate adaptation module corresponding to the service type of the current path 10G service signal to be recovered, performing rate adjustment on the de-framed signal, so that the adjusted signal is restored to the current path before convergence.
  • the original 10G service signal otherwise, selecting, from a plurality of preset second rate adaptation modules, a second rate adaptation module corresponding to the service type of the current path 10G service signal to be recovered to perform the ODUx signal Rate adjustment, so that the adjusted signal is restored to the original 10G service signal of the current path before convergence; wherein, when the deframe processing is required, if the input ODUx signal is the ODU2 signal, the ODU2 frame structure of the ODU2 signal is solved. Open, form and output a signal of 9.953 Gbit/s; if the input ODU signal is an ODU2e or ODUle signal, the frame structure of the ODU2e or ODUle signal Open, and outputs a signal formed 10.3125 Gbit / s rate.
  • the plurality of second rate adaptation modules comprise at least two of the following second rate adaptation modules: a second SDH rate adaptation module for adjusting the input 10.3125 Gbit/s signal to 9.953 Gbit/s SDH signal output, or directly input the 9.953 Gbit/s signal;
  • the second FC800 rate adaptation module is used to adjust the input 10.3125 Gbit/s or 9.953 Gbit/s signal to 8.5 Gbit/s FC800 service signal output.
  • the second 10GE LAN rate adaptation module is used to adjust the input signal of 9.953 Gbit/s to
  • the second OTU2 rate adaptation module is configured to convert the input ODUx signal into an OTU2 signal output; wherein, if the input ODUx signal is an ODU2 signal, the ODU2 frame of the OUD2 signal passes the overhead And FEC coding, converted into OTU2 signal output; if the ODUx signal is ODU2e or ODUle signal, the ODU2e or ODUle signal is adjusted to the ODU2 signal, and the adjusted ODU2 frame of the ODU2 signal is converted into the overhead and FEC code, and converted into OTU2 signal output.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Traffic Control Systems (AREA)

Description

信号汇聚、 解汇聚的装置、 方法及系统 技术领域 本发明涉及光通迅领域, 特别涉及一种四路 10G业务信号汇聚、 解汇 聚的装置、 方法及系统。 背景技术 随着光通讯技术的发展, 传输速率迅速增高, 传输距离越来越长。 在 10G 以及 10G 以上的传输设备中, 40G 的光传送网 (Optical Transport Network, 筒称为 OTN )传输将会在不远的将来获得普遍应用。 目前, 业界已经出现了多种四路 10G业务汇聚到 40G速率的光信道传 输单元 3 ( Optical Channel Transport Unit, 筒称为 OTU3 ) 的应用。 由于已知 的 10G速率的业务有: ^下五种:同步传输模块( synchronous transport module, 筒称为 STM ) 64(9.953Gbps) , 万兆以太网 -局 i或网(10 Giga bit Ethernet, 筒 称为 10GE LAN) (10.3125Gbps), 8G光纤通道 ( Fiber Channel 800, 筒称为 FC800 ) (8.5Gbps) , 10G光纤通道 ( Fiber Channel 1200, 筒称为 FC1200 ) (10.51875Gbps) , OTU2(10.709Gbps) , bps即比特每秒, 各种业务的速率都有 小的差别, 因此, 每种汇聚应用啫卩是四路相同种类的 10G业务汇聚到一个 OTU3业务中,这样五种 10G业务的汇聚就需要五种汇聚装置。其中, STM64 的详 细定义请参见 国 际 电信联盟 - 电信标准部 ( International Telecommunications Union-Telecommunications standardization sector, 筒称为 ITU-T ) G.707 , 64表示速率等级。 10GE LAN的详细定义参见电气和电子 工程师十办会 ( Institute for Electrical and Electronic Engineers , 筒称为 IEEE ) 802.3标准; FC800/FC1200的详细定义参见 ANSI FC-PI标准; OTU2的详细 定义参见 ITU-T G.709标准。 由于不同 10G bps业务的处理具有复杂度, 以及缺乏统一的标准, 相关 技术没有混合汇聚的解决方案。 对于每一种业务的接入, 都需要一种解决方 案, 大大增加了实际应用中进行多种业务混合汇聚时所需要的单板的种类和 数量, 增加了成本。 发明内容 针对不同业务不能混合汇聚的问题而提出本发明, 为此, 本发明的目的 在于提供一种信号汇聚、 解汇聚的装置、 方法及系统, 用于四路 10G业务, 以解决现有技术缺乏在 OTN网络中进行多路不同类型 10G业务信号混合汇 聚的技术方案, 导致大大增加了完成汇聚功能的硬件成本的技术问题。 为实现上述发明目的, 根据本发明的一个方面, 提供了一种信号汇聚的 装置, 用于四路 10G业务。 根据本发明的装置包括: 四个光通道数据单元 ( Optical Channel Transport Unit, 筒称为 ODU ) 生成模块 , 上述四个 ODUx生成模块中的每 个分别与接入的四路 10G业务信号中的一路相连接并对相连接的一路 10G业 务信号进行速率适配,然后输出具有预设速率和种类的 ODUx信号,该 ODUx 信号为 ODU2、 ODUle或 ODU2e信号 , 上述四个 ODUx生成模块输出的四 路 ODUx 信号具有相同的速率和种类; 异步汇聚模块, 用于将输出的四路 ODUx信号汇聚到一个 OTU3或超速 OTU3上。 优选地, 在上述装置中, 光通道数据单元 ODUx生成模块包括: 多个 第一速率适配模块 , 不同的第一速率适配模块对应于不同业务类型的 10G业 务信号, 用于调整对应业务类型的 10G业务信号的速率, 并输出调整后的信 号 , 4艮据对应业务类型的不同, 调整后的信号为 ODUx信号或需进行 ODUx 成帧处理的信号; 第一业务选择模块, 用于从多个第一速率适配模块中, 选 择出与相连接的一路 10G业务信号的业务类型对应的第一速率适配模块来对 当前路 10G业务信号的速率进行调整; 光通道数据单元 ODUx成帧模块, 用 于在选择的第一速率适配模块输出的信号需进行成帧处理时, 将选择的第一 速率适配模块输出的信号装入 ODU 帧 , 并输出 ODUx信号。 优选地,多个第一速率适配模块包括如下第一速率适配模块中的至少两 种: 第一 SDH(Synchronous Digital Hierarchy,同步数字体系)速率适配模块, 用于将 9.953 G比特 /秒( bit/s; 或 bps, bit per second ) )的 STM64的 10G业 务信号的速率调整为 10.3125 G比特 /秒,或直接输出 9.953 G比特 /秒的信号; 第一 FC800速率适配模块, 用于将 8.5 G比特 /秒的 FC800的 10G业务 信号的速率调整为 9.953 G比特 / -或 10.3125 G比特 / -; 第一 10GE LAN速率适配模块,用于将 10.3125 G比特 /秒的 10GE LAN 的 10G业务信号的速率调整为 9.953 G比特 /秒,或直接输出 10.3125 G比特 / 秒的信号; 第一 FC1200速率适配模块,用于将 10.51875G比特 /秒的 FC1200的 10G 业务信号的速率调整为 9.953 G比特 /秒或者 10.3125 G比特 /秒; 第一 OTU2速率适配模块, 用于将 10.709G比特 /秒的 OTU2业务信号 解包封, 并通过速率调整为 ODU2、 ODUle、 或 ODU2e信号; 其中, 第一 SDH速率适配模块、第一 FC800速率适配模块、 第一 10GE LAN速率适配模块、 及第一 FC1200速率适配模块输出的调整信号需输入到 所述 ODUx成帧模块进行成帧处理; 且, 如果输入到 ODUx成帧模块的信号 为 9.953G比特 /秒信号, 则将该 9.953G比特 /秒信号装入 ODU2帧结构中; 如果输入到 ODUx 成帧模块的信号为 10.3125G 比特 /秒信号, 则将该 10.3125G比特 /秒信号装入 ODU2e或 ODUle帧结构中。 优选地, 异步汇聚模块包括: 四个 ODTU23/超速 ODTU23 生成模块, 上述四个 ODTU23/超速
ODTU23生成模块中的每个分别与四个光通道数据单元 ODUx生成模块中的 一个相连接并用于将所述光通道数据单元 ODUx生成模块输入的 ODUx信号 生成 ODTU23或者超速 ODTU23; 光信道净荷单元 3 ( Optical Channel Transport Unit, 筒称为 OPU3 ) /超 速 OPU3成帧模块, 用于将四个 ODTU23/超速 ODTU23生成模块生成的四 路 ODTU23/超速 ODTU23信号 , 汇聚生成 OPU3或超速 OPU3信号;
ODU3/超速 ODU3 成帧模块, 用于将 OPU3 或超速 OPU3 信号生成 ODU3或超速 ODU3信号;
OTU3/超速 OTU3 成帧模块, 用于将 ODU3 或超速 ODU3 信号生成 OTU3或超速 OTU3信号。 优选地,如果输入异步汇聚模块的 ODUx信号为 ODU2信号,则 OTU3/ 超速 OTU3成帧模块生成 OTU3信号;如果输入异步汇聚模块的 ODUx信号 为 ODUle信号, 则 OTU3/超速 OTU3成帧模块生成第一超速 OTU3信号, 第一超速 OTU3信号 ό々速率为 255/236 χ 237/238 χ 10.3125 χ 4 G 口 果输入异步汇聚模块的 ODUx信号为 ODU2e, 则 OTU3/超速 OTU3成帧模 块生成第二超速 OTU3信号,第二超速 OTU3信号的速率为 255/236 x 10.3125 X 4 G比特 /秒。 为了实现上述目的 ,根据本发明的另一方面,提供了一种解汇聚的装置。 才艮据本发明的装置用于将由四路 10G业务信号汇聚生成的 OTU3或超 速 OTU3信号进行解汇聚, 包括: 异步解汇聚模块, 用于将 OTU3或超速 OTU3信号进行解汇聚, 生成 四路具有相同速率和种类的 ODUx信号, ODUx信号为 ODU2、 ODUle或 ODU2e信号; 四个 10G业务恢复模块 , 四个 10G业务恢复模块中的每个与异步解汇 聚模块生成的四路 ODUx信号中的一路相连接并用于将相连接的一路 ODUx 信号通过速率适配调整为汇聚前的原始 10G业务信号。 优选地, 异步解汇聚模块包括:
OTU3/超速 OTU3解包封模块,用于将 OTU3或超速 OTU3信号解包封, 并生成 ODU3或超速 ODU3信号;
ODU3/超速 ODU3解包封模块, 用于将 ODU3或超速 ODU3解包封, 并生成 OPU3或超速 OPU3信号;
OPU3/超速 OPU3异步解汇聚模块, 用于将 OPU3或超速 OPU3信号解 汇聚, 并生成四路 ODTU23或超速 ODTU23信号; 四个 ODTU23/超速 ODTU23调整模块, 四个 ODTU23/超速 ODTU23 调整模块中的每个分别与四路 ODTU23或超速 ODTU23信号中的一路相连 接并用于^)夺一路 ODTU23或超速 ODTU23信号的速率调整为 ODUx进行输 出。 优选地 , 10G业务恢复模块包括: ODUx解帧模块, 用于在欲恢复的 10G业务信号的业务类型需要进行 解帧处理时, 将输入的 ODUx信号的帧结构解开, 并输出解帧后的信号; 其 中, 当输入的 ODUx信号为 ODU2信号时, 将 ODU2信号的 ODU2帧结构 解开,形成并输出 9.953 G比特 /秒速率的信号;当输入的 ODUx信号为 ODU2e 或 ODUle信号时, 将 ODU2e或 ODUle信号的帧结构解开, 形成并输出 10.3125 G比特 / -速率的信号; 多个第二速率适配模块,不同的第二速率适配模块对应于不同业务类型 的欲恢复 10G业务信号, 用于对输入的信号进行速率调整, 以输出汇聚前的 原始 10G业务信号, 其中, 才艮据欲恢复的 10G业务信号的业务类型的不同, 第二速率适配模块接收的信号为 ODUx解帧模块输入的解帧信号, 或直接输 入的 ODUx信号; 第二业务选择模块, 用于从多个第二速率适配模块中, 选择与当前欲恢 复的 10G业务信号的业务类型相对应的第二速率适配模块, 以输出汇聚前原 始 10G业务信号。 优选地,多个第二速率适配模块包括如下第二速率适配模块中的至少两 种: 第二 SDH速率适配模块, 用于接收 ODUx解帧模块输入的 10.3125 G 比特 /秒或 9.953 G比特 /秒信号, 将 10.3125 G比特 /秒信号调整为 9.953 G比 特 /秒的 SDH信号输出, 或将 9.953 G比特 /秒直接输出; 第二 FC800速率适配模块,用于接收 ODUx解帧模块输入的 10.3125 G 比特 /秒或 9.953 G比特 /秒信号, 并将 10.3125 G比特 /秒或 9.953 G比特 /秒 信号调整为 8.5 G比特 /秒的 FC800业务信号输出; 第二 10GE LAN 速率适配模块, 用于接收 ODUx 解帧模块输入的
10.3125 G比特 /秒或 9.953 G比特 /秒信号, 并将 9.953 G比特 /秒信号调整为 10.3125 G比特 /秒的 10GE LAN业务信号输出 , 或将 10.3125 G比特 /秒直接 输出; 第二 FC1200速率适配模块,用于接收 ODUx解帧模块输入的 10.3125 G 比特 /秒或 9.953 G比特 /秒信号,并将 9.953 G比特 /秒或 10.3125 G比特 /秒信 号调整为 10.51875G比特 /秒的 FC1200业务信号输出; 第二 OTU2速率适配模块, 用于在欲恢复的 10G业务信号的业务类型 为 OTU2业务时,接收异步解汇聚模块输入的 ODUx信号, 并在 ODUx信号 为 ODU2信号时,将 OUD2信号的 ODU2帧通过开销和 FEC编码,变成 OTU2 信号输出;在 ODUx信号为 ODU2e或 ODUle信号时 ,将 ODU2e或者 ODUle 信号调整为 ODU2信号,并调整后的 ODU2信号的 ODU2帧通过开销和 FEC 编码, 变成 OTU2信号输出。 为了实现上述目的 , 根据本发明的又一方面 , 提供了一种信号汇聚的方 法。 才艮据本发明的方法用于四路 10G业务, 包括: 根据输入的四路 10G业务信号中每一路的业务类型,分别对每一路 10G 业务信号进行速率适配以转换为具有预设速率和种类的 ODUx 信号, 其中 ODU 信号为 ODU2、 ODUle或 ODU2e信号 , 且转换出的四路 ODU 信号 具有相同的速率和种类; 将转换出的四路 ODUx信号汇聚到一个 OTU3或超速 OTU3上。 优选地, 对每一路 10G业务信号进行速率适配, 并转换为 ODUx信号 的步骤包括: 从预先设置的多个第一速率适配模块中, 选择出与当前路 10G 业务信 号的业务类型相对应的第一速率适配模块来对当前路 10G业务信号的速率进 行调整; 在进行调整后, 如果调整后的信号需要进行成帧处理时, 则将调整后的 信号装入 ODUx帧中, 再输出 ODUx信号; 如果调整后的信号不需要进行成 帧处理时 , 则直接将调整后的信号输出。 优选地,多个第一速率适配模块包括如下第一速率适配模块中的至少两 种: 第一 SDH速率适配模块, 用于将 9.953 G比特 /秒的 STM64的 10G业 务信号的速率调整为 10.3125 G比特 /秒,或直接输出 9.953 G比特 /秒的信号; 第一 FC800速率适配模块, 用于将 8.5 G比特 /秒的 FC800的 10G业务 信号的速率调整为 9.953 G比特 /秒或者 10.3125 G比特 /秒; 第一 10GE LAN速率适配模块,用于将 10.3125 G比特 /秒的 10GE LAN 的 10G业务信号的速率调整为 9.953 G比特 /秒,或直接输出 10.3125 G比特 / 秒的信号; 第一 FC1200速率适配模块,用于将 10.51875G比特 /秒的 FC1200的 10G 业务信号的速率调整为 9.953 G比特 /秒或者 10.3125 G比特 /秒; 第一 OTU2速率适配模块, 用于将 10.709G比特 /秒的 OTU2业务信号 解包封, 并通过速率调整为 ODU2、 ODUle、 或 ODU2e信号; 其中, 第一 SDH速率适配模块、第一 FC800速率适配模块、 第一 10GE LAN速率适配模块、 及第一 FC1200速率适配模块输出的调整信号需进行成 帧处理;且,如果输入 ODUx成帧模块的为 9.953G比特 /秒信号,则将 9.953G 比特 /秒信号装入 ODU2帧结构中; 如果输入 ODUx成帧模块的为 10.3125G 比特 /秒信号, 则将 10.3125G比特 /秒信号装入 ODU2e或 ODUle帧结构中。 为了实现上述目的 , 根据本发明的再一方面, 提供了一种信号解汇聚的 方法。 根据本发明的方法, 用于将由四路 10G业务信号汇聚生成的 OTU3或 超速 OTU3信号进行解汇聚, 包括: 将 OTU3或超速 OTU3信号进行解汇聚, 生成四路具有相同速率和种 类的 ODUx信号 , ODUx信号为 ODU2、 ODUle或 ODU2e信号; 根据欲恢复的四路 10G 业务信号中每一路的业务类型, 分别对每一路 ODUx信号进行速率适配以转换为汇聚前的原始 10G业务信号。 优选地,对每一路 ODUx信号进行速率适配,转换为汇聚前的原始 10G 业务信号的步骤包括: 判断当前路 ODUx 信号是否需进行解帧处理; 如果是, 则对当前路 ODUx信号进行解帧处理, 并在进行解帧处理后, 从预先设置的多个第二速 率适配模块中, 选择出与欲恢复的当前路 10G业务信号的业务类型相对应的 第二速率适配模块来对解帧处理后的信号进行速率调整, 以使调整后的信号 恢复成汇聚前当前路的原始 10G业务信号; 否则, 从预先设置的多个第二速 率适配模块中, 选择出与欲恢复的当前路 10G业务信号的业务类型相对应的 第二速率适配模块来对 ODUx信号进行速率调整, 以使调整后的信号恢复成 汇聚前当前路的原始 10G业务信号; 其中, 需进行解帧处理时, 如果输入的 ODUx信号为 ODU2信号时, 则将将 ODU2信号的 ODU2帧结构解开,形成并输出 9.953 G比特 /秒速率的 信号; 如果输入的 ODU 信号为 ODU2e或 ODUle信号时, 则将 ODU2e或 ODUle信号的帧结构解开, 形成并输出 10.3125 G比特 /秒速率的信号。 优选地,多个第二速率适配模块包括如下第二速率适配模块中的至少两 种: 第二 SDH速率适配模块, 用于将输入的 10.3125 G比特 /秒信号调整为 9.953 G比特 /秒的 SDH信号输出,或将输入的 9.953 G比特 /秒信号直接输出; 第二 FC800速率适配模块,用于将输入的 10.3125 G比特 /秒或 9.953 G 比特 /秒信号调整为 8.5 G比特 /秒的 FC800业务信号输出; 第二 10GE LAN速率适配模块, 用于将输入的 9.953 G比特 /秒信号调 整为 10.3125 G比特 /秒的 10GE LAN业务信号输出 , 或将输入的 10.3125 G 比特 /秒直接输出; 第二 FC1200速率适配模块,用于将输入的 9.953 G比特 /秒或 10.3125 G 比特 /秒信号调整为 10.51875G比特 /秒的 FC1200业务信号输出; 第二 OTU2速率适配模块, 用于将输入的 ODUx信号转换为 OTU2信 号输出; 其中, 如果输入的 ODUx信号为 ODU2信号时, 则将 OUD2信号 的 ODU2帧通过开销和 FEC编码, 转换成 OTU2信号输出; 如果 ODUx信 号为 ODU2e或 ODUle信号时,则将 ODU2e或者 ODUle信号调整为 ODU2 信号, 并将调整后的 ODU2信号的 ODU2帧通过开销和 FEC编码, 转换成 OTU2信号输出。 为了实现上述目的 ,才艮据本发明的再一方面,提供了一种业务传输系统。 才艮据本发明的系统包括: 汇聚装置和解汇聚装置。 其中, 汇聚装置, 用于实现四路 10G业务信号的汇聚, 包括: 四个光通道数据单元 ODUx生成模块, 四个 ODUx生成模块中的每个 分别与接入的四路 10G业务信号中的一路相连接并用于对相连接的一路 10G 业务信号进行速率适配, 并输出具有预设速率和种类的 ODUx 信号, 其中 ODU 信号为 ODU2、 ODUle或 ODU2e信号, 四个 ODUx生成模块输出的 四路 ODU 信号具有相同的速率和种类; 异步汇聚模块, 用于将输出的四路 ODUx信号汇聚到一个 OTU3或超 速 OTU3上。 解汇聚装置, 用于将由汇聚装置汇聚生成的 OTU3或超速 OTU3解汇 聚成四路 10G业务信号, 包括: 异步解汇聚模块, 用于将 OTU3或超速 OTU3信号进行解汇聚, 生成 四路 ODUx信号; 四个 10G业务恢复模块 , 四个 10G业务恢复模块中的每个与异步解汇 聚模块生成的四路 ODUx信号中的一路相连接并用于将相连接的一路 ODUx 信号通过速率适配调整为汇聚前的 10G业务信号。 本发明的技术效果在于: 本发明的一技术方案中, 通过四个光通道数据 单元 ODUx生成模块来对欲进行汇聚的四路 10G业务信号中的每路分别进行 速率适配 , 并使得经速率适配后的每路输出具有相同速率和种类的 ODUx信 号,再通过异步汇聚模块将这四路 ODUx信号汇聚到一个 OTU3或超速 OTU3 上, 从而实现了对多路不同业务类型的 10G业务信号进行混合汇聚, 大大加 强了应用灵活性, 减少了单板的种类以及系统总成本。 本发明的另一技术方 案中, 通过 OTU3/超速 OTU3 异步解汇聚模块将汇聚生成的 OTU3 或超速 OTU3信号进行解汇聚, 生成四路具有相同速率和种类的 ODUx信号, 并利 用四个 10G 业务恢复模块分别对每路 ODUx 信号进行速率适配, 将该路 ODUx信号调整为汇聚前的原始 10G业务信号, 从而可对由多路不同业务类 型的 10G业务信号混合汇聚生成的汇聚信号进行解汇聚, 并恢复成原始业务 信号。 附图说明 此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部 分, 本发明的示意性实施例及其说明用于解释本发明, 并不构成对本发明的 不当限定。 在附图中: 图 1 为根据本发明实施例的四路 10G业务信号汇聚的装置的结构示意 图; 图 2为根据本发明实施例的 ODUx生成模块的结构示意图; 图 3为根据本发明实施例的 ODUx生成模块的一种具体实现; 图 4为根据本发明实施例的异步汇聚模块的结构示意图; 图 5为才艮据本发明实施例的解汇聚装置的结构示意图; 图 6为才艮据本发明实施例的异步解汇聚模块的结构示意图; 图 7为才艮据本发明实施例的 10G业务恢复模块的结构示意图; 图 8为根据本发明实施例的 10G业务恢复模块的一种具体实现; 图 9为才艮据本发明实施例的一个四路 STM64、 FC800和 OTU2任意混 合汇聚装置的结构示意图; 图 10为才艮据本发明实施例的将由四路 STM64、 FC800和 OTU2任意混 合汇聚生成的汇聚信号解汇聚为四路原始 STM64、 FC800和 OTU2信号的解 汇聚装置的结构示意图; 图 11为根据本发明实施例的四路 10G业务信号汇聚的方法的流程示意 图; 图 12为才艮据本发明实施例的信号解汇聚方法的流程示意图。 具体实施方式 功能概述 考虑到相关技术不同业务不能混合汇聚的问题,本发明提供了一种四路 10G业务信号汇聚、 解汇聚的方案, 该方案的处理原则如下: 四个光通道数 据单元 ODUx生成模块, 四个 ODUx生成模块中的每个分别与接入的四路 10G业务信号中的一路相连接并用于对相连接的一路 10G业务信号进行速率 适配, 并输出具有预设速率和种类的 ODUx信号, ODUx信号为 ODU2、 ODUle或 ODU2e信号 ,四个 ODUx生成模块输出的四路 ODU 信号具有相 同的速率和种类; 异步汇聚模块, 用于将输出的四路 ODUx信号汇聚到一个 OTU3或超速 OTU3上。通过本发明实施例实现了对多路不同业务类型的 10G 业务信号进行混合汇聚, 大大加强了应用灵活性, 减少了单板的种类以及系 统总成本。 需要说明的是, 在不冲突的情况下, 本申请中的实施例及实施例中的特 征可以相互组合。 下面将参考附图并结合实施例来详细说明本发明。 在以下实施例中,在附图的流程图示出的步骤可以在诸如一组计算机可 执行指令的计算机系统中执行, 并且, 虽然在流程图中示出了逻辑顺序, 但 是在某些情况下 , 可以以不同于此处的顺序执行所示出或描述的步骤。 装置实施例 本发明实施例提供了一种实现 4 10G混合汇聚的装置, 将不同速率的 10G业务, 经过速率调整, 变成统一速率的 ODU2 , 然后将 4路 ODU2通过 异步汇聚的方法映射到 OTU3中, 从而实现了 4 10G混合汇聚。 图 1 为根据本发明实施例的四路 10G业务信号汇聚的装置的结构示意 图。 如图 1所示, 该实施例的汇聚装置包括: 四个光通道数据单元 ODUx生 成模块 101 ~ 104、 异步汇聚模块 105 , 下面对该装置进行详细说明。 四个光通道数据单元 ODU 生成模块 101 - 104 , 其中, 四个 ODUx生 成模块中的每个分别与接入的四路 10G业务信号中的一路相连接并用于对相 连接的一路 10G 业务信号进行速率适配, 并输出具有预设速率和种类的 ODUx信号至异步汇聚模块 105 ,其中 ODUx信号为 ODU2、 ODUle或 ODU2e 信号, 四个 ODUx生成模块输出的四路 ODU 信号具有相同的速率和种类; 异步汇聚模块 105 , 用于^1上述输出的四路 ODUx信号汇聚到一个 OTU3或 超速 OTU3上。 如图 1 , 接入的四路 10G业务信号包括: 第一支路至第四支 路的 10G业务信号。 其中, OTUk中 k = l , 2 , 3 , 代表速率等级, OTUk的 详细定义参见 ITU-T G.709。 下面对 ODU 生成模块进行较详细的描述。 ODUx ( X = 2或 le或 2e, 即 ODU 信号为 ODU2、 ODUle或 ODU2e信号) 是 ITU-T G.709和 ITU-T Supplement43中定义的带有固定帧结构和固定速率的信号。 其中, ODU2在 ITU-T G.709 中定义, 速率为 10.037Gps; ODUle为特殊的光通道数据单元 ODU, 在 ITU-T Supplement43中定义,速率为 10.3558 G比特 /秒,即; ODU2e 在 ITU-T Supplement43中定义, 速率为 10.3995 Gbit/s; ODUx生成模块的作 用是将客户侧接入的不同的 10G业务, 通过速率适配以后, 得到速率和帧格 式都完全一样的 4路 ODUx ( ODU2或 ODUle或 ODU2e ), 供异步汇聚模块 使用。 ODUx生成模块最多能够包含五种业务的适配和成帧功能: STM64, FC800, FC1200, 10GE LAN, OTU2 (光传送单元 2 ), 实际应用中, 才艮据实 际需求, 可以不用全部实现五种, 只选择有需求的 2 ~ 5种来实现。 图 1 中 所示的四个 ODUx生成模块的输出是相同速率、 相同种类的 ODUx。 图 2为根据本发明实施例的 ODUx生成模块的结构示意图。 如图 2所 示, 根据本发明实施例的 ODUx生成模块 200包括: 多个第一速率适配模块 201、 第一业务选择模块 202和光通道数据单元 ODUx成帧模块 203 , 下面对 该模块进行详细描述。 多个第一速率适配模块 201 , 不同的第一速率适配模块对应于不同业务 类型的 10G业务信号, 用于调整对应业务类型的 10G业务信号的速率, 并输 出调整后的信号, 才艮据对应业务类型的不同, 调整后的信号为 ODUx信号或 需进行 ODUx成帧处理的信号; 第一业务选择模块 202 , 用于从多个第一速 率适配模块中, 选择出与相连接的一路 10G业务信号的业务类型相对应的第 一速率适配模块来对当前路 10G业务信号的速率进行调整; 光通道数据单元 ODUx成帧模块 203 , 用于在选择的第一速率适配模块输出的信号需进行成 帧处理时,选择的第一速率适配模块输出的信号装入 ODUx帧 ,并输出 ODUx 信号。 本发明实施例可以将四路不同的 10G业务汇聚到同一个 OTU3业务中。 同传统的单业务汇聚方案相比, 本发明实施例通过增加业务选择模块和业务 速率适配模块, 在客户侧能够实现多种 10G业务的混合接入, 大大加强了应 用灵活性, 减少了单板的种类以及系统总成本。 在本发明实施例中, 才艮据要处理的 10G 业务信号的业务类型, 四个 ODUx生成模块包含的第一速率适配模块的个数和种类可一相同或不同。 在本发明实施例中, 上述 ODUx 生成模块中包含的多个第一速率适配 模块包括如下第一速率适配模块中的至少两种: 第一 SDH速率适配模块, 与 STM64业务相对应 , 用于将 9.953 Gbit/s 的 STM64的 10G业务信号的速率调整为 10.3125 Gbit/s, 或直接输出 9.953 Gbit/s的信号, 即如果输出速率要求是 9.953Gbit/s, 则该模块可直通; 第一 FC800速率适配模块, 与 FC800业务相对应, 用于将 8.5 Gbit/s 的 FC800的 10G业务信号的速率调整为 9.953 Gbit/s或者 10.3125 Gbit/s; 第一 10GE LAN速率适配模块, 与 10GE LAN 业务相对应, 用于将 10.3125 Gbit/s的 10GE LAN的 10G业务信号的速率调整为 9.953 Gbit/s, 或 直接输出 10.3125 Gbit/s的信号, 即如果输出速率要求是 10.3125Gbit/s, 则该 模块可直通; 第一 FC1200 速率适配模块, 与 FC1200 业务相对应, 用于将
10.51875Gbit/s的 FC1200的 10G业务信号的速率调整为 9.953 Gbit/s或者 10.3125 Gbit/s; 第一 OTU2速率适配模块, 与 OTU2业务相对应 , 用于将 10.709Gbit/s 的 OTU2业务信号解包封, 并通过速率调整为 ODU2、 ODUle、 或 ODU2e 信号; 其中, 第一 SDH速率适配模块、第一 FC800速率适配模块、 第一 10GE LAN 速率适配模块、 及第一 FC1200 速率适配模块输出的调整信号需输入 ODUx成帧模块进行成帧处理;且,如果输入 ODUx成帧模块的为 9.953Gbit/s 信号, 则将 9.953Gbit/s信号装入 ODU2帧结构中; 如果输入 ODUx成帧模 块的为 10.3125Gbit/s信号, 则将 10.3125Gbit/s信号装入 ODU2e或 ODUle 帧结构中。 图 3 为根据本发明实施例的 ODUx生成模块的一种具体实现。 如图 3 所示, 该 ODUx生成模块包括上述 5种第一速率适配模块, 可实现 5种类型 的 10G业务信号的混合汇聚。 输入一路 10G业务信号后, 根据该 10G业务 信号的业务类型, 选择与该业务类型对应的通道, 以利用与该业务类型对应 的第一速率适配模块对该路 10G业务信号进行速率适配, 并在适配后直接输 出至异步汇聚模块或通过成帧模块的处理后在输出至异步汇聚模块 (图 3中 未示出) 以与其它支路的信号进行汇聚。 示例性地, 可通过业务选择开关来 选择与该业务类型对应的通道。 如图 3所示, 示例性地, 可通过第一业务选 择开关 301、 第二业务选择开关 302、 第三业务选择开关 303来实现对应的 通道的选择。 在具体实现中, 欲汇聚的 10G业务信号的类型一经确定, 这三 个业务选择开关的状态即经确定。 示例性地, 但不必须地, 该三个业务选择 开关可以是联动的。 示例性地, 通过第一业务选择开关 301选择切换到与该 业务类型对应的第一速率适配模块, 由该第一速率适配模块对该业务信号进 行速率适配后, 输出; 其中, 如果该第一速率适配模块为第一 SDH 速率适 配模块、 第一 FC800速率适配模块、 第一 10GE LAN速率适配模块、 或第一
FC1200 速率适配模块时, 则将输出的信号通过第二业务选择开 ^ ^ ODU 成帧模块相连接 , 并通过该 ODUx成帧模块将输出的信号装入相应的 帧结构, 并输出至异步汇聚模块 (图 3中未示出) 以与其它支路的信号进行 汇聚; 如果该第一速率适配模块为第一 OTU2速率适配模块, 则将输出的信 号无需通过成帧模块的处理, 而直接输出至异步汇聚模块 (图 3中未示出) 以与其它支路的信号进行汇聚; 其中, 通过第三业务选择开关 303来选择将 ODUx成帧模块输出的信号进行汇聚还是选择将第一 OTU2速率适配模块输 出的信号进行汇聚。 示例性地, 如输入该路 10G 业务信号为速率为 10.51875Gbit/s的 FC1200业务, 则该第一业务选择开关切换到第一 FC1200 速率适配模块的相应连接点如触点, 由该第一 FC1200速率适配模块将对输 入的 FC1200业务信号的速率调整为 9.953Gbit/s或 10.3125Gbit/s后输出至 ODUx成帧模块, 经成帧处理后, 输出用于进行汇聚。 图 4为才艮据本发明实施例的异步汇聚模块的结构示意图。 如图 4所示, 该异步汇聚模块包括: 四个 ODTU23/超速 ODTU23 生成模块 401 ~ 404、 OPU3/超速 OPU3成帧模块 405、 ODU3/超速 ODU3成帧模块 406和 OTU3/ 超速 OTU3成帧模块 407, 下面对该结构进行详细描述。 四个 ODTU23/超速 ODTU23生成模块 401 ~ 404 , 四个 ODTU23/超速 ODTU23生成模块中的每个分别与四个光通道数据单元 ODUx生成模块中的 一个相连接并用于将该相连接的光通道数据单元 ODUx 生成模块输入的 ODUx信号, 按照 ITU-T G.709 的异步汇聚方式, 生成 ODTU23 或者超速 ODTU23; OPU3/超速 OPU3 成帧模块 405 , 用于将四个 ODTU23/超速 ODTU23生成模块生成的四路 ODTU23或超速 ODTU23信号, 按照 ITU-T G.709的异步汇聚方式, 汇聚生成光通道净荷单元 3 即 OPU3或超速 OPU3 信号; ODU3/超速 ODU3成帧模块 406, 用于将 OPU3或超速 OPU3信号 , 按照 ITU-T G.709的异步汇聚方式, 生成 ODU3或超速 ODU3信号; OTU3/ 超速 OTU3成帧模块 407,用于将 ODU3或超速 ODU3信号 ,按照 ITU-T G.709 的异步汇聚方式, 生成 OTU3或超速 OTU3信号。 其中, ODTU23 ( Optical channel Data Tributary Unit 2 into 3 (ODTU23) , 光通道数据支路单元 2至 3 ) 指的是 ODU2复用到 OPU3过程中的数据通道单元。 OPU3是在标准 ITU-T G.709中定义的。光通道数据支路单元 2至 3。 ODTU23是在标准 ITU-T G.709 Amendment 1中定义的。 如果输入的四个支路信号都是 ODU2,则该实施例的异步汇聚模块先生 成 ODTU23 , 然后再生成 OPU3,之后生成 ODU3 , 最后生成 OTU3。 OTU3 的速率是 255/236 x 9.953 280 χ 4 Gbit/s。 如果输入的四个支路信号都是 ODUle, 则该实施例的异步汇聚模块先 生成第一超速 ODTU23 , 即超速 ODTU23(l); 然后再生成第一超速 OPU3 , 即超速 OPU3(l); 之后生成第一超速 ODU3 , 即超速 ODU3(l); 最后生成第 一超速 OTU3 , 即超速 OTU3(l)。超速 OTU3(l)的速率是 255/236 x 237/238 x 10.312 5 x 4 Gbit/s。 其中, OTU3(l)由本发明实施例进行定义, OTU3 ( 1 ) 的帧结构和 OTU3完全一样 , 只是速率发生了改变。 如果输入的四个支路信号都是 ODU2e, 则该实施例的异步汇聚模块先 生成第二超速 ODTU23 , 即超速 ODTU23(2); 然后再生成第二超速 OPU3 , 即超速 OPU3(2); 之后生成第二超速 ODU3 , 即超速 ODU3(2); 最后生成第 二超速 OTU3 ,即超速 OTU3(2)。超速 OTU3(2)的速率是 255/236 x 10.312 5 x 4 Gbit/s。 其中, OTU3(2)由本发明实施例进行定义, OTU3 ( 2 ) 的帧结构和 OTU3完全一样 , 只是速率发生了改变。 解汇聚装置用于夺由四路 10G业务信号汇聚生成的 OTU3或超速 OTU3 信号进行解汇聚。 图 5为才艮据本发明实施例的解汇聚的装置的结构示意图, 如图 5所示, 该解汇聚装置包括: 异步解汇聚模块 501和四个 10G业务恢复 模块 502 ~ 505 , 下面对该装置进行详细说明。 异步解汇聚模块 501 , 用于将 OTU3或超速 OTU3信号进行解汇聚, 生 成四路具有相同速率和种类的 ODUx信号, ODUx信号为 ODU2、 ODUle 或 ODU2e信号; 四个 10G业务恢复模块 502 ~ 505, 四个 10G业务恢复模块 中的每个与异步解汇聚模块生成的四路 ODUx信号中的一路相连接并用于将 相连接的一路 ODUx信号通过速率适配调整为汇聚前的原始 10G业务信号。 如图 5 , 恢复出的四路 10G业务信号包括: 第一支路至第四支路的 10G业务 信号。 在利用上述汇聚装置将四路包含多种业务类型的 10G 业务信号混合汇 聚成 OTU3或超速 OTU3后,可利用上述解汇聚装置,将 OTU3或超速 OTU3 解汇聚, 并恢复成原始的四路 10G业务信号。 图 6为根据本发明实施例的异步解汇聚模块的结构示意图。如图 6所示, 该异步解汇聚模块包括: OTU3/超速 OTU3 解包封模块 601、 ODU3/超速 ODU3 解包封模块 602、 OPU3/超速 OPU3 异步解汇聚模块 603 和四个 ODTU23/超速 ODTU23调整模块 604 ~ 607。 下面对该结构进行详细说明。
OTU3/超速 OTU3解包封模块 601 , 用于将 OTU3或超速 OTU3信号解 包封, 并生成 ODU3或超速 ODU3信号, 例如按照 ITU-T G.7.9的异步解汇 聚方式生成 ODU3或超速 ODU3信号; ODU3/超速 ODU3解包封模块 602, 用于将 ODU3或超速 ODU3解包封, 并生成如按照 ITU-T G.7.9的异步解汇 聚方式生成 OPU3或超速 OPU3信号; OPU3/超速 OPU3异步解汇聚模块 603 , 用于将 OPU3或超速 OPU3信号解汇聚,并生成如按照 ITU-T G.7.9的异步解 汇聚方式生成四路 ODTU23 或超速 ODTU23 信号; 四个 ODTU23/超速 ODTU23调整模块 604 ~ 607, 四个 ODTU23/超速 ODTU23调整模块中的每 个分别与四路 ODTU23或超速 ODTU23信号中的一路相连接并用于将一路 ODTU23或超速 ODTU23信号的速率调整为 ODUx进行输出 ,如按照 ITU-T G.7.9的异步解汇聚方式夺一路 ODTU23或超速 ODTU23信号的速率调整为 ODU 进行输出。 如果输入的 OTU3是 ITU-T G.709所定义的标准 OTU3信号, 速率为 255/236 χ 9.953 280 χ 4 Gbit/s , 则该实施例的异步解汇聚模块先生成 ODU3 , 然后再生成 OPU3,之后生成 ODTU23 , 最后生成四路 ODU2, 每个 ODU2的 速率都是 10.3558 Gbit/s 。 如果输入的 OTU3是超速 OTU3信号( 2 ),速率为 255/236 x 10.312 5 x 4 Gbit/s, 则该实施例的异步解汇聚模块先生成超速 ODU3 ( 2 ), 然后再生成 超速 OPU3 ( 2 ) ,之后生成超速 ODTU23 ( 2 ), 最后生成四路 ODU2e, 每个 ODU2e的速率啫 P是 10.3995 Gbit/s 。 如果输入的 OTU3是超速 OTU3信号( 1 ), 速率为 255/236 x 237/238 x 10.312 5 x 4 Gbit/s, 则该实施例的异步解汇聚模块先生成超速 ODU3 ( 1 ), 然后再生成超速 OPU3 ( 1 ) ,之后生成超速 ODTU23 ( 1 ), 最后生成四路 ODUle, 每个 ODUle的速率都是 10.3558 Gbit/s。 图 7为根据本发明实施例的 10G业务恢复模块的结构示意图。 如图 7 所示, 10G业务恢复模块 700包括: ODUx解帧模块 701、 多个第二速率适 配模块 702和第二业务选择模块 703。 下面对该结构进行详细说明。
ODUx解帧模块 701 ,用于在欲恢复的 10G业务信号的业务类型需要进 行解帧处理时, 将输入的 ODUx信号的帧结构解开, 并输出解帧后的信号; 其中, 当输入的 ODUx信号为 ODU2信号时, 将 ODU2信号的 ODU2帧结 构解开,形成并输出 9.953 Gbit/s速率的信号;当输入的 ODUx信号为 ODU2e 或 ODUle信号时, 将 ODU2e或 ODUle信号的帧结构解开, 形成并输出 10.3125 Gbit/s速率的信号; 多个第二速率适配模块 702, 不同的第二速率适 配模块对应于不同业务类型的欲恢复 10G业务信号, 用于对输入的信号进行 速率调整, 以输出汇聚前的原始 10G业务信号, 其中, 才艮据欲恢复的 10G业 务信号的业务类型的不同, 第二速率适配模块接收的信号为 ODUx解帧模块 输入的解帧信号, 或直接输入的 ODUx信号; 第二业务选择模块 703 , 用于 从多个第二速率适配模块中, 选择与当前欲恢复的 10G业务信号的业务类型 相对应的第二速率适配模块, 以输出汇聚前原始 10G业务信号。 在本发明实施例中,才艮据要恢复的 10G业务信号的业务类型,四个 10G 业务恢复模块包含的第二速率适配模块的个数和种类可相同或不同。 在本发明实施例中, 上述 10G 业务恢复模块包含的多个第二速率适配 模块包括如下第二速率适配模块中的至少两种: 第二 SDH 速率适配模块, 用于接收 ODUx 解帧模块输入的 10.3125
Gbit/s或 9.953 Gbit/s信号; 如接^:的为 10.3125 Gbit/s信号, 则 ^)夺 10.3125 Gbit/s信号调整为 9.953 Gbit/s的 SDH信号输出; 如接收的为 9.953 Gbit/s信 号 , 则将 9.953 Gbit/s直接输出; 第二 FC800速率适配模块, 用于接收 ODUx解帧模块输入的 10.3125 Gbit/s或 9.953 Gbit/s信号, 并将 10.3125 Gbit/s或 9.953 Gbit/s信号调整为 8.5 Gbit/s的 FC800业务信号输出; 第二 10GE LAN 速率适配模块, 用于接收 ODUx 解帧模块输入的 10.3125 Gbit/s或 9.953 Gbit/s信号;如接收的为 9.953 Gbit/s信号,则将 9.953 Gbit/s信号调整为 10.3125 Gbit/s的 10GE LAN业务信号输出; 如接收的为 10.3125 Gbit/s信号, 则^1 10.3125 Gbit/s信号直接输出; 第二 FC1200速率适配模块, 用于接收 ODUx解帧模块输入的 10.3125 Gbit/s或 9.953 Gbit/s信号, 并将 9.953 Gbit/s或 10.3125 Gbit/s信号调整为 10.51875Gbit/s的 FC1200业务信号输出; 第二 OTU2速率适配模块, 用于在欲恢复的 10G业务信号的业务类型 为 OTU2业务时,接收异步解汇聚模块输入的 ODUx信号, 并在 ODUx信号 为 ODU2信号时,将 OUD2信号的 ODU2帧通过开销和 FEC编码,变成 OTU2 信号输出;在 ODUx信号为 ODU2e或 ODUle信号时 ,将 ODU2e或者 ODUle 信号调整为 ODU2信号,并调整后的 ODU2信号的 ODU2帧通过开销和 FEC 编码, 变成 OTU2信号输出。 图 8为才艮据本发明实施例的 10G业务恢复模块的一种具体实现。如图 8 所示, 该 10G业务恢复模块包括上述 5种第二速率适配模块, 通过选择相应 的第二速率适配模块, 可将由上述 5种类型的 10G业务信号混合汇聚生成的 汇聚信号进行解汇聚, 并恢复生成汇聚前的原始 10G业务信号。 该业务恢复 模块接收异步解汇聚模块(图 8中未示出)输入的一路 ODUx业务信号, 根 据该路 ODUx业务信号欲恢复出的原始 10G业务信号的业务类型选择与该业 务类型对应的通道, 以利用与该业务类型对应的第二速率适配模块对该路 ODUx业务信号进行速率适配, 以恢复出原始的 10G业务信号。 示例性地, 可通过业务选择开关来选择与该欲恢复出的 10G 业务信号相对应的恢复通 道。本发明实施例还可以通过第四业务选择开关 801、第五业务选择开关 802、 第六业务选择开关 803来实现对应的通道的选择。 在具体实现中, 欲恢复出 的 10G业务信号的类型一经确定, 这三个业务选择开关的状态即经确定。 示 例性地, 但不必须这样, 该三个业务选择开关可以是联动的。 示例性地, 才艮 据该路 ODUx业务信号是否需进行 ODUx解帧处理来将该路 ODUx业务信 号通过第四切换开关 801选择输入 ODUx解帧模块,在由该 ODUx解帧模块 输入相应的第二速率适配模块, 第二 SDH速率适配模块、 第二 FC800速率 适配模块、 第二 10GE LAN速率适配模块、 或第二 FC1200速率适配模块; 或将该路 ODUx业务信号直接输入第二 OTU2速率适配模块; 其中, ODUx 解帧模块通过第五业务选择开关 802来从上述四个第二速率适配模块中选择 欲接入的第二速率适配模块相连接; 最后, 再将第二速率适配模块恢复出的 原始 10G业务信号通过第六业务选择开关 803输出。 图 9为才艮据本发明实施例的一个四路 STM64、 FC800和 OTU2任意混 合汇聚装置的结构示意图, 如图 9所示, 在本发明实施例中, 由于欲进行汇 聚的 10G业务信号只包括 3种业务类型 , 则可只包括对应的第一 STM64速 率适配模块、 第一 FC800速率适配模块和第一 OTU2速率适配模块。 在汇聚方向, 任何一路 10G业务, 经过业务选择开关后, 接入到和其 业务类型匹配的第一速率适配模块。其中,对于某一支路,如果输入的是 SDH 业务, 则该支路可以省略第一 SDH速率适配模块; 如果输入的是 FC800业 务, 则通过第一 FC800速率适配模块, 将 8.5 Gbit/s的 FC800业务的速率调 整为 9.953 Gbit/s; 上述两种业务通过速率匹配以后, 都变成 9.953 Gbit/s的 速率, 然后进入 ODU2成帧模块生成 ODU2; 如果输入业务是 OTU2 , 则输 入业务直接进入第一 OTU2速率适配模块,去掉 OTU2开销和 FEC编码以后, 变成 ODU2业务; ODU2业务通过业务选择开关以后, 进入 ODTU23生成模 块, 产生 ODTU23业务。 四路 ODTU23业务在 OPU3异步汇聚模块中, 得 到 OPU3 业务; 通过 ODU3成帧模块, 将输入的 OPU3 变成 ODU3; 通过 OTU3成帧模块,将输入的 ODU3变成 OTU3 , 即可得到输出的 OTU3业务。 图 10为才艮据本发明实施例的将由四路 STM64、 FC800和 OTU2任意混 合汇聚生成的汇聚信号解汇聚为四路原始 STM64、 FC800和 OTU2信号的解 汇聚装置的结构示意图, 如图 10所示, 在该实施例中, 由于欲恢复出的 10G 业务信号只包括 3种业务类型 , 则可只包括对应的第二 STM64速率适配模 块、 第二 FC800速率适配模块和第二 OTU2速率适配模块来恢复出原始的 3 种业务类型的 10G业务信号。 在解汇聚方向 , 输入的 OTU3业务进入 OTU3解包封模块; 通过 OTU3 解包封模块将输入的 OTU3 变成 ODU3; 通过 ODU3 解包封模块将输入的 ODU3变成 OPU3; 通过 OPU3异步解汇聚模块将输入的 OPU3拆分成四路 ODTU23; 通过 ODTU23调整模块将输入的 ODTU23变成 ODU2; 通过业务 选择开关, 在欲恢复的原始 10G业务是 SDH或者 FC800时, 将 ODU2发送 到 ODU2解帧模块, 而在欲恢复的 10G业务是 OTU2时, 则将 ODU2发送 到第二 OTU2速率适配模块。 其中, ODU2解帧模块, 用于将 ODU2内的净 荷解开,得到 9.953Gbps的业务;第二 SDH速率适配模块,用于从 9.953Gbps 信号中得到 SDH业务, 如果 ODUx解帧模块输入至第二 SDH速率适配模块 的是 SDH信号, 则第二 SDH速率适配模块可以省略; 第二 FC800速率适配 模块, 用于从 9.953Gbps信号中得到 8.5G的 FC800业务; 第二 OTU2速率 适配模块, 用于将 ODU2加入 OTU2的开销和 FEC编码, 得到输出的 OTU2 信号。 系统实施例 本发明实施例还提供了一种业务传输系统, 该系统包括: 汇聚装置和解 汇聚装置, 汇聚装置, 用于实现四路 10G业务信号的汇聚, 包括: 四个光通 道数据单元 ODUx生成模块,四个 ODUx生成模块中的每个分别与接入的四 路 10G业务信号中的一路相连接并用于对相连接的一路 10G业务信 ^并 率适配, 并输出具有预设速率和种类的 ODUx 信号, 其中 ODUx 信号为 ODU2、 ODUle或 ODU2e信号, 四个 ODUx生成模块输出的四路 ODU 信 号具有相同的速率和种类; 异步汇聚模块, 用于将输出的四路 ODUx信号汇 聚到一个 OTU3或超速 OTU3上; 解汇聚装置, 用于将由汇聚装置汇聚生成 的 OTU3或超速 OTU3解汇聚成四路 10G业务信号,包括:异步解汇聚模块, 用于将 OTU3或超速 OTU3信号进行解汇聚, 生成四路 ODUx信号; 四个 10G业务恢复模块, 四个 10G业务恢复模块中的每个与异步解汇聚模块生成 的四路 ODUx信号中的一路相连接并用于将相连接的一路 ODUx信号通过速 率适配调整为汇聚前的 10G业务信号。 本发明实施例的系统中的汇聚装置和解汇聚装置与前面所述的其它实 施例相同, 还可有多种其它 ύ选的方案, 在 it匕不再赘述。 方法实施例 图 11为根据本发明实施例的四路 10G业务信号混合汇聚的方法的流程 示意图。 如图 11所示, 该汇聚方法包括如下步骤 1101至 1102: 步骤 1101 , 根据输入的四路 10G业务信号中每一路的业务类型, 分别 对每一路 10G业务信号进行速率适配以转换为具有预设速率和种类的 ODUx 信号 , ODUx信号为 ODU2、 ODUle或 ODU2e信号 ,且转换出的四路 ODUx 信号具有相同的速率和种类; 步骤 1102,将转换出的四路 ODUx信号汇聚到一个 OTU3或超速 OTU3 上。 优选地, 对每一路 10G业务信号进行速率适配, 并转换为 ODUx信号 的步骤包括: 从预先设置的多个第一速率适配模块中, 选择出与当前路 10G 业务信 号的业务类型相对应的第一速率适配模块来对当前路 10G业务信号的速率进 行调整; 在进行调整后, 如果调整后的信号需要进行成帧处理时, 则将调整后的 信号装入 ODUx帧中, 再输出 ODUx信号; 如果调整后的信号不需要进行成 帧处理时 , 则直接将调整后的信号输出。 优选地,多个第一速率适配模块包括如下第一速率适配模块 ? > m 种: 第一 SDH速率适配模块, 用于将 9.953 Gbit/s的 STM64的 10G业务信 号的速率调整为 10.3125 Gbit/s, 或直接输出 9.953 Gbit/s的信号; 第一 FC800速率适配模块, 用于将 8.5 Gbit/s的 FC800的 10G业务信 号的速率调整为 9.953 Gbit/s或者 10.3125 Gbit/s; 第一 10GE LAN速率适配模块, 用于将 10.3125 Gbit/s的 10GE LAN的 10G业务信号的速率调整为 9.953 Gbit/s , 或直接输出 10.3125 Gbit/s的信号; 第一 FC1200速率适配模块, 用于将 10.51875Gbit/s的 FC1200的 10G 业务信号的速率调整为 9.953 Gbit/s或者 10.3125 Gbit/s; 第一 OTU2速率适配模块, 用于将 10.709Gbit/s的 OTU2业务信号解包 封, 并通过速率调整为 ODU2、 ODUle、 或 ODU2e信号; 其中, 第一 SDH速率适配模块、第一 FC800速率适配模块、 第一 10GE LAN速率适配模块、 及第一 FC1200速率适配模块输出的调整信号需进行成 帧处理;且,如果输入 ODUx成帧模块的为 9.953Gbit/s信号,则将 9.953Gbit/s 信号装入 ODU2帧结构中; 如果输入 ODUx成帧模块的为 10.3125Gbit/s信 号, 则将 10.3125Gbit/s信号装入 ODU2e或 ODUle帧结构中。 图 12为才艮据本发明实施例的信号解汇聚方法的流程示意图, 该解汇聚 方法用于将由四路 10G业务信号汇聚生成的 OTU3或超速 OTU3信号进行解 汇聚。 如图 12所示, 该解汇聚方法包括如下步骤 1201至 1202: 步骤 1201 , 将 OTU3或超速 OTU3信号进行解汇聚, 生成四路具有相 同速率和种类的 ODUx信号, ODUx信号为 ODU2、 ODUle或 ODU2e信号; 步骤 1201 , 根据欲恢复的四路 10G业务信号中每一路的业务类型, 分 别对每一路 ODUx信号进行速率适配以转换为汇聚前的原始 10G业务信号。 在利用上述汇聚方法将四路包含多种业务类型的 10G 业务信号混合汇 聚成 OTU3或超速 OTU3后 ,可利用上述解汇聚方法,将 OTU3或超速 OTU3 解汇聚, 并恢复成原始的四路 10G业务信号。 优选地,对每一路 ODUx信号进行速率适配,转换为汇聚前的原始 10G 业务信号的步骤包括: 判断当前路 ODUx信号是否需进行解帧处理; 如是, 则对当前路 ODUx 信号进行解帧处理, 并在进行解帧处理后, 从预先设置的多个第二速率适配 模块中 , 选择出与欲恢复的当前路 10G业务信号的业务类型相对应的第二速 率适配模块来对解帧处理后的信号进行速率调整, 以使调整后的信号恢复成 汇聚前当前路的原始 10G业务信号; 否则, 从预先设置的多个第二速率适配 模块中 , 选择出与欲恢复的当前路 10G业务信号的业务类型相对应的第二速 率适配模块来对 ODUx信号进行速率调整, 以使调整后的信号恢复成汇聚前 当前路的原始 10G业务信号; 其中, 需进行解帧处理时, 如果输入的 ODUx信号为 ODU2信号时, 则将将 ODU2信号的 ODU2帧结构解开, 形成并输出 9.953 Gbit/s速率的信 号; 如果输入的 ODU 信号为 ODU2e或 ODUle信号时, 则将 ODU2e或 ODUle信号的帧结构解开, 形成并输出 10.3125 Gbit/s速率的信号。 优选地,多个第二速率适配模块包括如下第二速率适配模块中的至少两 种: 第二 SDH速率适配模块,用于将输入的 10.3125 Gbit/s信号调整为 9.953 Gbit/s的 SDH信号输出 , 或将输入的 9.953 Gbit/s信号直接输出; 第二 FC800速率适配模块,用于将输入的 10.3125 Gbit/s或 9.953 Gbit/s 信号调整为 8.5 Gbit/s的 FC800业务信号输出; 第二 10GE LAN速率适配模块 , 用于将输入的 9.953 Gbit/s信号调整为
10.3125 Gbit/s的 10GE LAN业务信号输出 , 或^1输入的 10.3125 Gbit/s直接 输出; 第二 FC1200速率适配模块,用于将输入的 9.953 Gbit/s或 10.3125 Gbit/s 信号调整为 10.51875Gbit/s的 FC1200业务信号输出; 第二 OTU2速率适配模块, 用于将输入的 ODUx信号转换为 OTU2信 号输出; 其中, 如果输入的 ODUx信号为 ODU2信号时, 则将 OUD2信号 的 ODU2帧通过开销和 FEC编码, 转换成 OTU2信号输出; 如果 ODUx信 号为 ODU2e或 ODUle信号时,则将 ODU2e或者 ODUle信号调整为 ODU2 信号, 并将调整后的 ODU2信号的 ODU2帧通过开销和 FEC编码, 转换成 OTU2信号输出。 以上所述仅是本发明的优选实施方式, 应当指出, 对于本技术领域的普 通技术人员来说, 在不脱离本发明原理的前提下, 还可以作出若干改进和润 饰, 这些?丈进和润饰也应视为本发明的保护范围。

Claims

权 利 要 求 书
1. 一种信号汇聚的装置, 用于四路 10G业务, 其特征在于, 包括:
四个光通道数据单元 ODUx生成模块,所述四个 ODUx生成模块中 的每个分别与接入的四路 10G业务信号中的一路相连接并用于对所述 相连接的一路 10G业务信号进行速率适配, 并输出具有预设速率和种 类的 ODUx信号,所述 ODU 信号为 ODU2、 ODUle或 ODU2e信号, 所述四个 ODUx生成模块输出的四路 ODU 信号具有相同的速率和种 类;
异步汇聚模块, 用于将所述输出的四路 ODUx 信号汇聚到一个 OTU3或超速 OTU3上。
2. 根据权利要求 1所述的装置,其特征在于,所述光通道数据单元 ODUx 生成模块包括:
多个第一速率适配模块, 不同的第一速率适配模块对应于不同业务 类型的 10G业务信号,用于调整对应业务类型的 10G业务信号的速率, 并输出调整后的信号, 才艮据所述对应业务类型的不同, 所述调整后的 信号为 ODUx信号或需进行 ODUx成帧处理的信号;
第一业务选择模块, 用于从所述多个第一速率适配模块中, 选择出 与所述相连接的一路 10G业务信号的业务类型相对应的第一速率适配 模块来对所述当前路 10G业务信号的速率进行调整;
光通道数据单元 ODUx成帧模块 , 用于在所述选择的第一速率适配 模块输出的信号需进行成帧处理时, 将所述选择的第一速率适配模块 输出的信号装入 ODU 帧 , 并输出 ODUx信号。
3. 根据权利要求 2所述的装置, 其特征在于, 所述多个第一速率适配模 块包括如下第一速率适配模块中的至少两种:
第一 SDH速率适配模块, 用于将 9.953 G比特 /秒的 STM64的 10G 业务信号的速率调整为 10.3125 G比特 /秒, 或直接输出所述 9.953 G 比特 /秒的信号;
第一 FC800速率适配模块, 用于将 8.5 G比特 /秒的 FC800的 10G 业务信号的速率调整为 9.953 G比特 /秒或 10.3125 G比特 /秒: 第一 10GE LAN速率适配模块, 用于将 10.3125 G比特 /秒的 10GE LAN的 10G业务信号的速率调整为 9.953 G比特 /秒,或直接输出所述 10.3125 G比特 /秒的信号;
第一 FC1200速率适配模块, 用于将 10.51875G比特 /秒的 FC1200 的 10G业务信号的速率调整为 9.953 G比特 /秒或者 10.3125 G比特 /秒; 第一 OTU2速率适配模块,用于将 10.709G比特 /秒的 OTU2业务信 号解包封, 并通过速率调整为 ODU2、 ODUle、 或 ODU2e信号; 其中, 所述第一 SDH速率适配模块、 第一 FC800速率适配模块、 第一 10GE LAN速率适配模块、 及所述第一 FC1200速率适配模块输 出的调整信号需输入所述 ODUx成帧模块进行成帧处理; 且, 如果输 入所述 ODUx成帧模块的为 9.953G比特 /秒信号, 则将所述 9.953G比 特 /秒信号装入 ODU2 帧结构中; 如果输入所述 ODUx成帧模块的为 10.3125G比特 /秒信号, 则将所述 10.3125G比特 /秒信号装入 ODU2e 或 ODUle帧结构中。 根据权利要求 1-3 任一项所述的装置, 其特征在于, 所述异步汇聚模 块包括:
四个 ODTU23/超速 ODTU23 生成模块, 所述四个 ODTU23/超速 ODTU23生成模块中的每个分别与所述四个光通道数据单元 ODUx生 成模块中的一个相连接并用于将所述光通道数据单元 ODUx生成模块 输入的 ODUx信号生成 ODTU23或者超速 ODTU23;
OPU3/超速 OPU3 成帧模块, 用于将所述四个 ODTU23/超速 ODTU23生成模块生成的四路 ODTU23/超速 ODTU23信号,汇聚生成 OPU3或超速 OPU3信号;
ODU3/超速 ODU3成帧模块, 用于将所述 OPU3或超速 OPU3信号 生成 ODU3或超速 ODU3信号;
OTU3/超速 OTU3成帧模块, 用于将所述 ODU3或超速 ODU3信号 生成 OTU3或超速 OTU3信号。 根据权利要求 4所述的装置, 其特征在于, 如果输入所述异步汇聚模 块的 ODUx信号为 ODU2信号,则所述 OTU3/超速 OTU3成帧模块生 成所述 OTU3 信号; 如果输入所述异步汇聚模块的 ODUx 信号为 ODUle信号 , 则所述 OTU3/超速 OTU3成帧模块生成第一超速 OTU3 信号, 所述第一超速 OTU3信号的速率为 255/236 x 237/238 x 10.3125 x 4 G比特 /秒; 如果输入所述异步汇聚模块的 ODUx信号为 ODU2e, 则所述 OTU3/超速 OTU3成帧模块生成第二超速 OTU3信号, 所述第 二超速 OTU3信号的速率为 255/236 x 10.3125 x 4 G比特 /秒。
6. 一种解汇聚的装置, 用于将由四路 10G业务信号汇聚生成的 OTU3或 超速 OTU3信号进行解汇聚, 其特征在于, 包括:
异步解汇聚模块,用于将所述 OTU3或超速 OTU3信号进行解汇聚, 生成四路具有相同速率和种类的 ODUx 信号, 所述 ODU 信号为 ODU2、 ODU 1 e或 ODU2e信号;
四个 10G业务恢复模块,所述四个 10G业务恢复模块中的每个与所 述异步解汇聚模块生成的四路 ODUx信号中的一路相连接并用于将所 述相连接的一路 ODUx信号通过速率适配调整为汇聚前的原始 10G业 务信号。
7. 4艮据权利要求 6所述的装置, 其特征在于, 所述异步解汇聚模块包括:
OTU3/超速 OTU3解包封模块, 用于将 OTU3或超速 OTU3信号解 包封, 并生成 ODU3或超速 ODU3信号;
ODU3/超速 ODU3解包封模块, 用于将所述 ODU3 或超速 ODU3 解包封, 并生成 OPU3或超速 OPU3信号;
OPU3/超速 OPU3异步解汇聚模块,用于将所述 OPU3或超速 OPU3 信号解汇聚, 并生成四路 ODTU23或超速 ODTU23信号;
四个 ODTU23/超速 ODTU23 调整模块, 所述四个 ODTU23/超速 ODTU23调整模块中的每个分别与所述四路 ODTU23或超速 ODTU23 信号中的一路相连接并用于将所述一路 ODTU23或超速 ODTU23信号 的速率调整为所述 ODUx进行输出。
8. 根据权利要求 6或 7所述的装置, 其特征在于, 所述 10G业务恢复模 块包括:
ODUx解帧模块, 用于在欲恢复的 10G业务信号的业务类型需要进 行解帧处理时, 将输入的 ODUx信号的帧结构解开, 并输出解帧后的 信号; 其中, 当输入的 ODUx信号为 ODU2信号时, 将所述 ODU2信 号的 ODU2帧结构解开, 形成并输出 9.953 G比特 /秒速率的信号; 当 输入的 ODUx信号为 ODU2e或 ODUle信号时, 将所述 ODU2e或 ODUle信号的帧结构解开,形成并输出 10.3125 G比特 /秒速率的信号; 多个第二速率适配模块, 不同的第二速率适配模块对应于不同业务 类型的欲恢复 10G业务信号, 用于对输入的信号进行速率调整, 以输 出汇聚前的原始 10G业务信号, 其中, 才艮据欲恢复的 10G业务信号的 业务类型的不同, 所述第二速率适配模块接收的信号为 ODUx解帧模 块输入的解帧信号, 或直接输入的 ODUx信号;
第二业务选择模块, 用于从所述多个第二速率适配模块中, 选择与 当前欲恢复的 10G业务信号的业务类型相对应的第二速率适配模块, 以输出汇聚前原始 10G业务信号。
9. 才艮据权利要求 8所述的装置, 其特征在于, 所述多个第二速率适配模 块包括如下第二速率适配模块中的至少两种:
第二 SDH速率适配模块, 用于接收所述 ODUx解帧模块输入的所 述 10.3125 G比特 /秒或 9.953 G比特 /秒信号, 将所述 10.3125 G比特 / -信号调整为 9.953 G比特 / -的 SDH(synchronous digital hierarchy,同 步数字体系)信号输出 , 或将所述 9.953 G比特 /秒直接输出;
第二 FC800速率适配模块,用于接收所述 ODUx解帧模块输入的所 述 10.3125 G比特 /秒或 9.953 G比特 /秒信号, 并将所述 10.3125 G比 特 /秒或 9.953 G比特 /秒信号调整为 8.5 G比特 /秒的 FC800业务信号 输出;
第二 10GE LAN速率适配模块,用于接收所述 ODUx解帧模块输入 的所述 10.3125 G比特 /秒或 9.953 G比特 /秒信号, 并将所述 9.953 G 比特 /秒信号调整为 10.3125 G比特 /秒的 10GE LAN业务信号输出,或 将所述 10.3125 G比特 /秒直接输出;
第二 FC1200速率适配模块, 用于接收所述 ODUx解帧模块输入的 所述 10.3125 G比特 /秒或 9.953 G比特 /秒信号, 并将所述 9.953 G比 特 /秒或 10.3125 G比特 /秒信号调整为 10.51875G比特 /秒的 FC1200业 务信号输出;
第二 OTU2速率适配模块, 用于在欲恢复的 10G业务信号的业务类 型为 OTU2业务时, 接收所述异步解汇聚模块输入的 ODUx信号, 并 在所述 ODUx信号为 ODU2信号时, 将所述 OUD2信号的 ODU2帧 通过开销和 FEC编码, 变成 OTU2信号输出; 在所述 ODUx信号为 ODU2e或 ODUle信号时, 将所述 ODU2e或者 ODUle信号调整为 ODU2信号, 并所述调整后的 ODU2信号的 ODU2帧通过开销和 FEC 编码, 变成 OTU2信号输出。
10. 一种信号汇聚的方法, 用于四路 10G业务, 其特征在于, 包括:
根据输入的四路 10G业务信号中每一路的业务类型 , 分别对所述每 一路 10G 业务信号进行速率适配以转换为具有预设速率和种类的 ODU 信号, 所述 ODU 信号为 ODU2、 ODUle或 ODU2e信号, 且 转换出的四路 ODUx信号具有相同的速率和种类;
将所述转换出的四路 ODUx信号汇聚到一个 OTU3或超速 OTU3上。
11. 根据权利要求 10所述的方法, 其特征在于, 所述对每一路 10G业务 信号进行速率适配 , 并转换为 ODUx信号的步骤包括:
从预先设置的多个第一速率适配模块中 , 选择出与当前路 10G业务 信号的业务类型相对应的第一速率适配模块来对所述当前路 10G业务 信号的速率进行调整;
在进行所述调整后, 如果所述调整后的信号需要进行成帧处理时, 则将所述调整后的信号装入 ODUx帧中 , 再输出 ODUx信号; 如果所 述调整后的信号不需要进行成帧处理时,则直接将调整后的信号输出。
12. 才艮据权利要求 11所述的方法, 其特征在于, 所述多个第一速率适配模 块包括如下第一速率适配模块中的至少两种:
第一 SDH速率适配模块, 用于将 9.953 G比特 /秒的 STM64的 10G 业务信号的速率调整为 10.3125 G比特 /秒, 或直接输出所述 9.953 G 比特 /秒的信号;
第一 FC800速率适配模块, 用于将 8.5 G比特 /秒的 FC800的 10G 业务信号的速率调整为 9.953 G比特 /秒或者 10.3125 G比特 /秒;
第一 10GE LAN速率适配模块, 用于将 10.3125 G比特 /秒的 10GE LAN的 10G业务信号的速率调整为 9.953 G比特 /秒,或直接输出所述 10.3125 G比特 /秒的信号;
第一 FC1200速率适配模块, 用于将 10.51875G比特 /秒的 FC1200 的 10G业务信号的速率调整为 9.953 G比特 /秒或者 10.3125 G比特 /秒; 第一 OTU2速率适配模块,用于将 10.709G比特 /秒的 OTU2业务信 号解包封, 并通过速率调整为 ODU2、 ODUle、 或 ODU2e信号; 其中, 所述第一 SDH速率适配模块、 第一 FC800速率适配模块、 第一 10GE LAN速率适配模块、 及所述第一 FC1200速率适配模块输 出的调整信号需进行成帧处理; 且, 如果输入所述 ODUx成帧模块的 为 9.953G比特 /秒信号, 则将所述 9.953G比特 /秒信号装入 ODU2帧 结构中; 如果输入所述 ODUx成帧模块的为 10.3125G比特 /秒信号, 则将所述 10.3125G比特 /秒信号装入 ODU2e或 ODUle帧结构中。
13. 一种信号解汇聚的方法,用于夺由四路 10G业务信号汇聚生成的 OTU3 或超速 OTU3信号进行解汇聚, 其特征在于, 包括:
将所述 OTU3或超速 OTU3信号进行解汇聚, 生成四路具有相同速 率和种类的 ODUx信号,所述 ODU 信号为 ODU2、 ODUle或 ODU2e 信号;
才艮据欲恢复的四路 10G业务信号中每一路的业务类型, 分别对所述 每一路 ODUx信号进行速率适配以转换为汇聚前的原始 10G 业务信 号。
14. 根据权利要求 13所述的方法 , 其特征在于 , 所述对每一路 ODUx信号 进行速率适配, 转换为汇聚前的原始 10G业务信号的步骤包括:
判断当前路 ODUx信号是否需进行解帧处理; 如是, 则对所述当前 路 ODUx信号进行解帧处理 , 并在进行解帧处理后 , 从预先设置的多 个第二速率适配模块中, 选择出与欲恢复的当前路 10G业务信号的业 务类型相对应的第二速率适配模块来对所述解帧处理后的信号进行速 率调整 , 以使调整后的所述信号恢复成汇聚前当前路的原始 10G业务 信号; 否则, 从预先设置的多个第二速率适配模块中, 选择出与欲恢 复的当前路 10G业务信号的业务类型相对应的第二速率适配模块来对 所述 ODUx信号进行速率调整, 以使调整后的所述信号恢复成汇聚前 当前路的原始 10G业务信号;
其中,需进行解帧处理时,如果输入的 ODUx信号为 ODU2信号时, 则将将所述 ODU2信号的 ODU2帧结构解开, 形成并输出 9.953 G比 特 /秒速率的信号; 如果输入的 ODU 信号为 ODU2e或 ODUle信号 时,则将所述 ODU2e或 ODU1 e信号的帧结构解开,形成并输出 10.3125 G比特 /秒速率的信号。
15. 才艮据权利要求 14所述的方法, 其特征在于, 所述多个第二速率适配模 块包括如下第二速率适配模块中的至少两种:
第二 SDH速率适配模块,用于将输入的 10.3125 G比特 /秒信号调整 为 9.953 G比特 /秒的 SDH信号输出 ,或将输入的 9.953 G比特 /秒信号 直接输出;
第二 FC800速率适配模块,用于将输入的 10.3125 G比特 /秒或 9.953 G比特 /秒信号调整为 8.5 G比特 /秒的 FC800业务信号输出;
第二 10GE LAN速率适配模块, 用于将输入的 9.953 G比特 /秒信号 调整为 10.3125 G比特 /秒的 10GE LAN业务信号输出, 或^1输入的 10.3125 G比特 /秒直接输出;
第二 FC1200 速率适配模块, 用于将输入的 9.953 G 比特 /秒或 10.3125 G比特 /秒信号调整为 10.51875G比特 /秒的 FC1200业务信号 输出;
第二 OTU2速率适配模块, 用于将输入的 ODUx信号转换为 OTU2 信号输出; 其中, 如果输入的 ODUx信号为 ODU2信号时, 则将所述 OUD2信号的 ODU2帧通过开销和 FEC编码,转换成 OTU2信号输出; 如果所述 ODU 信号为 ODU2e或 ODUle信号时, 则将所述 ODU2e 或者 ODUle信号调整为 ODU2信号, 并将所述调整后的 ODU2信号 的 ODU2帧通过开销和 FEC编码, 转换成 OTU2信号输出。
16. 一种业务传输系统, 其特征在于, 包括: 汇聚装置和解汇聚装置, 所述汇聚装置, 用于实现四路 10G业务信号的汇聚, 包括: 四个光通道数据单元 ODUx生成模块,所述四个 ODUx生成模块中 的每个分别与接入的四路 10G业务信号中的一路相连接并用于对所述 相连接的一路 10G业务信号进行速率适配, 并输出具有预设速率和种 类的 ODUx信号, 其中所述 ODUx信号为 ODU2、 ODUle或 ODU2e 信号, 所述四个 ODUx生成模块输出的四路 ODUx信号具有相同的速 率和种类;
异步汇聚模块, 用于将所述输出的四路 ODUx 信号汇聚到一个 OTU3或超速 OTU3上; 所述解汇聚装置, 用于将所述由汇聚装置汇聚生成的 OTU3或超速 OTU3解汇聚成所述四路 10G业务信号, 包括:
异步解汇聚模块,用于将所述 OTU3或超速 OTU3信号进行解汇聚, 生成四路所述 ODU 信号;
四个 10G业务恢复模块,所述四个 10G业务恢复模块中的每个与所 述异步解汇聚模块生成的四路 ODUx信号中的一路相连接并用于将所 述相连接的一路 ODUx信号通过速率适配调整为汇聚前的所述 10G业 务信号。
PCT/CN2009/073323 2008-08-20 2009-08-18 信号汇聚、解汇聚的装置、方法及系统 WO2010020175A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810118620XA CN101340735B (zh) 2008-08-20 2008-08-20 一种信号汇聚、解汇聚的装置、方法及系统
CN200810118620.X 2008-08-20

Publications (1)

Publication Number Publication Date
WO2010020175A1 true WO2010020175A1 (zh) 2010-02-25

Family

ID=40214663

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/073323 WO2010020175A1 (zh) 2008-08-20 2009-08-18 信号汇聚、解汇聚的装置、方法及系统

Country Status (2)

Country Link
CN (1) CN101340735B (zh)
WO (1) WO2010020175A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101340735B (zh) * 2008-08-20 2011-06-22 中兴通讯股份有限公司 一种信号汇聚、解汇聚的装置、方法及系统
CN101355821B (zh) * 2008-09-03 2011-07-13 中兴通讯股份有限公司 10吉比特光纤信道业务在光传输网中传输的方法和装置
CN101827285B (zh) * 2009-03-06 2013-08-28 华为技术有限公司 传输业务的方法和装置
CN103780327B (zh) * 2012-10-18 2018-12-04 中兴通讯股份有限公司 数据传送方法及装置
US8867538B2 (en) * 2012-12-20 2014-10-21 Broadcom Corporation Ethernet media converter supporting high-speed wireless access
CN103051440B (zh) * 2012-12-21 2015-09-30 北京邮电大学 一种16:66路信号变换及并行同步检测方法
CN106685588B (zh) * 2016-11-17 2020-02-14 华为技术有限公司 一种适配器、数据传输系统及方法
CN112636841B (zh) * 2020-11-18 2022-04-19 北京邮电大学 一种基于联合调制的全光汇聚系统及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1881845A (zh) * 2006-05-15 2006-12-20 中兴通讯股份有限公司 实现多路多种数据业务汇聚传送的装置及其方法
US7164860B1 (en) * 2001-12-21 2007-01-16 Raza Microelectronics, Inc. Advanced multi-protocol optical transport network
CN101340735A (zh) * 2008-08-20 2009-01-07 中兴通讯股份有限公司 一种信号汇聚、解汇聚的装置、方法及系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7164860B1 (en) * 2001-12-21 2007-01-16 Raza Microelectronics, Inc. Advanced multi-protocol optical transport network
CN1881845A (zh) * 2006-05-15 2006-12-20 中兴通讯股份有限公司 实现多路多种数据业务汇聚传送的装置及其方法
CN101340735A (zh) * 2008-08-20 2009-01-07 中兴通讯股份有限公司 一种信号汇聚、解汇聚的装置、方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ITU-T G709/Y.1331 Interfaces for the Optical Transport network (OTN) 14 Dec. 2003 (14.12.2003) Pages 24-26, 57-64, 82-86, 89-93. *

Also Published As

Publication number Publication date
CN101340735B (zh) 2011-06-22
CN101340735A (zh) 2009-01-07

Similar Documents

Publication Publication Date Title
WO2010020175A1 (zh) 信号汇聚、解汇聚的装置、方法及系统
US9270377B2 (en) High-speed optical transceiver for infiniband and ethernet
JP4878629B2 (ja) 多重伝送システムおよび多重伝送方法
US10225037B2 (en) Channelized ODUflex systems and methods
JP4984797B2 (ja) 光ネットワークシステム
WO2018121224A1 (zh) 一种传输无线接口前传信号的方法、网络设备和系统
RU2494545C2 (ru) Способ и устройство обработки передачи сигнала и распределенная базовая станция
JP5375221B2 (ja) フレーム転送装置およびフレーム転送方法
EP3013017A1 (en) Channelized oduflex systems and methods for flexible ethernet and otn multiplexing
JP5578957B2 (ja) デジタル伝送システム及びデジタル伝送方法
WO2008098466A1 (fr) Procédé, appareil et système pour la transmission de signaux ethernet dans un réseau de transport optique
CN101156414A (zh) 局域网信号在光传送网中传输的实现方法和装置
WO2009155870A1 (zh) 一种客户信号的发送、接收方法、装置和系统
WO2017124787A1 (zh) 一种传输公共无线接口信号的方法和设备
CA2550618A1 (en) Method, apparatus and system for optical communications
WO2012126421A2 (zh) 一种光传送网的数据处理方法、相关设备及系统
WO2010121520A1 (zh) 光传送网的信号传送方法、设备及通信系统
CN100568841C (zh) 一种以太网业务的汇聚装置及方法
EP2388964A1 (en) Method and device for transmitting and receiving service data
JP5313351B2 (ja) 10ギガビット光ファイバーチャネルサービスを光伝送ネットワークに伝送する方法及び装置
WO2011113257A1 (zh) 光传送网络设备和光传送网络的带宽调整方法
WO2014124595A1 (zh) 数据的映射、解映射方法及装置
Ishida 40/100GbE technologies and related activities of IEEE standardization
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置
US20150249874A1 (en) Optical communication apparatus and optical communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09807874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09807874

Country of ref document: EP

Kind code of ref document: A1