WO2018121224A1 - 一种传输无线接口前传信号的方法、网络设备和系统 - Google Patents

一种传输无线接口前传信号的方法、网络设备和系统 Download PDF

Info

Publication number
WO2018121224A1
WO2018121224A1 PCT/CN2017/115254 CN2017115254W WO2018121224A1 WO 2018121224 A1 WO2018121224 A1 WO 2018121224A1 CN 2017115254 W CN2017115254 W CN 2017115254W WO 2018121224 A1 WO2018121224 A1 WO 2018121224A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexe
wireless
interface signal
signal
cpri
Prior art date
Application number
PCT/CN2017/115254
Other languages
English (en)
French (fr)
Inventor
吴秋游
苏伟
钟其文
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP17888697.4A priority Critical patent/EP3531643A4/en
Publication of WO2018121224A1 publication Critical patent/WO2018121224A1/zh
Priority to US16/453,795 priority patent/US11032024B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1658Optical Transport Network [OTN] carrying packets or ATM cells
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/004Arrangements for detecting or preventing errors in the information received by using forward error control
    • H04L1/0056Systems characterized by the type of code used
    • H04L1/0057Block codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • H04L25/4906Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes
    • H04L25/4908Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems using binary codes using mBnB codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0006Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format
    • H04L1/0007Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length
    • H04L1/0008Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission format by modifying the frame length by supplementing frame payload, e.g. with padding bits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • H04L1/0013Rate matching, e.g. puncturing or repetition of code symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/38Synchronous or start-stop systems, e.g. for Baudot code
    • H04L25/40Transmitting circuits; Receiving circuits
    • H04L25/49Transmitting circuits; Receiving circuits using code conversion at the transmitter; using predistortion; using insertion of idle bits for obtaining a desired frequency spectrum; using three or more amplitude levels ; Baseband coding techniques specific to data transmission systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0073Services, e.g. multimedia, GOS, QOS
    • H04J2203/0082Interaction of SDH with non-ATM protocols
    • H04J2203/0085Support of Ethernet

Definitions

  • the present invention relates to the field of communications, and in particular, to a method, device, and system for transmitting a wireless preamble interface signal.
  • Optical Internet Forum (OIF) is discussing the application scenarios of extending the traditional Ethernet, and proposes flexible Ethernet (FlexE) technology to support sub-rate, channelization and inverse multiplexing for Ethernet services. And other functions.
  • Ethernet Since Ethernet is used as a service interface in the access network and the metropolitan area network, the FLexE based on the Ethernet technology has the function of convergence of service traffic, and can realize seamless connection with the Ethernet interface of the underlying service network.
  • FlexE's sub-rate, channelization, and inverse multiplexing capabilities greatly expands Ethernet applications, enhances the flexibility of Ethernet applications, and enables Ethernet technology to evolve toward the delivery space.
  • Radio Remote Units RRUs
  • BBU Building Base Band Unit
  • OTN Optical Transport Network
  • the wireless front-end interface signal cannot be accessed through the FlexE. Therefore, how to carry the wireless front-end interface signal through FlexE and improve the transmission efficiency has become an urgent problem to be solved in the industry.
  • the embodiments of the present invention provide a method, device, and system for transmitting a wireless preamble interface signal, which can solve the problem of carrying a wireless preamble interface signal through FlexE.
  • an embodiment of the present invention provides a method for transmitting a wireless preamble interface signal, including: acquiring, by a network device, a wireless preamble interface signal, where the wireless preamble interface signal includes multiple coding blocks; mapping the wireless preamble interface signal Generating a FlexE signal to a service layer time slot of the M flexible Ethernet FlexEs, the service layer time slot of the FlexE being determined according to a rate of the wireless preamble interface signal, the M being a positive integer greater than or equal to 1;
  • the FlexE signal is sent to one or more physical channels.
  • the wireless pre-transmission interface signals such as CPRI, eCPRI, and NGFI are carried through the FlexE, and the service layer time slots of the FlexE are divided according to the rate of the wireless pre-transmission interface signal, thereby improving the bandwidth utilization of the pre-transmission FlexE interface and improving The transmission efficiency of the wireless preamble interface signal.
  • the bandwidth of the service layer slot of the FlexE is greater than or equal to the lowest rate of the wireless forward interface signal. Determining the bandwidth of the FlexE service layer time slot based on the lowest rate of the wireless preamble interface signal, Increased the load carrying efficiency of FlexE.
  • the coding block is a 64B/66B coding block.
  • the acquiring the wireless preamble interface signal includes: acquiring an 8B/10B encoded wireless preamble interface signal, and performing encoding format conversion on the 8B/10B encoded wireless preamble interface signal, where the encoding is performed.
  • the format converted wireless preamble interface signal includes a plurality of 64B/66B coded blocks.
  • 64B/66B encoding is performed on the wireless preamble interface signal such as CPRI, and the service layer slot mapping processing of the FlexE is performed in a unified encoding format, which simplifies the mapping process of the service layer slot of the FlexE.
  • the value of the M includes: any one of 1, 2, 4, 5, 8, 10, 16, 20, 24, 48.
  • the service layer time slots of the FlexE are divided in a reasonable manner, so that the wireless front-end interface signals of different rate levels can be mapped into the service layer time slots of an integer number of FlexEs, thereby improving the carrying efficiency of the FlexE.
  • the physical channel has a bandwidth of 25G or 50G.
  • the embodiment of the invention can also reuse the 25GE or 50GE PHY channel in the Ethernet technology, and can be compatible with the existing Ethernet network system.
  • the method further includes: performing rate adaptation on the wireless preamble interface signal, so that a rate of the wireless preamble interface signal is adapted to a rate of a service layer slot of the FlexE.
  • an embodiment of the present invention provides a method for receiving a wireless preamble interface signal, including: a network device receiving a flexible Ethernet FlexE signal through one or more physical channels; and a service layer of M FlexEs from the FlexE signal Decoding in the time slot to obtain a wireless preamble interface signal, the service layer time slot of the FlexE is determined according to a rate of the wireless preamble interface signal, the M is a positive integer greater than or equal to 1; and the wireless preamble interface signal is sent Going out, the wireless preamble interface signal includes a plurality of coding blocks.
  • the wireless pre-transmission interface signals such as CPRI, eCPRI, and NGFI are carried through the FlexE, and the service layer time slots of the FlexE are divided according to the rate of the wireless pre-transmission interface signal, thereby improving the bandwidth utilization of the pre-transmission FlexE interface and improving The transmission efficiency of the wireless preamble interface signal.
  • the bandwidth of the service layer slot of the FlexE is greater than or equal to the lowest rate of the wireless forward interface signal.
  • the bandwidth of the service layer slot of the FlexE is determined according to the lowest rate of the wireless preamble interface signal, which improves the carrying efficiency of the FlexE.
  • the coding block is a 64B/66B coding block.
  • the sending, by the wireless pre-transmission interface signal, the encoding format conversion of the 64B/66B encoded wireless pre-transmission interface signal, and converting the wireless pre-transmission interface signal after the encoding format conversion Sending, the coded formatted wireless preamble interface signal includes a plurality of 8B/10B coded blocks.
  • 64B/66B encoding is performed on the wireless preamble interface signal such as CPRI, and the service layer slot mapping processing of the FlexE is performed in a unified encoding format, which simplifies the mapping process of the service layer slot of the FlexE.
  • the value of the M includes: any one of 1, 2, 4, 5, 8, 10, 16, 20, 24, 48.
  • the service layer time slots of the FlexE are divided in a reasonable manner, so that the wireless front-end interface signals of different rate levels can be mapped into the service layer time slots of an integer number of FlexEs, thereby improving the carrying efficiency of the FlexE.
  • the physical channel has a bandwidth of 25G or 50G.
  • the embodiment of the invention can also reuse the 25GE or 50GE PHY channel in the Ethernet technology, and can be compatible with the existing Ethernet network system.
  • an embodiment of the present invention provides a network device, including: an acquiring module, configured to acquire a wireless preamble interface signal, where the wireless preamble interface signal includes multiple coding blocks, and a mapping module, configured to send the wireless preamble Interface
  • the signal is mapped into service layer slots of the M flexible Ethernet FlexEs, the FlexE signals are generated, the service layer slots of the FlexE being determined according to the rate of the wireless preamble interface signals, the M being a positive integer greater than or equal to
  • a sending module configured to send the FlexE signal to one or more physical channels.
  • the wireless pre-transmission interface signals such as CPRI, eCPRI, and NGFI are carried through the FlexE, and the service layer time slots of the FlexE are divided according to the rate of the wireless pre-transmission interface signal, thereby improving the bandwidth utilization of the pre-transmission FlexE interface and improving The transmission efficiency of the wireless preamble interface signal.
  • the bandwidth of the service layer slot of the FlexE is greater than or equal to the lowest rate of the wireless forward interface signal.
  • the bandwidth of the service layer slot of the FlexE is determined according to the lowest rate of the wireless preamble interface signal, which improves the carrying efficiency of the FlexE.
  • the coding block is a 64B/66B coding block.
  • the acquiring module is configured to: acquire an 8B/10B encoded wireless preamble interface signal, and perform encoding format conversion on the 8B/10B encoded wireless preamble interface signal, where the encoding format conversion is performed.
  • the subsequent wireless preamble interface signal includes a plurality of 64B/66B coded blocks.
  • 64B/66B encoding is performed on the wireless preamble interface signal such as CPRI, and the service layer slot mapping processing of the FlexE is performed in a unified encoding format, which simplifies the mapping process of the service layer slot of the FlexE.
  • the value of the M includes: any one of 1, 2, 4, 5, 8, 10, 16, 20, 24, 48.
  • the service layer time slots of the FlexE are divided in a reasonable manner, so that the wireless front-end interface signals of different rate levels can be mapped into the service layer time slots of an integer number of FlexEs, thereby improving the carrying efficiency of the FlexE.
  • the physical channel has a bandwidth of 25G or 50G.
  • the embodiment of the invention can also reuse the 25GE or 50GE PHY channel in the Ethernet technology, and can be compatible with the existing Ethernet network system.
  • the network device further includes: a rate adaptation module, configured to perform rate adaptation on the wireless preamble interface signal, such that a rate of the wireless preamble interface signal and a service layer of the FlexE The rate of the time slots is adapted.
  • a rate adaptation module configured to perform rate adaptation on the wireless preamble interface signal, such that a rate of the wireless preamble interface signal and a service layer of the FlexE The rate of the time slots is adapted.
  • an embodiment of the present invention provides a network device, including: a receiving module, configured to receive a flexible Ethernet FlexE signal through one or more physical channels; and a demapping module, configured to use M signals from the FlexE signal Decoding in the service layer time slot of the FlexE to obtain a wireless preamble interface signal, the service layer time slot of the FlexE is determined according to the rate of the wireless preamble interface signal, the M is a positive integer greater than or equal to 1; the sending module is used And transmitting the wireless preamble interface signal, where the wireless preamble interface signal includes a plurality of coding blocks.
  • the wireless pre-transmission interface signals such as CPRI, eCPRI, and NGFI are carried through the FlexE, and the service layer time slots of the FlexE are divided according to the rate of the wireless pre-transmission interface signal, thereby improving the bandwidth utilization of the pre-transmission FlexE interface and improving The transmission efficiency of the wireless preamble interface signal.
  • the bandwidth of the service layer slot of the FlexE is greater than or equal to the lowest rate of the wireless forward interface signal.
  • the bandwidth of the service layer slot of the FlexE is determined according to the lowest rate of the wireless preamble interface signal, which improves the carrying efficiency of the FlexE.
  • the coding block is a 64B/66B coding block.
  • the sending module is configured to: perform a coding format conversion on a 64B/66B encoded wireless preamble interface signal, and send the wireless preamble interface signal that is encoded and converted into an encoded format, where the sending The coded formatted wireless preamble interface signal includes a plurality of 8B/10B coded blocks.
  • 64B/66B encoding is performed on the wireless preamble interface signal such as CPRI, and the service layer slot mapping processing of the FlexE is performed in a unified encoding format, which simplifies the mapping process of the service layer slot of the FlexE.
  • the value of the M includes: any one of 1, 2, 4, 5, 8, 10, 16, 20, 24, 48.
  • the service layer time slots of the FlexE are divided in a reasonable manner, so that the wireless front-end interface signals of different rate levels can be mapped into the service layer time slots of an integer number of FlexEs, thereby improving the carrying efficiency of the FlexE.
  • the physical channel has a bandwidth of 25G or 50G.
  • the embodiment of the invention can also reuse the 25GE or 50GE PHY channel in the Ethernet technology, and can be compatible with the existing Ethernet network system.
  • the fifth aspect provides a network system, including the network device of any one of the third aspect or the third aspect, and any possible implementation manner of the fourth aspect or the fourth aspect Internet equipment.
  • an embodiment of the present invention provides a network device, including: a processor, a memory, and at least one network interface; the memory is configured to store a computer execution instruction, and when the network device is running, the processor executes a memory execution computer execution instruction. To cause the network device to perform the method as described in the first aspect and any one of the possible implementations of the first aspect.
  • an embodiment of the present invention provides a network device, including: a processor, a memory, and at least one network interface; the memory is configured to store a computer execution instruction, and when the network device is running, the processor executes a memory execution computer execution instruction. To cause the network device to perform the method as described in any one of the second aspect and the second aspect.
  • FIG. 1 is a schematic structural diagram of a network architecture according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a FlexE device according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a device for processing CPRI.1 to CPRI.7 according to an embodiment of the present invention
  • FIG. 3b is a schematic structural diagram of a device for processing CPRI.8 to CPRI.10 according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a 64B/66B encoding format provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a 64B/66B encoding format of a CPRI synchronization control word according to an embodiment of the present invention
  • FIG. 6 is a schematic diagram of a time slot distribution according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of an overhead format according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a method for inserting FlexE overhead according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the wireless front-end interface signal may include a Common Public Radio Interface (CPRI). Signals, eCPRI signals (eg, including Ethernet CPRI signals or enhanced CPRI signals), Next-Generation Fronthaul Interface (NGFI) signals, and the like.
  • CPRI Common Public Radio Interface
  • eCPRI signals eg, including Ethernet CPRI signals or enhanced CPRI signals
  • NGFI Next-Generation Fronthaul Interface
  • the FlexE can be used as the preamble network to transmit the wireless preamble interface signal, and other types of bearer networks, such as PON, OTN, Wavelength Division Multiplexing (WDM), and Ethernet (Ethernet), can also be used. Wait for the wireless front-end interface signal to be transmitted.
  • WDM Wavelength Division Multiplexing
  • Ethernet Ethernet
  • FIG. 1 is a schematic structural diagram of a network architecture according to an embodiment of the present invention.
  • the network architecture includes wireless devices of distributed base stations, BBUs and RRUs, and one or more FlexE devices, two of which are shown.
  • One or more FlexE devices form a bearer network that can be used to carry CPRI signals.
  • the BBU and the RRU are connected by one or more FlexE devices, and the CPRI signals transmitted between the BBU and the RRU can be carried by one or more FlexE devices.
  • the CPRI signal sent by the BBU is received by the RRU after passing through one or more FlexE devices; or when the RRU is used as the transmitting end, the CPRI signal sent by the RRU is received by the BBU after passing through one or more FlexE devices.
  • FIG. 2 is a schematic structural diagram of a FlexE device according to an embodiment of the present invention.
  • the architecture of the FlexE device includes the FlexE client layer and the FlexE service layer.
  • the FlexE client layer is mainly used to aggregate one or more client signals, such as customer signal a, customer signal b, ..., customer signal z in Figure 2.
  • the client signal can come from an Ethernet interface such as 10G, 25G, 40G, N*50G.
  • the service layer of FlexE can be used to carry FlexE client signals.
  • the service layer of FlexE can be implemented by N-channel 100G physical layer device (PHY). It can also be implemented by N-channel 25G PHY, N-channel 50G PHY, N-channel 200G PHY, and N-channel 400G PHY. .
  • the signal processing process of the FlexE device may include the following steps: after receiving the multi-channel client signal, such as the client signal a, the client signal b, the client signal z, the FlexE device performs 64B/66B encoding on the received multi-channel client signal.
  • a 66B code block stream is formed, and the code block stream of the client signal is rate adapted by inserting or deleting an idle (IDLE) code block.
  • the code block stream of the client signal is sent to the main time layer (Master Calendar or Calendar).
  • the code block stream of the multiple client signals is distributed into the N-way PHY sub-Calendar, and in each PHY sub-time channel according to a certain interval period (for example, 20x1023x 66B) Insert FlexE overhead to identify the frame structure of FlexE or to identify the order of each PHY.
  • a certain interval period for example, 20x1023x 66B
  • Insert FlexE overhead to identify the frame structure of FlexE or to identify the order of each PHY.
  • Each PHY sub-time division channel is scrambled, and then each PHY sub-time division channel is divided into multiple physical coding sublayer (PCS) channels, inserted into an alignment code block (AM) and transmitted to a physical medium.
  • PCS physical coding sublayer
  • AM alignment code block
  • PMA Physical Medium Attachment
  • PMD Physical Medium Dependent
  • the basic rate defined by the CPRI interface is as shown in Table 1, including the CPRI signal types of 10 rate classes.
  • the high-rate grades such as CPRI.5 and CPRI.6 are mainly dominant, and there is a small demand for low-rate grades such as CPRI.1.
  • CPRI.1 is the lowest rate grade of the current CPRI signal.
  • the embodiment of the present invention can construct a FlexE network based on an N-way 25G PHY or an N-way 50G PHY using a 25G or 50G PHY.
  • the embodiment of the present invention is described by taking a FlexE interface of N*25G as an example.
  • the N*25G's pre-transmission FlexE interface includes N-way 25G PHY channels, which can reuse 25GE (Gigabit Ethernet, Gigabit Ethernet) PHY channels in Ethernet technology.
  • N may take any positive integer.
  • FIG. 3a is a schematic structural diagram of a device for processing CPRI.1 ⁇ CPRI.7 signals according to an embodiment of the present invention.
  • the steps corresponding to the dashed block diagram in the figure are optional steps.
  • the apparatus 300 for CPRI.1 to CPRI.7 signal processing includes a transmitting side 31 and a receiving side 32.
  • the transmitting side 31 and the receiving side 32 may be located in the same FlexE device or in different FlexE devices.
  • the FlexE device in FIG. 1 may include only the transmitting side or the receiving side, and may also include the receiving side and the transmitting side.
  • the processing of the transmitting side 31 may include the following steps: 301: Acquire any one or more CPRI signals of CPRI.1, CPRI.2, ..., CPRI.7.
  • the CPRI signal can be received from the BBU or RRU.
  • the encoding format of the CPRI signal is 8B/10B encoding.
  • the CPRI signal is converted from 8B/10B encoding to 64B/66B encoding.
  • rate-matching the encoded CPRI signal is Map the CPRI signal into the FlexE service layer time slot, generate a FlexE signal, and send the FlexE signal to one or more physical channels.
  • the physical channel is one or multiple sub-time division channels, or one or more PHY channels, or one or more PHY sub-time division channels.
  • the process of receiving side 32 may include the steps of 304 receiving a FlexE signal from the physical channel and de-mapping the CPRI signal from the FlexE service layer time slot of the FlexE signal.
  • the physical channel is one or multiple sub-time division channels, or one or more PHY channels, or one or more PHY sub-time division channels.
  • the CPRI signal is rate-reduced. If the transmitting side performs rate adaptation on the CPRI signal, the CPRI signal can be rate-reduced, that is, the rate of the CPRI signal is restored to the rate before the rate adaptation. 306.
  • the transmitting side converts the CPRI signal from 8B/10B encoding to 64B/66B encoding
  • the CPRI signal can be converted from 64B/66B encoding to 8B/10B encoding.
  • the encoded block data stream of the CPRI signal is sent out, for example, to the RRU or BBU.
  • FIG. 3b is a schematic structural diagram of a device for processing CPRI.8 ⁇ CPRI.10 signals according to an embodiment of the present invention.
  • the steps corresponding to the dashed block diagram in the figure are optional steps.
  • the device 400 for CPRI.8 to CPRI.10 signal processing includes a transmitting side 41 and a receiving side 42.
  • the transmitting side 41 and the receiving side 42 may be located in the same FlexE device, or Located in different FlexE devices.
  • the difference between Fig. 3a and Fig. 3b is that the CPRI signals of the seven rate grades CPRI.1, CPRI.2, ..., CPRI.7 in Fig. 3a are encoded by 8B/10B, and CPRI.8, CPRI in Fig. 3b.
  • the .6 and CPRI.10 three rate grade CPRI signals are encoded in 64B/66B.
  • any one or more CPRI signals in CPRI.1 to CPRI.7 may be converted.
  • the CPRI.8 ⁇ CPRI.10 of Fig. 3b adopts the 64B/66B encoding format, and the encoding format conversion is not required in 401 and 406 of Fig. 3b.
  • CPRI.8 ⁇ CPRI.10 can also be converted to 8B/10B code, and CPRI.1 ⁇ CPRI.7 are coded by 8B/10B.
  • the CPRI signal may not be encoded and formatted, that is, CPRI.1 to CPRI.7 adopts 8B/10B encoding, and CPRI.8 to CPRI.10 adopts 64B/66B encoding format.
  • the processing of 402-405 in Fig. 3b can refer to the processing of 302-305 in Fig. 3a.
  • CPRI.1 to CPRI.7 are converted into 64B/66B codes, and CPRI.8 to CPRI.10 are described by using 64B/66B codes as an example.
  • CPRI.1 ⁇ CPRI.7 is converted to 64B/66B encoding
  • the line rate will change.
  • Table 2 shows the line rate tables of CPRI.1 to CPRI.7 converted by the encoding format.
  • the CPRI.1 to CPRI.7 in Table 2 are converted by the encoding format, and the line rate changes.
  • CPRI.8 ⁇ CPRI.10 are not converted by the encoding format, the line rate is unchanged, and the line rate in Table 1 is still used.
  • FIG. 4 is a schematic diagram of a 64B/66B encoding format provided by an embodiment of the present invention.
  • the 64B/66B code may include a data code block (D0D1D2D3/D4D5D6D7) having a sync header of 01 and a control code block having a sync header of 10.
  • the 64B/66B encoding format can also refer to the encoding format defined in IEEE 802.3.
  • the CPRI signal can be sent from the BBU to the RRU via one or more FlexE devices, or from the RRU to the BBU via one or more FlexE devices.
  • the transmitting side can receive the CPRI signal from the BBU or RRU.
  • the frame header (or called sync byte) K28.5 of the 8B/10B encoded CPRI superframe needs to be re-instructed.
  • FIG. 5 is a schematic diagram of a 64B/66B encoding format of a CPRI synchronization control word according to an embodiment of the present invention.
  • the 64B/66B encoded sync byte 50h can be used for indication.
  • the combination of other control words in the preset 64B/66B encoding may also be used for indication.
  • the CPRI signal may be rate adapted or rate compensated to match the FlexE service.
  • the rate of the layer slot For example, a rate adaptation or compensation method such as idle (IDLE) addition and deletion may be employed, that is, an idle code block is inserted or deleted in the encoded block data stream of the CPRI signal.
  • the rate adaptation can also be performed by using a scheme of the Generic Mapping Procedure (GMP).
  • GMP Generic Mapping Procedure
  • the encoded block data stream of the CPRI signal includes a valid 66B code block for carrying the CPRI signal and an invalid 66B code block (such as an idle code block) for rate adaptation.
  • the number of valid 66B code blocks contained in a certain number of 66B code blocks (for example, 10 66B code blocks contain 8 valid 66B code blocks), and insert the information of the effective 66B code block number into the FlexE overhead.
  • the receiving end restores the valid 66B code block according to the number of valid 66B code blocks according to a certain algorithm, thereby removing the invalid 66B code block.
  • the number of invalid 66B code blocks can also be inserted into the FlexE overhead for the receiving side to recover the valid 66B code block.
  • the encoded block data stream of the CPRI signal is mapped into one or more FlexE service layer time slots to generate a FlexE signal.
  • the FlexE signal is the information transmitted in the FlexE service layer time slot.
  • the FlexE service layer can be constructed using Time Division Multiplexing (TDM) framing based on Ethernet coding.
  • TDM Time Division Multiplexing
  • the FlexE service layer can include primary time tiering, which can be called Master Calendar or Calendar.
  • the master time layer includes 50xN 66B coded blocks, that is, the master time layer has 50xN service layer time slots (Calendar Slots) in units of 66B coded blocks.
  • the service layer time slot may be referred to as a primary time layered time slot.
  • a FlexE interface consisting of N 25G PHY channels, each PHY channel can be divided into 50 time slots.
  • the bandwidth of the FlexE interface is N*25G, and the bandwidth of each time slot can be calculated by the following formula:
  • the bandwidth of each time slot is calculated to be approximately 515.615 Mbit/s.
  • the slot bandwidth can be used to calculate the number of FlexE service layer slots that the CPRI signal needs to occupy.
  • Table 3 is a table of the number of slots of CPRI signals of various rate classes calculated using a slot bandwidth of 515.615 Mbit/s.
  • the bandwidth of the service layer slot of the FlexE may be determined according to the rate of the wireless preamble interface signal, for example, this example
  • the time slot bandwidth of the FlexE is 515.615 Mbit/s, which is just slightly larger than the minimum rate class of the CPRI.1 coded converted line rate of 506.880 Mbit/s.
  • the CPRI signals of other rate grades can also be adapted to the service layer slots of an integer number of FlexEs.
  • the number of service layer slots occupying FlexE from CPRI.2 to CPRI.10 are: 2, 4, 5, 8, respectively. 10, 16, 20, 24, 48.
  • the bandwidth of the service layer slot of the FlexE may also be equal to the line rate before the CPRI.1 code conversion or before the code conversion.
  • the bandwidth of the service layer slot of the FlexE may also be an integer multiple of the line rate after the CPRI.1 code conversion, and may also be an integer multiple of the line rate before the CPRI.1 code conversion.
  • the bandwidth of the service layer slot of the FlexE may also be determined according to the rate of any CPRI signal of CPRI.2 to CPRI.10, or may be determined according to the rate of other types of wireless preamble signals, for example, an eCPRI signal or NGFI signal.
  • the time slot bandwidth occupied by the CPRI signal may be greater than or equal to the line rate of the CPRI signal.
  • the line rate of CPRI.1 converted to 64B/66B coded is 506.880 Mbit/s
  • the bandwidth occupied by one FlexE service layer time slot is 515.615 Mbit/s, which is slightly larger than the line rate after CPRI.1 code conversion. .
  • the FlexE signal is sent in one or more physical channels, for example, the service layer time slot polling of the FlexE carrying the CPRI signal is distributed to the multiple (N) PHY sub-time division channel (also referred to as sub-time division channel, PHY channel) )in.
  • N PHY sub-time division channel
  • FIG. 6 is a schematic diagram of time slot distribution according to an embodiment of the present invention. As shown in FIG. 6, the main time layer includes several sets of time slots, and the figure shows four groups A, B, C, and D, and the number N of corresponding PHY sub-time division channels is 4. Each group of time slots can contain 50 time slots, slot 0 to slot 49.
  • the transmission unit of one time slot may be a 66B coded block, that is, a data stream formed by transmitting a plurality of consecutive 66B coded blocks in one time slot, and continuously transmitted according to the direction of the arrow in the figure.
  • the PHY sub-time division channel can have a bandwidth of 25G, including PHY A to PHY D.
  • a FlexE overhead may be added to the data stream of each PHY sub-time division channel to generate a FlexE frame.
  • the FlexE frame is the transmission format of the FlexE signal, ie the FlexE signal can also include FlexE overhead.
  • the FlexE overhead can be a 66B control block.
  • FIG. 7 is a schematic diagram of an overhead format according to an embodiment of the present invention. As shown in Figure 7, the FlexE overhead can consist of eight 66B coded blocks. The FlexE overhead can be used to identify the FlexE frame structure, such as 0x4B, 0x05 of the first coding block used to identify the frame structure of the FlexE.
  • the FlexE overhead can also identify the order of each PHY sub-time division channel, such as by the PHY Map of the second coded block.
  • the FlexE overhead may identify the correspondence between the currently carried CPRI signal and the FlexE time slot, for example, by the client time slot allocation table A/B (Client Calendar A/B) of the third coding block.
  • the FlexE overhead may also identify the signal type (CPRI, eCPRI, NGFI, etc.) of the wireless preamble interface signal, for example, may be identified by a reserved field (Reserved). Specifically, on each PHY sub-time division channel, the FlexE overhead can be inserted at a certain frequency or period.
  • FIG. 8 is a schematic diagram of a method for inserting FlexE overhead according to an embodiment of the present invention.
  • the black squares in the figure represent the FlexE overhead.
  • the overhead of the FlexE of the PHY sub-time division channel can be inserted at a certain periodic interval, such as 1023 x 50 66B code blocks. Of course, other periodic intervals may also be adopted, which are not limited by the present invention.
  • the N*25G FlexE interface can be used to split the PHY sub-time division channel without adding AM, and directly transmit the CPRI signal carried in the PHY sub-time division channel through the 25G PHY.
  • the FlexE signal can include one or more PHY sub-time division channel signals.
  • Receiving side The transmitting side can be located in a different FlexE device, and the receiving side can receive the FlexE signal from the FlexE device where the transmitting side is located. For example, if the FlexE signal contains N 25G PHY sub-time division channels, the signals of each PHY sub-time division channel can be obtained.
  • Each PHY channel signal is sent to the FlexE's service layer time slot, and the CPRI signal is demapped from the service layer time slot of the FlexE signal. For example, identify the FlexE overhead of each PHY sub-time division channel.
  • the information identified from the FlexE overhead may include the FlexE frame structure, the order of each PHY sub-time division channel, the correspondence between the currently carried CPRI signal and the FlexE slot, the signal type of the CPRI, and the like. According to the order of each PHY sub-time division channel of FlexE overhead, each PHY sub-time division channel can be sorted to restore the order of the PHY sub-time division channels.
  • the service layer time slot of the FlexE may include a master time layer as described above, and details are not described herein again.
  • the sending side may perform rate reduction on the CPRI signal.
  • rate reduction can be performed by means of idle addition, deletion, or GMP.
  • the receiving side can convert the CPRI signal from 64B/66B encoding to 8B/10B encoding. If the CPRI signal is not transcoded by the transmitting side, for example, any one or more of the CPRI signals of CPRI.8 to CPRI.10 adopts the 64B/66B encoding format, then the 64B/66B encoding block of the CPRI signal is used.
  • the data stream is sent directly. For example, the 64B/66B encoded block data stream of the CPRI signal can be sent to the RRU or BBU.
  • the N*50G PHY or the N*50G PHY may be used to construct the N*50G pre-transmission FlexE interface.
  • the definition of the PHY rate and the 64B/66B encoding in this embodiment can refer to the IEEE-defined 50GE PHY specification.
  • the transmission and reception processing of the CPRI signal in the FlexE interface of the N*50G can refer to the transmission and reception processing of the CPRI signal in the FlexE interface of the N*25G.
  • the primary time layer in the FlexE service layer may include time slots in units of 100 ⁇ N 66B coded blocks.
  • a FlexE interface consisting of 50 channels of PHY channels, each PHY channel can be divided into 100 time slots.
  • the bandwidth per slot is approximately 500 Mbit/s.
  • the FlexE service layer slot time slot polling of the consecutive 100 x N 66B coded blocks is distributed to the N way PHY subtime division channels.
  • Each PHY sub-time division channel has a structure of 100 consecutive 66B coded blocks, and the transmission unit of each time slot can be a 66B coded block.
  • FlexE overhead can be added to the data stream of each PHY sub-time channel.
  • the above embodiments mainly describe sending or receiving CPRI services (that is, services transmitted in the form of CPRI signals) through the FlexE interface.
  • the FlexE interface can also transport Ethernet services.
  • CPRI services and Ethernet services can be transmitted in parallel in a single FlexE interface.
  • all FlexE service layer time slots can be used to carry Ethernet services, or all FlexE service layer time slots can be used to carry CPRI services, or some FlexE service layer time slots can be used to carry Ethernet services, some FlexE services.
  • Layer slots carry CPRI services.
  • the Ethernet service can be 1GE, 10GE, or 25GE.
  • the Ethernet service when the Ethernet service is mapped to the service layer time slot of the FlexE interface of the N*25G or N*50G, if the bandwidth of each service layer time slot is 515.615 Mbit/s, the Ethernet services of 1GE, 10GE, and 25GE are available. It takes 2, 20, 50 time slots respectively.
  • the rate adaptation may be performed by using IDLE addition and deletion.
  • the wireless pre-transmission interface signals such as CPRI, eCPRI, and NGFI are carried through the FlexE, and the service layer time slots of the FlexE are divided according to the rate of the wireless pre-transmission interface signal, thereby improving the bandwidth of the pre-transmission FlexE interface. Utilization and improved transmission efficiency of the wireless preamble interface signal.
  • FIG. 9 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device can be a FlexE device, and can have a FlexE interface such as N*25G, N*50G, and N*100G.
  • the network device includes: an obtaining module 901, a mapping module 902, and a sending module 903.
  • the obtaining module 901 is configured to acquire a wireless preamble interface signal, where the wireless preamble interface signal includes multiple coding blocks;
  • the mapping module 902 is configured to map the wireless preamble interface signal into a service layer time slot of the M flexible Ethernet FlexEs to generate a FlexE signal, where the service layer time slot of the FlexE is determined according to a rate of the wireless preamble interface signal , M is a positive integer greater than or equal to 1;
  • the sending module 903 is configured to send the FlexE signal to one or more physical channels.
  • the network device can implement the technical solution of the embodiment shown in FIG. 3a and FIG. 3b.
  • the wireless front-end interface signals may include CPRI, eCPRI, NGFI, and the like.
  • the wireless preamble interface signal is used as a CPRI signal.
  • the CPRI signal may include any one or more CPRI signals of the CPRI.1 to CPRI.7 encoding format 8B/10B encoding, and may also include CPRI.8 to CPRI.10.
  • a plurality of 64B/66B coded blocks of the CPRI signal may be acquired before the CPRI signal is mapped to the service layer time slot of the FlexE.
  • the 8B/10B encoded CPRI signal may be encoded and converted into 64B/66B encoding.
  • the service layer time slot of the FlexE may be divided according to the rate of the CPRI signal.
  • the bandwidth of the service layer time slot of the FlexE may be slightly larger than the lowest rate of the CPRI signal, that is, the rate of the CPRI.1.
  • the CPRI signals can be mapped into service layer slots of an integer number of FlexEs.
  • the values of M include: 1, 2, 4, 5, 8, 10, 16, Any one of 20, 24, 48.
  • the service layer time slots of the FlexE can also be divided according to the rate of the CPRI signal of other rate grades or other types of wireless front-end interface signals, thereby improving the carrying efficiency of the FlexE and improving the transmission efficiency of the CPRI signal.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device can be a FlexE device, and can have a FlexE interface such as N*25G, N*50G, and N*100G.
  • the network device includes a receiving module 1001, a demapping module 1002, and a sending module 1003.
  • the receiving module 1001 is configured to receive the flexible Ethernet FlexE signal by using one or more physical channels;
  • a demapping module 1002 configured to demap a wireless preamble interface signal from service layer slots of M FlexEs of the FlexE signal, where a service layer slot of the FlexE is determined according to a rate of the wireless preamble interface signal, where Said M is a positive integer greater than or equal to 1;
  • the sending module 1003 is configured to send the wireless preamble interface signal, where the wireless preamble interface signal includes multiple coding blocks.
  • the network device can implement the technical solution of the embodiment shown in FIG. 3a and FIG. 3b.
  • the wireless front-end interface signals may include CPRI, eCPRI, NGFI, and the like.
  • the wireless preamble interface signal is used as a CPRI signal.
  • the CPRI signal may include any one or more CPRI signals of the CPRI.1 to CPRI.7 encoding format 8B/10B encoding, and may also include CPRI.8 to CPRI.10.
  • the transmitting side network device converts any one or more signals of CPRI.1 to CPRI.7 from 8B/10B encoding to 64B/66B encoding, for signals such as CPRI.1 to CPRI.7,
  • the CPRI signal can be converted from 64B/66B encoding to 8B/10B encoding.
  • the service layer time slot of the FlexE may be divided according to the rate of the CPRI signal.
  • the bandwidth of the service layer time slot of the FlexE may be slightly larger than the lowest rate of the CPRI signal, that is, the rate of the CPRI.1.
  • the CPRI signals can be mapped into service layer slots of an integer number of FlexEs.
  • the values of M include: 1, 2, 4, 5, 8, 10, 16, Any one of 20, 24, 48.
  • the service layer time slots of the FlexE can also be divided according to the rate of the CPRI signal of other rate grades or other types of wireless front-end interface signals, thereby improving the carrying efficiency of the FlexE and improving the transmission efficiency of the CPRI signal.
  • FIG. 11 is a schematic structural diagram of a network system according to an embodiment of the present invention.
  • the network system can include at least two network devices, such as network device 1101 and network device 1102.
  • Network devices 1101 and network devices 1102 may also include other network devices.
  • Network device 1101 and network device 1102 can be FlexE devices.
  • the network devices 1101 and 1102 can both perform the sending function and the receiving function.
  • the network devices 1101 and 1102 can implement the technical solutions of the embodiment shown in FIG. 3a and FIG. 3b.
  • the network devices 1101, 1102 may also perform only one of the transmitting function and the receiving function.
  • the network device 1101 is a transmitting network device
  • the technical solution of the embodiment shown in FIG. 9 may be performed
  • the embodiment shown in FIG. 10 may be executed.
  • Technical solution for example, when the network device 1101 is a transmitting network device, the technical solution of the embodiment shown in FIG. 9 may be performed; when the network device 1102 is a receiving network device, the embodiment shown in FIG
  • FIG. 12 is a schematic structural diagram of a network device according to an embodiment of the present invention.
  • the network device 1200 includes a processor 1201, a memory 1202, an input/output interface 1203, a communication interface 1204, and a bus 1205.
  • the processor 1201, the memory 1202, the input/output interface 1203, and the communication interface 1204 implement a communication connection with each other through the bus 1205.
  • the processor 1201 may be a general-purpose central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), or at least one integrated circuit for executing related programs to implement the present invention.
  • CPU central processing unit
  • ASIC application specific integrated circuit
  • the memory 1202 may be a read only memory (ROM), a static storage device, a dynamic storage device, or a random access memory (RAM).
  • the memory 1202 can store an operating system and other applications.
  • the program code for implementing the technical solution provided by the embodiment of the present invention is stored in the memory 1202 and executed by the processor 1201.
  • the input/output interface 1203 is for receiving input data and information, and outputting data such as an operation result.
  • Communication interface 1204 enables communication between network device 1200 and other devices or communication networks using transceivers such as, but not limited to, transceivers.
  • Bus 1205 can include a path for communicating information between various components of network device 1200, such as processor 1201, memory 1202, input/output interface 1203, and communication interface 1204.
  • the network device 1200 acquires a wireless pre-transmission interface signal through the communication interface 1204, where the wireless pre-transmission interface signal includes a plurality of coding blocks; and the code stored in the memory 1202 is executed by the processor 1201 to map the wireless pre-transmission interface signal to M flexible
  • a FlexE signal is generated in a service layer time slot of the Ethernet FlexE, the service layer time slot of the FlexE being determined according to a rate of the wireless preamble interface signal, the M being a positive integer greater than or equal to 1;
  • the FlexE signal is sent to one or more physical channels.
  • the network device 1200 receives the flexible Ethernet FlexE signal through one or more physical channels in the communication interface 1204; the code stored in the memory 1202 is executed by the processor 1201, and the M FlexE services from the FlexE signal De-mapping in a layer slot to obtain a wireless preamble interface signal, the service layer slot of the FlexE being determined according to a rate of the wireless preamble interface signal, the M being a positive integer greater than or equal to 1;
  • the wireless preamble interface signal is transmitted, and the wireless preamble interface signal includes a plurality of coding blocks.
  • network device 1200 shown in FIG. 12 only shows the processor 1201, the memory 1202, the input/output interface 1203, the communication interface 1204, and the bus 1205, those skilled in the art should understand in the specific implementation process.
  • Network device 1200 also includes other devices necessary to achieve proper operation.
  • network device 1200 may also include hardware devices that implement other additional functions, depending on the particular needs.
  • network device 1200 may also only include the components necessary to implement embodiments of the present invention, and does not necessarily include all of the devices shown in FIG.
  • the wireless pre-transmission interface signals such as CPRI, eCPRI, and NGFI are carried through the FlexE, and the service layer time slots of the FlexE are divided according to the rate of the wireless pre-transmission interface signal, thereby improving the bandwidth utilization of the pre-transmission FlexE interface and improving The transmission efficiency of the wireless preamble interface signal.
  • aspects of the present invention, or possible implementations of various aspects may be embodied as a system, method, or computer program product.
  • aspects of the invention, or possible implementations of various aspects may be in the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, etc.), or a combination of software and hardware aspects, They are collectively referred to herein as "circuits," “modules,” or “systems.”
  • aspects of the invention, or possible implementations of various aspects may take the form of a computer program product, which is a computer readable program code stored in a computer readable medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种传输无线前传接口信号的方法、设备和系统,该方法包括:网络设备获取无线前传接口信号,所述无线前传接口信号包括多个编码块;将所述无线前传接口信号映射到M个灵活以太网FlexE的服务层时隙中,生成FlexE信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;将所述FlexE信号发送到一路或多路物理通道中。实现了通过FlexE承载CPRI、eCPRI、NGFI等无线前传接口信号,根据无线前传接口信号的速率对FlexE的服务层时隙进行划分,提高了前传FlexE接口的带宽利用率以及提高了无线前传接口信号的传输效率。

Description

一种传输无线接口前传信号的方法、网络设备和系统
本申请要求于2016年12月27日提交中国专利局、申请号201611225525.0、发明名称为“一种传输无线接口前传信号的方法、网络设备和系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信领域,尤其涉及一种传输无线前传接口信号的方法、设备和系统。
背景技术
目前,光联网论坛(Optical Internet Forum,OIF)正在讨论扩展传统的以太网的应用场景,提出了灵活以太网(FlexE)技术,以支持针对以太网业务的子速率、通道化、反向复用等功能。
由于接入网和城域网中大量采用了以太网作为业务接口,基于以太网技术的FLexE具有业务流量汇聚的功能,能够实现和底层业务网络的以太网接口的无缝连接。FlexE的子速率、通道化和反向复用功能的引入,极大地扩展了以太网的应用场合,增强了以太网应用的灵活性,并使得以太网技术逐渐向传送领域方向发展。
另一方面,随着无线通信技术的发展,射频拉远单元(Radio Remote Unit,RRU)的集中部署越来越普遍。把集中部署的RRU通过某种网络载体集中拉远到基带控制单元(Building Base band Unit,BBU),已经成为运营商的部署方案。目前,BBU和RRU之间通过无线前传接口进行连接。传统的方案中,可以采用波分、无源光网络(Passive Optical Network,PON)和光传送网(Optical Transport Network,OTN)等技术能够将集中部署的RRU拉远至BBU。但现有技术中,无线前传接口信号无法通过FlexE进行接入。因此,如何通过FlexE来承载无线前传接口信号,并且提高传输效率,成为业界急需解决的问题。
发明内容
有鉴于此,本发明实施例提供一种传输无线前传接口信号的方法、设备和系统,可以解决通过FlexE来承载无线前传接口信号的问题。
第一方面,本发明实施例提供了一种发送无线前传接口信号的方法,包括:网络设备获取无线前传接口信号,所述无线前传接口信号包括多个编码块;将所述无线前传接口信号映射到M个灵活以太网FlexE的服务层时隙中,生成FlexE信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;将所述FlexE信号发送到一路或多路物理通道中。
本发明实施例中,实现了通过FlexE承载CPRI、eCPRI、NGFI等无线前传接口信号,根据无线前传接口信号的速率对FlexE的服务层时隙进行划分,提高了前传FlexE接口的带宽利用率以及提高了无线前传接口信号的传输效率。
一种可能的实现方式中,所述FlexE的服务层时隙的带宽大于或等于所述无线前传接口信号的最低速率。根据无线前传接口信号的最低速率来确定FlexE的服务层时隙的带宽, 提高了FlexE的承载效率。
一种可能的实现方式中,所述编码块为64B/66B编码块。
一种可能的实现方式中,所述获取无线前传接口信号,包括:获取8B/10B编码的无线前传接口信号,对所述8B/10B编码的无线前传接口信号进行编码格式转换,所述进行编码格式转换后的无线前传接口信号包括多个64B/66B编码块。
本发明实施例中,对CPRI等无线前传接口信号进行64B/66B编码,以统一的编码格式进行FlexE的服务层时隙映射处理,简化了FlexE的服务层时隙的映射处理过程。
一种可能的实现方式中,所述M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。通过合理的方式对FlexE的服务层时隙进行划分,使得不同速率等级的无线前传接口信号能够映射到整数个FlexE的服务层时隙中,提高了FlexE的承载效率。
一种可能的实现方式中,所述物理通道的带宽为25G或50G。本发明实施例还可以重用以太网技术中25GE或50GE的PHY通道,能够兼容现有的以太网网络系统。
一种可能的实现方式中,所述方法还包括:对所述无线前传接口信号进行速率适配,使得所述无线前传接口信号的速率与所述FlexE的服务层时隙的速率相适配。
第二方面,本发明实施例提供了一种接收无线前传接口信号的方法,包括:网络设备通过一路或多路物理通道接收灵活以太网FlexE信号;从所述FlexE信号的M个FlexE的服务层时隙中解映射得到无线前传接口信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;将所述无线前传接口信号发送出去,所述无线前传接口信号包括多个编码块。
本发明实施例中,实现了通过FlexE承载CPRI、eCPRI、NGFI等无线前传接口信号,根据无线前传接口信号的速率对FlexE的服务层时隙进行划分,提高了前传FlexE接口的带宽利用率以及提高了无线前传接口信号的传输效率。
一种可能的实现方式中,所述FlexE的服务层时隙的带宽大于或等于所述无线前传接口信号的最低速率。根据无线前传接口信号的最低速率来确定FlexE的服务层时隙的带宽,提高了FlexE的承载效率。
一种可能的实现方式中,所述编码块为64B/66B编码块。
一种可能的实现方式中,所述将所述无线前传接口信号发送出去,包括:将64B/66B编码的无线前传接口信号进行编码格式转换,将所述进行编码格式转换后的无线前传接口信号发送出去,所述进行编码格式转换后的无线前传接口信号包括多个8B/10B编码块。
本发明实施例中,对CPRI等无线前传接口信号进行64B/66B编码,以统一的编码格式进行FlexE的服务层时隙映射处理,简化了FlexE的服务层时隙的映射处理过程。
一种可能的实现方式中,所述M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。通过合理的方式对FlexE的服务层时隙进行划分,使得不同速率等级的无线前传接口信号能够映射到整数个FlexE的服务层时隙中,提高了FlexE的承载效率。
一种可能的实现方式中,所述物理通道的带宽为25G或50G。本发明实施例还可以重用以太网技术中25GE或50GE的PHY通道,能够兼容现有的以太网网络系统。
第三方面,本发明实施例提供了一种网络设备,包括:获取模块,用于获取无线前传接口信号,所述无线前传接口信号包括多个编码块;映射模块,用于将所述无线前传接口 信号映射到M个灵活以太网FlexE的服务层时隙中,生成FlexE信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;发送模块,用于将所述FlexE信号发送到一路或多路物理通道中。
本发明实施例中,实现了通过FlexE承载CPRI、eCPRI、NGFI等无线前传接口信号,根据无线前传接口信号的速率对FlexE的服务层时隙进行划分,提高了前传FlexE接口的带宽利用率以及提高了无线前传接口信号的传输效率。
一种可能的实现方式中,所述FlexE的服务层时隙的带宽大于或等于所述无线前传接口信号的最低速率。根据无线前传接口信号的最低速率来确定FlexE的服务层时隙的带宽,提高了FlexE的承载效率。
一种可能的实现方式中,所述编码块为64B/66B编码块。
一种可能的实现方式中,所述获取模块,用于:获取8B/10B编码的无线前传接口信号,对所述8B/10B编码的无线前传接口信号进行编码格式转换,所述进行编码格式转换后的无线前传接口信号包括多个64B/66B编码块。
本发明实施例中,对CPRI等无线前传接口信号进行64B/66B编码,以统一的编码格式进行FlexE的服务层时隙映射处理,简化了FlexE的服务层时隙的映射处理过程。
一种可能的实现方式中,所述M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。通过合理的方式对FlexE的服务层时隙进行划分,使得不同速率等级的无线前传接口信号能够映射到整数个FlexE的服务层时隙中,提高了FlexE的承载效率。
一种可能的实现方式中,所述物理通道的带宽为25G或50G。本发明实施例还可以重用以太网技术中25GE或50GE的PHY通道,能够兼容现有的以太网网络系统。
一种可能的实现方式中,所述网络设备还包括:速率适配模块,用于对所述无线前传接口信号进行速率适配,使得所述无线前传接口信号的速率与所述FlexE的服务层时隙的速率相适配。
第四方面,本发明实施例提供了一种网络设备,包括:接收模块,用于通过一路或多路物理通道接收灵活以太网FlexE信号;解映射模块,用于从所述FlexE信号的M个FlexE的服务层时隙中解映射得到无线前传接口信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;发送模块,用于将所述无线前传接口信号发送出去,所述无线前传接口信号包括多个编码块。
本发明实施例中,实现了通过FlexE承载CPRI、eCPRI、NGFI等无线前传接口信号,根据无线前传接口信号的速率对FlexE的服务层时隙进行划分,提高了前传FlexE接口的带宽利用率以及提高了无线前传接口信号的传输效率。
一种可能的实现方式中,所述FlexE的服务层时隙的带宽大于或等于所述无线前传接口信号的最低速率。根据无线前传接口信号的最低速率来确定FlexE的服务层时隙的带宽,提高了FlexE的承载效率。
一种可能的实现方式中,所述编码块为64B/66B编码块。
一种可能的实现方式中,所述发送模块,用于:将64B/66B编码的无线前传接口信号进行编码格式转换,将所述进行编码格式转换后的无线前传接口信号发送出去,所述进行编码格式转换后的无线前传接口信号包括多个8B/10B编码块。
本发明实施例中,对CPRI等无线前传接口信号进行64B/66B编码,以统一的编码格式进行FlexE的服务层时隙映射处理,简化了FlexE的服务层时隙的映射处理过程。
一种可能的实现方式中,所述M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。通过合理的方式对FlexE的服务层时隙进行划分,使得不同速率等级的无线前传接口信号能够映射到整数个FlexE的服务层时隙中,提高了FlexE的承载效率。
一种可能的实现方式中,所述物理通道的带宽为25G或50G。本发明实施例还可以重用以太网技术中25GE或50GE的PHY通道,能够兼容现有的以太网网络系统。
第五方面,本发明实施例提供了一种网络系统,包括第三方面或第三方面任意一种可能的实现方式的网络设备,和第四方面或第四方面任意一种可能的实现方式的网络设备。
第六方面,本发明实施例提供了一种网络设备,包括:处理器、存储器和至少一个网络接口;存储器用于存储计算机执行指令,当网络设备运行时,处理器执行存储器存储的计算机执行指令,以使网络设备执行如第一方面及第一方面的任意一种可能的实现方式所述的方法。
第七方面,本发明实施例提供了一种网络设备,包括:处理器、存储器和至少一个网络接口;存储器用于存储计算机执行指令,当网络设备运行时,处理器执行存储器存储的计算机执行指令,以使网络设备执行如第二方面及第二方面的任意一种可能的实现方式所述的方法。
附图说明
下面将对描述背景技术和实施例时所使用的附图作简单的介绍。
图1是本发明实施例提供的一种网络架构的结构示意图;
图2是本发明实施例提供的一种FlexE设备的架构示意图;
图3a是本发明实施例提供的一种CPRI.1~CPRI.7信号处理的装置结构示意图;
图3b是本发明实施例提供的一种CPRI.8~CPRI.10信号处理的装置结构示意图;
图4是本发明实施例提供的64B/66B编码格式示意图;
图5是本发明实施例提供的一种CPRI同步控制字的64B/66B编码格式示意图;
图6是本发明实施例提供的一种时隙分发的示意图;
图7是本发明实施例提供的一种开销格式示意图;
图8是本发明实施例提供的一种FlexE开销插入的方法示意图;
图9是本发明实施例提供的一种网络设备的结构示意图;
图10是本发明实施例提供的一种网络设备的结构示意图;
图11是本发明实施例提供的一种网络系统的结构示意图;
图12是本发明实施例提供的一种网络设备的结构示意图。
具体实施方式
下面结合附图,对本发明的实施例进行描述。
无线前传接口信号可以包括通用公共无线接口(Common Public Radio Interface,CPRI) 信号、eCPRI信号(例如,包括以太网CPRI信号或增强的CPRI信号)、下一代前传接口(Next-Generation Fronthaul Interface,NGFI)信号等。本发明实施例可以采用FlexE作为前传网络对无线前传接口信号进行传输,还可以采用其他类型的承载网络,例如PON、OTN、波分复用网络(Wavelength Division Multiplexing,WDM)、以太网(Ethernet)等对无线前传接口信号进行传输。本发明实施例中以FlexE承载CPRI信号为例进行说明。采用FlexE承载其他类型的无线前传接口信号的原理类似。
图1是本发明实施例提供的一种网络架构的结构示意图。如图1所示,该网络架构中包括分布式基站的无线设备,BBU和RRU,还包括一个或多个FlexE设备,图中示出其中两个。一个或多个FlexE设备构成承载网络,可以用于承载CPRI信号。BBU和RRU之间通过一个或多个FlexE设备进行连接,BBU和RRU之间传输的CPRI信号可以通过一个或多个FlexE设备进行承载传输。例如,BBU作为发送端时,BBU发送的CPRI信号经过一个或多个FlexE设备后被RRU接收;或者RRU作为发送端时,RRU发送的CPRI信号经过一个或多个FlexE设备后被BBU接收。
首先,简单介绍下FlexE设备的架构。图2是本发明实施例提供的一种FlexE设备的架构示意图。FlexE设备的架构包括FlexE客户层和FlexE服务层。FlexE客户层主要用于汇聚一路或多路客户信号,例如图2中的客户信号a、客户信号b,…,客户信号z。客户信号可以来自于例如10G、25G、40G、N*50G等以太网接口。FlexE的服务层可以用于承载FlexE客户信号。FlexE的服务层可以采用N路100G物理层装置(Physical Layer Device,PHY)来实现,还可以采用N路25G的PHY、N路50G的PHY、N路200G的PHY、N路400G的PHY等实现。
FlexE设备的信号处理过程可以包括如下步骤:FlexE设备接收到多路客户信号,例如客户信号a、客户信号务b……客户信号z之后,对接收到的多路客户信号进行64B/66B编码,形成66B码块流,通过插入或删除空闲(IDLE)码块对客户信号的码块流进行速率适配。将客户信号的码块流发送至主时分层(Master Calendar或者Calendar)中。经过主时分层分发,将多路客户信号的码块流分发到N路PHY子时分通道(sub-Calendar)中,并且在每一路PHY子时分通道中按照一定的间隔周期(例如20x1023x 66B)插入FlexE开销,用于标识FlexE的帧结构或者标识每一路PHY的顺序等。对每一路PHY子时分通道进行扰码,然后将每一路PHY子时分通道分成多路物理编码子层(Physical Coding Sublayer,PCS)通道,插入对齐码块(Alignment Marker,AM)并发送到物理媒质连接子层(Physical Medium Attachment,PMA)以及进一步发送到物理媒质相关子层(Physical Medium Dependent,PMD)。
当前,CPRI接口定义的基本速率如表1所示,包括10种速率等级的CPRI信号类型。现阶段,主要以CPRI.5和CPRI.6等高速率等级为主,并且存在少量的CPRI.1等低速率等级的需求。CPRI.1为当前CPRI信号的最低速率等级。随着网络带宽的提高,CPRI的应用会逐渐过渡到10G或25G等速率等级。考虑到当前的CPRI速率等级,可选的,本发明实施例可以采用25G或50G的PHY,构建基于N路25G的PHY或N路50G的PHY的FlexE网络。
表1
Figure PCTCN2017115254-appb-000001
本发明实施例以N*25G的FlexE接口为例进行说明。N*25G的前传FlexE接口包括N路25G的PHY通道,可以重用以太网技术中25GE(Gigabit Ethernet,吉比特以太网)的PHY通道。本发明实施例中,N可以取任意的正整数。
图3a为本发明实施例提供的一种CPRI.1~CPRI.7信号处理的装置结构示意图。图中虚线框图对应的步骤为可选的步骤。如图3a所示,CPRI.1~CPRI.7信号处理的装置300包括发送侧31和接收侧32。发送侧31和接收侧32可以位于同一个FlexE设备中,也可以位于不同的FlexE设备中。例如图1中的FlexE设备,可以只包含发送侧或接收侧,也可以同时包含接收侧和发送侧。
如图3a所示,发送侧31的处理过程可以包括如下步骤:301,获取CPRI.1,CPRI.2,...,CPRI.7中的任意一种或多种CPRI信号。CPRI信号可以从BBU或RRU接收的。CPRI信号的编码格式采用8B/10B编码。可选的,将CPRI信号从8B/10B编码转换为64B/66B编码。302,可选的,对编码后的CPRI信号进行速率适配。303,将CPRI信号映射到FlexE服务层时隙中,生成FlexE信号,将FlexE信号发送一路或多路物理通道中。可选的,该物理通道为一路或多路子时分通道,或者为一路或多路PHY通道,或者为一路或多路PHY子时分通道。接收侧32的处理过程可以包括如下步骤:304,从物理通道接收到FlexE信号,将CPRI信号从FlexE信号的FlexE服务层时隙中解映射出来。可选的,该物理通道为一路或多路子时分通道,或者为一路或多路PHY通道,或者为一路或多路PHY子时分通道。305,可选的,将CPRI信号进行速率还原。如果发送侧对CPRI信号进行了速率适配,则可以对CPRI信号进行速率还原,即将CPRI信号的速率恢复为速率适配之前的速率。306,可选的,如果发送侧将CPRI信号从8B/10B编码转换为64B/66B编码,则可以将CPRI信号从64B/66B编码转换为8B/10B编码。将CPRI信号的编码块数据流发送出去,例如可以发送给RRU或BBU。
图3b为本发明实施例提供的一种CPRI.8~CPRI.10信号处理的装置结构示意图。图中虚线框图对应的步骤为可选的步骤。如图3b所示,CPRI.8~CPRI.10信号处理的装置400包括发送侧41和接收侧42。发送侧41和接收侧42可以位于同一个FlexE设备中,也可以 位于不同的FlexE设备中。图3a和图3b的区别在于,图3a中CPRI.1,CPRI.2,...,CPRI.7这七种速率等级的CPRI信号采用8B/10B编码,而图3b中CPRI.8,CPRI.9和CPRI.10这三种速率等级的CPRI信号采用64B/66B编码。可选的,如图3a所示的301,为了和CPRI.8~CPRI.10的64B/66B编码格式保持一致,可以将CPRI.1~CPRI.7中的任意一种或多种CPRI信号转换为64B/66B编码。而图3b的CPRI.8~CPRI.10采用64B/66B编码格式,在图3b的401和406中可以不需要进行编码格式的转换。可选的,还可以将CPRI.8~CPRI.10转换为8B/10B编码,CPRI.1~CPRI.7采用8B/10B编码。可选的,还可以不对CPRI信号进行编码格式转换,即CPRI.1~CPRI.7采用8B/10B编码,CPRI.8~CPRI.10采用64B/66B编码格式。图3b中402-405的处理过程可以参考图3a中302-305的处理过程。
本发明实施例以CPRI.1~CPRI.7转换为64B/66B编码,CPRI.8~CPRI.10采用64B/66B编码为例进行说明。CPRI.1~CPRI.7转换为64B/66B编码后,线路速率会发生变化。表2为CPRI.1~CPRI.7经过编码格式转换的线路速率表。表2中的CPRI.1~CPRI.7经过编码格式转换,线路速率发生变化。CPRI.8~CPRI.10未经过编码格式转换,线路速率不变,仍采用表1中的线路速率。
表2
CPRI类型 编码转换前线路速率(Mbit/s) 编码转换后线路速率(Mbit/s)
CPRI.1 614.4(8B/10B) 506.880(64B/66B)
CPRI.2 1228.8(8B/10B) 1013.760(64B/66B)
CPRI.3 2457.6(8B/10B) 2027.520(64B/66B)
CPRI.4 3072.0(8B/10B) 2534.400(64B/66B)
CPRI.5 4915.2(8B/10B) 4055.040(64B/66B)
CPRI.6 6144.0(8B/10B) 5068.800(64B/66B)
CPRI.7 9830.4(8B/10B) 8110.080(64B/66B)
CPRI.8 10137.6(64B/66B) (不涉及)
CPRI.9 12165.12(64B/66B) (不涉及)
CPRI.10 24330.24(64B/66B) (不涉及)
CPRI.1~CPRI.7采用64B/66B编码格式,可以有效地兼容CPRI.8~CPRI.10的编码格式,并且兼容25GE的PHY通道。图4是本发明实施例提供的64B/66B编码格式示意图。64B/66B编码可以包括同步头为01的数据码块(D0D1D2D3/D4D5D6D7)和同步头为10的控制码块。64B/66B编码格式还可以参考IEEE 802.3中定义的编码格式。
下面对发送侧的处理过程进行详细描述:
CPRI信号可以从BBU经过一个或多个FlexE设备发送到RRU,也可以从RRU经过一个或多个FlexE设备发送到BBU。发送侧可以从BBU或RRU接收CPRI信号。可选的,当CPRI信号需要从8B/10B编码转换为64B/66B编码时,基于8B/10B编码的CPRI超帧的帧头(或者称为同步字节)K28.5需要重新进行指示。图5为本发明实施例提供的一种CPRI同步控制字的64B/66B编码格式示意图。例如,可以采用64B/66B编码的同步字节50h进行指示。可选的,还可以采用预设的64B/66B编码中的其他控制字的组合进行指示。
由于CPRI信号和其映射的时隙带宽存在速率差异,可选的,可以在303(或403)之前,执行302(或402),可以对CPRI信号进行速率适配或速率补偿,以匹配FlexE服务层时隙的速率。例如,可以采用空闲(IDLE)增删等速率适配或补偿方式,即在CPRI信号的编码块数据流中插入或删除空闲码块。可选的,还可以采用通用映射规程(Generic Mapping Procedure,GMP)的方案进行速率适配。例如,CPRI信号的编码块数据流中包括了用于承载CPRI信号的有效66B码块和用于速率适配的无效66B码块(如空闲码块)。计算一定数量的66B码块中包含的有效66B码块数量(例如,10个66B码块中包含了8个有效66B码块),并将有效66B码块数量的信息下插到FlexE开销中传递到接收端。接收端在再根据有效66B码块数量,按照一定算法还原出有效的66B码块,从而去掉无效的66B码块。GMP方案中,还可以将无效66B码块的数量插入到FlexE开销中,以便接收侧用于恢复有效的66B码块。
在303或403中,将CPRI信号的编码块数据流映射到一个或多个FlexE服务层时隙中,生成FlexE信号。FlexE信号即FlexE服务层时隙中传输的信息。FlexE服务层的构建可以采用基于以太网编码的时分复用(TDM)成帧技术。例如,FlexE服务层可以包括主时分层,可以称为Master Calendar或者Calendar。该主时分层包括长度为50x N个66B编码块,即该主时分层存在50x N个以66B编码块为单位的服务层时隙(Calendar Slot)。服务层时隙可以称为主时分层时隙。该例子中,N路25G的PHY通道组成的FlexE接口,每路PHY通道可以划分为50个时隙。该FlexE接口的带宽为N*25G,每个时隙的带宽可以通过以下公式计算:
25G x 66/64x(1023x 50/(1023x50+1))/50
根据上述公式计算出每个时隙的带宽大约为515.615Mbit/s。可以采用时隙带宽计算CPRI信号需要占用的FlexE服务层时隙的数量。如表3所示,表3为采用时隙带宽为515.615Mbit/s计算的各个速率等级的CPRI信号的时隙数量表。
表3
Figure PCTCN2017115254-appb-000002
FlexE的服务层时隙的带宽可以是根据无线前传接口信号的速率确定的,比如,该例子 中FlexE的时隙带宽为515.615Mbit/s,刚好稍大于最低速率等级的CPRI.1编码转换后的线路速率506.880Mbit/s。其他速率等级的CPRI信号也刚好能够适配到整数个FlexE的服务层时隙中,例如,CPRI.2~CPRI.10占用FlexE的服务层时隙数量分别为:2、4、5、8、10、16、20、24、48。可选的,FlexE的服务层时隙的带宽还可以等于CPRI.1编码转换后或编码转换前的线路速率。FlexE的服务层时隙的带宽还可以是CPRI.1编码转换后的线路速率的整数倍,也是可以是CPRI.1编码转换前的线路速率的整数倍。FlexE的服务层时隙的带宽还可以是依据CPRI.2~CPRI.10任意一种CPRI信号的速率确定的,也可以是依据其他类型的无线前传接口信号的速率确定的,例如,eCPRI信号或者NGFI信号。通过FlexE的服务层时隙的划分,可以提高CPRI信号等无线前传接口信号的传输效率。
将CPRI信号的编码块数据流映射到一定数量的FlexE的服务层时隙时,CPRI信号占用的时隙带宽可以大于或等于该CPRI信号的线路速率。例如,CPRI.1转换为64B/66B编码后的的线路速率为506.880Mbit/s,其占用1个FlexE服务层时隙的带宽为515.615Mbit/s,稍大于CPRI.1编码转换后的线路速率。
将FlexE信号发送一路或多路物理通道中,例如,将承载CPRI信号的FlexE的服务层时隙轮询分发到多路(N路)PHY子时分通道(也可以称为子时分通道、PHY通道)中。图6为本发明实施例提供的一种时隙分发的示意图。如图6所示,主时分层中包括了若干组时隙,图中示出了A、B、C、D四组,对应PHY子时分通道的数量N为4。每组时隙中可以包含50个时隙,slot0~slot49。一个时隙的传输单位可以为66B编码块,即一个时隙中可以发送连续若干个66B编码块形成的数据流,按图中箭头的指向方向连续不断地发送。该例子中,PHY子时分通道的带宽可以为25G,包括PHY A~PHY D。
可选的,在CPRI信号分发到多路PHY子时分通道之前,还可以每一路PHY子时分通道的数据流中上添加FlexE开销,生成FlexE帧。FlexE帧即FlexE信号的传输格式,即FlexE信号还可以包括FlexE开销。FlexE开销可以是一种66B控制码块。图7为本发明实施例提供的一种开销格式示意图。如图7所示,FlexE开销可以由8个66B编码块构成。该FlexE开销可以用于标识FlexE帧结构,例如第一个编码块的0x4B、0x05用于标识FlexE的帧结构。该FlexE开销还可以标识每路PHY子时分通道的顺序,例如通过第二个编码块的PHY图(PHY Map)标识。该FlexE开销可以标识当前承载的CPRI信号和FlexE时隙的对应关系,例如通过第三个编码块的客户端时隙分配表A/B(Client Calendar A/B)标识。可选的,FlexE开销还可以标识无线前传接口信号的信号类型(CPRI、eCPRI、NGFI等),例如,可以通过保留字段(Reserved)标识。具体地,在每路PHY子时分通道上,可以以一定的频率或周期,插入FlexE开销。
图8为本发明实施例提供的一种FlexE开销插入的方法示意图。图中黑色的方格表示FlexE开销。例如,可以按照一定的周期间隔,如以1023x 50个66B码块为周期,插入PHY子时分通道的FlexE的开销。当然,还可以采用其他的周期间隔,本发明不作限定。采用N*25G的FlexE接口,可以不用对PHY子时分通道进行拆分,也不用添加AM进行对齐,直接通过25G的PHY进行发送PHY子时分通道中携带的CPRI信号。
下面对接收侧的处理过程进行详细描述:
接收到FlexE信号,该FlexE信号可以包括一路或多路PHY子时分通道信号。接收侧 和发送侧可以位于不同的FlexE设备,接收侧可以从发送侧所在的FlexE设备接收到FlexE信号。例如,FlexE信号中包含了N路25G的PHY子时分通道,则可以获取每一路PHY子时分通道的信号。
将每一路PHY通道信号发送到FlexE的服务层时隙中,将CPRI信号从FlexE信号的服务层时隙中解映射出来。例如,识别每一路PHY子时分通道的FlexE开销。从FlexE开销识别出的信息可以包括FlexE帧结构、每路PHY子时分通道的顺序、当前承载的CPRI信号和FlexE时隙的对应关系、CPRI的信号类型等。根据FlexE开销的每路PHY子时分通道的顺序,可以对每路PHY子时分通道进行排序,还原PHY子时分通道的顺序。FlexE的服务层时隙可以包括如前文所述的主时分层,此处不再赘述。
可选的,如果发送侧对CPRI信号进行了速率适配,则接收侧可以对CPRI信号进行速率还原。例如可以采用空闲增删或GMP等方式进行速率还原。
将CPRI信号从FlexE如果发送侧对CPRI信号进行了编码转换,例如,将CPRI.1~CPRI.7中的任意一种或多种速率等级的CPRI信号从8B/10B编码转换为64B/66B编码,则接收侧可以将CPRI信号从64B/66B编码转换为8B/10B编码。如果发送侧未对CPRI信号进行编码转换,例如CPRI.8~CPRI.10中的任意一种或多种速率等级的CPRI信号采用64B/66B编码的格式,则将CPRI信号的64B/66B编码块数据流直接发送出去。例如,可以将CPRI信号的64B/66B编码块数据流发送给RRU或BBU。
可选的,本发明实施例中,还可以采用N*50GE的PHY或N*50G的PHY来构造N*50G的前传FlexE接口。本实施例中PHY速率的定义和64B/66B编码可以参考IEEE制定的50GE PHY规范。CPRI信号在N*50G的FlexE接口中的发送和接收处理过程,可以参考CPRI信号在N*25G的FlexE接口中的发送和接收处理过程。可选的,在N*50G的FlexE接口中,FlexE服务层中的主时分层可以包括长度为100×N个66B编码块为单位的时隙。N路50G的PHY通道组成的FlexE接口,每路PHY通道可以划分为100个时隙。每时隙的带宽大约为500Mbit/s。将该连续的100×N个66B编码块的FlexE服务层时隙时隙轮询分发到N路PHY子时分通道。每路PHY子时分通道具有连续的100个66B编码块的结构,每个时隙的传输单位可以为一个66B编码块。可选的,和N*25G的FlexE接口类似,可以在每一路PHY子时分通道的数据流中上添加FlexE开销。
上述实施例主要描述通过FlexE接口发送或接收CPRI业务(即以CPRI信号形式传输的业务)。FlexE接口除了传输CPRI业务之外,还可以传输以太网业务。例如,CPRI业务和以太网业务可以同时在一个FlexE接口中并行传输。在一个FlexE接口中,可以使用全部的FlexE服务层时隙承载以太网业务,或者使用全部的FlexE服务层时隙承载CPRI业务,也可以使用部分FlexE服务层时隙承载以太网业务,部分FlexE服务层时隙承载CPRI业务。以太网业务可以为1GE、10GE、25GE等业务。例如,将以太网业务映射到N*25G或N*50G的FlexE接口的服务层时隙时,如果每个服务层时隙的带宽为515.615Mbit/s,则1GE、10GE、25GE的以太网业务分别需要占用2、20、50个时隙。可选的,将以太网业务映射到FlexE服务层时隙时,可以采用IDLE增删的方式进行速率适配。
本发明实施例中,实现了通过FlexE承载CPRI、eCPRI、NGFI等无线前传接口信号,根据无线前传接口信号的速率对FlexE的服务层时隙进行划分,提高了前传FlexE接口的带宽 利用率以及提高了无线前传接口信号的传输效率。
图9是本发明实施例提供的一种网络设备的结构示意图。该网络设备可以为FlexE设备,可以具有N*25G、N*50G、N*100G等FlexE接口。该网络设备包括:获取模块901、映射模块902和发送模块903。
获取模块901,用于获取无线前传接口信号,所述无线前传接口信号包括多个编码块;
映射模块902,用于将所述无线前传接口信号映射到M个灵活以太网FlexE的服务层时隙中,生成FlexE信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;
发送模块903,用于将所述FlexE信号发送到一路或多路物理通道中。
该网络设备可以实现如图3a、图3b所示实施例的技术方案。例如,无线前传接口信号可以包括CPRI、eCPRI、NGFI等。
以无线前传接口信号为CPRI信号进行说明,CPRI信号可以包括CPRI.1~CPRI.7任意一种或多种编码格式为8B/10B编码的CPRI信号,也可以包括CPRI.8~CPRI.10任意一种或多种编码格式为64B/66B编码的CPRI信号。在CPRI信号映射到FlexE的服务层时隙之前,可以获取CPRI信号的多个64B/66B编码块。可选的,当获取到8B/10B编码的CPRI信号时,可以对8B/10B编码的CPRI信号进行编码格式转换,转换为64B/66B编码。
可选的,可以根据CPRI信号的速率对FlexE的服务层时隙进行划分,例如,FlexE的服务层时隙的带宽可以稍大于CPRI信号的最低速率,即CPRI.1的速率。由于对FlexE的服务层时隙进行灵活划分,可以使CPRI信号映射到整数个FlexE的服务层时隙中,例如,M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。还可以依据其他速率等级的CPRI信号或其他类型的无线前传接口信号的速率对FlexE的服务层时隙进行划分,从而实现提高FlexE的承载效率和提高CPRI信号的传输效率。
图10是本发明实施例提供的一种网络设备的结构示意图。该网络设备可以为FlexE设备,可以具有N*25G、N*50G、N*100G等FlexE接口。该网络设备包括接收模块1001、解映射模块1002和发送模块1003。
接收模块1001,用于通过一路或多路物理通道接收灵活以太网FlexE信号;
解映射模块1002,用于从所述FlexE信号的M个FlexE的服务层时隙中解映射得到无线前传接口信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;
发送模块1003,用于将所述无线前传接口信号发送出去,所述无线前传接口信号包括多个编码块。
该网络设备可以实现如图3a、图3b所示实施例的技术方案。例如,无线前传接口信号可以包括CPRI、eCPRI、NGFI等。
以无线前传接口信号为CPRI信号进行说明,CPRI信号可以包括CPRI.1~CPRI.7任意一种或多种编码格式为8B/10B编码的CPRI信号,也可以包括CPRI.8~CPRI.10任意一种或多种编码格式为64B/66B编码的CPRI信号。可选的,如果发送侧网络设备对CPRI.1~CPRI.7中的任意一种或多种信号从8B/10B编码转换为64B/66B编码,则针对CPRI.1~CPRI.7等信号,可以将CPRI信号从64B/66B编码转换为8B/10B编码。
可选的,可以根据CPRI信号的速率对FlexE的服务层时隙进行划分,例如,FlexE的服务层时隙的带宽可以稍大于CPRI信号的最低速率,即CPRI.1的速率。由于对FlexE的服务层时隙进行灵活划分,可以使CPRI信号映射到整数个FlexE的服务层时隙中,例如,M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。还可以依据其他速率等级的CPRI信号或其他类型的无线前传接口信号的速率对FlexE的服务层时隙进行划分,从而实现提高FlexE的承载效率和提高CPRI信号的传输效率。
图11是本发明实施例提供的一种网络系统的结构示意图。该网络系统可以至少包括两个网络设备,例如网络设备1101和网络设备1102。网络设备1101和网络设备1102中间还可以包括其他的网络设备。网络设备1101和网络设备1102可以为FlexE设备。网络设备1101、1102可以均执行发送功能和接收功能,例如,网络设备1101、1102均可以实现如图3a、图3b所示的实施例的技术方案。网络设备1101、1102也可以仅执行发送功能和接收功能中的其中一种功能。例如,当网络设备1101为发送端网络设备时,则可以执行如图9所示的实施例的技术方案;当网络设备1102为接收端网络设备时,则可以执行如图10所示的实施例的技术方案。
图12是本发明实施例提供的一种网络设备的结构示意图。如图12所示,网络设备1200包括:包括处理器1201、存储器1202、输入/输出接口1203、通信接口1204和总线1205。其中,处理器1201、存储器1202、输入/输出接口1203和通信接口1204通过总线1205实现彼此之间的通信连接。
处理器1201可以采用通用的中央处理器(Central Processing Unit,CPU),微处理器,应用专用集成电路(Application Specific Integrated Circuit,ASIC),或者至少一个集成电路,用于执行相关程序,以实现本发明实施例所提供的技术方案。
存储器1202可以是只读存储器(Read Only Memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(Random Access Memory,RAM)。存储器1202可以存储操作系统和其他应用程序。在通过软件或者固件来实现本发明实施例提供的技术方案时,用于实现本发明实施例提供的技术方案的程序代码保存在存储器1202中,并由处理器1201来执行。
输入/输出接口1203用于接收输入的数据和信息,输出操作结果等数据。
通信接口1204使用例如但不限于收发器一类的收发装置,来实现网络设备1200与其他设备或通信网络之间的通信。
总线1205可包括一通路,在网络设备1200各个部件(例如处理器1201、存储器1202、输入/输出接口1203和通信接口1204)之间传送信息。
网络设备1200通过通信接口1204获取获取无线前传接口信号,所述无线前传接口信号包括多个编码块;通过处理器1201执行保存于存储器1202的代码,将所述无线前传接口信号映射到M个灵活以太网FlexE的服务层时隙中,生成FlexE信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;通过通信接口1204将所述FlexE信号发送到一路或多路物理通道中。
网络设备1200通过通信接口1204中一路或多路物理通道接收灵活以太网FlexE信号;通过处理器1201执行保存于存储器1202的代码,从所述FlexE信号的M个FlexE的服务 层时隙中解映射得到无线前传接口信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;通过通信接口1204将所述无线前传接口信号发送出去,所述无线前传接口信号包括多个编码块。
具体地,通过图12所示的网络设备1200可以实现图9、图10所示的网络设备的功能。应注意,尽管图12所示的网络设备1200仅仅示出了处理器1201、存储器1202、输入/输出接口1203、通信接口1204以及总线1205,但是在具体实现过程中,本领域的技术人员应当明白,网络设备1200还包含实现正常运行所必须的其他器件。同时,根据具体需要,本领域的技术人员应当明白,网络设备1200还可包含实现其他附加功能的硬件器件。此外,本领域的技术人员应当明白,网络设备1200也可仅仅包含实现本发明实施例所必须的器件,而不必包含图12中所示的全部器件。
本发明实施例中,实现了通过FlexE承载CPRI、eCPRI、NGFI等无线前传接口信号,根据无线前传接口信号的速率对FlexE的服务层时隙进行划分,提高了前传FlexE接口的带宽利用率以及提高了无线前传接口信号的传输效率。
本领域普通技术人员将会理解,本发明的各个方面、或各个方面的可能实现方式可以被具体实施为系统、方法或者计算机程序产品。因此,本发明的各方面、或各个方面的可能实现方式可以采用完全硬件实施例、完全软件实施例(包括固件、驻留软件等等),或者组合软件和硬件方面的实施例的形式,在这里都统称为“电路”、“模块”或者“系统”。此外,本发明的各方面、或各个方面的可能实现方式可以采用计算机程序产品的形式,计算机程序产品是指存储在计算机可读介质中的计算机可读程序代码。
以上所述仅为本发明的几个实施例,本领域的技术人员依据申请文件公开的可以对本发明进行各种改动或变型而不脱离本发明的精神和范围。

Claims (27)

  1. 一种发送无线前传接口信号的方法,其特征在于,所述方法包括:
    网络设备获取无线前传接口信号,所述无线前传接口信号包括多个编码块;
    将所述无线前传接口信号映射到M个灵活以太网FlexE的服务层时隙中,生成FlexE信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;
    将所述FlexE信号发送到一路或多路物理通道中。
  2. 如权利要求1所述的方法,其特征在于,所述FlexE的服务层时隙的带宽大于或等于所述无线前传接口信号的最低速率。
  3. 如权利要求1或2所述的方法,其特征在于,所述编码块为64B/66B编码块。
  4. 如权利要求3所述的方法,其特征在于,所述获取无线前传接口信号,包括:
    获取8B/10B编码的无线前传接口信号,对所述8B/10B编码的无线前传接口信号进行编码格式转换,所述进行编码格式转换后的无线前传接口信号包括多个64B/66B编码块。
  5. 如权利要求1或2所述的方法,其特征在于,所述M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。
  6. 如权利要求1或2所述的方法,其特征在于,所述物理通道的带宽为25G或50G。
  7. 如权利要求1或2所述的方法,其特征在于,所述方法还包括:
    对所述无线前传接口信号进行速率适配,使得所述无线前传接口信号的速率与所述FlexE的服务层时隙的速率相适配。
  8. 一种接收公共无线接口无线前传接口信号的方法,其特征在于,所述方法包括:
    网络设备通过一路或多路物理通道接收灵活以太网FlexE信号;
    从所述FlexE信号的M个FlexE的服务层时隙中解映射得到无线前传接口信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;
    将所述无线前传接口信号发送出去,所述无线前传接口信号包括多个编码块。
  9. 如权利要求8所述的方法,其特征在于,所述FlexE的服务层时隙的带宽大于或等于所述无线前传接口信号的最低速率。
  10. 如权利要求8或9所述的方法,其特征在于,所述编码块为64B/66B编码块。
  11. 如权利要求10所述的方法,其特征在于,所述将所述无线前传接口信号发送出去,包括:
    将64B/66B编码的无线前传接口信号进行编码格式转换,将所述进行编码格式转换后的无线前传接口信号发送出去,所述进行编码格式转换后的无线前传接口信号包括多个8B/10B编码块。
  12. 如权利要求8或9所述的方法,其特征在于,所述M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。
  13. 如权利要求8或9所述的方法,其特征在于,所述物理通道的带宽为25G或50G。
  14. 一种网络设备,其特征在于,所述网络设备包括:
    获取模块,用于获取无线前传接口信号,所述无线前传接口信号包括多个编码块;
    映射模块,用于将所述无线前传接口信号映射到M个灵活以太网FlexE的服务层时隙中,生成FlexE信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;
    发送模块,用于将所述FlexE信号发送到一路或多路物理通道中。
  15. 如权利要求14所述的网络设备,其特征在于,所述FlexE的服务层时隙的带宽大于或等于所述无线前传接口信号的最低速率。
  16. 如权利要求14或15所述的网络设备,其特征在于,所述编码块为64B/66B编码块。
  17. 如权利要求16所述的网络设备,其特征在于,所述获取模块,用于:
    获取8B/10B编码的无线前传接口信号,对所述8B/10B编码的无线前传接口信号进行编码格式转换,所述进行编码格式转换后的无线前传接口信号包括多个64B/66B编码块。
  18. 如权利要求14或15所述的网络设备,其特征在于,所述M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。
  19. 如权利要求14或15所述的网络设备,其特征在于,所述物理通道的带宽为25G或50G。
  20. 如权利要求14或15所述的网络设备,其特征在于,所述网络设备还包括:
    速率适配模块,用于对所述无线前传接口信号进行速率适配,使得所述无线前传接口信号的速率与所述FlexE的服务层时隙的速率相适配。
  21. 一种网络设备,其特征在于,所述网络设备包括:
    接收模块,用于通过一路或多路物理通道接收灵活以太网FlexE信号;
    解映射模块,用于从所述FlexE信号的M个FlexE的服务层时隙中解映射得到无线前传接口信号,所述FlexE的服务层时隙根据所述无线前传接口信号的速率确定,所述M为大于或等于1的正整数;
    发送模块,用于将所述无线前传接口信号发送出去,所述无线前传接口信号包括多个编码块。
  22. 如权利要求21所述的网络设备,其特征在于,所述FlexE的服务层时隙的带宽大于或等于所述无线前传接口信号的最低速率。
  23. 如权利要求21或22所述的网络设备,其特征在于,所述编码块为64B/66B编码块。
  24. 如权利要求23所述的网络设备,其特征在于,所述发送模块,用于:
    将64B/66B编码的无线前传接口信号进行编码格式转换,将所述进行编码格式转换后的无线前传接口信号发送出去,所述进行编码格式转换后的无线前传接口信号包括多个8B/10B编码块。
  25. 如权利要求21或22所述的网络设备,其特征在于,所述M的取值包括:1、2、4、5、8、10、16、20、24、48中的任意一个。
  26. 如权利要求21或22所述的网络设备,其特征在于,所述物理通道的带宽为25G或50G。
  27. 一种网络系统,其特征在于,所述网络系统包括如权利要求14-20任一所述的网络设备和如权利要求21-26任一所述的网络设备。
PCT/CN2017/115254 2016-12-27 2017-12-08 一种传输无线接口前传信号的方法、网络设备和系统 WO2018121224A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP17888697.4A EP3531643A4 (en) 2016-12-27 2017-12-08 WIRELESS FRONTHAUL INTERFACE SIGNAL TRANSMISSION METHOD, NETWORK DEVICE AND SYSTEM
US16/453,795 US11032024B2 (en) 2016-12-27 2019-06-26 Radio fronthaul interface signal transmission method, network device, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611225525.0A CN108243128B (zh) 2016-12-27 2016-12-27 一种传输无线接口前传信号的方法、网络设备和系统
CN201611225525.0 2016-12-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/453,795 Continuation US11032024B2 (en) 2016-12-27 2019-06-26 Radio fronthaul interface signal transmission method, network device, and system

Publications (1)

Publication Number Publication Date
WO2018121224A1 true WO2018121224A1 (zh) 2018-07-05

Family

ID=62701721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115254 WO2018121224A1 (zh) 2016-12-27 2017-12-08 一种传输无线接口前传信号的方法、网络设备和系统

Country Status (4)

Country Link
US (1) US11032024B2 (zh)
EP (1) EP3531643A4 (zh)
CN (1) CN108243128B (zh)
WO (1) WO2018121224A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111314404A (zh) * 2018-12-12 2020-06-19 深圳市中兴微电子技术有限公司 一种基于FlexE的数据处理的方法及装置、设备及存储介质
WO2020156642A1 (en) * 2019-01-29 2020-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Cpri data block transmission method and apparatus
KR20210024178A (ko) * 2018-09-28 2021-03-04 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법, 통신 장치 및 저장 매체
CN113746675A (zh) * 2021-08-31 2021-12-03 烽火通信科技股份有限公司 一种用HQoS实现灵活以太网业务场景的方法及系统
EP3873029A4 (en) * 2018-10-22 2022-03-16 ZTE Corporation METHOD FOR DETECTING CONFIGURATION OF PORT, TERMINAL AND COMPUTER READABLE INFORMATION MEDIA
CN115209483A (zh) * 2021-04-13 2022-10-18 大唐移动通信设备有限公司 Aau前传接口、aau及aau前传接口速率调整方法

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4277439A3 (en) * 2017-08-17 2024-01-17 Telefonaktiebolaget LM Ericsson (publ) Method and transition device for enabling communication of data in a wireless network
CN110830152B (zh) 2018-08-07 2021-04-09 华为技术有限公司 接收码块流的方法、发送码块流的方法和通信装置
CN111278059B (zh) * 2018-12-04 2023-09-01 中兴通讯股份有限公司 一种报文转发方法和装置
CN110049512B (zh) * 2019-04-22 2022-08-02 武汉虹信科技发展有限责任公司 一种前传网络数据处理装置及方法
CN112118069B (zh) * 2019-06-20 2023-05-05 中国移动通信有限公司研究院 前传网络的管控方法及网络设备
US20210076111A1 (en) * 2019-09-05 2021-03-11 Ciena Corporation Flexible Ethernet over wireless links
KR20210046486A (ko) 2019-10-18 2021-04-28 삼성전자주식회사 무선 통신 시스템에서 프론트홀 전송을 위한 장치 및 방법
KR20210051582A (ko) 2019-10-30 2021-05-10 삼성전자주식회사 무선 통신 시스템에서 프론트홀 전송을 위한 장치 및 방법
US20240089078A1 (en) * 2019-11-07 2024-03-14 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for communication between two communication devices
WO2021134493A1 (zh) * 2019-12-31 2021-07-08 华为技术有限公司 基带射频接口、通信系统和信号接收方法
CN113141620B (zh) * 2020-01-20 2022-04-15 烽火通信科技股份有限公司 一种FlexE业务处理方法和装置
US11425601B2 (en) * 2020-05-28 2022-08-23 At&T Intellectual Property I, L.P. Pooling of baseband units for 5G or other next generation networks
CN112511382B (zh) * 2020-11-24 2022-03-29 中盈优创资讯科技有限公司 灵活以太网FlexE通道的创建方法及装置
CN115276887A (zh) * 2021-04-29 2022-11-01 华为技术有限公司 一种灵活以太网的数据处理方法及相关装置
CN113726435B (zh) * 2021-07-09 2022-12-13 北京航天控制仪器研究所 一种应用于多服务ddas系统的高效率前传网络传输方法
CN114422069B (zh) * 2022-01-04 2023-12-05 烽火通信科技股份有限公司 FlexE业务的时延处理方法、装置、设备及存储介质
CN114615136B (zh) * 2022-03-04 2023-10-27 浙江国盾量子电力科技有限公司 一种5G智能电网切片的FlexE接口管理方法
CN115865277B (zh) * 2022-11-30 2023-12-15 苏州异格技术有限公司 灵活以太网的数据处理方法、装置、存储介质、电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502985A (zh) * 2013-04-12 2014-01-08 华为技术有限公司 一种数据处理的方法、装置及系统
US20150071311A1 (en) * 2013-09-09 2015-03-12 Applied Micro Circuits Corporation Reformating a plurality of signals to generate a combined signal comprising a higher data rate than a data rate associated with the plurality of signals
CN105871502A (zh) * 2015-01-22 2016-08-17 华为技术有限公司 一种利用以太网信道传输业务信号的方法及通信设备
WO2016202296A1 (zh) * 2015-06-19 2016-12-22 华为技术有限公司 数据承载的方法、装置以及数据解析的方法、装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10218823B2 (en) * 2015-06-30 2019-02-26 Ciena Corporation Flexible ethernet client multi-service and timing transparency systems and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103502985A (zh) * 2013-04-12 2014-01-08 华为技术有限公司 一种数据处理的方法、装置及系统
US20150071311A1 (en) * 2013-09-09 2015-03-12 Applied Micro Circuits Corporation Reformating a plurality of signals to generate a combined signal comprising a higher data rate than a data rate associated with the plurality of signals
CN105871502A (zh) * 2015-01-22 2016-08-17 华为技术有限公司 一种利用以太网信道传输业务信号的方法及通信设备
WO2016202296A1 (zh) * 2015-06-19 2016-12-22 华为技术有限公司 数据承载的方法、装置以及数据解析的方法、装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531643A4

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11451420B2 (en) 2018-09-28 2022-09-20 Huawei Technologies Co., Ltd. Data transmission method, communications device, and storage medium
KR20210024178A (ko) * 2018-09-28 2021-03-04 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법, 통신 장치 및 저장 매체
EP3813312A4 (en) * 2018-09-28 2021-10-20 Huawei Technologies Co., Ltd. DATA TRANSMISSION PROCESS, COMMUNICATION DEVICE AND INFORMATION SUPPORT
JP7167345B2 (ja) 2018-09-28 2022-11-08 華為技術有限公司 データ伝送方法、通信機器、および記憶媒体
JP2021534702A (ja) * 2018-09-28 2021-12-09 華為技術有限公司Huawei Technologies Co., Ltd. データ伝送方法、通信機器、および記憶媒体
KR102397719B1 (ko) 2018-09-28 2022-05-12 후아웨이 테크놀러지 컴퍼니 리미티드 데이터 전송 방법, 통신 장치 및 저장 매체
EP3873029A4 (en) * 2018-10-22 2022-03-16 ZTE Corporation METHOD FOR DETECTING CONFIGURATION OF PORT, TERMINAL AND COMPUTER READABLE INFORMATION MEDIA
CN111314404B (zh) * 2018-12-12 2022-08-02 深圳市中兴微电子技术有限公司 一种基于FlexE的数据处理的方法及装置、设备及存储介质
CN111314404A (zh) * 2018-12-12 2020-06-19 深圳市中兴微电子技术有限公司 一种基于FlexE的数据处理的方法及装置、设备及存储介质
WO2020156642A1 (en) * 2019-01-29 2020-08-06 Telefonaktiebolaget Lm Ericsson (Publ) Cpri data block transmission method and apparatus
CN115209483A (zh) * 2021-04-13 2022-10-18 大唐移动通信设备有限公司 Aau前传接口、aau及aau前传接口速率调整方法
CN115209483B (zh) * 2021-04-13 2024-05-24 大唐移动通信设备有限公司 Aau前传接口、aau及aau前传接口速率调整方法
CN113746675A (zh) * 2021-08-31 2021-12-03 烽火通信科技股份有限公司 一种用HQoS实现灵活以太网业务场景的方法及系统
CN113746675B (zh) * 2021-08-31 2023-05-26 烽火通信科技股份有限公司 一种用HQoS实现灵活以太网业务场景的方法及系统

Also Published As

Publication number Publication date
CN108243128A (zh) 2018-07-03
US11032024B2 (en) 2021-06-08
US20190319742A1 (en) 2019-10-17
CN108243128B (zh) 2020-10-23
EP3531643A1 (en) 2019-08-28
EP3531643A4 (en) 2019-12-11

Similar Documents

Publication Publication Date Title
WO2018121224A1 (zh) 一种传输无线接口前传信号的方法、网络设备和系统
CN108809901B (zh) 一种业务承载的方法、设备和系统
JP4878629B2 (ja) 多重伝送システムおよび多重伝送方法
EP3319254A1 (en) Method for data transmission, transmitter and receiver
US9225462B2 (en) Method, apparatus and system for transmitting and receiving client signals
JP6736701B2 (ja) サービス送信方法及び装置、サービス受信方法及び装置、並びにネットワーク・システム
US10333644B2 (en) Encapsulating digital communications signals for transmission on an optical link
CN108631908B (zh) 使用FlexE承载信号帧的方法、FlexE信号帧还原的方法及装置
JP2015531194A (ja) 光伝送ネットワークにおいてクライアント信号を送信し、かつ受信するための方法及び装置
WO2008125060A1 (en) A method for transporting the client signal in the optical transport network and an equipment thereof
WO2017124787A1 (zh) 一种传输公共无线接口信号的方法和设备
CN101695144A (zh) 一种支持多业务接入和传输的方法及系统
US12021615B2 (en) Data processing method, optical transmission device, and digital processing chip
US20220239379A1 (en) Signal Sending and Receiving Method, Apparatus, and System
US20220021472A1 (en) CPRI Data Block Transmission Method and Apparatus
US9137850B2 (en) Wired/wireless converged MAC adaptor and method of transmitting frame using wired/wireless converged MAC adaptor
WO2011113257A1 (zh) 光传送网络设备和光传送网络的带宽调整方法
WO2014124595A1 (zh) 数据的映射、解映射方法及装置
CN113472826A (zh) 一种业务承载、提取方法、数据交换方法及设备
WO2021208718A1 (zh) 一种带宽调整的方法以及相关设备
JP5976253B1 (ja) 光通信システム
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17888697

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017888697

Country of ref document: EP

Effective date: 20190524

NENP Non-entry into the national phase

Ref country code: DE