WO2009155870A1 - 一种客户信号的发送、接收方法、装置和系统 - Google Patents

一种客户信号的发送、接收方法、装置和系统 Download PDF

Info

Publication number
WO2009155870A1
WO2009155870A1 PCT/CN2009/072449 CN2009072449W WO2009155870A1 WO 2009155870 A1 WO2009155870 A1 WO 2009155870A1 CN 2009072449 W CN2009072449 W CN 2009072449W WO 2009155870 A1 WO2009155870 A1 WO 2009155870A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical channel
order optical
channel data
unit
data unit
Prior art date
Application number
PCT/CN2009/072449
Other languages
English (en)
French (fr)
Inventor
董立民
吴秋游
钟其文
姚志瑛
马腾维塞斯
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=41444046&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2009155870(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to BRPI0905090-6A priority Critical patent/BRPI0905090A2/pt
Priority to EP09768795A priority patent/EP2178234A4/en
Priority to JP2010528268A priority patent/JP2010541509A/ja
Publication of WO2009155870A1 publication Critical patent/WO2009155870A1/zh
Priority to US12/721,338 priority patent/US8693480B2/en
Priority to US13/295,613 priority patent/US8374186B2/en
Priority to US14/180,096 priority patent/US9225462B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems
    • H04J14/086Medium access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1664Optical Transport Network [OTN] carrying hybrid payloads, e.g. different types of packets or carrying frames and packets in the paylaod

Definitions

  • the present invention relates to the field of optical networks, and in particular, to a method and a device for transmitting and receiving a client signal.
  • OTN Optical Transport Network
  • OAM Operaation Administration and Maintenance
  • TCM Tudem Connection Monitor
  • FEC Forward Error Correction
  • customer signals such as Ethernet, FC (Fibre Channel, Fibre Channel) and SDH (Synchronous Digital Hierarchy).
  • ODUk Optical Channel Data Unit-k
  • the rate of four data units in the ODUk is pre-set.
  • the rate of ODU1 is 2.5G
  • the rate of ODU2 is 10G
  • the rate of ODU3 is 40G
  • the rate of ODU4 is 112G.
  • the sender cannot accurately match the rate of the ODUk with the rate of the client signal to be transmitted.
  • the bandwidth of the OTN transmission channel is extremely wasted.
  • the transmitting end needs to bundle multiple client signals and map them together into one ODUk, which is not conducive to the management of each client signal by OTN.
  • Embodiments of the present invention provide a method, an apparatus, and a system for transmitting and receiving a client signal.
  • the bandwidth of the OTN transmission channel is saved.
  • it provides powerful management capabilities for each customer signal.
  • a method for transmitting a client signal comprising: mapping the client signal to be sent to a lower-order optical channel data unit corresponding to a lower-order optical channel data unit set, wherein the low-order optical channel data unit is concentrated The rate of the low-order optical channel data unit is sequentially increased, and has a rate correspondence relationship with the client signal; the mapped lower-order optical channel data unit is mapped to the high-order optical channel payload unit time slot of the higher-order optical channel payload unit set; Adding overhead to the mapped high-order optical channel payload unit to form an optical channel transmission unit, and transmitting the optical channel transmission unit to the optical transmission network OTN for transmission.
  • a transmitting device for a client signal comprising: a first mapping unit, configured to map a client signal to be transmitted into a lower-order optical channel data unit corresponding to a lower-order optical channel data unit set, wherein the low-order optical unit The rate of the lower-order optical channel data unit in the channel data unit is increased sequentially, and has a rate correspondence relationship with the client signal; the second mapping unit is configured to obtain the mapped low-order optical channel obtained by the first mapping unit.
  • the data unit is mapped to the high-order optical channel payload unit time slot of the high-order optical channel payload unit set; the sending unit is configured to add an overhead to the high-order optical channel payload unit obtained by the second mapping unit to form an optical channel transmission unit, And transmitting the optical channel transmission unit to the OTN for transmission.
  • a method for receiving a client signal comprising: receiving a data frame, obtaining a high-order optical channel payload unit in a high-order optical channel payload unit set; de-mapping the high-order optical channel payload unit to obtain a rate of a low-order optical channel data unit concentration a successively increasing low-order optical channel data unit; the low-order light of the low-order optical channel data unit set according to a correspondence between a client signal and a low-order optical channel data unit of the low-order optical channel data unit set The channel data unit is demapped to obtain the client signal.
  • a receiving device for a client signal comprising: a receiving unit, configured to receive a data frame, to obtain a high-order optical channel payload unit in a high-order optical channel payload unit set; a first demapping unit, configured to perform the high-order optical channel payload unit De-mapping, obtaining successively increasing low-order optical channel data units in the low-order optical channel data unit set; second demapping unit, configured to map low-order optical channel data according to the client signal and the low-order optical channel data unit Corresponding relationships between the units, de-mapping the low-order optical channel data units of the low-order optical channel data unit set to obtain a client signal.
  • a transmission system for a client signal comprising a transmitting device and a receiving device.
  • the transmitting end constructs a low-order optical channel data unit set with increasing rate, and establishes a client signal to be transmitted and a low-order optical channel data unit in the low-order optical channel data unit according to the rate.
  • the correspondence between the two and the client signals to be transmitted are respectively mapped into corresponding low-order optical channel data units in the low-order optical channel data unit set.
  • the rate of the client signal can be accurately matched to the rate of the low-order optical channel data unit in the low-order optical channel data unit set, thereby saving the channel bandwidth of the OTN transmission.
  • the transmitting end maps the multiple client signals to the low-order optical channel data units according to the correspondence between the client signals to be transmitted and the low-order optical channel data units in the low-order optical channel data unit groups that are sequentially increased. And mapping, in the corresponding low-order optical channel data unit, each low-order optical channel data unit in the low-order optical channel data unit set to different time slots of the high-order optical channel payload unit of the high-order optical channel payload unit set, and adopting data
  • the frame is transmitted to the optical transport network OTN for transmission, thereby facilitating the management of each client signal by the OTN.
  • each sub-data unit in the low-order optical channel data unit adopts a consistent frame structure, and also provides powerful management capabilities for each client signal.
  • FIG. 1 is a flow chart of an embodiment of a method for transmitting a client signal according to the present invention
  • FIG. 2 is a flow chart of an embodiment of a method for transmitting a client signal according to the present invention
  • FIG. 3 is a flow chart of an embodiment of a method for transmitting a client signal according to the present invention.
  • FIG. 4 is a structural diagram of an embodiment of a device for transmitting a client signal according to the present invention.
  • FIG. 5 is a flowchart of an embodiment of a method for receiving a client signal according to the present invention.
  • FIG. 6 is a flow chart of an embodiment of a method for receiving a client signal according to the present invention.
  • FIG. 7 is a flow chart of an embodiment of a method for receiving a client signal according to the present invention.
  • Figure 8 is a block diagram showing an embodiment of a receiving apparatus for a client signal according to the present invention.
  • a flow chart of a first embodiment of a method for transmitting a client signal according to the present invention includes the following steps:
  • Step 101 successively according to the rate of the client signal to be sent and the low-order optical channel data unit set Corresponding relationship between the increased low-order optical channel data units, mapping the client signal to be transmitted into a corresponding low-order optical channel data unit;
  • Step 102 Mapping the mapped lower-order optical channel data unit to a high-order optical channel payload unit time slot of the high-order optical channel payload unit set;
  • Step 103 Add a cost to the mapped high-order optical channel payload unit to form an optical channel transmission unit, and send the optical channel transmission unit to the optical transmission network OTN for transmission.
  • the multiple client signals are respectively mapped into different low-order optical channel data units of the low-order optical channel data unit set, and then the low-order optical channel data units in the low-order optical channel data unit set are mapped to the high-order optical channel payload.
  • the data frame is transmitted to the optical transport network OTN for transmission, which facilitates the management of each client signal by the OTN.
  • a flow chart of a second embodiment of a method for transmitting a client signal according to the present invention includes the following steps:
  • the rate of the smallest time slot particles concentrated is not intended to be the most of the ODUxt set
  • the specific rate of the small rate particle ODUlt is defined.
  • ITU International Telecommunication Union
  • one possible rate option is 238/227x2.488320 Gbit/s, which is approximately 2.6088993833 Gbit/s.
  • the rate of the minimum rate granularity ODUlt of the ODUxt set is set to the same rate as the ODU0 currently being discussed by the ITU, then the ODUxt set will be a rate set that is successively increased by a multiple of the ODU0 rate.
  • the ODU0 rate approximately 1.249 Gbit/s or approximately 1.244 Gbit/s. The advantage of using this rate is that it is compatible with existing ODUks, enabling ODUlt to be introduced into all OTN containers.
  • the embodiment of the present invention is not intended to limit the frame structure of the ODUxt.
  • the present invention proposes that the ODUxt frame structure adopts the ODUk frame structure defined by G.709, and the frequency offset of the ODUxt signal is also consistent with the existing G. 7 09. That is +/- 2 0ppm.
  • each CBR client signal may be mapped to the corresponding ODUxt by using an asynchronous mapping manner, such as a GMP (Generic Mapping Procedure) or an NJO/PJO asynchronous adjustment manner;
  • the packet type client signal may be encapsulated by a GFP (Generic Framing Procedure), and the encapsulated packet type client signal is mapped to the idle IDEL frame according to the selected ODUxt bandwidth.
  • GMP Generic Mapping Procedure
  • NJO/PJO NJO/PJO asynchronous adjustment manner
  • HO ODU4 112G 80 ODUlt, ODU2t...ODU80t According to the content of Table 2, HO ODU1 is taken as an example. HO ODU1 is divided into two time slots. Therefore, one HO ODU1 can carry two ODUlts or one ODU2t. When HO ODU1 7 carries two ODUlts, each HO ODU1 time slot carries one ODUlt; when one HO 0DU1 carries one way 0DU2t, two HO 0DU1 time slots are bundled to form one time slot group to jointly carry one way 0DU21.
  • the ODUxt may be mapped into a time slot or a time slot group of the HO ODUk by means of synchronous mapping or asynchronous mapping.
  • the asynchronous mapping can adopt the NJ0/PJ0 asynchronous adjustment method; or, the GMP method can also be adopted.
  • Step 203 Add an overhead for the HO ODUk carrying the client signal to form a HO OTUk;
  • Step 204 Send the HO OTUk to the OTN for transmission.
  • the centralized HO ODUk is transmitted after different time slots, which facilitates the management of each client signal by the OTN.
  • the rate of the ODUlt is 1.304449692 Gbit/s
  • the HO ODU1 is divided into two slots.
  • HO ODU2 is divided into 8 time slots
  • HO ODU3 is divided into 32 time slots
  • HO ODU4 is divided into 80 time slots.
  • the four-way client signal is sent, including two 10GE LANs, one STM-64, and one ODU2.
  • the sending method includes the following steps:
  • ODU8t-a encapsulates 1 channel 10GE LAN client signal, ODU8t-b package 1 channel 10GE LAN client signal, ODU8t-c package 1 channel STM-64 client signal, ODU8t-d package 1 channel ODU2 client signal.
  • the GMP mapping method can absorb the frequency difference between the client signal and the ODU8t.
  • the mapping method is as follows: According to the clock relationship between the client signal and the ODU8t, calculate the number of bytes Cn of the client signal carried by the ODU8t in one frame period, and then map the Cn value to the overhead area of the ODU8t, and pass the Sigma-Delta algorithm. Map Cn bytes to ODU8t.
  • Step 302 Map 4 ODU8t to 4 time slot groups formed by bundling every 8 time slots in HO ODU3 by using NJO/PJO asynchronous mapping mode;
  • each ODU 8t is mapped to a time slot group consisting of 8 time slot bundlings. Therefore, all 4 ODU 8t are mapped into 32 time slots of HO ODU3.
  • Step 303 Add an overhead for the HO ODU3 carrying the four-way client signal to form a HO OTU3.
  • the embodiment of the present invention further provides a device for transmitting a client signal.
  • FIG. 4 it is a structural diagram of a first embodiment of a device for transmitting a client signal according to the present invention.
  • the transmitting device includes a first mapping unit 401, a second mapping unit 402, and a transmitting unit 403.
  • the internal structure and the connection relationship are further described below in conjunction with the working principle of the device.
  • the first mapping unit 401 is configured to map the to-be-transmitted client signal to the phase according to a correspondence between the client signal to be transmitted and the low-order optical channel data unit that is sequentially increased at a rate of the low-order optical channel data unit set. Corresponding low-order optical channel data unit;
  • a second mapping unit 402 configured to use the mapped lower order optical channel obtained by the first mapping unit 401
  • the data unit is mapped to the high-order optical channel payload unit slot in the high-order optical channel payload unit set;
  • the sending unit 403 is configured to add an overhead to the high-order optical channel payload unit obtained by the second mapping unit, to form an optical channel transmission unit, and
  • the optical channel transmission unit is transmitted to the OTN for transmission.
  • the first mapping unit sends the client signals of any rate according to the correspondence between the low-order optical channel data units in the low-order optical channel data unit set to be sequentially increased according to the client signal to be transmitted and the rate. Can be mapped into corresponding low-order optical channel data units in the low-order optical channel data unit set, whereby the rate of the client signal to be transmitted and the rate of the low-order optical channel data unit in the low-order optical channel data unit set can be accurately The matching, thereby saving the bandwidth of the OTN transmission channel.
  • the mapping process of the channel payload unit time slot in the second mapping unit does not require complicated adjustment operations to implement the cartridge.
  • the constructed low-order optical channel data unit set flexibly adapts to each customer signal and provides a fully transparent mapping for these customer signals.
  • the first mapping unit maps the client signals to be sent to the corresponding low-order optical channel data units in the low-order optical channel data unit set, and then maps the low-order optical channel data units in the low-order optical channel data unit set.
  • each low-order optical channel data unit in the low-order optical channel data unit has a consistent frame structure and provides powerful management capabilities for each client signal.
  • a flowchart of a first embodiment of a method for receiving a client signal according to the present invention includes the following steps:
  • Step 501 Receive a data frame, and obtain a high-order optical channel payload unit in the high-order optical channel payload unit set;
  • Step 502 Demap the high-order optical channel payload unit to obtain a low-order optical channel data unit whose rate is gradually increased in the low-order optical channel data unit.
  • Step 503 Demap the low-order optical channel data unit of the low-order optical channel data unit set according to a correspondence between the client signal and the low-order optical channel data unit in the low-order optical channel data unit set to obtain a client. signal.
  • a lower-order optical channel data unit set with increasing rate is also constructed at the receiving end, according to the rate of the client signal to be transmitted and the low-order optical channel data unit in the low-order optical channel data unit set.
  • the corresponding relationship between the low-order optical channel data units in the low-order optical channel data unit set is de-mapped to obtain corresponding customer signals carried on the low-order optical channel data units in the low-order optical channel data unit set.
  • FIG. 6 is a flowchart of a second embodiment of a method for receiving a client signal according to the present invention, including the following steps:
  • Step 601 Receive a HO OTUk through a network interface.
  • Step 602 Parse the HO OTUk overhead, and obtain a HO ODUk carrying a client signal.
  • the ODUxt is demapped to obtain the corresponding client signal carried in the ODUxt.
  • the receiving method includes the following steps:
  • Step 701 Receive HO OTU3 through a network interface.
  • Step 702 Parse the overhead of HO OTU3, and obtain HO ODU3;
  • HO ODU3 is divided into 32 time slots, and 32 time slots are divided into 4 time slot groups.
  • Each time slot group is composed of 8 time slot bundles.
  • the four time slot groups respectively carry four ODU8t-a, ODU8t-b, ODU8t-c and ODU8t-d encapsulated with client signals.
  • ODU8t-a encapsulates 1 channel 10GE LAN client signal
  • ODU8t-b encapsulates 1 channel 10GE LAN client signal
  • ODU8t-c encapsulates 1 channel STM-64 client signal
  • ODU8t-d encapsulates 1 channel ODU2 client signal.
  • Step 703 Demap the HO ODU3 by using the NJO/PJO asynchronous demapping method to obtain
  • the embodiment of the present invention further provides a device for receiving a customer signal.
  • FIG. 8 it is a structural diagram of a first embodiment of a receiving device for a client signal according to the present invention.
  • the receiving device in the receiving device 801 includes a receiving unit 801, a first demapping unit 802, and a second demapping unit 803.
  • the internal structure and the connection relationship are further described below in conjunction with the working principle of the device.
  • the receiving unit 801 is configured to receive a data frame, and obtain a high-order optical channel payload unit in the high-order optical channel payload unit set;
  • a first demapping unit 802 configured to demap the high-order optical channel payload unit to obtain a low-order optical channel data unit whose rate is gradually increased in a low-order optical channel data unit set;
  • a second demapping unit 803 configured to: lower-order optical channel data units of the low-order optical channel data unit set according to a correspondence between a client signal and a low-order optical channel data unit in the low-order optical channel data unit set Demap and get the customer signal.
  • a transmission method of a client signal is implemented, including the foregoing transmission method and reception method, which have been described in detail above, and therefore will not be described again.
  • the present invention also provides a first embodiment of a client signal transmission system, including the aforementioned transmitting device and receiving device, which have been described in detail above, and therefore will not be described herein. .

Description

一种客户信号的发送、 接收方法、 装置和系统
本申请要求于 2008 年 6 月 26 日提交中国专利局、 申请号为 200810111493.0、 发明名称为"一种业务数据的发送、 接收方法、 装置和系统" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及光网络领域, 特别涉及一种客户信号的发送 、接收方法 、 装 置和系统 。
背景技术
OTN ( Optical Transport Network, 光传送网)作为下一代传送网的核心技 术, 不仅具备丰富的 OAM ( Operation Administration and Maintenance, 操作、 管理和维护)、 强大的 TCM(Tandem Connection Monitor, 串联连接监测)和带 夕卜 FEC ( Forward Error Correction , 向前纠错) 能力, 而且能够实现大容量业 务的灵活调度和管理, 现在已经日益成为骨干传送网的主流技术 。
随着数据业务类型的飞速发展, 运营商希望 ΟΤΝ能够为更多业务类型的 数据提供更好的支撑 。 比如, 以太网、 FC ( Fiber Channel, 光纤通道)和 SDH ( Synchronous Digital Hierarchy, 同步数字体系 )等客户信号。
目前, 现有技术中对多路多种类型的客户信号的传输是利用 ODUk ( Optical Channel Data Unit-k, 光通道数据单元 k ) 来实现的。 在发送端, 将 待发送的客户信号映射到 ODUk中;为 ODUk添加开销,形成 OTUk帧( Optical Channel Transport Unit-k, 光通道传送单元 k ); 将 OTUk帧发送到 OTN上进 行传输, 其中 k=l,2,3,4。
但是, 发明人在研究中发现, ODUk中的四个数据单元的速率是被预先设 置好的。 其中, ODU1的速率为 2.5G, ODU2的速率为 10G, ODU3的速率为 40G, ODU4的速率为 112G 。 发送端在将待发送的客户信号映射到 ODUk的 过程中, 不能够使 ODUk的速率与待发送的客户信号的速率达到精确的匹配。 由此, 导致了 OTN传送通道带宽的极大浪费。 同时, 对于多路客户信号, 发 送端需要将多路客户信号捆绑起来共同映射到一个 ODUk中,从而不利于 OTN 对每路客户信号的管理。
发明内容 本发明实施例提供了一种客户信号的发送、接收方法、 装置和系统。 以使 得客户信号的速率与 ODUk的速率可以精确的匹配,节约 OTN传送通道的带 宽。 同时, 为每路客户信号提供强大的管理能力。
本发明的实施例提供如下技术方案:
一种客户信号的发送方法, 包括: 将所述待发送的客户信号映射到低阶光 通道数据单元集中相对应的低阶光通道数据单元中, 其中, 所述低阶光通道数 据单元集中的低阶光通道数据单元的速率逐次增加,并与客户信号之间具有速 率对应关系;将映射后的低阶光通道数据单元映射到高阶光通道净荷单元集的 高阶光通道净荷单元时隙内; 将映射后的高阶光通道净荷单元添加开销, 形成 光通道传送单元, 并将所述光通道传送单元发送到光传送网 OTN上传输 。
一种客户信号的发送装置, 包括: 第一映射单元, 用于将待发送的客户信 号映射到低阶光通道数据单元集中相对应的低阶光通道数据单元中, 其中, 所 述低阶光通道数据单元集中的低阶光通道数据单元的速率逐次增加,并与客户 信号之间具有速率对应关系; 第二映射单元, 用于将所述第一映射单元得到的 映射后的低阶光通道数据单元映射到高阶光通道净荷单元集的高阶光通道净 荷单元时隙内; 发送单元, 用于将所述第二映射单元得到的所述高阶光通道净 荷单元添加开销,形成光通道传送单元,并将所述光通道传送单元发送到 OTN 上进行传输 。
一种客户信号的接收方法, 包括: 接收数据帧, 得到高阶光通道净荷单元 集中的高阶光通道净荷单元; 将所述高阶光通道净荷单元进行解映射,得到低 阶光通道数据单元集中的速率逐次增加的低阶光通道数据单元;根据客户信号 与所述低阶光通道数据单元集中的低阶光通道数据单元之间的对应关系,将所 述低阶光通道数据单元集的低阶光通道数据单元进行解映射,得到客户信号 。
一种客户信号的接收装置, 包括: 接收单元, 用于接收数据帧, 得到高阶 光通道净荷单元集中的高阶光通道净荷单元; 第一解映射单元, 用于将所述高 阶光通道净荷单元进行解映射,得到速率低阶光通道数据单元集中的逐次增加 的低阶光通道数据单元; 第二解映射单元, 用于根据客户信号与所述低阶光通 道数据单元集中的低阶光通道数据单元之间的对应关系,将所述低阶光通道数 据单元集的低阶光通道数据单元进行解映射, 得到客户信号 。
+ 一种客户信号的传输系统, 包括发送装置和接收装置。
在本发明的实施例中,发送端构建了一个速率逐次增加的低阶光通道数据 单元集,并按照速率建立待发送的客户信号与低阶光通道数据单元集中的低阶 光通道数据单元之间的对应关系,并将待发送的客户信号分别映射到低阶光通 道数据单元集中的相应低阶光通道数据单元中。 由此,客户信号的速率可以和 低阶光通道数据单元集中的低阶光通道数据单元的速率进行精确的匹配,从而 节约了 OTN传送的通道带宽。
另外,发送端会根据待发送的客户信号与速率逐次增加的低阶光通道数据 单元集中的低阶光通道数据单元之间的对应关系,将多路客户信号分别映射到 低阶光通道数据单元集的相应低阶光通道数据单元中,再将低阶光通道数据单 元集中的各个低阶光通道数据单元映射到高阶光通道净荷单元集的高阶光通 道净荷单元的不同时隙中, 通过数据帧发送到光传送网络 OTN上进行传输, 从而便于 OTN对每路客户信号的管理 。并且,低阶光通道数据单元集中的各 个子数据单元采用一致的帧结构, 也为每一种客户信号提供了强大的管理能 力 。
附图说明
图 1为本发明一种客户信号的发送方法的 实施例流程图;
图 2为本发明一种客户信号的发送方法的 实施例流程图;
图 3为本发明一种客户信号的发送方法的 实施例的流程图
图 4为本发明一种客户信号的发送装置的 实施例结构图;
图 5为本发明一种客户信号的接收方法的 实施例流程图;
图 6为本发明一种客户信号的接收方法的 实施例流程图;
图 7为本发明一种客户信号的接收方法的 实施例流程图;
图 8为本发明一种客户信号的接收装置的 实施例结构图。
具体实施方式
下面结合附图对本发明实施例进行详细描述 。
请参阅图 1 , 为本发明一种客户信号的发送方法的第一实施例流程图, 包 括以下步骤:
步骤 101 : 根据待发送的客户信号与低阶光通道数据单元集中的速率逐次 增加的低阶光通道数据单元之间的对应关系,将所述待发送的客户信号映射到 相对应的低阶光通道数据单元中;
步骤 102: 将映射后的低阶光通道数据单元映射到高阶光通道净荷单元集 的高阶光通道净荷单元时隙内;
步骤 103: 将映射后的高阶光通道净荷单元添加开销, 形成光通道传送单 元, 并将所述光通道传送单元发送到光传送网络 OTN上进行传输。
从上述实施例可以看出,通过构建一个速率逐次增加的低阶光通道数据单 元集,并按照速率建立客户信号与低阶光通道数据单元集中的低阶光通道数据 单元之间的对应关系,使得任何速率的待发送客户信号都可以映射到低阶光通 道数据单元集中的相应低阶光通道数据单元中, 并且,待发送的客户信号的速 率也能与低阶光通道数据单元集中的低阶光通道数据单元的速率进行精确的 匹配, 从而节约了 OTN传送通道的带宽 。 同时, 将多路客户信号分别映射到 低阶光通道数据单元集的不同低阶光通道数据单元中,再将低阶光通道数据单 元集中的各个低阶光通道数据单元映射到高阶光通道净荷单元集的高阶光通 道净荷单元的不同时隙中, 通过数据帧发送到光传送网络 OTN上进行传输, 便于 OTN对每路客户信号的管理 。
请参阅图 2, 为本发明一种客户信号的发送方法的第二实施例流程图, 包 括以下步骤:
步骤 201 :根据待发送的客户信号与 ODUxt (x=l , 2, ...N)( Optical Channel Data Unit-xt, 光通道数据单元 -xt ) 集中的速率以自然数倍数增加的 ODUxt之 间的对应关系, 将待发送的客户信号映射到与该客户信号的速率相对应的 ODUxt中;
其中, 构建一个速率逐次增加的 ODUxt (x=l , 2, ...N)集 。 对于一个特 定的客户信号, 根据该客户信号的速率, 从 ODUxt (x=l , 2, ...N)集中选择一 个与该客户信号的速率相对应的 ODUxt, 然后将客户信号映射到这个 ODUxt 中 。
优选的, 上述 ODUxt (x=l , 2, ...N)集中, 最小速率颗粒 ODUlt的速率 为 HO ODUk ( High Order Optical Channel Data Unit-k, 高阶光通道数据单 -k ) (k=l,2,3,4)集中的最小时隙颗粒的速率,本发明实施例无意对该 ODUxt集的最 小速率颗粒 ODUlt 的具体速率进行限定。 目前, ITU ( International Telecommunication Union, 国际电信联盟)正在讨论制定新的光传送网速率, 对于 HO OPU1 , 一种可能的速率选项为 238/227x2.488320 Gbit/s , 即约为 2.6088993833 Gbit/s 。 对于新的光传送网速率, 如果将 HO ODU1划分为 2个 时隙, 贝' j HO ODUk(k=l,2,3,4)集中的最小时隙颗粒的速率为 HO OPU1的速率 除以 2, 即为 1.304449692Gbit/s, 因此, ODUlt的速率为 HO ODUk(k=l,2,3,4) 集中的最小时隙颗粒的速率, 也即 1.304449692Gbit/s 。 ODUxt 的速率为 ODUlt的速率的自然数倍数, 即 x xODUlt 的速率 (x=l , 2, ...N) 。
另一种可能的选项是, 该 ODUxt集的最小速率颗粒 ODUlt的速率设置为 与目前 ITU正在讨论的 ODU0相同的速率,那么 ODUxt集将是按 ODU0速率 的倍数逐次增加的速率集合 。 目前, ODU0 的速率有两种可能的选项: 约为 1.249Gbit/s 或约为 1.244Gbit/s 。 采用这种速率的优势是能够和现有的 ODUk 兼容, 使得 ODUlt能够引入到所有的 OTN容器 。
本发明实施例无意对 ODUxt 的帧结构进行限定, 最优的, 本发明建议 ODUxt帧结构采用 G.709定义的 ODUk帧结构, 并且 ODUxt信号的频偏也和 现有 G.709—致, 即为 +/-20ppm 。
当 ODUlt的速率为 1.304449692Gbit/s时,现有的客户信号与 ODUxt之间 的对应关系如表 1所示 。
现有的客户信号与 ODUxt之间的对应关系
客户信号的速率 ODUxt的速率 客户信号类型 ODUxt类型
( Gbit/s ) ( Gbit/s )
Fibre Channel 0.53125 ODUlt 1.304449692
FC-1G 1.065 ODUlt 1.304449692
GE 1.25 ODUlt 1.304449692
HDTV 1.485 ODU2t 2.608899383
FC-2G 2.125 ODU2t 2.608899383
STM-16 2.488320 ODU2t 2.608899383
ODU1 2.498775 ODU2t 2.608899383
FC-4G 4.25 ODU4t 5.217798767 FC-8G 8.5 ODU7t 9.131147841
STM-64 9.95328 ODU8t 10.43559753
ODU2 10.037273924 ODU8t 10.43559753
10GE LAN 10.3125 ODU8t 10.43559753
FC-10G 10.52 ODU9t 11.74004722
100GE-5L 20.625 ODU16t 20.87119507
100GE-4L 25.78125 ODU20t 26.08899383
STM-256 39.81312 ODU31t 40.43794044
ODU3 40.319218983 ODU31t 40.43794044
40GE 41.25 ODU32t 41.74239013
100GE 103.125 ODU80t 104.3559753 为了保证客户信号的全速率透明传送,包括同步以太网对时间透明传送的 需求, 可以将多路客户信号看作 CBR ( Constant Bit Rate , 固定比特率 )客户 信号 。上述步骤 201中,可以采用异步映射的方式,如 GMP( Generic Mapping Procedure,通用映射规程 )的方式或 NJO/PJO异步调整的方式,将每一种 CBR 客户信号映射到相应的 ODUxt 中; 对于包类型客户信号, 可以采用 GFP ( Generic Framing Procedure, 通用成帧规程 )对包类型客户信号进行封装,根 据选定的 ODUxt的带宽, 通过插入空闲 IDEL帧的方式将封装后的包类型客 户信号映射到相应的 ODUxt中 。
步骤 202: 将承载了客户信号的 ODUxt映射到 HO ODUk ( k=l,2,3,4 ) 集 中的相应 HO ODUk的时隙中;
其中, 如果 HO ODUk ( k=l,2,3,4 ) 集中的最小时隙颗粒的速率为 1.304449692Gbit/s, 则对 HO ODUk ( k= 1,2,3,4 )集中的 HO ODUk所划分的时 隙数量以及与 ODUxt类型的对应关系如下表 2所示 。
HO ODUk的时隙数量以及与 ODUxt对应关系
HO ODUk
速率级别 时隙数量 承载的 ODUxt类型
类型
HO ODU1 2.5G 2 ODUlt,ODU2t
HO ODU2 10G 8 ODUlt,ODU2t...ODU8t HO ODU3 40G 32 ODUlt,ODU2t...ODU32t
HO ODU4 112G 80 ODUlt,ODU2t...ODU80t 根据表 2的内容, 以 HO ODU1为例, HO ODU1划分了 2个时隙, 因此, 一路 HO ODU1可以承载两路 ODUlt或者承载一路 ODU2t 。 其中, 当一路 HO ODU1 7 载两路 ODUlt时,每个 HO ODU1时隙 载一路 ODUlt; 当一路 HO 0DU1承载一路 0DU2t时, 2个 HO 0DU1时隙捆绑起来构成一个时隙组 共同承载一路 0DU21 。
上述步骤 202中可以采用同步映射或者异步映射的方式将 ODUxt映射到 HO ODUk的一个时隙或者时隙组中 。 其中, 异步映射可以采用 NJ0/PJ0异 步调整的方式; 或者, 也可以采用 GMP方式 。
步骤 203: 为承载有客户信号的 HO ODUk添加开销, 形成 HO OTUk; 步骤 204: 将 HO OTUk发送到 OTN上进行传输 。
从上述实施例可以看出,发送端构建了一个速率逐次增加的 ODUxt (χ=1 , 2, ...Ν)集, 并按照速率建立客户信号与 ODUxt (χ=1 , 2, ...Ν)集中的 ODUxt 之间的对应关系, 因此,使得任何速率的待发送客户信号都可以映射到 ODUxt (x=l , 2, ...N)集中的相应 ODUxt中, 并且, 待发送的客户信号的速率也能与 ODUxt (x=l , 2, ...N)集的 ODUxt的速率进行精确的匹配, 从而节约了 OTN 传送通道带宽 。 同时, 由于 ODUxt (x=l , 2, ...N)集中的各个 ODUxt的速率 逐次增加, 呈现规则性, 使得各个 ODUxt与 HO ODUk之间的映射过程不必 进行复杂的调整操作, 实现筒单 。 构建的 ODUxt (x=l , 2, ...N)集能够灵活 地适配每一种客户信号, 并且为这些客户信号提供全透明映射 。 此外, 发送 端将多路客户信号分别映射到 ODUxt (x=l , 2, ...N)集的不同 ODUxt中, 再 将各个 ODUxt映射到 HO ODUk ( k=l,2,3,4 )集中的 HO ODUk的不同时隙后 进行传输, 便于 OTN对每路客户信号的管理 。 并且, ODUxt (x=l , 2, ...N) 集中的 ODUxt 采用一致的帧结构, 为每一种客户信号提供了强大的管理能 力 。
请参阅图 3 , 下面将详细描述本发明一种客户信号的发送方法的第三实施 例流程图, 在本实施例中, ODUlt的速率为 1.304449692Gbit/s , HO ODU1划 分为 2个时隙, HO ODU2划分为 8个时隙, HO ODU3划分为 32个时隙, HO ODU4划分为 80个时隙 。 对四路客户信号进行发送, 其中, 包括 2路 10GE LAN、 1路 STM-64以及 1路 ODU2 , 发送方法包括以下步骤:
步骤 301 : 根据待发送的客户信号与 ODUxt(x=l , 2, ...N) 集中的速率以 自然数倍数增加的 ODUxt之间的对应关系,通过 GMP异步映射方式将 4路客 户信号分别映射到 4个 ODU8t中;
在本实施例中, ODUlt的速率为 1.304449692Gbit/s, 因此, 根据表 1 中 现有的客户信号与 ODUxt(x=l , 2, ...N) 集中的 ODUxt之间的对应关系, 将 4路客户信号映射到 ODU8t中,得到 ODU8t-a, ODU8t-b, ODU8t-c, ODU8t-d 。
其中, ODU8t-a封装 1路 10GE LAN客户信号, ODU8t-b封装 1路 10GE LAN客户信号, ODU8t-c封装 1路 STM-64客户信号, ODU8t-d封装 1路 ODU2客户信号 。
采用 GMP的映射方法可以吸收客户信号与 ODU8t之间的频率差异 。 其 映射方法为: 根据客户信号和 ODU8t的时钟关系, 计算出 ODU8t在一个帧周 期中所承载的客户信号的字节数量 Cn,再将 Cn值映射到 ODU8t的开销区域, 并通过 Sigma-Delta算法将 Cn个字节映射到 ODU8t中 。
步骤 302: 通过 NJO/PJO异步映射方式将 4个 ODU8t分别映射到 4个由 HO ODU3中每 8个时隙捆绑所构成的时隙组中;
上述步骤 302中, 每个 ODU8t分别映射到一个由 8个时隙捆绑所构成的 时隙组中, 因此, 4个 ODU8t全部映射到 HO ODU3的 32个时隙中 。
步骤 303:为承载了 4路客户信号的 HO ODU3添加开销,形成 HO OTU3; 步骤 304: 将 HO OTU3发送到 OTN上进行传输 。
与上述所提供的方法相对应,本发明实施例还提供了一种客户信号发送的 装置, 请参见图 4, 为本发明一种客户信号的发送装置的第一实施例结构图, 本实施例中的发送装置包括第一映射单元 401、 第二映射单元 402和发送单元 403 , 下面结合该装置的工作原理进一步介绍其内部结构以及连接关系 。
第一映射单元 401 , 用于根据待发送的客户信号与低阶光通道数据单元集 中的速率逐次增加的低阶光通道数据单元之间的对应关系,将所述待发送的客 户信号映射到相对应的低阶光通道数据单元中;
第二映射单元 402, 用于将第一映射单元 401得到的映射后的低阶光通道 数据单元映射到高阶光通道净荷单元集中的高阶光通道净荷单元时隙内; 发送单元 403 , 用于将第二映射单元得到的所述高阶光通道净荷单元添加 开销, 形成光通道传送单元, 并将所述光通道传送单元发送到 OTN上进行传 输 。
从上述实施例可以看出,第一映射单元根据待发送的客户信号与速率逐次 增加的低阶光通道数据单元集中的低阶光通道数据单元之间的对应关系,将任 何速率的客户信号都可以映射到低阶光通道数据单元集中的相应低阶光通道 数据单元中, 由此,待发送的客户信号的速率和低阶光通道数据单元集中的低 阶光通道数据单元的速率可以进行精确的匹配, 从而节约了 OTN传送通道的 带宽 。 同时, 由于低阶光通道数据单元集中的低阶光通道数据单元的速率逐 次增加, 呈现规则性,使得低阶光通道数据单元集中的低阶光通道数据单元与 高阶光通道净荷单元集中的高阶光通道净荷单元时隙在第二映射单元中的映 射过程不必进行复杂的调整操作, 实现筒单 。 构建的低阶光通道数据单元集 能够灵活地适配每一种客户信号, 并且为这些客户信号提供全透明映射 。 此 外,第一映射单元将待发送的客户信号分别映射到低阶光通道数据单元集中的 相应低阶光通道数据单元中,再将低阶光通道数据单元集中的各个低阶光通道 数据单元映射到高阶光通道净荷单元集的高阶光通道净荷单元的不同时隙中, 通过数据帧发送到光传送网络 OTN上进行传输,从而便于 OTN对每路客户信 号的管理 。 并且, 低阶光通道数据单元集中的各个低阶光通道数据单元采用 一致的帧结构, 也为每一种客户信号提供了强大的管理能力 。
请参阅图 5 , 为本发明一种客户信号的接收方法的第一实施例流程图, 包 括以下步骤:
步骤 501 : 接收数据帧, 得到高阶光通道净荷单元集中的高阶光通道净荷 单元;
步骤 502: 将所述高阶光通道净荷单元进行解映射, 得到低阶光通道数据 单元集中的速率逐次增加的低阶光通道数据单元;
步骤 503: 根据客户信号与低阶光通道数据单元集中的低阶光通道数据单 元之间的对应关系,将所述低阶光通道数据单元集的低阶光通道数据单元进行 解映射, 得到客户信号 。 从本发明实施例可以看出,在接收端同样构建一个速率逐次增加的低阶光 通道数据单元集,根据待发送的客户信号的速率与低阶光通道数据单元集中的 低阶光通道数据单元之间的对应关系,对低阶光通道数据单元集中的低阶光通 道数据单元进行解映射,得到承载在低阶光通道数据单元集中的低阶光通道数 据单元上的相应客户信号 。 使得客户信号的速率与低阶光通道数据单元集中 的低阶光通道数据单元的速率之间达到了精确的匹配, 从而节约了 OTN传送 通道带宽 。 同时, 由于低阶光通道数据单元集中的各个低阶光通道数据单元 的速率逐次增加, 呈现规则性,使得高阶光通道净荷单元集中的高阶光通道净 荷单元与低阶光通道数据单元集中的低阶光通道数据单元之间的解映射过程 不必进行复杂的调整操作, 实现筒单 。
请参阅图 6, 为本发明一种客户信号的接收方法的第二实施例流程图, 包 括以下步骤:
步骤 601: 通过网络接口接收 HO OTUk;
步骤 602: 解析 HO OTUk的开销, 得到承载有客户信号的 HO ODUk; 步骤 603: 将 HO ODUk进行解映射, 得到 ODUxt;
步骤 604: 根据客户信号与 ODUxt (x=l , 2, ...N)集中的速率以自然数倍 数增加的 ODUxt之间的对应关系, 将 ODUxt进行解映射, 得到客户信号 。
从本发明实施例可以看出,在接收端同样构建一个速率以自然数倍数增加 的 ODUxt (x=l , 2, ...N)集 。 根据客户信号的速率与 ODUxt (x=l , 2, ...N) 集中 ODUxt之间的对应关系, 对 ODUxt进行解映射, 得到承载在 ODUxt中 的相应客户信号 。 使客户信号的速率与 ODUxt (x=l , 2, ...N)集的 ODUxt的 速率精确匹配, 从而节约了 OTN传送通道的带宽 。 同时, 由于 ODUxt (x=l , 2, ... N)集中的各个 ODUxt的速率逐次增加, 呈现规则性, 使 HO ODUk与 ODUxt之间的解映射过程不必进行复杂的调整操作, 实现筒单 。
请参阅图 7, 下面将详细描述本发明一种客户信号的接受方法的第三实施 例流程图, 接收方法包括以下步骤:
步骤 701: 通过网络接口接收 HO OTU3;
步骤 702: 解析 HO OTU3的开销, 得到 HO ODU3;
其中, HO ODU3被划分为 32个时隙,并且 32个时隙分成了 4个时隙组, 每个时隙组由 8个时隙捆绑组成 。 4个时隙组分别承载了 4个封装有客户信 号的 ODU8t-a、 ODU8t-b、 ODU8t-c和 ODU8t-d 。 其中, ODU8t-a封装 1路 10GE LAN客户信号, ODU8t-b封装 1路 10GE LAN客户信号, ODU8t-c封 装 1路 STM-64客户信号, ODU8t-d封装 1路 ODU2客户信号 。
步骤 703: 通过 NJO/PJO异步解映射方式将 HO ODU3进行解映射, 得到
4个 ODU8t;
步骤 704: 根据客户信号与 ODUxt (x=l , 2, ...N)集中的速率以自然数倍 数增加的 ODUxt之间的对应关系,通过 GMP异步解映射方式将 4个 ODU8t 分别进行解映射, 得到 4路客户信号 。
与上述所提供的方法相对应,本发明实施例还提供了一种客户信号接收的 装置, 请参见图 8, 为本发明一种客户信号的接收装置的第一实施例结构图, 本实施例中的接收装置包括接收单元 801、 第一解映射单元 802和第二解映射 单元 803 , 下面结合该装置的工作原理进一步介绍其内部结构以及连接关系 。
接收单元 801 , 用于接收数据帧, 得到高阶光通道净荷单元集中的高阶光 通道净荷单元;
第一解映射单元 802, 用于将所述高阶光通道净荷单元进行解映射, 得到 低阶光通道数据单元集中的速率逐次增加的低阶光通道数据单元;
第二解映射单元 803 , 用于根据客户信号与低阶光通道数据单元集中的低 阶光通道数据单元之间的对应关系,将所述低阶光通道数据单元集的低阶光通 道数据单元进行解映射, 得到客户信号 。
在本发明的传输第一实施例中, 实现一种客户信号的传输方法, 包括前述 的发送方法和接收方法, 因前面已经对其进行了详细的介绍, 故不赘述 。
与上述所提供的方法相对应,本发明还提供了一种客户信号传输系统的第 一实施例, 包括前述的发送装置和接收装置, 因前面已经对其进行了详细的介 绍, 这里故不赘述 。
以上所述仅是本发明的优选实施例,应当指出,对于本技术领域的普通技 术人员来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这 些改进和润饰也应该视为本发明的保护范围 。

Claims

权 利 要 求
1、 一种客户信号的发送方法, 其特征在于, 包括:
将所述待发送的客户信号映射到低阶光通道数据单元集中相对应的低阶 光通道数据单元中, 其中, 所述低阶光通道数据单元集中的低阶光通道数据单 元的速率逐次增加, 并与客户信号之间具有速率对应关系;
将映射后的低阶光通道数据单元映射到高阶光通道净荷单元集的高阶光 通道净荷单元时隙内;
将映射后的高阶光通道净荷单元添加开销, 形成光通道传送单元, 并将所 述光通道传送单元发送到光传送网 OTN上传输 。
2 、 根据权利要求 1所述的方法, 其特征在于, 所述将待发送的客户信号 映射到相对应的低阶光通道数据单元中包括:
将待发送的固定比特率 CBR客户信号通过异步映射的方式映射到低阶光 通道数据单元集中的相对应的低阶光通道数据单元中 。
3、 根据权利要求 1所述的方法, 其特征在于, 所述将待发送的客户信号 映射到相应的低阶光通道数据单元中包括:
将待发送的包类型客户信号通过通用成帧规程 GFP的方式映射到低阶光 通道数据单元集中的相应的低阶光通道数据单元中。
4、 根据权利要求 3所述的方法, 其特征在于, 所述将待发送的包类型客 户信号通过 GFP的方式映射到低阶光通道数据单元集中的相应的低阶光通道 数据单元中包括:
将所述待发送的包类型客户信号封装成 GFP帧;
将所述封装后的包类型客户信号通过插入 GFP IDEL帧的方式进行速率适 配;
将速率适配后的 GFP帧映射到低阶光通道数据单元集中的相对应的低阶 光通道数据单元中。
5、 根据权利要求 1所述的方法, 其特征在于, 所述将映射后的低阶光通 道数据单元映射到高阶光通道净荷单元集中的高阶光通道净荷单元时隙内包 括:
将所述映射后的低阶光通道数据单元通过异步映射的方式映射到高阶光
+ 通道净荷单元集的高阶光通道净荷单元时隙内 。
6、 根据权利要求 5所述的方法, 其特征在于, 所述将映射后的低阶光通 道数据单元通过异步映射的方式映射到所述高阶光通道净荷单元时隙内具体 为:
将所述映射后的低阶光通道数据单元通用映射规程 GMP的方式映射到所 述高阶光通道净荷单元时隙内。
7 、 根据权利要求 1-6任意一项所述的方法, 其特征在于, 所述低阶光通 道数据单元集为:
以所述高阶光通道净荷单元内时隙单元的速率作为所述低阶光通道数据 单元集中的第一个低阶光通道数据单元的速率,并以所述第一个光通道数据单 元的速率为递增值。
8、 根据权利要求 1-6任意一项所述的方法, 其特征在于, 所述低阶光通 道数据单元具有与光通道数据单元 ODUk相同的帧结构, 且比特速率范围至 少为 -20ppm~+20ppm。
9、 一种客户信号的发送装置, 其特征在于, 包括:
第一映射单元,用于将待发送的客户信号映射到低阶光通道数据单元集中 相对应的低阶光通道数据单元中, 其中, 所述低阶光通道数据单元集中的低阶 光通道数据单元的速率逐次增加, 并与客户信号之间具有速率对应关系; 第二映射单元,用于将所述第一映射单元得到的映射后的低阶光通道数据 单元映射到高阶光通道净荷单元集的高阶光通道净荷单元时隙内;
发送单元,用于将所述第二映射单元得到的所述高阶光通道净荷单元添加 开销, 形成光通道传送单元, 并将所述光通道传送单元发送到 OTN上进行传 输 。
10、 根据权利要求 9所述的发送装置, 其特征在于, 所述第一映射单元包 括:
CBR客户信号映射子单元, 用于将待发送的固定比特率 CBR客户信号通 过异步映射的方式映射到低阶光通道数据单元集中的相对应的低阶光通道数 据单元中;
和 /或, 包客户信号映射子单元,用于将待发送的包客户信号通过用成帧规程 GFP 的方式映射到低阶光通道数据单元集中的相应的低阶光通道数据单元中。
11、 一种客户信号的接收方法, 其特征在于, 包括:
接收数据帧, 得到高阶光通道净荷单元集中的高阶光通道净荷单元; 将所述高阶光通道净荷单元进行解映射,得到低阶光通道数据单元集中的 速率逐次增加的低阶光通道数据单元;
根据客户信号与所述低阶光通道数据单元集中的低阶光通道数据单元之 间的对应关系 ,将所述低阶光通道数据单元集的低阶光通道数据单元进行解映 射, 得到客户信号 。
12、 一种客户信号的接收装置, 其特征在于, 包括:
接收单元, 用于接收数据帧, 得到高阶光通道净荷单元集中的高阶光通道 净荷单元;
第一解映射单元, 用于将所述高阶光通道净荷单元进行解映射, 得到速率 低阶光通道数据单元集中的逐次增加的低阶光通道数据单元;
第二解映射单元,用于根据客户信号与所述低阶光通道数据单元集中的低 阶光通道数据单元之间的对应关系,将所述低阶光通道数据单元集的低阶光通 道数据单元进行解映射, 得到客户信号 。
13、 一种客户信号的传输系统, 其特征在于, 包括权利要求 9所述的发送 装置和权利要求 12所述的接收装置 。
PCT/CN2009/072449 2008-06-26 2009-06-25 一种客户信号的发送、接收方法、装置和系统 WO2009155870A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
BRPI0905090-6A BRPI0905090A2 (pt) 2008-06-26 2009-06-25 Método, aparelho e sistema para transmitir e receber sinais de cliente
EP09768795A EP2178234A4 (en) 2008-06-26 2009-06-25 METHOD, APPARATUS AND SYSTEM FOR TRANSMITTING AND RECEIVING CLIENT SIGNALS
JP2010528268A JP2010541509A (ja) 2008-06-26 2009-06-25 クライアント信号を送信及び受信する方法、装置、及びシステム
US12/721,338 US8693480B2 (en) 2008-06-26 2010-03-10 Method, apparatus and system for transmitting and receiving client signals
US13/295,613 US8374186B2 (en) 2008-06-26 2011-11-14 Method, apparatus and system for transmitting and receiving client signals
US14/180,096 US9225462B2 (en) 2008-06-26 2014-02-13 Method, apparatus and system for transmitting and receiving client signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008101114930A CN101615967B (zh) 2008-06-26 2008-06-26 一种业务数据的发送、接收方法、装置和系统
CN200810111493.0 2008-06-26

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/721,338 Continuation US8693480B2 (en) 2008-06-26 2010-03-10 Method, apparatus and system for transmitting and receiving client signals

Publications (1)

Publication Number Publication Date
WO2009155870A1 true WO2009155870A1 (zh) 2009-12-30

Family

ID=41444046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2009/072449 WO2009155870A1 (zh) 2008-06-26 2009-06-25 一种客户信号的发送、接收方法、装置和系统

Country Status (7)

Country Link
US (3) US8693480B2 (zh)
EP (2) EP2793413A3 (zh)
JP (2) JP2010541509A (zh)
CN (1) CN101615967B (zh)
BR (1) BRPI0905090A2 (zh)
RU (1) RU2465732C2 (zh)
WO (1) WO2009155870A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531477B2 (en) 2012-07-30 2016-12-27 Huawei Technologies Co., Ltd. Method and apparatus for transmitting and receiving client signal in optical transport network
RU2687273C1 (ru) * 2016-03-08 2019-05-13 Фиберхоум Телекоммьюникейшн Технолоджис Ко., Лтд Способ генерирования значения cn посредством отображения параметров настройки gmp в оптической транспортной сети otn

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101615967B (zh) 2008-06-26 2011-04-20 华为技术有限公司 一种业务数据的发送、接收方法、装置和系统
CN101834688B (zh) * 2009-03-09 2011-08-31 华为技术有限公司 光传送网中的映射、解映射方法及装置
JP5251620B2 (ja) * 2009-03-09 2013-07-31 富士通株式会社 フレーム生成装置およびフレーム生成方法
RU2528218C2 (ru) 2009-09-17 2014-09-10 Хуавей Текнолоджиз Ко., Лтд. Динамическое беспрерывное изменение размеров в оптических транспортных сетях без прерывания передачи
WO2011121722A1 (ja) * 2010-03-30 2011-10-06 富士通株式会社 送信装置及び受信装置、並びに送信方法及び受信方法
CN101826920B (zh) * 2010-04-13 2014-01-01 中兴通讯股份有限公司 用于otn设备的交叉容量处理方法和otn设备
JP5382217B2 (ja) * 2010-06-01 2014-01-08 富士通株式会社 通信システム、フレーム同期検出装置およびフレーム同期検出方法
CN101867850B (zh) * 2010-06-03 2014-08-20 中兴通讯股份有限公司 实现otn中交叉颗粒度自适应的方法及装置
JP5498290B2 (ja) * 2010-07-16 2014-05-21 富士通株式会社 フレーム信号生成方法および装置
JP5691543B2 (ja) 2011-01-18 2015-04-01 富士通株式会社 光伝送装置
CN102170599A (zh) * 2011-05-09 2011-08-31 中兴通讯股份有限公司 实现业务映射的方法及装置
JP5736962B2 (ja) 2011-05-26 2015-06-17 富士通株式会社 伝送装置および周波数ゆらぎ補償方法
US20120331176A1 (en) * 2011-06-24 2012-12-27 Exar Corporation Method for transport and recovery of client clocking across asynchronous server networks
US9048967B2 (en) * 2011-09-23 2015-06-02 Fujitsu Limited Asymmetric OTN network traffic support
US9236969B2 (en) * 2011-10-28 2016-01-12 Infinera Corporation Super optical channel data unit signal supported by multiple wavelengths
CN102694958B (zh) * 2012-02-10 2013-12-18 华为终端有限公司 一种确定图像色相的方法和无线手持设备
US8867913B2 (en) * 2012-10-02 2014-10-21 Ciena Corporation Optical transport network high order mapping systems and methods
EP2738964A1 (en) * 2012-12-03 2014-06-04 Alcatel Lucent Method and apparatus for transmitting an asynchronous transport signal over an optical section
RU2606060C1 (ru) * 2012-12-05 2017-01-10 Хуавэй Текнолоджиз Ко., Лтд. Способ обработки данных, плата связи и устройство
JP6020235B2 (ja) * 2013-02-14 2016-11-02 富士通株式会社 伝送方法、伝送装置、および伝送システム
CN103997387B (zh) * 2013-02-18 2018-08-24 中兴通讯股份有限公司 数据的映射、复用、解复用和解映射方法及装置
US9414135B2 (en) * 2013-12-24 2016-08-09 Nec Corporation Flexible-client, flexible-line interface transponder
CN105429726B (zh) * 2014-09-22 2018-01-23 华为技术有限公司 光传输网的业务映射处理方法、装置及系统
CN105657583B (zh) * 2014-11-10 2020-11-20 中兴通讯股份有限公司 分组业务信号发送方法、装置及接收方法、装置
CN105871502B (zh) 2015-01-22 2020-01-03 华为技术有限公司 一种利用以太网信道传输业务信号的方法及通信设备
US10516718B2 (en) * 2015-06-10 2019-12-24 Google Llc Platform for multiple device playout
CN107086968B (zh) * 2016-02-14 2022-04-08 中兴通讯股份有限公司 业务调度处理方法及装置
CN107566074B (zh) * 2016-06-30 2019-06-11 华为技术有限公司 光传送网中传送客户信号的方法及传送设备
CN108632886B (zh) * 2017-03-21 2020-11-06 华为技术有限公司 一种业务处理方法及装置
WO2019061406A1 (zh) * 2017-09-30 2019-04-04 华为技术有限公司 一种业务数据发送方法及装置
CN109996129B (zh) * 2017-12-29 2021-02-23 华为技术有限公司 一种业务数据处理方法及装置
CN114844593A (zh) * 2018-02-09 2022-08-02 华为技术有限公司 一种光传送网中业务数据的处理方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734986A (zh) * 2004-08-11 2006-02-15 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
EP1657839A1 (en) 2004-11-12 2006-05-17 Alcatel Method and apparatus for transporting a client layer signal over an optical transport network (OTN)
CN1790993A (zh) * 2004-12-14 2006-06-21 华为技术有限公司 在光传送网中传输低速率业务信号的方法
CN101039245A (zh) * 2006-03-13 2007-09-19 华为技术有限公司 高速以太网到光传输网的数据传输方法及相关接口和设备

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144937A (ja) * 1984-12-19 1986-07-02 Fujitsu Ltd チヤネル番号付加多重化方式
JPH10262015A (ja) * 1996-05-08 1998-09-29 Matsushita Electric Ind Co Ltd 多重伝送方法およびシステム並びにそこで用いる音声ジッタ吸収方法
GB0031839D0 (en) * 2000-12-29 2001-02-14 Marconi Comm Ltd A multi-service digital cross-connect
US20030048813A1 (en) * 2001-09-05 2003-03-13 Optix Networks Inc. Method for mapping and multiplexing constant bit rate signals into an optical transport network frame
US8274892B2 (en) * 2001-10-09 2012-09-25 Infinera Corporation Universal digital framer architecture for transport of client signals of any client payload and format type
CN1277375C (zh) * 2003-07-31 2006-09-27 华为技术有限公司 一种光网络中永久连接和交换连接之间的转换方法
CN1734990B (zh) * 2004-08-10 2010-09-08 华为技术有限公司 信号传送方法及装置
US7664139B2 (en) * 2005-09-16 2010-02-16 Cisco Technology, Inc. Method and apparatus for using stuffing bytes over a G.709 signal to carry multiple streams
KR100649674B1 (ko) 2005-11-28 2006-11-27 한국전자통신연구원 이동단말의 내장 카메라를 이용한 위치인식 방법 및 그장치
CN100401715C (zh) * 2005-12-31 2008-07-09 华为技术有限公司 局域网信号在光传送网中传输的实现方法和装置
CN1983888B (zh) * 2006-06-07 2010-10-27 华为技术有限公司 一种时钟恢复装置和方法
JP4984797B2 (ja) * 2006-09-29 2012-07-25 富士通株式会社 光ネットワークシステム
CN101159495B (zh) * 2006-10-08 2012-07-04 华为技术有限公司 无源光纤网络中信号传送系统、设备及方法
US8054853B2 (en) * 2007-01-29 2011-11-08 Ciena Corporation Systems and methods for combining time division multiplexed and packet connection in a meshed switching architecture
US8457159B2 (en) * 2007-05-11 2013-06-04 Ciena Corporation Optical transport network hierarchy for full transparent transport of datacom and telecom signals
US8213446B2 (en) * 2007-12-26 2012-07-03 Ciena Corporation Frame-interleaving systems and methods for 100G optical transport enabling multi-level optical transmission
CN101615967B (zh) 2008-06-26 2011-04-20 华为技术有限公司 一种业务数据的发送、接收方法、装置和系统
US8559812B2 (en) * 2008-09-02 2013-10-15 Ciena Corporation Methods and systems for the hierarchical mesh restoration of connections in an automatically switched optical network
CN106130683B (zh) * 2009-02-10 2020-01-10 华为技术有限公司 客户信号映射和解映射的实现方法及装置
CN102195859B (zh) * 2010-03-04 2015-05-06 中兴通讯股份有限公司 基于gfp的灵活光通道数据单元带宽调整方法及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1734986A (zh) * 2004-08-11 2006-02-15 华为技术有限公司 光传送网中传输低速率业务信号的方法及其装置
EP1657839A1 (en) 2004-11-12 2006-05-17 Alcatel Method and apparatus for transporting a client layer signal over an optical transport network (OTN)
CN1773898A (zh) * 2004-11-12 2006-05-17 阿尔卡特公司 在光传输网络上传输客户层信号的方法及设备
CN1790993A (zh) * 2004-12-14 2006-06-21 华为技术有限公司 在光传送网中传输低速率业务信号的方法
EP1826926A1 (en) 2004-12-14 2007-08-29 Huawei Technologies Co., Ltd. An implement method of short rate traffic signal transmitted in optical transport network
CN101039245A (zh) * 2006-03-13 2007-09-19 华为技术有限公司 高速以太网到光传输网的数据传输方法及相关接口和设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2178234A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9531477B2 (en) 2012-07-30 2016-12-27 Huawei Technologies Co., Ltd. Method and apparatus for transmitting and receiving client signal in optical transport network
US10256915B2 (en) 2012-07-30 2019-04-09 Huawei Technologies Co., Ltd. Method and apparatus for transmitting and receiving client signal in optical transport network
US10887020B2 (en) 2012-07-30 2021-01-05 Huawei Technologies Co., Ltd. Method and apparatus for transmitting and receiving client signal in optical transport network
US11595130B2 (en) 2012-07-30 2023-02-28 Huawei Technologies Co., Ltd. Method and apparatus for transmitting and receiving client signal in optical transport network
RU2687273C1 (ru) * 2016-03-08 2019-05-13 Фиберхоум Телекоммьюникейшн Технолоджис Ко., Лтд Способ генерирования значения cn посредством отображения параметров настройки gmp в оптической транспортной сети otn

Also Published As

Publication number Publication date
EP2178234A1 (en) 2010-04-21
US8374186B2 (en) 2013-02-12
RU2465732C2 (ru) 2012-10-27
BRPI0905090A2 (pt) 2015-06-30
CN101615967B (zh) 2011-04-20
US20120057870A1 (en) 2012-03-08
JP2010541509A (ja) 2010-12-24
US8693480B2 (en) 2014-04-08
EP2793413A2 (en) 2014-10-22
RU2010113450A (ru) 2012-08-10
EP2178234A4 (en) 2010-11-10
JP2014171248A (ja) 2014-09-18
CN101615967A (zh) 2009-12-30
EP2793413A3 (en) 2014-11-05
US9225462B2 (en) 2015-12-29
US20140161463A1 (en) 2014-06-12
US20100158519A1 (en) 2010-06-24

Similar Documents

Publication Publication Date Title
WO2009155870A1 (zh) 一种客户信号的发送、接收方法、装置和系统
US9497064B2 (en) Method and apparatus for transporting ultra-high-speed Ethernet service
US9608755B2 (en) Network element clock synchronization systems and methods using optical transport network delay measurement
CA2775003C (en) Dynamic hitless resizing in optical transport networks
EP1881669B1 (en) Implementing method and device for transmitting lan signals in otn
JP4708482B2 (ja) Otn上でdtmを伝送するための方法、装置、及び応用装置
US8180224B2 (en) Method, apparatus and system for transmitting Ethernet signals in optical transport network
WO2006015549A1 (fr) Procede de transmission de signaux de trafic a faible debit dans un reseau de transmission optique et dispositif correspondant
WO2006063521A1 (fr) Procede de transmission de signal de trafic bas debit dans un reseau de transport optique
WO2006015533A1 (fr) Procede et dispositif pour transport de signal
WO2010105546A1 (zh) 光通道传送单元信号的传输方法和装置
US20110318001A1 (en) Method and device for sending and receiving service data
WO2012155710A1 (zh) 一种实现otn业务映射及解映射的方法和装置
JP5313351B2 (ja) 10ギガビット光ファイバーチャネルサービスを光伝送ネットワークに伝送する方法及び装置
WO2014124595A1 (zh) 数据的映射、解映射方法及装置
Gorshe A tutorial on ITU-T G. 709 optical transport networks (OTN)
Ishida 40/100GbE technologies and related activities of IEEE standardization
WO2016074484A1 (zh) 分组业务信号发送方法、装置及接收方法、装置
WO2020051851A1 (zh) 光传送网中的数据传输方法及装置
KR20110127077A (ko) 광 전달 망에서 패킷 전송 방법 및 장치
JP2013175931A (ja) 伝送装置、伝送システム及び伝送プログラム
Ellanti et al. Next Generation Transport Technologies
WO2008074180A1 (fr) Procédé de transfert d'un signal stm/sts à faible vitesse

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09768795

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 868/KOLNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2009768795

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2010528268

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2010113450

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0905090

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20100407