WO2010018728A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2010018728A1
WO2010018728A1 PCT/JP2009/062781 JP2009062781W WO2010018728A1 WO 2010018728 A1 WO2010018728 A1 WO 2010018728A1 JP 2009062781 W JP2009062781 W JP 2009062781W WO 2010018728 A1 WO2010018728 A1 WO 2010018728A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
alignment
display device
bus line
crystal display
Prior art date
Application number
PCT/JP2009/062781
Other languages
English (en)
French (fr)
Inventor
雅宏 清水
崇 片山
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US13/003,759 priority Critical patent/US20110122054A1/en
Publication of WO2010018728A1 publication Critical patent/WO2010018728A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells
    • G02F1/1395Optically compensated birefringence [OCB]- cells or PI- cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134336Matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode

Definitions

  • the present invention relates to a liquid crystal display device, and in particular, to a liquid crystal display device using an OCB mode (Optically Self-Compensated Birefringence mode), which relates to a liquid crystal display device that rapidly changes the alignment from twist alignment to splay alignment. Is.
  • OCB mode Optically Self-Compensated Birefringence mode
  • liquid crystal display devices are widely used in various electronic devices such as televisions, notebook PCs (personal computers), desktop PCs, PDAs (mobile terminals), and mobile phones. This is because the liquid crystal display device is thinner and lighter than a CRT (Cathode Ray Tube) and can be driven at a low voltage and consumes less power.
  • CRT Cathode Ray Tube
  • color liquid crystal display devices having high contrast and wide viewing angle characteristics have been developed and are widely put into practical use as mainstream large displays.
  • TN mode a twisted nematic mode
  • EBC mode a birefringence mode
  • a color liquid crystal display device using these modes still has a problem that it is not suitable for displaying a moving image because the response speed is still slow, the tailing phenomenon occurs, and the outline is blurred.
  • a ferroelectric liquid crystal mode, an antiferroelectric liquid crystal mode, an OCB. (Optically Self-Compensated Birefringence mode) mode has been developed.
  • the ferroelectric liquid crystal mode and the anti-ferroelectric liquid crystal mode are known to have a low impact resistance due to the layer structure and have many problems in practical use.
  • the OCB mode uses a normal nematic liquid crystal, is resistant to shock, has a wide temperature range, has a wide viewing angle, and has a fast response characteristic. Attention has been paid.
  • FIG. 13 and 14 are cross-sectional views schematically showing a schematic configuration of a conventional liquid crystal display device 100 using the OCB mode.
  • FIG. 13 shows a state when no voltage is applied
  • FIG. 14 shows a state when a voltage is applied. Shows the state.
  • the liquid crystal panel 102 of the liquid crystal display device 100 includes a color filter substrate 110 and a TFT substrate 115 facing each other, and a liquid crystal layer 121 containing liquid crystal molecules 120 between both substrates.
  • the color filter substrate 110 is formed by forming a counter electrode 106, a color filter (not shown), and an alignment film 107 on a first glass substrate 105.
  • the color filter is used when performing color display. Here, it is assumed that color display is performed.
  • the TFT substrate 115 is formed by forming a pixel electrode 112 and an alignment film 113 on a second glass substrate 111.
  • a gate bus line and a source bus line are formed on the second glass substrate 111, and a TFT (Thin Film Transistor) is formed at the intersection.
  • the color filter substrate 110 and the TFT substrate 115 are bonded to each other with an appropriate gap provided by a spherical spacer or a pillar spacer (not shown) in a state of being opposed to each other. Then, the color filter substrate 110 and the TFT substrate 115 are bonded together, and a liquid crystal layer 121 is dropped and injected therebetween. Alternatively, the liquid crystal layer 121 is vacuum injected between the color filter substrate 110 and the TFT substrate 115.
  • the color filter substrate 110 and the TFT substrate 115 are subjected to an alignment process in order to align the liquid crystal molecules 120 in parallel and in the same direction.
  • the phase difference plate is provided in the substrate surface of each board
  • the phase difference plate a negative phase difference plate in which the main axes are arranged in a hybrid manner is used.
  • the liquid crystal molecules 120 are often oriented in the direction shown in FIG. 13 when no voltage is applied.
  • this state is referred to as initial orientation (splay orientation).
  • a predetermined voltage is applied between the counter electrode 106 of the color filter substrate 110 and the pixel electrode 112 of the TFT substrate 115, the orientation transition occurs and the orientation shifts sequentially in the direction shown in FIG.
  • this state is referred to as bend alignment.
  • the change in the alignment of the liquid crystal responds at a high speed, so that the fastest display is possible among the modes using the nematic liquid crystal.
  • a display state having a wide viewing angle characteristic is obtained. Note that color display is performed in a bend orientation state.
  • the alignment state gradually changes to the splay alignment (FIG. 13) which is the initial alignment. That is, in the OCB mode, the splay alignment is exhibited when no voltage is applied, which is the initial state, and when a predetermined voltage is applied between the counter electrode 106 and the pixel electrode 112, the alignment transitions to the bend alignment, and the voltage in the bend alignment state.
  • V is lower than or equal to Vcr
  • the bend alignment shifts to the twist alignment, and then gradually changes to the splay alignment.
  • the orientation transition from twist orientation to splay orientation is referred to as reverse transition.
  • reverse transition There is not much hysteresis between bend alignment and twist alignment, and it switches quickly depending on the voltage.
  • the reverse transition speed of transition to splay alignment is very slow, and it takes several minutes to several tens of minutes for the entire screen to become splay alignment. It takes a minute.
  • the place where reverse transition occurs is a non-display area around the screen which is not bend-oriented, or a place where several spacers aggregate, and the reverse transition generated from there gradually spreads over the entire screen.
  • FIG. 16 schematically shows a state in which the alignment state after the elapse of 5 seconds after the power is turned off is observed with a microscope.
  • splay alignment and twist alignment are mixed in the screen, and a patchy pattern is exhibited.
  • twist and splay alignment are mixed while reverse transition spreads, and this state continues for several minutes.
  • spotted display was observed.
  • this problem does not become a big problem if the backlight is turned off at the same time as the power is turned off.
  • this has been a particularly significant problem in a reflective liquid crystal display device using ambient light as a light source or a reflective / transmissive liquid crystal display device.
  • the liquid crystal display device described in Patent Document 1 produces a transition nucleus in which orientation transition occurs in all pixels in the screen in order to quickly perform orientation transition from splay alignment to bend alignment. Bend alignment is generated from the nucleus.
  • the liquid crystal display device does not realize the reverse transition from the twist alignment to the splay alignment without exhibiting the spotted pattern.
  • a liquid crystal display device that realizes a reverse transition from twist alignment to splay alignment without exhibiting the spotted pattern is not described in any document.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a liquid crystal display device that rapidly changes the alignment from twist alignment to splay alignment.
  • the liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal layer sealed between the first substrate and the second substrate.
  • the pixels are arranged in a matrix, and the first substrate is provided with pixel electrodes corresponding to the pixels of the plurality of pixels, and the liquid crystal molecules contained in the liquid crystal layer are applied with a voltage to the liquid crystal layer.
  • the orientation transition is made from the splay alignment to the bend alignment.
  • the bend alignment is performed.
  • An OCB mode liquid crystal display device in which the orientation is changed from twisted to twisted, and a voltage is applied between the pixel electrode provided on the first substrate so as to overlap the pixel electrode with an insulating layer interposed therebetween That a bus line, and the pixel electrode and the bus line is characterized by comprising an opening formed in the pixel electrode in some region overlapping through the insulating layer.
  • the liquid crystal display device applies a predetermined voltage between the pixel electrode and the bus line when the image display is stopped.
  • a voltage By applying a voltage in this way, an electric field for changing the alignment of the liquid crystal layer from twist alignment to splay alignment can be generated from the opening. Then, the electric field makes it impossible for the liquid crystal molecules to maintain the twist alignment, the alignment transition to the splay alignment is induced, and it is possible to quickly realize the alignment transition from the twist alignment to the splay alignment.
  • an electric field is generated in the opening by applying a predetermined voltage between the pixel electrode and the bus line.
  • FIG. 3 is a plan view schematically showing a configuration of one pixel of a TFT substrate in the liquid crystal display device according to the present embodiment, in which an opening is arranged on a gate bus line.
  • FIG. 3 is a plan view schematically showing a configuration of one pixel of a TFT substrate in the liquid crystal display device according to the present embodiment, in which an opening is arranged on a source bus line. It is a figure which shows the signal line for displaying an image on a liquid crystal display panel.
  • FIG. 1 is a cross-sectional view (AB line in FIG. 2) of the OCB mode liquid crystal display device 1 according to the present embodiment, and FIG. 2 shows one pixel of the TFT substrate 20 in the liquid crystal display device 1. It is a top view which shows a schematic structure typically.
  • the liquid crystal panel 2 of the liquid crystal display device 1 includes a counter substrate (second substrate) 7 and a TFT substrate (first substrate 20) facing each other, and a liquid crystal layer 25 sealed between the two substrates. ing.
  • the counter substrate 7 includes a first glass substrate 3 as a base substrate, and a color filter, a counter electrode 4 and an alignment film 5 (not shown) are formed on the first glass substrate 3 in this order from the first glass substrate 3 side.
  • a color filter is used when performing color display, and here, description will be made assuming that color display is performed.
  • the TFT substrate 20 includes a second glass substrate 10 as a base substrate.
  • a pixel electrode 11, a storage capacitor bus line (bus line) 13, and a pixel electrode 11 are provided on the second glass substrate 10 facing the counter substrate 7. Is provided.
  • An insulating film (insulating layer) 14 is provided between the pixel electrode 11 and the storage capacitor bus line 13, and the pixel electrode 11 and the storage capacitor bus line 13 are insulated from each other.
  • the storage capacitor bus line 13 is provided on the second glass substrate 10 so as to overlap the pixel electrode 11 with the insulating film 14 interposed therebetween.
  • an opening 15 is formed in the pixel electrode 11 in a part of a region where the pixel electrode 11 and the storage capacitor bus line 13 overlap with each other through the insulating film 14.
  • An alignment film 12 is formed on the insulating film 14 and the pixel electrode 11 exposed in the opening 15 so as to cover them.
  • the pixel electrode 11 is formed with a gate bus line, a source bus line (not shown), and a TFT (Thin Film Transistor) at the intersection.
  • the alignment film 5 and the alignment film 12 are subjected to an alignment process in order to align liquid crystal molecules in parallel and in the same direction.
  • FIG. 2 is a plan view schematically showing a schematic configuration of one pixel of the TFT substrate 20 in the liquid crystal display device 1.
  • the pixel 30 includes a pixel electrode 11, a gate bus line 31 and a source bus line 32 that are formed around the pixel electrode 11 so as to intersect with each other via an insulating layer (not shown), and the pixel 30. And a TFT (Thin Film Transistor) 33 formed on the substrate.
  • a storage capacitor bus line 13 is formed in parallel with the gate bus line 31 in the vicinity of the center of the pixel electrode 11.
  • an opening 15 as a transition nucleus is formed in a portion where the pixel electrode 11 and the storage capacitor bus line 13 overlap.
  • the transition nucleus is for transitioning the alignment of the liquid crystal molecules in the OCB mode from the twist alignment to the splay alignment.
  • the storage capacitor bus line 13 is disposed under the opening 15 formed in the pixel electrode 11, and a potential difference is generated between the pixel electrode 11 and the storage capacitor bus line 13.
  • a horizontal electric field is generated in the vicinity of 15, and a nucleus of transition from twist alignment to splay alignment is formed. For this reason, the opening 15 is referred to as a transition nucleus.
  • one pixel 30 among a plurality of existing pixels is described.
  • the plurality of pixels are arranged in a matrix, and the same can be said for any pixel.
  • the opening 15 is formed in a rectangular shape substantially at the center of the pixel 30.
  • the opening 15 may have other shapes such as a rectangular shape.
  • the opening 15 is formed in the approximate center of the pixel 30, but it may be in the position shown in FIGS. 3 and 4. That is, the gate bus line 31 or the source bus line 32 can be used instead of the storage capacitor bus line 13.
  • a method for manufacturing the storage capacitor bus line 13 and the like in the TFT substrate 20 will be described.
  • a metal film is formed by sputtering on the entire surface of the second glass substrate 10 that has been subjected to a process such as base coating, and the storage capacitor bus line 13 is patterned by a photolithography process.
  • the produced storage capacitor bus line 13 has a laminated structure of Ta and its nitride, but it does not necessarily have a laminated structure, and the material can be made of a metal such as Ti or Al, or ITO.
  • the surface of the storage capacitor bus line 13 is anodized, and an insulating film 14 is formed using silicon nitride or the like.
  • the film formation may be performed by a method other than patterning.
  • a semiconductor layer is formed by CVD and patterned by a photolithography process.
  • the source bus line 32 and the drain electrode are formed by sputtering and patterned by a photolithography process.
  • the material of the source bus line 32 is made of a metal such as Ta, Ti, or Al, like the gate bus line 31 and the storage capacitor bus line 13.
  • the diffusion of impurities into the TFT 33 is prevented by covering it with an insulating film, thereby improving the performance of the semiconductor. In this way, the storage capacitor bus line and the like of the TFT substrate 20 are manufactured.
  • the pixel electrode 11 is formed by sputtering and patterned by a photolithography process.
  • the pixel electrode 11 uses ITO as a transparent electrode, but may be any material as long as it is a transparent thin film conductive material such as IZO.
  • the counter substrate 7 is manufactured.
  • a black matrix for partitioning pixels on the first glass substrate 3 and an RGB color filter are formed in a stripe arrangement.
  • ITO is sputtered as the counter electrode 4.
  • a process for aligning liquid crystals on the TFT substrate 20 and the counter substrate 7 is performed.
  • alignment processing may be performed by a conventionally known method, detailed description here is abbreviate
  • the liquid crystal panel thus produced is shown by the plan view of FIG. 1 and the cross-sectional view of FIG.
  • a viewing angle compensation phase difference plate is attached to both outer sides of the liquid crystal panel 2, and a polarizing plate is attached from the outer side. Further, the polarization axis of the deflecting plate is attached so as to be orthogonal to the rubbing direction.
  • FIG. 5 is a diagram showing signal lines for displaying an image on the liquid crystal display panel.
  • FIG. 6 is a diagram illustrating a flow of each signal when the orientation transition is performed from the twist orientation to the splay orientation.
  • a liquid crystal control circuit 40 In order to display an image on the liquid crystal panel 42, a liquid crystal control circuit 40, a signal source 41, a power supply circuit 47, and a relay circuit 50 are used.
  • the liquid crystal control circuit 40 functions to change the video signal from the signal source 41 into a signal having a content for driving the liquid crystal panel 42.
  • a signal from the liquid crystal control circuit 40 to the liquid crystal panel 42 includes a clock signal 43 for synchronizing with the liquid crystal panel 42, a gradation signal 44 for expressing halftone, and a storage capacitor input to the storage capacitor bus line.
  • the clock signal 43 and the gradation signal 44 are directly input from the liquid crystal control circuit 40 to the liquid crystal panel 42.
  • the storage capacitor bus line signal 45 and the counter electrode signal 46 are input from the liquid crystal control circuit 40 to the liquid crystal panel 42 via the relay circuit 50.
  • the relay circuit 50 is configured to switch in response to signal inputs from an alignment transition control signal (for counter electrode) 48 and an alignment transition control signal (for storage capacitor bus line) 49.
  • an alignment transition control signal for counter electrode
  • an alignment transition control signal for storage capacitor bus line
  • an alignment transition control signal (for counter electrode) 48 and an alignment transition control signal (for storage capacitor bus line) 49 are output again from the liquid crystal control circuit 40.
  • the switches in the relay circuit 50 are switched.
  • An alignment transition control signal (for counter electrode) 48 and an alignment transition control signal (for storage capacitor bus line) 49 are input from the liquid crystal control circuit 40 to the liquid crystal panel 42. As a result, an image is displayed on the liquid crystal panel 42 in a bend alignment state.
  • the liquid crystal display device 1 is an OCB mode liquid crystal display device, and the liquid crystal molecules contained in the liquid crystal layer are splay-aligned when no voltage is applied to the liquid crystal layer.
  • the orientation transition is made from the splay alignment to the bend alignment, and in the bend alignment state, when the applied voltage becomes a predetermined value or less, the orientation transition is made from the bend alignment to the twist alignment.
  • FIG. 6 is a diagram showing the flow of each signal described with reference to FIG. 5, and is a diagram for explaining the operation of the signal after the power is turned off.
  • a clock signal, a gradation signal, a counter electrode signal, and a storage capacitor bus line signal are input to the liquid crystal panel until the power is turned off.
  • only the orientation transition control signal (for the storage capacitor bus line) 49 operates, and a voltage is applied only to the storage capacitor bus line.
  • the switch of the storage capacitor bus line relay circuit 50 is switched, and 0 V is input to the storage capacitor bus line.
  • the liquid crystal molecules are promoted to change the alignment from twist alignment to splay alignment. That is, the transverse electric field that is an electric field parallel to the second glass substrate 10 forms nuclei that are the starting points of the transition from the twist alignment to the splay alignment of the liquid crystal molecules, and the alignment transition from the twist alignment to the splay alignment is induced.
  • an opening 15 is formed in the pixel electrode 11 in a part of a region where the pixel electrode 11 and the storage capacitor bus line 13 overlap with each other via the insulating film 14. Therefore, a lateral electric field can be generated from the opening 15 by applying a potential difference between the pixel electrode 11 and the storage capacitor bus line 13 in a state where the liquid crystal layer 25 is twisted. Then, the electric field makes it impossible for the liquid crystal molecules to maintain the twist alignment, and the alignment transition to the splay alignment is induced, so that the rapid alignment transition from the twist alignment to the splay alignment can be realized.
  • the liquid crystal display device 1 gives a voltage difference between the pixel electrode and the bus line when the alignment transition from the twist alignment to the splay alignment, and no voltage is applied between the pixel electrode and the counter electrode. Therefore, rapid alignment transition from twist alignment to splay alignment can be realized without transition from twist alignment to bend alignment.
  • the liquid crystal display device 1 has the transition of the entire screen from the twist alignment to the splay alignment as the splay alignment gradually spreads in the screen from the outer peripheral portion of the screen which has not been bent. Time-consuming, twisted orientation and splay orientation are mixed in the screen, and the conventional problem that a speckled pattern is generated on the screen can be solved quickly and efficiently.
  • the opening 15 is included in some pixels or all pixels. Also good. However, since the opening 15 is included in all the pixels, it is possible to change the orientation of the entire screen from the twist orientation to the splay orientation in the time required for one pixel to change orientation from the twist orientation to the splay orientation. For this reason, when the image display is stopped, it is possible to realize a prompt full screen uniform spray orientation.
  • the alignment films 5 and 12 of the liquid crystal display device 1 are each rubbed in the same rubbing direction, and a lateral electric field is applied in a direction parallel to the rubbing direction.
  • the twist alignment is twisted by 180 ° between the counter substrate 7 and the TFT substrate 20, and the liquid crystal molecules are oriented in the direction perpendicular to the rubbing at the center of the liquid crystal layer 25. Therefore, by generating an electric field in a direction parallel to the rubbing with respect to the liquid crystal molecules located at the center of the liquid crystal layer 25, the liquid crystal molecules cannot maintain the twist alignment, and as a result, the liquid crystal molecules are transferred to the splay alignment. To do. That is, by applying an electric field in a direction parallel to rubbing (or antiparallel direction), alignment transition from twist alignment to splay alignment can be realized more effectively.
  • the insulating film 14 is formed so that the film thickness in the vicinity of the opening 15 is thinner than the film thickness in a region other than the vicinity of the opening 15.
  • the storage capacitor bus line 13 may be a gate bus line 31 or a source bus line 32 formed on the TFT substrate 20.
  • the gate bus line 31 or the source bus line 32 formed on the TFT substrate 20 as the storage capacitor bus line 13, it becomes unnecessary to form a new bus line. As a result, rapid alignment transition from twist alignment to splay alignment can be realized, and the liquid crystal display device can be downsized, the device can be simplified, or the cost can be reduced.
  • the liquid crystal display device 1 is preferably of a reflective type provided with a reflector that reflects outside light.
  • the liquid crystal display device 1 is preferably a reflection / transmission type including a reflection plate that reflects external light and a backlight disposed on the back surface of the TFT substrate 20.
  • Example 1 Hereinafter, the orientation transition from the twist orientation to the splay orientation will be described in accordance with an embodiment.
  • specific numerical values are used for the purpose of understanding. Therefore, the effects obtained by the present embodiment are not limited to the numerical values shown here.
  • the actually used liquid crystal display device is patterned so that the thickness of the insulating film is 740 nm and the thickness of the pixel electrode is 140 nm.
  • the alignment film is formed as follows. That is, the parallel alignment polyimide was printed on the TFT substrate and the counter substrate, and baked in an oven at 200 ° C. for 1 hour, and the film thickness after baking was about 100 nm. Then, the alignment film is rubbed in one direction with a cotton cloth so that the alignment direction when the TFT substrate and the counter substrate are bonded is parallel.
  • thermosetting resin was used as a seal, and therefore, baking was performed in an oven at 170 ° C. for one and a half hours while applying pressure.
  • the liquid crystal was injected using a vacuum injection method. In this example, an experiment was performed using the liquid crystal display device prepared by the above method.
  • the power was turned off to turn off the display.
  • the voltage applied to the gate bus line, the source bus line, the storage capacitor bus line, and the counter electrode was set to 0V.
  • +10 V was applied only to the storage capacitor bus line, and held for 1 second, and then a voltage of 0 V was applied.
  • the voltage is applied to the storage capacitor bus line again.
  • the timing of applying the voltage to the storage capacitor bus line is delayed, the entire display is uniformly displayed after the power is turned off. It took time to become oriented. Therefore, it is desirable to apply a voltage to the storage capacitor bus line as soon as possible after the power is turned off, and it is most desirable to apply a voltage to the storage capacitor bus line at the same time as turning off the power.
  • the time for applying the voltage to the storage capacitor bus line is 1 second here, it is sufficient that the liquid crystal responds sufficiently, and a shorter time may be used.
  • the response time of the liquid crystal is about 500 msec. Therefore, it is sufficient to apply only 500 msec, and at room temperature (+ 25 ° C.), the response time is about 50 msec. Therefore, it is sufficient to apply only 50 msec.
  • FIG. 7 is a diagram showing a state immediately after +10 V is applied only to the storage capacitor bus line, and then a voltage of 0 V is applied to the storage capacitor bus line. As shown in FIG. 7, splay alignment occurred from the opening of each pixel, and it was confirmed that the entire pixel changed from twist alignment to splay alignment after 5 seconds.
  • the voltage applied to the storage capacitor bus line was set to 0 V in the same manner as other bus lines. Then, it takes time for the entire screen to transition from the twist orientation to the splay orientation, and the splay orientation spreads in the screen from the outside of the screen that has not been in the bend orientation. It was confirmed that became uniform spray orientation.
  • the splay alignment is generated from only a part of the screen without generating the splay alignment in most pixels. Occurred. Furthermore, at a voltage lower than Vcr, splay alignment did not occur. From this result, it can be understood that the orientation transition from the twist orientation to the splay orientation is greatly influenced by the voltage applied to the storage capacitor bus line, as in the orientation transition from the splay orientation to the bend orientation.
  • the higher the voltage applied to the storage capacitor bus line the higher the probability that splay alignment will occur. Therefore, in order to generate splay alignment uniformly and quickly, the voltage applied to the storage capacitor bus line should be as high as possible. Is preferred. However, when the voltage that can be applied to the storage capacitor bus line is increased, there is a problem that the power generation circuit becomes expensive. Therefore, it is preferable to apply a voltage to the storage capacitor bus line at a voltage as low as possible, which can reduce the ratio of occurrence of splay alignment to approximately 100%.
  • FIG. 8 is a diagram showing the relationship between the voltage applied to the storage capacitor bus line and the film thickness of the insulating film formed between the storage capacitor bus line and the pixel electrode obtained in this embodiment. It is.
  • the area on the right side of the curve is an area where the transition from the twist alignment to the splay alignment occurs reliably, and the area on the left side of the curve is an area where a part of the transition to the splay alignment does not occur.
  • the highest voltage in the liquid crystal panel is a voltage applied to the gate bus line, and a voltage of about 10V to 15V is used. Therefore, if a power supply that applies a voltage to the gate bus line can be used even in the transition to the splay alignment, it is not necessary to prepare an additional power supply. As a result, the liquid crystal display device is downsized and the device is simplified. Or contribute to cost reduction.
  • the film thickness of the insulating film can be reduced to 1 ⁇ m or less based on the curve of FIG. 8, the orientation transition can be reliably generated at a voltage of about 13 V or less, and the power supply for applying the voltage to the gate bus line. And a power source for causing orientation transition to splay orientation.
  • the above effect that is, the liquid crystal display device can be reduced in size, the device can be simplified, or the cost can be reduced.
  • the film thickness of the insulating film for protecting the gate bus line needs to be about 500 nm in order to maintain the insulating property. Therefore, it can be seen from FIG. 8 that a voltage of about 7 V is required to reliably generate the transition voltage.
  • a polarizing plate is arranged in crossed Nicols, and a panel is placed between the two polarizing plates so that the rubbing direction is parallel to the absorption axis of one polarizing plate. Then, in the case of splay alignment or bend alignment, the liquid crystal molecules are arranged in a plane parallel to the rubbing direction and remain dark, but in the case of twist alignment, it is understood that there is no extinction position and coloring occurs. By this method, it can be confirmed whether or not the liquid crystal layer has twist alignment.
  • Example 2 The embodiment described next relates to a liquid crystal display device 75 that realizes a rapid reverse transition while increasing the aperture ratio of the pixel as compared with the first embodiment.
  • the aperture ratio is shown in FIG. 9 because an interlayer insulating film is formed between the pixel electrode and the second glass substrate to prevent conduction between the pixel electrode and the gate bus line or the source bus line.
  • the pixel electrode and the gate bus line or the source bus line can be overlapped in a planar manner, whereby the aperture ratio can be increased.
  • an insulating film 70 was produced as an interlayer insulating film.
  • the same reference numerals are given to the same components as those described above with reference to FIG. Therefore, detailed description of these components is omitted.
  • the method for forming the insulating film 70 is as follows. It is assumed that the storage capacitor bus line 13 and the insulating film 14 are already formed on the second glass substrate 10 by the same method as described above.
  • a photoresist made of a polymer material was applied by spin coating, and then a contact hole was formed on the drain electrode by exposure and development in order to establish conduction with the drain electrode. Thereafter, it was baked in an oven at about 180 ° C. and cured.
  • the film thickness of the insulating film 70 after curing was 2 ⁇ m on average.
  • the polymer material a positive resist is used, but a negative resist can also be used.
  • the pixel electrode 71 was formed by sputtering and patterned by a photolithography process.
  • the film thickness of the pixel electrode was 140 nm.
  • the pixel electrode 71 uses ITO as a transparent electrode, but may be any material as long as it is a transparent thin film conductive material such as IZO.
  • the subsequent manufacturing method of the liquid crystal display device was performed by the same method as described above.
  • the alignment film 72 formed on the upper surfaces of the insulating film 70 and the pixel electrode 71 had a thickness of 100 nm.
  • the storage capacitor bus line 13 is provided on the second glass substrate 10 so as to overlap the pixel electrode 71 with the insulating films 14 and 70 interposed therebetween.
  • An opening 73 is formed in the pixel electrode 71 in a part of a region where the bus line 13 overlaps with the insulating films 14 and 70.
  • the liquid crystal display device 75 produced in this way was evaluated.
  • the aperture ratio was improved by 20% from 50% to 60% by manufacturing the insulating film 70, and bright display was possible.
  • the power supply was turned off and the screen display was turned off.
  • the voltage applied to the gate bus line, the source bus line, the storage capacitor bus line 13 and the counter electrode 4 was set to 0V. After turning off the power, +10 V was applied only to the storage capacitor bus line 13 and held for 1 second, and then a voltage of 0 V was applied. And the subsequent state was observed.
  • the following can be derived as effects of the present embodiment. That is, by forming the insulating film 70 between the pixel electrode 71 and the second glass substrate 10, conduction between the pixel electrode 71 and the gate bus line or the source bus line can be prevented. And the gate bus line or the source bus line can be overlapped in a planar manner, and the aperture ratio can be increased. Since the insulating film 70 exists between the storage capacitor bus line 13 and the pixel electrode 71, the voltage applied between the storage capacitor bus line 13 and the pixel electrode 71 is applied when the insulating film 70 does not exist. Although it is smaller than that, by applying a higher voltage between the storage capacitor bus line 13 and the pixel electrode 71, the entire screen can be quickly transferred from twist alignment to splay alignment.
  • the voltage was not applied to the storage capacitor bus line 13 after the power was turned off, and the voltage was set to 0 V like the other bus lines. Then, it took time for the entire screen to be in the splay orientation, and after about 10 minutes, it was confirmed that the uniform splay orientation was finally achieved.
  • Example 3 The present embodiment relates to a liquid crystal display device 84 in which the insulating film 70 described in the second embodiment is removed by patterning only the vicinity of the opening 73.
  • FIG. 11 is a cross-sectional view of the liquid crystal display device 84. The same reference numerals are given to the same components as those described above with reference to FIG. Therefore, detailed description of these components is omitted.
  • the storage capacitor bus line 13 is provided on the second glass substrate 10 so as to overlap the pixel electrode 81 with the insulating films 14 and 80 interposed therebetween.
  • An opening 83 is formed in the pixel electrode 81 in a part of a region where the pixel electrode 81 and the storage capacitor bus line 13 overlap with each other via the insulating film 14.
  • an insulating film 70 is always interposed between the storage capacitor bus line 13 and the pixel electrode 71.
  • the insulating layer corresponding to the insulating film 70 is removed above the storage capacitor bus line 13 (upper side in FIG. 11), and a pixel electrode 81 is formed instead.
  • the opening 83 is formed so that the alignment film 82 and the insulating film 14 formed on the bottom surface thereof are adjacent to each other. That is, the opening 83 has the same structure as the opening 15 of the liquid crystal display device 1.
  • the film thicknesses of the pixel electrode 81, the alignment film 82, and the insulating film 80 are the same as those in the second embodiment, and thus the description thereof is omitted here.
  • the liquid crystal display device 84 produced in this way was evaluated.
  • the aperture ratio was improved by 20% from the aperture ratio of Example 1, and bright display was possible.
  • the power supply was turned off and the screen display was turned off.
  • the voltage applied to the gate bus line, the source bus line, the storage capacitor bus line 13 and the counter electrode 4 was set to 0V. After turning off the power, +10 V was applied only to the storage capacitor bus line 13 and held for 1 second, and then a voltage of 0 V was applied. And the subsequent state was observed.
  • Example 4 In the embodiment described below, irregularities are provided on the surface on the liquid crystal layer side of the insulating film 80 of the third embodiment, and Al, Ag, or an alloy containing Al or Ag as a main component instead of ITO as a pixel electrode.
  • the present invention relates to a liquid crystal display device 90 using a reflective thin film conductive material such as. That is, this embodiment relates to a reflective liquid crystal display device. Note that the unevenness can be formed simultaneously with patterning the insulating film near the opening.
  • the same components as those described above with reference to FIG. therefore, detailed description of these components is omitted.
  • other conditions that is, the film thicknesses of the pixel electrode 86, the alignment film 87, and the insulating layer 85 are the same as those in the third embodiment, and thus the description thereof is omitted here.
  • the liquid crystal display device 84 produced in this way was evaluated.
  • the aperture ratio was improved by 20% from the aperture ratio of Example 1, and bright display was possible.
  • the power supply was turned off and the screen display was turned off.
  • the voltage applied to the gate bus line, the source bus line, the storage capacitor bus line 13 and the counter electrode 4 was set to 0V. After turning off the power, +10 V was applied only to the storage capacitor bus line 13 and held for 1 second, and then a voltage of 0 V was applied. And the subsequent state was observed.
  • the voltage applied to the storage capacitor bus line was set to 0 V in the same manner as other bus lines. Then, it takes time for the entire screen to transition from the twist orientation to the splay orientation, and the splay orientation spreads in the screen from the outside of the screen that has not been in the bend orientation. It was confirmed that became uniform spray orientation.
  • a transmissive liquid crystal display device In the case of a transmissive liquid crystal display device, it is not a big problem if the backlight is turned off at the same time as the power is turned off. However, in a reflective liquid crystal display device using ambient light as a light source, or a reflective / transmissive liquid crystal display device, a spotted display is always observed while a screen in which twist orientation and splay orientation are mixed continues. Therefore, it can be considered that it is very effective to apply this embodiment that returns to a uniform screen in a few seconds in a reflective liquid crystal display device or a reflective / transmissive liquid crystal display device.
  • Example 4 a reflective thin film conductive material such as Al or Ag is used instead of ITO as the pixel electrode. It has been confirmed that the same effects as in Examples 1 to 3 can be obtained, and it can be seen that the same results can be obtained in Examples 1 to 3 by using a reflective thin film conductive material as the pixel electrode. .
  • the opening is provided in each pixel.
  • the entire screen can be changed from twist alignment to splay alignment in the time required for one pixel to change from twist alignment to splay alignment. For this reason, when the image display is stopped, it is possible to realize a prompt full screen uniform spray orientation.
  • each of the first substrate and the second substrate has an alignment film rubbed in the same rubbing direction on the liquid crystal layer side, and is generated in the opening by the voltage.
  • the electric field is preferably applied in a direction parallel to the rubbing direction.
  • the twist alignment is twisted 180 ° between the first substrate and the second substrate, and the liquid crystal molecules are oriented in the direction perpendicular to the rubbing at the center of the liquid crystal layer. Therefore, by generating an electric field in a direction parallel to the rubbing with respect to the liquid crystal molecules located in the central portion of the liquid crystal layer, the liquid crystal molecules cannot maintain the twist alignment, and as a result, the liquid crystal molecules transition to the splay alignment. . That is, by applying an electric field in a direction parallel to rubbing (or antiparallel direction), alignment transition from twist alignment to splay alignment can be realized more effectively.
  • the insulating layer is formed so that a film thickness in the vicinity of the opening is thinner than a film thickness in a region other than the vicinity of the opening.
  • the insulating layer has a thickness of 1 ⁇ m or less in the vicinity of the opening.
  • the thickness of the insulating film can be reduced to 1 ⁇ m or less, the voltage required for the reverse transition from the twist alignment to the splay alignment should be lower than the voltage applied to the highest gate bus line in the liquid crystal panel. Therefore, a power source for reverse transition and a power source for applying a voltage to the gate bus line can be shared. As a result, rapid alignment transition from twist alignment to splay alignment can be realized, and the liquid crystal display device can be downsized, the device can be simplified, or the cost can be reduced.
  • the bus line is a gate bus line or a source bus line formed on the first substrate.
  • the gate bus line or source bus line formed on the first substrate as the bus line, it is not necessary to form a new bus line. As a result, rapid alignment transition from twist alignment to splay alignment can be realized, and the liquid crystal display device can be downsized, the device can be simplified, or the cost can be reduced.
  • the pixel electrode is preferably a transparent electrode.
  • the liquid crystal display device according to the present invention is preferably of a reflective type provided with a reflecting plate that reflects external light.
  • the liquid crystal display device is preferably a reflection / transmission type including a reflection plate that reflects external light and a backlight disposed on the back surface of the first substrate.
  • the liquid crystal display device includes a bus line that is provided on the first substrate so as to overlap the pixel electrode with the insulating layer interposed therebetween, and that applies a voltage between the pixel electrode and the pixel electrode. And an opening formed in the pixel electrode in a part of a region where the bus line overlaps with the insulating layer.
  • the liquid crystal display device according to the present invention can be applied to a liquid crystal display device, and in particular, is a liquid crystal display device using an OCB mode (Optically Self-Compensated Birefringence mode), which has an alignment transition from twist alignment to splay alignment.
  • OCB mode Optically Self-Compensated Birefringence mode
  • the present invention can be applied to a liquid crystal display device that performs quickly.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)

Abstract

 本発明のOCBモードの液晶表示装置では、蓄積容量バスライン(13)が絶縁膜(14)を挟んで画素電極(11)と重畳するようにTFT基板(20)に設けられており、画素電極(11)と蓄積容量バスライン(13)とが絶縁膜(14)を介して重畳する領域の一部において、画素電極(11)に開口部(15)が形成されている。 画素電極(11)と蓄積容量バスライン(13)との間に電位差を生じさせることにより、開口部(15)の近傍に横電界が発生し、ツイスト配向からスプレイ配向への転移の核が形成される。 本発明によると、電源をOFFにして表示を停止した場合に、ツイスト配向からスプレイ配向への配向転移を迅速に行うことができる。

Description

液晶表示装置
 本発明は、液晶表示装置に関するものであり、特にOCBモード(Optically Self-Compensated Birefringence mode)を用いた液晶表示装置であって、ツイスト配向からスプレイ配向への配向転移を迅速に行う液晶表示装置に関するものである。
 従来、液晶表示装置は、テレビ、ノート型PC(パーソナルコンピュータ)、ディスクトップ型PC、PDA(携帯端末)及び携帯電話など、種々の電子機器に広く使われている。これは、液晶表示装置が、CRT(Cathode Ray Tube)に比べて薄くて軽量であり、低電圧で駆動できて消費電力が小さいためである。そして、近年の液晶技術の発展により、高コントラスト、広視野角特性を有したカラー液晶表示装置が開発され、大型ディスプレイの主流として広く実用化されている。
 ここで、現在広く使用されているカラー液晶表示装置として、電界により液晶層の旋光性を制御して表示を行うツイステッドネマティックモード(以下、「TNモード」という)、電界により液晶層の複屈折を制御して表示を行う複屈折モード(以下、「ECBモード」という)などが挙げられる。しかしながら、これらのモードを利用したカラー液晶表示装置は、未だに応答速度が遅く、尾引き現象が生じたり、輪郭がぼやけたりしてしまうため、動画を表示するには適さないという問題がある。
 そこで、カラー液晶表示装置の応答速度の高速応答化の試みが数多くなされており、動画表示に適した高速応答性を有した液晶モードとして、強誘電性液晶モード、反強誘電性液晶モード、OCB(Optically Self-Compensated Birefringence mode)モードなどが開発されている。このうち、強誘電性液晶モード、及び反強誘電性液晶モードは、層構造を有しているため耐衝撃性が弱く、実用化に課題が多いことが知られている。それに対して、OCBモードは、通常のネマティック液晶を用いており、衝撃にも強く、温度範囲も広く、広視野角、高速応答特性を有しているため、動画表示に最適な液晶モードとして特に注目されている。
 図13及び図14は、OCBモードを用いた従来の液晶表示装置100の概略構成を模式的に示す断面図であり、図13は電圧無印加時の状態を示し、図14は、電圧印加時の状態を示す。
 液晶表示装置100の液晶パネル102は、互いに対向するカラーフィルター基板110およびTFT基板115と、両基板の間に、液晶分子120を含む液晶層121とを備える。
 カラーフィルター基板110は、第1ガラス基板105上に対向電極106と図示しないカラーフィルターと配向膜107とが形成されてなる。なお、カラーフィルターは、カラー表示を行う場合に使用される。ここではカラー表示が行われるものとして説明している。
 TFT基板115は、第2ガラス基板111上に画素電極112と配向膜113とが形成されてなる。なお、液晶をアクティブマトリックス駆動するために、第2ガラス基板111には、ゲートバスライン、ソースバスライン、その交差部にTFT(Thin Film Transistor)が作製される。
 カラーフィルター基板110およびTFT基板115は、対向した状態において、図示しない球状スペーサまたは柱スペーサにより適宜ギャップを設けて貼り合わされる。そして、カラーフィルター基板110およびTFT基板115を貼り合わせ、その間に液晶層121を滴下注入する。あるいは、液晶層121は、カラーフィルター基板110およびTFT基板115の間に真空注入される。
 なお、OCBモードでは、カラーフィルター基板110およびTFT基板115は、液晶分子120を平行かつ同一方向に配向させるために配向処理されている。そして、表示の視野角特性を向上させるために各基板の基板表面に位相差板を設け、さらに偏光板をクロスニコルになるよう両基板に配置している。位相差板には主軸がハイブリッド配列した負の位相差板などが用いられている。
 図13及び図14に示すように、OCBモードを用いた液晶表示装置100では、液晶分子120は、電圧が印加されていない状態では図13に示す方向に配向していることが多い。以降、この状態を初期配向(スプレイ配向)と称する。そして、カラーフィルター基板110の対向電極106とTFT基板115の画素電極112との間に所定の電圧を印加すると、配向転移を起こし、順次図14に示す方向に配向移行する。以降、この状態をベンド配向と称する。図14のベンド配向になると、液晶の配向変化が高速に応答するため、ネマティック液晶を用いるモードの中で最も速い表示が可能となる。さらに位相差板と組み合わせることにより広視野角特性を有した表示状態となる。なお、カラー表示は、ベンド配向になった状態で行われる。
 スプレイ配向からベンド配向への配向転移を速やかに行うためには、比較的大きな電圧や時間が必要となる。さらに、配向転移が発生する場所(領域)は、スペーサが数個凝集した場所などから広がって生じるケースが多いことが知られている。例えば、特許文献1には、画面内のすべての画素に配向転移が発生する転移核を作製して、この転移核からベンド配向が発生するようにしている。
 しかしながら、ベンド配向を維持するためには、ある程度の電圧を常に印加し続けなければならない。このベンド配向を維持できる最低の電圧をVcrとした場合、Vcr以下の電圧になると、もはやベンド配向は維持できず、すぐに図15に示す配向に移行する。以降、この状態をツイスト配向と称する。その後、時間の経過に伴い、配向状態は、初期配向であるスプレイ配向(図13)に徐々に変化していく。つまり、OCBモードでは、初期状態である電圧無印加時ではスプレイ配向を示し、対向電極106と画素電極112との間に所定の電圧を印加するとベンド配向に配向移行し、ベンド配向の状態において電圧をVcr以下にすると、ベンド配向からツイスト配向に移行し、その後、徐々にスプレイ配向に変化していく。
 従って、ベンド配向の状態において、パネルや装置の電源をOFFにして表示を停止した場合、その瞬間はツイスト配向に変化するが、徐々にスプレイ配向へと配向転移していく。ここで、ツイスト配向からスプレイ配向への配向転移を逆転移と称する。ベンド配向とツイスト配向との間にはヒステリシス特性はあまり無く、電圧によってすぐに切り替わるが、スプレイ配向に配向転移する逆転移のスピードは非常に遅く、画面全体がスプレイ配向になるには数分~数十分かかる。逆転移が発生する箇所は、ベンド配向になっていない画面周辺の非表示部や、スペーサが数個凝集した場所などであり、そこから発生した逆転移が徐々に画面全体に広がっていく。
 ここで、電源をOFFにしてから5秒経過後の配向状態を顕微鏡観察した様子を模式的に図16に示す。図16に示すように、画面内にはスプレイ配向およびツイスト配向が混在しており、斑な模様を呈している。つまり、逆転移の核となる箇所は画面内には非常に少ないため、逆転移が広がっている間は、ツイスト配向およびスプレイ配向が混在した状態になっており、この状態が続く数分の間は斑な表示が観察されるという問題があった。この問題は、透過型液晶表示装置の場合は電源OFFと同時にバックライトを消してしまえば大きな問題とはならない。しかしながら、周囲光を光源とする反射型液晶表示装置、あるいは反射透過両用型液晶表示装置においては、特に顕著な問題となっていた。
 この点、特許文献1に記載の液晶表示装置は、スプレイ配向からベンド配向への配向転移を速やかに行うために、画面内のすべての画素に配向転移が発生する転移核を作製し、この転移核からベンド配向が発生するようにしている。しかしながら、該液晶表示装置は、ツイスト配向からスプレイ配向への逆転移を、上記斑模様を呈することなく実現するものではない。さらに、上記斑模様を呈することなくツイスト配向からスプレイ配向への逆転移を実現する液晶表示装置は、何れの文献においても記載されていない。
特開2003-107506号公報(公開日:平成15年4月9日)
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、ツイスト配向からスプレイ配向への配向転移を迅速に行う液晶表示装置を提供することにある。
 本発明に係る液晶表示装置は、前記課題を解決するために、第1基板と、第2基板と、前記第1基板及び前記第2基板の間に封入された液晶層とが備えられ、複数の画素がマトリックス状に配置され、前記第1基板には、前記複数の画素における各画素に対応した画素電極が設けられ、前記液晶層に含まれる液晶分子は、前記液晶層に電圧が印加されていない状態でスプレイ配向しており、前記液晶層に電圧が印加されることにより、スプレイ配向からベンド配向に配向転移し、ベンド配向の状態において、印加される電圧が所定値以下になるとベンド配向からツイスト配向に配向転移するOCBモードの液晶表示装置であって、絶縁層を挟んで前記画素電極と重畳するように前記第1基板に設けられた、前記画素電極との間に電圧を印加するバスラインと、前記画素電極と前記バスラインとが前記絶縁層を介して重畳する領域の一部において前記画素電極に形成された開口部とを備えることを特徴としている。
 上記の構成によれば、本発明に係る液晶表示装置は、画像表示を停止する際に、画素電極とバスラインとの間に所定の電圧が印加される。このように電圧を印加することにより、液晶層をツイスト配向からスプレイ配向へ配向転移させるための電界を、開口部から発生させることができる。そして、その電界によって、液晶分子は、ツイスト配向を維持することができなくなり、スプレイ配向への配向転移が誘発され、ツイスト配向からスプレイ配向への配向転移を迅速に実現することができることを、本願発明者らは鋭意研究の結果見出した。
 このように、本発明に係る液晶表示装置では、画素電極とバスラインとの間に所定の電圧を印加することにより、開口部に電界が発生する。それにより、ツイスト配向からスプレイ配向への配向転移を迅速かつ効率的に実現することができる。また、ベンド配向になっていなかった画面の外側周辺部などからスプレイ配向が徐々に画面内に広がり、ツイスト配向からスプレイ配向へ画面全体が配向転移するのに時間を要していたこと、及び、画面内にツイスト配向とスプレイ配向とが混在し、画面に斑な模様が発生していた、という従来の問題を解決することができる。
本実施の形態に係る液晶表示装置の断面図である。 本実施の形態にかかる液晶表示装置におけるTFT基板の一画素の概略構成を模式的に示す平面図である。 本実施の形態にかかる液晶表示装置におけるTFT基板の一画素の概略構成であって、開口部をゲートバスライン上に配置した場合の構成を模式的に示す平面図である。 本実施の形態にかかる液晶表示装置におけるTFT基板の一画素の概略構成であって、開口部をソースバスライン上に配置した場合の構成を模式的に示す平面図である。 液晶表示パネルに画像を表示させるための信号線を示す図である。 ツイスト配向からスプレイ配向に配向移行する際の各信号の流れを示す図である。 蓄積容量バスラインのみに+10Vを印加し、その後、蓄積容量バスラインに0Vの電圧を印加した直後の様子を示す図である。 蓄積容量バスラインに印加する電圧と絶縁膜との関係を示す図である。 本実施の形態にかかる他の液晶表示装置におけるTFT基板の一画素の概略構成を模式的に示す平面図である。 本実施の形態に係る他の液晶表示装置の断面図である。 本実施の形態に係るさらに他の液晶表示装置の断面図である。 本実施の形態に係るさらに他の液晶表示装置の断面図である。 OCBモードを用いた従来の液晶表示装置の電圧無印加時におけるスプレイ配向を模式的に示す断面図である。 OCBモードを用いた従来の液晶表示装置の電圧印加時におけるベンド配向を模式的に示す断面図である。 OCBモードを用いた従来の液晶表示装置のツイスト配向を模式的に示す断面図である。 スプレイ配向とツイスト配向とが混在して斑模様を呈する様子を示す図である。
 本実施の形態について、図1、図2に基づいて説明すると以下の通りである。なお、図1は、本実施の形態に係るOCBモードの液晶表示装置1の断面図(図2のA-B線)であり、図2は、液晶表示装置1におけるTFT基板20の一画素の概略構成を模式的に示す平面図である。
 図1に示すように、液晶表示装置1の液晶パネル2は、互いに対向する対向基板(第2基板)7およびTFT基板(第1基板20)と、両基板の間に液晶層25が封入されている。
 対向基板7は、ベース基板として第1ガラス基板3を備え、この第1ガラス基板3上に、図示しないカラーフィルターと対向電極4と配向膜5とが、第1ガラス基板3側からこの順に形成されている。なお、カラーフィルターは、カラー表示を行う場合に使用され、ここではカラー表示が行われるものとして説明する。
 一方、TFT基板20は、ベース基板として第2ガラス基板10を備え、この第2ガラス基板10における対向基板7との対向面側には、画素電極11と蓄積容量バスライン(バスライン)13とが設けられている。そして、画素電極11と蓄積容量バスライン13との間には絶縁膜(絶縁層)14が設けられており、画素電極11および蓄積容量バスライン13は互いに絶縁されている。そして、図1に示すように、蓄積容量バスライン13は、絶縁膜14を挟んで画素電極11と重畳するように第2ガラス基板10上に設けられている。さらに、画素電極11と蓄積容量バスライン13とが絶縁膜14を介して重畳する領域の一部において、画素電極11に開口部15が形成されている。そして、開口部15において露出した絶縁膜14および画素電極11の上部には、これらを覆うように配向膜12が形成されている。
 なお、液晶をアクティブマトリックス駆動するために、画素電極11には、図示しないゲートバスライン、ソースバスライン、その交差部にTFT(Thin Film Transistor)が作製されている。また、配向膜5および配向膜12は、液晶分子を平行かつ同一方向に配向させるために配向処理されている。
 次に、TFT基板20を図2により説明する。図2は、液晶表示装置1におけるTFT基板20の一画素の概略構成を模式的に示す平面図である。
 図2に示すように、画素30には、画素電極11と、画素電極11の周辺に図示しない絶縁層を介して互いに交差して形成されたゲートバスライン31及びソースバスライン32と、画素30に形成されたTFT(Thin Film Transistor)33とが設けられている。そして、画素電極11の中心近傍には、蓄積容量バスライン13が、ゲートバスライン31と平行に形成されている。
 また、画素電極11と蓄積容量バスライン13とが重なる部分には、転移核としての開口部15が形成されている。ここで、転移核とは、OCBモードにおける液晶分子の配向を、ツイスト配向からスプレイ配向に転移させるためのものである。後述するが、画素電極11に形成された開口部15の下に蓄積容量バスライン13を配設して、画素電極11と蓄積容量バスライン13との間に電位差を生じさせることにより、開口部15の近傍に横電界が発生し、ツイスト配向からスプレイ配向への転移の核が形成される。このような理由から、開口部15を転移核と称している。
 なお、図2では、複数存在する画素のうちの1つの画素30について説明しているが、前記複数の画素はマトリックス状に配置されており、何れの画素についても画素30と同様のことが言えるのはもちろんである。あるいは、複数ある画素のうち、一部の画素にのみ開口部を設ける構成であっても構わない。
 また、図2において、開口部15は画素30のほぼ中央に長方形状に形成されている。しかしながら、開口部15は、矩形状等その他の形状とすることもできる。さらに、図1では、開口部15は画素30のほぼ中央に形成されているが、図3、図4に示す位置であってもよい。つまり、蓄積容量バスライン13の替わりにゲートバスライン31又はソースバスライン32を利用することもできる。
 次に、図1に記載される液晶表示装置1の作成方法を説明する。
 最初にTFT基板20における蓄積容量バスライン13等の作製方法について説明する。まず、ベースコートなどの処理をした第2ガラス基板10の全面に、スパッタリングにより金属膜を製膜し、フォトリソグラフィ工程により蓄積容量バスライン13のパターニングを行う。作製した蓄積容量バスライン13は、Taとその窒化物の積層構造であるが、必ずしも積層構造でなくてもよく、材料はTiやAlなどの金属、またはITOで作製することができる。その後、蓄積容量バスライン13の表面を陽極酸化し、さらに窒化シリコンなどにより絶縁膜14を製膜する。ただし、製膜は、パターニング以外の方法で行ってもよい。
 次に、CVDにより半導体層を製膜し、フォトリソグラフィ工程によりパターニングする。そして、ソースバスライン32及びドレイン電極をスパッタリングにより製膜し、フォトリソグラフィ工程によりパターニングする。ソースバスライン32の材料は、ゲートバスライン31及び蓄積容量バスライン13と同様に、TaやTi、Alなどの金属で作製している。最後に、TFT33への不純物の拡散を絶縁膜で覆って防止し、それにより半導体の性能を高めている。このようにして、TFT基板20の蓄積容量バスライン等が作製される。
 次に、スパッタリングにより画素電極11を製膜し、フォトリソグラフィ工程によりパターニングする。画素電極11は、透明電極としてITOを用いるが、IZOなどの透明性のある薄膜導電性物質であれば何れの材料であってもよい。
 次に、対向基板7を作製する。第1ガラス基板3に画素を仕切るブラックマトリックスと、RGBカラーフィルタをストライプ配列で作製する。その後、対向電極4としてITOをスパッタリングする。続いてTFT基板20と対向基板7に液晶を配向させる処理を行う。なお、配向処理は、従来知られた方法で行えばよいため、ここでの詳細な説明は省略する。
 このようにして作製された液晶パネルが、図1の平面図、図2の断面図によって示される。
 なお、広視野角化するために、液晶パネル2の両外側面に視角補償用位相差板を貼り付け、その外側から偏光板を貼り付ける。また、偏向板の偏光軸はラビング方向に対して直交するように貼り付けられている。
 次に、液晶層に含まれる液晶分子を、スプレイ配向からベンド配向に、そしてベンド配向からツイスト配向に、最後にツイスト配向からスプレイ配向に配向移行させる際の動作を図5、図6により説明する。
 図5は、液晶表示パネルに画像を表示させるための信号線を示す図である。図6は、ツイスト配向からスプレイ配向に配向移行する際の各信号の流れを示す図である。
 図5に示すように、液晶パネル42に画像を表示させるためには、液晶制御回路40、信号源41、電源回路47、及びリレー回路50を用いる。液晶制御回路40は、信号源41からの映像信号を液晶パネル42を駆動する内容の信号に作り変える働きをする。液晶制御回路40から液晶パネル42への信号は、液晶パネル42との同期を取るためのクロック信号43と、中間調を表現するための階調信号44と、蓄積容量バスラインに入力する蓄積容量バスライン信号45と、対向電極に入力する対向電極信号46とが存在する。このうち、クロック信号43および階調信号44は、液晶制御回路40から液晶パネル42へ直接入力される。蓄積容量バスライン信号45および対向電極信号46は、リレー回路50を介して、液晶制御回路40から液晶パネル42へ入力される。
 リレー回路50は、配向転移制御信号(対向電極用)48、及び配向転移制御信号(蓄積容量バスライン用)49からの信号入力を受けてスイッチが切り替わるようになっている。なお、スイッチが切り替わることにより、蓄積容量バスライン信号45は、液晶制御回路40からの信号か、あるいは+10Vの電圧の何れかが入力される。また、リレー回路50のスイッチが切り替わることにより、対向電極信号46は、液晶制御回路40からの信号か、あるいは-10Vの電圧の何れかが入力される。
 なお、図5では、印加する電圧を10Vとして説明しているが、この値に限定されるものではなく、種々の変更が可能であることは言うまでもない。
 上記構成において、液晶パネル42内の液晶層に含まれる液晶分子をスプレイ配向からベンド配向へ転移させる際の流れを説明する。まず、電源がONになると、電源ONを示す電源信号51が電源回路47から液晶パネル42に入力される。そして、液晶制御回路40から配向転移制御信号(対向電極用)48、及び配向転移制御信号(蓄積容量バスライン用)49が出力され、その信号を受けてリレー回路50内のスイッチが各々切り替わる。その結果、蓄積容量バスラインに+10V、対向基板の電極に-10Vの電圧が印加される。このようにして液晶層25に20Vの電圧が印加され、液晶分子がスプレイ配向からベンド配向へ配向転移する。
 その後、液晶分子がベンド配向に転移したところで、再び液晶制御回路40から配向転移制御信号(対向電極用)48、及び配向転移制御信号(蓄積容量バスライン用)49が出力される。その信号を受けてリレー回路50内のスイッチが各々切り替わる。そして、配向転移制御信号(対向電極用)48、及び配向転移制御信号(蓄積容量バスライン用)49が液晶制御回路40から液晶パネル42へ入力される。その結果、ベンド配向になった状態で液晶パネル42に映像が表示される。
 次に、電源をOFFにすると、すべての信号が0Vになる。これにより、液晶分子は、ベンド配向からツイスト配向への配向転移が促される。なお、上述したように、ベンド配向とツイスト配向との間にはヒステリシス特性はあまり無く、すべての信号が0Vになることにより、ベンド配向からツイスト配向への転移は迅速に行われる。
 このように、液晶表示装置1は、OCBモードの液晶表示装置であって、その液晶層に含まれる液晶分子は、液晶層に電圧が印加されていない状態ではスプレイ配向しており、液晶層に電圧が印加されることにより、スプレイ配向からベンド配向に配向転移し、ベンド配向の状態において、印加される電圧が所定値以下になるとベンド配向からツイスト配向に配向転移する構成である。
 続いて、液晶分子がツイスト配向となった状態において、配向転移制御信号(蓄積容量バスライン用)49のみを作動させ、蓄積容量バスラインのみに+10Vが入力されるようにリレー回路50のスイッチを切り替える。そして、一定時間経過後に再び配向転移制御信号(蓄積容量バスライン用)49のみを作動させ、蓄積容量バスライン用のリレー回路50のスイッチを切り替え蓄積容量バスラインに0Vを入力する。
 図6は、図5を参照して説明した各信号の流れを示す図であり、電源をOFFにした後の信号の動作を説明するための図である。図6に示すように、電源がOFFになるまではクロック信号、階調信号、対向電極信号、及び蓄積容量バスライン信号が液晶パネルに入力される。しかしながら、電源がOFFになると、配向転移制御信号(蓄積容量バスライン用)49のみが作動し、蓄積容量バスラインのみに電圧が印加される。そして、一定時間経過後に再び配向転移制御信号(蓄積容量バスライン用)49のみが作動し、蓄積容量バスライン用のリレー回路50のスイッチが切り替わり、蓄積容量バスラインに0Vが入力される。
 このように蓄積容量バスラインのみに+10Vの電圧を印加することにより、絶縁膜14を挟んで異なる平面に設けられた画素電極11と蓄積容量バスライン13との間に電位差が生じる。そして、この電位差によって、第2ガラス基板10と平行な方向の横電界が開口部15から発生する。
 そして、この横電界によって、液晶分子は、ツイスト配向からスプレイ配向への配向転移が促される。つまり、第2ガラス基板10と平行方向の電界である横電界が、液晶分子のツイスト配向からスプレイ配向への転移の起点となる核を形成し、ツイスト配向からスプレイ配向への配向転移が誘発される。
 次に、本実施の形態に係る液晶表示装置1によるツイスト配向からスプレイ配向への配向移行によって得られる効果を説明する。
 液晶表示装置1は、画素電極11と蓄積容量バスライン13とが絶縁膜14を介して重畳する領域の一部において、画素電極11に開口部15が形成されている。従って、液晶層25をツイスト配向にした状態で画素電極11と蓄積容量バスライン13との間に電位差を与えることにより、開口部15から横電界を発生させることができる。そして、その電界によって、液晶分子は、ツイスト配向を維持することができなくなり、スプレイ配向への配向転移が誘発され、ツイスト配向からスプレイ配向への迅速な配向転移を実現することができる。
 また、液晶表示装置1は、ツイスト配向からスプレイ配向へ配向移行する時に、画素電極とバスラインとの間に電圧差を与え、画素電極と対向電極との間には電圧を印加していない。従って、ツイスト配向からベンド配向に配向転移することなく、ツイスト配向からスプレイ配向への迅速な配向転移を実現することができる。
 このように、液晶表示装置1は、ベンド配向になっていなかった画面の外側周辺部などからスプレイ配向が徐々に画面内に広がることにより、ツイスト配向からスプレイ配向へ画面全体が配向転移するのに時間を要し、画面内にツイスト配向とスプレイ配向とが混在し、画面に斑な模様が発生していた従来の問題を迅速かつ効率的に解決することができる。
 また、液晶表示装置1の液晶パネルには、複数の画素がマトリックス状に配置されているが、開口部15は、一部の画素に含まれていても、あるいは全ての画素に含まれていてもよい。ただし、開口部15が全ての画素に含まれていることにより、一つの画素がツイスト配向からスプレイ配向に配向転移する時間で、画面全体をツイスト配向からスプレイ配向に配向転移させることができる。このため、画像表示を停止した場合に、速やかな全画面均一スプレイ配向を実現することができる。
 また、液晶表示装置1の配向膜5・12はそれぞれ、同一のラビング方向にラビング処理され、横電界が、そのラビング方向と平行な方向に印加されることがより好ましい。
 ツイスト配向は、対向基板7とTFT基板20との間で180°ツイストしており、液晶層25の中央部ではラビングに対して直交した方位に液晶分子が向いている。従って、液晶層25の中央部に位置する液晶分子に対して、ラビングに平行な方向で電界を発生させることにより、液晶分子はツイスト配向を維持できなくなり、その結果、液晶分子はスプレイ配向に転移する。つまり、ラビングに平行な方向(または反平行方向)に電界を印加することにより、ツイスト配向からスプレイ配向への配向転移をより効果的に実現することができる。
 また、絶縁膜14は、開口部15の近傍における膜厚が、開口部15の近傍以外の領域における膜厚よりも薄く形成されていることがより好ましい。
 液晶分子をツイスト配向からスプレイ配向へ配向転移させるためには、画素電極11と蓄積容量バスライン13との間に電位差を発生させる必要がある。その電界の強度は、画素電極11と蓄積容量バスライン13との間の電位差が大きいほど強く、画素電極11と蓄積容量バスライン13との間に形成された絶縁膜14の膜厚が薄いほど強い。従って、開口部15の近傍以外の領域における絶縁膜14の膜厚が厚い場合であっても、開口部15の近傍における絶縁膜14の膜厚がそれよりも薄いのであれば、より効果的に開口部15から電界を発生させることができる。その結果、ツイスト配向からスプレイ配向への配向転移をより効果的に実現することができる。
 また、蓄積容量バスライン13は、TFT基板20に形成されたゲートバスライン31又はソースバスライン32とすることもできる。
 TFT基板20に形成されたゲートバスライン31又はソースバスライン32を蓄積容量バスライン13とすることにより、新たにバスラインを形成する必要がなくなる。その結果、ツイスト配向からスプレイ配向への迅速な配向転移を実現すると共に、液晶表示装置の小型化、装置の簡素化、あるいはコストの削減を実現することができる。
 また、液晶表示装置1は、外光を反射する反射板を備えた反射型であることが好ましい。あるいは、液晶表示装置1は、外光を反射する反射板と、TFT基板20の背面に配置されるバックライトとを備えた反射透過両用型であることが好ましい。
 画面内にスプレイ配向とツイスト配向とが混在した状態では、画面に斑な模様が現れてしまう。この問題は、透過型液晶表示装置の場合は電源OFFと同時にバックライトを消してしまえば大きな問題とはならない。しかしながら、周囲光を光源とする反射型液晶表示装置、あるいは反射透過両用型液晶表示装置においては、特に顕著な問題となりうる。従って、液晶表示装置1を反射型、あるいは反射透過両用型に適用することにより、ツイスト配向からスプレイ配向への配向転移をより確実に行うことができ、また上記斑模様の問題をより適切に解決することができる。
 〔実施例1〕
 以下、ツイスト配向からスプレイ配向への配向転移について実施例に則して説明する。なお、以下の説明では具体的な数値をもって説明しているが、これは理解の一助のためである。従って、本実施の形態によって得られる効果は、ここで示す数値等に限られるものではない。
 まず、実際に使用した液晶表示装置は、絶縁膜の膜厚を740nmに、画素電極の膜厚を140nmに、それぞれパターンニングしている。
 また、配向膜は次のように製膜している。つまり、TFT基板および対向基板に平行配向用ポリイミドを印刷し、オーブンにより200℃で1時間焼成し、焼成後の膜厚を約100nmとした。そして、TFT基板と対向基板とを貼り合わせたときの配向方向が平行になるように、配向膜上をコットン布で一方向にラビングしている。
 その後、TFT基板に直径5μmのプラスティックスペーサを乾式で適量散布し、対向基板には画面周辺にシールを印刷し、両基板の位置合わせをして貼り合わせている。実際に行った位置合わせでは、シールとして熱硬化樹脂を用いたため、圧力をかけながら170℃のオーブンで1時間半焼成した。液晶は、真空注入方式を用いて注入した。本実施例では、上記方法によって作成された液晶表示装置を用いて実験を行った。
 次に、実際に使用した液晶表示装置の性能を評価するために以下の確認を行った。液晶分子をスプレイ配向からベンド配向へ転移させるために、ゲートバスラインに+15Vを、ソースバスラインには0Vを、それぞれ同時に入力した。また、蓄積容量バスラインには+10Vを、対向基板の電極には-10Vをそれぞれ印加した。これにより、開口部近傍に位置する液晶層には20Vの電圧が、その他の液晶層には10Vの電圧が印加された。上記の電圧を印加することにより、画面全体において、スプレイ配向からベンド配向への配向転移が広がり、5秒ほどですべての画素がベンド配向したことを確認した。
 続いて、作製した液晶パネルの光学特性を評価した。ゲートバスライン、ソースバスライン、蓄積容量バスライン、及び対向電極に通常のTFT駆動のための信号を入力した。電圧をONとOFFですばやく切り替えたところ、数msec以下の高速で応答することを確認した。ここで、ON、OFFというのは、液晶層に印加される電圧が相対的に高電圧のときをON、相対的に低電圧のときをOFFとし、それぞれ黒表示、白表示に対応している。例えば、10VをONとし、2VをOFFとした。さらに、画面全体がベンド配向したことで、視角補償用位相差板と組み合わせることにより、斜め方向からでも黒状態が観測され、広視野角化を実現している。
 そして、液晶表示装置の性能および液晶パネルの光学特性を評価した後に、実際に逆転移の実験を行った。液晶分子をベンド配向からツイスト配向へ配向転移させるために、電源をOFFにしてディスプレイの表示をOFFにした。具体的には、ゲートバスライン、ソースバスライン、蓄積容量バスライン、及び対向電極に印加する電圧を0Vにした。電源をOFFにした後、蓄積容量バスラインのみに+10Vを印加し、そのまま1秒間保持した後、0Vの電圧を印加した。ここでは、電源をOFFにした後に、改めて蓄積容量バスラインに電圧を印加しているが、蓄積容量バスラインに電圧を印加するタイミングが遅くなるほど、電源をOFFにしてから表示全体が均一なスプレイ配向になるまでの時間を要した。従って、電源をOFFにしてからできる限り早い時間に蓄積容量バスラインに電圧を印加することが望ましく、電源をOFFにすると同時に蓄積容量バスラインに電圧を印加することが最も望ましいといえる。
 なお、ここでは蓄積容量バスラインに電圧を印加する時間を1秒間としたが、液晶が十分応答しさえすれば良く、これより短い時間でも構わない。ネマティック液晶の場合、例えば-30℃で駆動している場合、液晶の応答時間は500msec程度であるため、500msecの時間だけ印加すれば良く、室温(+25℃)の場合、応答時間は50msec程度であるため50msecだけ印加すれば良い。
 電源をOFFにして画面全体をベンド配向からツイスト配向へ配向転移させ、その後、蓄積容量バスラインのみに+10Vを印加した後で0Vの電圧を印加した。その結果、画面全体の色味が変わり、5秒後にはすべて均一な表示に切り替わった。そして、それ以降は全く表示状態に変化が無かったことから、画面全体が初期状態である均一なスプレイ配向に戻ったと判断することができた。
 次にその様子を顕微鏡にて観察した。図7は、蓄積容量バスラインのみに+10Vを印加し、その後、蓄積容量バスラインに0Vの電圧を印加した直後の様子を示した図である。図7に示すように、各画素の開口部からスプレイ配向が発生し、5秒後には画素全体がツイスト配向からスプレイ配向になったことを確認できた。
 比較のため、電源をOFFにした後に、他のバスラインと同様に蓄積容量バスラインへ印加する電圧を0Vにした。すると、画面全体がツイスト配向からスプレイ配向に配向転移するのに時間を要し、ベンド配向になっていなかった画面の外側などからスプレイ配向が画面内に広がり、10分ほど経過した後ようやく画面全体が均一なスプレイ配向になったことが確認された。
 さらに、比較のため、電源をOFFにした後に、蓄積容量バスラインのみに+5Vを印加し、1秒間保持した後、0Vにする実験を行った。その結果、画面の一部分でスプレイ配向が発生せず、周辺で発生したスプレイが広がることにより画面全体がスプレイ配向になったことが確認された。図示していないが、この様子を顕微鏡により観察したところ、蓄積容量バスラインに+5Vを印加した後に0Vを印加した瞬間に、8割ほどの画素からスプレイ配向が発生しており、スプレイ配向が発生していない画素も周囲からスプレイ配向が広がり、最終的には全体がスプレイ配向になった。
 また、蓄積容量バスラインに印加する電圧をVcr(ベンド配向を維持できる最低の電圧)である+2Vにまで低くすると、ほとんどの画素でスプレイ配向は発生することなく、画面の一部分だけからスプレイ配向が発生した。さらにVcrより低い電圧では、スプレイ配向は発生しなかった。この結果から、スプレイ配向からベンド配向への配向転移と同様に、ツイスト配向からスプレイ配向への配向転移も、蓄積容量バスラインに印加する電圧による影響が大きいことが分かる。
 つまり蓄積容量バスラインに印加する電圧が高いほど、スプレイ配向が発生する確率が高くなるため、均一かつ速やかにスプレイ配向を発生させるためには、蓄積容量バスラインに印加する電圧をできるだけ高くすることが好ましい。しかしながら、蓄積容量バスラインに印加できる電圧を高くしようとすると、電源発生回路が高価になるという問題が生じる。そこで、スプレイ配向が発生する割合をほぼ10割にしうる、可能な限り低い電圧で蓄積容量バスラインに電圧を印加することが好ましい。
 ここで、本実験においては、蓄積容量バスラインに印加する電圧を+10Vにした場合に、すべての画素においてツイスト配向からスプレイ配向への配向転移を確認している。従って、スプレイ配向からベンド配向へ転移する時に必要な電源の電圧が+10V以上であれば、該電源(あるいは電源発生回路)を、そのままツイスト配向からスプレイ配向への配向転移に必要な電源として使用することができ、別途複数の電源を準備することによる追加コストの発生を抑えることができる。
 ここで、図8は、本実施例において得られた、蓄積容量バスラインに印加する電圧と、蓄積容量バスラインと画素電極との間に形成された絶縁膜の膜厚との関係を示す図である。
 図8において、曲線より右側のエリアでは、ツイスト配向からスプレイ配向への転移が確実に発生するエリアであり、曲線の左側のエリアではスプレイ配向への転移が一部発生しない領域が出るエリアである。ここで、液晶パネルの中で最も高い電圧はゲートバスラインに印加する電圧であり、10V~15V程度の電圧が使用されている。従って、スプレイ配向への転移においてもゲートバスラインに電圧を印加する電源を使用することができれば、追加的に電源を作製する必要がなくなり、その結果、液晶表示装置の小型化、装置の簡素化、あるいはコストの削減に貢献する。そこで、図8の曲線に基づいて、絶縁膜の膜厚を1μm以下にすることができれば、約13V以下の電圧で配向転移を確実に発生させることができ、ゲートバスラインに電圧を印加する電源とスプレイ配向への配向転移をもたらす電源とを共通化できる。そして、上記効果、つまり液晶表示装置の小型化、装置の簡素化、あるいはコストの削減を実現できる。一方、ゲートバスラインを保護するための絶縁膜の膜厚は、絶縁性を維持するためには500nm程度必要である。従って、図8に基づいて、転移電圧を確実に発生させるためには7V程度の電圧が必要になることが分かる。
 なお、ツイスト配向であることを確認する手段としては、次の方法がある。偏光板をクロスニコルに配置し、その二つの偏光板の間にラビングの向きを片方の偏光板の吸収軸に平行にパネルを置く。すると、スプレイ配向やベンド配向の場合は液晶分子がラビング方向に平行な面内に配置されるため暗いままであるが、ツイスト配向の場合は消光位が無く色付くことからわかる。この方法によって、液晶層がツイスト配向であるか否かを確認することができる。
 〔実施例2〕
 次に説明する実施例は、実施例1よりも画素の開口率を高めつつ、迅速な逆転移を実現する液晶表示装置75に関するものである。
 なお、開口率は、画素電極と第2ガラス基板との間に層間絶縁膜を作製することにより、画素電極とゲートバスライン又はソースバスラインとの導通を防ぐことができるため、図9に示すように、画素電極とゲートバスライン又はソースバスラインとを平面的には重ねることができ、それにより開口率を高めることができる。
 そこで、図10に示すように、層間絶縁膜として絶縁膜70を作製した。なお、図1を参照して前述した構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。
 絶縁膜70の製膜方法は以下の通りである。なお、上記説明したのと同様の方法により、第2ガラス基板10上には、すでに蓄積容量バスライン13および絶縁膜14が成形されているものとする。
 まず、高分子材料のフォトレジストをスピンコートにより塗布した後、ドレイン電極と導通をとるために、露光・現像によりドレイン電極上にコンタクトホールを作製した。その後、180℃程度のオーブンで焼成し、硬化させた。硬化後の絶縁膜70の膜厚は、平均で2μmであった。高分子材料は、ポジ型レジストを用いたが、ネガ型レジストを用いることもできる。
 その後、画素電極71をスパッタリングにより製膜しフォトリソグラフィ工程によりパターニングした。なお、画素電極の膜厚は140nmであった。画素電極71は透明電極としてITOを用いたが、IZOなどの透明性のある薄膜導電性物質であれば何れの材料であってもよい。その後の液晶表示装置の作製方法は、上記と同様の方法により行った。なお、絶縁膜70および画素電極71の上面に成形される配向膜72は、膜厚100nmであった。また、図10に示すように、蓄積容量バスライン13は、絶縁膜14・70を挟んで画素電極71と重畳するように第2ガラス基板10上に設けられており、画素電極71と蓄積容量バスライン13とが絶縁膜14・70を介して重畳する領域の一部において、画素電極71に開口部73が形成されている。
 このようにして作製した液晶表示装置75の評価を行った。開口率は、絶縁膜70を作製することにより50%から60%へ20%向上し、明るい表示が可能となった。次に、実施例1と同様に、液晶分子をベンド配向からツイスト配向へ配向転移させるために、電源をOFFにして画面の表示をOFFにした。具体的には、ゲートバスライン、ソースバスライン、蓄積容量バスライン13、及び対向電極4に印加する電圧を0Vにした。電源をOFFにした後、蓄積容量バスライン13のみに+10Vを印加し、そのまま1秒間保持した後、0Vの電圧を印加した。そして、その後の状態を観察した。
 その結果、画面の一部において、開口部73からスプレイ配向が発生するのが観察された。しかしながら、大部分の開口部73において、スプレイ配向の発生が観察されなかった。これは、蓄積容量バスライン13と画素電極71との間に絶縁膜70が存在するため、蓄積容量バスライン13と画素電極71との間に印加される電圧が小さくなったことが原因であると考えられる。そこで、蓄積容量バスライン13に印加する電圧を+25Vまで上げて実験を行ったところ、観察しているすべての画素においてスプレイ配向が発生し、5秒後には画面全体が均一なスプレイ配向になることが観察された。
 上記結果より、以下のことが本実施例の効果として導くことができる。つまり、画素電極71と第2ガラス基板10との間に絶縁膜70を作製することにより、画素電極71とゲートバスライン又はソースバスラインとの導通を防ぐことができ、その結果、画素電極71とゲートバスライン又はソースバスラインとを平面的には重ねることができ、開口率を高めることができる。そして、蓄積容量バスライン13と画素電極71との間に絶縁膜70が存在するため、蓄積容量バスライン13と画素電極71との間に印加される電圧は、絶縁膜70が存在しない場合に比べて小さくなるものの、より高い電圧を蓄積容量バスライン13と画素電極71との間に印加することにより、画面全体を迅速にツイスト配向からスプレイ配向へ配向転移させることができる。
 なお、比較のため、電源をOFFにした後に蓄積容量バスライン13には電圧を印加せずに、他のバスラインと同様に0Vにした。すると、画面全体がスプレイ配向になるの時間を要し、10分ほど経過した後、ようやく均一なスプレイ配向になったことが確認された。
 〔実施例3〕
 本実施例は、実施例2で説明した絶縁膜70を、開口部73付近のみをパターンニングして取り除いた液晶表示装置84に関するものである。図11は、液晶表示装置84の断面図を示す。なお、図1を参照して前述した構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。
 図11に示すように、蓄積容量バスライン13は、絶縁膜14・80を挟んで画素電極81と重畳するように第2ガラス基板10上に設けられている。そして、画素電極81と蓄積容量バスライン13とが絶縁膜14を介して重畳する領域の一部において、画素電極81に開口部83が形成されている。
 なお、図10と図11とを比較して分かるように、図10に示す液晶表示装置75では、蓄積容量バスライン13と画素電極71との間には、常に絶縁膜70が介在している。しかしながら、図11に示す液晶表示装置84では、蓄積容量バスライン13の上方(図11の上側)において、絶縁膜70に相当する絶縁層が取り除かれ、それに替わって画素電極81が形成されている。従って、開口部83は、その底面に形成された配向膜82と絶縁膜14とが隣接するように形成されている。つまり、開口部83は、液晶表示装置1の開口部15と同様の構造を有している。
 なお、その他の条件、つまり、画素電極81、配向膜82、絶縁膜80の膜厚は、実施例2と同様の条件であるため、ここでの説明は省略する。
 このようにして作製した液晶表示装置84の評価を行った。開口率は、実施例1の開口率よりも20%向上し、明るい表示が可能となった。次に、実施例1と同様に、液晶分子をベンド配向からツイスト配向へ配向転移させるために、電源をOFFにして画面の表示をOFFにした。具体的には、ゲートバスライン、ソースバスライン、蓄積容量バスライン13、及び対向電極4に印加する電圧を0Vにした。電源をOFFにした後、蓄積容量バスライン13のみに+10Vを印加し、そのまま1秒間保持した後、0Vの電圧を印加した。そして、その後の状態を観察した。
 その結果、すべての開口部83からスプレイ配向が発生するのが観察された。そして、開口部83付近には液晶表示装置75の絶縁膜70に相当する絶縁膜が存在せず、蓄積容量バスライン13と画素電極71との間に実施例1と同じ電圧を印加することにより、実施例1と同様の結果が得られた。この結果から分かるように、本実施例では、開口率を高めつつ、蓄積容量バスライン13と画素電極71との間に印加する電圧を下げることができる。つまり、本実施例では、開口率を高めつつ、実施例1と同様の効果を奏することができる。
 〔実施例4〕
 次に説明する実施例は、実施例3の絶縁膜80の液晶層側の面に凹凸を設けると共に、画素電極として、ITOの代わりにAl、Ag、あるいは、Al若しくはAgを主成分とする合金などの反射性の薄膜導電性物質を使用した液晶表示装置90に関するものである。つまり、本実施例は、反射型の液晶表示装置に関するものである。なお、凹凸は、開口部付近の絶縁膜をパターニングする時に同時に作製することができる。
 ここで、図1を参照して前述した構成要素と同一の構成要素には同一の参照符号を付している。従って、これらの構成要素の詳細な説明は省略する。また、その他の条件、つまり、画素電極86、配向膜87、絶縁層85の膜厚は、実施例3と同様の条件であるため、ここでの説明は省略する。
このようにして作製した液晶表示装置84の評価を行った。開口率は、実施例1の開口率よりも20%向上し、明るい表示が可能となった。次に、実施例1と同様に、液晶分子をベンド配向からツイスト配向へ配向転移させるために、電源をOFFにして画面の表示をOFFにした。具体的には、ゲートバスライン、ソースバスライン、蓄積容量バスライン13、及び対向電極4に印加する電圧を0Vにした。電源をOFFにした後、蓄積容量バスライン13のみに+10Vを印加し、そのまま1秒間保持した後、0Vの電圧を印加した。そして、その後の状態を観察した。
 その結果、画面全体の色味が変わり、5秒後にはすべて均一な表示に切り替わった。それ以降は、全く表示状態に変化が無かったことから、画面全体が初期状態である均一なスプレイ配向に戻ったと判断することができた。
 比較のため、電源をOFFにした後に、他のバスラインと同様に蓄積容量バスラインへ印加する電圧を0Vにした。すると、画面全体がツイスト配向からスプレイ配向に配向転移するのに時間を要し、ベンド配向になっていなかった画面の外側などからスプレイ配向が画面内に広がり、10分ほど経過した後ようやく画面全体が均一なスプレイ配向になったことが確認された。
 なお、透過型液晶表示装置の場合は電源OFFと同時にバックライトを消してしまえば大きな問題とはならない。しかしながら、周囲光を光源とする反射型液晶表示装置、あるいは反射透過両用型液晶表示装置においては、ツイスト配向とスプレイ配向とが混在した画面が続く間は斑な表示が常に観察されてしまう。従って、反射型液晶表示装置、あるいは反射透過両用型液晶表示装置において、数秒で均一な画面に戻る本実施例を適用することは非常に有効であると考えられる。
 なお、反射型の液晶表示装置に関する実験は実施例4のみを記載しているが、実施例4では、画素電極としてITOの代わりにAlあるいはAg等の反射性の薄膜導電性物質を使用して実施例1~3と同様の効果が得られることを確認しており、実施例1~3についても、画素電極として反射性の薄膜導電性物質を使用して同様の結果が得られることが分かる。
 以上、種々の実施形態、実施例をもとに本願発明の構成、動作、効果を説明した。しかしながら、本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
 本発明に係る液晶表示装置では、前記開口部が、前記各画素に設けられていることが好ましい。
 上記構成を備えることにより、一つの画素がツイスト配向からスプレイ配向に配向転移する時間で、画面全体をツイスト配向からスプレイ配向に配向転移させることができる。このため、画像表示を停止した場合に、速やかな全画面均一スプレイ配向を実現することができる。
 本発明に係る液晶表示装置では、前記第1基板および前記第2基板はそれぞれ、同一のラビング方向にラビング処理された配向膜を前記液晶層側に有し、前記電圧によって前記開口部に発生した電界は、前記ラビング方向と平行な方向に印加されることが好ましい。
 ツイスト配向は、第1基板と第2基板の間で180°ツイストしており、液晶層の中央部ではラビングに対して直交した方位に液晶分子が向いている。従って、液晶層の中央部に位置する液晶分子に対して、ラビングに平行な方向で電界を発生させることにより、液晶分子はツイスト配向を維持できなくなり、その結果、液晶分子はスプレイ配向に転移する。つまり、ラビングに平行な方向(または反平行方向)に電界を印加することにより、ツイスト配向からスプレイ配向への配向転移をより効果的に実現することができる。
 本発明に係る液晶表示装置では、前記絶縁層は、前記開口部の近傍における膜厚が、該開口部の近傍以外の領域における膜厚よりも薄く形成されていることが好ましい。
 また、本発明に係る液晶表示装置では、前記絶縁層は、前記開口部の近傍における膜厚が1μm以下であることが好ましい。
 液晶分子をツイスト配向からスプレイ配向へ配向転移させるためには、画素電極とバスラインとの間に電位差を発生させる必要がある。その電界の強度は、画素電極とバスラインとの間の電位差が大きいほど強く、画素電極とバスラインとの間に形成された絶縁層の膜厚が薄いほど強い。従って、開口部の近傍以外の領域における絶縁層の膜厚が厚い場合であっても、開口部の近傍における絶縁層の膜厚がそれよりも薄いのであれば、開口部からより強い電界を発生させることができる。その結果、ツイスト配向からスプレイ配向への配向転移をより効果的に実現することができる。
 また、絶縁膜の膜厚を1μm以下にすることができれば、ツイスト配向からスプレイ配向への逆転移に必要な電圧を、液晶パネルの中で最も高いゲートバスラインへの印加電圧よりも低くすることができ、逆転移のための電源と、ゲートバスラインへ電圧を印加する電源とを共通化することができる。その結果、ツイスト配向からスプレイ配向への迅速な配向転移を実現すると共に、液晶表示装置の小型化、装置の簡素化、あるいはコストの削減を実現することができる。
 本発明に係る液晶表示装置では、前記バスラインは、前記第1基板に形成されたゲートバスライン又はソースバスラインであることが好ましい。
 第1基板に形成されたゲートバスライン又はソースバスラインを上記バスラインとすることにより、新たにバスラインを形成する必要がなくなる。その結果、ツイスト配向からスプレイ配向への迅速な配向転移を実現すると共に、液晶表示装置の小型化、装置の簡素化、あるいはコストの削減を実現することができる。
 本発明に係る液晶表示装置では、前記画素電極は、透明電極であることが好ましい。
 画素電極を透明電極とした透過型の液晶表示装置の場合、電源OFFと同時にバックライトを消してしまえば、スプレイ配向およびツイスト配向が混在することに起因する画面内の斑模様の発生を回避しうる。しかしながら、たとえバックライトを消した場合においても、僅かに斑模様が視認される場合がある。そのような場合には、透明電極を用いた透過型の場合であっても、前記開口部に発生する電界により、ツイスト配向からスプレイ配向への迅速な配向転移を実現することができる。
 本発明に係る液晶表示装置は、外光を反射する反射板を備えた反射型であることが好ましい。
 本発明に係る液晶表示装置は、外光を反射する反射板と、前記第1基板の背面に配置されるバックライトとを備えた反射透過両用型であることが好ましい。
 画面内にスプレイ配向とツイスト配向とが混在した状態では、画面に斑な模様が現れてしまう。この問題は、透過型液晶表示装置の場合は電源OFFと同時にバックライトを消してしまえば大きな問題とはならない。しかしながら、周囲光を光源とする反射型液晶表示装置、あるいは反射透過両用型液晶表示装置においては、特に顕著な問題となりうる。従って、本発明を反射型、あるいは反射透過両用型に適用することにより、ツイスト配向からスプレイ配向への配向転移をより確実に行うことができ、また上記斑模様の問題をより適切に解決することができる。
 本発明に係る液晶表示装置は、以上のように、絶縁層を挟んで画素電極と重畳するように第1基板に設けられた、画素電極との間に電圧を印加するバスラインと、画素電極とバスラインとが絶縁層を介して重畳する領域の一部において画素電極に形成された開口部とを備える構成である。
 従って、ツイスト配向からスプレイ配向への配向転移を迅速に行う液晶表示装置を実現することができるという効果を奏する。
 本発明にかかる液晶表示装置は、液晶表示装置に適用することができ、特にOCBモード(Optically Self-Compensated Birefringence mode)を用いた液晶表示装置であって、ツイスト配向からスプレイ配向への配向転移を迅速に行う液晶表示装置に適用することができる。
  1、75、84、90 液晶表示装置
  2   液晶パネル
  3   第1ガラス基板
  4   対向電極
  5、12、82、87 配向膜
  7   対向基板(第2基板)
 10   第2ガラス基板
 11、71、81、86 画素電極
 13   蓄積容量バスライン(バスライン)
 14、70、80、85 絶縁膜
 15、73、83 開口部
 20   TFT基板(第1基板)
 25   液晶層
 30   画素
 31   ゲートバスライン
 32   ソースバスライン
 33   TFT
 40   液晶制御回路
 41   信号源
 42   液晶パネル
 43   クロック信号
 44   階調信号
 45   蓄積容量バスライン信号
 46   対向電極信号
 47   電源回路
 48   対向電極用配向転移制御信号
 49   蓄積容量バスライン用配向転移制御信号
 50   リレー回路
 51   電源信号

Claims (9)

  1.  第1基板と、第2基板と、前記第1基板及び前記第2基板の間に封入された液晶層とが備えられ、
     複数の画素がマトリックス状に配置され、
     前記第1基板には、
     前記複数の画素における各画素に対応した画素電極が設けられ、
     前記液晶層に含まれる液晶分子は、前記液晶層に電圧が印加されていない状態でスプレイ配向しており、前記液晶層に電圧が印加されることにより、スプレイ配向からベンド配向に配向転移し、ベンド配向の状態において、印加される電圧が所定値以下になるとベンド配向からツイスト配向に配向転移するOCBモードの液晶表示装置であって、
     絶縁層を挟んで前記画素電極と重畳するように前記第1基板に設けられた、前記画素電極との間に電圧を印加するバスラインと、
     前記画素電極と前記バスラインとが前記絶縁層を介して重畳する領域の一部において前記画素電極に形成された開口部とを備えることを特徴とする液晶表示装置。
  2.  前記開口部が、前記各画素に設けられていることを特徴とする請求項1に記載の液晶表示装置。
  3.  前記第1基板および前記第2基板はそれぞれ、同一のラビング方向にラビング処理された配向膜を前記液晶層側に有し、
     前記電圧によって前記開口部に発生した電界は、前記ラビング方向と平行な方向に印加されることを特徴とする請求項1又は2に記載の液晶表示装置。
  4.  前記絶縁層は、前記開口部の近傍における膜厚が、該開口部の近傍以外の領域における膜厚よりも薄く形成されていることを特徴とする請求項1~3の何れか1項に記載の液晶表示装置。
  5.  前記絶縁層は、前記開口部の近傍における膜厚が1μm以下であることを特徴とする請求項1~4の何れか1項に記載の液晶表示装置。
  6.  前記バスラインは、前記第1基板に形成されたゲートバスライン又はソースバスラインであることを特徴とする請求項1~5の何れか1項に記載の液晶表示装置。
  7.  前記画素電極は、透明電極であることを特徴とする請求項1~6の何れか1項に記載の液晶表示装置。
  8.  前記液晶表示装置は、外光を反射する反射板を備えた反射型であることを特徴とする請求項1~7の何れか1項に記載の液晶表示装置。
  9.  前記液晶表示装置は、外光を反射する反射板と、前記第1基板の背面に配置されるバックライトとを備えた反射透過両用型であることを特徴とする請求項1~7の何れか1項に記載の液晶表示装置。
PCT/JP2009/062781 2008-08-11 2009-07-15 液晶表示装置 WO2010018728A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US13/003,759 US20110122054A1 (en) 2008-08-11 2009-07-15 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008207039 2008-08-11
JP2008-207039 2008-08-11

Publications (1)

Publication Number Publication Date
WO2010018728A1 true WO2010018728A1 (ja) 2010-02-18

Family

ID=41668875

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062781 WO2010018728A1 (ja) 2008-08-11 2009-07-15 液晶表示装置

Country Status (2)

Country Link
US (1) US20110122054A1 (ja)
WO (1) WO2010018728A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110080535A1 (en) * 2009-10-07 2011-04-07 Kabushiki Kaisha Toshiba Liquid crystal shutter and display system using the same
WO2015010397A1 (zh) * 2013-07-23 2015-01-29 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI395031B (zh) * 2008-05-15 2013-05-01 Hannstar Display Corp 畫素結構、液晶顯示裝置及其操作方式
KR20200082971A (ko) 2018-12-31 2020-07-08 엘지디스플레이 주식회사 폴더블 표시 장치

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107506A (ja) * 2001-01-25 2003-04-09 Matsushita Electric Ind Co Ltd 液晶表示装置
WO2007091346A1 (ja) * 2006-02-10 2007-08-16 Sharp Kabushiki Kaisha 液晶表示パネルおよび液晶表示装置
WO2007119268A1 (ja) * 2006-03-20 2007-10-25 Sharp Kabushiki Kaisha 液晶表示装置
JP2008046605A (ja) * 2006-07-18 2008-02-28 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1264059C (zh) * 2001-01-25 2006-07-12 松下电器产业株式会社 液晶显示装置
JP3989238B2 (ja) * 2001-12-07 2007-10-10 シャープ株式会社 液晶表示装置
US7920234B2 (en) * 2006-06-30 2011-04-05 Lg Display Co., Ltd. Transflective type liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003107506A (ja) * 2001-01-25 2003-04-09 Matsushita Electric Ind Co Ltd 液晶表示装置
WO2007091346A1 (ja) * 2006-02-10 2007-08-16 Sharp Kabushiki Kaisha 液晶表示パネルおよび液晶表示装置
WO2007119268A1 (ja) * 2006-03-20 2007-10-25 Sharp Kabushiki Kaisha 液晶表示装置
JP2008046605A (ja) * 2006-07-18 2008-02-28 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110080535A1 (en) * 2009-10-07 2011-04-07 Kabushiki Kaisha Toshiba Liquid crystal shutter and display system using the same
US8547486B2 (en) * 2009-10-07 2013-10-01 Japan Display Central Inc. Liquid crystal shutter and display system using the same
WO2015010397A1 (zh) * 2013-07-23 2015-01-29 京东方科技集团股份有限公司 阵列基板及其制造方法、显示装置
US10204936B2 (en) 2013-07-23 2019-02-12 Boe Technology Group Co., Ltd. Array substrate and method for manufacturing the same, display device

Also Published As

Publication number Publication date
US20110122054A1 (en) 2011-05-26

Similar Documents

Publication Publication Date Title
US8576356B2 (en) Liquid crystal display device with controlled viewing angle panel and driving method thereof
US7589808B2 (en) Wide viewing angle transflective liquid crystal displays
US6922219B2 (en) Transflective liquid crystal display
US20060001814A1 (en) In-plane switching mode liquid crystal display device and fabricating method thereof
US20050140867A1 (en) Trans-reflecting type in plane switching mode liquid crystal display device having ferroelectric liquid crystal alignment layer
US20070236623A1 (en) Array substrate for liquid crystal display device and method of fabricating the same
JP2005275342A (ja) 視角制御素子およびその製造方法、液晶表示装置、電子機器
JP3538149B2 (ja) 反射型液晶表示装置及びその製造方法
US7880822B2 (en) Liquid crystal display panel and liquid crystal display device
JPH052166A (ja) 液晶装置
US7630044B2 (en) In-plane switching mode LCD device having the interval between the common and pixel electrodes in the reflective part being greater than the interval between the common and pixel electrodes in transmitting part
US7605892B2 (en) Liquid crystal display device for switching display mode between wide viewing angle and narrow viewing angle and method for fabricating the same
JPH02176625A (ja) 液晶表示装置
JP2002311448A (ja) 液晶表示装置及びその製造方法
US20080002083A1 (en) Thin film transistor substrate for liquid crystal display
WO2010018728A1 (ja) 液晶表示装置
US20060132690A1 (en) Liquid crystal display device
JP2009237297A (ja) 液晶表示装置及びその駆動方法
TWI465820B (zh) 液晶裝置
KR20050070773A (ko) 반사형 액정표시소자 및 반투과형 액정표시소자
US20060114390A1 (en) Liquid crystal display device
JP2005084593A (ja) 液晶表示素子およびその製造方法
JP2005157373A (ja) 液晶表示パネル及びこれを有する液晶表示装置。
JP2953720B2 (ja) 液晶表示装置
CN100476536C (zh) 面内切换模式液晶显示器件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806624

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13003759

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 09806624

Country of ref document: EP

Kind code of ref document: A1