WO2010017994A1 - Optischer tastsensor - Google Patents

Optischer tastsensor Download PDF

Info

Publication number
WO2010017994A1
WO2010017994A1 PCT/EP2009/005904 EP2009005904W WO2010017994A1 WO 2010017994 A1 WO2010017994 A1 WO 2010017994A1 EP 2009005904 W EP2009005904 W EP 2009005904W WO 2010017994 A1 WO2010017994 A1 WO 2010017994A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical waveguide
optical
light guide
sensor according
Prior art date
Application number
PCT/EP2009/005904
Other languages
English (en)
French (fr)
Inventor
Markus Koch
Oliver STÜBBE
Hans-Jürgen SCHRAGE
Original Assignee
Universität Paderborn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universität Paderborn filed Critical Universität Paderborn
Publication of WO2010017994A1 publication Critical patent/WO2010017994A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/268Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light using optical fibres
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/042Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means
    • G06F3/0421Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by opto-electronic means by interrupting or reflecting a light beam, e.g. optical touch-screen
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/9627Optical touch switches
    • H03K17/9638Optical touch switches using a light guide

Definitions

  • the invention relates to fiber optic systems for the realization of touch sensors.
  • An optical fiber transmits an optical signal by preventing the signal in the core of the conductor from leaving the conductor by total reflection at the interface to an external medium. This ensures that the transmission can take place as with an electrical cable.
  • This principle is well known and described in many textbooks. Recently, a large number of sensors have become known which use optical light guides. For example, fiber optic flexure sensors are described in US 5,321,257. In this case, sensitive areas are generated on a part of the fiber due to disruption of the surface, which observe significant differences in the transmission power when diffracting the fiber.
  • the present invention has for its object to provide an easy to realize touch-sensitive or pressure-sensitive optical sensor.
  • the touch sensor according to the invention has an optical waveguide with a core and a cladding, which is at least partially translucent at a first end of the optical waveguide. In this way, light from a light source is transferable to the core.
  • a sensor element is attached to a second end of the optical waveguide. Between the first end of the light guide and the light source, an optical coupling element with pressure-dependent light transmission is arranged. The coupling element can be compressed by exerting a pressure at the first end of the optical waveguide, wherein the pressure can be determined as a function of a radiation emitted into the sensor element at the second end of the optical waveguide.
  • the touch sensor according to the invention is particularly suitable for use in explosion-proof or EMC-critical areas, since a pressure is first converted into a non-critical optical signal and this is transmitted via an optical connection to an opto-electronic evaluation unit outside the explosion-proof area.
  • the light source is preferably connected to the optical coupling element via a second light guide.
  • an electrically operated light source can be avoided in an explosion-proof environment.
  • the coupling element is an elastic foam which at least partially surrounds the first end of the light guide and / or the light source.
  • foams are readily available and inexpensive.
  • a plurality of light sources can also be coupled into the core at predeterminable discrete locations, so that pressure exertion at the first end of the optical waveguide in the region of one of the light sources can be identified.
  • a keyboard-like device can be realized with one or more keys.
  • the pressure exerted can also be evaluated as additional information if the light transmittance of the optical coupling element is in clear functional relationship to the pressure exerted.
  • Exercise a pressure at the first end of the light guide in a range between two light sources detectable, so that more scannable discrete pressure measuring points are available as light sources. If the light sources used emit light of different wavelengths, and if the sensor unit comprises a wavelength discriminator, it can be easily detected at which section of the first end of the optical waveguide pressure is exerted on the touch sensor. Instead of multiple light sources, only one light source can be provided, if at the first
  • an incident direction in the light guide at the first end of emitted light is substantially perpendicular to the axis of the light guide at the first end.
  • a multiplex device is provided for bundling distinguishable signals.
  • the multiplexing device may be configured for a time and / or frequency division multiplexing method.
  • the push button sensor shown in the figure comprises an optical waveguide 10 having a core and a cladding.
  • the optical waveguide 10 has a sensitive area 14 at a first end.
  • the sheath of the optical waveguide 10 has been removed or rendered permeable. This can be done for example by complete or partial grinding or roughening.
  • the sensitive region 14 is exposed to light from a light source 26 comprising a plurality of light-emitting diodes 18a-c, wherein the light-emitting diodes 18a-c emit light of different wavelengths.
  • the light of the light source 26 can penetrate into the light guide 10 via a translucent sheath 16 whose light transmittance decreases under pressure and via a roughened surface of the core, and is transmitted to a second end of the light guide 10 due to its waveguide property.
  • an intensity measuring device 20 coupled to the light guide 10 at the second end, an intensity of the light of the light source 26 transmitted via the light guide 10 is determined differentiated by wavelength.
  • a commercially available non-colored low density foam can be selected.
  • a foam allows in a resting state by light under weakening. If the foam is compressed, the light transmission increases, since the attenuation of the light is essentially due to scattering. By compressing the foam, effective spots can be reduced. Foam makes it possible in particular a conversion of local pressure into local deformation, without affecting other areas. Alternatively, it is possible to use other conventional substances or substance mixtures which have a pressure-dependent translucency for the sheathing.
  • a protective cover 24 is provided for fixing the optical fiber 10 on the sheath 16.
  • the sheathing 16 is compressed there and a transmission factor of light emitted by a first light-emitting diode 18a is changed into the sensitive region 14.
  • the intensity measuring device 20 By the intensity measuring device 20, this can be detected, wherein the intensity measuring device 20 generates a corresponding electrical signal as a result of deformation by the applied force.
  • the light-emitting diodes 18a-c emit light of different wavelengths in the present exemplary embodiment. In this way, it can be detected by the intensity measuring device 20 in which section of the sensitive region 14 a deformation takes place and a correspondingly distinguishable electrical signal is generated.
  • Deformations in the region between two light-emitting diodes 18a-c are also detectable, since in this case changes in the transmission factor are produced for two wavelengths. This can be interpreted, for example, as a binary actuation of a secondary key of an input device realized by the touch sensor between two primary keys.
  • the primary keys correspond to locations within the sensitive area 14, at which light of the light-emitting diodes 18a-c is coupled into the light guide 10.
  • the power components measured in the intensity measuring device 20 for the light emitted by the individual light-emitting diodes 18a-c in the light guide 10 can be determined on the basis of the respectively different wavelength of deformation point and deformation depth. Deformation point and deformation depth can in turn be converted into location and pressure.
  • a multiplexing device may be provided for bundling distinguishable signals within a feeding optical waveguide, the multiplexing device being designed for a time and / or frequency multiplexing method.
  • the signals bundled by the multiplexing device may be time, frequency and / or code modulated.
  • light sources can be aligned perpendicular to a matrix surface with regard to their direction of light incidence, which simplifies a feed-in of different light sources and their specific selection for coupling in a desired sensitive region 14.
  • a column multiplexing method known from keyboard matrices can also be used as an alternative to a static supply with colored constant light. be.
  • a number of columns is not limited by a number of distinguishable wavelengths or colors. This allows a very simple and inexpensive construction of pressure-sensitive mats with several thousand sensor points that generate no electromagnetic fields and are not hazardous to the environment.
  • feeding light guides are used with axial exit, their axes can be advantageously aligned radially on different sections of sensitive areas.
  • the feeding optical fibers are deflected in such a way that light fed in no longer strikes sensitive areas.
  • foam webs can be used for the sheathing.
  • the webs define distances between sensitive areas and light sources. In a resting state, a sensitive area of a light guide is stretched and straight. If pressure is exerted on a location between two webs, the respective sensitive area is deformed at this location and approaches the respective light source. This increases the intensity of the injected light. By contrast, other sensitive areas are not subject to any deformation, so that the intensity of the coupled-in light remains the same there.

Abstract

Die Erfindung betrifft einen optischen Tastsensor, der einen optischen Lichtleiter (10) mit einem Kern und einer Umhüllung aufweist, die an einem ersten Ende (14) des optischen Lichtleiters (10) zumindest teilweise lichtdurchlässig ist. Auf diese Weise ist Licht einer Lichtquelle (26) in den Kern übertragbar. Außerdem ist an einem zweiten Ende des optischen Lichtleiters (10) ein Sensorelement (20) angebracht. Zwischen dem ersten Ende (14) des Lichtleiters (10) und der Lichtquelle (26) ist ein optisches Koppelelement (16) mit druckabhängiger Lichtdurchlässigkeit angeordnet. Das Koppelelement (16) ist durch Ausübung eines Drucks am ersten Ende (16) des optischen Lichtleiters (10) komprimierbar, wobei der Druck als Funktion einer am zweiten Ende des optischen Lichtleiters (10) in das Sensorelement (20) emittierten Strahlung bestimmbar ist.

Description

Beschreibung
Optischer Tastsensor
Die Erfindung betrifft faseroptische Systeme zur Realisierung von Berührungssensoren.
Ein optischer Lichtleiter überträgt ein optisches Signal, indem das Signal im Kern des Leiters am Verlassen des Leiters durch Totalreflexion an dem Übergang zu einem äußeren Medium gehindert wird. Damit wird erreicht, dass die Übertragung wie mit einem elektrischen Kabel erfolgen kann. Dieses Prinzip ist allgemein bekannt und in vielen Lehrbüchern beschrieben. In neuerer Zeit ist eine Vielzahl von Sensoren bekannt gewor- den, die sich optischer Lichtleiter bedienen. Beispielsweise sind faseroptische Biegesensoren in der US 5,321,257 beschrieben. Hierbei werden auf einem Teil der Faser durch Störung der Oberfläche sensitive Bereiche erzeugt, die bei Beugung der Faser deutliche Unterschiede in der Übertragungs- leistung beobachtet.
In der US 6,965,709 ist' ein elektro-optischer Positionssensor beschrieben, der nicht den Verlust von Strahlung benutzt, sondern vielmehr Strahlung in einen optischen Leiter ein- strahlt. Diese Anordnung ist relativ komplex und verwendet eine Hilfslichtquelle.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, einen einfach zu realisierenden berührungs- bzw. druckempfindlichen optischen Sensor anzugeben.
Erfindungsgemäß wird diese Aufgabe durch einen optischen Tastsensor mit den in Anspruch 1 angegebenen Merkmalen ge- löst. Vorteilhafte Ausgestaltungen der vorliegenden Erfindung sind in den abhängigen Ansprüchen angegeben.
Der erfindungsgemäße Tastsensor weist einen optischen Licht- leiter mit einem Kern und einer Umhüllung auf, die an einem ersten Ende des optischen Lichtleiters zumindest teilweise lichtdurchlässig ist. Auf diese Weise ist Licht einer Lichtquelle in den Kern übertragbar. Außerdem ist an einem zweiten Ende des optischen Lichtleiters ein Sensorelement angebracht. Zwischen dem ersten Ende des Lichtleiters und der Lichtquelle ist ein optisches Koppelelement mit druckabhängiger Lichtdurchlässigkeit angeordnet. Das Koppelelement ist durch Ausübung eines Drucks am ersten Ende des optischen Lichtleiters komprimierbar, wobei der Druck als Funktion einer am zweiten Ende des optischen Lichtleiters in das Sensorelement emittierten Strahlung bestimmbar ist.
Der erfindungsgemäße Tastsensor eignet sich besondere für eine Verwendung in explosionsgeschützten oder EMV-kritischen Bereichen, da ein Druck zunächst in ein unkritisches optisches Signal umgewandelt wird und dieses über eine optische Verbindung zu einer opto-elektronischen Auswerteeinheit außerhalb des explosionsgeschützten Bereichs übermittelbar ist. Vorzugsweise ist die Lichtquelle über einen zweiten Lichtlei- ter mit dem optischen Koppelelement verbunden ist. Somit kann beispielsweise eine elektrisch betriebene Lichtquelle in einer explosionsgeschützten Umgebung vermieden werden.
Eine besonders einfache Realisierung eines Tastsensors ergibt sich, wenn das Koppelelement ein elastischer Schaumstoff ist, der das erste Ende des Lichtleiters und/oder die Lichtquelle zumindest partiell ummantelt. Derartige Schaumstoffe sind problemlos verfügbar und kostengünstig. Am ersten Ende des optischen Lichtleiter können auch mehrere Lichtquellen an vorgebbaren diskreten Stellen in den Kern eingekoppelt werden, so daß eine Druckausübung am ersten Ende des Lichtleiters im Bereich einer der Lichtquellen identifi- ziert werden kann. Auf diese Weise kann eine tastaturähnliche Vorrichtung mit einer oder mehreren Tasten realisiert werden. Darüber hinaus kann auch der ausgeübte Druck als Zusatzinformation ausgewertet werden, wenn die Lichtdurchlässigkeit des optischen Koppelelements in eindeutigem funktionalen Zusam- menhang zum ausgeübten Druck steht. Außerdem ist auch eine
Ausübung eines Drucks am ersten Ende des Lichtleiters in einem Bereich zwischen zwei Lichtquellen detektierbar, so daß mehr abtastbare diskrete Druckmessstellen als Lichtquellen zur Verfügung stehen. Senden die verwendeten Lichtquellen Licht mit unterschiedlicher Wellenlänge aus, und umfaßt die Sensoreinheit einen Wellenlängendiskriminator, so kann auf einfache Weise detektiert werden, an welchem Abschnitt des ersten Endes des Lichtleiters eine Ausübung eines Druck auf den Tastsensor erfolgt. Anstelle mehrerer Lichtquellen kann lediglich eine Lichtquelle vorgesehen sein, wenn am ersten
Ende des Lichtleiters abschnittsweise unterschiedliche Farbfilter angeordnet sind.
Entsprechend einer bevorzugten Ausgestaltung der vorliegenden Erfindung ist eine Einfallsrichtung in den Lichtleiter am ersten Ende emittierten Lichts im wesentlichen senkrecht zur Achse des Lichtleiters am ersten Ende. Außerdem ist für das in den Lichtleiter am ersten Ende emittierte Licht eine MuI- tiplexvorrichtung zur Bündelung unterscheidbarer Signale vor- gesehen. Die Multiplexvorrichtung kann für ein Zeit- und/oder Frequenzmultiplexverfahren ausgestaltet sein.
Die Erfindung wird nachfolgend an einem Ausführungsbeispiel anhand der Zeichnung näher erläutert. Es zeigt die Figur einen schematisch dargstellten optischen Tastsensor.
Der in der Figur dargestellte Tastsensor umfaßt einen optischen Lichtleiter 10 mit einem Kern und einer Umhüllung. Der optische Lichtleiter 10 weist an einem ersten Ende einen sensitiven Bereich 14 auf. Hierzu ist die Umhüllung des optischen Lichtleiters 10 entfernt oder durchlässig gemacht wor- den. Dies kann beispielsweise durch vollständiges oder partielles Abschleifen oder Aufrauhen erfolgen. Der sensitive Bereich 14 wird Licht einer mehrere Leuchtdioden 18a-c umfassenden Lichtquelle 26 ausgesetzt, wobei die Leuchtdioden 18a- c Licht unterschiedlicher Wellenlänge emittieren. Das Licht der Lichtquelle 26 kann über eine lichtdurchlässige Ummante- lung 16, deren Lichtdurchlässigkeit unter Druck abnimmt, und über eine aufgerauhte Oberfläche des Kerns in den Lichtleiter 10 eindringen und wird aufgrund dessen Wellenleitereigenschaft zu einem zweiten Ende des Lichtleiters 10 übertragen. Durch eine am zweiten Ende an den Lichtleiter 10 angekoppelte Intensitätsmessvorrichtung 20 wird eine Intensität des über den Lichtleiter 10 übertragenen Lichts der Lichtquelle 26 nach Wellenlängen differenziert bestimmt.
Als Ummantelung 16, welche ein optisches Koppelelement zwischen den Leuchtdioden 18a-c und dem sensitiven Bereich 14 des Lichtleiters 10 darstellt, kann ein handelsüblicher nicht gefärbter Schaumstoff mit geringer Dichte gewählt werden. Ein solcher Schaumstoff läßt in einem Ruhezustand Licht unter Ab- Schwächung durch. Wird .der Schaumstoff zusammengedrückt, nimmt die Lichtdurchlässigkeit zu, da die Abschwächung des Lichts im wesentlichen auf Streuung zurückzuführen ist. Durch ein Zusammendrücken des Schaumstoffs können wirksame Streustellen vermindert werden. Schaumstoff ermöglicht insbesonde- re eine Umsetzung von lokalem Druck in lokale Verformung, ohne daß andere Bereiche beeinflusst werden. Alternativ können für die Ummantelung andere gängige Stoffe oder Stoffgemische verwendet werden, die eine druckabhängige Lichtdurchlässig- keit aufweisen. Zur Fixierung des Lichtleiters 10 auf der Ummantelung 16 ist eine Schutzhülle 24 vorgesehen.
Wird eine Kraft 22 in Pfeilrichtung an in der Figur markierter Stelle auf den Lichtleiter 10 ausgeübt, so wird die Um- mantelung 16 dort zusammengedrückt und ein Übertragungsfaktor von durch eine erste Leuchtdiode 18a emittiertem Licht in den sensitiven Bereich 14 geändert. Durch die Intensitätsmessvorrichtung 20 kann dieses detektiert werden, wobei die Intensitätsmessvorrichtung 20 ein entsprechendes elektrisches Signal als Ergebnis einer Verformung durch die ausgeübte Kraft erzeugt.
Die Leuchtdioden 18a-c emittieren im vorliegenden Ausführungsbeispiel Licht unterschiedlicher Wellenlänge. Auf diese Weise kann durch die Intensitätsmessvorrichtung 20 detektiert werden, in welchem Abschnitt des sensitiven Bereichs 14 eine Verformung erfolgt, und ein entsprechend unterscheidbares e- lektrisches Signal erzeugt werden.
Es sind auch Verformungen im Bereich zwischen zwei Leuchtdioden 18a-c detektierbar, da in diesem Fall für zwei Wellenlängen Änderungen des Übertragungsfaktors hervorgerufen werden. Dies kann beispielsweise binär als Betätigung einer sekundären Taste einer durch den Tastsensor realisierten Eingabevor- richtung zwischen zwei primären Tasten interpretiert werden. Dabei entsprechen die primären Tasten Stellen innerhalb des sensitiven Bereichs 14, an denen Licht der Leuchtdioden 18a-c in den Lichtleiter 10 eingekoppelt wird. Allgemein lassen sich aus in der Intensitätsmessvorrichtung 20 gemessenen Leistungsanteilen für von den einzelnen Leuchtdioden 18a-c in den Lichtleiter 10 emittiertem Licht anhand der jeweils unterschiedlicher Wellenlänge Verformungsstelle und Verformungstiefe ermitteln. Verformungsstelle und Verformungstiefe können wiederum in Ort und Druck umgerechnet werden.
Anstelle mehrerer Leuchtdioden kann auch lediglich eine Lichtquelle vorgesehen und am sensitiven Bereich 14 abschnittsweise unterschiedliche Farbfilter angeordnet sein. Des weiteren können anstelle mehrerer Leuchtdioden mit elektrischen Zuleitungen auch mehrere durch entfernte Lichtquellen gespeiste Lichtleiter verwendet werden, die an Stellen enden, an denen ansonsten die Leuchtdioden angeordnet sind. Alternativ kann für das in den Lichtleiter 10 am sensitiven Bereich 14 emittierte Licht eine Multiplexvorrichtung zur Bündelung unterscheidbarer Signale innerhalb eines zuführenden Lichtleiters vorgesehen sein, wobei die Multiplexvorrichtung für ein Zeit- und/oder Frequenzmultiplexverfahren ausgestaltet ist. Die durch die Multiplexvorrichtung gebündelten Signale können zeit-, frequenz- und/oder codemoduliert sein.
Es können auch mehrere Lichtleiter 10 mit ihren sensitiven Bereichen 14 in Zeilen und Spalten matrixförmig angeordnet sein. In diesem Fall können Lichtquellen hinsichtlich ihrer Lichteinfallsrichtungen senkrecht zu einer Matrixfläche ausgerichtet sein, was eine Einspeisung von unterschiedlichen Lichtquellen sowie ihre gezielte Selektion für eine Einkopp- lung in einem gewünschten sensitiven Bereich 14 vereinfacht.
Bei einer matrixförmigen Anordnung kann alternativ zu einer statischen Versorgung mit farbigem Gleichlicht auch ein von Tastaturmatrizen bekanntes Spaltenmultiplexverfahren angewen- det werden. Auf diese Weise ist eine Spaltenanzahl nicht durch eine Anzahl unterscheidbarer Wellenlängen bzw. Farben beschränkt. Dies ermöglicht einen sehr einfachen und preiswerten Aufbau von drucksensitiven Matten mit mehreren tausend Sensorpunkten, die keine elektromagnetischen Felder erzeugen und nicht explosionsgefährdend sind.
Werden mehrere speisende Lichtleiter mit axialem Austritt verwendet, können deren Achsen vorteilhafterweise radial auf verschieden Abschnitte von sensitiven Bereichen ausgerichtet werden. Bei Druckeinwirkung auf einen derartigen Tastsensor werden die speisenden Lichtleiter derart ausgelenkt, daß eingespeistes Licht nicht mehr auf sensitive Bereiche trifft.
Anstelle von Schaumstoff können für die Ummantelung Stege verwendet werden. Durch die Stege werden Abstände zwischen sensitiven Bereichen und Lichtquellen festgelegt. In einem Ruhezustand ist ein sensitiver Bereich eines Lichtleiters gestreckt und gerade. Wird auf eine Stelle zwischen zwei Stegen Druck ausgeübt, wird der jeweilige sensitive Bereich an dieser Stelle verformt und nähert sich der jeweiligen Lichtquelle. Hierdurch wird die Intensität des eingekoppelten Lichts erhöht. Andere sensitive Bereiche unterliegen demgegenüber keiner Verformung, so daß dort die Intensität des eingekop- pelten Lichts gleich bleibt.
Die Anwendung der vorliegenden Erfindung ist nicht auf das hier beschriebene Ausführungsbeispiel beschränkt.

Claims

Patentansprüche
1. Optischer Tastsensor mit
- einem optischen Lichtleiter (10) mit einem Kern und einer Umhüllung, die an einem ersten Ende (14) des optischen
Lichtleiters (10) zumindest teilweise lichtdurchlässig ist, so dass Licht einer Lichtquelle (26) in den Kern ü- bertragbar ist,
- einem an einem zweiten Ende des optischen Lichtleiters (10) angebrachten Sensorelement (20),
- einem zwischen dem ersten Ende (14) des Lichtleiters (10) und der Lichtquelle (26) angeordneten optischen Koppelelement (16) mit druckabhängiger Lichtdurchlässigkeit, wobei das Koppelelement (16) durch Ausübung eines Drucks am ersten Ende (14)- des optischen Lichtleiters (10) komprimierbar ist und der Druck als Funktion einer am zweiten Ende des optischen Lichtleiters (10) in das Sensorelement (20) emittierten Strahlung bestimmbar ist.
2. Tastsensor nach Anspruch 1, bei dem das Koppelelement (16) ein elastischer Schaumstoff ist, der das erste Ende (14) des Lichtleiters (10) und/oder die Lichtquelle (26) zumindest partiell ummantelt.
3. Tastsensor nach einem der Ansprüche 1 oder 2, bei dem die Lichtquelle (26) über einen zweiten Lichtleiter mit dem optischen Koppelelement (16) verbunden ist.
4. Tastsensor nach einem der Ansprüche 1 bis 3, bei dem mehrere Lichtquellen vorgesehen sind, die Licht unterschiedlicher Wellenlängen emittieren und an vorgebbaren unterschiedlichen Stellen und/oder Abschnitten über das optische Koppelelement (16) mit dem erste Ende (14) des Lichtlei- ters (10) gekoppelt sind und das Sensorelement (20) einen Wellenlängendiskriminator umfaßt .
5. Tastsensor nach Anspruch 4, bei dem anstelle mehrerer Lichtquellen lediglich eine Lichtquelle vorgesehen ist und am ersten Ende (14) des Lichtleiters (10) abschnittsweise unterschiedliche Farbfilter angeordnet sind.
6. Tastsensor nach einem der Ansprüche 1 bis 5, bei dem eine Einfallsrichtung in den Lichtleiter (10) am ersten Ende (14) emittierten Lichts im wesentlichen senkrecht zur Achse des Lichtleiters (10) am ersten Ende (14) ist, und bei dem für das in den Lichtleiter (10) am ersten Ende (14) emittierte Licht eine Multiplexvorrichtung zur Bündelung unterscheidbarer Signale vorgesehen ist.
7. Tastsensor nach Anspruch 6, bei dem die Multiplexvorrichtung für ein Zeit- und/oder Fre- quenzmultiplexverfahren ausgestaltet ist.
8. Tastsensor nach einem der Ansprüche 6 oder 7, bei dem durch die Multiplexvorrichtung gebündelte Signale zeit-, frequenz- und/oder codemoduliert sind.
PCT/EP2009/005904 2008-08-15 2009-08-14 Optischer tastsensor WO2010017994A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008037861A DE102008037861A1 (de) 2008-08-15 2008-08-15 Optischer Tastsensor
DE102008037861.5 2008-08-15

Publications (1)

Publication Number Publication Date
WO2010017994A1 true WO2010017994A1 (de) 2010-02-18

Family

ID=41508022

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/005904 WO2010017994A1 (de) 2008-08-15 2009-08-14 Optischer tastsensor

Country Status (2)

Country Link
DE (1) DE102008037861A1 (de)
WO (1) WO2010017994A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022337A1 (de) * 2010-06-01 2011-12-01 Valeo Schalter Und Sensoren Gmbh Vorrichtung zum optoelektronischen Erfassen von Schaltstellungen eines mechanisch betätigbaren Schaltmittels betätigbaren Schaltmittels eines Fahrzeugs, Fahrzeug mit einer derartigen Vorrichtung sowie Verfahren zum optoelektronischen Erfassen von Schaltstellungen eines derartigen Schaltmittels
US10052066B2 (en) 2012-03-30 2018-08-21 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
CN110383025A (zh) * 2017-01-10 2019-10-25 康奈尔大学 具有弹性体泡沫的传感器及其用途
CN110597407A (zh) * 2018-06-12 2019-12-20 罗伯特·博世有限公司 用于触敏屏幕的薄膜、具有薄膜的屏幕和具有屏幕的设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0113223A2 (de) * 1982-12-29 1984-07-11 Western Electric Company, Incorporated Berührungsempfindliche Vorrichtung
US4484179A (en) * 1980-04-16 1984-11-20 At&T Bell Laboratories Touch position sensitive surface
JPS60120229A (ja) * 1983-12-02 1985-06-27 Agency Of Ind Science & Technol 触・圧覚センサ
US4609816A (en) * 1983-04-14 1986-09-02 U.S. Philips Corporation Position sensor having at least two layers of light conductors
US4733068A (en) * 1986-04-07 1988-03-22 Rockwell International Corporation Crossed fiber optic tactile sensor
US4839512A (en) * 1987-01-27 1989-06-13 Tactilitics, Inc. Tactile sensing method and apparatus having grids as a means to detect a physical parameter
EP1321753A1 (de) * 2000-08-31 2003-06-25 Center for Advanced Science and Technology Incubation, Ltd. Optischer tastsensor
US6965709B1 (en) * 2003-05-14 2005-11-15 Sandia Corporation Fluorescent optical position sensor
DE102007005413A1 (de) * 2007-01-30 2008-07-31 Atuforma Gmbh Verfahren und Vorrichtung zur Druckbelastungsmessung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2073162C (en) 1991-07-31 1999-06-29 Lee A. Danisch Fiber optic bending and positioning sensor
US5917180A (en) * 1997-07-16 1999-06-29 Canadian Space Agency Pressure sensor based on illumination of a deformable integrating cavity
CA2273113A1 (en) * 1999-05-26 2000-11-26 Tactex Controls Inc. Touch pad using a non-electrical deformable pressure sensor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4484179A (en) * 1980-04-16 1984-11-20 At&T Bell Laboratories Touch position sensitive surface
US4484179B1 (de) * 1980-04-16 1989-03-28
EP0113223A2 (de) * 1982-12-29 1984-07-11 Western Electric Company, Incorporated Berührungsempfindliche Vorrichtung
US4609816A (en) * 1983-04-14 1986-09-02 U.S. Philips Corporation Position sensor having at least two layers of light conductors
JPS60120229A (ja) * 1983-12-02 1985-06-27 Agency Of Ind Science & Technol 触・圧覚センサ
US4733068A (en) * 1986-04-07 1988-03-22 Rockwell International Corporation Crossed fiber optic tactile sensor
US4839512A (en) * 1987-01-27 1989-06-13 Tactilitics, Inc. Tactile sensing method and apparatus having grids as a means to detect a physical parameter
EP1321753A1 (de) * 2000-08-31 2003-06-25 Center for Advanced Science and Technology Incubation, Ltd. Optischer tastsensor
US6965709B1 (en) * 2003-05-14 2005-11-15 Sandia Corporation Fluorescent optical position sensor
DE102007005413A1 (de) * 2007-01-30 2008-07-31 Atuforma Gmbh Verfahren und Vorrichtung zur Druckbelastungsmessung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROSSITER J ET AL: "A Novel Tactile Sensor Using a Matrix of LEDs Operating in Both Photoemitter and Photodetector Modes", 2005 IEEE SENSORS, IEEE - PISCATAWAY, NJ, USA, 31 October 2005 (2005-10-31), pages 994 - 997, XP010899825, ISBN: 978-0-7803-9056-0 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010022337A1 (de) * 2010-06-01 2011-12-01 Valeo Schalter Und Sensoren Gmbh Vorrichtung zum optoelektronischen Erfassen von Schaltstellungen eines mechanisch betätigbaren Schaltmittels betätigbaren Schaltmittels eines Fahrzeugs, Fahrzeug mit einer derartigen Vorrichtung sowie Verfahren zum optoelektronischen Erfassen von Schaltstellungen eines derartigen Schaltmittels
US10052066B2 (en) 2012-03-30 2018-08-21 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
US10357201B2 (en) 2012-03-30 2019-07-23 The Board Of Trustees Of The University Of Illinois Appendage mountable electronic devices conformable to surfaces
EP2830492B1 (de) * 2012-03-30 2021-05-19 The Board of Trustees of the University of Illinois An ein körperteil montierbare, oberflächenkonformierbare, elektronische vorrichtungen und zugehöriges herstellungsverfahren
CN110383025A (zh) * 2017-01-10 2019-10-25 康奈尔大学 具有弹性体泡沫的传感器及其用途
CN110597407A (zh) * 2018-06-12 2019-12-20 罗伯特·博世有限公司 用于触敏屏幕的薄膜、具有薄膜的屏幕和具有屏幕的设备

Also Published As

Publication number Publication date
DE102008037861A1 (de) 2010-03-18

Similar Documents

Publication Publication Date Title
DE3700856C2 (de)
EP2594023B1 (de) Optisches bedienelement, insbesondere taster oder schalter
DE3138073C2 (de)
EP1294096B1 (de) Optoelektronische Tastatur sowie Verfahren zur Steuerung einer optoelektronischen Tastatur
EP2567928B1 (de) Sensor, Sicherungsvorrichtung sowie Aufzugvorrichtung
WO2010017994A1 (de) Optischer tastsensor
EP2016480A2 (de) Optoelektronische vorrichtung zur erfassung der position und/oder bewegung eines objekts sowie zugehöriges verfahren
DE2703319A1 (de) Opto-elektrische abzweigungsvorrichtung und verfahren zu ihrer herstellung
DE202011050761U1 (de) Berührungssteuervorrichtung
EP0361588A1 (de) Faseroptischer Sensor
DE10251085B4 (de) Mehrschichtiger Sensor
DE102018222203A1 (de) Bedienvorrichtung für ein Kraftfahrzeug
DE2529339A1 (de) Sonde zum abtasten optisch codierter daten
WO2016009407A1 (de) Bedieneinrichtung für kraftfahrzeuge
DE102019220050A1 (de) Bedienvorrichtung für ein Kraftfahrzeug
EP0098461A1 (de) Vorrichtung zur Festlegung eines Koordinatenpunktes innerhalb einer flächigen Informations-Darstellung
EP3857165A1 (de) Faseroptischer sensor, datenhandschuh und verfahren zur erfassung einer krümmung
DE102018209305A1 (de) Folie für einen berührungsempfindlichen Bildschirm, Bildschirm mit Folie, Gerät, insbesondere mobiles Gerät, mit Bildschirm und Verfahren zum Sensieren einer Druckintensität unter Verwendung einer Folie
WO2006048193A1 (de) Sensorfeld sowie verfahren zu dessen herstellung
DE3543784C2 (de)
DE202012100518U1 (de) Leuchttastatur mit einer Licht bündelnden Wirkung
EP1062729B1 (de) Elektronisches gerät mit beleuchteten bedientasten, wobei die betätigung der bedientasten durch die erfassung der änderung der lichtreflektion festgestellt wird
DE4240804C2 (de) Einrichtung zum Erkennen der Lage und/oder zum Messen der Breite eines Aufzeichnungsträgers
DE3903881C1 (de)
DE10115826C2 (de) Verfahren zur Messung der Position oder der Form eines Objekts bzw. einer Objektkontur in einem Überwachungsbereich mit einem optoelektronischen Meßgerät, sowie optoelektronisches Meßgerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09748017

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 09748017

Country of ref document: EP

Kind code of ref document: A1