WO2010016355A1 - 無線通信システム、制御局装置および端末装置 - Google Patents
無線通信システム、制御局装置および端末装置 Download PDFInfo
- Publication number
- WO2010016355A1 WO2010016355A1 PCT/JP2009/062548 JP2009062548W WO2010016355A1 WO 2010016355 A1 WO2010016355 A1 WO 2010016355A1 JP 2009062548 W JP2009062548 W JP 2009062548W WO 2010016355 A1 WO2010016355 A1 WO 2010016355A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless communication
- control station
- access
- terminal device
- information indicating
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/0008—Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
- H04B7/063—Parameters other than those covered in groups H04B7/0623 - H04B7/0634, e.g. channel matrix rank or transmit mode selection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/068—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission using space frequency diversity
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0686—Hybrid systems, i.e. switching and simultaneous transmission
- H04B7/0689—Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signaling for the administration of the divided path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W48/00—Access restriction; Network selection; Access point selection
- H04W48/08—Access restriction or access information delivery, e.g. discovery data delivery
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/0335—Arrangements for removing intersymbol interference characterised by the type of transmission
- H04L2025/03375—Passband transmission
- H04L2025/03414—Multicarrier
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L2025/03777—Arrangements for removing intersymbol interference characterised by the signalling
- H04L2025/03802—Signalling on the reverse channel
- H04L2025/03808—Transmission of equaliser coefficients
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
Definitions
- the present invention relates to a technique for performing wireless communication between a control station device and a terminal device by selecting any one access method from a plurality of access methods.
- LTE Long Term Evolution
- IMT-A LTE-Advanced, also referred to as “IMT-A”
- LTE-A further improvement in transmission efficiency is expected for low mobility users.
- single-user MIMO Multi-Input Multi-Output
- LTE-A further includes the number of antennas. It has been proposed to improve transmission efficiency by increasing.
- HPA High-Power Amplifier
- SC-FDMA Discrete, Fourier, Transform, Orthogonal, Frequency, Division, Multiplexing
- MIMO technology is also adopted in the uplink with the aim of improving transmission efficiency, but it is proposed to apply OFDM (Orthogonal Frequency Division Multiplexing) when using MIMO. Yes. This is presumably because, when the OFDM method is used, it is possible to use a maximum likelihood determination method called MLD (Maximum Likelihood Detection) with an amount of calculation that can realize the best reception performance.
- MLD Maximum Likelihood Detection
- Patent Documents 1 and 2 disclose examples of switching access methods. Specifically, a method of switching between OFDM, which is a representative of multicarrier signals, and DFT-S-OFDM of single carrier signals (described as “SC-FDM” in the literature) has been proposed. Further, as a reference for switching, a margin for the saturation power of the HPA (PH: Power Headroom, hereinafter referred to as “PH”) is used as a reference value, and the access method is switched based on this reference value. Proposed. JP 2007-151059 A International Publication No. WO / 2008057969 Pamphlet
- switching between OFDM and DFT-S-OFDM according to PH shown in Patent Document 2 means switching simultaneously with transmission power control.
- Such a switching method can cope with relatively slow propagation path time fluctuations, but it is not easy to respond to high-speed time fluctuations that occur on a frame-by-frame basis. There is a problem that it is difficult to do.
- This invention is made in view of such a situation, and it aims at providing the radio
- the wireless communication system of the present invention is a wireless communication system that performs wireless communication by selecting any one access method from a plurality of access methods between a control station device and a terminal device.
- the device notifies the terminal device of the access method using information for indirectly specifying the access method, and the terminal device accesses any one of a plurality of access methods according to the notified information.
- a method is selected to perform wireless communication with the control station apparatus.
- control station device notifies the terminal device of the access method using information that indirectly specifies the access method, and the terminal device can select one of a plurality of access methods according to the notified information. Since one access method is selected, it is possible to efficiently switch between different access methods.
- the control station apparatus notifies the terminal apparatus of rank information indicating the number of streams that can be transmitted simultaneously, and the terminal apparatus transmits the notified rank information. Accordingly, any one access method is selected from a plurality of access methods to perform wireless communication with the control station apparatus.
- control station apparatus notifies the terminal apparatus of rank information indicating the number of streams that can be transmitted simultaneously, and the terminal apparatus can select any one of a plurality of access schemes according to the notified rank information. Therefore, by making the rank correspond to the access method, it is not necessary to define many precoding methods, and the amount of control information can be reduced. As a result, communication can be performed efficiently.
- the control station device notifies the terminal device of antenna number information indicating the number of antennas to be used, and the terminal device notifies the number of antennas notified. According to the information, any one access method is selected from a plurality of access methods, and wireless communication is performed with the control station apparatus.
- the control station apparatus notifies the terminal apparatus of the antenna number information indicating the number of antennas to be used, and the terminal apparatus can access any one of the access methods from a plurality of access methods according to the notified antenna number information. Since the method is selected, it is not necessary to set all the access methods for each rank and the number of antennas, and the access method can be efficiently switched. In addition, since the access method can be determined in consideration of the number of antennas, it is possible to save power in the terminal device. In addition, since the access method is notified using information that indirectly designates the access method, the amount of control information can be reduced.
- the control station apparatus notifies the terminal apparatus of transmission diversity information indicating a type of transmission diversity, and the terminal apparatus transmits the notified transmission diversity information. Accordingly, any one access method is selected from a plurality of access methods to perform wireless communication with the control station apparatus.
- control station apparatus notifies the terminal apparatus of transmission diversity information indicating the type of transmission diversity, and the terminal apparatus can select any one of a plurality of access methods according to the notified transmission diversity information. Therefore, by associating the type of transmission diversity with the access method, it is not necessary to define each access method for each type of transmission diversity, and the access method can be efficiently switched. This makes it possible to switch the access method according to the communication status.
- the transmission diversity information includes information specifying whether a transmission diversity method to be used is an open loop or a closed loop. .
- the transmission diversity method to be used includes information for specifying whether it is an open loop or a closed loop, it is possible to switch the access method according to the communication status.
- the control station apparatus notifies the terminal apparatus of information indicating whether or not MIMO (Multi-Input-Multi-Output) transmission is single-user MIMO.
- the terminal device is characterized in that, according to the notified information on the MIMO transmission method, any one of a plurality of access methods is selected and wireless communication is performed with the control station device.
- the control station apparatus notifies the terminal apparatus of information indicating whether or not the MIMO transmission is single-user MIMO, and the terminal apparatus performs a plurality of access according to the notified information on the MIMO transmission method. Since any one access method is selected from the methods and wireless communication is performed with the control station apparatus, it is possible to efficiently switch between different access methods.
- control station apparatus performs the notification using a precoding matrix.
- the control station apparatus notifies the terminal apparatus of frequency information indicating a frequency to be used, and the terminal apparatus is configured to perform a plurality of operations according to the notified frequency information.
- One of the access methods is selected and wireless communication is performed with the control station apparatus.
- the control station apparatus notifies the terminal apparatus of frequency information indicating the frequency to be used, and the terminal apparatus selects any one access method from a plurality of access methods according to the notified frequency information. Therefore, by associating the frequency assignment method with the access method, it is not necessary to define an access method for each frequency assignment method, and the access method can be efficiently switched. In addition, since there is no need to notify the access method from the control station device to the terminal device, the amount of control information can be reduced.
- the frequency information includes information indicating whether or not a frequency to be used has continuity.
- the frequency information includes information indicating whether or not the frequency to be used has continuity. Therefore, by associating the frequency allocation method with the access method, the frequency allocation method is associated with each frequency allocation method. It becomes unnecessary to define the access method, and it is possible to efficiently switch the access method.
- the plurality of access methods may be DFT-S-OFDM (Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing), OFDM (Orthogonal Frequency Division Multiplexing), or Clustered DFT-S-OFDM. It is characterized by at least two of (DFT-S-OFDM-with Spectrum Division Control or Clustered ⁇ ⁇ ⁇ SC-FDMA).
- DFT-S-OFDM Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing
- OFDM Orthogonal Frequency Division Multiplexing
- Clustered DFT-S-OFDM Clustered DFT-S-OFDM. It is characterized by at least two of (DFT-S-OFDM-with Spectrum Division Control or Clustered ⁇ ⁇ ⁇ SC-FDMA).
- control station apparatus of the present invention is a control station apparatus that selects any one access method from a plurality of access methods and performs wireless communication with a terminal device, and can simultaneously transmit streams.
- the terminal device It is characterized by notifying the access method.
- the terminal device is a terminal device that performs wireless communication with a control station device by selecting any one access method from a plurality of access methods, and is notified from the control station device.
- rank information indicating the number of streams that can be transmitted simultaneously
- antenna number information indicating the number of antennas to be used
- transmission diversity information indicating the type of transmission diversity
- frequency information indicating the frequency to be used
- a terminal device that performs wireless communication with a control station apparatus by selecting any one access method from a plurality of access methods, and is a stream that can be transmitted simultaneously, notified from the control station apparatus Any one of a plurality of access methods according to any one of rank information indicating the number of antennas, information on the number of antennas indicating the number of antennas to be used, transmission diversity information indicating the type of transmission diversity, and frequency information indicating the frequency to be used. Since two access methods are selected, it is possible to efficiently switch between different access methods.
- the control station device notifies the terminal device of the access method using information that indirectly specifies the access method, and the terminal device uses a plurality of access methods according to the notified information. Since any one access method is selected, it is possible to efficiently switch between different access methods.
- OFDM is representative of multicarrier
- DFT-S-OFDM is typical of single carrier, and has an intermediate property between multicarrier and single carrier.
- Clustered DFT-S-OFDM (referred to as C-SC; details will be described later).
- C-SC Clustered DFT-S-OFDM
- these are described as having different access methods, but they can be defined as different communication methods, and both are included in the scope of the present invention.
- DFT-S-OFDM can be considered as a subset (part) of Clustered DFT-S-OFDM.
- Rank the number of streams that can be transmitted simultaneously.
- the information used for notification of this rank is called a rank indicator (RI :: Rank Indicator).
- RI rank indicator
- Each embodiment assumes an uplink in which a plurality of terminal apparatuses access a base station using different frequencies at the same time, but the present invention is not limited thereto.
- a unit to be accessed is called a resource block (RB).
- RB resource block
- a resource block is assumed to be composed of two or more consecutive subcarriers.
- the base station constitutes a control station apparatus, and the mobile station constitutes a terminal apparatus.
- the access method is notified by the MIMO Rank.
- the number of transmission antennas used by the terminal apparatus is 4, that is, the maximum rank that can be transmitted is 4, and the number of reception antennas of the reception apparatus on the base station side is 4.
- the number of receiving antennas on the base station side in the present embodiment is four, the number is not limited as long as signals of four streams or more can be separated.
- the access method is switched according to the rank of the propagation path.
- the access methods to be switched are OFDM and DFT-S-OFDM.
- the rank is determined based on the eigenvalue of the propagation path matrix, the quality of the propagation path (SNR: SignalSignto Noise power Ratio), and the like, but this embodiment shows a case where the decision is made only with the quality of the propagation path.
- SNR SignalSignto Noise power Ratio
- the base station determines SRS (SoundingSReference Signal), which is a known reference signal transmitted from each terminal device.
- Table 1 is a table showing the rank with respect to SNR.
- X1 to X4 are thresholds for determining the rank from the SNR, and satisfy the relationship of X1>X2> X3.
- Table 2 is a table showing an access method for the rank.
- a characteristic element of the present embodiment in (Table 2) is that, for rank 1, OFDM is not selected as the access method, but DFT-S-OFDM, which is a different access method, is selected.
- LTE-A must maintain backward compatibility with LTE, that is, LTE-A always supports DFT-S-OFDM, and in this case rank 1
- rank 1 This is because when OFDM is defined, there are a plurality of rank-1 transmission modes. This eliminates the need to define rank 1 OFDM and enables efficient switching.
- it is not necessary to notify the access method from the base station to the terminal device it is possible to contribute to the reduction of control data.
- FIG. 1 is a block diagram illustrating a schematic configuration of a transmission device applied to a terminal device according to the present embodiment. However, in order to simplify the explanation, the minimum blocks necessary for explaining the present invention are shown. In FIG. 1, y blocks 100 to 103 are shown. This means that y different physical channels can be multiplexed simultaneously. In other words, it can be considered as a unit for performing error correction and retransmission control not shown in FIG.
- the scramble units 100-1 to 100-y scramble to add randomness to the data or to add data confidentiality.
- Modulation sections 101-1 to 101-y perform modulation such as QPSK.
- the DFT units 102-1 to 102-y perform DFT on a plurality of data.
- the selection units 103-1 to 103-y select the output of the DFT units 102-1 to 102-y and the output of the modulation units 101-1 to 101-y based on the control information A.
- Control information A is determined by the rank notified from the base station.
- the rank information when the rank information is 2 to 4, it becomes a signal for selecting the output of the modulation units 101-1 to 101-y, and when the rank information is 1, the DFT units 102-1 to 102-y This signal is used to select the output.
- y 1 is set for simplicity.
- the layer is the same as the number of ranks when the rank is 2 or more, and the same as the number of antennas when the rank is 1. Equation (1) shows the relationship between s and d for each rank.
- Which of the formulas (1) is used is determined by the rank information input in the control information A.
- the precoding unit 105 has a function of performing precoding so as to obtain a diversity effect between antenna streams.
- encoding is performed so that a diversity effect can be obtained when the rank is 3 or less.
- CDD Cyclic Delay Delay
- CDD Cyclic Delay Delay
- the output of the precoding unit 105 is gn (i), and the relationship between dn (i) and gn (i) for each rank is shown in equation (2).
- rank 1 CDD since the access method is DFT-S-OFDM, division by the natural number m included in the exponent of the phase rotation in the rank 1 formula is inserted to slow down the period.
- An appropriate value of m is preferably determined according to the number of subcarriers to be used and the number of RBs, but there is no problem even if a large value is set in advance. Which formula is used is determined by the rank information input in the control information A.
- Resource map sections 106-1 to 106-4 map pre-recorded data to OFDM subcarriers. Thereafter, the OFDM signal generators 107-1 to 107-4 convert the signals into OFDM signals and output them from the antenna ports connected thereto. There are four identical blocks because four transmit antennas are assumed.
- the DFT-S-OFDM signal uses continuous subcarriers and RBs. Therefore, when the subcarrier and RB used by the OFDM signal are freely selected, the subcarrier and RB to be used must also be switched when switching the access method. That is, it is necessary to simultaneously switch the access system switching timing and the use of frequency resources.
- Clustered DFT-S-OFDM As a method for freely arranging DFT-S-OFDM in the frequency domain, a method called Clustered DFT-S-OFDM has been proposed.
- Clustered DFT-S-OFDM has various names such as Clustered SC-FDMA, DFT-S-OFDM with Spectrum Division Control, and dynamic spectrum control DFT-S-OFDM for the same technology. In the present specification, this is hereinafter referred to as “C-SC”.
- This Clustered DFT-S-OFDM is a method of grouping a plurality of frequency domain subcarriers and RBs and assigning them to the frequency domain in a grouped unit when generating a DFT-S-OFDM signal.
- the degree of freedom in arrangement increases, but there is a problem that PAPR characteristics deteriorate.
- the PAPR characteristic is not worse than that of an OFDM signal having the same number of subcarriers.
- C-SC by assigning consecutive subcarriers and RBs, it becomes the same as the DFT-S-OFDM signal, so it can be said that the system is very compatible with DFT-S-OFDM.
- Table 3 is a table showing access methods for ranks. Here, a case where the OFDM signal and the C-SC signal are switched according to the rank is shown.
- DFT-S-OFDM Comparing DFT-S-OFDM and C-SC, only the arrangement of RBs is different. That is, DFT-S-OFDM can be considered as a subset of C-SC (an example of use). Therefore, by controlling the arrangement of RBs in the control station apparatus, DFT-S-OFDM can be selected as an access scheme, although not explicitly shown in (Table 3). Therefore, (Table 3) can be considered to include the configuration of (Table 2). When this idea is tabulated, the description is as shown in (Table 4).
- the configuration of the transmitter is the same as that shown in FIG. 1, and the resource map unit 106 assigns data to the frequency region designated by the base station.
- the number of transmission antennas is shown to be constant (four) regardless of the rank.
- the number of transmission antennas is small from the viewpoint of power consumption. . Accordingly, the number of antennas can be further changed according to the rank. In other words, the same effect can be exhibited by notifying the number of transmitting antennas instead of notifying the rank.
- the access schemes OFDM, DFT-S-OFDM, and C-SC are switched under diversity conditions.
- the number of transmission antennas used by the terminal apparatus is 2, that is, the maximum rank that can be transmitted is 2, and the reception apparatus on the base station side has 2 reception antennas.
- the number of receiving antennas on the base station side in this embodiment is two, the number is not limited as long as signals of two or more streams can be separated.
- the access method is switched depending on the transmission diversity method, specifically, whether it is open loop (OPTxD) or closed loop (CLTxD).
- the access methods to be switched are OFDM and DFT-S-OFDM (or C-SC).
- Open-loop transmission diversity refers to transmission diversity used when the transmission side cannot grasp the propagation path condition on the transmission side.
- the transmission side grasps the state of the propagation path on the reception side and performs processing in accordance with the propagation path on the transmission side, whereby the transmission diversity gain can be further improved.
- Table 5 is a table showing an access method for the transmission diversity method.
- a characteristic element of this embodiment in (Table 5) is that OFDM is not selected as an access method for OPTxD, and conversely, DFT-S-OFDM is not selected for CLTxD.
- it since it is not necessary to notify an access method from a base station to a terminal device similarly to Embodiment 1, it can contribute to reduction of control data.
- the DFT-S-OFDM region is C-SC, and can be processed as a DFT-S-OFDM signal as necessary, as in the first embodiment.
- the configuration of the transmitter is the same as that shown in FIG. 1, and the control information A is determined by the transmission diversity method. However, rank information also needs to be input to the layer map part and precoding part. Since 106 and 107 are based on the assumption that there are two transmission antennas, they are 106-1 and 106-2, and 107-1 and 107-2.
- LTE-A has decided to use DFT-S-OFDM supported by LTE.
- a MIMO system is newly studied, and when considering MIMO (MU-MIMO: Multi-User MIMO) that is accessed simultaneously by different users, MIMO that can support DFT-S-OFDM signals is selected. It is preferable to assume.
- MIMO MIMO that can support DFT-S-OFDM signals is selected. It is preferable to assume.
- MIMO MIMO system, it is said that using OFDM signals improves the characteristics by devising the receiver configuration. Therefore, when a single terminal performs MIMO (referred to as SU-MIMO: Single-UserUMIMO), it is preferable to use MIMO-OFDM as much as possible.
- Rank 2 MIMO is specified in one control data unit
- SU-MIMO is specified, and if two different control data units are eventually specified as MIMO,
- An access method based on MU-MIMO is selected.
- Rank 1, an access method set in advance is selected. For example, if the access method of Rank 1 is DFT-S-OFDM, OFDM is selected only for Rank 2 of SU-MIMO.
- the access scheme, MIMO-OFDM, DFT-S-OFDM, and C-SC TxD are switched depending on the MIMO Rank and the number of transmission antennas.
- the maximum number of transmission antennas used by the terminal apparatus is 4, that is, the maximum rank that can be transmitted is 4, and the reception apparatus on the base station side has 4 reception antennas.
- the number of receiving antennas on the base station side in the present embodiment is four, the number is not limited as long as signals of four streams or more can be separated.
- the access method is switched depending on the rank of the propagation path and the number of antennas used for transmission.
- the access methods to be switched are OFDM, C-SC, and DFT-S-OFDM.
- Table 7 is a table showing the access method corresponding to the rank and the number of antennas. In this table, rank 3 is not defined.
- the feature of this embodiment shown in (Table 7) is that the access method is selected from the rank and the number of antennas.
- the access method may be different even at the same rank (the fourth row and the fifth row in the table), or the access method may be different even at the same number of antennas (the third row and the fifth row in the table).
- the access method is determined in consideration of the number of antennas, it can greatly contribute to power saving of the terminal device. As in the first and second embodiments, there is no need to notify the terminal apparatus of the access method from the base station, which can contribute to reduction of control data.
- the configuration of the transmitter is the same as that shown in FIG. 1, and the control information A is determined by the rank and the number of antennas. However, rank information also needs to be input to the layer map part and precoding part.
- an access method with good PAPR characteristics is selected in a low rank state. This is because it is usually assumed that the quality of the transmission path is poor in a low rank state, and it is often necessary to increase the transmission power. Therefore, an access method with a low PAPR is selected. This is because it has significance.
- the case where the access method is controlled from the Rank and the number of antennas is shown, but the Rank and the number of antennas can be combined, or the control can be performed only by the number of antennas.
- the access method, OFDM and DFT-S-OFDM are switched according to the RB allocation method.
- the number of transmission antennas used by the terminal apparatus is 2, that is, the maximum rank that can be transmitted is 2, and the reception apparatus on the base station side has 2 reception antennas.
- the number of receiving antennas on the base station side in this embodiment is two, the number is not limited as long as signals of two or more streams can be separated.
- the access method is switched according to a subcarrier or RB allocation method (frequency resource allocation method).
- the access method to be switched is OFDM (or C-SC) and DFT-S-OFDM.
- Table 8 is a table showing an access scheme for a subcarrier or RB allocation method.
- the characteristic element of this embodiment in (Table 8) is that DFT-S-OFDM is not selected when the frequency resource allocation method is discontinuous, and conversely, OFDM (C-SC) is selected when it is continuous. Is not. This eliminates the need to define an access method for each frequency resource allocation method, and enables efficient switching. As in the first and second embodiments, there is no need to notify the terminal apparatus of the access method from the base station, which can contribute to reduction of control data.
- the frequency resource allocation method is discontinuous / continuous when actually allocated, but is not limited to this.
- the allocation of frequency resources is notified from the base station to the terminal device.
- this notification method there are cases where different control signal formats are used for notifying non-continuous frequency resources and for notifying continuous frequency resources. In such a case, the same effect can be obtained even if the access method is determined depending on which format is used for notification instead of the actual continuity of the arrangement.
- Format 0 for assigning a continuous band
- Format 1 capable of discrete assignment as a control signal format
- DCI Downlink Control Information
- Format1 is downlink allocation information, but such a format is also prepared in the uplink (assuming “Format0 ′”), and the used bandwidth is notified by Format0 or notified by Format0 ′. Change the access method depending on By such processing, it is possible to select an access method regardless of the actual arrangement.
- the configuration of the transmitter is the same as that shown in FIG. 1, and the control information A is determined by the frequency resource allocation method and the format of the control signal for notifying the frequency resource.
- rank information also needs to be input to the layer map part and precoding part. Since 106 and 107 are based on the assumption that there are two transmission antennas, they are 106-1 and 106-2, and 107-1 and 107-2. In the table shown in the present embodiment, Rank is also described, but it shows a case where it is not particularly relevant in selecting an access method.
- PMI is used when notifying the access method.
- CDD is an effective method for transmission diversity when the state of the propagation path on the reception side is unknown on the transmission side, but sufficient transmission diversity is available when the state of the propagation path on the reception side can be grasped to some extent on the transmission side. It's not a wise way to gain.
- the matrix used for this encoding is called a precoding matrix (PM).
- PM precoding matrix
- PM is like the first matrix on the right side of equation (3) .
- PM is a 4 ⁇ 3 matrix.
- the number of transmission antennas can be specified as H and the number of data streams, that is, the rank can be specified as G.
- the rank is directly transmitted from the base station.
- the PMI PM Indicator
- the determination is made from the PM or the PMI.
- the rank is determined from the number of columns of PM.
- a correspondence table between PM and PMI as shown in (Table 9) is shared between the base station and the terminal device, the PMI is notified from the base station, and the terminal device notifies the PM based on the notified PMI.
- a transmission signal is generated using the selected PM.
- the PM when the PMI is 0 and 1 is the PM when the rank is 1
- the PM when the PMI is 2 and 3 is the PM when the rank is 2.
- (Table 10) can be used instead of (Table 2).
- the number of antennas to be used is directly transmitted from the base station.
- the PMI indicating the PM it can be determined from the PMI.
- the number of antennas is determined from the number of rows of PM.
- a correspondence table of PM, PMI, and RI as shown in (Table 11) is shared between the base station and the terminal device, the PMI and RI are notified from the base station, and the terminal device notifies the notified PMI and A PM is selected based on the RI, and a transmission signal is generated using the selected PM.
- the PM when RI is 1 and PMI is 0 and 1 is the PM when the number of antennas is 1, and the PM for other combinations is the PM when the number of antennas is 2. .
- the access method is determined using (Table 12).
- the rank must be determined in consideration of only the valid value.
- the control station apparatus notifies the terminal apparatus of the access method using information that indirectly specifies the access method, and the terminal apparatus notifies the notified information. Therefore, one of the multiple access methods is selected. However, if PM is notified in a format in which an invalid value such as 0 is inserted in a row or column, it is a valid value. The rank must be determined considering only
- the control station apparatus notifies the terminal apparatus of the access method using information that indirectly specifies the access method, and the terminal apparatus notifies the notified information. Accordingly, any one access method is selected from a plurality of access methods, so that access methods with different methods can be efficiently switched.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computer Security & Cryptography (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
Description
101-1~101-y 変調部
102-1~102-y DFT部
103-1~103-y 選択部
104 レイヤマップ部
105 プレコーディング部
106-1~106-4 リソースマップ部
107-1~107-4 OFDM信号生成部
第1の実施形態では、MIMOのRankでアクセス方式を通知する。本実施形態では、端末装置が使用する送信アンテナ数を4、つまり、送信可能な最大のランクを4とし、基地局側の受信装置の受信アンテナ数を4とする。本実施形態における基地局側の受信アンテナ数は4としたが、4ストリーム以上の信号を分離できる状態であれば、その数に制限はない。また、本実施形態では、連続したサブキャリア、あるいは、連続したRBを使用する場合を想定している。
(表2)における本実施形態の特徴的要素はランク1に対して、アクセス方式としてOFDMが選択されず、異なるアクセス方式であるDFT-S-OFDMを選択することである。これは、LTE-AではLTEとの後方互換性を保たなければならない、すなわち、LTE-Aであっても必ずDFT-S-OFDMをサポートすることが決まっており、この場合にランク1にOFDMを定義するとランク1の伝送モードが複数となるためである。これにより、ランク1のOFDMを定義する必要がなくなり、効率的な切り替えが可能になる。また、基地局から端末装置にアクセス方式を通知する必要がないため、制御データの削減に貢献できる。
ランク1のCDDについては、アクセス方式がDFT-S-OFDMのため、ランク1の式中の位相回転の指数部に含まれる自然数mによる除算は、周期を遅くするために挿入されている。mの適切な値は、使用するサブキャリア数やRB数に応じて決定するのがよいが、予め大きな値に設定しても問題ない。また、どの式を使用するかについては制御情報Aで入力されるランク情報で決定される。
(表2)に対するメリットは、先にも示したように周波数領域で比較的自由に信号を配置できることである。また、C-SCはDFT-S-OFDMと互換性があるため、送信ダイバーシチ等の方法も同じものを設定すればよい。従ってPAPR特性がよいことが必要となる通信領域、例えばセルエッジで高出力の信号が必要な領域では、C-SCに連続したサブキャリアやRBを割り当てることで、DFT-S-OFDM信号を使用することも可能になる。
第2の実施形態では、ダイバーシチの条件でアクセス方式OFDMとDFT-S-OFDM、C-SCを切り替える。本実施形態では、端末装置が使用する送信アンテナ数を2、つまり送信可能な最大のランクを2とし、基地局側の受信装置は受信アンテナ数を2とする。本実施形態における基地局側の受信アンテナ数は2としたが、2ストリーム以上の信号を分離できる状態であれば、その数に制限はない。
(表5)における本実施形態の特徴的要素は、OPTxDに対して、アクセス方式としてOFDMが選択されず、逆にCLTxDではDFT-S-OFDMが選択されないことである。これにより、送信ダイバーシチの方法毎にそれぞれのアクセス方式を定義する必要がなくなり、効率的な切り替えが可能になる。例えば、高速移動ユーザはOPTxDのみを選択すれば良く、高速移動時に急激な送信電力の増加が起こった場合でも、PAPR特性のよりDFT-S-OFDMを選択しているため、信号が歪む可能性を低く抑えることが可能になる。また、実施形態1と同様に基地局から端末装置にアクセス方式を通知する必要がないため、制御データの削減に貢献できる。表3にも示しているがDFT-S-OFDMの領域についてはC-SCとし、実施形態1と同様に、必要に応じてDFT-S-OFDM信号として処理することも可能である。
第3の実施形態では、MIMOのRankと送信アンテナ本数でアクセス方式、MIMO-OFDMとDFT-S-OFDMとC-SCのTxDを切り替える。本実施形態では、端末装置が使用する最大の送信アンテナ数を4、つまり送信可能な最大のランクを4とし、基地局側の受信装置は受信アンテナ数を4とする。本実施形態における基地局側の受信アンテナ数は4としたが、4ストリーム以上の信号を分離できる状態であれば、その数に制限はない。
(表7)で示される本実施形態の特徴は、ランクとアンテナ本数からアクセス方式を選択していることである。同じランク(表の4行目、5行目)でもアクセス方式が異なることもあれば、同じアンテナ本数(表の3行目、5行目)でもアクセス方式が異なる場合がある。これにより、各ランクや各アンテナ本数に対して、全てのアクセス方式を設定する必要がなくなり、アクセス方式の効率的な切り替えが可能になる。また、アンテナ本数も考慮してアクセス方式を決定しているため、端末装置の省電力化には大きく貢献できる。第1および第2の実施形態同様に基地局から端末装置にアクセス方式を通知する必要がないため、制御データの削減に貢献できる。
第4の実施形態では、RBの割り当て方でアクセス方式、OFDMとDFT-S-OFDMを切り替える。本実施形態では、端末装置が使用する送信アンテナ数を2、つまり送信可能な最大のランクを2とし、基地局側の受信装置は受信アンテナ数を2とする。本実施形態における基地局側の受信アンテナ数は2としたが、2ストリーム以上の信号を分離できる状態であれば、その数に制限はない。
(表8)における本実施形態の特徴的要素は、周波数資源の割り当て方が非連続の場合に、DFT-S-OFDMが選択されず、逆に連続の場合にOFDM(C-SC)が選択されないことである。これにより、周波数資源の割り当て方それぞれに対しアクセス方式を定義する必要がなくなり、効率的な切り替えが可能になる。第1および第2の実施形態同様に基地局から端末装置にアクセス方式を通知する必要がないため、制御データの削減に貢献できる。
第5の実施形態では、アクセス方式の通知を行なう際に、PMIを使用する。第1の実施形態において、プレコーディングの方法として簡単なCDDを用いる場合について示した。CDDは、送信側で受信側の伝搬路の状況が未知の場合は、送信ダイバーシチとして有効な方法であるが、送信側で受信側の伝搬路の状況がある程度把握できる場合は、十分な送信ダイバーシチ利得を得るための賢明な方法とは言えない。
この場合、PMは4行3列の行列である。一般的に、H行G列で、PMが設定された場合、送信アンテナ数がH、データのストリーム数、すなわち、ランクがGと特定することができる。第1から第4の実施形態では、ランクが直接基地局から送信される例について示したが、このようにPMやPMを示すPMI(PM Indicator)が通知される場合は、PMやPMIから判定することも可能である(本実施形態の場合、PMの列数からランクを判断する)。
また、第3の実施形態では、使用するアンテナ数が直接基地局から送信される例について示したが、このようにPMを示すPMIが通知される場合は、PMIから判定することも可能である。なお、本実施形態の場合、PMの行数からアンテナ数を判断する。例えば、(表11)に示すようなPMとPMIおよびRIとの対応表を基地局と端末装置で共有しておき、基地局からPMIとRIとを通知し、端末装置は通知されたPMIとRIとに基づいてPMを選択し、選択したPMを用いて送信信号を生成する。ここで、RIが1であり、PMIが0および1のときのPMは、アンテナ数が1の場合のPMであり、それ以外の組合せの場合のPMはアンテナ数が2の場合のPMである。
Claims (12)
- 制御局装置と端末装置との間で、複数のアクセス方式からいずれか一つのアクセス方式を選択して無線通信を行なう無線通信システムであって、
前記制御局装置は、アクセス方式を間接的に指定する情報を用いて、前記端末装置に対してアクセス方式を通知し、
前記端末装置は、前記通知された情報に従って、複数のアクセス方式からいずれか一つのアクセス方式を選択して前記制御局装置と無線通信を行なうことを特徴とする無線通信システム。 - 前記制御局装置は、同時に送信可能なストリーム数を示すランク情報を前記端末装置に対して通知し、
前記端末装置は、前記通知されたランク情報に従って、複数のアクセス方式からいずれか一つのアクセス方式を選択して前記制御局装置と無線通信を行なうことを特徴とする請求項1記載の無線通信システム。 - 前記制御局装置は、使用するアンテナの本数を示すアンテナ数情報を前記端末装置に対して通知し、
前記端末装置は、前記通知されたアンテナ数情報に従って、複数のアクセス方式からいずれか一つのアクセス方式を選択して前記制御局装置と無線通信を行なうことを特徴とする請求項1記載の無線通信システム。 - 前記制御局装置は、送信ダイバーシチの種類を示す送信ダイバーシチ情報を前記端末装置に対して通知し、
前記端末装置は、前記通知された送信ダイバーシチ情報に従って、複数のアクセス方式からいずれか一つのアクセス方式を選択して前記制御局装置と無線通信を行なうことを特徴とする請求項1記載の無線通信システム。 - 前記送信ダイバーシチ情報は、使用する送信ダイバーシチの方法が、オープンループであるか、またはクローズドループであるかを特定する情報を含むことを特徴とする請求項4記載の無線通信システム。
- 前記制御局装置は、MIMO(Multi-Input Multi-Output)送信がシングルユーザMIMOか否かを示す情報を前記端末装置に対して通知し、
前記端末装置は、前記通知されたMIMOの送信方法の情報に従って、複数のアクセス方式からいずれか一つのアクセス方式を選択して前記制御局装置と無線通信を行なうことを特徴とする請求項1記載の無線通信システム。 - 前記制御局装置は、プレコーディングマトリックスを用いて、前記通知を行なうことを特徴とする請求項2から請求項6のいずれかに記載の無線通信システム。
- 前記制御局装置は、使用する周波数を示す周波数情報を前記端末装置に対して通知し、 前記端末装置は、前記通知された周波数情報に従って、複数のアクセス方式からいずれか一つのアクセス方式を選択して前記制御局装置と無線通信を行なうことを特徴とする請求項1記載の無線通信システム。
- 前記周波数情報は、使用する周波数に連続性があるか否かを示す情報を含むことを特徴とする請求項8記載の無線通信システム。
- 前記複数のアクセス方式は、DFT-S-OFDM(Discrete Fourier Transform Spread Orthogonal Frequency Division Multiplexing)、OFDM(Orthogonal Frequency Division Multiplexing)またはClustered DFT-S-OFDM(DFT-S-OFDM with Spectrum Division Control、またはClustered SC-FDMA)のうち、少なくとも2つであることを特徴とする請求項1から請求項9のいずれかに記載の無線通信システム。
- 複数のアクセス方式からいずれか一つのアクセス方式を選択して端末装置との間で無線通信を行なう制御局装置であって、
同時に送信可能なストリーム数を示すランク情報、使用するアンテナの本数を示すアンテナ数情報、送信ダイバーシチの種類を示す送信ダイバーシチ情報、または使用する周波数を示す周波数情報のいずれか一つを用いて、前記端末装置に対してアクセス方式を通知することを特徴とする制御局装置。 - 複数のアクセス方式からいずれか一つのアクセス方式を選択して制御局装置との間で無線通信を行なう端末装置であって、
前記制御局装置から通知された、同時に送信可能なストリーム数を示すランク情報、使用するアンテナの本数を示すアンテナ数情報、送信ダイバーシチの種類を示す送信ダイバーシチ情報、または使用する周波数を示す周波数情報のいずれか一つに従って、複数のアクセス方式からいずれか一つのアクセス方式を選択して前記制御局装置と無線通信を行なうことを特徴とする端末装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010523810A JP5574964B2 (ja) | 2008-08-08 | 2009-07-09 | 無線通信システム、制御局装置、端末装置および通信方法 |
US13/057,936 US8731077B2 (en) | 2008-08-08 | 2009-07-09 | Wireless communication system, control station apparatus and terminal apparatus |
CN200980131012.5A CN102119553B (zh) | 2008-08-08 | 2009-07-09 | 无线通信系统、控制站装置及终端装置 |
EP09804842.4A EP2312884B1 (en) | 2008-08-08 | 2009-07-09 | Wireless communication system, control station device, and terminal device |
US14/247,047 US20140219318A1 (en) | 2008-08-08 | 2014-04-07 | Wireless communication system, control station apparatus and terminal apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-205089 | 2008-08-08 | ||
JP2008205089 | 2008-08-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US13/057,936 A-371-Of-International US8731077B2 (en) | 2008-08-08 | 2009-07-09 | Wireless communication system, control station apparatus and terminal apparatus |
US14/247,047 Division US20140219318A1 (en) | 2008-08-08 | 2014-04-07 | Wireless communication system, control station apparatus and terminal apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010016355A1 true WO2010016355A1 (ja) | 2010-02-11 |
Family
ID=41663578
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/062548 WO2010016355A1 (ja) | 2008-08-08 | 2009-07-09 | 無線通信システム、制御局装置および端末装置 |
Country Status (5)
Country | Link |
---|---|
US (2) | US8731077B2 (ja) |
EP (1) | EP2312884B1 (ja) |
JP (1) | JP5574964B2 (ja) |
CN (1) | CN102119553B (ja) |
WO (1) | WO2010016355A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012053382A1 (ja) * | 2010-10-18 | 2012-04-26 | シャープ株式会社 | 無線送信装置、無線受信装置、無線通信システム、無線送信装置の制御プログラムおよび集積回路 |
JP2015513257A (ja) * | 2012-02-23 | 2015-04-30 | エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュートElectronics And Telecommunications Research Institute | 大規模アンテナシステムにおける多重入力多重出力通信方法 |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010055676A1 (ja) * | 2008-11-14 | 2010-05-20 | パナソニック株式会社 | 無線通信端末装置、無線通信基地局装置およびクラスタ配置設定方法 |
KR101758270B1 (ko) * | 2009-11-18 | 2017-07-14 | 엘지전자 주식회사 | 고정된 경로를 이동하는 고속 이동체를 위한 무선 통신 시스템 |
CN103002050B (zh) * | 2012-12-21 | 2016-06-01 | 北京时代凌宇科技有限公司 | 数据上传方法 |
JP2018050089A (ja) | 2015-01-29 | 2018-03-29 | シャープ株式会社 | 端末装置、基地局装置、集積回路、および、通信方法 |
US10021695B2 (en) * | 2015-04-14 | 2018-07-10 | Qualcomm Incorporated | Apparatus and method for generating and transmitting data frames |
US10419086B2 (en) * | 2016-04-26 | 2019-09-17 | Samsung Electronics Co., Ltd. | Method and apparatus for enabling uplink MIMO |
US11363572B2 (en) | 2016-08-01 | 2022-06-14 | Qualcomm Incorporated | Uplink channel dynamic waveform switching |
US10397947B2 (en) * | 2016-08-12 | 2019-08-27 | Qualcomm Incorporated | Adaptive waveform selection in wireless communications |
US11382048B2 (en) | 2018-05-22 | 2022-07-05 | Qualcomm Incorporated | Multiplexing solutions in dual connectivity |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007151059A (ja) | 2005-03-31 | 2007-06-14 | Ntt Docomo Inc | 送信装置、受信装置および移動通信システム並びに送信制御方法 |
WO2007091836A1 (en) * | 2006-02-09 | 2007-08-16 | Samsung Electronics Co., Ltd. | Method and system for scheduling users based on user-determined ranks in a mimo system |
WO2008057969A2 (en) | 2006-11-01 | 2008-05-15 | Qualcomm Incorporated | Joint use of multi-carrier and single-carrier multiplexing schemes for wireless communication |
JP2008172356A (ja) * | 2007-01-09 | 2008-07-24 | Sharp Corp | 基地局装置、端末装置、無線通信システム、プログラム、制御情報送信方法および制御情報受信方法 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6999439B2 (en) * | 2002-01-31 | 2006-02-14 | Mitsubishi Denki Kabushiki Kaisha | Information transmission method, mobile communications system, base station and mobile station in which data size of identification data is reduced |
JP4628150B2 (ja) * | 2004-03-29 | 2011-02-09 | パナソニック株式会社 | 通信装置及び通信方法 |
US9136974B2 (en) * | 2005-08-30 | 2015-09-15 | Qualcomm Incorporated | Precoding and SDMA support |
CN101162984A (zh) * | 2006-10-12 | 2008-04-16 | 中兴通讯股份有限公司 | 时分双工通信系统的移动终端的接入方法 |
CN101162982B (zh) * | 2006-10-12 | 2010-05-12 | 中兴通讯股份有限公司 | 时分双工通信系统及其帧结构选择方法 |
US20080132282A1 (en) * | 2006-10-31 | 2008-06-05 | Jingxiu Liu | Method, system, base station, and user equipment for determining delay value of cyclic delay diversity |
US7974258B2 (en) * | 2007-03-01 | 2011-07-05 | Intel Corporation | Adaptive mode transmitter for PAPR reduction and link optimization |
-
2009
- 2009-07-09 WO PCT/JP2009/062548 patent/WO2010016355A1/ja active Application Filing
- 2009-07-09 JP JP2010523810A patent/JP5574964B2/ja active Active
- 2009-07-09 CN CN200980131012.5A patent/CN102119553B/zh active Active
- 2009-07-09 US US13/057,936 patent/US8731077B2/en active Active
- 2009-07-09 EP EP09804842.4A patent/EP2312884B1/en active Active
-
2014
- 2014-04-07 US US14/247,047 patent/US20140219318A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007151059A (ja) | 2005-03-31 | 2007-06-14 | Ntt Docomo Inc | 送信装置、受信装置および移動通信システム並びに送信制御方法 |
WO2007091836A1 (en) * | 2006-02-09 | 2007-08-16 | Samsung Electronics Co., Ltd. | Method and system for scheduling users based on user-determined ranks in a mimo system |
WO2008057969A2 (en) | 2006-11-01 | 2008-05-15 | Qualcomm Incorporated | Joint use of multi-carrier and single-carrier multiplexing schemes for wireless communication |
JP2008172356A (ja) * | 2007-01-09 | 2008-07-24 | Sharp Corp | 基地局装置、端末装置、無線通信システム、プログラム、制御情報送信方法および制御情報受信方法 |
Non-Patent Citations (1)
Title |
---|
KEIGO MAJIMA ET AL.: "Dynamic Spectrum Seigyo o Mochiita Ko Taiiki Single Carrier Denso Hoshiki ni Kansuru Kento", TECHNICAL REPORT OF IEICE, RSC2006-233, THE INSTITUTE OF ELECTRONICS, INFORMATION AND COMMUNICATION ENGINEERS, January 2007 (2007-01-01), pages 97 - 102, XP008139970 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2012053382A1 (ja) * | 2010-10-18 | 2012-04-26 | シャープ株式会社 | 無線送信装置、無線受信装置、無線通信システム、無線送信装置の制御プログラムおよび集積回路 |
JP2012090013A (ja) * | 2010-10-18 | 2012-05-10 | Sharp Corp | 無線送信装置、無線受信装置、無線通信システム、無線送信装置の制御プログラムおよび集積回路 |
US9313775B2 (en) | 2010-10-18 | 2016-04-12 | Sharp Kabushiki Kaisha | Wireless transmission apparatus, wireless reception apparatus, wireless communication system, and control program and integrated circuit of wireless transmission apparatus |
JP2015513257A (ja) * | 2012-02-23 | 2015-04-30 | エレクトロニクス アンド テレコミュニケーションズ リサーチ インスチチュートElectronics And Telecommunications Research Institute | 大規模アンテナシステムにおける多重入力多重出力通信方法 |
Also Published As
Publication number | Publication date |
---|---|
US20140219318A1 (en) | 2014-08-07 |
US20110200071A1 (en) | 2011-08-18 |
EP2312884A4 (en) | 2014-06-18 |
US8731077B2 (en) | 2014-05-20 |
JPWO2010016355A1 (ja) | 2012-01-19 |
CN102119553A (zh) | 2011-07-06 |
JP5574964B2 (ja) | 2014-08-20 |
EP2312884B1 (en) | 2019-01-09 |
CN102119553B (zh) | 2015-04-22 |
EP2312884A1 (en) | 2011-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5574964B2 (ja) | 無線通信システム、制御局装置、端末装置および通信方法 | |
USRE49159E1 (en) | Method and apparatus of transmitting reference signal for uplink transmission | |
JP5500894B2 (ja) | 端末装置および通信方法 | |
TWI376898B (ja) | ||
JP5113239B2 (ja) | 通信ネットワークに関する方法および構成 | |
JP5325672B2 (ja) | 基地局装置及び情報フィードバック方法 | |
KR20080074004A (ko) | 피드백 정보를 이용한 상향링크의 가상 다중 안테나 전송방법 및 이를 지원하는 이동 단말 | |
JP5346942B2 (ja) | 基地局装置及びプリコーディング方法 | |
KR101440628B1 (ko) | Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 | |
KR101208189B1 (ko) | 다중안테나 시스템에서 데이터 전송방법 | |
KR20100136902A (ko) | 다중 입출력 시스템에서 코드북을 이용한 통신 방법 및 이를 위한 장치 | |
KR20080026019A (ko) | 위상천이 기반의 프리코딩 방법 및 이를 지원하는 송수신기 | |
US9031589B2 (en) | Transmission apparatus, wireless communication system, mobile station apparatus control program, and base station apparatus control program | |
US20110110307A1 (en) | Data transmission apparatus using multiple antennas and method thereof | |
KR20110081946A (ko) | 다중 안테나 시스템에서 다중 부호어의 전송방법 | |
US9531462B2 (en) | Wireless communication system, wireless transmitter, and control program for wireless transmitter | |
KR20100002064A (ko) | Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 | |
US9674828B2 (en) | Terminal apparatus | |
Darsena et al. | Beamforming and precoding techniques | |
KR20100086431A (ko) | 다중안테나를 사용하는 송신기에서 참조신호 전송방법 | |
KR20100120256A (ko) | 다중안테나 시스템에서 참조신호 전송방법 | |
US20120033755A1 (en) | Transmit Mode Switching for MIMO Base Stations | |
KR20080036508A (ko) | 순환지연을 이용한 데이터 전송 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980131012.5 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09804842 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010523810 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009804842 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 1469/CHENP/2011 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13057936 Country of ref document: US |