WO2010013395A1 - 不均衡低減回路、電源装置、及び不均衡低減方法 - Google Patents
不均衡低減回路、電源装置、及び不均衡低減方法 Download PDFInfo
- Publication number
- WO2010013395A1 WO2010013395A1 PCT/JP2009/003138 JP2009003138W WO2010013395A1 WO 2010013395 A1 WO2010013395 A1 WO 2010013395A1 JP 2009003138 W JP2009003138 W JP 2009003138W WO 2010013395 A1 WO2010013395 A1 WO 2010013395A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- power storage
- related information
- unit
- storage units
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
- H01M10/443—Methods for charging or discharging in response to temperature
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
- H01M10/486—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0013—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
- H02J7/0014—Circuits for equalisation of charge between batteries
- H02J7/0016—Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present invention relates to an imbalance reduction circuit, a power supply device, and an imbalance reduction method for reducing terminal voltage imbalance in a plurality of power storage units.
- a power storage device using a power storage unit or the like is widely used as a power supply system in combination with a solar battery or a power generation device.
- the power generation device is driven by natural energy such as wind power or hydraulic power or artificial power such as an internal combustion engine.
- a power supply system that combines such power storage devices is designed to improve energy efficiency by storing surplus power in the power storage device and supplying power from the power storage device when a load device is required.
- An example of such a system is a solar power generation system.
- the solar power generation system charges the power storage device with surplus power when the amount of power generated by sunlight is larger than the power consumption of the load device.
- the load device is driven by outputting from the power storage device in order to compensate for the insufficient power.
- surplus power that has not been used in the past can be stored in the power storage device, so that energy efficiency can be improved compared to a power supply system that does not use the power storage device.
- charge control is performed so that the state of charge of the power storage unit (hereinafter referred to as SOC: State Of Charge) does not become 100%.
- SOC State Of Charge
- charging control is performed so that the SOC does not become 0 (zero)% so that the load device can be driven when necessary.
- charging control is normally performed so that the SOC changes within a range of 20% to 80%.
- a hybrid vehicle (HEV: Hybrid Electric Vehicle) using an engine and a motor also uses such a principle.
- HEV Hybrid Electric Vehicle
- the HEV drives the generator with the surplus engine output and charges the power storage device.
- the HEV charges the power storage device by using the motor as a generator during braking or deceleration of the vehicle.
- the load leveling power source is a system that stores power in a power storage device at night when the power consumption is low and the power rate is low, and uses the stored power during the day when the power consumption peaks.
- the purpose is to make the power generation amount constant by smoothing the power consumption, and to contribute to the efficient operation of power facilities and the reduction of capital investment.
- Plug-in hybrid vehicles use electric power at night, mainly EV driving to supply power from the power storage device when driving in urban areas with poor fuel efficiency, and by HEV driving using the engine and motor during long distance driving, The aim is to reduce the total CO 2 emissions.
- such a power storage device is configured by connecting a plurality of power storage elements (such as single cells) in series in order to obtain a desired output voltage.
- a power storage element when a deep discharge is performed in a state where the amount of stored charge of each power storage element varies, the power storage element with a small amount of stored charge is further overdischarged, and the power storage element deteriorates and the entire power storage device This will reduce the lifespan.
- the storage element becomes low temperature or the SOC becomes small, the discharge performance is lowered and the current value that can be discharged decreases. For this reason, if the storage element is low temperature and the SOC is small, the amount of power that can be supplied from the storage element may be insufficient with respect to the required amount of power.
- An object of the present invention is to provide an imbalance reduction circuit, a power supply device, and an imbalance reduction method capable of reducing the possibility of shortage of supply power at low temperatures accompanying equalization of terminal voltages.
- An imbalance reduction circuit includes a temperature-related information acquisition unit that acquires temperature-related information related to temperatures of a plurality of power storage units, and the plurality of power storage units, each having a terminal voltage of each power storage unit.
- the discharge unit that performs the equalization process for discharging until substantially equal, and the temperature related information acquired by the temperature related information acquisition unit are set as conditions under which the discharge performance of the plurality of power storage units decreases.
- an equalization control unit that prohibits execution of the equalization process by the discharge unit when the low temperature condition is satisfied.
- the temperature-related information acquisition unit acquires the temperature-related information related to the temperatures of the plurality of power storage units
- the discharge unit includes the plurality of power storage units.
- the temperature related information acquisition unit acquires temperature related information related to the temperatures of the plurality of power storage units.
- the equalization control unit executes the equalization process by the discharge unit. It is forbidden. Then, when there is a possibility that the discharge performance of the power storage unit may be lowered at a low temperature, the amount of stored charge in the plurality of power storage units does not decrease due to the discharge by the equalization process. It is possible to reduce the possibility that the shortage of supply power sometimes occurs.
- a power supply device includes the above-described imbalance reduction circuit and the plurality of power storage units.
- the temperature related information acquisition unit acquires temperature related information related to the temperatures of a plurality of power storage units.
- the equalization control unit executes the equalization process by the discharge unit. It is forbidden. Then, when there is a possibility that the discharge performance of the power storage unit may be lowered at a low temperature, the amount of stored charge in the plurality of power storage units does not decrease due to the discharge by the equalization process. It is possible to reduce the possibility that the shortage of supply power sometimes occurs.
- FIG. 1 It is a block diagram which shows an example of a structure of the imbalance reduction circuit using the imbalance reduction method which concerns on one Embodiment of this invention, a power supply device provided with this imbalance reduction circuit, and a power supply system. It is a graph which shows the relationship between the temperature of a electrical storage element, and resistance value.
- 3 is a flowchart illustrating an example of an operation of the power supply device illustrated in FIG. 1.
- 3 is a flowchart illustrating an example of an operation of the power supply device illustrated in FIG. 1.
- FIG. 1 is a block diagram illustrating an example of a configuration of an imbalance reduction circuit using an imbalance reduction method according to an embodiment of the present invention, a power supply device including the imbalance reduction circuit, and a power supply system.
- the power supply system 1 shown in FIG. 1 includes a power generation device 10, a power supply control device 30, and a power storage device 40.
- the power supply control device 30 and the power storage device 40 constitute a power supply device 50.
- the power supply device 50 includes, for example, a battery pack, an uninterruptible power supply device, a power generation device that utilizes natural energy, a power storage device that stores surplus power of a power generation device that uses an engine as a power source, a load leveling power source, and the like Used as various power supply devices.
- the power device 50 is connected to the load device 20 that receives power from the power generation device 10 and the power storage device 40.
- the power generation device 10 is, for example, a power generation device using natural energy such as a solar power generation device (solar battery) or a generator using an engine as a power source.
- the power supply device 50 may be configured to receive power supply from a commercial power supply instead of the power generation device 10.
- the power storage device 40 is configured by connecting N power storage units B1, B2,..., BN in series.
- the power storage units B1, B2,..., BN are accommodated in a box (not shown).
- each of the power storage units B1, B2,..., BN is configured by electrically connecting a plurality of power storage elements 401 in series.
- a power storage element such as an alkaline storage battery such as a nickel metal hydride battery, an organic battery such as a lithium ion battery, and a capacitor such as an electric double layer capacitor can be used.
- each power storage unit may be configured by connecting a plurality of power storage elements 401 in series, parallel, or a combination of series and parallel.
- Each power storage unit may be one power storage element 401.
- the configuration of the power storage device 40 is not limited to the above.
- the power supply control device 30 is configured as, for example, an in-vehicle ECU (Electric Control Unit).
- the power supply control device 30 includes an imbalance reduction circuit 350, temperature sensors 61 and 62, and a charge / discharge control circuit 340.
- the imbalance reduction circuit 350 includes a discharge unit 310, a voltage detection unit 320, a control unit 330, and a communication unit 63.
- the charge / discharge control circuit 340 charges the power storage device 40 with, for example, surplus power generated in the power generation device 10 or regenerative power generated in the load device 20. Further, when the current consumption of the load device 20 suddenly increases or the power generation amount of the power generation device 10 decreases and the power required by the load device 20 exceeds the output of the power generation device 10, the charge / discharge control circuit 340 Thus, the insufficient power is supplied from the power storage device 40 to the load device 20.
- the charge / discharge control circuit 340 is configured to stop or permit charging of the power storage device 40 in accordance with a control signal from the control unit 330.
- the charge / discharge of the power storage device 40 is controlled by the charge / discharge control circuit 340 so that the SOC of the power storage device 40 is in a range of about 20 to 80% in a normal case.
- the power storage device 40 is charged to a state where the SOC is 100%, and the load device 20 is discharged when energy is required. It has become.
- the voltage detector 320 detects the terminal voltages V1, V2,..., VN of the power storage units B1, B2,... BN, and outputs the detected values to the controller 330.
- the voltage detection unit 320 controls, for example, an unillustrated switching circuit that selects any one of the terminal voltages V1, V2,..., VN, or a voltage selected by the switching circuit into a digital value. It is configured using an analog-digital converter (not shown) that is output to the unit 330.
- the discharge unit 310 includes N resistors R1, R2,..., RN and N transistors Q1, Q2,.
- a series circuit of the resistor R1 and the transistor Q1 is connected in parallel to the power storage unit B1
- a series circuit of the resistor R2 and the transistor Q2 is connected in parallel to the power storage unit B2, and so on.
- a circuit is connected in parallel with each power storage unit.
- the resistors R1, R2,..., RN may be variable resistors.
- the transistors Q1, Q2,..., QN are turned on and off in accordance with the equalized discharge signals SG1, SG2,.
- the transistors Q1, Q2,..., QN are turned on, the power storage unit connected in parallel with the turned-on transistors is discharged via a resistor.
- the temperature sensor 61 is attached in close contact with the power storage device 40, for example. Temperature sensor 61 detects the temperature of power storage device 40.
- the temperature sensor 62 is disposed at a position where it comes into contact with outside air.
- the temperature sensor 62 detects the outside air temperature.
- the temperature of power storage units B1, B2,..., BN gradually decreases and becomes equal to the outside air temperature when self-heating is eliminated. Therefore, the outside air temperature corresponds to an example of the temperature at which the temperatures of the power storage units B1, B2,.
- the communication unit 63 is a communication interface circuit that performs communication with the external information source 100.
- the information source 100 is, for example, a server device connected to a network such as the Internet or a wireless public line, a wireless transmitter, or a transmission device such as a broadcasting facility.
- a communication method between the communication unit 63 and the information source 100 various wireless methods such as wired communication and wireless communication can be used.
- the information source 100 is configured to transmit various weather information such as an outside temperature, a weather forecast (forecast of the outside temperature), or a frost warning to the communication unit 63, for example.
- the communication unit 63 may use an ITS (Intelligent Transport System) promoted by the Ministry of Land, Infrastructure, Transport and Tourism or the National police Agency, or a car navigation service promoted by various companies such as automobile manufacturers ( For example, by communicating with an on-vehicle device used in Nikkei Electronics July 16, 2007 issue P8-P9, June 2, 2008 issue P77-P86), or functioning as such an on-vehicle device, A receiving device that receives weather information from the information source 100 including such a traffic information system may be used.
- ITS Intelligent Transport System
- the communication unit 63 is not necessarily limited to the one that performs communication, and may be a receiving device that receives weather information from, for example, radio or television broadcasting and acquires weather information.
- the control unit 330 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a ROM (Read Only Memory) that stores a predetermined control program, and a RAM (Random Access Memory) that temporarily stores data. And an analog-digital converter and these peripheral circuits.
- a CPU Central Processing Unit
- ROM Read Only Memory
- RAM Random Access Memory
- control part 330 executes the control program memorize
- the power storage unit temperature acquisition unit 331, the outside air temperature acquisition unit 332, and the weather information acquisition unit 333 correspond to an example of a temperature related information acquisition unit.
- the charge / discharge control circuit 340 and the load device 20 may be configured to include a part or all of the control unit 330.
- the power storage unit temperature acquisition unit 331 and the outside air temperature acquisition unit 332 are configured using, for example, an analog-digital converter.
- the power storage unit temperature acquisition unit 331 acquires information indicating the temperature of the power storage device 40 based on the signal output from the temperature sensor 61.
- the outside air temperature acquisition unit 332 acquires information indicating the outside air temperature based on the signal output from the temperature sensor 62.
- the meteorological information acquisition unit 333 receives the weather information transmitted from the information source 100, for example, the predicted value Tf of the outside temperature in the weather forecast by the communication unit 63, and receives it as information about the outside temperature.
- the weather information acquisition unit 333 is not necessarily limited to the example of acquiring the numerically predicted value Tf.
- a low temperature condition used as a determination condition of the equalization control unit 337 such as a frost warning in a weather forecast.
- the configuration may be such that the meteorological information corresponding to is received as information related to the outside air temperature by the communication unit 63.
- the weather information acquisition unit 333 acquires information indicating a route in the traveling direction of the host vehicle from the car navigation device mounted on the host vehicle.
- the outside air temperature measured in another vehicle (probe) present on the route in the traveling direction of the subject vehicle may be acquired from the traffic information system as the predicted value Tf of the outside air temperature.
- the SOC detection unit 334 converts, for example, the total voltage of the terminal voltages V1, V2,..., VN detected by the voltage detection unit 320 into SOC, for example, with reference to a lookup table stored in advance in the ROM. Thus, the SOC of the power storage device 40 is detected. Alternatively, the SOC detection unit 334 detects the charge / discharge current of the power storage device 40 using, for example, a current detection circuit (not shown), and calculates the amount of charge stored in the power storage device 40 by integrating the charge / discharge current. Various methods can be used to detect the SOC, such as calculating the SOC from the quantity.
- the reference temperature setting unit 335 sets the reference temperatures ⁇ and ⁇ so that the reference temperatures ⁇ and ⁇ used as the determination values for the low temperature condition are lower as the SOC detected by the SOC detection unit 334 is larger.
- the reference temperature ⁇ is used as a determination value for the temperature Tb
- the reference temperature ⁇ is used as a determination value for the outside air temperature Ta and the predicted value Tf of the outside air temperature.
- the temperature Tb of the power storage device 40 is higher than the outside air temperature due to self-heating, so the reference temperature ⁇ is set to be higher than the reference temperature ⁇ .
- the reference temperature ⁇ and the reference temperature ⁇ may be set to the same temperature.
- FIG. 2 is a graph showing the relationship between the temperature and resistance value of the storage element 401 when the storage element 401 is a nickel metal hydride secondary battery.
- the horizontal axis indicates the temperature (° C.) of the power storage element 401
- the vertical axis indicates the internal resistance value ( ⁇ ) of the power storage element 401.
- the temperature of the energy storage device 401 is 25 ° C. or lower
- the internal resistance increases as the temperature decreases.
- the discharge performance decreases and the current value that can be discharged decreases. Therefore, in order to ensure the amount of current required by load device 20, the temperature of power storage device 40 needs to be equal to or higher than a predetermined reference temperature.
- the reference temperature setting unit 335 sets the reference temperatures ⁇ and ⁇ such that the reference temperatures ⁇ and ⁇ used as the determination values for the low temperature condition are lower as the SOC detected by the SOC detection unit 334 is larger.
- the reference temperature setting unit 335 sets the reference temperatures ⁇ and ⁇ to be low. As a result, if the temperature Tb and the outside air temperature Ta are equal to or higher than the reference temperatures ⁇ and ⁇ , thus, it is possible to execute the equalization process of the power storage device 40.
- the target voltage setting unit 336 sets the lowest voltage among the terminal voltages V1, V2,..., VN detected by the voltage detection unit 320 as the target voltage Vtg.
- the equalization control unit 337 generates a difference between the maximum voltage Vmax and the minimum voltage Vmin of the terminal voltages V1, V2,..., VN detected by the voltage detection unit 320, that is, a voltage indicating a variation in each terminal voltage in advance. When the set determination threshold value Vth is exceeded, it is determined that an imbalance has occurred in the power storage device 40. Note that the equalization control unit 337 is not limited to an example in which the difference between the maximum voltage Vmax and the minimum voltage Vmin is used as a voltage indicating the variation of each terminal voltage, and the power storage device 40 is imbalanced by another method. May be determined.
- the equalization control part 337 determines with the electrical storage apparatus 40 having imbalance, and when all the predetermined low-temperature conditions A, B, and C are not satisfied, electrical storage body B1, B2, ...,. An equalization process is performed in which BN is discharged by the discharge unit 310 until the terminal voltage of each power storage unit becomes substantially equal to the target voltage Vtg. Note that “substantially equal” means that a voltage difference due to a voltage detection error by the voltage detection unit 320, a control error of the discharge unit 310, or the like is allowed.
- the equalization control unit 337 Based on the terminal voltages V1, V2,..., VN detected by the voltage detection unit 320, the equalization control unit 337 performs the discharge by the discharge unit 310 until each terminal voltage becomes substantially equal to the target voltage Vtg.
- the transistors Q1, Q2,..., QN are not limited to the example of discharging, for example, by connecting a Zener diode having a Zener voltage corresponding to the target voltage Vtg in series with the resistors R1, R2,. Each terminal voltage may be automatically set to the target voltage Vtg when turned on.
- the equalization control unit 337 determines whether the transistors Q1, Q2,..., When at least one of the low temperature conditions A, B, C is satisfied, regardless of whether or not the power storage device 40 is imbalanced.
- the QN is turned off and the equalization process by the discharge unit 310 is prohibited.
- the low temperature condition A for example, a condition that “the temperature Tb of the power storage device 40 acquired by the power storage body temperature acquisition unit 331 is lower than the reference temperature ⁇ set by the reference temperature setting unit 335” is used.
- the low temperature condition B for example, a condition that “the outside air temperature Ta acquired by the power storage body temperature acquisition unit 331 is lower than the reference temperature ⁇ set by the reference temperature setting unit 335” is used.
- the low temperature condition C for example, a condition that “the predicted value Tf of the outside air temperature acquired by the weather information acquisition unit 333 is lower than the reference temperature ⁇ set by the reference temperature setting unit 335” or “the weather information acquisition unit 333 Is used to acquire information (for example, frost warning) preset as indicating that the outside air temperature is low ”.
- FIG. 1 is flowcharts showing an example of the operation of the power supply device 50 shown in FIG. 1
- the setting operation of the reference temperatures ⁇ and ⁇ by the reference temperature setting unit 335 is always executed in parallel with the operation shown in the following flowchart. Then, the voltage detector 320 detects the terminal voltages V1, V2,..., VN of the power storage units B1, B2,.
- the equalization control unit 337 acquires the maximum voltage Vmax and the minimum voltage Vmin among the terminal voltages V1, V2,..., VN (step S2). Then, the equalization control unit 337 calculates the difference between the maximum voltage Vmax and the minimum voltage Vmin as a voltage indicating the variation of each terminal voltage, and compares the difference between the maximum voltage Vmax and the minimum voltage Vmin with the determination threshold value Vth. (Step S3). If the difference is equal to or smaller than the determination threshold value Vth (NO in step S3), the process returns to step S1 and repeats the processes in steps S1 to S3. On the other hand, if the difference exceeds the determination threshold value Vth (YES in step S3) ), It is determined by the equalization control unit 337 that an imbalance has occurred in the power storage device 40, and the process proceeds to step S4.
- the equalization control unit 337 is not limited to the example of determining the presence or absence of imbalance by comparing the difference between the maximum voltage Vmax and the minimum voltage Vmin with the determination threshold value Vth.
- the terminal voltages V1, V2,. , VN may be determined by comparing the difference between the average value of VN and the minimum voltage Vmin with a determination threshold value Vth, or may be determined by other methods. .
- step S4 the temperature Tb of the power storage device 40 is detected by the temperature sensor 61 and acquired by the power storage body temperature acquisition unit 331 (step S4).
- step S5 the outside air temperature Ta is detected by the temperature sensor 62 and acquired by the outside air temperature acquisition unit 332 (step S5).
- the outside temperature measured by the communication unit 63 from the information source 100 on the outside temperature Ta the predicted value Tf of the outside temperature based on the weather forecast, and other vehicles (probes) existing on the route in the traveling direction of the host vehicle.
- Various weather information such as the predicted value Tf or the frost warning is received (step S6).
- the equalization control unit 337 compares the temperature Tb of the power storage device 40 acquired by the power storage unit temperature acquisition unit 331 with the reference temperature ⁇ set by the reference temperature setting unit 335 (step S7). ).
- step S7 When temperature Tb is less than reference temperature ⁇ (YES in step S7), low temperature condition A is satisfied and the current output performance of power storage device 40 is reduced, so that power storage units B1, B2, and so on are equalized. .., BN may be discharged any more, and there is a possibility that the power required by the load device 20 cannot be supplied. Therefore, the equalization control unit 337 prohibits the execution of the equalization process (step S10) and ends the process.
- step S7 if the temperature Tb is equal to or higher than the reference temperature ⁇ (NO in step S7), the process proceeds to step S8 to check the low temperature condition B. And it is confirmed by the equalization control part 337 whether the low temperature condition B is satisfy
- step S8 If the outside air temperature Ta is less than the reference temperature ⁇ (YES in step S8), the low temperature condition B is satisfied. Then, if charging / discharging of power storage device 40 stops and self-heating does not occur, temperature Tb of power storage device 40 is predicted to become outside temperature Ta in the future, and accordingly, the current output performance of power storage device 40 is predicted to decrease in the future. Then, if the power storage units B1, B2,..., BN are further discharged by the equalization process, there is a possibility that the power required by the load device 20 cannot be supplied. Therefore, the equalization control unit 337 prohibits the execution of the equalization process (step S10) and ends the process.
- step S8 the process proceeds to step S9 to check the low temperature condition C. And it is confirmed by the equalization control part 337 whether the low temperature condition C is satisfy
- step S9 If the predicted value Tf is less than the reference temperature ⁇ (YES in step S9), the low temperature condition C is satisfied. Then, if charging / discharging of power storage device 40 is stopped and self-heating does not occur, temperature Tb of power storage device 40 is predicted to become predicted value Tf in the future, and accordingly, the current output performance of power storage device 40 is predicted to decrease in the future. Then, if the power storage units B1, B2,..., BN are further discharged by the equalization process, there is a possibility that the power required by the load device 20 cannot be supplied. Therefore, the equalization control unit 337 prohibits the execution of the equalization process (step S10) and ends the process.
- step S9 if the predicted value Tf is equal to or higher than the reference temperature ⁇ (NO in step S9), the process proceeds to step S21 to execute the equalization process.
- the load is obtained by discharging the power storage device 40 through the equalization process under the conditions in which the power storage device 40 is expected to be low temperature or the power storage device 40 is low temperature due to the processing in steps S4 to S10.
- the possibility that the power required by the apparatus 20 cannot be supplied can be reduced.
- the power supply device 50 when the power supply device 50 is used as an in-vehicle power source, when the equalization process is performed after the vehicle is parked at night to discharge the power storage units B1, B2,. There is a risk that inconveniences such as lowering the engine and the engine will not start.
- the weather information acquisition unit 333 acquires the weather information such as the predicted value Tf of the outside temperature in the next morning and the frost warning from the information such as the weather forecast, and the equalization control unit 337 Since the low temperature condition C is determined based on the weather information and whether or not the equalization process is executed is determined, the equalization process is performed when the temperature is expected to drop in the next morning even if the temperature is high when the vehicle is parked. Is not executed, the risk that the engine will not start the next morning is reduced.
- step S21 the equalization control unit 337 turns on the equalization discharge signals SG1, SG2,..., SGN and turns on the transistors Q1, Q2,. (Step S21).
- the equalization control unit 337 starts the inspection of the terminal voltages V1, V2,..., VN (step S22), and substitutes “1” for the variable n.
- the voltage test is started from the power storage body (step S23).
- the equalization control unit 337 determines whether or not the nth equalization discharge signal SGn is turned on (step S24).
- step S24 If the equalization discharge signal SGn is off (NO in step S24), the process proceeds to step S27. If the equalization discharge signal SGn is on (YES in step S24), the equalization control unit 337 It is determined whether the n-th terminal voltage Vn is equal to or lower than the target voltage Vtg (step S25). If the terminal voltage Vn exceeds the target voltage Vtg (NO in step S25), the process proceeds to step S27. On the other hand, if the terminal voltage Vn is equal to or lower than the target voltage Vtg (YES in step S25), the equalization control unit 337 is performed. Turns off the equalization discharge signal SGn (turns off the transistor Qn) and ends the discharge of the battery Bn (step S26).
- step S27 the equalization control unit 337 adds “1” to the variable n (step S27), and compares the variable n with the number N of power storage units (step S28).
- step S28 If the variable n is equal to or less than the number N of power storage units (NO in step S28), the process proceeds to step S24 to check the terminal voltage of the next power storage unit. On the other hand, if variable n exceeds the number N of power storage units (YES in step S28), the process proceeds to step S29.
- step S29 the equalization control unit 337 determines whether or not there is an equalized discharge signal that is still on, that is, whether or not there is a discharging battery (step S29).
- step S29 If there is still a discharging power storage unit (YES in step S29), the processes of steps S23 to S29 are repeated. On the other hand, if there is no discharging power storage unit (NO in step S29), the discharging process is terminated.
- the power storage units B1, B2,..., BN are discharged until the respective terminal voltages reach the target voltage Vtg by the equalization process in steps S21 to S29. ... VN variation is reduced and equalized. Further, if the power storage device 40 is discharged because the power storage device 40 becomes low temperature or the power storage device 40 becomes low temperature by the processing of steps S7 to S10, the power required by the load device 20 cannot be supplied. Since the equalization process of steps S21 to S29 is executed only when it is considered that there is no possibility, it is possible to reduce the possibility that the power required by the load device 20 cannot be supplied by the equalization process.
- low temperature condition A step S7
- low temperature condition B step S8
- low temperature condition C step S9
- low temperature condition A step S7
- Whether or not the equalization process can be performed may be determined using at least one of the low temperature condition B (step S8) and the low temperature condition C (step S9).
- control unit 330 can be realized by installing a program that realizes the various processes described above and executing the program.
- control unit 330 is realized by installing a program for implementing various processes shown in FIGS. 3 to 4 in the microcomputer constituting the charge / discharge control circuit 340 and executing the program. be able to.
- the determination of the start of the discharge process for each power storage unit is not limited to the control unit 330, but may be performed by the charge / discharge control circuit 340 or the load device 20 by obtaining power storage element information from the control unit 330. There is no problem.
- the imbalance reduction circuit includes a temperature-related information acquisition unit that acquires temperature-related information related to the temperatures of a plurality of power storage units, and the plurality of power storage units that are connected to terminal voltages of the power storage units.
- the discharge unit that performs the equalization process that discharges until each becomes substantially equal to each other, and the temperature-related information acquired by the temperature-related information acquisition unit are set as conditions under which the discharge performance of the plurality of power storage units decreases.
- an equalization control unit that prohibits execution of equalization processing by the discharge unit when the low temperature condition is satisfied.
- the temperature-related information acquisition unit acquires the temperature-related information related to the temperatures of the plurality of power storage units
- the discharge unit includes the plurality of power storage units.
- the temperature related information acquisition unit acquires temperature related information related to the temperatures of the plurality of power storage units.
- the equalization control unit executes the equalization process by the discharge unit. It is forbidden. Then, when there is a possibility that the discharge performance of the power storage unit is lowered at low temperatures, the amount of stored charge in the plurality of power storage units does not decrease due to the discharge by the equalization process. It is possible to reduce the possibility that the shortage of power supply sometimes occurs.
- the temperature related information acquisition unit acquires the temperature predicted to be the temperature of the plurality of power storage bodies in the future as the temperature related information.
- the temperature predicted that the temperature of the plurality of power storage bodies will become the temperature in the future is acquired by the temperature related information acquisition unit as temperature related information. Since this temperature-related information prohibits the execution of the equalization process when the low temperature condition is satisfied, it is possible to perform the equalization when there is a possibility that the temperature of the power storage unit will become low in the future and supply power will be insufficient. As a result of preventing the stored charge amount of the power storage body from being reduced by the discharge due to the equalization process, it is possible to reduce the possibility of insufficient supply power at low temperatures accompanying equalization of the terminal voltage.
- the temperature related information acquisition unit acquires information related to an outside air temperature as the temperature related information.
- the temperature of the multiple power storage units will be approximately equal to the outside temperature without self-heating. Therefore, for example, information on the outside air temperature, such as the outside air temperature predicted value based on the outside air temperature or the weather forecast, or the outside air temperature obtained from other weather information, the temperature at which the temperature of the plurality of power storage units is predicted to become that temperature in the future. Suitable as
- the temperature related information acquisition unit receives a predicted value of the outside air temperature transmitted from an external transmission device as information related to the outside air temperature.
- the predicted value of the outside temperature transmitted from the transmission device in various information systems such as the Internet, public lines, traffic information systems, or broadcasting stations can be used as temperature related information.
- the control unit can determine whether or not the equalization process is prohibited based on the predicted value of the temperature of the power storage unit after a longer time has passed. The risk of occurrence can be reduced.
- the plurality of power storage units are mounted on a vehicle, and the temperature-related information acquisition unit relates an outside temperature measured in another vehicle existing on a route in a traveling direction of the own vehicle, to the outside temperature. It is preferably received as information.
- the outside air temperature measured in another vehicle on the route in the traveling direction of the host vehicle is considered to be the outside temperature of the host vehicle when the host vehicle eventually reaches the position where the other vehicle exists. It is suitable as a predicted value of the outside air temperature.
- the temperature related information acquisition unit acquires the temperature of the power storage unit and an outside air temperature as the temperature related information
- the equalization control unit acquires the temperature of the power storage unit acquired by the temperature related information acquisition unit.
- the temperature of the power storage unit satisfies the low temperature condition, there is a risk that supply power will be insufficient if the amount of power storage is already reduced by executing the equalization process. Further, when the outside air temperature satisfies the low temperature condition, after a certain amount of time has passed, there is a possibility that the supplied power becomes insufficient when the amount of stored power decreases. Therefore, if at least one of the temperature of the power storage unit and the outside air temperature satisfies the low temperature condition, if the equalization process is prohibited from being performed by the discharge unit, not only the current time but also a certain amount of time has elapsed. Even later, it is possible to reduce the possibility of insufficient supply power at low temperatures.
- the low temperature condition is that the temperature-related information indicates a temperature lower than a predetermined reference temperature, and an SOC detection unit that detects the SOC of the plurality of power storage units, and an SOC detected by the SOC detection unit It is preferable to further include a reference temperature setting unit that sets the reference temperature so that the reference temperature becomes lower as the value increases.
- the reference temperature setting unit can increase the chances of performing the equalization process by setting the reference temperature so that the reference temperature becomes lower as the SOC detected by the SOC detection unit is larger. It becomes.
- the discharge unit further includes a voltage detection unit that detects terminal voltages of the plurality of power storage units, and the discharge unit has a preset threshold voltage that indicates a variation in each terminal voltage detected by the voltage detection unit.
- the variation in the terminal voltage of the plurality of power storage units increases to exceed the threshold voltage, and the temperature-related information acquired by the temperature-related information acquisition unit does not satisfy the low temperature condition, that is, the equalization process is performed. Even if it is executed, the equalization process is executed when it is considered that there is little possibility of shortage of supply power, so that the possibility of shortage of supply power at low temperatures is reduced and the terminal voltage in multiple power storage units is reduced. The balance can be reduced.
- a power supply device includes the above-described imbalance reduction circuit and the plurality of power storage units.
- An imbalance reduction circuit according to the present invention, a power supply device using the circuit, and an imbalance reduction method include electronic devices such as portable personal computers, digital cameras and mobile phones, vehicles such as electric vehicles and hybrid cars, solar cells, It can be suitably used in battery-mounted devices and systems such as a power supply system in which a power generation device and a secondary battery are combined.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
不均衡低減回路を、複数の蓄電体の温度に関連する温度関連情報を取得する温度関連情報取得部と、前記複数の蓄電体を、当該各蓄電体の端子電圧が互いに実質的に等しくなるまでそれぞれ放電させる均等化処理を実行する放電部と、前記温度関連情報取得部によって取得された温度関連情報が、前記複数の蓄電体の放電性能が低下する条件として設定された低温条件を満たす場合、前記放電部による均等化処理の実行を禁止する均等化制御部とを備えて構成した。
Description
本発明は、複数の蓄電体における端子電圧の不均衡を低減する不均衡低減回路、電源装置、及び不均衡低減方法に関する。
近年、蓄電体等を用いた蓄電装置は、太陽電池や発電装置と組み合わされ、電源システムとして広く利用されている。発電装置は、風力や水力といった自然エネルギーや内燃機関等の人工的な動力によって駆動される。このような蓄電装置を組み合わせた電源システムは、余剰な電力を蓄電装置に蓄積し、負荷装置が必要な時に蓄電装置から電力を供給することによって、エネルギー効率の向上を図っている。
このようなシステムの一例としては、太陽光発電システムが挙げられる。太陽光発電システムは、太陽光による発電量が、負荷装置の電力消費量に比べて大きい場合には、余剰電力で蓄電装置に充電を行う。逆に、発電量が負荷装置の消費電力より小さい場合には、不足の電力を補うために蓄電装置から出力して、負荷装置を駆動する。
このように、太陽光発電システムにおいては、従来利用されていなかった余剰電力を蓄電装置に蓄積できるため、蓄電装置を用いない電源システムに比べて、エネルギー効率を高めることができる。
このような太陽光発電システムにおいては、蓄電装置が満充電になってしまうと余剰電力を充電できなくなって、損失が生じる。そこで、余剰電力を効率よく蓄電装置に充電するため、蓄電体の充電状態(以下、SOC:State Of Charge)が100%とならないように、充電制御が行われている。また、必要なときに負荷装置を駆動できるように、SOCが0(ゼロ)%とならないようにも充電制御が行われている。具体的には、通常、蓄電装置においては、SOCが20%~80%の範囲で推移するように充電制御が行われている。
また、エンジンとモータとを用いたハイブリット自動車(HEV;Hybrid Electric Vehicle)もこのような原理を利用している。HEVは、走行に必要な動力に対してエンジンからの出力が大きい場合には、余剰のエンジン出力で発電機を駆動し、蓄電装置を充電する。また、HEVは、車両の制動や減速時には、モータを発電機として利用することによって蓄電装置を充電する。
さらに、夜間電力を有効活用するために用いられる負荷平準化電源や、プラグインハイブリット車も最近注目されている。負荷平準化電源は、電力消費が少なく、電力料金が安い夜間に蓄電装置に電力を貯蔵し、電力消費がピークとなる日中に、貯蔵した電力を活用するシステムである。電力の消費量を平滑化することにより、電力の発電量を一定にし、電力設備の効率的運用や設備投資の削減に貢献することを目的としている。
また、プラグインハイブリット車は夜間電力を活用し、燃費が悪い市街地走行時には蓄電装置から電力を供給するEV走行を主体とし、長距離走行時には、エンジンとモータを活用したHEV走行を行うことにより、トータルのCO2の排出量を削減することを目的としている。
ところで、このような蓄電装置は、所望の出力電圧を得るために、複数の蓄電素子(単電池等)を直列に接続することによって構成されている。このような蓄電素子では、個々の蓄電素子の蓄電電荷量がバラついた状態で深い放電が行われると、蓄電電荷量が少ない蓄電素子がより過放電され、蓄電素子が劣化して蓄電装置全体の寿命を低下させることとなる。
このような蓄電装置の寿命の劣化を抑制するために、蓄電電荷量(SOC)にバラツキ、すなわち不均衡が発生すると、各蓄電素子を放電させて各蓄電素子の端子電圧を均等化することで、蓄電電荷量のバラツキを解消する技術が知られている。
また、電圧検出系に異常が生じた場合に端子電圧の均等化を行うと、蓄電素子の過放電を招くおそれがあるため、電圧検出系に異常が生じた場合に均等化を規制する方法が知られている(例えば、特許文献1参照。)。
ところで、蓄電素子は、低温になったりSOCが小さくなったりすると、放電性能が低下して放電可能な電流値が減少する。そのため、蓄電素子が低温でSOCが小さいと、蓄電素子から供給可能な電力量が必要とされる電力量に対して不足してしまうおそれがある。
一方、上述のように各蓄電素子を放電させて各蓄電素子の端子電圧を均等化すると、各蓄電素子の不均衡は低減されるものの、蓄電装置全体のSOCも低下してしまう。そのため、冬期等、蓄電素子が低温のときに放電による均一化を行うと、供給電力の不足を招くおそれがある。しかし、特許文献1に記載の技術では、電圧検出系に異常が生じた場合にしか均等化を制限しないから、蓄電素子が低温であっても均等化が実行されて、蓄電装置による供給電力不足を招くおそれがあった。
本発明の目的は、端子電圧の均等化に伴い低温時に供給電力の不足が生じるおそれを低減することができる不均衡低減回路、電源装置、及び不均衡低減方法を提供することである。
本発明の一局面に従う不均衡低減回路は、複数の蓄電体の温度に関連する温度関連情報を取得する温度関連情報取得部と、前記複数の蓄電体を、当該各蓄電体の端子電圧が互いに実質的に等しくなるまでそれぞれ放電させる均等化処理を実行する放電部と、前記温度関連情報取得部によって取得された温度関連情報が、前記複数の蓄電体の放電性能が低下する条件として設定された低温条件を満たす場合、前記放電部による均等化処理の実行を禁止する均等化制御部とを備える。
また、本発明の一局面に従う不均衡低減方法は、温度関連情報取得部が、複数の蓄電体の温度に関連する温度関連情報を取得する工程と、放電部が、前記複数の蓄電体を、当該各蓄電体の端子電圧が互いに実質的に等しくなるまでそれぞれ放電させる均等化処理を実行する工程と、均等化制御部が、前記温度関連情報取得部によって取得された温度関連情報が、所定の低温条件を満たす場合、前記放電部による均等化処理の実行を禁止する工程とを含む。
この構成によれば、温度関連情報取得部によって、複数の蓄電体の温度に関連する温度関連情報が取得される。そして、温度関連情報取得部によって取得された温度関連情報が、蓄電体の放電性能が低下する条件として設定された低温条件を満たす場合、均等化制御部によって、放電部による均等化処理の実行が禁止される。そうすると、低温になって蓄電体の放電性能が低下するおそれがあるときは、均等化処理による放電で複数の蓄電体における蓄電電荷量が減少することがないので、端子電圧の均等化に伴い低温時に供給電力の不足が生じるおそれを低減することができる。
また、本発明の一局面に従う電源装置は、上述の不均衡低減回路と、前記複数の蓄電体とを備える。
この構成によれば、複数の蓄電体を備える電源装置において、蓄電体の端子電圧の均等化に伴い低温時に供給電力の不足が生じるおそれを低減することができる。
このような構成の不均衡低減回路、電源装置、及び不均衡低減方法は、温度関連情報取得部によって、複数の蓄電体の温度に関連する温度関連情報が取得される。そして、温度関連情報取得部によって取得された温度関連情報が、蓄電体の放電性能が低下する条件として設定された低温条件を満たす場合、均等化制御部によって、放電部による均等化処理の実行が禁止される。そうすると、低温になって蓄電体の放電性能が低下するおそれがあるときは、均等化処理による放電で複数の蓄電体における蓄電電荷量が減少することがないので、端子電圧の均等化に伴い低温時に供給電力の不足が生じるおそれを低減することができる。
以下、本発明に係る実施形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。図1は、本発明の一実施形態に係る不均衡低減方法を用いた不均衡低減回路、及びこの不均衡低減回路を備えた電源装置、電源システムの構成の一例を示すブロック図である。
図1に示す電源システム1は、発電装置10、電源制御装置30、及び蓄電装置40を備えて構成されている。そして、電源制御装置30及び蓄電装置40によって、電源装置50が構成されている。電源装置50は、例えば、電池パック、無停電電源装置、自然エネルギーを活用した発電装置やエンジンを動力源とする発電装置の余剰電力を蓄電する電力調整用の蓄電装置、及び負荷平準化電源等、種々の電源装置として用いられる。そして、電源装置50には、発電装置10や蓄電装置40から電力供給を受ける負荷装置20が接続されている。
発電装置10は、具体的には、例えば、太陽光発電装置(太陽電池)などの自然エネルギーを活用した発電装置やエンジンを動力源とする発電機などである。なお、電源装置50は、発電装置10の代わりに商用電源から電力供給を受ける構成であってもよい。
蓄電装置40は、N個の蓄電体B1,B2,・・・,BNを直列に接続して構成されている。蓄電体B1,B2,・・・,BNは、図略のボックスに収納されている。また、蓄電体B1,B2,・・・,BNのそれぞれは、複数個の蓄電素子401を電気的に直列に接続して構成されている。各蓄電素子401としては、ニッケル水素電池などのアルカリ蓄電池、リチウムイオン電池などの有機電池、及び電気二重層キャパシタなどのキャパシタ、等の蓄電素子を用いることができる。
なお、蓄電体の数、蓄電素子401の数、接続状態は、特に限定されるものではない。例えば、各蓄電体は、複数の蓄電素子401が直列、並列、あるいは直列と並列とが組み合わされて接続されることにより、構成されていてもよい。また、各蓄電体が、それぞれ一つの蓄電素子401であってもよい。また、蓄電装置40の構成も上記に限定されるものではない。
電源制御装置30は、例えば車載用のECU(Electric Control Unit)として構成されている。電源制御装置30は、不均衡低減回路350、温度センサ61,62、及び充放電制御回路340を備えている。また、不均衡低減回路350は、放電部310、電圧検出部320、制御部330、及び通信部63を備えている。
充放電制御回路340は、例えば発電装置10で生じた余剰電力や負荷装置20で発生する回生電力を蓄電装置40へ充電する。また、負荷装置20の消費電流が急激に増大したり、または、発電装置10の発電量が低下し、負荷装置20が要求する電力が発電装置10の出力を超えたりすると、充放電制御回路340によって、蓄電装置40から不足した電力が負荷装置20へ供給される。
また、充放電制御回路340は、制御部330からの制御信号に応じて、蓄電装置40の充電を停止したり、許可したりするようになっている。
このように、充放電制御回路340によって蓄電装置40の充放電が制御されることで、通常の場合、蓄電装置40のSOCが20~80%程度の範囲になるようにされている。あるいは、夜間電力の有効活用をした負荷平準化電源やプラグインハイブリット車などでは、蓄電装置40が、SOC 100%の状態まで充電されて、負荷装置20でエネルギーが必要な時に放電されるようになっている。
電圧検出部320は、蓄電体B1,B2,・・・,BNの各端子電圧V1,V2,・・・,VNを検出し、その検出値を制御部330へ出力する。電圧検出部320は、例えば、端子電圧V1,V2,・・・,VNのうちいずれか一つを選択する図略の切換回路や、切換回路で選択された電圧をデジタル値に変換して制御部330へ出力する図略のアナログデジタルコンバータ等を用いて構成されている。
放電部310は、N個の抵抗R1,R2,・・・,RNと、N個のトランジスタQ1,Q2,・・・,QNとを備えている。そして、抵抗R1とトランジスタQ1との直列回路が蓄電体B1と並列に接続され、抵抗R2とトランジスタQ2との直列回路が蓄電体B2と並列に接続され、以下同様に、抵抗とトランジスタとの直列回路が各蓄電体と並列に接続されている。なお、抵抗R1,R2,・・・,RNを可変抵抗としてもよい。
トランジスタQ1,Q2,・・・,QNは、制御部330からの均等化放電信号SG1,SG2,・・・,SGNに応じて、それぞれオン、オフされるようになっている。そして、トランジスタQ1,Q2,・・・,QNがオンされると、当該オンされたトランジスタと並列接続されている蓄電体が、抵抗を介して放電されるようになっている。
温度センサ61は、例えば蓄電装置40に密着して取り付けられている。そして、温度センサ61は、蓄電装置40の温度を検出する。温度センサ62は、外気に触れる位置に配設されている。そして、温度センサ62は、外気温を検出する。蓄電体B1,B2,・・・,BNの温度は、自己発熱がなくなれば、次第に低下して外気温と等しくなる。従って、外気温は、蓄電体B1,B2,・・・,BNの温度が、今後その温度になると予測される当該温度の一例に相当している。
通信部63は、外部の情報源100との間で通信を行う通信インターフェイス回路である。情報源100は、例えばインターネットや無線公衆回線等のネットワークに接続されたサーバ装置、無線送信機、あるいは放送設備等の送信装置である。通信部63と情報源100との間の通信方式としては、有線通信や無線通信等、種々の無線方式を用いることができる。情報源100は、例えば外気温や天気予報(外気温の予想)、あるいは霜注意報等、種々の気象情報を通信部63へ送信するようになっている。
例えば、電源装置50が車載用の電源装置であれば、通信部63は、国土交通省や警察庁が推進するITS(Intelligent Transport System)や、自動車メーカ等各社が推進しているカーナビゲーションサービス(例えば、日経エレクトロニクス 2007年7月16日号 P8~P9、2008年6月2日号 P77~P86)で用いられる車載器と通信したり、あるいはこのような車載器として機能したりすることにより、このような交通情報システムからなる情報源100から気象情報を受信する受信装置であってもよい。
また、通信部63は、必ずしも通信を実行するものに限られず、例えばラジオやテレビ放送の電波を受信して、気象情報を取得する受信装置であってもよい。
制御部330は、例えば所定の演算処理を実行するCPU(Central Processing Unit)と、所定の制御プログラムが記憶されたROM(Read Only Memory)と、データを一時的に記憶するRAM(Random Access Memory)と、アナログデジタルコンバータと、これらの周辺回路等とを備えて構成されている。
そして、制御部330は、例えばROMに記憶された制御プログラムを実行することにより、蓄電体温度取得部331、外気温取得部332、気象情報取得部333、SOC検出部334、基準温度設定部335、目標電圧設定部336、及び均等化制御部337として機能する。この場合、蓄電体温度取得部331、外気温取得部332、及び気象情報取得部333が、温度関連情報取得部の一例に相当している。
なお、充放電制御回路340や負荷装置20が、制御部330の一部、又は全部を含んで構成されていてもよい。
蓄電体温度取得部331、及び外気温取得部332は、例えばアナログデジタルコンバータを用いて構成されている。そして、蓄電体温度取得部331は、温度センサ61から出力された信号に基づいて、蓄電装置40の温度を示す情報を取得する。外気温取得部332は、温度センサ62から出力された信号に基づいて、外気温を示す情報を取得する。
気象情報取得部333は、情報源100から送信される気象情報、例えば天気予報における外気温の予測値Tfを、通信部63によって受信させることにより、外気温に関する情報として受信する。なお、気象情報取得部333は、必ずしも数値化された予測値Tfを取得する例に限られず、例えば天気予報における霜注意報等のように、均等化制御部337の判定条件として用いられる低温条件に該当する気象情報を、通信部63によって外気温に関する情報として受信させる構成であってもよい。
ところで、上述の交通情報システムにおいては、当該システムの車載器を搭載した車両をプローブとして用いることで、広い範囲の道路状況を示す情報を各車両から収集する技術が知られている(例えば、日経エレクトロニクス 2006年5月8日号 P103~P107、2007年7月16日号 P8~P9)。そこで、例えば、電源装置50が車両に搭載されている場合、気象情報取得部333は、自車両に搭載されているカーナビゲーション装置から、自車両の進行方向の経路を示す情報を取得し、上述の交通情報システムから当該自車両の進行方向の経路上に存在する他の車両(プローブ)において測定された外気温を、外気温の予測値Tfとして取得するようにしてもよい。
SOC検出部334は、例えば電圧検出部320によって検出された端子電圧V1,V2,・・・,VNの合計電圧を、例えば予めROMに記憶されたルックアップテーブルを参照してSOCに変換することで、蓄電装置40のSOCを検出する。あるいは、SOC検出部334は、例えば図略の電流検出回路によって蓄電装置40の充放電電流を検出し、この充放電電流を積算することにより蓄電装置40の蓄電電荷量を算出し、この蓄電電荷量からSOCを算出する等、SOCを検出するために種々の方法を用いることができる。
基準温度設定部335は、SOC検出部334によって検出されたSOCが大きいほど低温条件の判定値として用いられる基準温度α,βが低くなるように、当該基準温度α,βを設定する。この場合、基準温度αは温度Tbの判定値として用いられ、基準温度βは外気温Ta及び外気温の予測値Tfの判定値として用いられる。通常、蓄電装置40の温度Tbは、自己発熱により外気温より高くなるので、基準温度αの方が基準温度βより高い温度に設定されている。なお、基準温度αと基準温度βとは等しい温度に設定されてもよい。
図2は、蓄電素子401がニッケル水素二次電池である場合における、蓄電素子401の温度と抵抗値との関係を示すグラフである。横軸が蓄電素子401の温度(℃)、縦軸が蓄電素子401の内部抵抗値(Ω)を示している。図2に示すように、蓄電素子401は、温度が25℃以下になると、温度が低くなるほど内部抵抗が増大する。内部抵抗が増大すると、放電性能が低下し、放電可能な電流値が減少する。そのため、負荷装置20が必要とする電流量を確保するためには、蓄電装置40の温度が所定の基準温度以上である必要が生じる。
一方で、蓄電素子401が放電可能な電流値は、SOCが大きいほど増大し、SOCが小さいほど減少する。そうすると、SOCが大きいときは、SOCが小さいときよりも前記基準電圧が低くても、負荷装置20が必要とする電流量が確保できる。そこで、基準温度設定部335は、SOC検出部334によって検出されたSOCが大きいほど低温条件の判定値として用いられる基準温度α,βが低くなるように、基準温度α,βを設定する。
これにより、例えば冬期、温度Tbが基準温度αに満たなかったり、外気温Taが基準温度βに満たなかったりして低温条件に該当し、均等化処理が禁止されている場合であっても、蓄電装置40が充電されてSOCが増大すれば、基準温度設定部335によって基準温度α,βが低くなるように設定される結果、温度Tb、外気温Taが基準温度α,β以上となれば、蓄電装置40の均等化処理を実行することが可能となる。
目標電圧設定部336は、電圧検出部320によって検出された端子電圧V1,V2,・・・,VNのうちの最低電圧を、目標電圧Vtgとして設定する。
均等化制御部337は、電圧検出部320によって検出された端子電圧V1,V2,・・・,VNの最大電圧Vmaxと最小電圧Vminとの差、すなわち各端子電圧のバラツキを示す電圧が、予め設定された判定閾値Vthを超える場合、蓄電装置40に不均衡が生じていると判定する。なお、均等化制御部337は、各端子電圧のバラツキを示す電圧として、最大電圧Vmaxと最小電圧Vminとの差を用いる例に限られず、他の方法により蓄電装置40に不均衡が生じていると判定するようにしてもよい。
また、均等化制御部337は、蓄電装置40に不均衡が生じていると判定し、かつ所定の低温条件A,B,Cのすべてが成立しない場合、蓄電体B1,B2,・・・,BNを、当該各蓄電体の端子電圧が目標電圧Vtgに実質的に等しくなるまでそれぞれ放電部310によって放電させる均等化処理を実行する。なお、実質的に等しいとは、電圧検出部320による電圧の検出誤差や、放電部310の制御誤差等による電圧差を許容する意である。
なお、均等化制御部337が電圧検出部320によって検出された端子電圧V1,V2,・・・,VNに基づいて、各端子電圧が目標電圧Vtgに実質的に等しくなるまでそれぞれ放電部310によって放電させる例に限られず、例えば目標電圧Vtgに相当するツェナー電圧を有するツェナーダイオードを、抵抗R1,R2,・・・,RNと直列接続することで、トランジスタQ1,Q2,・・・,QNがオンされると各端子電圧が自動的に目標電圧Vtgとなるようにされていてもよい。
また、均等化制御部337は、蓄電装置40に不均衡が生じているか否かにかかわらず、低温条件A,B,Cのうち少なくとも一つが成立する場合、トランジスタQ1,Q2,・・・,QNをオフさせて放電部310による均等化処理の実行を禁止する。
低温条件Aとしては、例えば、「蓄電体温度取得部331で取得された蓄電装置40の温度Tbが、基準温度設定部335によって設定された基準温度αを下回る」という条件が用いられる。低温条件Bとしては、例えば、「蓄電体温度取得部331で取得された外気温Taが、基準温度設定部335によって設定された基準温度βを下回る」という条件が用いられる。
低温条件Cとしては、例えば、「気象情報取得部333で取得された外気温の予測値Tfが、基準温度設定部335によって設定された基準温度βを下回る」という条件や「気象情報取得部333によって、外気温が低温になることを示すものとして予め設定された情報(例えば霜注意報)が取得される」という条件が用いられる。
次に、図1に示す電源装置50の動作について説明する。図3、図4は、図1に示す電源装置50の動作の一例を示すフローチャートである。
まず、基準温度設定部335による基準温度α,βの設定動作は、以下のフローチャートで示す動作と平行して常時実行されている。そして、電圧検出部320によって、蓄電体B1,B2,・・・,BNの各端子電圧V1,V2,・・・,VNが検出される(ステップS1)。
次に、均等化制御部337によって、端子電圧V1,V2,・・・,VNのうちの最大電圧Vmaxと最小電圧Vminとが取得される(ステップS2)。そして、均等化制御部337によって、最大電圧Vmaxと最小電圧Vminとの差が各端子電圧のバラツキを示す電圧として算出され、その最大電圧Vmaxと最小電圧Vminとの差が判定閾値Vthと比較される(ステップS3)。そして、当該差が判定閾値Vth以下であれば(ステップS3でNO)再びステップS1へ戻ってステップS1~S3の処理を繰り返す一方、当該差が判定閾値Vthを超えていれば(ステップS3でYES)、均等化制御部337によって、蓄電装置40に不均衡が生じていると判定されて、ステップS4へ移行する。
なお、均等化制御部337は、最大電圧Vmaxと最小電圧Vminとの差を判定閾値Vthと比較することで不均衡の有無を判定する例に限られず、例えば端子電圧V1,V2,・・・,VNの平均値と最小電圧Vminとの差を判定閾値Vthと比較することで不均衡の有無を判定するようにしてもよく、その他の方法によって不均衡の有無を判定するようにしてもよい。
次に、ステップS4において、蓄電装置40の温度Tbが、温度センサ61で検出されて、蓄電体温度取得部331で取得される(ステップS4)。次に、外気温Taが、温度センサ62で検出されて外気温取得部332で取得される(ステップS5)。
次に、通信部63によって、情報源100から、外気温Taや天気予報による外気温の予測値Tf、自車両の進行方向の経路上に存在する他の車両(プローブ)において測定された外気温である予測値Tf、あるいは霜注意報等、種々の気象情報が受信される(ステップS6)。
次に、均等化制御部337によって、低温条件Aが満たされているか否かが確認される。具体的には、均等化制御部337によって、蓄電体温度取得部331で取得された蓄電装置40の温度Tbと、基準温度設定部335によって設定された基準温度αとが比較される(ステップS7)。
そして、温度Tbが基準温度αに満たない場合(ステップS7でYES)、低温条件Aが成立して蓄電装置40の電流出力性能が低下しているので、均等化処理によって蓄電体B1,B2,・・・,BNをこれ以上放電させると負荷装置20が必要とする電力を供給できなくなるおそれがある。そこで、均等化制御部337は、均等化処理の実行を禁止して(ステップS10)、処理を終了する。
一方、温度Tbが基準温度α以上の場合(ステップS7でNO)、低温条件Bを確認するべくステップS8へ移行する。そして、均等化制御部337によって、低温条件Bが満たされているか否かが確認される。具体的には、均等化制御部337によって、蓄電体温度取得部331で取得された外気温Taと、基準温度設定部335によって設定された基準温度βとが比較される(ステップS8)。
そして、外気温Taが基準温度βに満たない場合(ステップS8でYES)、低温条件Bが成立する。そうすると、蓄電装置40の充放電が停止して自己発熱がなくなれば、蓄電装置40の温度Tbは今後外気温Taになると予測され、従って蓄電装置40の電流出力性能が今後低下すると予測される。そうすると、均等化処理によって蓄電体B1,B2,・・・,BNをこれ以上放電させると負荷装置20が必要とする電力を供給できなくなるおそれがある。そこで、均等化制御部337は、均等化処理の実行を禁止して(ステップS10)、処理を終了する。
一方、外気温Taが基準温度β以上の場合(ステップS8でNO)、低温条件Cを確認するべくステップS9へ移行する。そして、均等化制御部337によって、低温条件Cが満たされているか否かが確認される。具体的には、均等化制御部337によって、気象情報取得部333で取得された外気温の予測値Tfと、基準温度設定部335によって設定された基準温度βとが比較される(ステップS9)。
そして、予測値Tfが基準温度βに満たない場合(ステップS9でYES)、低温条件Cが成立する。そうすると、蓄電装置40の充放電が停止して自己発熱がなくなれば、蓄電装置40の温度Tbは今後予測値Tfになると予測され、従って蓄電装置40の電流出力性能が今後低下すると予測される。そうすると、均等化処理によって蓄電体B1,B2,・・・,BNをこれ以上放電させると負荷装置20が必要とする電力を供給できなくなるおそれがある。そこで、均等化制御部337は、均等化処理の実行を禁止して(ステップS10)、処理を終了する。
一方、予測値Tfが基準温度β以上の場合(ステップS9でNO)、均等化処理を実行するべくステップS21へ移行する。
以上、ステップS4~S10の処理により、蓄電装置40が低温になったり、あるいは蓄電装置40が低温になったりすることが予想される条件下において均等化処理により蓄電装置40を放電させることで負荷装置20が必要とする電力を供給できなくなるおそれを低減することができる。
従来、例えば電源装置50が車載用の電源として用いられている場合、夜、車両を駐車した後に均等化処理を実行して蓄電体B1,B2,・・・,BNを放電させると、翌朝気温が低下してエンジンがかからなくなるといった不都合が生じるおそれがある。
しかしながら、ステップS6,S9の処理により、気象情報取得部333によって、天気予報等の情報から翌朝の外気温の予測値Tfや霜注意報等の気象情報を取得し、均等化制御部337が、この気象情報に基づいて低温条件Cの判定を行い、均等化処理の実行の可否を決めるので、車両を駐車した時点では気温が高くても翌朝の気温低下が予想される場合には均等化処理が実行されないので、翌朝エンジンがかからなくなるおそれが低減される。
ステップS21において、均等化制御部337は、均等化放電信号SG1、SG2、・・・、SGNをすべてオンしてトランジスタQ1,Q2,・・・,QNをオンさせることで、均等化処理を開始する(ステップS21)。
次に、均等化制御部337は、均等化処理を開始後、端子電圧V1,V2,・・・,VNの検査を開始し(ステップS22)、変数nに「1」を代入して1番目の蓄電体から電圧検査を開始する(ステップS23)。次に、均等化制御部337は、n番目の均等化放電信号SGnがオンしているか否かを判定する(ステップS24)。
そして、均等化放電信号SGnがオフであれば(ステップS24でNO)ステップS27へ移行する一方、均等化放電信号SGnがオンしていれば(ステップS24でYES)、均等化制御部337は、n番目の端子電圧Vnが、目標電圧Vtg以下かどうか判定する(ステップS25)。そして、端子電圧Vnが目標電圧Vtgを超えていれば(ステップS25でNO)ステップS27へ移行する一方、端子電圧Vnが目標電圧Vtg以下であれば(ステップS25でYES)、均等化制御部337は、均等化放電信号SGnをオフ(トランジスタQnをオフ)して蓄電体Bnの放電を終了する(ステップS26)。
ステップS27において、均等化制御部337は、変数nに「1」加算し(ステップS27)、変数nと蓄電体数Nとを比較する(ステップS28)。
そして、変数nが蓄電体数N以下であれば(ステップS28でNO)、次の蓄電体について端子電圧の検査をするべくステップS24へ移行する。一方、変数nが蓄電体数Nを超えていれば(ステップS28でYES)、ステップS29へ移行する。
次に、ステップS29において、均等化制御部337によって、まだオンしている均等化放電信号が有るか否か、すなわちまだ放電中の蓄電体が有るか否かが判定される(ステップS29)。
そして、まだ放電中の蓄電体が有れば(ステップS29でYES)、ステップS23~S29の処理を繰り返す一方、放電中の蓄電体が無ければ(ステップS29でNO)、放電処理を終了する。
以上、ステップS21~S29の均等化処理により、蓄電体B1,B2,・・・,BNが、各端子電圧が目標電圧Vtgになるまで放電されるので、放電終了後の端子電圧V1,V2,・・・,VNのバラツキが低減されて均等化される。また、ステップS7~S10の処理により、蓄電装置40が低温になったり、あるいは蓄電装置40が低温になったりするために蓄電装置40を放電させると負荷装置20が必要とする電力を供給できなくなることがないと考えられる場合にのみ、ステップS21~S29の均等化処理が実行されるので、均等化処理により負荷装置20が必要とする電力を供給できなくなるおそれを低減することができる。
なお、低温条件として、低温条件A(ステップS7)、低温条件B(ステップS8)、低温条件C(ステップS9)の3通りの条件を用いる例を示したが、低温条件A(ステップS7)、低温条件B(ステップS8)、低温条件C(ステップS9)のうち少なくとも1つを用いて均等化処理の実行の可否を判定するようにすればよい。
また、図1に示す電源装置50の構成は上記に限定されるものではなく、同等の機能を有するものであればかまわない。例えば、制御部330は、上述の各種処理を具現化させるプログラムをインストールし、このプログラムを実行することによって実現することができる。
更に、充放電制御回路340が、制御部330としても機能する態様が考えられる。この態様においては、制御部330は、充放電制御回路340を構成するマイクロコンピュータに、図3~図4に示す各種処理を具現化させるプログラムをインストールし、このプログラムを実行することによって、実現することができる。
また、各蓄電体の放電処理開始判定は、制御部330に限定するものでなく、制御部330から蓄電素子情報を得て充放電制御回路340や負荷装置20で行ってもよく、その他であっても問題ない。
今回開示した本発明の実施の形態は、例示であってこれに限定されるものではない。
即ち、本発明の一局面に従う不均衡低減回路は、複数の蓄電体の温度に関連する温度関連情報を取得する温度関連情報取得部と、前記複数の蓄電体を、当該各蓄電体の端子電圧が互いに実質的に等しくなるまでそれぞれ放電させる均等化処理を実行する放電部と、前記温度関連情報取得部によって取得された温度関連情報が、前記複数の蓄電体の放電性能が低下する条件として設定された低温条件を満たす場合、前記放電部による均等化処理の実行を禁止する均等化制御部とを備える。
また、本発明の一局面に従う不均衡低減方法は、温度関連情報取得部が、複数の蓄電体の温度に関連する温度関連情報を取得する工程と、放電部が、前記複数の蓄電体を、当該各蓄電体の端子電圧が互いに実質的に等しくなるまでそれぞれ放電させる均等化処理を実行する工程と、均等化制御部が、前記温度関連情報取得部によって取得された温度関連情報が、所定の低温条件を満たす場合、前記放電部による均等化処理の実行を禁止する工程とを含む。
この構成によれば、温度関連情報取得部によって、複数の蓄電体の温度に関連する温度関連情報が取得される。そして、温度関連情報取得部によって取得された温度関連情報が、蓄電体の放電性能が低下する条件として設定された低温条件を満たす場合、均等化制御部によって、放電部による均等化処理の実行が禁止される。そうすると、低温になって蓄電体の放電性能が低下するおそれがあるときは、均等化処理による放電で複数の蓄電体における蓄電電荷量が減少することがないので、端子電圧の均等化に伴い低温時に供給電力の不足が生じるおそれを低減することができる。
また、前記温度関連情報取得部は、前記複数の蓄電体の温度が、今後その温度になると予測される当該温度を、前記温度関連情報として取得することが好ましい。
この構成によれば、複数の蓄電体の温度が今後その温度になると予測される当該温度が、温度関連情報として温度関連情報取得部によって取得される。そして、この温度関連情報が、前記低温条件を満たす場合に均等化処理の実行が禁止されるので、今後、蓄電体の温度が低温になって供給電力の不足が生じるおそれがある場合に、均等化処理による放電で蓄電体の蓄電電荷量が減少することが防止される結果、端子電圧の均等化に伴い低温時に供給電力の不足が生じるおそれを低減することができる。
また、前記温度関連情報取得部は、外気温に関する情報を、前記温度関連情報として取得することが好ましい。
複数の蓄電体の温度は、自己発熱がなければいずれは外気温と略等しくなる。従って、例えば外気温や天気予報などによる外気温の予測値、その他の気象情報で得られる外気温等、外気温に関する情報は、複数の蓄電体の温度が今後その温度になると予測される当該温度として適している。
また、前記温度関連情報取得部は、外部の送信装置から送信される外気温の予測値を、前記外気温に関する情報として受信することが好ましい。
この構成によれば、例えばインターネット、公衆回線、交通情報システム、あるいは放送局等、種々の情報システムにおける送信装置から送信される外気温の予測値を、温度関連情報として用いることができるので、均等化制御部が、より長時間が経過した後における蓄電体の温度の予測値に基づいて均等化処理を禁止するか否かを判定できる結果、長時間経過後の低温時において供給電力の不足が生じるおそれを低減することができる。
また、前記複数の蓄電体は、車両に搭載されており、前記温度関連情報取得部は、自車両の進行方向の経路上に存在する他の車両において測定された外気温を、前記外気温に関する情報として受信することが好ましい。
自車両の進行方向の経路上に存在する他の車両において測定された外気温は、いずれ自車が当該他の車両が存在する位置に到達したときは、自車の外気温になると考えられるから、外気温の予測値として好適である。
また、前記温度関連情報取得部は、前記蓄電体の温度と、外気温とを前記温度関連情報として取得し、前記均等化制御部は、前記温度関連情報取得部によって取得された蓄電体の温度及び外気温のうち、少なくとも一方が前記低温条件を満たす場合、前記放電部による均等化処理の実行を禁止するようにしてもよい。
蓄電体の温度が低温条件を満たす場合、現時点で既に、均等化処理を実行して蓄電量が減少すると供給電力の不足が生じるおそれがある。また、外気温が低温条件を満たす場合、ある程度の時間が経過した後には、蓄電量が減少すると供給電力が不足する状態になるおそれがある。そこで、蓄電体の温度及び外気温のうち、少なくとも一方が低温条件を満たすときに、前記放電部による均等化処理の実行を禁止するようにすれば、現時点のみならず、ある程度の時間が経過した後においても、低温時に供給電力の不足が生じるおそれを低減することができる。
また、前記低温条件は、前記温度関連情報が、所定の基準温度より低い温度を示すことであり、前記複数の蓄電体のSOCを検出するSOC検出部と、前記SOC検出部によって検出されたSOCが大きいほど前記基準温度が低くなるように、当該基準温度を設定する基準温度設定部とをさらに備えることが好ましい。
複数の蓄電体のSOCが大きければ、均等化処理による放電で蓄電電荷量が減少したとしても残存する蓄電電荷量が大きい。残存する蓄電電荷量が大きいと、低温時において複数の蓄電体が出力可能な電流量も増大する。そうすると、SOCが大きいときは、SOCが小さいときよりも、均等化処理を禁止する基準温度を低下させても電力不足を招くおそれが少ない。そこで、基準温度設定部は、SOC検出部によって検出されたSOCが大きいほど基準温度が低くなるように、当該基準温度を設定することで、均等化処理を実行可能な機会を増加させることが可能となる。
また、前記複数の蓄電体の端子電圧をそれぞれ検出する電圧検出部をさらに備え、前記放電部は、前記電圧検出部により検出された各端子電圧のバラツキを示す電圧が、予め設定された閾値電圧を超え、かつ前記温度関連情報取得部によって取得された温度関連情報が前記低温条件を満たさない場合、前記均等化処理を実行することが好ましい。
この構成によれば、複数の蓄電体の端子電圧におけるバラツキが増大して閾値電圧を超え、かつ温度関連情報取得部によって取得された温度関連情報が低温条件を満たさない場合、すなわち均等化処理を実行しても供給電力の不足が生じるおそれが少ないと考えられるときに均等化処理が実行されるので、低温時に供給電力の不足が生じるおそれを低減しつつ、複数の蓄電体における端子電圧の不均衡を低減することができる。
また、本発明の一局面に従う電源装置は、上述の不均衡低減回路と、前記複数の蓄電体とを備える。
この構成によれば、複数の蓄電体を備える電源装置において、蓄電体の端子電圧の均等化に伴い低温時に供給電力の不足が生じるおそれを低減することができる。
本発明に係る不均衡低減回路、これを用いた電源装置、及び不均衡低減方法は、携帯型パーソナルコンピュータやデジタルカメラ、携帯電話機等の電子機器、電気自動車やハイブリッドカー等の車両、太陽電池や発電装置と二次電池とを組み合わされた電源システム等の電池搭載装置、システム等において、好適に利用することができる。
Claims (10)
- 複数の蓄電体の温度に関連する温度関連情報を取得する温度関連情報取得部と、
前記複数の蓄電体を、当該各蓄電体の端子電圧が互いに実質的に等しくなるまでそれぞれ放電させる均等化処理を実行する放電部と、
前記温度関連情報取得部によって取得された温度関連情報が、前記複数の蓄電体の放電性能が低下する条件として設定された低温条件を満たす場合、前記放電部による均等化処理の実行を禁止する均等化制御部と
を備えることを特徴とする不均衡低減回路。 - 前記温度関連情報取得部は、
前記複数の蓄電体の温度が、今後その温度になると予測される当該温度を、前記温度関連情報として取得すること
を特徴とする請求項1記載の不均衡低減回路。 - 前記温度関連情報取得部は、
外気温に関する情報を、前記温度関連情報として取得すること
を特徴とする請求項2記載の不均衡低減回路。 - 前記温度関連情報取得部は、
外部の送信装置から送信される外気温の予測値を、前記外気温に関する情報として受信すること
を特徴とする請求項3記載の不均衡低減回路。 - 前記複数の蓄電体は、車両に搭載されており、
前記温度関連情報取得部は、
自車両の進行方向の経路上に存在する他の車両において測定された外気温を、前記外気温に関する情報として受信すること
を特徴とする請求項4記載の不均衡低減回路。 - 前記温度関連情報取得部は、
前記蓄電体の温度と、外気温とを前記温度関連情報として取得し、
前記均等化制御部は、
前記温度関連情報取得部によって取得された蓄電体の温度及び外気温のうち、少なくとも一方が前記低温条件を満たす場合、前記放電部による均等化処理の実行を禁止すること
を特徴とする請求項1記載の不均衡低減回路。 - 前記低温条件は、
前記温度関連情報が、所定の基準温度より低い温度を示すことであり、
前記複数の蓄電体のSOCを検出するSOC検出部と、
前記SOC検出部によって検出されたSOCが大きいほど前記基準温度が低くなるように、当該基準温度を設定する基準温度設定部とをさらに備えること
を特徴とする請求項1~6のいずれか1項に記載の不均衡低減回路。 - 前記複数の蓄電体の端子電圧をそれぞれ検出する電圧検出部をさらに備え、
前記放電部は、
前記電圧検出部により検出された各端子電圧のバラツキを示す電圧が、予め設定された閾値電圧を超え、かつ前記温度関連情報取得部によって取得された温度関連情報が前記低温条件を満たさない場合、前記均等化処理を実行すること
を特徴とする請求項1~7のいずれか1項に記載の不均衡低減回路。 - 請求項1~8のいずれか1項に記載の不均衡低減回路と、
前記複数の蓄電体とを備えること
を特徴とする電源装置。 - 温度関連情報取得部が、複数の蓄電体の温度に関連する温度関連情報を取得する工程と、
放電部が、前記複数の蓄電体を、当該各蓄電体の端子電圧が互いに実質的に等しくなるまでそれぞれ放電させる均等化処理を実行する工程と、
均等化制御部が、前記温度関連情報取得部によって取得された温度関連情報が、所定の低温条件を満たす場合、前記放電部による均等化処理の実行を禁止する工程と
を含むことを特徴とする不均衡低減方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US13/056,035 US20110121785A1 (en) | 2008-07-31 | 2009-07-06 | Imbalance reduction circuit, power supply device, and imbalance reduction method |
EP09802645A EP2309619A1 (en) | 2008-07-31 | 2009-07-06 | Imbalance reduction circuit, power supply device, and imbalance reduction method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008-197724 | 2008-07-31 | ||
JP2008197724A JP2010035392A (ja) | 2008-07-31 | 2008-07-31 | 不均衡低減回路、電源装置、及び不均衡低減方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2010013395A1 true WO2010013395A1 (ja) | 2010-02-04 |
Family
ID=41610111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/003138 WO2010013395A1 (ja) | 2008-07-31 | 2009-07-06 | 不均衡低減回路、電源装置、及び不均衡低減方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110121785A1 (ja) |
EP (1) | EP2309619A1 (ja) |
JP (1) | JP2010035392A (ja) |
WO (1) | WO2010013395A1 (ja) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011084937A2 (en) * | 2010-01-05 | 2011-07-14 | A123 Systems, Inc. | System and method for controlling voltage of individual battery cells within a battery pack |
DE102010029427A1 (de) * | 2010-05-28 | 2011-12-01 | Siemens Aktiengesellschaft | Energiespeicheranordnung |
US20130221919A1 (en) * | 2010-09-02 | 2013-08-29 | Nicky G. Gallegos | System and methods for battery management |
JP5567956B2 (ja) * | 2010-09-16 | 2014-08-06 | 矢崎総業株式会社 | 複数組電池のセル電圧均等化装置 |
US8937452B2 (en) * | 2011-02-04 | 2015-01-20 | GM Global Technology Operations LLC | Method of controlling a state-of-charge (SOC) of a vehicle battery |
CN102457078A (zh) * | 2011-03-30 | 2012-05-16 | 凹凸电子(武汉)有限公司 | 电池均衡电路、电池均衡系统及方法 |
CN104145399B (zh) * | 2012-02-29 | 2016-11-02 | Nec能源元器件株式会社 | 电池控制系统和电池组 |
KR101459539B1 (ko) * | 2012-12-27 | 2014-11-07 | 현대모비스 주식회사 | 배터리 전압 균등화 장치 및 방법 |
JP6332273B2 (ja) * | 2013-08-28 | 2018-05-30 | 日本電気株式会社 | 蓄電システム、蓄電池の制御方法及びプログラム |
US10097014B2 (en) * | 2016-06-03 | 2018-10-09 | Nidec Motor Corporation | Battery charger monitor with charge balancing between batteries in a battery supply |
DE102016212564A1 (de) | 2016-07-11 | 2018-01-11 | Robert Bosch Gmbh | Verfahren zum Ausgleichen von Ladezuständen mehrerer Batteriemodule einer Batterie und entsprechende Vorrichtung |
JP6838378B2 (ja) * | 2016-12-14 | 2021-03-03 | トヨタ自動車株式会社 | 車両 |
JP6512230B2 (ja) | 2017-01-26 | 2019-05-15 | トヨタ自動車株式会社 | 電池システムおよび推定システム |
KR102342842B1 (ko) * | 2018-01-30 | 2021-12-22 | 주식회사 엘지에너지솔루션 | 배터리 관리 장치 |
RU2689401C1 (ru) * | 2018-06-22 | 2019-05-28 | Акционерное общество "Научно-исследовательский институт электромеханики" | Способ обеспечения автономного электропитания |
JP7213776B2 (ja) * | 2019-08-27 | 2023-01-27 | 日立Astemo株式会社 | セルバランス制御装置及び車両走行システム |
CN112014609B (zh) * | 2020-09-17 | 2021-06-25 | 南方电网科学研究院有限责任公司 | 端子座温度不平衡报警功能检测方法、装置、终端及介质 |
US20220352737A1 (en) * | 2021-04-29 | 2022-11-03 | GM Global Technology Operations LLC | Thermal runaway prognosis by detecting abnormal cell voltage and soc degeneration |
CN114566740B (zh) * | 2022-04-28 | 2022-08-09 | 比亚迪股份有限公司 | 动力电池的加热系统和电动车 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006101699A (ja) | 2005-12-12 | 2006-04-13 | Toyota Motor Corp | 組電池装置 |
JP2007143214A (ja) * | 2005-11-15 | 2007-06-07 | Toyota Motor Corp | 二次電池の制御装置 |
JP2007325458A (ja) * | 2006-06-02 | 2007-12-13 | Toyota Motor Corp | 車両用組電池均等化システム |
JP2008054416A (ja) * | 2006-08-24 | 2008-03-06 | Toyota Motor Corp | 組電池均等化装置、組電池搭載車両 |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2796503B1 (fr) * | 1999-07-12 | 2001-10-26 | Electricite De France | Procede et dispositif de charge de plusieurs cellules electrochimiques |
US6531848B1 (en) * | 2000-05-26 | 2003-03-11 | Arris International, Inc. | Battery voltage regulation circuit |
US6639385B2 (en) * | 2001-08-07 | 2003-10-28 | General Motors Corporation | State of charge method and apparatus |
US7358701B2 (en) * | 2003-02-07 | 2008-04-15 | Field Robert B | Method and system for modeling energy transfer |
US6919725B2 (en) * | 2003-10-03 | 2005-07-19 | Midtronics, Inc. | Electronic battery tester/charger with integrated battery cell temperature measurement device |
JP4791054B2 (ja) * | 2005-03-02 | 2011-10-12 | プライムアースEvエナジー株式会社 | 温度管理装置及び電源装置 |
US7199556B1 (en) * | 2005-12-02 | 2007-04-03 | Southwest Electronic Energy Corporation | Method for extending power duration for lithium ion batteries |
JP4589872B2 (ja) * | 2006-01-04 | 2010-12-01 | 本田技研工業株式会社 | 電動車両の制御装置 |
JP5162100B2 (ja) * | 2006-03-07 | 2013-03-13 | プライムアースEvエナジー株式会社 | 二次電池の温度制御装置及び車両用電池パック並びに二次電池の温度制御プログラム |
KR100839382B1 (ko) * | 2006-10-16 | 2008-06-20 | 삼성에스디아이 주식회사 | 배터리 관리 시스템 및 그의 구동 방법 |
JP4719163B2 (ja) * | 2007-01-17 | 2011-07-06 | プライムアースEvエナジー株式会社 | 容量均等化装置 |
US8634814B2 (en) * | 2007-02-23 | 2014-01-21 | Locator IP, L.P. | Interactive advisory system for prioritizing content |
US9360337B2 (en) * | 2007-06-20 | 2016-06-07 | Golba Llc | Navigation system and methods for route navigation |
JP4715881B2 (ja) * | 2008-07-25 | 2011-07-06 | トヨタ自動車株式会社 | 電源システムおよびそれを備えた車両 |
-
2008
- 2008-07-31 JP JP2008197724A patent/JP2010035392A/ja active Pending
-
2009
- 2009-07-06 EP EP09802645A patent/EP2309619A1/en not_active Withdrawn
- 2009-07-06 WO PCT/JP2009/003138 patent/WO2010013395A1/ja active Application Filing
- 2009-07-06 US US13/056,035 patent/US20110121785A1/en not_active Abandoned
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007143214A (ja) * | 2005-11-15 | 2007-06-07 | Toyota Motor Corp | 二次電池の制御装置 |
JP2006101699A (ja) | 2005-12-12 | 2006-04-13 | Toyota Motor Corp | 組電池装置 |
JP2007325458A (ja) * | 2006-06-02 | 2007-12-13 | Toyota Motor Corp | 車両用組電池均等化システム |
JP2008054416A (ja) * | 2006-08-24 | 2008-03-06 | Toyota Motor Corp | 組電池均等化装置、組電池搭載車両 |
Also Published As
Publication number | Publication date |
---|---|
US20110121785A1 (en) | 2011-05-26 |
EP2309619A1 (en) | 2011-04-13 |
JP2010035392A (ja) | 2010-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010013395A1 (ja) | 不均衡低減回路、電源装置、及び不均衡低減方法 | |
JP5049218B2 (ja) | 電気自動車システム | |
US8531154B2 (en) | Battery system and battery system-equipped vehicle | |
US9676281B2 (en) | Hybrid battery system for electric vehicles | |
JP5106272B2 (ja) | 劣化判定回路、電源装置、及び二次電池の劣化判定方法 | |
US8085051B2 (en) | Abnormality detecting device for storage element, abnormality detecting method for storage element, abnormality detecting program for storage element, and computer-readable recording medium storing abnormality detecting program | |
US7629770B2 (en) | Device and method for controlling output from a rechargeable battery | |
CN102180096B (zh) | 监控车辆电池的方法 | |
JP4668306B2 (ja) | 二次電池の寿命推定装置および二次電池の寿命推定方法 | |
US10069311B2 (en) | Power storage device and method of controlling power storage device | |
US20100057385A1 (en) | Accumulator failure detecting device, accumulator failure detecting method, accumulator failure detecting program, and computer-readable recording medium containing the accumulator failure detecting program | |
US20110199115A1 (en) | Failure diagnosis circuit, power supply device, and failure diagnosis method | |
JP7040601B2 (ja) | 電池制御装置、電池制御方法、無停電電源装置、電力システム及び電動車両 | |
US9679486B2 (en) | System and method to detect whether a parked vehicle is in an enclosed space or an open space | |
US11081742B2 (en) | Method and system for thermal conditioning of a battery pack | |
WO2010010662A1 (ja) | 不均衡判定回路、電源装置、及び不均衡判定方法 | |
JP2019122174A (ja) | 車載用電池温調装置および車載用電池温調方法 | |
CN111433076B (zh) | 能电驱动的机动车的电气设备及其控制方法 | |
JP2013502687A (ja) | エネルギ貯蔵システムの予備エネルギの算定及び使用 | |
CN105048526A (zh) | 电池充电装置及其方法 | |
KR102495811B1 (ko) | 이동형 배터리의 충전 및 모니터링 장치 | |
CN104903153B (zh) | 车载控制装置 | |
JP2010035285A (ja) | 不均衡低減回路、電源装置、及び不均衡低減方法 | |
KR20100060155A (ko) | 자동차 배터리의 발전제어 최적화시스템 및 방법 | |
WO2022030355A1 (ja) | 蓄電装置、蓄電システム、内部抵抗推定方法及びコンピュータプログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09802645 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13056035 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009802645 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |