WO2010012342A1 - Batterie mit einem batteriegehäuse und einer wärmeleitplatte zum temperieren der batterie - Google Patents

Batterie mit einem batteriegehäuse und einer wärmeleitplatte zum temperieren der batterie Download PDF

Info

Publication number
WO2010012342A1
WO2010012342A1 PCT/EP2009/004661 EP2009004661W WO2010012342A1 WO 2010012342 A1 WO2010012342 A1 WO 2010012342A1 EP 2009004661 W EP2009004661 W EP 2009004661W WO 2010012342 A1 WO2010012342 A1 WO 2010012342A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
battery
battery according
support
housing
Prior art date
Application number
PCT/EP2009/004661
Other languages
English (en)
French (fr)
Inventor
Jens Meintschel
Dirk Schröter
Original Assignee
Daimler Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Ag filed Critical Daimler Ag
Publication of WO2010012342A1 publication Critical patent/WO2010012342A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/559Terminals adapted for cells having curved cross-section, e.g. round, elliptic or button cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/64Constructional details of batteries specially adapted for electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • B60L58/26Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries by cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/643Cylindrical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/179Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/184Sealing members characterised by their shape or structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/186Sealing members characterised by the disposition of the sealing members
    • H01M50/188Sealing members characterised by the disposition of the sealing members the sealing members being arranged between the lid and terminal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6553Terminals or leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/107Primary casings; Jackets or wrappings characterised by their shape or physical structure having curved cross-section, e.g. round or elliptic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the invention relates to a battery having a battery housing and a heat conducting plate for tempering the battery, wherein the battery has a plurality of parallel and / or serially interconnected individual cells, the heat conductively connected to the heat conducting, wherein the heat conducting in the pole contacts of the individual cells holes and / or has incisions, in or through which the pole contacts in or through.
  • a battery with a housing and a heat conducting plate for tempering the battery is known.
  • the battery can be used as a vehicle battery, for example in a vehicle with hybrid drive and / or in a fuel cell operated vehicle.
  • the battery has a plurality of parallel and / or serially interconnected individual cells, which are arranged with the longitudinal axes parallel to each other. The resulting in charging and discharging the battery heat in the individual cells, in particular lithium-ion battery cells, for example, in an air conditioning circuit of an air conditioner in a vehicle can be discharged.
  • the individual cells are heat-conductively connected on the top side to the heat-conducting plate, wherein the heat-conducting plate has bores and / or cuts in the region of the pole contacts of the individual cells, in or through which the pole contacts penetrate or protrude.
  • the invention has for its object to provide a comparison with the prior art improved battery, especially a vehicle battery.
  • the invention relates to a battery having a battery housing and a heat conducting plate for tempering the battery, wherein the battery has a plurality of parallel and / or serially interconnected individual cells, the heat conductively connected to the heat conducting plate.
  • the heat conduction plate in the region of the pole contacts of the individual cells bores and / or cuts, in or through which the pole contacts in or protrude.
  • additional acting forces such.
  • tensile and compressive forces at the pole contact of the individual cells, for example, when pressing against the heat conduction plate or mechanical stresses, in particular caused by an accident intercept at least one supporting element is arranged at least one pole contact of a respective single cell.
  • the pole contacts are stabilized in a particularly advantageous manner to mechanical stresses.
  • the support element is positively, positively and / or materially secured to the pole contact of the single cell.
  • the support element is glued, for example, to the pole contact.
  • the pole contact and the support element may have a mutually corresponding thread, whereby the support element may be screwed to the pole contact.
  • the support element is particularly preferably formed from an electrically non-conductive material, in particular a plastic.
  • a plastic such as a thermoset, can be used, which is particularly advantageous undeformable with acting force on the battery or the individual cells.
  • the support element is preferably designed as a support ring.
  • a support ring is arranged or fastened at least at one, for example, by a cell cover led out pole contact, in particular a round contact, within the cell housing.
  • a further support ring outside the cell housing may be arranged on the pole contact in order to support it on the cell housing.
  • a height of a possible compression, in particular a arranged sealing element, such. B. a sealing ring, can be specified.
  • the support element is preferably designed as a support profile.
  • the pole contacts of a flat cell are designed in particular as contact lugs, wherein on the contact lugs for fixing the support profile advantageously an upper cross member and a lower cross member off or are formed.
  • the support profile is fixed on a arranged in the flat cell housing lower cross member.
  • the support profile preferably has a recess corresponding to a shape of the transverse strut, whereby the support profile is arranged in a form-fitting manner.
  • the support profile for stabilizing the led out of the flat cell housing tabs is preferably disposed within the flat cell housing.
  • a shape of the support profile advantageously corresponds to a form of housing side walls of the flat cell housing.
  • the battery according to the invention in particular a vehicle battery, can be used in a vehicle with a hybrid drive and / or in a vehicle powered by fuel cells, in particular for a motor vehicle for transporting persons.
  • a vehicle battery can be used in a vehicle with a hybrid drive and / or in a vehicle powered by fuel cells, in particular for a motor vehicle for transporting persons.
  • Fig. 1 shows schematically a sectional view of a designed as a round cell
  • Fig. 2 shows schematically a sectional view of a running as a round cell
  • FIG. 3 schematically shows an exploded view of a round cell with a support ring arranged on a pole contact for stabilizing a pole contact carried out by a cell cover,
  • Fig. 4 shows schematically a sectional view of a running as a round cell
  • Fig. 5 shows schematically an exploded view of a round cell with at one
  • Polutton arranged support rings for stabilizing a performed by a cell cover pole contact
  • Fig. 7 shows schematically an executed as a flat cell Einzelzeüe with a
  • FIG. 8 shows an exploded view with a support profile arranged on contact lugs
  • FIG. 9 is a schematic perspective view of a section of a
  • Fig. 10 is an AA-sectional view of a flat cell with arranged support profile
  • Fig. 1 1 is a BB-sectional view of a flat cell with arranged support profile.
  • FIG. 1 shows a perspective view of an executed as a round cell 1 single cell according to the prior art.
  • an electrical potential for. B. the negative pole, the round cell 1 placed on a cell case 1.1 of the round cell 1, wherein a first pole contact 2.1, in particular a round contact, is electrically connected directly to the cell case 1.1 and forms the negative terminal and the cell cover 1.2.
  • a second pole contact 2.2 is as a separate component, for.
  • a sealing element 3 is arranged in the form of a first sealing ring 3.1, the pole contacts 2.1 and 2.2 electrically from each other insulated and prevents penetration of moisture and foreign substances in the round cell 1 and leakage of electrolyte from the cell case 1.1.
  • the cell cover 1.2 and the first pole contact 2.1 are designed as one component.
  • the second pole contact 2.2 is passed through the cell cover 1.2 of the round cell 1, wherein within the Zeüengeophuses 1.1 between the second Polknntakt 2.2 and the cell cover 1.2, a second sealing ring 3.2 is arranged to electrically isolate the second pole contact 2.2 and the cell cover 1.2 from each other.
  • the cell interior is sealed to the outside by means of the second sealing ring 3.2.
  • the first and the second sealing ring 3.1, 3.2 z. B. of an electrically insulating material, in particular made of plastic.
  • the sealing elements 3 is an electrical contacting of the second pole contact 2.2 with the cell cover 1.2 and thus avoided with the first pole contact 2.1 of the round cell 1 and prevents a short circuit.
  • a gap R is formed in a preferred manner, whereby a contact of the second pole contact 2.2 is excluded with the cell cover 1.2. Furthermore, by means of the intermediate space R, for example, an air space is created, via which, for example, a heat loss generated by the round cell 1 can be dissipated.
  • the second in the cell cover 1.2 isolated from this pole contact 2.2 is preferably designed rivet-shaped and arranged in a recess of the cell cover 1.2.
  • the second pole contact 2.2 at the end facing the cell has a Aufsetzrand 2.2.1.
  • the second pole contact 2.2 is inserted in the manner of a plug or rivet into the recess of the cell cover 1.2 and fixed there, in particular pressed.
  • the sealing rings 3.1 and 3.2 are arranged in the recess, in which the second pole contact 2.2 is inserted.
  • a washer 4 is arranged between the outer bulge 2.2.2 of the second pole contact 2.2 and the first sealing ring 3.1, arranged so that the second pole contact 2.2 is securely and firmly held on the cell cover 1.2.
  • the round cell 1 in an accident and the associated force on the round cell 1 and its pole contacts 2.1 and 2.2 in particular the second pole contact 2.2 is pressed towards the cell cover 1.2, whereby there is an electrical contact between the second pole contact 2.2, in particular its outer bulge 2.2.2, and the cell cover 1.2, ie the first pole contact 2.1, the round cell 1 and thus can come to a short circuit.
  • the forces acting on the pole contacts 2.1 and 2.2 can be absorbed by the prior art exclusively via the sealing rings 3.1 and 3.2.
  • FIG 2 is a sectional view of the round cell 1 is shown, according to the invention for stabilization on the Aufsetzrand 2.2.1 of the second Poluttones 2.2, a support member 5 is arranged in the form of a first support ring 5.1.
  • the first support ring 5.1 is placed inside the cell housing 1.1 on the second pole contact 2.2 and the first sealing ring 3.1 arranged circumferentially.
  • the attachment edge 2.2.1 is formed, for example, such that its height is smaller than the height h of the first support ring 5.1.
  • the height h of the first support ring 5.1 is determined in particular by the sum of the individual heights of the attachment edge 2.2.1 and the second sealing ring 3.2 and corresponds to this total height approximately or is slightly smaller.
  • the height h of the first support ring 5.1 is at least greater than the single height of the Aufsetzrandes 2.2.1.
  • the height h of the first support ring 5.1 may be greater than the single height of the second sealing ring 3.2.
  • the first support ring 5.1 has a lower elasticity than the second sealing ring 3.2.
  • the height h of the first support ring 5.1 determines the size and strength of the compression of the second sealing ring 3.2.
  • the bias of the second sealing ring 3.2 is set to a defined value regardless of tolerances that may occur during embossing or pressing of the respective pole contact 2.2.
  • the arranged first support ring 5.1 is preferably non-positively, positively and / or materially attached to or on the attachment edge 2.2.1.
  • the first support ring 5.1 is glued on or to the attachment edge 2.2.1.
  • the first support ring 5.1 and 2.2.1 Aufsetzrand may have a mutually corresponding thread, whereby the first support ring 5.1 is screwed to the second pole contact 2.2.
  • such an arrangement advantageously has, for example, a heat-conducting gap 6 between the first support ring 5.1 and the second sealing ring 3.2, whereby the heat loss generated by the round cell 1 to the cell cover 1.2 is convertible.
  • the heat absorbed by the cell cover 1.2 heat loss is advantageously fed to the head side arranged heat conduction.
  • the support element 5, in particular the first support ring 5.1, is preferably formed from an electrically non-conductive material.
  • a material can be selected which has a thermal conductivity coefficient in order to forward or dissipate the heat loss arising in the interior of the cell.
  • the first support ring 5.1 is formed from a plastic.
  • the plastic such as a thermoset, this has no or a low elasticity, causing this force acting, for. B. tensile force on the pole contacts 2.1 and 2.2, not deformed.
  • the bias of the second sealing ring 3.2 is adjustable to a defined value.
  • the first support ring 5.1 closes in its outer dimension with the attachment edge 2.2.1 of the second pole contact 2.2.
  • the round cells 1 when mounting a battery in an advantageous manner to a head-side heat conducting plate can be pressed without the risk of short circuit by pressing one of the pole contacts 2 and the Poluttone 2.1 and 2.2 exists.
  • the first support ring 5.1 assumes in an advantageous manner, for example when moving the sealing element 3, at the same time a sealing function of the cell housing 1.1.
  • FIG. 3 shows an exploded view of the round cell 1 shown in FIG. 2, in particular the cell top side 1.3.
  • the first pole contact 2.1 and the cell cover 1.2 are preferably formed as one component.
  • the Cell cover 1.2 an opening 7, for example, for filling the electrolyte into the interior of the cell case 1.2.
  • Figure 4 shows a sectional view of the round cell 1, wherein in the cell housing 1.1 on the Aufsetzrand 2.2.1 of the second Poluttones 2.2, the support member 5 is arranged in the form of a first support ring 5.1.
  • a second support ring 5.2 is arranged according to the invention.
  • the second support ring 5.2 is arranged such that it rotates around the first sealing ring 3.1 and rests positively on the cell cover 1.2.
  • the second support ring 5.2 is for this purpose, for example, to the cell cover 1.2 positively and materially secured, in particular glued.
  • the second support ring 5.2 is advantageously before a magnitude of the bias of the first sealing ring 3.1 and thereby advantageously sets the bias to a defined value.
  • Between the second support ring 5.2 and the first sealing ring 3.1 is advantageously a further heat-conducting gap 6 adjustable.
  • the heat loss is particularly preferably the washer 4 and the second support ring 5.2 fed.
  • FIG. 5 shows an exploded view of the round cell 1 shown in FIG. 4, in particular the cell top 1.3.
  • FIG. 6 shows an exploded view of a single cell designed as a flat cell 8 according to the prior art.
  • the flat cell 8 has a flat cell housing 8.1, which is formed from two opposite housing side walls 8.1.1 and 8.1.2.
  • the pole contacts of the flat cell 8 are led out as contact lugs 2.3 from the flat cell housing 8.1.
  • the housing side walls 8.1.1 and 8.1.2 have formations 8.2 in these areas.
  • sealing elements 3 which are fastened in a form-fitting and material-locking manner, are arranged on the contact lugs 2.3.
  • the sealing elements 3 are formed in particular from a plastic, which is preferably elastic, for example, to compensate for tolerances of the housing side walls 8.1.1 and 8.1.2 and the formations 8.2.
  • the arranged sealing elements 3 are used advantageously to the fact that the flat cell housing 8.1 is made tight, which z. B. no dust entering the cell interior and no electrolyte can escape from the flat cell 8.
  • FIG. 7 shows the flat cell 8 with stabilization of the contact lugs 2.3 according to the invention.
  • upper stabilizers 8.3 are on or shaped for stabilization.
  • the upper cross struts 8.3 are, for example, on the edge 8.4 of the flat cell housing 8.1.
  • the contact lugs 2 and 3 particularly preferably acting on the flat cell 8 compressive forces can be intercepted, whereby the flat cell 8 is preferably not destroyed.
  • Particularly advantageous for this purpose is a width b of the crossbar 8.3 chosen to be larger than an extension a of the shaping 8.2.
  • FIG. 8 shows an exploded view of the flat cell 8 shown in FIG.
  • an electrode foil stack 9 is arranged in the flat cell housing 8.1.
  • the contact lugs 2.3 are each connected in the form of the electrode foil stack 9, that the contact lugs 2.3, for example, have a different polarity.
  • the tabs 2.3 are z. B. over an entire height h of the flat cell housing 8.1 and the electrode film stack 9 is arranged.
  • support elements 5 are arranged in the form of support profiles 5.3 immediately below the sealing elements.
  • the support profiles 5.3 have a recess 5.3.1, with which they rest on a lower cross member 8.4. In this case, corresponds to a shape of the lower crossbar 8.4 in an advantageous manner with a shape of the indentation 5.3.1.
  • the contact lugs 2.3 can be supported directly on the flat cell housing 8.1 by means of the shaped or formed upper and lower transverse struts 8.3 and 8.4.
  • FIG. 1 For an improved illustration, an enlarged upper section of the contact lug 2.3 of the flat cell 8 is shown in FIG.
  • FIG. 10 shows a section of an A-A sectional view of the flat cell, this sectional view being related in particular to the flat-cell housing 8.1.
  • Figure 1 1 shows a section of a B-B sectional view of the flat cell, wherein the sectional view through the flat cell housing 8.1 and through the contact lug 2.3 leads.
  • more sealing elements 3 for example in the form of plastic layers 3.4 along the contact tab 2.3 are arranged above the support profile 5.3.
  • the plastic layers 3.4 close with the flat cell housing 8.1 or the area from which the contact lug 2.3 is led out from.
  • the round cell 1 and the flat cell 8 with inventive stabilization of the pole contacts 2.1 to 2.3 by supporting elements 5 is particularly preferably in a battery, especially a vehicle battery, in a vehicle with hybrid drive and / or in a fuel cell powered vehicle, especially for passenger transport, used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

Die Erfindung betrifft eine Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie, wobei die Batterie mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen aufweist, die Wärme leitend mit der Wärmeleitplatte verbunden sind, wobei die Wärmeleitplatte im Bereich der Polkontakte (2.1, 2.2) der Einzelzellen Bohrungen und/oder Einschnitte aufweist, in oder durch welche die Polkontakte (2.1, 2.2) hinein- bzw. hindurchragen, wobei wenigstens an einem Polkontakt (2.1, 2.2) der Einzelzelle zumindest ein Stützelement (5) angeordnet ist.

Description

Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der
Batterie
Die Erfindung betrifft eine Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie, wobei die Batterie mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen aufweist, die Wärme leitend mit der Wärmeleitplatte verbunden sind, wobei die Wärmeleitplatte im Bereich der Polkontakte der Einzelzellen Bohrungen und/oder Einschnitte aufweist, in oder durch welche die Polkontakte hinein- bzw. hindurchragen.
Aus der DE 102007010739.2 ist eine Batterie mit einem Gehäuse und einer Wärmeleitplatte zum Temperieren der Batterie bekannt. Die Batterie ist als Fahrzeugbatterie beispielsweise in einem Fahrzeug mit Hybridantrieb und/oder in einem mit Brennstoffzellen betriebenen Fahrzeug einsetzbar. Dabei weist die Batterie mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen auf, die mit den Längsachsen parallel zueinander angeordnet sind. Die bei Ladung und Entladung der Batterie entstehende Wärme in den Einzelzellen, insbesondere Lithium-Ionen- Batteriezellen, ist beispielsweise in einen Klimakreislauf einer Klimaanlage in einem Fahrzeug abführbar. Hierzu sind die Einzelzellen kopfseitig Wärme leitend mit der Wärmeleitplatte verbunden, wobei die Wärmeleitplatte im Bereich der Polkontakte der Einzelzellen Bohrungen und/oder Einschnitte aufweist, in oder durch welche die Polkontakte hinein- bzw. hindurchragen.
Aus Bauraumgründen sind derartige Batterien in der Regel im Frontbereich des Fahrzeuges oder im Fahrzeugheck und damit im Unfallverformungsbereich außerhalb der Sicherheitszelle, d. h. des Fahrzeuginnenraumes, angeordnet. Durch hohe auftretende Kräfte bei Unfällen besteht die Gefahr, dass das Batteriegehäuse beschädigt oder zerstört wird und die Einzelzellen mit hohen Kräften beaufschlagt werden. Dabei besteht neben der Gefahr, dass schädliches Elektrolyt und Gase aus dem Batteriegehäuse austreten und weiterhin die Gefahr, dass aufgrund einer Kraftwirkung auf Polkontakte der Einzelzellen eine elektrische Kontaktierung von Polkontakten mit unterschiedlicher Polarität entsteht, woraus elektrische Kurzschlüsse resultieren können.
Der Erfindung liegt die Aufgabe zugrunde, eine gegenüber dem Stand der Technik verbesserte Batterie, insbesondere eine Fahrzeugbatterie, anzugeben.
Die Aufgabe wird erfindungsgemäß durch die in Anspruch 1 angegebenen Merkmale gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der Unteransprüche.
Die Erfindung betrifft eine Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie, wobei die Batterie mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen aufweist, die Wärme leitend mit der Wärmeleitplatte verbunden sind. Hierzu weist die Wärmeleitplatte im Bereich der Polkontakte der Einzelzellen Bohrungen und/oder Einschnitte auf, in oder durch welche die Polkontakte hinein- bzw. hindurchragen. Um zusätzlich wirkende Kräfte, wie z. B. Zug- und Druckkräfte, am Polkontakt der Einzelzellen beispielsweise beim Pressen an die Wärmeleitplatte oder mechanische Beanspruchungen, insbesondere durch einen Unfall hervorgerufen, abzufangen, ist wenigstens an einem Polkontakt einer jeweiligen Einzelzelle zumindest ein Stützelement angeordnet. Durch das Stützelement sind die Polkontakte in besonders vorteilhafter Weise gegenüber mechanischen Beanspruchungen stabilisiert.
Zusätzlich ist mit dem Stützelement vorteilhaft eine Dichtfunktion des Zellengehäuses sichergestellt.
In vorteilhafter Weise ist das Stützelement kraft-, form- und/oder stoff schlüssig an dem Polkontakt der Einzelzelle befestigt. Dabei ist das Stützelement beispielsweise an den Polkontakt geklebt. Alternativ und/oder zusätzlich können der Polkontakt und das Stützelement ein zueinander korrespondierendes Gewinde aufweisen, wodurch das Stützelement an den Polkontakt geschraubt sein kann.
Das Stützelement ist besonders bevorzugt aus einem elektrisch nicht leitfähigen Material, insbesondere einem Kunststoff, gebildet. In vorteilhafter Weise ist hierzu ein Kunststoff, beispielsweise ein Duroplast, einsetzbar, welcher bei einwirkender Kraft auf die Batterie bzw. die Einzelzellen besonders vorteilhaft unverformbar ist. Durch die Unverformbarkeit ist der Polkontakt bzw. sind die Polkontakte der Einzelzelle in jede Richtung stabilisiert, wodurch ein elektrischer Kontakt des Polkontaktes bzw. der Polkontakte mit dem Zellengehäuse und ein daraus resultierender Kurzschluss in vorteilhafter Weise vermieden ist.
Ist die Einzelzelle als Rundzelle ausgeführt, ist das Stützelement vorzugsweise als Stützring ausgebildet. Dabei ist ein Stützring wenigstens an einem beispielsweise durch einen Zellendeckel herausgeführten Polkontakt, insbesondere einem Rundkontakt, innerhalb des Zellengehäuses angeordnet bzw. befestigt. Zusätzlich kann in einer vorteilhaften Ausgestaltung ein weiterer Stützring außerhalb des Zellengehäuses an dem Polkontakt angeordnet sein, um diesen am Zellengehäuse abzustützen.
Vorzugsweise ist mittels des Stützringes bzw. der Stützringe bei Montage der Batterie, insbesondere bei Befestigung der Rundzelle an der kopfseitig angeordneten Wärmeleitplatte, in vorteilhafter Weise eine Höhe einer möglichen Verpressung, insbesondere eines angeordneten Dichtelementes, wie z. B. eines Dichtringes, vorgebbar.
Ist die Einzelzelle als eine Flachzelle ausgeführt, ist das Stützelement bevorzugt als Stützprofil ausgebildet. Die Polkontakte einer Flachzelle sind insbesondere als Kontaktfahnen ausgebildet, wobei an den Kontaktfahnen zur Fixierung des Stützprofils in vorteilhafter Weise eine obere Querstrebe und eine untere Querstrebe aus- bzw. angeformt sind. Dabei ist das Stützprofil auf einer im Flachzellengehäuse angeordneten unteren Querstrebe fixiert. Hierzu weist das Stützprofil vorzugsweise eine zu einer Form der Querstrebe korrespondierende Einbuchtung auf, wodurch das Stützprofil formschlüssig angeordnet ist.
Das Stützprofil zur Stabilisierung der aus dem Flachzellengehäuse herausgeführten Kontaktfahnen ist vorzugsweise innerhalb des Flachzellengehäuses angeordnet. Hierzu korrespondiert eine Form des Stützprofils in vorteilhafter Weise zu einer Form von Gehäuseseitenwänden des Flachzellengehäuses.
Die erfindungsgemäße Batterie, insbesondere eine Fahrzeugbatterie, ist in einem Fahrzeug mit Hybridantrieb und/oder in einem mit Brennstoffzellen betriebenen Fahrzeug, insbesondere für ein Kraftfahrzeug zur Personenbeförderung, einsetzbar. Ausführungsbeispiele der Erfindung werden anhand von Zeichnungen näher erläutert.
Dabei zeigen:
Fig. 1 schematisch eine Schnittdarstellung einer als Rundzelle ausgeführten
Einzelzelle nach dem Stand der Technik,
Fig. 2 schematisch eine Schnittdarstellung einer als Rundzelle ausgeführten
Einzelzelle mit an einem Polkontakt angeordnetem Stützring,
Fig. 3 schematisch eine Explosionsdarstellung einer Rundzelle mit einem an einem Polkontakt angeordneten Stützring zur Stabilisierung eines durch einen Zellendeckel durchgeführten Polkontaktes,
Fig. 4 schematisch eine Schnittdarstellung einer als Rundzelle ausgeführten
Einzelzelle mit an einem Polkontakt angeordneten Stützringen,
Fig. 5 schematisch eine Explosionsdarstellung einer Rundzelle mit an einem
Polkontakt angeordneten Stützringen zur Stabilisierung eines durch einen Zellendeckel durchgeführten Polkontaktes,
Fig. 6 eine Explosionsdarstellung einer Flachzelle nach dem Stand der Technik,
Fig. 7 schematisch eine als Flachzelle ausgeführte Einzelzeüe mit aus einem
Flachzellengehäuse herausgeführten Kontaktfahnen,
Fig. 8 schematisch eine Explosionsdarstellung mit an Kontaktfahnen angeordnetem Stützprofil,
Fig. 9 schematisch in perspektivischer Ansicht einen Ausschnitt einer
Kontaktfahne mit Querstreben und angeordnetem Stützprofil,
Fig. 10 eine A-A-Schnittdarstellung einer Flachzelle mit angeordnetem Stützprofil, und Fig. 1 1 eine B-B-Schnittdarstellung einer Flachzelle mit angeordnetem Stützprofil.
Einander entsprechende Teile sind in allen Figuren mit den gleichen Bezugszeichen versehen.
Die Figur 1 zeigt eine perspektivische Ansicht einer als Rundzelle 1 ausgeführten Einzelzelle nach dem Stand der Technik.
Dabei ist ein elektrisches Potential, z. B. der Minuspol, der Rundzelle 1 auf ein Zellengehäuse 1.1 der Rundzelle 1 gelegt, wobei ein erster Polkontakt 2.1 , insbesondere ein Rundkontakt, direkt mit dem Zellengehäuse 1.1 elektrisch verbunden ist und den Minuspol sowie den Zellendeckel 1.2 bildet.
Ein zweiter Polkontakt 2.2 ist als ein separates Bauteil, z. B. ein nietenförmiges oder stopfenförmiges Bauteil, ausgeführt und durch den Zellendeckel 1.2 hindurchgeführt, wobei zwischen dem zweiten Polkontakt 2.2 und dem Zellendeckel 1.2 außerhalb des Zellengehäuses 1.1 ein Dichtelement 3 in Form eines ersten Dichtringes 3.1 angeordnet ist, der die Polkontakte 2.1 und 2.2 elektrisch voneinander isoliert und ein Eindringen von Feuchtigkeit und Fremdstoffen in die Rundzelle 1 sowie ein Austreten von Elektrolyt aus dem Zellengehäuse 1.1 verhindert.
Der Zellendeckel 1.2 und der erste Polkontakt 2.1 sind als ein Bauteil ausgeführt. Der zweite Polkontakt 2.2 ist durch den Zellendeckel 1.2 der Rundzelle 1 hindurchgeführt, wobei innerhalb des Zeüengehäuses 1.1 zwischen dem zweiten Polknntakt 2.2 und dem Zellendeckel 1.2 ein zweiter Dichtring 3.2 angeordnet ist, der den zweiten Polkontakt 2.2 und den Zellendeckel 1.2 voneinander elektrisch isoliert.
Darüber hinaus ist mittels des zweiten Dichtringes 3.2 das Zellinnere nach außen abgedichtet.
Bevorzugt sind der erste und der zweite Dichtring 3.1 , 3.2 z. B. aus einem elektrisch isolierenden Material, insbesondere aus Kunststoff, gefertigt. Durch die Dichtelemente 3 ist eine elektrische Kontaktierung des zweiten Polkontakts 2.2 mit dem Zellendeckel 1.2 und damit mit dem ersten Polkontakt 2.1 der Rundzelle 1 vermieden sowie ein Kurzschluss verhindert.
Zwischen dem ersten Dichtring 3.1 und dem zweiten Dichtring 3.2 ist in bevorzugter Weise ein Zwischenraum R gebildet, wodurch ein Kontakt des zweiten Polkontaktes 2.2 mit dem Zellendeckel 1.2 ausgeschlossen ist. Ferner ist mittels des Zwischenraumes R beispielsweise ein Luftraum geschaffen, über den beispielsweise eine von der Rundzelle 1 erzeugte Verlustwärme abführbar ist.
Der zweite im Zellendeckel 1.2 von diesem isoliert angeordnete Polkontakt 2.2 ist vorzugsweise nietförmig ausgeführt und in einer Aussparung des Zellendeckels 1.2 angeordnet. Dabei weist der zweite Polkontakt 2.2 am ins Zellinnere gerichteten Ende einen Aufsetzrand 2.2.1 auf. Am gegenüberliegenden Ende weist der zweite Polkontakt 2.2 eine ringförmig um den zweiten Polkontakt 2.2 verlaufende Ausbuchtung 2.2.2 auf.
Der zweite Polkontakt 2.2 ist in Art eines Stopfens oder Niets in die Aussparung des Zellendeckels 1.2 eingeführt und dort fixiert, insbesondere verpresst. Dabei sind in der Aussparung die Dichtringe 3.1 und 3.2 angeordnet, in welche der zweite Polkontakt 2.2 gesteckt ist. Zwischen der äußeren Ausbuchtung 2.2.2 des zweiten Polkontaktes 2.2 und dem ersten Dichtring 3.1 ist eine Unterlegscheibe 4, insbesondere aus Metall, angeordnet, so dass der zweite Polkontakt 2.2 sicher und fest am Zellendeckel 1.2 gehalten ist.
Beispielsweise bei einem Unfall und damit verbundener Krafteinwirkung auf die Rundzelle 1 und deren Polkontakte 2.1 und 2.2 wird insbesondere der zweite Polkontakt 2.2 in Richtung Zellendeckel 1.2 gedrückt, wodurch es zu einem elektrischen Kontakt zwischen dem zweiten Polkontakt 2.2, insbesondere dessen äußere Ausbuchtung 2.2.2, und dem Zellendeckel 1.2, d. h. dem ersten Polkontakt 2.1 , der Rundzelle 1 und damit zum Kurzschluss kommen kann. Die auf die Polkontakte 2.1 und 2.2 wirkenden Kräfte sind nach dem Stand der Technik ausschließlich über die Dichtringe 3.1 und 3.2 aufnehmbar. Bei wirkender Zugkraft, beispielsweise beim Verpressen der Rundzelle 1 gegen eine nicht dargestellte Wärmeleitplatte kann eine Vorspannung des auf dem Zellendeckel 1.2 liegenden Dichtelements 3 verringert sein, wodurch beispielsweise das Elektrolyt aus dem Zellengehäuse 1 .1 austreten kann.
In Figur 2 ist eine Schnittdarstellung der Rundzelle 1 dargestellt, wobei erfindungsgemäß zur Stabilisierung auf dem Aufsetzrand 2.2.1 des zweiten Polkontaktes 2.2 ein Stützelement 5 in Form eines ersten Stützringes 5.1 angeordnet ist. Der erste Stützring 5.1 ist innerhalb des Zellengehäuses 1.1 auf den zweiten Polkontakt 2.2 aufgesetzt und den ersten Dichtring 3.1 umlaufend angeordnet.
Der Aufsetzrand 2.2.1 ist beispielsweise derart ausgeformt, dass dessen Höhe kleiner als die Höhe h des ersten Stützringes 5.1 ist. Die Höhe h des ersten Stützringes 5.1 ist insbesondere durch die Summe der einzelnen Höhen des Aufsetzrandes 2.2.1 und des zweiten Dichtringes 3.2 bestimmt und entspricht dieser Gesamthöhe in etwa oder ist geringfügig kleiner. Bevorzugt ist die Höhe h des ersten Stützringes 5.1 zumindest größer als die einzelne Höhe des Aufsetzrandes 2.2.1. Auch kann die Höhe h des ersten Stützringes 5.1 größer als die einzelne Höhe des zweiten Dichtrings 3.2 sein. Darüber hinaus weist der erste Stützring 5.1 eine geringere Elastizität als der zweite Dichtring 3.2 auf. Hierdurch ist sichergestellt, dass beim oder nach dem Verpressen des zweiten Dichtringes 3.2 die Press- oder Zugkräfte von dem Stützring 5.1 aufgenommen werden. Mit anderen Worten: Die Höhe h des ersten Stützringes 5.1 bestimmt die Größe und Stärke der Verpressung des zweiten Dichtringes 3.2. Hierdurch ist unabhängig von Toleranzen, die beim Verprägen oder Verpressen des betreffenden Polkontaktes 2.2 auftreten können, die Vorspannung des zweiten Dichtrings 3.2 auf einen definierten Wert eingestellt.
Der angeordnete erste Stützring 5.1 ist vorzugsweise kraft-, form- und/oder stoffschlüssig an bzw. auf dem Aufsetzrand 2.2.1 befestigt. Beispielsweise ist der erste Stützring 5.1 auf bzw. an den Aufsetzrand 2.2.1 geklebt.
Alternativ und/oder zusätzlich können der erste Stützring 5.1 und der Aufsetzrand 2.2.1 ein zueinander korrespondierendes Gewinde aufweisen, wodurch der erste Stützring 5.1 an den zweiten Polkontakt 2.2 schraubbar ist.
Dabei weist die derartige Anordnung in vorteilhafter Weise beispielsweise einen Wärmeleitspalt 6 zwischen dem ersten Stützring 5.1 und dem zweiten Dichtring 3.2 auf, wodurch die von der Rundzelle 1 erzeugte Verlustwärme an den Zellendeckel 1.2 überführbar ist. Die von dem Zellendeckel 1.2 aufgenommene Verlustwärme ist in vorteilhafter Weise der kopfseitig angeordneten Wärmeleitplatte zuführbar.
Das Stützelement 5, insbesondere der erste Stützring 5.1 , ist vorzugsweise aus einem elektrisch nicht leitfähigen Material gebildet. Vorzugsweise ist ein Material wählbar, welches einen Wärmeleitkoeffizienten aufweist, um die im Zellinneren entstehende Verlustwärme weiterzuleiten bzw. abzuführen.
Besonders bevorzugt ist der erste Stützring 5.1 aus einem Kunststoff gebildet. Der Kunststoff, beispielsweise ein Duroplast, weist hierzu keine bzw. eine geringe Elastizität auf, wodurch sich dieser bei einwirkender Kraft, z. B. Zugkraft an den Polkontakten 2.1 und 2.2, nicht verformt.
Durch die Unverformbarkeit und die Höhe h des ersten Stützringes 5.1 gibt dieser eine Größe einer Vorspannung bzw. Verpressung des Dichtelementes 3 bei Montage der Rundzelle 1 vor. Das heißt, dass unabhängig von Toleranzen, die beispielsweise beim Verpressen des zweiten Polkontaktes 2.2 an dem Zellendeckel 1.2 auftreten können, die Vorspannung des zweiten Dichtringes 3.2 auf einen definierten Wert einstellbar ist. Weiterhin schließt der erste Stützring 5.1 in seiner äußeren Abmessung mit dem Aufsetzrand 2.2.1 des zweiten Polkontaktes 2.2 ab.
Mittels des an dem zweiten Polkontakt 2.2 im Inneren des Zellengehäuses 1.2 angeordneten ersten Stützringes 5.1 sind die Rundzellen 1 bei Montage einer Batterie in vorteilhafter Weise an eine kopfseitig anordbare Wärmeleitplatte anpressbar, ohne dass die Gefahr eines Kurzschlusses durch Verdrücken eines der Polkontakte 2 bzw. der Polkontakte 2.1 und 2.2 besteht.
Zusätzlich zu der Stabilisierung des zweiten Polkontaktes 2.2 übernimmt der erste Stützring 5.1 in vorteilhafter weise, beispielsweise bei Verschieben des Dichtelementes 3, gleichzeitig eine Dichtfunktion des Zellengehäuses 1.1.
In Figur 3 ist eine Explosionsdarstellung der in Figur 2 gezeigten Rundzelle 1 , insbesondere der Zelloberseite 1.3 dargestellt.
Anhand dieser Figur ist erkennbar, dass der erste Polkontakt 2.1 und der Zellendeckel 1.2 vorzugsweise als ein Bauteil gebildet sind. Darüber hinaus weist der Zellendeckel 1.2 eine Öffnung 7, beispielsweise zum Einfüllen des Elektrolyts ins Innere des Zellengehäuses 1.2 auf.
Figur 4 zeigt eine Schnittdarstellung der Rundzelle 1 , wobei in dem Zellengehäuse 1.1 auf dem Aufsetzrand 2.2.1 des zweiten Polkontaktes 2.2 das Stützelement 5 in Form eines ersten Stützringes 5.1 angeordnet ist.
Um den zweiten Polkontakt 2.2 vorteilhaft auch gegenüber Druckkräften, insbesondere auf den Zellendeckel 1.2, beispielsweise bei einem Unfall, zu stabilisieren, ist erfindungsgemäß ein zweiter Stützring 5.2 angeordnet. Dabei ist der zweite Stützring 5.2 derart angeordnet, dass dieser den ersten Dichtring 3.1 umläuft und formschlüssig auf dem Zellendeckel 1.2 aufliegt. Der zweite Stützring 5.2 ist hierzu beispielsweise an dem Zellendeckel 1.2 form- und stoffschlüssig befestigt, insbesondere geklebt. Der zweite Stützring 5.2 gibt in vorteilhafter Weise eine Größe der Vorspannung des ersten Dichtringes 3.1 vor und stellt dadurch in vorteilhafter Weise die Vorspannung auf einen definierten Wert ein. Zwischen dem zweiten Stützring 5.2 und dem ersten Dichtring 3.1 ist vorteilhaft ein weiterer Wärmeleitspalt 6 einstellbar. Die Verlustwärme ist besonders bevorzugt der Unterlegscheibe 4 sowie dem zweiten Stützring 5.2 zuführbar.
Figur 5 zeigt eine Explosionsdarstellung der in Figur 4 gezeigten Rundzelle 1 , insbesondere die Zelloberseite 1.3.
In Figur 6 ist eine Explosionsdarstellung einer als Flachzelle 8 ausgeführten Einzelzelle nach dem Stand der Technik dargestellt. Die Flachzelle 8 weist ein Flachzellengehäuse 8.1 auf, das aus zwei sich gegenüberliegenden Gehäuseseitenwänden 8.1.1 und 8.1.2 gebildet ist.
Die Polkontakte der Flachzelle 8 sind als Kontaktfahnen 2.3 aus dem Flachzellengehäuse 8.1 herausgeführt. Um die Kontaktfahnen 2.3 aus dem Flachzellengehäuse 8.1 herausführen zu können, weisen die Gehäuseseitenwände 8.1.1 und 8.1.2 in diesen Bereichen Ausformungen 8.2 auf.
Im Bereich der Ausformungen 8.2 sind an den Kontaktfahnen 2.3 Dichtelemente 3, die beispielsweise form- und stoffschlüssig befestigt sind, angeordnet. Die Dichtelemente 3 sind insbesondere aus einem Kunststoff gebildet, welcher bevorzugt elastisch ist, um beispielsweise Toleranzen der Gehäuseseitenwände 8.1.1 und 8.1.2 sowie der Ausformungen 8.2 auszugleichen. Die angeordneten Dichtelemente 3 dienen vorteilhaft dazu, dass das Flachzellengehäuse 8.1 dicht ausgeführt ist, wodurch z. B. kein Staub in das Zellinnere eintreten und kein Elektrolyt aus der Flachzelle 8 austreten kann.
In Figur 7 ist die Flachzelle 8 mit erfindungsgemäßer Stabilisierung der Kontaktfahnen 2.3 dargestellt.
An den Kontaktfahnen 2.3 sind zur Stabilisierung obere Querstreben 8.3 an- bzw. ausgeformt. Die oberen Querstreben 8.3 liegen beispielsweise auf dem Rand 8.4 des Flachzellengehäuses 8.1 auf. Durch die oberen Querstreben 8.3 sowie die Ausformungen 8.2 an den Gehäuseseitenwänden 8.1.1 und 8.1.2 können die Kontaktfahnen 2 und 3 besonders bevorzugt auf die Flachzelle 8 wirkende Druckkräfte abgefangen werden, wodurch die Flachzelle 8 vorzugsweise nicht zerstört wird. Besonders vorteilhaft ist hierzu eine Breite b der Querstrebe 8.3 größer gewählt als eine Ausdehnung a der Ausformung 8.2.
Figur 8 zeigt eine Explosionsdarstellung der in Figur 6 dargestellten Flachzelle 8.
In dem Flachzellengehäuse 8.1 ist beispielsweise ein Elektrodenfolienstapel 9 angeordnet. Die Kontaktfahnen 2.3 sind jeweils in der Form mit den Elektrodenfolienstapel 9 verbunden, dass die Kontaktfahnen 2.3 beispielsweise eine unterschiedliche Polarität aufweisen. Die Kontaktfahnen 2.3 sind dabei z. B. über eine gesamte Höhe h des Flachzellengehäuses 8.1 bzw. des Elektrodenfolienstapels 9 angeordnet.
Unterhalb der Querstrebe 8.3 und der Ausdehnung a der Ausformung 8.2 entsprechend, sind die Dichteiemente 3 angeordnet. In Längsausdehnung der Kontaktfahnen 2.3 sind unmittelbar unterhalb der Dichtelemente 3 Stützelemente 5 in Form von Stützprofilen 5.3 angeordnet. Die Stützprofile 5.3 weisen eine Einbuchtung 5.3.1 auf, mit welcher diese auf einer unteren Querstrebe 8.4 aufliegen. Dabei korrespondiert eine Form der unteren Querstrebe 8.4 in vorteilhafter Weise mit einer Form der Einbuchtung 5.3.1.
Darüber hinaus korrespondiert vorteilhaft eine Form des Stützprofils 5.3 mit einer Form der Gehäuseseitenwände 8.1.1 und 8.1.2, wodurch ein Verschieben der Kontaktfahne 2.3 vermieden ist.
Mittels des Stützprofils 5.3 sowie der oberen und unteren Querstreben 8.3 und 8.4 sind auf die Kontaktfahnen 2.3 wirkende Zugkräfte, beispielsweise beim Verpressen der Flachzellen 8 gegen die Wärmeleitplatte auffangbar, wodurch ein Beschädigen der Flachzelle 8 in vorteilhafter Weise ausgeschlossen ist.
In einer möglichen Ausführungsform können die Kontaktfahnen 2.3 direkt mittels der an- bzw. ausgeformten oberen und unteren Querstreben 8.3 und 8.4 an dem Flachzellengehäuse 8.1 abgestützt sein.
Zu einer verbesserten Darstellung ist in Figur 9 ein vergrößerter oberer Ausschnitt der Kontaktfahne 2.3 der Flachzelle 8 dargestellt.
Figur 10 zeigt einen Ausschnitt einer A-A-Schnittdarstellung der Flachzelle, wobei diese Schnittdarstellung insbesondere auf das Flachzellengehäuse 8.1 bezogen ist.
Figur 1 1 zeigt einen Ausschnitt einer B-B-Schnittdarstellung der Flachzelle, wobei die Schnittdarstellung durch das Flachzellengehäuse 8.1 sowie durch die Kontaktfahne 2.3 führt. Dabei sind oberhalb des Stützprofils 5.3 weitere Dichtelemente 3, beispielsweise in Form von Kunststofflagen 3.4 entlang der Kontaktfahne 2.3 angeordnet. Die Kunststofflagen 3.4 schließen mit dem Flachzellengehäuse 8.1 bzw. dem Bereich, aus welchem die Kontaktfahne 2.3 herausgeführt ist, ab.
Die Rundzelle 1 sowie die Flachzelle 8 mit erfindungsgemäßer Stabilisierung der Polkontakte 2.1 bis 2.3 durch Stützelemente 5 ist besonders bevorzugt in einer Batterie, insbesondere einer Fahrzeugbatterie, in einem Fahrzeug mit Hybridantrieb und/oder in einem mit Brennstoffzellen betriebenen Fahrzeug, insbesondere zur Personenbeförderung, einsetzbar.
Bezugszeichenliste
Rundzelle
1.1 Zellengehäuse
1.2 Zellendeckel
1.3 Zelloberseite Polkontakt
2.1 erster Polkontakt
2.2 zweiter Polkontakt
2.3 Kontaktfahne Dichtelement
3.1 erster Dichtring
3.2 zweiter Dichtring
3.4 Kunststoff läge Unterlegscheibe Stützelement
5.1 erster Stützring
5.2 zweiter Stützring
5.3 Stützprofil 5.3.1 Einbuchtung Wärmeleitspalt Öffnung Flachzelle
8.1 Flachzellengehäuse
8.2 Ausformungen
8.3 obere Querstrebe
8.4 untere Querstrebe 9 Elektrodenfolienstapel
R Zwischenraum
a Ausdehnung b Breite h Höhe

Claims

Patentansprüche
1. Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie, wobei die Batterie mehrere parallel und/oder seriell miteinander verschaltete Einzelzellen aufweist, die Wärme leitend mit der Wärmeleitplatte verbunden sind, wobei die Wärmeleitplatte im Bereich von Polkontakten (2.1 , 2.2) der Einzelzellen Bohrungen und/oder Einschnitte aufweist, in oder durch welche die Polkontakte (2.1 , 2.2) hinein- bzw. hindurchragen, dadurch gekennzeichnet, dass wenigstens an einem Polkontakt (2.1 , 2.2) der Einzelzelle (Rundzelle 1 , Flachzelle 8) zumindest ein Stützelement (5) angeordnet ist.
2. Batterie nach Anspruch 1 , dadurch gekennzeichnet, dass das Stützelement (5) kraft-, form- und/oder stoffschlüssig an dem Polkontakt (2.1 , 2.2) befestigt ist.
3. Batterie nach Anspruch 1 , dadurch gekennzeichnet, dass das Stützelement (5) aus einem elektrisch nicht leitfähigem Material gebildet ist.
4. Batterie nach Anspruch 1 , dadurch gekennzeichnet, dass das Stützelement (5) aus einem Kunststoff gebildet ist.
5. Batterie nach Anspruch 1 , dadurch gekennzeichnet, dass das Stützelement (5) bei einer als Rundzelle (1 ) ausgeführten Einzelzelle als ein Stützring (5.1 , 5.2) ausgebildet ist.
6. Batterie nach Anspruch 5, dadurch gekennzeichnet, dass ein erster Stützring (5.1 ) wenigstens an einem durch einen Zellendeckel (1.2) herausgeführten zweiten Polkontakt (2.2) innerhalb eines Zellengehäuses (1.1 ) angeordnet ist.
7. Batterie nach Anspruch 5, dadurch gekennzeichnet, dass ein zweiter Stützring (5.2) wenigstens an dem herausgeführten zweiten Polkontakt (2.2) auf dem Zellendeckel (1.2) angeordnet ist.
8. Batterie nach Anspruch 1 , dadurch gekennzeichnet, dass das Stützelement (5) bei einer als Flachzelle (8) ausgeführten Einzelzelle als Stützprofil (5.3) ausgebildet ist.
9. Batterie nach Anspruch 1 , dadurch gekennzeichnet, dass an einer Kontaktfahne (2.3) einer Flachzelle (8)eine obere Querstrebe (8.3) und eine untere Querstrebe (8.4) aus- bzw. angeformt ist.
10. Batterie nach Anspruch 9, dadurch gekennzeichnet, dass das Stützprofil (5.3) auf der unteren Querstrebe (8.4) fixiert ist.
1 1. Batterie nach Anspruch 10, dadurch gekennzeichnet, dass das Stützprofil (5.3) eine zu einer Form der unteren Querstrebe (8.4) korrespondierende Einbuchtung (5.3.1 ) aufweist.
12. Batterie nach Anspruch 8, dadurch gekennzeichnet, dass das Stützprofil (5.3) innerhalb eines Flachzellengehäuses (8.1 ) angeordnet ist.
13. Batterie nach Anspruch 8, dadurch gekennzeichnet, dass eine Form des Stützprofils (5.3) zu einer Form von Gehäuseseitenwänden (8.1.1 , 8.1.2) des Flachzellengehäuses (8.1 ) korrespondiert.
14. Batterie nach Anspruch 1 , dadurch gekennzeichnet, dass die Batterie als eine Fahrzeugbatterie, insbesondere für ein Fahrzeug mit Hybridantrieb oder ein mit Brennstoffzellen betriebenes Fahrzeug, einsetzbar ist.
PCT/EP2009/004661 2008-07-26 2009-06-27 Batterie mit einem batteriegehäuse und einer wärmeleitplatte zum temperieren der batterie WO2010012342A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102008034872.4 2008-07-26
DE200810034872 DE102008034872A1 (de) 2008-07-26 2008-07-26 Batterie mit einem Batteriegehäuse und einer Wärmeleitplatte zum Temperieren der Batterie

Publications (1)

Publication Number Publication Date
WO2010012342A1 true WO2010012342A1 (de) 2010-02-04

Family

ID=40911951

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2009/004661 WO2010012342A1 (de) 2008-07-26 2009-06-27 Batterie mit einem batteriegehäuse und einer wärmeleitplatte zum temperieren der batterie

Country Status (2)

Country Link
DE (1) DE102008034872A1 (de)
WO (1) WO2010012342A1 (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10483510B2 (en) 2017-05-16 2019-11-19 Shape Corp. Polarized battery tray for a vehicle
US10632857B2 (en) 2016-08-17 2020-04-28 Shape Corp. Battery support and protection structure for a vehicle
US10661646B2 (en) 2017-10-04 2020-05-26 Shape Corp. Battery tray floor assembly for electric vehicles
US10886513B2 (en) 2017-05-16 2021-01-05 Shape Corp. Vehicle battery tray having tub-based integration
US11088412B2 (en) 2017-09-13 2021-08-10 Shape Corp. Vehicle battery tray with tubular peripheral wall
US11155150B2 (en) 2018-03-01 2021-10-26 Shape Corp. Cooling system integrated with vehicle battery tray
US11211656B2 (en) 2017-05-16 2021-12-28 Shape Corp. Vehicle battery tray with integrated battery retention and support feature
US11214137B2 (en) 2017-01-04 2022-01-04 Shape Corp. Vehicle battery tray structure with nodal modularity
US11688910B2 (en) 2018-03-15 2023-06-27 Shape Corp. Vehicle battery tray having tub-based component

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015221555A1 (de) 2015-11-03 2017-05-04 VW-VM Forschungsgesellschaft mbH & Co. KG Dichtsystem für Poldurchführung
KR20220055609A (ko) * 2020-10-27 2022-05-04 에스케이온 주식회사 이차 전지
DE102021113876A1 (de) * 2021-05-28 2022-12-01 Bayerische Motoren Werke Aktiengesellschaft Batteriezelle
KR20230115755A (ko) * 2022-01-27 2023-08-03 삼성에스디아이 주식회사 원통형 이차 전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2514508A1 (de) * 1975-04-03 1976-10-21 Varta Batterie Polbolzenabdichtung fuer akkumulatorenzellen
WO1990005999A1 (de) * 1988-11-24 1990-05-31 Akkumulatorenfabrik Dr. Leopold Jungfer Durchführung eines bleipoles durch den gefässdeckel von akkumulatorzellen
JP2002056904A (ja) * 2000-08-11 2002-02-22 Denso Corp 電 池
US20030064286A1 (en) * 2001-09-28 2003-04-03 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte battery and method of manufacturing same
US20040029001A1 (en) * 1997-10-14 2004-02-12 Dai Nippon Printing Co., Ltd. Battery case forming sheet and battery packet
JP2007026901A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp フィルムパッケージ型電池
WO2007126243A1 (en) * 2006-05-01 2007-11-08 Lg Chem, Ltd. Secondary battery having electrode with self cutting part to be destructed on application of over-current

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3293287B2 (ja) * 1993-12-07 2002-06-17 松下電器産業株式会社 角形密閉式アルカリ蓄電池とその単位電池
DE10003740C1 (de) * 2000-01-28 2001-06-13 Daimler Chrysler Ag Batterie
DE102007010739B4 (de) 2007-02-27 2009-01-29 Daimler Ag Batterie mit einer Wärmeleitplatte

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2514508A1 (de) * 1975-04-03 1976-10-21 Varta Batterie Polbolzenabdichtung fuer akkumulatorenzellen
WO1990005999A1 (de) * 1988-11-24 1990-05-31 Akkumulatorenfabrik Dr. Leopold Jungfer Durchführung eines bleipoles durch den gefässdeckel von akkumulatorzellen
US20040029001A1 (en) * 1997-10-14 2004-02-12 Dai Nippon Printing Co., Ltd. Battery case forming sheet and battery packet
JP2002056904A (ja) * 2000-08-11 2002-02-22 Denso Corp 電 池
US20030064286A1 (en) * 2001-09-28 2003-04-03 Mitsubishi Denki Kabushiki Kaisha Nonaqueous electrolyte battery and method of manufacturing same
JP2007026901A (ja) * 2005-07-15 2007-02-01 Toyota Motor Corp フィルムパッケージ型電池
WO2007126243A1 (en) * 2006-05-01 2007-11-08 Lg Chem, Ltd. Secondary battery having electrode with self cutting part to be destructed on application of over-current

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10632857B2 (en) 2016-08-17 2020-04-28 Shape Corp. Battery support and protection structure for a vehicle
US11660950B2 (en) 2016-08-17 2023-05-30 Shape Corp. Battery support and protection structure for a vehicle
US11273697B2 (en) 2016-08-17 2022-03-15 Shape Corp. Battery support and protection structure for a vehicle
US11214137B2 (en) 2017-01-04 2022-01-04 Shape Corp. Vehicle battery tray structure with nodal modularity
US10483510B2 (en) 2017-05-16 2019-11-19 Shape Corp. Polarized battery tray for a vehicle
US11691493B2 (en) 2017-05-16 2023-07-04 Shape Corp. Vehicle battery tray having tub-based component
US10886513B2 (en) 2017-05-16 2021-01-05 Shape Corp. Vehicle battery tray having tub-based integration
US11211656B2 (en) 2017-05-16 2021-12-28 Shape Corp. Vehicle battery tray with integrated battery retention and support feature
US11088412B2 (en) 2017-09-13 2021-08-10 Shape Corp. Vehicle battery tray with tubular peripheral wall
US11267327B2 (en) 2017-10-04 2022-03-08 Shape Corp. Battery tray floor assembly for electric vehicles
US10960748B2 (en) 2017-10-04 2021-03-30 Shape Corp. Battery tray floor assembly for electric vehicles
US10661646B2 (en) 2017-10-04 2020-05-26 Shape Corp. Battery tray floor assembly for electric vehicles
US11787278B2 (en) 2017-10-04 2023-10-17 Shape Corp. Battery tray floor assembly for electric vehicles
US11155150B2 (en) 2018-03-01 2021-10-26 Shape Corp. Cooling system integrated with vehicle battery tray
US11688910B2 (en) 2018-03-15 2023-06-27 Shape Corp. Vehicle battery tray having tub-based component

Also Published As

Publication number Publication date
DE102008034872A1 (de) 2010-01-28

Similar Documents

Publication Publication Date Title
WO2010012342A1 (de) Batterie mit einem batteriegehäuse und einer wärmeleitplatte zum temperieren der batterie
DE102008034868B4 (de) Batterie mit einer in einem Batteriegehäuse angeordneten Wärmeleitplatte zum Temperieren der Batterie
EP2789029B1 (de) Batterie und zellblock für eine batterie
EP2550697B1 (de) Batterie mit einer mehrzahl von einzelzellen
WO2009103526A1 (de) Batterie mit einer wärmeleitplatte und mehreren einzelzellen
WO2010012341A1 (de) Batteriekühlung, insbesondere für fahrzeugbatterie
WO2011116801A1 (de) Batterie aus einer vielzahl von batterieeinzelzellen
WO2016045855A1 (de) Ausgleichsvorrichtung und akkumulatormodul mit derselben
DE102008034862A1 (de) Batterie mit einem Zellverbund mehrerer Batteriezellen
DE102008010814B4 (de) Einzelzelle für eine Batterie und ihre Verwendung
DE102009013727A1 (de) Batterie mit einem Stapel aus Flachzellen, Rahmen zur Halterung einer Flachzelle und Fahrzeug mit einer solchen Batterie
WO2012062396A1 (de) Batterie mit einem zellverbund
EP2243189A1 (de) Batteriemodul mit integriertem elektrischen bauelement
WO2011012199A1 (de) Einzelzelle für eine batterie
WO2011116807A1 (de) Einzelzelle und batterie mit einer mehrzahl von einzelzellen
DE102013021639A1 (de) Hochvoltbatterie
DE102010013031A1 (de) Batterie mit einem Zellenstapel von Batterieeinzelzellen
DE102014002522B4 (de) Batterie mit einer Ableiterkühlung
WO2012062397A1 (de) Batterie mit einem zellverbund
WO2011020562A1 (de) Kraftwagen mit einer elektrochemischen zelle
DE102013016790A1 (de) Batterieeinzelzelle in prismatischer Form
DE102012219778A1 (de) Batteriemodulanschluss bildende Stromschiene
WO2011009595A1 (de) Galvanische zelle
DE102010013028A1 (de) Zellverbund mit einer vorgebbaren Anzahl von parallel und/oder seriell miteinander verschalteten Einzelzellen
WO2010094314A1 (de) Galvanische zelle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09776864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09776864

Country of ref document: EP

Kind code of ref document: A1