WO2010007845A1 - 広角光学系および撮像装置 - Google Patents

広角光学系および撮像装置 Download PDF

Info

Publication number
WO2010007845A1
WO2010007845A1 PCT/JP2009/060514 JP2009060514W WO2010007845A1 WO 2010007845 A1 WO2010007845 A1 WO 2010007845A1 JP 2009060514 W JP2009060514 W JP 2009060514W WO 2010007845 A1 WO2010007845 A1 WO 2010007845A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wide
optical system
image
angle
Prior art date
Application number
PCT/JP2009/060514
Other languages
English (en)
French (fr)
Inventor
誠 神
慶二 松坂
通 中谷
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2010007845A1 publication Critical patent/WO2010007845A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces

Definitions

  • the present invention is a wide-angle and compact wide-angle optical system that is suitably used for an imaging apparatus such as a vehicle-mounted camera or a surveillance camera, and particularly has a full-angle of 180 degrees (half-angle of view of 90 degrees) or more.
  • the present invention relates to a wide-angle optical system suitable for a wide-angle super-wide-angle optical system. And this invention relates to an imaging device provided with this wide-angle optical system.
  • a wide-angle optical system having a large shooting angle of view is generally employed.
  • a wide-angle optical system is used in applications such as in-vehicle use and monitoring.
  • Such a wide-angle optical system is disclosed in, for example, Patent Document 1 to Patent Document 3.
  • so-called shading which is likely to cause a problem in the case of an ultra-wide angle, can be suppressed with a small number of lenses such as about 4 or 5.
  • a small number of lenses such as about 4 or 5.
  • an ultra-wide angle is achieved with a small number of lenses of four.
  • relatively good optical performance is achieved by using six lenses.
  • optical systems with higher resolution and smaller size have been required for applications such as in-vehicle and monitoring. If it is a camera installed in the car, from a practical viewpoint that does not block the view of the living space and the driver, and if it is a camera installed outside the car, from the viewpoint of the aesthetic and safety of the car, There is a demand for a more compact optical system. Further, as the number of pixels of the image sensor increases, an optical system that is small and has good optical performance is also demanded.
  • the wide-angle optical system disclosed in Patent Document 1 In the wide-angle optical system disclosed in Patent Document 1, three lenses having negative optical power from the object side to the image side are arranged. For this reason, the wide-angle optical system disclosed in Patent Document 1 has a problem that it is difficult to reduce the overall length of the optical system.
  • the wide-angle optical system disclosed in Patent Document 2 has a problem that it is difficult to achieve an optical system that can cope with an increase in the number of pixels of an image sensor with the small number of lenses.
  • the present invention has been made in view of the above-described circumstances, and the object thereof is to cope with high pixels of an image sensor, and has better optical performance and a full angle of view of 180 degrees (half angle of view of 90 degrees). ) To provide a compact wide-angle optical system having the above-mentioned super-wide angle of view.
  • a refractive index is a refractive index with respect to the wavelength (587.56 nm) of d line
  • B Abbe number is determined when the refractive index for d line, F line (486.13 nm) and C line (656.28 nm) is nd, nF, nC and Abbe number is ⁇ d, respectively.
  • the Abbe number ⁇ d (nd ⁇ 1) / (nF ⁇ nC)
  • the Abbe number ⁇ d obtained by the definition formula (C)
  • the notation regarding the surface shape is a notation based on the paraxial curvature. Therefore, when the notation “concave”, “convex” or “meniscus” is used for the lens, these represent the lens shape near the optical axis (near the center of the lens).
  • D Since the resin material used for the composite aspherical lens has only an additional function of the substrate glass material, it is not treated as a single optical member, but is treated as if the substrate glass material has an aspherical surface, and the number of lenses Shall be handled as one sheet.
  • the lens refractive index is also the refractive index of the glass material serving as the substrate.
  • the composite aspherical lens is a lens that is aspherical by applying a thin resin material on a glass material to be a substrate.
  • the front group includes, in order from the object side to the image side, a first lens having negative optical power, a second lens having negative optical power, and a third lens having positive optical power.
  • the rear group includes a fourth lens having a positive optical power and a fifth lens having a positive optical power, A wide-angle optical system that satisfies the following conditional expression (1):
  • conditional expression (1) If the upper limit of conditional expression (1) is exceeded, the distance between the negative lens and the positive lens is widened, and the optical length and the lens system are increased, which is not preferable. If the lower limit of conditional expression (1) is not reached, the distance between the negative lens and the positive lens is narrowed, and the curvature of the image side surface of the second lens and the curvature of the object side surface of the third lens become close. For this reason, the degree of freedom in design is reduced, and it is difficult to correct various aberrations favorably.
  • conditional expression (1) it is possible to shift the passing position of the light incident on each image height through the fifth lens. As a result, the fifth lens can have an aberration correction plate effect, and various aberrations can be corrected satisfactorily.
  • ⁇ 3 Abbe number of the third lens
  • ⁇ 4 Abbe number of the fourth lens Both the lateral chromatic aberration generated by the first and second lenses having negative optical power is corrected by the third lens having positive optical power. In order to correct the above, it is necessary to appropriately arrange the Abbe number ⁇ 4 of the fourth lens having a positive optical power.
  • f4 Focal length of the fourth lens
  • f5 Focal length of the fifth lens
  • the optical power of the fourth lens becomes strong and the eccentricity of the fourth lens. Since the sensitivity becomes high, the manufacturing difficulty increases, leading to deterioration in productivity and cost increase, which is not preferable. Further, if the lower limit of conditional expression (5) is not reached, the optical power of the fifth lens becomes stronger and the decentering sensitivity of the fifth lens becomes higher, which increases the difficulty of manufacturing and decreases productivity and increases costs. It is connected and is not preferable.
  • each of the second to fourth lenses has at least one aspheric surface.
  • An image pickup apparatus comprising: an image pickup device that picks up an optical image of a subject formed by the wide-angle optical system.
  • the imaging apparatus further includes an image processing unit that performs predetermined image processing on the output of the imaging element.
  • the image processing unit performs predetermined image processing, it is possible to provide an imaging apparatus capable of outputting an image having a desired image quality.
  • the predetermined image processing includes distortion correction processing for correcting distortion in the optical image of the subject formed on a light receiving surface of the imaging element.
  • the imaging device In a wide-angle optical system, a large distortion occurs compared to a normal optical system (an optical system that is not wide-angle). According to this configuration, by correcting distortion aberration by image processing, the imaging device can be applied to a relatively wide range, for example, for in-vehicle use or for monitoring purposes. It becomes possible to provide digital equipment.
  • the predetermined image processing includes illuminance correction processing for correcting a decrease in peripheral illuminance in an optical image of the subject formed on a light receiving surface of the imaging element.
  • the imaging device can be applied to a relatively wide range, for example, for in-vehicle use or for monitoring, by correcting the decrease in illuminance in the peripheral portion by image processing, for example, an imaging device that is easy to use (for example, a camera ) Etc. can be provided.
  • the wide-angle optical system includes the front group, the stop, and the rear group in order from the object side to the image side, and the negative first lens and the negative second lens in order from the object side to the image side.
  • the lens is composed of a lens and a positive third lens
  • the rear group is composed of a positive fourth lens and a positive fifth lens
  • the distance from the object side surface of the first lens to the image plane side of the fifth lens is between 0.01 and 0.18, it can correspond to the high pixels of the image sensor. Therefore, it is possible to provide a small-sized wide-angle optical system and an imaging apparatus having better optical performance and an ultra-wide field angle.
  • FIG. 3 is a cross-sectional view illustrating the arrangement of lens groups in the wide-angle optical system of Example 1.
  • 6 is a cross-sectional view illustrating an arrangement of lens groups in a wide-angle optical system of Example 2.
  • FIG. 6 is a cross-sectional view illustrating an arrangement of lens groups in a wide-angle optical system of Example 3.
  • FIG. 6 is a cross-sectional view illustrating an arrangement of lens groups in a wide-angle optical system of Example 4.
  • FIG. 10 is a cross-sectional view illustrating an arrangement of lens groups in a wide-angle optical system of Example 5.
  • FIG. 10 is a cross-sectional view illustrating an arrangement of lens groups in a wide-angle optical system of Example 6.
  • FIG. 6 is an aberration diagram (No. 1) of the wide-angle optical system according to Example 1.
  • FIG. 6 is an aberration diagram (part 2) of the wide-angle optical system according to Example 1.
  • FIG. 6 is an aberration diagram (No. 1) of the wide-angle optical system according to Example 2.
  • FIG. 6 is an aberration diagram (part 2) of the wide-angle optical system according to Example 2.
  • FIG. 6 is an aberration diagram (No.
  • FIG. 6 is an aberration diagram (No. 2) of the wide-angle optical system according to Example 3.
  • FIG. 10 is an aberration diagram (No. 1) of the wide-angle optical system according to Example 4.
  • FIG. 10 is an aberration diagram (part 2) of the wide-angle optical system according to Example 4;
  • FIG. 10 is an aberration diagram (No. 1) of the wide-angle optical system according to Example 5.
  • FIG. 10 is an aberration diagram (No. 2) of the wide-angle optical system according to Example 5.
  • FIG. 12 is an aberration diagram (No. 1) of the wide-angle optical system according to Example 6.
  • FIG. 12 is an aberration diagram (No. 2) of the wide-angle optical system according to Example 6.
  • FIG. 1 is a lens cross-sectional view schematically illustrating the configuration of the wide-angle optical system in the embodiment. 1 and 5 to 10, the left side of the figure is the object side, and the right side of the figure is the image side.
  • this wide-angle optical system 1 has an optical image of an object (subject) on a predetermined imaging surface, for example, on a light receiving surface (image surface) of an image sensor 15 that converts an optical image into an electrical signal.
  • the image pickup apparatus is preferably provided with an imaging device configured to form a front group 11, a diaphragm 12, and a rear group 13 in order from the object side to the image side. 11, in order from the object side to the image side, a first lens 111 having a negative optical power, a second lens 112 having a negative optical power, and a third lens 113 having a positive optical power.
  • the rear group 13 is composed of a fourth lens 131 having a positive optical power and a fifth lens 132 having a positive optical power. This is an optical system.
  • the wide-angle optical system 1 illustrated in FIG. 1 has the same configuration as the wide-angle optical system 1A (FIG. 5) of Example 1 described later.
  • the first lens 111 is a negative meniscus lens convex toward the object side
  • the second lens is a biconcave negative lens
  • the third lens 113 is a biconvex positive lens.
  • the stop 12 is an aperture stop.
  • the fourth lens 131 is a biconvex positive lens
  • the fifth lens 132 is a positive lens.
  • the fifth lens 132 has inflection points on both sides.
  • the second to fifth lenses 112, 113, 131, 132 are aspheric on both surfaces.
  • the fourth and fifth lenses 131 and 132 are lenses made of a resin material such as plastic.
  • the first to fifth lenses 111, 112, 113, 131, and 132 are arranged in this order, so that a wide angle of view, particularly a super wide angle of 180 degrees or more is obtained.
  • the size of the wide-angle optical system 1 can be reduced while the angle of view is achieved and better optical performance is maintained.
  • two negative lenses of the first and second lenses 111 and 112 and one positive lens of the third lens 113 are arranged, and the second lens 112 of the negative lens and the first lens of the positive lens are arranged.
  • the distance from the image side surface of the second lens 112 to the object side of the third lens 113 is L23, and the fifth lens extends from the object side surface of the first lens 111.
  • the distance to the image plane side of 132 is L15, the following conditional expression (1) is satisfied. 0.01 ⁇ L23 / L15 ⁇ 0.18 (1)
  • Exceeding the upper limit of conditional expression (1) is not preferable because the distance between the negative lens second lens 112 and the positive lens third lens increases, and the optical total length increases.
  • the passing position of the light incident on each image height through the fifth lens 132 can be shifted.
  • the fifth lens 132 can have an aberration correction plate effect, and various aberrations can be corrected satisfactorily.
  • the wide-angle optical system 1 having such a configuration, a small wide-angle optical system 1 that can cope with the high pixels of the image sensor 15 and has better optical performance and an ultra-wide angle of view is provided.
  • a filter 14 and an image sensor 15 are arranged on the image side of the wide-angle optical system 1.
  • the filter 14 is a parallel plate-like optical element, and schematically represents various optical filters, a cover glass of the image sensor, and the like.
  • An optical filter such as a low-pass filter or an infrared cut filter can be appropriately arranged depending on the usage, imaging device, camera configuration, and the like.
  • the image sensor 15 performs photoelectric conversion to image signals of R (red), G (green), and B (blue) components in accordance with the amount of light in the optical image of the subject formed by the wide-angle optical system 1, and performs predetermined conversion. This is an element that outputs to an image processing circuit (not shown in FIG. 1).
  • an imaging device including such a wide-angle optical system 1 is also provided.
  • each of the second to fourth lenses 112, 113, and 131 has at least one aspheric surface.
  • the second to fourth lenses 112, 113, and 131 are both aspheric surfaces. Therefore, the wide-angle optical system 1 can effectively reduce the total optical length while reducing various aberrations.
  • the first lens 111 is a glass material lens. Therefore, the wide-angle optical system 1 can ensure reliability in terms of robustness, chemical resistance, water resistance, and the like. In particular, in a vehicle-mounted application, the lens front surface of the wide-angle optical system 1 is often exposed, so that robustness, chemical resistance, waterproofness, and the like are required. Therefore, this wide-angle optical system 1 is advantageous in terms of robustness, chemical resistance, waterproofness, and the like.
  • the fifth lens 132 is a lens made of a resin material. Therefore, with this wide-angle optical system 1, it is possible to obtain a high-performance lens at a low cost.
  • the fifth lens 132 is an aspherical surface having at least one inflection point.
  • the fifth lens 132 is an aspherical surface having inflection points on both surfaces.
  • the wide-angle optical system 1 appropriately corrects various aberrations and appropriately sets the incident angle of the peripheral light flux to the image sensor, for example. It is effective to set to. Since the fifth lens 132 has aspheric surfaces on both sides, the wide-angle optical system 1 is effective in reducing the total optical length while correcting distortion, astigmatism, spherical aberration, and coma. There is.
  • the lens surfaces facing the air are all aspherical surfaces except for the first lens 111 on the most object side.
  • the second to fifth lenses 112, 113, 131, and 132 are both aspheric on both sides. Therefore, the wide-angle optical system 1 can achieve both compactness and high image quality of the wide-angle optical system 1.
  • the following conditional expression (2) is satisfied when the Abbe number of the third lens 113 is ⁇ 3. 20 ⁇ 3 ⁇ 35 (2)
  • the first and second lenses 111 and 112 having negative optical power By arranging the first and second lenses 111 and 112 having negative optical power from the object side, light with a large angle of view is condensed and an ultra wide angle of 180 degrees or more is achieved. Yes.
  • large chromatic aberration of magnification occurs in the two negative lenses described above.
  • the following conditional expression (2) is satisfied when the Abbe number of the fourth lens 131 is ⁇ 4. 45 ⁇ 4 ⁇ 85 (3)
  • the lateral chromatic aberration generated by the first and second lenses 111 and 112 having negative optical power is corrected by the third lens 113 having positive optical power, but the axial chromatic aberration is corrected well. Therefore, it is necessary to appropriately arrange the Abbe number ⁇ 4 of the fourth lens 131 having positive optical power.
  • conditional expression (3) In this configuration, if the lower limit of conditional expression (3) is not reached, the Abbe number balance in the front group 11 and the rear group 13 is lost, and it is difficult to satisfactorily correct axial chromatic aberration, which is not preferable. If the upper limit of conditional expression (3) is exceeded, overcorrection will occur, and similarly it will be difficult to satisfactorily correct axial chromatic aberration.
  • the following conditional expression (3 ′) is satisfied. 50 ⁇ 4 (3 ′) If these conditions are satisfied, the Abbe number balance between the front group 11 and the rear group 13 is kept good, and axial chromatic aberration can be well corrected, which is preferable.
  • conditional expression (4) is satisfied when the focal length of the front group 11 is Ff and the focal length of the rear group 13 is Fr. 0 ⁇ Fr / Ff ⁇ 1 (4)
  • the lower limit of conditional expression (4) is not reached, so-called retrofocusing is achieved, so that the back focus is extended and it becomes difficult to reduce the size of the optical system 1, which is not preferable.
  • the upper limit of conditional expression (4) is exceeded, the positive optical power of the front group 11 becomes strong, which makes it difficult to achieve a super wide angle of view, which is not preferable.
  • the focal length of the fourth lens 131 when the focal length of the fourth lens 131 is set to f4 and the focal length of the fifth lens 132 is set to f5, it is preferable that the following conditional expression (5) is satisfied. 0.3 ⁇ f4 / f5 ⁇ 7 (5)
  • the optical power of the fourth lens 131 becomes strong and the decentering sensitivity of the fourth lens 131 increases, which increases the manufacturing difficulty and increases the productivity. This is not preferable because it leads to deterioration and cost increase.
  • the lower limit of conditional expression (5) is not reached, the optical power of the fifth lens 132 is increased and the decentering sensitivity of the fifth lens 132 is increased. It leads to increase and is not preferable.
  • the distance from the image side surface of the fourth lens 131 to the object side of the fifth lens 132 is L45, and the image of the fifth lens 132 from the object side surface of the first lens 111.
  • the distance to the surface side is L15
  • the upper limit of conditional expression (7) is exceeded, the total optical length becomes long, which makes it difficult to reduce the size.
  • the lower limit of conditional expression (7) is not reached, the distance between the fourth lens 131 and the fifth lens 132 is narrowed, and the light beams passing through the fourth lens 131 and the fifth lens 132 pass through substantially the same position.
  • the glass lens having an aspherical surface is a glass molded aspherical lens, a grounded aspherical glass lens, or a composite aspherical lens (aspherical resin is formed on the spherical glass lens. Thing). Glass molded aspherical lenses are preferable for mass production, and composite aspherical lenses have a high degree of design freedom because there are many types of glass materials that can serve as substrates. In particular, an aspherical lens using a high refractive index material is not easy to mold, so a composite aspherical lens is preferable. In the case of a single-sided aspherical surface, the advantages of the composite aspherical lens can be fully utilized.
  • the lens closest to the object side (first lens 111 in the example shown in FIG. 1) is a glass material powder in the lens closest to the object is placed in a 0.01 mol / l nitric acid aqueous solution.
  • the acid resistance value calculated as the mass loss (%) is DA1 when heated in a boiling water bath, it is preferably a lens made of a glass material that satisfies the following conditional expression (8). DA1 ⁇ 0.35 (8) If the upper limit of the conditional expression (8) is exceeded, when the lens on the most object side is exposed to an external environment, a chemical reaction such as so-called discoloration occurs and the optical characteristics of the wide-angle optical system 1 are increased.
  • the optical glass catalog of HOYA Co., Ltd. or the description of the optical glass catalog of Sumita Optical Glass Co., Ltd. is adopted for the numerical values and measuring methods described in the present invention.
  • the most object side lens (the first lens 11 in the example shown in FIG. 1) has a Knoop hardness of Hk1, a diameter of 43.7 mm (30 cm 2 on both sides), and a thickness of about 5 mm.
  • Per unit area when immersed in a well-stirred 50 ° C., 0.01 mol / l aqueous solution of pentasodium triphosphate (Na 5 P 3 O 10 ) for 1 hour.
  • the value of mass loss (mg / (cm 2 ⁇ h)) is DS1, it is preferable that one or both of the following conditional expressions (9) and (10) are satisfied.
  • a material that satisfies at least one of the conditional expressions (9) and (10), such as a glass material, is excellent in robustness, chemical resistance, waterproofness, and the like. Since the first lens 111 on the most object side is a lens made of such a material, for example, even if the lens on the most object side is exposed without the lens protection member being disposed in front of the wide-angle optical system 1, the first lens 111 is robust. It is excellent in the property, the chemical resistance, the waterproof property, etc., and the deterioration of the imaging performance can be suppressed. In particular, in an in-vehicle application, the front surface is often exposed, which is preferable.
  • FIG. 2 is a block diagram showing the configuration of the digital device in the embodiment.
  • the digital device 3 has an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a control unit 35, a storage unit 36, and an I / F unit for the imaging function. 37.
  • PDA personal digital assistant
  • Computers having an imaging function, such as personal computers and mobile computers may include these peripheral devices (for example, a mouse, a scanner, a printer, and the like).
  • the imaging unit 30 includes the wide-angle optical system 1 and the imaging element 15.
  • the wide-angle optical system 1 forms an optical image of a subject on a predetermined image plane, on the image sensor 15 in the example shown in FIG.
  • Light rays from the subject are imaged on the light receiving surface of the image sensor 15 by the wide-angle optical system 1 and become an optical image of the subject.
  • the imaging element 15 is an element that converts the optical image of the subject guided by the wide-angle optical system 1 into an electrical signal.
  • the optical image of the subject imaged by the wide-angle optical system 1 is R, It is converted into an electrical signal (image signal) of G and B color components, and is output to the image generation unit 31 as an image signal of each color of R, G, and B.
  • the image pickup device 15 is controlled by the control unit 35 to pick up either a still image or a moving image or to read out an output signal of each pixel in the image pickup device 15 (horizontal synchronization, vertical synchronization, transfer) and the like.
  • the image sensor 15 may be a solid-state image sensor such as a CCD or a CMOS, or may be a color image sensor or a monochrome image sensor.
  • the image generation unit 31 performs amplification processing, digital conversion processing, and the like on the analog output signal from the image sensor 15, and determines an appropriate black level, ⁇ correction, and white balance adjustment (WB adjustment) for the entire image. Then, known image processing such as contour correction and color unevenness correction is performed to generate image data of each pixel from the image signal.
  • the image data generated by the image generation unit 31 is output to the image data buffer 32.
  • the image data buffer 32 is a memory that temporarily stores image data and is used as a work area for performing processing described later on the image data by the image processing unit 33.
  • the image data buffer 32 is a volatile storage element. It consists of a certain RAM (Random Access Memory).
  • the image processing unit 33 is a circuit that performs predetermined image processing such as resolution conversion on the image data in the image data buffer 32.
  • the image processing unit 33 could not be corrected by the wide-angle optical system 1 such as a known distortion correction process for correcting distortion in the optical image of the subject formed on the light receiving surface of the image sensor 15. It may be configured to correct aberrations.
  • a wide-angle optical system a large distortion occurs compared to a normal optical system (an optical system that is not wide-angle).
  • the distortion correction an image distorted by aberration is corrected to a natural image having a similar shape similar to a sight seen with the naked eye and having substantially no distortion.
  • the imaging apparatus can be applied to a relatively wide range such as in-vehicle use or monitoring, and it is possible to provide a digital device such as an easy-to-use imaging apparatus (for example, a camera).
  • the image processing unit 33 may include a known peripheral illuminance decrease correction process for correcting the peripheral illuminance decrease in the optical image of the subject formed on the light receiving surface of the image sensor 15 as necessary.
  • a decrease in illuminance is likely to occur in the peripheral portion as compared with a normal optical system (an optical system that is not wide-angle).
  • illuminance drop may occur in the peripheral portion depending on the lens conditions.
  • the peripheral illuminance drop correction is executed by storing correction data for performing the peripheral illuminance drop correction in advance and multiplying the image (pixel) after photographing by the correction data.
  • the correction data is set to a predetermined value that corrects the decrease in illuminance caused by these factors Is done.
  • An image pickup apparatus can be applied to a relatively wide range such as in-vehicle use or monitoring use, and a digital device such as an easy-to-use image pickup apparatus (for example, a camera) is provided. It becomes possible.
  • the image processing unit performs predetermined image processing, it is possible to provide a digital device such as an imaging device that can output an image having a desired image quality.
  • the driving unit 34 is a circuit that performs focusing of the wide-angle optical system 1 by operating a lens driving device (not shown) that moves the lens in the optical axis direction based on a control signal output from the control unit 35.
  • the control unit 35 includes, for example, a microprocessor, a storage element, and peripheral circuits thereof, and includes an imaging unit 30, an image generation unit 31, an image data buffer 32, an image processing unit 33, a drive unit 34, a storage unit 36, and an I.
  • the operation of each part of the / F unit 37 is controlled according to its function.
  • the digital device 3 is controlled by the control unit 35 so as to execute at least one of the still image shooting and the moving image shooting of the subject.
  • the storage unit 36 is a storage circuit that stores image data generated by still image shooting or moving image shooting of a subject.
  • a ROM Read Only Memory
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • the storage unit 36 has a function as a still image memory and a moving image memory.
  • the I / F unit 37 is an interface that transmits / receives image data to / from an external device.
  • the I / F unit 37 is an interface that conforms to a standard such as USB or IEEE1394.
  • the following describes the imaging operation of the digital device 3 having such a configuration.
  • the control unit 35 controls each unit of the digital device 3 to shoot a still image, and operates a lens driving device (not shown) via the driving unit 34 to perform focusing. Do.
  • the focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor 15, converted into image signals of R, G, and B color components, and then output to the image generation unit 31.
  • the image signal is temporarily stored in the image data buffer 32, and after predetermined image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (display device) (not shown). .
  • the photographer can adjust the main subject so as to be within a desired position in the screen by referring to the display. In this state, when a so-called unillustrated shutter button is pressed, image data is stored in the storage unit 36 as a still image memory, and a still image is obtained.
  • control unit 35 controls each unit of the digital device 3 to perform moving image shooting.
  • the photographer refers to the display so that the image of the subject obtained through the wide-angle optical system 1 is adjusted so as to be in a desired position on the screen. Can do.
  • moving image shooting is started by pressing the shutter button.
  • the control unit 35 controls each unit of the digital device 3 to perform moving image shooting, and operates a lens driving device (not shown) via the driving unit 34 to perform focusing.
  • the focused optical image is periodically and repeatedly formed on the light receiving surface of the image sensor 15, converted into image signals of R, G, and B color components, and then output to the image generation unit 31.
  • the image signal is temporarily stored in the image data buffer 32, and after predetermined image processing is performed by the image processing unit 33, an image based on the image signal is displayed on a display (not shown). Then, when the shutter button is pressed again, the moving image shooting is completed.
  • the captured moving image is guided to and stored in the storage unit 36 as a moving image memory.
  • Such a digital device 3 can correspond to the high pixels of the image sensor 15, and includes the small wide-angle optical system 1 having better optical performance and an ultra-wide angle of view.
  • a simple imaging element 15 can be employed.
  • FIG. 3 is an external configuration diagram of a camera-equipped mobile phone showing an embodiment of a digital device.
  • 3A shows an operation surface of the mobile phone
  • FIG. 3B shows a back surface of the operation surface, that is, a back surface.
  • the mobile phone 5 is provided with an antenna 51 at the top, and on its operation surface, as shown in FIG. 3A, a rectangular display 52, activation of image shooting mode, still image shooting and moving image An image shooting button 53 for switching to shooting, a shutter button 55, and a dial button 56 are provided.
  • the cellular phone 5 incorporates a circuit for realizing a telephone function using a cellular phone network, and includes the above-described imaging unit 30, image generating unit 31, image data buffer 32, image processing unit 33, and driving unit. 34, the control part 35, and the memory
  • a control signal indicating the operation content is output to the control unit 35, and the control unit 35 executes an operation corresponding to the operation content.
  • a control signal indicating the operation content is output to the control unit 35, and the control unit 35 performs an operation corresponding to the operation content. In this way, a still image or a moving image is captured.
  • the wide-angle optical system 1 is attached to a predetermined position, and is a monitor camera that images a subject in a predetermined area around the attached position, for example, an in-vehicle monitor camera that images a peripheral area of a vehicle. It is suitably mounted.
  • FIG. 4 is a diagram for explaining an overview of an in-vehicle monitor camera showing an embodiment of a digital device.
  • the in-vehicle monitor camera 7 is installed at a predetermined position at the rear of the vehicle 9 so as to image the rear of the vehicle 9, for example, and the captured subject image is installed on a dashboard, for example. Is displayed on the monitor (not shown).
  • the in-vehicle monitor camera 7 is normally attached to the vehicle 9 in a posture inclined obliquely downward so that the optical axis AX faces obliquely downward because an upward visual field of the vehicle 9 is not required.
  • the vertical direction it has an angle of view 2 ⁇ with the horizontal line passing through the mounting position of the monitor camera 7 as the upper end.
  • the angle of view in the left-right direction is also 2 ⁇ as in the up-down direction.
  • the angle of view may be different between the up-down direction and the left-right direction without being limited thereto.
  • the process flow when the vehicle-mounted camera 7 having such a configuration is used as a back monitor is outlined below.
  • the user drives the vehicle body 7 back while looking at a monitor (display device) (not shown) installed on the dashboard of the vehicle body 9.
  • a monitor display device
  • the driver performs a predetermined operation such as operating an operation button (not shown) provided on the dashboard. I do.
  • the control unit 35 controls the drive unit 34 to adjust the orientation of the imaging unit 30. Subsequently, the control unit 35 drives the lens driving device of the imaging unit 30 to perform focusing of the wide-angle optical system 1. As a result, a focused optical image is formed on the light receiving surface of the image sensor 15, converted into image signals of R, G, and B color components, and then output to the image generator 31. The image signal is temporarily stored in the image data buffer 32, and image processing is performed by the image processing unit 33. In this way, a substantially natural image of the area that the driver wants to confirm is displayed on a monitor installed on the dashboard.
  • the wide-angle optical system is configured by the front group, the stop, and the rear group in order from the object side to the image side, and the front group is negative in order from the object side to the image side.
  • 1 lens, a negative second lens, and a positive third lens, and the rear group is composed of a positive fourth lens and a positive fifth lens, and is third from the image plane side surface of the second lens.
  • the ratio of the distance from the lens to the object side and the distance from the object side surface of the first lens to the image plane side of the fifth lens is between 0.01 and 0.18.
  • FIG. 5 is a cross-sectional view showing the arrangement of lens groups in the wide-angle optical system of Example 1.
  • 11 and 12 are aberration diagrams of the wide-angle optical system of Example 1.
  • FIG. 5 is a cross-sectional view showing the arrangement of lens groups in the wide-angle optical system of Example 1.
  • 11 and 12 are aberration diagrams of the wide-angle optical system of Example 1.
  • the wide-angle optical system 1A of Embodiment 1 includes a front group Grf, a stop ST, and a rear group Grr in order from the object side to the image side.
  • a negative meniscus lens first lens L1 convex toward the object side
  • a negative biconcave lens second lens L2
  • a positive meniscus lens third lens L3 convex toward the object side
  • the aperture stop ST is an aperture stop
  • the rear group Grr includes a biconvex positive lens (fourth lens L4) and a positive lens (fifth lens L5).
  • each of the second to fifth lenses L2 to L5 is aspheric on both surfaces, and the fourth and fifth lenses L4 and L5 are lenses made of a resin material such as plastic.
  • the fifth lens L5 has inflection points on both sides.
  • the light receiving surface of the imaging element SR is disposed via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • the number ri (i 1, 2, 3,%) Given to each lens surface is the i-th lens surface when counted from the object side (however, the cemented surface of the lens is 1). It is assumed that a surface marked with “*” in ri is an aspherical surface.
  • the aperture stop ST, both surfaces of the parallel plate FT, and the light receiving surface of the image sensor SR are also handled as one surface. The meanings of such handling and symbols are the same for Examples 2 to 6 described later (FIGS. 6 to 10). However, it does not mean that they are exactly the same.
  • the lens surface arranged closest to the object side is assigned the same reference numeral (r1). However, this does not mean that these curvatures are the same throughout the first to sixth embodiments.
  • a light beam incident from the object side sequentially has a first lens L1, a second lens L2, a third lens L3, an aperture stop ST, a fourth lens L4, and a fifth lens along the optical axis AX.
  • An optical image of the object is formed on the light receiving surface of the image sensor SR through the lens L5 and the parallel plate FT.
  • the optical image is converted into an electrical signal.
  • This electrical signal is subjected to predetermined digital image processing as necessary, and recorded as a digital video signal, for example, in a memory of a digital device such as a digital camera or transmitted to another digital device by wired or wireless communication.
  • Construction data for each lens in the wide-angle optical system 1A of Example 1 is shown below.
  • r is the radius of curvature of each surface (unit is mm)
  • d is the distance between the lens surfaces on the optical axis in the infinite focus state (axis upper surface distance)
  • nd is The refractive index “ ⁇ d” of each lens with respect to the d-line (wavelength 587.56 nm) indicates the Abbe number. Since the aperture stop ST, both surfaces of the plane parallel plate FT, and each of the light receiving surfaces of the image sensor SR are flat surfaces, their radii of curvature are ⁇ (infinite).
  • the aspherical shape of the optical surface is defined by the following equation using a local orthogonal coordinate system (x, y, z) in which the surface vertex is the origin and the direction from the object toward the image sensor is the positive z-axis direction. is doing.
  • z (h) ch 2 / [1 + ⁇ ⁇ 1 ⁇ (1 + K) c 2 h 2 ⁇ ] + ⁇ Ai ⁇ h i
  • z (h) Amount of displacement in the z-axis direction at the position of height h (based on the surface vertex)
  • Ai i-th order aspheric coefficient
  • K quadratic surface parameter (cone coefficient)
  • “En” means “10 to the power of n”.
  • E + 001” means “10 to the power of +1”
  • E-003 means “10 to the power of ⁇ 3”.
  • FIGS. 11 and 12 Each aberration in the wide-angle optical system 1A of Example 1 under the lens arrangement and configuration as described above is shown in FIGS. 11 and 12, respectively.
  • 11A shows spherical aberration (sinusoidal condition) (LONGITUDINALHERSPHERICAL ABERRATION)
  • FIG. 11B shows astigmatism (ASTIGMATISM FIELDCURVER)
  • FIG. 11C shows distortion aberration ( DISTORTION).
  • the abscissa of the spherical aberration represents the focal position deviation in mm, and the ordinate represents the value normalized by the incident height.
  • the horizontal axis of astigmatism represents the focal position shift in mm, and the vertical axis represents the image height in mm.
  • the horizontal axis of the distortion aberration represents the actual image height as a percentage (%) with respect to the ideal image height, and the vertical axis represents the angle of view in units of degrees (here, up to a half angle of view of 90 degrees). Show). Moreover, in the figure of astigmatism, the broken line represents sagittal and the solid line represents tangential.
  • aberrations of three wavelengths, d-line (wavelength 587.56 nm) are shown by a one-dot chain line
  • g-line wavelength 435.84 nm
  • C-line wavelength 656.28 nm
  • FIG. 12 shows lateral aberration
  • the left side shows the case of a tangential (meridional) surface
  • the right side shows the case of a sagittal (radial) surface
  • the case on the axis respectively.
  • the incident ray height with respect to the chief ray is expressed in mm
  • the vertical axis represents the deviation from the chief ray on the image plane in mm.
  • the lateral aberration diagram shows aberrations at three wavelengths: solid line d line (wavelength 587.56 nm), broken line g line (wavelength 435.84 nm), and alternate long and short dash line C line (wavelength 656.28 nm). is there.
  • FIG. 6 is a cross-sectional view showing the arrangement of lens groups in the wide-angle optical system of Example 2.
  • FIGS. 13 and 14 are aberration diagrams of the wide-angle optical system of Example 2.
  • the wide-angle optical system 1B includes a front group Grf, a stop ST, and a rear group Grr in order from the object side to the image side.
  • a negative meniscus lens first lens L1 convex toward the object side
  • a biconcave negative lens second lens L2
  • a biconvex positive lens third lens L3
  • the stop ST is an aperture stop
  • the rear group Grr includes a biconvex positive lens (fourth lens L4) and a positive lens (fifth lens L5). This is a positive optical system.
  • Each of the third and fifth lenses L3 and L5 is an aspherical surface on both sides, and the second lens L2 is a single-sided aspherical surface having an aspheric image side surface.
  • the fourth and fifth lenses L4 and L5 are lenses made of a resin material such as plastic.
  • the fifth lens L5 has an inflection point on the object side surface.
  • the light receiving surface of the imaging element SR is disposed via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • Construction data for each lens in the wide-angle optical system 1B of Example 2 is shown below.
  • FIG. 7 is a sectional view showing the arrangement of lens groups in the wide-angle optical system of Example 3.
  • 14 and 15 are aberration diagrams of the wide-angle optical system of Example 3.
  • FIG. 7 is a sectional view showing the arrangement of lens groups in the wide-angle optical system of Example 3.
  • 14 and 15 are aberration diagrams of the wide-angle optical system of Example 3.
  • the wide-angle optical system 1C includes a front group Grf, a stop ST, and a rear group Grr in order from the object side to the image side.
  • a negative meniscus lens first lens L1 convex toward the object side
  • a negative lens second lens L2
  • a positive lens third lens L3
  • the aperture stop ST is an aperture stop
  • the rear group Grr is a positive / positive lens composed of a biconvex positive lens (fourth lens L4) and a positive lens (fifth lens L5). It is an optical system.
  • Each of the second, third and fifth lenses L2, L3, and L5 is aspheric on both sides.
  • the second, fourth, and fifth lenses L2, L4, and L5 are lenses made of a resin material such as plastic
  • the third lens L3 is an aspheric lens made of a glass material.
  • the fifth lens L5 has inflection points on both sides.
  • the light receiving surface of the imaging element SR is disposed via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • Construction data of each lens in the wide-angle optical system 1C of Example 3 is shown below.
  • FIG. 8 is a sectional view showing the arrangement of lens groups in the wide-angle optical system of Example 4.
  • FIGS. 17 and 18 are aberration diagrams of the wide-angle optical system of Example 4.
  • the wide-angle optical system 1D includes, in order from the object side to the image side, a front group Grf, a stop ST, and a rear group Grr.
  • a negative meniscus lens first lens L1 convex toward the object side
  • a negative lens second lens L2
  • a positive lens third lens L3
  • the aperture stop ST is an aperture stop
  • the rear group Grr is a positive / positive lens composed of a biconvex positive lens (fourth lens L4) and a positive lens (fifth lens L5). It is an optical system.
  • Each of the second to fifth lenses L2 to L5 has two aspheric surfaces.
  • the second, fourth, and fifth lenses L2, L4, and L5 are lenses made of a resin material such as plastic, and the third lens L3 is an aspheric lens made of a glass material.
  • the fifth lens L5 has an inflection point on the object side surface.
  • the light receiving surface of the imaging element SR is disposed via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • Construction data of each lens in the wide-angle optical system 1D of Example 4 is shown below.
  • FIG. 9 is a sectional view showing the arrangement of lens groups in the wide-angle optical system of Example 5.
  • 19 and 20 are aberration diagrams of the wide-angle optical system of Example 5.
  • the wide-angle optical system 1E of Example 5 includes a front group Grf, a stop ST, and a rear group Grr in order from the object side to the image side and from the object side to the image side.
  • the front group Grf includes, in order from the object side to the image side, a negative meniscus lens (first lens L1) convex to the object side, a negative biconcave lens (second lens L2), and a positive lens (third lens).
  • the aperture stop ST is an aperture stop
  • the rear group Grr is a positive meniscus lens (fourth lens L4) convex toward the object side, and a positive lens ( And a positive optical system composed of a fifth lens L5).
  • Each of the second to fifth lenses L2 to L5 has two aspheric surfaces.
  • the second, fourth, and fifth lenses L2, L4, and L5 are lenses made of a resin material such as plastic, and the third lens L3 is an aspheric lens made of a glass material.
  • the fifth lens L5 has an inflection point on the object side surface.
  • the light receiving surface of the imaging element SR is disposed via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • Construction data for each lens in the wide-angle optical system 1E of Example 5 is shown below.
  • FIG. 10 is a sectional view showing the arrangement of lens groups in the wide-angle optical system of Example 6.
  • 21 and 22 are aberration diagrams of the wide-angle optical system of Example 6.
  • FIG. 10 is a sectional view showing the arrangement of lens groups in the wide-angle optical system of Example 6.
  • the wide-angle optical system 1F of Example 6 includes a front group Grf, a stop ST, and a rear group Grr in order from the object side to the image side and from the object side to the image side.
  • the front group Grf includes, in order from the object side to the image side, a negative meniscus lens (first lens L1) convex to the object side, a negative biconcave lens (second lens L2), and a positive lens (third lens).
  • the stop ST is an aperture stop
  • the rear group Grr includes a positive lens (fourth lens L4), a positive lens (fifth lens L5), and the like.
  • This is a positive optical system composed of Each of the second to fifth lenses L2 to L5 has two aspheric surfaces.
  • the second, fourth, and fifth lenses L2, L4, and L5 are lenses made of a resin material such as plastic, and the third lens L3 is an aspheric lens made of a glass material.
  • the fifth lens L5 has an inflection point on the object side surface.
  • the light receiving surface of the imaging element SR is disposed via a parallel plate FT as a filter.
  • the parallel plate FT is a cover glass of various optical filters or an image sensor.
  • Construction data of each lens in the wide-angle optical system 1F of Example 6 is shown below.
  • Table 1 shows numerical values when the above-described conditional expressions (1) to (10) are applied to the variable magnification optical systems 1A to 1F of Examples 1 to 6 listed above.
  • the wide-angle optical systems 1A to 1F in Embodiments 1 to 6 satisfy the requirements according to the present invention, and as a result, can cope with the high pixels of the image sensor, and can achieve better optical performance.
  • the wide-angle optical systems 1A to 1F in Examples 1 to 6 above have a full field angle of approximately 180 degrees (half angle of view approximately 90 degrees) or more, more specifically 200 degrees (half field angle of 100 degrees) or more. Ultra-wide angle can be achieved.
  • AX Optical axis 1, 1A to 1F Wide-angle optical system 3 Digital device 5
  • Mobile phone 7 Monitor camera 9
  • Vehicle 11 Grf front group 12, ST aperture 13, Grr rear group 15, SR image sensor 111, L1 first lens 112, L2 Second lens 113, L3 Third lens 114, L4 Fourth lens 131, L5 Fifth lens

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

 本発明によれば、広角光学系を、物体側より像側へ順に前群と絞りと後群とで構成し、前群を物体側より像側へ順に負の第1レンズと負の第2レンズと正の第3レンズとで構成し、後群を正の第4レンズと正の第5レンズとで構成し、第2レンズの像面側の面から第3レンズの物体側までの距離と、第1レンズの物体側の面から第5レンズの像面側までの距離との比を、0.01から0.18の間とすることで、撮像素子の高画素に対応することができ、より良好な光学性能および全画角180度(半画角90度)以上の超広画角を有する小型な広角光学系を提供することができる。

Description

広角光学系および撮像装置
 本発明は、例えば車載カメラや監視カメラ等のモニタ用途の撮像装置に好適に用いられる、広画角でコンパクトな広角光学系、特に、全画角180度(半画角90度)以上の超広角な超広角光学系に好適な広角光学系に関する。そして、本発明は、この広角光学系を備える撮像装置に関する。
 周囲の映像情報を少数のカメラで広範囲に撮像する場合、一般に、大きな撮影画角(広画角)を有する広角光学系が採用される。例えば、車載用や監視用等の用途では、このような広角光学系が利用されている。
 このような広角光学系は、例えば、特許文献1から特許文献3に開示されている。この特許文献1に開示の広角光学系では、4、5枚程度の少ないレンズ枚数で、超広角の際に問題となり易い、いわゆるシェーディングを抑制することができている。また、特許文献2に開示の広角光学系では、4枚という少ないレンズ枚数で、超広角が達成されている。また、特許文献3に開示の広角光学系では、6枚のレンズを使用することによって、比較的良好な光学性能が達成されている。
特開2005-227426号公報 特開2006-259704号公報 特開2007-249073号公報
 ところで、近年では、車載用や監視用等の用途において、より高解像度でかつ小型化された光学系が要求されている。車内に設置されるカメラであれば、居住空間や運転者の視界を遮らないという実用的な観点等から、また車外に設置されるカメラであれば、車の美観および安全上の観点等から、より小型化された光学系が要求されている。また、撮像素子の高画素化に伴って、それに対応しながら小型で良好な光学性能を有した光学系も求められている。
 特許文献1に開示の広角光学系では、物体側より像側へ負の光学的パワーを有するレンズが3枚配置されている。このため、特許文献1に開示の広角光学系は、光学系全長をコンパクト化(短小化)し難いという課題があった。
 また、特許文献2に開示の広角光学系では、その少ないレンズ枚数によって撮像素子の高画素化に対応した光学系を達成することが困難であるという課題があった。
 一方、特許文献3に開示の広角光学系では、6枚のレンズを使用することによって比較的良好な光学性能が達成されているが、このように6枚のレンズを使用しているため、光学系の小型化に対応することに課題があった。
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、撮像素子の高画素に対応することができ、より良好な光学性能および全画角180度(半画角90度)以上の超広画角を有する小型な広角光学系を提供することである。
 本発明は、上記技術的課題を解決するために、以下のような構成を有する広角光学系および撮像装置を提供するものである。なお、以下の説明において使用されている用語は、本明細書においては、次の通り定義されているものとする。
(a)屈折率は、d線の波長(587.56nm)に対する屈折率である。
(b)アッベ数は、d線、F線(486.13nm)、C線(656.28nm)に対する屈折率を各々nd、nF、nC、アッベ数をνdとした場合に、
 νd=(nd-1)/(nF-nC)
の定義式で求められるアッベ数νdをいうものとする。
(c)面形状に関する表記は、近軸曲率に基づいた表記である。したがって、レンズについて、「凹」、「凸」または「メニスカス」という表記を用いた場合、これらは光軸近傍(レンズの中心付近)でのレンズ形状を表しているものとする。
(d)複合型非球面レンズに用いる樹脂材料は、基板ガラス材料の付加的機能しかないため、単独の光学部材として扱わず、基板ガラス材料が非球面を有する場合と同等の扱いとし、レンズ枚数も1枚として取り扱うものとする。そして、レンズ屈折率も基板となっているガラス材料の屈折率とする。複合型非球面レンズは、基板となるガラス材料の上に薄い樹脂材料を塗布して非球面形状としたレンズである。
 1.物体側より像側へ順に、前群と、絞りと、後群とから構成されて成り、
 前記前群は、物体側より像側へ順に、負の光学的パワーを有する第1レンズと、負の光学的パワーを有する第2レンズと、正の光学的パワーを有する第3レンズから構成されてなり、
 前記後群は、正の光学的パワーを有する第4レンズと、正の光学的パワーを有する第5レンズとから構成されてなり、
 下記(1)の条件式を満足することを特徴とする広角光学系。
 0.01<L23/L15<0.18   ・・・(1)
  ただし、
   L23:前記第2レンズの像面側の面から前記第3レンズの物体側までの距離
   L15:前記第1レンズの物体側の面から前記第5レンズの像面側までの距離
 このような構成の広角光学系では、第1から第5レンズを上記の順に配置することによって、広画角、特に超広画角が達成されつつ、かつ、より良好な光学性能が維持されながら光学系の小型化も達成される。また、物体側より像側へ順に負レンズ2枚と正レンズ1枚とを配置し、負レンズと正レンズとの間隔を狭めることによって、光学全長の小型化(短縮化)および第1から第3レンズそれぞれの有効径を小さくすることが可能となる。そして、条件式(1)の上限を上回ると、負レンズと正レンズとの間隔が拡がってしまい、光学長およびレンズ系が大きくなって、好ましくない。また、条件式(1)の下限を下回ると、負レンズと正レンズとの間隔が狭まり、第2レンズの像側の面の曲率と第3レンズの物体側の面の曲率とが近くなる。このため、設計の自由度が減り諸収差を良好に補正することが困難となって、好ましくない。条件式(1)を満足することで、各像高に入射する光の第5レンズの通過位置をずらすことができる。その結果、第5レンズに収差補正板効果を持たせることができ、諸収差を良好に補正することができる。
 2.下記(2)の条件式を満足することを特徴とする前記1に記載の広角光学系。
 20<ν3<35   ・・・(2)
  ただし、
   ν3:前記第3レンズのアッベ数
 物体側からいずれも負の光学的パワーを有する第1および第2レンズを配置することで、大きな画角の光を集光させ、全画角180度以上の超広角を達成している。しかし、その結果、上述した2枚の負レンズでは大きな倍率色収差が発生している。その倍率色収差を補正するためには、正の光学的パワーを有する第3レンズのアッベ数ν3を小さくする必要がある。
 この構成において、条件式(2)の上限を上回ると、いずれも負の光学的パワーを有する第1および第2レンズと正の光学的パワーを有する第3レンズとにおけるアッベ数のバランスが崩れ、軸上色収差と倍率色収差を共に良好に補正することが困難となって、好ましくない。
 3.下記(3)の条件式を満足することを特徴とする前記1または2に記載の広角光学系。
 45<ν4<85   ・・・(3)
  ただし、
   ν4:前記第4レンズのアッベ数
 何れも負の光学的パワーを有する第1および第2レンズによって発生する倍率色収差を正の光学的パワーを有する第3レンズで補正しているが、軸上色収差を良好に補正するためには、正の光学的パワーを有する第4レンズのアッベ数ν4を適切に配置する必要がある。
 この構成において、条件式(3)の下限を下回ると、前群と後群とにおけるアッベ数のバランスが崩れ、軸上色収差を良好に補正することが困難となって好ましくない。
 4.前記第5レンズは、少なくとも1面が変曲点を持つ非球面であることを特徴とする前記1から3のいずれか1項に記載の広角光学系。
 この構成によれば、第5レンズの非球面に変曲点を設けることによって、諸収差を補正しつつ、かつ、周辺光束における例えば撮像素子への入射角を適切に設定することに効果がある。
 5.前記第5レンズは、両面が非球面であることを特徴とする前記1から4のいずれか1項に記載の広角光学系。
 この構成によれば、第5レンズの両面を非球面とすることによって、歪曲収差、非点収差、球面収差およびコマ収差の補正しつつ、光学全長を小さくすることに効果がある。
 6.下記(4)の条件式を満足することを特徴とする前記1から5のいずれか1項に記載の広角光学系。
 0<Fr/Ff<1   ・・・(4)
  ただし、
   Ff:前記前群の焦点距離
   Fr:前記後群の焦点距離
 この構成において、条件式(4)の下限を下回ると、いわゆるレトロフォーカスとなるため、バックフォーカスが伸びて、光学系を小型化することが困難になってしまい、好ましくない。また、条件式(4)の上限を上回ると、前群の正の光学的パワーが強くなるため、超広角の画角を達成することが困難となってしまい、好ましくない。
 7.下記(5)の条件式を満足することを特徴とする前記1から6のいずれか1項に記載の広角光学系。
 0.3<f4/f5<7   ・・・(5)
  ただし、
   f4:前記第4レンズの焦点距離
   f5:前記第5レンズの焦点距離
 この構成において、条件式(5)の上限を上回ると、第4レンズの光学的パワーが強くなって第4レンズの偏芯感度が高くなることから、製造難易度が上がり、生産性の悪化やコスト増に繋がって、好ましくない。また、条件式(5)の下限を下回ると、第5レンズの光学的パワーが強くなって第5レンズの偏芯感度が高くなることから、製造難易度が上がり生産性の悪化やコスト増に繋がってしまい、好ましくない。
 8.下記(6)の条件式を満足することを特徴とする前記1から7のいずれか1項に記載の広角光学系。
 -5<R4f/R4r<0   ・・・(6)
  ただし、
   R4f:前記第4レンズの物体側の曲率半径
   R4r:前記第4レンズの像面側の曲率半径
 この構成において、条件式(6)の上限を上回ると、いわゆるメニスカス形状となることから、小型化を図りながら絞りからの光束を第5レンズへ導くためには、第4レンズの光学的パワーが強くなる。このため、球面収差、非点収差およびコマ収差を良好に補正することが困難となってしまい、好ましくない。また、条件式(6)の下限を下回ると、第4レンズの像側面の曲率や面角度が大きくなりすぎ、製造困難になってしまう。
 9.下記(7)の条件式を満足することを特徴とする前記1から8のいずれか1項に記載の広角光学系。
 0.01<L45/L15<0.3   ・・・(7)
  ただし、
   L45:前記第4レンズの像面側の面から前記第5レンズの物体側までの距離
   L15:前記第1レンズの物体側の面から前記第5レンズの像面側までの距離
 この構成において、条件式(7)の上限を上回ると、光学全長が長くなるため、小型化が困難となってしまい、好ましくない。また、条件式(7)の下限を下回ると、第4レンズと第5レンズとの間隔が狭まり、第4レンズおよび第5レンズを通過する光束がほぼ同じ位置を通過するため、収差を良好に補正することが難しくなり、好ましくない。また、条件式(7)の範囲内であれば、第4レンズと第5レンズとの通過位置が異なるため、特に第5レンズが非球面を有する場合では、収差を良好に補正することが可能となる。
 10.前記第2から第4レンズは、それぞれ、少なくとも1面の非球面を有することを特徴とする前記1から9のいずれか1項に記載の広角光学系。
 この構成によれば、第2から第4レンズに少なくとも1面の非球面を付加することによって、諸収差を低減しつつ、光学全長を小さくすることに効果がある。
 11.前記第1レンズは、ガラス材料製レンズであることを特徴とする前記1から10のいずれか1項に記載の広角光学系。
 この構成によれば、第1レンズをガラス材料製レンズで構成することによって、頑健性、耐薬品性および耐水性等において、その信頼性を確保することが可能となる。
 12.前記第5レンズは、樹脂材料製レンズであることを特徴とする前記1から11のいずれか1項に記載の広角光学系。
 この構成によれば、第5レンズを樹脂材料製レンズにすることによって、低コストで高性能なレンズを得ることが可能となる。
 13.前記1から12のいずれか1項に記載の広角光学系と、
 前記広角光学系で形成された被写体の光学像を撮像する撮像素子とを有することを特徴とする撮像装置。
 この構成によれば、比較的広画角な広角光学系を備えた撮像装置の提供が可能となる。
 14.前記撮像素子の出力に対し、所定の画像処理を行う画像処理部をさらに有することを特徴とする前記13に記載の撮像装置。
 この構成によれば、画像処理部が所定の画像処理を行うので、所望の画質を備えた画像を出力することができる撮像装置の提供が可能となる。
 15.前記所定の画像処理は、前記撮像素子の受光面上に形成される前記被写体の光学像における歪みを補正する歪補正処理を含むことを特徴とする前記14に記載の撮像装置。
 広角光学系においては、通常の光学系(広角でない光学系)と比較して大きな歪曲収差が発生する。この構成によれば、歪曲収差を画像処理で補正することによって、例えば車載用や監視用等の比較的広い範囲に撮像装置を適用することができ、使い勝手の良い撮像装置(例えばカメラ)等のデジタル機器を提供することが可能となる。
 16.前記所定の画像処理は、前記撮像素子の受光面上に形成される前記被写体の光学像における周辺照度落ちを補正する照度補正処理を含むことを特徴とする前記14または15に記載の撮像装置。
 また、広角光学系においては、通常の光学系(広角でない光学系)と比較して周辺部で照度落ちが発生しやすい。特に、上記の第4および第5レンズは、正の光学的パワーを有しているため、レンズの条件によっては周辺部で照度落ちが生じることがある。この構成によれば、周辺部の照度落ちを画像処理で補正することによって、例えば車載用や監視用等の比較的広い範囲に撮像装置を適用することができ、使い勝手の良い撮像装置(例えばカメラ)等のデジタル機器を提供することが可能となる。
 本発明によれば、広角光学系を、物体側より像側へ順に前群と絞りと後群とで構成し、前群を物体側より像側へ順に負の第1レンズと負の第2レンズと正の第3レンズとで構成し、後群を正の第4レンズと正の第5レンズとで構成し、第2レンズの像面側の面から第3レンズの物体側までの距離と、第1レンズの物体側の面から第5レンズの像面側までの距離との比を、0.01から0.18の間とすることで、撮像素子の高画素に対応することができ、より良好な光学性能および超広画角を有する小型な広角光学系および撮像装置を提供することができる。
実施形態における広角光学系の説明のための、その構成を模式的に示したレンズ断面図である。 実施形態におけるデジタル機器の構成を示すブロック図である。 デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。 デジタル機器の一実施形態を示す車載用のモニタカメラの概要を説明するための図である。 実施例1の広角光学系におけるレンズ群の配列を示す断面図である。 実施例2の広角光学系におけるレンズ群の配列を示す断面図である。 実施例3の広角光学系におけるレンズ群の配列を示す断面図である。 実施例4の広角光学系におけるレンズ群の配列を示す断面図である。 実施例5の広角光学系におけるレンズ群の配列を示す断面図である。 実施例6の広角光学系におけるレンズ群の配列を示す断面図である。 実施例1の広角光学系の収差図(その1)である。 実施例1の広角光学系の収差図(その2)である。 実施例2の広角光学系の収差図(その1)である。 実施例2の広角光学系の収差図(その2)である。 実施例3の広角光学系の収差図(その1)である。 実施例3の広角光学系の収差図(その2)である。 実施例4の広角光学系の収差図(その1)である。 実施例4の広角光学系の収差図(その2)である。 実施例5の広角光学系の収差図(その1)である。 実施例5の広角光学系の収差図(その2)である。 実施例6の広角光学系の収差図(その1)である。 実施例6の広角光学系の収差図(その2)である。
 以下、本発明に係る実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。
 <広角光学系の説明>
 図1は、実施形態における広角光学系の説明のための、その構成を模式的に示したレンズ断面図である。図1および図5から図10のレンズ断面図において、図の左側を物体側、図の右側を像側とする。
 図1において、この広角光学系1は、所定の結像面上に、例えば、光学像を電気的な信号に変換する撮像素子15の受光面(像面)上に物体(被写体)の光学像を形成可能な構成とされている撮像装置に好適に備えられるものであって、物体側より像側へ順に、前群11と、絞り12と、後群13とから構成されて成り、前群11は、物体側より像側へ順に、負の光学的パワーを有する第1レンズ111と、負の光学的パワーを有する第2レンズ112と、正の光学的パワーを有する第3レンズ113とから構成されて成る負負正の光学系であり、後群13は、正の光学的パワーを有する第4レンズ131と、正の光学的パワーを有する第5レンズ132とから構成されて成る正正の光学系である。なお、図1で例示した広角光学系1は、後述する実施例1の広角光学系1A(図5)と同じ構成である。
 図1では、第1レンズ111は、物体側に凸の負メニスカスレンズであり、第2レンズは、両凹の負レンズであり、そして、第3レンズ113は、両凸の正レンズである。絞り12は、開口絞りである。また、第4レンズ131は、両凸の正レンズであり、第5レンズ132は、正レンズである。本実施形態では、第5レンズ132は、両面に変曲点を有している。第2から第5レンズ112、113、131、132は、本実施形態では、両面が非球面である。そして、第4および第5レンズ131、132は、本実施形態では、例えばプラスチック等の樹脂材料製レンズである。
 このような図1に示す広角光学系1では、第1から第5レンズ111、112、113、131、132をこの順に配置することによって、広画角、特に全画角180度以上の超広画角が達成されつつ、かつ、より良好な光学性能が維持されながら広角光学系1の小型化も達成される。また、物体側より像側へ順に第1および第2レンズ111、112の負レンズ2枚と第3レンズ113の正レンズ1枚とを配置し、負レンズの第2レンズ112と正レンズの第3レンズとの間隔を狭めることによって、光学全長の小型化(短縮化)および第1から第3レンズ111~113それぞれの有効径を小さくすることが可能となる。
 そして、本実施形態の広角光学系1は、第2レンズ112の像面側の面から第3レンズ113の物体側までの距離をL23とし、第1レンズ111の物体側の面から第5レンズ132の像面側までの距離をL15とする場合に、下記(1)の条件式を満足している。
0.01<L23/L15<0.18   ・・・(1)
 条件式(1)の上限を上回ると、負レンズの第2レンズ112と正レンズの第3レンズとの間隔が拡がってしまい、光学全長が大きくなって、好ましくない。また、条件式(1)の下限を下回ると、負レンズの第2レンズ112と正レンズの第3レンズとの間隔が狭まり、第2レンズ112の像側の面の曲率と第3レンズ113の物体側の面の曲率とが近くなる。このため、設計の自由度が減り諸収差を良好に補正することが困難となって、好ましくない。
 条件式(1)を満足することで、各像高に入射する光の第5レンズ132の通過位置をずらすことができる。その結果、第5レンズ132に収差補正板効果を持たせることができ、諸収差を良好に補正することができる。
 このような構成の広角光学系1によれば、撮像素子15の高画素に対応することができ、より良好な光学性能および超広画角を有する小型な広角光学系1が提供される。
 さらに、この広角光学系1の像側には、フィルタ14や撮像素子15が配置されている。フィルタ14は、平行平板状の光学素子であり、各種光学フィルタや、撮像素子のカバーガラス等を模式的に表したものである。使用用途、撮像素子、カメラの構成等に応じて、ローパスフィルタ、赤外線カットフィルタ等の光学フィルタを適宜に配置することが可能である。撮像素子15は、この広角光学系1によって結像された被写体の光学像における光量に応じてR(赤)、G(緑)、B(青)の各成分の画像信号に光電変換して所定の画像処理回路(図1に不図示)へ出力する素子である。これらによって物体側の被写体の光学像が、広角光学系1によってその光軸AXに沿って撮像素子15の受光面まで導かれ、撮像素子15によって被写体の光学像が撮像される。したがって、本実施形態では、このような広角光学系1を備えた撮像装置も提供される。
 また、この広角光学系1では、第2から第4レンズ112、113、131は、それぞれ、少なくとも1面の非球面を有している。図1に示す例では、第2から第4レンズ112、113、131は、それぞれ、両面が非球面である。したがって、この広角光学系1では、効果的に、諸収差を低減しつつ、光学全長を小さくすることができる。
 また、この広角光学系1では、第1レンズ111は、ガラス材料製レンズである。したがって、この広角光学系1では、頑健性、耐薬品性および耐水性等において、その信頼性を確保することが可能となる。特に、車載用途において、広角光学系1のレンズ最前面は、剥き出しになることが多いことから、頑健性、耐薬品性および防水性等が求められる。したがって、この広角光学系1では、頑健性、耐薬品性および防水性等の点で有利である。
 また、この広角光学系1では、第5レンズ132は、樹脂材料製レンズである。したがって、この広角光学系1では、低コストで高性能なレンズを得ることが可能となる。
 また、この広角光学系1では、第5レンズ132は、少なくとも1面が変曲点を持つ非球面である。図1に示す例では、第5レンズ132は、両面に変曲点を持つ非球面である。このように第5レンズ132がその非球面に変曲点を有しているので、広角光学系1には、諸収差を補正しつつ、かつ、周辺光束における例えば撮像素子への入射角を適切に設定することに効果がある。そして、第5レンズ132が両面に非球面を有しているので、広角光学系1には、歪曲収差、非点収差、球面収差およびコマ収差の補正しつつ、光学全長を小さくすることに効果がある。
 また、この広角光学系1では、最物体側の第1レンズ111を除き、空気と面しているレンズ面は、すべて非球面である。図1に示す例では、第2から第5レンズ112、113、131、132は、それぞれ、両面が非球面である。したがって、この広角光学系1では、広角光学系1のコンパクト化と高画質化との両立を図ることができる。
 また、この広角光学系1において、第3レンズ113のアッベ数をν3とする場合に、下記(2)の条件式を満足することが好ましい。
20<ν3<35   ・・・(2)
 物体側からいずれも負の光学的パワーを有する第1および第2レンズ111、112を配置することで、大きな画角の光を集光させ、全画角180度以上の超広角を達成している。しかし、その結果、上述した2枚の負レンズでは大きな倍率色収差が発生している。その倍率色収差を補正するためには、正の光学的パワーを有する第3レンズ113のアッベ数ν3を小さくする必要がある。
 この構成において、条件式(2)の上限を上回ると、いずれも負の光学的パワーを有する第1および第2レンズ111、112と正の光学的パワーを有する第3レンズ113とにおけるアッベ数のバランスが崩れ、軸上色収差と倍率色収差を共に良好に補正することが困難となって、好ましくない。また、条件式(2)の下限を下回ると、補正過多となり、同じく倍率色収差を良好に補正することが困難となる。
 また、この広角光学系1において、下記(2’)の条件式を満足することがより好ましい。
ν3<30   ・・・(2’)
 このような条件を満たすと、第1および第2レンズ111、112と第3レンズ113とにおけるアッベ数のバランスが良好に保たれ、軸上色収差と倍率色収差を共に良好に補正することができ、好ましい。
 また、この広角光学系1において、第4レンズ131のアッベ数をν4とする場合に、下記(2)の条件式を満足することが好ましい。
45<ν4<85   ・・・(3)
 何れも負の光学的パワーを有する第1および第2レンズ111、112によって発生する倍率色収差を正の光学的パワーを有する第3レンズ113で補正しているが、軸上色収差を良好に補正するためには、正の光学的パワーを有する第4レンズ131のアッベ数ν4を適切に配置する必要がある。
 この構成において、条件式(3)の下限を下回ると、前群11と後群13とにおけるアッベ数のバランスが崩れ、軸上色収差を良好に補正することが困難となって、好ましくない。また、条件式(3)の上限を上回ると、補正過多となり、同じく軸上色収差を良好に補正することが困難となる。
 また、この広角光学系1において、下記(3’)の条件式を満足することがより好ましい。
50<ν4   ・・・(3’)
 このような条件を満たすと、前群11と後群13とにおけるアッベ数のバランスが良好に保たれ、軸上色収差を良好に補正することができ、好ましい。
 また、この広角光学系1において、前群11の焦点距離をFfとし、後群13の焦点距離をFrとする場合に、下記(4)の条件式を満足することが好ましい。
0<Fr/Ff<1   ・・・(4)
 この構成において、条件式(4)の下限を下回ると、いわゆるレトロフォーカスとなるため、バックフォーカスが伸びて、光学系1を小型化することが困難になってしまい、好ましくない。また、条件式(4)の上限を上回ると、前群11の正の光学的パワーが強くなるため、超広角の画角を達成することが困難となってしまい、好ましくない。
 また、この広角光学系1において、第4レンズ131の焦点距離をf4とし、第5レンズ132の焦点距離f5とする場合に、下記(5)の条件式を満足することが好ましい。
0.3<f4/f5<7   ・・・(5)
 この構成において、条件式(5)の上限を上回ると、第4レンズ131の光学的パワーが強くなって第4レンズ131の偏芯感度が高くなることから、製造難易度が上がり、生産性の悪化やコスト増に繋がって、好ましくない。また、条件式(5)の下限を下回ると、第5レンズ132の光学的パワーが強くなって第5レンズ132の偏芯感度が高くなることから、製造難易度が上がり生産性の悪化やコスト増に繋がってしまい、好ましくない。
 また、この広角光学系1において、下記(5’)の条件式を満足することが好ましい。0.3<f4/f5<3   ・・・(5’)
 このような条件を満たすと、第4および第5レンズ131、132の各偏芯感度が比較的緩やかとなって、製造難易度が比較的低くなって、好ましい。
 また、この広角光学系1において、第4レンズ131の物体側の曲率半径をR4fとし、第4レンズ131の像面側の曲率半径をR4rとする場合に、下記(6)の条件式を満足することが好ましい。
-5<R4f/R4r<0   ・・・(6)
 この構成において、条件式(6)の上限を上回ると、いわゆるメニスカス形状となることから、小型化を図りながら絞りからの光束を第5レンズ132へ導くためには、第4レンズ131の光学的パワーが強くなる。このため、球面収差、非点収差およびコマ収差を良好に補正することが困難となってしまい、好ましくない。また、条件式(6)の下限を下回ると、第4レンズ131の像側面の曲率や面角度が大きくなりすぎ、製造困難になってしまう。
 また、この広角光学系1において、第4レンズ131の像面側の面から第5レンズ132の物体側までの距離をL45とし、第1レンズ111の物体側の面から第5レンズ132の像面側までの距離をL15とする場合に、下記(7)の条件式を満足することが好ましい。
0.01<L45/L15<0.3   ・・・(7)
 この構成において、条件式(7)の上限を上回ると、光学全長が長くなるため、小型化が困難となってしまい、好ましくない。また、条件式(7)の下限を下回ると、第4レンズ131と第5レンズ132との間隔が狭まり、第4レンズ131および第5レンズ132を通過する光束がほぼ同じ位置を通過するため、収差を良好に補正することが難しくなり、好ましくない。また、条件式(7)の範囲内であれば、第4レンズ131と第5レンズ132との通過位置が異なるため、特に第5レンズ132が非球面を有する場合では、収差を良好に補正することが可能となる。
 また、この広角光学系1において、非球面を有するガラスレンズは、ガラスモールド非球面レンズや、研削非球面ガラスレンズや、複合型非球面レンズ(球面ガラスレンズ上に非球面形状の樹脂を形成したもの)であってもよい。ガラスモールド非球面レンズは、大量生産に向き好ましく、複合型非球面レンズは、基板となり得るガラス材料の種類が多いため、設計の自由度が高くなる。特に、高屈折率材料を用いた非球面レンズでは、モールド形成が容易ではないため、複合型非球面レンズが好ましい。また、片面非球面の場合には、複合型非球面レンズの利点を最大限に活用することが可能となる。
 また、この広角光学系1において、最も物体側のレンズ(図1に示す例では第1レンズ111)は、最も物体側のレンズにおけるガラス材料の粉末を0.01mol/lの硝酸水溶液中に入れて、沸騰水浴中で加熱し、その質量減(%)として算出される耐酸性の値をDA1とする場合に、下記(8)の条件式を満足するガラス材料製レンズであることが好ましい。
DA1<0.35   ・・・(8)
 この条件式(8)の上限を上回ると、最物体側のレンズが剥き出しの状態で外的環境に晒された場合に、例えばいわゆるヤケ等の化学反応が生じてしまって広角光学系1の光学特性が低下してしまうが、最物体側のレンズが条件式(8)を満足するので、光学特性の低下を抑えることができる。ここで、本発明における記載の数値および測定方法は、HOYA株式会社の光学ガラスカタログの記載または株式会社住田光学ガラスの光学ガラスカタログの記載を採用している。
 また、この広角光学系1において、最も物体側のレンズ(図1に示す例では第1レンズ11)は、ヌープ硬さをHk1とし、直径43.7mm(両面で30cm)で厚さ約5mmの対面研磨されたガラス試料を、よく撹拌されている50℃、0.01mol/lの三リン酸五ナトリウム(Na10)水溶液中に、1時間浸漬した場合の単位面積当たりの質量減(mg/(cm・h))の値をDS1とする場合に、下記(9)および(10)の条件式のいずれか一方または両方を満足することが好ましい。
Hk1>350   ・・・(9)
DS1≦0.01   ・・・(10)
 この条件式(9)および(10)の少なくとも一方を満足する材料、例えばガラス材料は、頑健性、耐薬品性および防水性等に優れている。最物体側の第1レンズ111は、このような材料のレンズであるので、例えば、広角光学系1の前にレンズ保護部材が配置されずに最物体側のレンズが剥き出しとなっても、頑健性、耐薬品性および防水性等に優れ、撮像性能の悪化を抑制することができ、好ましい。特に、車載用途においては、最前面が剥き出しに成ることが多く、好適である。
 <広角光学系を組み込んだデジタル機器の説明>
 次に、上述の広角光学系1を備えたデジタル機器について説明する。
 図2は、実施形態におけるデジタル機器の構成を示すブロック図である。図2において、デジタル機器3は、撮像機能のために、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35、記憶部36およびI/F部37を備えて構成される。デジタル機器3としては、例えば、デジタルスチルカメラ、デジタルビデオカメラ、監視用や車載用等の用途のモニタカメラ等の撮像装置、携帯電話機や携帯情報端末(PDA)等の撮像機能を備えた携帯端末、パーソナルコンピュータおよびモバイルコンピュータ等の撮像機能を備えたコンピュータを挙げることができ、これらの周辺機器(例えば、マウス、スキャナおよびプリンタなど)を含んでよい。
 撮像部30は、広角光学系1と撮像素子15とを備えて構成される。広角光学系1は、所定の結像面上に、図2に示す例では撮像素子15上に被写体の光学像を形成する。被写体からの光線は、広角光学系1によって撮像素子15の受光面上に結像され、被写体の光学像となる。
 撮像素子15は、広角光学系1によって導かれた被写体の光学像を電気的な信号に変換する素子であり、上述したように、広角光学系1により結像された被写体の光学像をR、G、Bの色成分の電気信号(画像信号)に変換し、R、G、B各色の画像信号として画像生成部31に出力する。撮像素子15は、制御部35によって静止画あるいは動画のいずれか一方の撮像、または、撮像素子15における各画素の出力信号の読出し(水平同期、垂直同期、転送)等の撮像動作が制御される。撮像素子15は、例えば、CCDやCMOS等の固体撮像素子であってよく、またカラーの撮像素子やモノクロの撮像素子であってよい。
 画像生成部31は、撮像素子15からのアナログ出力信号に対し、増幅処理、デジタル変換処理などを行うと共に、画像全体に対して適正な黒レベルの決定、γ補正、ホワイトバランス調整(WB調整)、輪郭補正および色ムラ補正などの周知の画像処理を行って、画像信号から各画素の画像データを生成する。画像生成部31で生成された画像データは、画像データバッファ32に出力される。
 画像データバッファ32は、画像データを一時的に記憶するとともに、この画像データに対し画像処理部33によって後述の処理を行うための作業領域として用いられるメモリであり、例えば、揮発性の記憶素子であるRAM(Random Access Memory)などで構成される。
 画像処理部33は、画像データバッファ32の画像データに対し、解像度変換等の所定の画像処理を行う回路である。
 また、必要に応じて画像処理部33は、撮像素子15の受光面上に形成される被写体の光学像における歪みを補正する公知の歪み補正処理等の、広角光学系1では補正しきれなかった収差を補正するように構成されてもよい。広角光学系においては、通常の光学系(広角でない光学系)と比較して大きな歪曲収差が発生する。歪み補正は、収差によって歪んだ画像を肉眼で見える光景と同様な相似形の略歪みのない自然な画像に補正するものである。歪曲収差を画像処理で補正するように構成することによって、広角光学系1によって撮像素子15へ導かれた被写体の光学像に歪みが生じていたとしても、略歪みのない自然な画像を生成することが可能となり、例えば車載用や監視用等の比較的広い範囲に撮像装置を適用することができ、使い勝手の良い撮像装置(例えばカメラ)等のデジタル機器を提供することが可能となる。
 また、必要に応じて画像処理部33は、撮像素子15の受光面上に形成される被写体の光学像における周辺照度落ちを補正する公知の周辺照度落ち補正処理を含んでもよい。広角光学系においては、通常の光学系(広角でない光学系)と比較して周辺部で照度落ちが発生しやすい。特に、第4および第5レンズは、正の光学的パワーを有しているため、レンズの条件によっては周辺部で照度落ちが生じることがある。周辺照度落ち補正(シェーディング補正)は、周辺照度落ち補正を行うための補正データを予め記憶しておき、撮影後の画像(画素)に対して補正データを乗算することによって実行される。周辺照度落ちが主に撮像素子15における感度の入射角依存性、レンズの口径食およびコサイン4乗則等によって生じるため、補正データは、これら要因によって生じる照度落ちを補正するような所定値に設定される。周辺部の照度落ちを画像処理で補正するように構成することによって、広角光学系1によって撮像素子15へ導かれた被写体の光学像に周辺照度落ちが生じていたとしても、周辺まで充分な照度を持った画像を生成することが可能となり、例えば車載用や監視用等の比較的広い範囲に撮像装置を適用することができ、使い勝手の良い撮像装置(例えばカメラ)等のデジタル機器を提供することが可能となる。
 この構成によれば、画像処理部が所定の画像処理を行うので、所望の画質を備えた画像を出力することができる撮像装置等のデジタル機器の提供が可能となる。
 駆動部34は、制御部35から出力される制御信号に基づいて、レンズを光軸方向に移動する図略のレンズ駆動装置を動作させることによって、広角光学系1のフォーカシングを行う回路である。
 制御部35は、例えばマイクロプロセッサ、記憶素子およびその周辺回路などを備えて構成され、撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、記憶部36およびI/F部37の各部の動作をその機能に従って制御する。すなわち、この制御部35によって、デジタル機器3は、被写体の静止画撮影および動画撮影の少なくとも一方の撮影を実行するよう制御される。
 記憶部36は、被写体の静止画撮影または動画撮影によって生成された画像データを記憶する記憶回路であり、例えば、不揮発性の記憶素子であるROM(Read Only Memory)や、書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)や、RAMなどを備えて構成される。つまり、記憶部36は、静止画用および動画用のメモリとしての機能を有する。
 I/F部37は、外部機器と画像データを送受信するインターフェースであり、例えば、USBやIEEE1394などの規格に準拠したインターフェースである。
 このような構成のデジタル機器3の撮像動作に次について説明する。
 静止画を撮影する場合は、制御部35は、デジタル機器3の各部に静止画の撮影を行わせるように制御すると共に、駆動部34を介して図略のレンズ駆動装置を動作させ、フォーカシングを行う。これにより、ピントの合った光学像が撮像素子15の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により所定の画像処理が行われた後、その画像信号に基づく画像が図略のディスプレイ(表示装置)に表示される。そして、撮影者は、ディスプレイを参照することで、主被写体をその画面中の所望の位置に収まるように調整することが可能となる。この状態でいわゆる図略のシャッタボタンが押されることによって、静止画用のメモリとしての記憶部36に画像データが格納され、静止画像が得られる。
 また、動画撮影を行う場合は、制御部35は、デジタル機器3の各部に動画の撮影を行わせるように制御する。後は、静止画撮影の場合と同様にして、撮影者は、ディスプレイを参照することで、広角光学系1を通して得た被写体の像が、その画面中の所望の位置に収まるように調整することができる。この場合において、静止画撮影と同様に、シャッタボタンを押すことによって、動画撮影が開始される。
 動画撮影時、制御部35は、デジタル機器3の各部に動画の撮影を行わせるように制御すると共に、駆動部34を介して図略のレンズ駆動装置を動作させ、フォーカシングを行う。これによって、ピントの合った光学像が撮像素子15の受光面に周期的に繰り返し結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により所定の画像処理が行われた後、その画像信号に基づく画像が図略のディスプレイに表示される。そして、もう一度、シャッタボタンを押すことで、動画撮影が終了する。撮影された動画像は、動画用のメモリとしての記憶部36に導かれて格納される。
 このようなデジタル機器3では、撮像素子15の高画素に対応することができ、より良好な光学性能および超広画角を有する小型な広角光学系1を備えるので、小型化を図りつつ高画素な撮像素子15を採用することができる。
 次に、この広角光学系1を備えたデジタル機器の具体例として、携帯電話機に広角光学系1を搭載した場合および車載用のモニタカメラに広角光学系1を搭載した場合について、それぞれ、以下に説明する。
 図3は、デジタル機器の一実施形態を示すカメラ付携帯電話機の外観構成図である。図3(A)は、携帯電話機の操作面を示し、図3(B)は、操作面の裏面、つまり背面を示す。
 図3において、携帯電話機5には、上部にアンテナ51が備えられ、その操作面には、図3(A)に示すように、長方形のディスプレイ52、画像撮影モードの起動および静止画撮影と動画撮影との切り替えを行う画像撮影ボタン53、シャッタボタン55およびダイヤルボタン56が備えられている。そして、この携帯電話機5には、携帯電話網を用いた電話機能を実現する回路が内蔵されると共に、上述した撮像部30、画像生成部31、画像データバッファ32、画像処理部33、駆動部34、制御部35および記憶部36が内蔵されており、撮像部30の広角光学系1が背面に臨んでいる。
 画像撮影ボタン53が操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、その操作内容に応じた動作を実行する。そして、シャッタボタン55が操作されると、その操作内容を表す制御信号が制御部35へ出力され、制御部35は、その操作内容に応じた動作を実行する。こうして静止画、あるいは動画が撮像される。
 また、本実施形態にかかる広角光学系1は、所定位置に取り付けられ、取り付けられた位置周辺の所定領域の被写体を撮像するモニタカメラ、例えば、車両の周辺領域を撮像する車載用のモニタカメラに好適に搭載される。
 図4は、デジタル機器の一実施形態を示す車載用のモニタカメラの概要を説明するための図である。図4において、車載用のモニタカメラ7は、例えば車両9の後方を撮像するように、車両9の後部の所定位置に設置されており、撮像した被写体の画像は、例えばダッシュボードに設置されている図略のモニタに表示される。車載用のモニタカメラ7は、通常、車両9の上方への視野が要求されないことから、その光軸AXが斜め下方を向くように斜め下方に傾斜した姿勢で車両9に取り付けられている。そして、上下方向には、モニタカメラ7の取り付け位置を通る水平線を上端とする画角2φを有する。また、本明細書においては、左右方向の画角も上下方向と同じく2φであるが、それに限られることなく、上下方向と左右方向とで画角が異なっていてもよい。
 このような構成の車載カメラ7をバックモニタとして用いた場合の処理の流れを以下に概説する。ユーザ(運転者)は、例えば車体9のダッシュボードに設置されている図略のモニタ(表示装置)を見ながら、車体7をバックさせる。この際に、運転者が確認したい領域と車載カメラ7が撮像している領域とがずれている場合、運転者は、ダッシュボードに設けられた図略の操作ボタンを操作する等の所定の操作を行う。
 この操作を受けて制御部35は、駆動部34を制御し、撮像部30の向きを調整する。続いて、制御部35は、撮像部30のレンズ駆動装置を駆動し、広角光学系1のフォーカシングを行う。これにより、ピントの合った光学像が撮像素子15の受光面に結像され、R、G、Bの色成分の画像信号に変換された後、画像生成部31に出力される。その画像信号は、画像データバッファ32に一時的に記憶され、画像処理部33により画像処理が行われる。こうして運転者が確認したい領域の略自然な画像は、ダッシュボードに設置されているモニタに表示される。
 以上に述べたように、本発明によれば、広角光学系を、物体側より像側へ順に前群と絞りと後群とで構成し、前群を物体側より像側へ順に負の第1レンズと負の第2レンズと正の第3レンズとで構成し、後群を正の第4レンズと正の第5レンズとで構成し、第2レンズの像面側の面から第3レンズの物体側までの距離と、第1レンズの物体側の面から第5レンズの像面側までの距離との比を、0.01から0.18の間とすることで、撮像素子の高画素に対応することができ、より良好な光学性能および超広画角を有する小型な広角光学系および撮像装置を提供することができる。
 <広角光学系のより具体的な実施形態の説明>
 以下、図1に示すような広角光学系1、すなわち図3に示すようなデジタル機器3に搭載される撮像部30に備えられる広角光学系1の具体的な構成を、図面を参照しつつ説明する。
[実施例1]
 図5は、実施例1の広角光学系におけるレンズ群の配列を示す断面図である。図11および図12は、実施例1の広角光学系の収差図である。
 実施例1の広角光学系1Aは、図5に示すように、物体側より像側へ順に、前群Grfと、絞りSTと、後群Grrとから構成されて成り、前群Grfは、物体側より像側へ順に、物体側に凸の負メニスカスレンズ(第1レンズL1)と、両凹の負レンズ(第2レンズL2)と、物体側に凸の正メニスカスレンズ(第3レンズL3)とから構成されて成る負負正の光学系であり、絞りSTは、開口絞りであり、後群Grrは、両凸の正レンズ(第4レンズL4)と、正レンズ(第5レンズL5)とから構成されて成る正正の光学系である。これら第2から第5レンズL2~L5は、それぞれ、両面が非球面であり、第4および第5レンズL4、L5は、例えばプラスチックなどの樹脂材料製レンズである。そして、第5レンズL5は、両面に変曲点を有している。
 そして、後群Grrの像側(第5レンズL5の像側)には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 図5において、各レンズ面に付されている番号ri(i=1,2,3,・・・)は、物体側から数えた場合のi番目のレンズ面(ただし、レンズの接合面は1つの面として数えるものとする。)であり、riに「*」印が付されている面は、非球面であることを示す。なお、開口絞りST、平行平板FTの両面および撮像素子SRの受光面も1つの面として扱っている。このような取り扱いおよび符号の意義は、後述の実施例2から実施例6についても同様である(図6から図10)。ただし、全く同一のものであるという意味ではなく、例えば、各実施例1~6の各図5~図10を通じて、最も物体側に配置されるレンズ面には、同じ符号(r1)が付されているが、これらの曲率等が各実施例1~6を通じて同一であるという意味ではない。
 このような構成の下で、物体側から入射した光線は、光軸AXに沿って、順に第1レンズL1、第2レンズL2、第3レンズL3、開口絞りST、第4レンズL4、第5レンズL5および平行平板FTを通過し、撮像素子SRの受光面に物体の光学像を形成する。そして、撮像素子SRでは、光学像が電気的な信号に変換される。この電気信号は、必要に応じて所定のデジタル画像処理などが施され、デジタル映像信号として例えばデジタルカメラ等のデジタル機器のメモリに記録されたり、有線あるいは無線の通信によって他のデジタル機器に伝送されたりする。
 実施例1の広角光学系1Aにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例1
単位 mm
面データ
面番号     r    d    nd    νd
物面      ∞    ∞
1      15.637   0.700   1.88300   40.81
2      5.550   3.962
3*    -19.958   1.088   1.70453   52.24
4*     1.899   1.080
5*     3.694   1.960   1.85532   26.54
6*     -9.176   2.135
7(絞り)   ∞    0.200
8*     4.417   0.972   1.53048   55.72
9*     -8.834   1.148
10*    2.943   1.500   1.53048   55.72
11*    12.225   0.800
12      ∞    0.500   1.51680   64.20
13      ∞    0.117
像面      ∞
 非球面データ
第3面
K=0,A4=8.5886e-007,A6=1.3218e-008,A8=1.5311e-010
第4面
K=-1.7267,A4=0,A6=-1.0694e-004,A8=-4.3460e-006
第5面
K=-2.3519,A4=-2.9177e-004,A6=-1.4494e-005,A8=-2.8602e-006
第6面
K=-2.0031e+001,A4=-1.3172e-004,A6=-3.2861e-006,A8=3.9993e-006
第8面
K=0,A4=5.5214e-003,A6=-7.4271e-003,A8=5.4978e-003
第9面
K=0,A4=-5.6041e-003,A6=6.3073e-003,A8=-6.6944e-004
第10面
K=-3.1146,A4=-1.6520e-002,A6=3.5006e-003,A8=-7.7482e-004
第11面
K=0,A4=-5.5105e-003,A6=2.039e-003,A8=1.1871e-004
 各種データ
焦点距離    1.44
Fナンバ    2.874
半画角     95.905
像高      3.107
レンズ全長   15.991
BF      1.246
 上記の面データにおいて、面番号は、図5に示した各レンズ面に付した符号ri(i=1,2,3,…)の番号iが対応する。番号iに*が付された面は、非球面(非球面形状の屈折光学面または非球面と等価な屈折作用を有する面)であることを示す。
 また、“r”は、各面の曲率半径(単位はmm)、“d”は、無限遠合焦状態での光軸上の各レンズ面の間隔(軸上面間隔)、“nd”は、各レンズのd線(波長587.56nm)に対する屈折率、“νd”は、アッベ数をそれぞれ示している。なお、開口絞りST、平行平面板FTの両面、撮像素子SRの受光面の各面は、平面であるために、それらの曲率半径は、∞(無限大)である。
 上記の非球面データは、非球面とされている面(面データにおいて番号iに*が付された面)の2次曲面パラメータ(円錐係数K)と非球面係数Ai(i=4,6,8,10,12)の値とを示すものである。なお、光学面の非球面形状は、面頂点を原点、物体から撮像素子に向かう向きをz軸の正の方向とするローカルな直交座標系(x,y,z)を用い、次式により定義している。
z(h)=ch/[1+√{1-(1+K)c}]+ΣAi・h
 ただし、z(h):高さhの位置でのz軸方向の変位量(面頂点基準)
        h:z軸に対して垂直な方向の高さ(h=x+y
        c:近軸曲率(=1/曲率半径)
       Ai:i次の非球面係数
        K:2次曲面パラメータ(円錐係数)
 そして、上記非球面データにおいて、「En」は、「10のn乗」を意味する。例えば、「E+001」は、「10の+1乗」を意味し、「E-003」は、「10の-3乗」を意味する。
 以上のようなレンズ配置、構成のもとでの、実施例1の広角光学系1Aにおける各収差を図11および図12にそれぞれ示す。図11(A)は、球面収差(正弦条件)(LONGITUDINAL SPHERICAL ABERRATION)を示し、図11(B)は、非点収差(ASTIGMATISM FIELDCURVER)を示し、そして、図11(C)は、歪曲収差(DISTORTION)を示す。球面収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、入射高で規格化した値で表している。非点収差の横軸は、焦点位置のずれをmm単位で表しており、その縦軸は、像高をmm単位で表している。歪曲収差の横軸は、実際の像高を理想像高に対する割合(%)で表しており、縦軸は、その画角を度単位で表している(ただし、ここでは半画角90度までを表示)。また、非点収差の図中、破線は、サジタル、実線は、タンジェンシャルをそれぞれ表している。球面収差の図には、一点鎖線でd線(波長587.56nm)、破線でg線(波長435.84nm)、実線でC線(波長656.28nm)の3つの波長の収差をそれぞれ示してある。非点収差および歪曲収差の図は、上記d線(波長587.56nm)を用いた場合の結果である。そして、図12に横収差を示し、左側がタンジェンシャル(メリディオナル)面の場合を示し、右側がサジタル(ラディアル)面の場合を示し、上から順に、最大画角の場合、中間画角の場合および軸上の場合をそれぞれ示す。主光線に対する入射光線高さをmm単位で表しており、その縦軸は、像面での主光線からずれをmm単位で表している。横収差の図には、実線でd線(波長587.56nm)、破線でg線(波長435.84nm)、一点鎖線でC線(波長656.28nm)の3つの波長の収差をそれぞれ示してある。
 以上のような扱いは、以下に示す実施例2~6にかかるコンストラクションデータ、各収差を示す図13~図22においても同様である。
[実施例2]
 図6は、実施例2の広角光学系におけるレンズ群の配列を示す断面図である。図13および図14は、実施例2の広角光学系の収差図である。
 実施例2の広角光学系1Bは、図6に示すように、物体側より像側へ順に、前群Grfと、絞りSTと、後群Grrとから構成されて成り、前群Grfは、物体側より像側へ順に、物体側に凸の負メニスカスレンズ(第1レンズL1)と、両凹の負レンズ(第2レンズL2)と、両凸の正レンズ(第3レンズL3)とから構成されて成る負負正の光学系であり、絞りSTは、開口絞りであり、後群Grrは、両凸の正レンズ(第4レンズL4)と、正レンズ(第5レンズL5)とから構成されて成る正正の光学系である。これら第3および第5レンズL3、L5は、それぞれ、両面が非球面であり、第2レンズL2は、像側面が非球面である片面非球面である。第4および第5レンズL4、L5は、例えばプラスチックなどの樹脂材料製レンズである。そして、第5レンズL5は、物体側面に変曲点を有している。
 そして、後群Grrの像側(第5レンズL5の像側)には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 実施例2の広角光学系1Bにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例2
単位 mm
面データ
面番号     r    d    nd    νd
物面      ∞    ∞
1      9.803   0.700   1.88300   40.81
2      3.674   2.421
3     -32.345   0.669   1.77250   49.70
4*     1.213   0.804
5*     2.188   1.369   1.81281   23.90
6*     -8.404   1.427
7(絞り)   ∞    0.137
8      3.902   0.651   1.65491   54.64
9      -7.291   0.926
10*    2.920   1.029   1.53048   55.72
11*    -7.522   0.500
12      ∞    0.343   1.51680   64.20
13      ∞    0.345
像面      ∞
 非球面データ
第4面
K=-1.3865,A4=0,A6=-5.1947e-005,A8=3.9355e-005
第5面
K=-1.9985
第6面
K=-1.4551e+001
第10面
K=-1.0667e-001,A=-8.7925e-002,A6=2.7764e-002,A8=-8.9420e-003
第11面
K=0,A4=-5.4784e-002,A6=1.0562e-002,A8=-2.3795e-004
 各種データ
焦点距離    1.019
Fナンバ    2.874
半画角     92.500
像高      2.258
レンズ全長   11.205
BF      1.071
 以上のようなレンズ配置、構成のもとでの、実施例2の広角光学系1Bにおける球面収差(正弦条件)、非点収差および歪曲収差を図13(A)、図13(B)および図13(C)にそれぞれ示し、その横収差図を図14に示す。
[実施例3]
 図7は、実施例3の広角光学系におけるレンズ群の配列を示す断面図である。図14および図15は、実施例3の広角光学系の収差図である。
 実施例3の広角光学系1Cは、図7に示すように、物体側より像側へ順に、前群Grfと、絞りSTと、後群Grrとから構成されて成り、前群Grfは、物体側より像側へ順に、物体側に凸の負メニスカスレンズ(第1レンズL1)と、負レンズ(第2レンズL2)と、正レンズ(第3レンズL3)とから構成されて成る負負正の光学系であり、絞りSTは、開口絞りであり、後群Grrは、両凸の正レンズ(第4レンズL4)と、正レンズ(第5レンズL5)とから構成されて成る正正の光学系である。これら第2、第3および第5レンズL2、L3、L5は、それぞれ、両面が非球面である。第2、第4および第5レンズL2、L4、L5は、例えばプラスチックなどの樹脂材料製レンズであり、第3レンズL3は、ガラス材料製の非球面レンズである。そして、第5レンズL5は、両面に変曲点を有している。
 そして、後群Grrの像側(第5レンズL5の像側)には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 実施例3の広角光学系1Cにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例3
単位 mm
面データ
面番号     r    d    nd    νd
物面      ∞    ∞
1       15.058   0.700   1.88300   40.81
2       5.334   3.651
3*      69.326   1.044   1.53048   55.72
4*      0.990   1.053
5*      2.156   1.934   1.81359   25.73
6*     -24.730   0.829
7(絞り)   ∞     0.454
8       4.638   1.326   1.49700   81.61
9       -2.509   0.100
10*     4.273   0.800   1.53048   55.72
11*     36.901   0.590
12      ∞     0.500   1.56400   47.00
13      ∞     0.552
像面      ∞
 非球面データ
第3面
K=0,A4=-4.0667e-003,A6=2.6540e-004,A8=-1.1472e-005,A10=4.6864e-007,A12=-9.6965e-009
第4面
K=-1.9071,A4=6.9508e-002,A6=-2.6829e-002,A8=3.2110e-003,A10=9.6088e-005,A12=-2.7840e-005
第5面
K=-1.1442,A4=-5.2729e-003,A6=6.1897e-003,A8=-4.0122e-003,A10=1.0559e-003,A12=-8.7393e-005
第6面
K=0,A4=9.8361e-003,A6=-5.4971e-003,A8=5.4356e-003,A10=-1.6426e-003,A12=1.5251e-004
第10面
K=0,A4=-6.0328e-002,A6=2.3678e-002,A8=-1.1898e-002,A10=6.6871e-004
第11面
K=0,A4=-1.9119e-002,A6=5.8593e-003,A8=-1.0385e-003,A10=-1.1675e-003,A12=2.3108e-004
 各種データ
焦点距離    1.103
Fナンバ    2.762
半画角     99.978
像高      2.588
レンズ全長   13.352
BF      1.462
 以上のようなレンズ配置、構成のもとでの、実施例3の広角光学系1Cにおける球面収差(正弦条件)、非点収差および歪曲収差を図15(A)、図15(B)および図15(C)にそれぞれ示し、その横収差図を図16に示す。
[実施例4]
 図8は、実施例4の広角光学系におけるレンズ群の配列を示す断面図である。図17および図18は、実施例4の広角光学系の収差図である。
 実施例4の広角光学系1Dは、図8に示すように、物体側より像側へ順に、前群Grfと、絞りSTと、後群Grrとから構成されて成り、前群Grfは、物体側より像側へ順に、物体側に凸の負メニスカスレンズ(第1レンズL1)と、負レンズ(第2レンズL2)と、正レンズ(第3レンズL3)とから構成されて成る負負正の光学系であり、絞りSTは、開口絞りであり、後群Grrは、両凸の正レンズ(第4レンズL4)と、正レンズ(第5レンズL5)とから構成されて成る正正の光学系である。これら第2から第5レンズL2~L5は、それぞれ、両面が非球面である。第2、第4および第5レンズL2、L4、L5は、例えばプラスチックなどの樹脂材料製レンズであり、第3レンズL3は、ガラス材料製の非球面レンズである。そして、第5レンズL5は、物体側面に変曲点を有している。
 そして、後群Grrの像側(第5レンズL5の像側)には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 実施例4の広角光学系1Dにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例4
単位 mm
面データ
面番号     r    d    nd    νd
物面      ∞    ∞
1      15.010   0.700   1.88300   40.81
2      5.389   3.751
3*    368.570   1.054   1.53048   55.72
4*     0.979   0.987
5*     2.058   2.045   1.81359   25.73
6*    -27.210   0.829
7(絞り)   ∞    0.180
8*     7.202   0.830   1.53048   55.72
9*    -28.055   0.301
10*    2.543   1.184   1.53048   55.72
11*    -2.970   0.590
12      ∞    0.500   1.56400   47.00
13      ∞    0.557
像面      ∞
 非球面データ
第3面
K=0,A4=-4.1716e-003,A6=3.0700e-004,A8=-1.4394e-005,A10=5.6033e-007,A12=-1.0872e-008
第4面
K=-2.0081,A4=7.4871e-002,A6=-2.8541e-002,A8=3.2095e-003,A10=1.5021e-004,A12=-3.2647e-005
第5面
K=-9.6975e-001,A4=-5.6322e-003,A6=5.2016e-003,A8=-3.9326e-003,A
10=1.0758e-003,A12=-9.0634e-005
第6面
K=0,A4=1.0790e-002,A6=-4.6684e-003,A8=5.5607e-003,A10=-1.9205e-003,A12=1.9964e-004
第8面
K=0,A4=-2.2374e-002,A6=2.6018e-002,A8=-6.9145e-003,A10=-1.0720e-002
第9面
K=0,A4=-6.9025e-002,A6=1.0563e-002,A8=4.3076e-003,A10=-1.8511e-003
第10面
K=0,A4=-6.2103e-002,A6=3.8955e-003,A8=2.3084e-003,A10=-2.2345e-003
第11面
K=0,A4=7.5595e-002,A6=-4.4835e-002,A8=1.7941e-002,A10=-4.5021e-003,A12=3.9193e-004
 各種データ
焦点距離    1.059
Fナンバ    2.762
半画角     92.000
像高      2.230
レンズ全長   13.327
BF      1.466
 以上のようなレンズ配置、構成のもとでの、実施例4の広角光学系1Dにおける球面収差(正弦条件)、非点収差および歪曲収差を図17(A)、図17(B)および図17(C)にそれぞれ示し、その横収差図を図18に示す。
[実施例5]
 図9は、実施例5の広角光学系におけるレンズ群の配列を示す断面図である。図19および図20は、実施例5の広角光学系の収差図である。
 実施例5の広角光学系1Eは、図9に示すように、物体側より像側へ順に、物体側より像側へ順に、前群Grfと、絞りSTと、後群Grrとから構成されて成り、前群Grfは、物体側より像側へ順に、物体側に凸の負メニスカスレンズ(第1レンズL1)と、両凹の負レンズ(第2レンズL2)と、正レンズ(第3レンズL3)とから構成されて成る負負正の光学系であり、絞りSTは、開口絞りであり、後群Grrは、物体側に凸の正メニスカスレンズ(第4レンズL4)と、正レンズ(第5レンズL5)とから構成されて成る正正の光学系である。これら第2から第5レンズL2~L5は、それぞれ、両面が非球面である。第2、第4および第5レンズL2、L4、L5は、例えばプラスチックなどの樹脂材料製レンズであり、第3レンズL3は、ガラス材料製の非球面レンズである。そして、第5レンズL5は、物体側面に変曲点を有している。
 そして、後群Grrの像側(第5レンズL5の像側)には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 実施例5の広角光学系1Eにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例5
単位 mm
面データ
面番号     r    d    nd    νd
物面      ∞    ∞
1      18.567   0.817   1.88300   40.81
2      6.449   4.560
3*     97.493   1.368   1.53048   55.72
4*     1.119   1.190
5*     2.357   2.383   1.81359   25.73
6*    -24.488   0.926
7(絞り)   ∞    0.344
8*     5.227   0.884   1.49140   59.93
9*     11.667   0.168
10*    3.336   1.497   1.53048   55.72
11*    -2.775   0.688
12      ∞    0.583   1.56400   47.00
13      ∞    0.632
像面      ∞
 非球面データ
第3面
K=0,A4=-2.7003e-003,A6=1.4057e-004,A8=-4.8718e-006,A10=1.4130e-007,A12=-2.0289e-009
第4面
K=-1.9623,A4=4.6582e-002,A6=-1.3071e-002,A8=1.1044e-003,A10=3.7176e-005,A12=-6.3059e-006
第5面
K=-1.0355,A4=-4.0636e-003,A6=2.5727e-003,A8=-1.3301e-003,A10=2.6800e-004,A12=-1.6828e-005
第6面
K=0,A4=6.8059e-003,A6=-2.1141e-003,A8=1.8759e-003,A10=-4.8632e-004,A12=3.8313e-005
第8面
K=0,A4=-2.6551e-004,A6=9.1565e-004,A8=-1.4626e-004,A10=5.7914e-005
第9面
K=0,A4=-1.3735e-002,A6=-6.0028e-004,A8=1.1468e-003,A10=-8.3313e-005
第10面
K=0,A4=-3.4970e-002,A6=2.6964e-003,A8=1.0441e-003,A10=-6.4272e-004
第11面
K=0,A4=4.3769e-002,A6=-1.8638e-002,A8=6.3616e-003,A10=-1.1309e-003,A12=6.0094e-005
 各種データ
焦点距離    1.240
Fナンバ    2.762
半画角     92.000
像高      2.599
レンズ全長   16.997
BF      1.693
 以上のようなレンズ配置、構成のもとでの、実施例5の広角光学系1Eにおける球面収差(正弦条件)、非点収差および歪曲収差を図19(A)、図19(B)および図19(C)にそれぞれ示し、その横収差図を図20に示す。
[実施例6]
 図10は、実施例6の広角光学系におけるレンズ群の配列を示す断面図である。図21および図22は、実施例6の広角光学系の収差図である。
 実施例6の広角光学系1Fは、図10に示すように、物体側より像側へ順に、物体側より像側へ順に、前群Grfと、絞りSTと、後群Grrとから構成されて成り、前群Grfは、物体側より像側へ順に、物体側に凸の負メニスカスレンズ(第1レンズL1)と、両凹の負レンズ(第2レンズL2)と、正レンズ(第3レンズL3)とから構成されて成る負負正の光学系であり、絞りSTは、開口絞りであり、後群Grrは、正レンズ(第4レンズL4)と、正レンズ(第5レンズL5)とから構成されて成る正正の光学系である。これら第2から第5レンズL2~L5は、それぞれ、両面が非球面である。第2、第4および第5レンズL2、L4、L5は、例えばプラスチックなどの樹脂材料製レンズであり、第3レンズL3は、ガラス材料製の非球面レンズである。そして、第5レンズL5は、物体側面に変曲点を有している。
 そして、後群Grrの像側(第5レンズL5の像側)には、フィルタとしての平行平板FTを介して撮像素子SRの受光面が配置されている。平行平板FTは、各種光学フィルタや撮像素子のカバーガラス等である。
 実施例6の広角光学系1Fにおける、各レンズのコンストラクションデータを以下に示す。
 数値実施例6
単位 mm
面データ
面番号     r    d    nd    νd
物面      ∞    ∞
1      14.776   0.700   1.88300   40.81
2      5.264   3.728
3*     82.013   1.351   1.53048   55.72
4*     0.971   1.211
5*     2.159   2.043   1.81359   25.73
6*    -34.600   1.170
7(絞り)   ∞    0.259
8*     3.252   0.792   1.53048   55.72
9*    127.905   0.432
11*    19.707   1.355   1.53048   55.72
12*    -1.900   0.590
12      ∞    0.500   1.56400   47.00
13      ∞    0.567
像面      ∞
 非球面データ
第3面
K=0,A4=-4.9225e-003,A6=3.3065e-004,A8=-1.4273e-005,A10=5.0369e-007,A12=-9.1177e-009
第4面
K=-1.7832,A4=7.2287e-002,A6=-2.6480e-002,A8=3.0039e-003,A10=1.0196e-004,A12=-2.6416e-005
第5面
K=-8.6342e-001,A4=-5.6742e-003,A6=6.4623e-003,A8=-4.2802e-003,A10=1.0515e-003,A12=-8.4200e-005
第6面
K=0,A4=8.7064e-003,A6=-8.3298e-003,A8=6.3572e-003,A10=-1.6727e-003,A12=1.3995e-004
第8面
K=0,A4=9.7309e-003,A6=2.6672e-003,A8=5.3382e-003,A10=7.7504e-003 
第9面
K=0,A4=-2.7445e-002,A6=8.1461e-002,A8=-6.3924e-002,A10=2.4918e-002
第10面
K=0,A4=-1.0842e-001,A6=3.2331e-003,A8=-3.4442e-003,A10=-2.2519e-003
第11面
K=0,A4=-7.0285e-003,A6=-2.0064e-002,A8=1.3474e-002,A10=-4.4758e-003,A12=4.4689e-004
 各種データ
焦点距離    1.100
Fナンバ    2.812
半画角     88.016
像高      2.211
レンズ全長   14.519
BF      1.476
 以上のようなレンズ配置、構成のもとでの、実施例6の広角光学系1Fにおける球面収差(正弦条件)、非点収差および歪曲収差を図21(A)、図21(B)および図21(C)にそれぞれ示し、その横収差図を図22に示す。
 上記に列挙した実施例1~6の変倍光学系1A~1Fに、上述した条件式(1)~(10)を当てはめた場合のそれぞれの数値を、表1に示す。
Figure JPOXMLDOC01-appb-T000001
 以上、説明したように、上記実施例1~6における広角光学系1A~1Fは、本発明に係る要件を満足している結果、撮像素子の高画素に対応することができ、より良好な光学性能を有し、そして、デジタル機器に搭載する上で、特に車載用のモニタカメラや携帯端末等に搭載する上で小型化が充分に達成される。また、上記実施例1~6における広角光学系1A~1Fは、特に全画角略180度(半画角略90度)以上、より具体的には200度(半画角100度)以上の超広角化が達成可能である。
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。
 AX 光軸
 1、1A~1F 広角光学系
 3 デジタル機器
 5 携帯電話機
 7 モニタカメラ
 9 車両
 11、Grf 前群
 12、ST 絞り
 13、Grr 後群
 15、SR 撮像素子
 111、L1 第1レンズ
 112、L2 第2レンズ
 113、L3 第3レンズ
 114、L4 第4レンズ
 131、L5 第5レンズ

Claims (16)

  1.  物体側より像側へ順に、前群と、絞りと、後群とから構成されて成り、
     前記前群は、物体側より像側へ順に、負の光学的パワーを有する第1レンズと、負の光学的パワーを有する第2レンズと、正の光学的パワーを有する第3レンズから構成されてなり、
     前記後群は、正の光学的パワーを有する第4レンズと、正の光学的パワーを有する第5レンズとから構成されてなり、
     下記(1)の条件式を満足することを特徴とする広角光学系。
     0.01<L23/L15<0.18   ・・・(1)
      ただし、
       L23:前記第2レンズの像面側の面から前記第3レンズの物体側までの距離
       L15:前記第1レンズの物体側の面から前記第5レンズの像面側までの距離
  2.  下記(2)の条件式を満足することを特徴とする請求項1に記載の広角光学系。
     20<ν3<35   ・・・(2)
      ただし、
       ν3:前記第3レンズのアッベ数
  3.  下記(3)の条件式を満足することを特徴とする請求項1または請求項2に記載の広角光学系。
     45<ν4<85   ・・・(3)
      ただし、
       ν4:前記第4レンズのアッベ数
  4.  前記第5レンズは、少なくとも1面が変曲点を持つ非球面であることを特徴とする請求項1から請求項3のいずれか1項に記載の広角光学系。
  5.  前記第5レンズは、両面が非球面であることを特徴とする請求項1から請求項4のいずれか1項に記載の広角光学系。
  6.  下記(4)の条件式を満足することを特徴とする請求項1から請求項5のいずれか1項に記載の広角光学系。
     0<Fr/Ff<1   ・・・(4)
      ただし、
       Ff:前記前群の焦点距離
       Fr:前記後群の焦点距離
  7.  下記(5)の条件式を満足することを特徴とする請求項1から請求項6のいずれか1項に記載の広角光学系。
     0.3<f4/f5<7   ・・・(5)
      ただし、
       f4:前記第4レンズの焦点距離
       f5:前記第5レンズの焦点距離
  8.  下記(6)の条件式を満足することを特徴とする請求項1から請求項7のいずれか1項に記載の広角光学系。
     -5<R4f/R4r<0   ・・・(6)
      ただし、
       R4f:前記第4レンズの物体側の曲率半径
       R4r:前記第4レンズの像面側の曲率半径
  9.  下記(7)の条件式を満足することを特徴とする請求項1から請求項8のいずれか1項に記載の広角光学系。
     0.01<L45/L15<0.3   ・・・(7)
      ただし、
       L45:前記第4レンズの像面側の面から前記第5レンズの物体側までの距離
       L15:前記第1レンズの物体側の面から前記第5レンズの像面側までの距離
  10.  前記第2から第4レンズは、それぞれ、少なくとも1面の非球面を有することを特徴とする請求項1から請求項9のいずれか1項に記載の広角光学系。
  11.  前記第1レンズは、ガラス材料製レンズであることを特徴とする請求項1から請求項10のいずれか1項に記載の広角光学系。
  12.  前記第5レンズは、樹脂材料製レンズであることを特徴とする請求項1から請求項11のいずれか1項に記載の広角光学系。
  13.  請求項1から請求項12のいずれか1項に記載の広角光学系と、
     前記広角光学系で形成された被写体の光学像を撮像する撮像素子とを有することを特徴とする撮像装置。
  14.  前記撮像素子の出力に対し、所定の画像処理を行う画像処理部をさらに有することを特徴とする請求項13に記載の撮像装置。
  15.  前記所定の画像処理は、前記撮像素子の受光面上に形成される前記被写体の光学像における歪みを補正する歪補正処理を含むことを特徴とする請求項14に記載の撮像装置。
  16.  前記所定の画像処理は、前記撮像素子の受光面上に形成される前記被写体の光学像における周辺照度落ちを補正する照度補正処理を含むことを特徴とする請求項14または請求項15に記載の撮像装置。
PCT/JP2009/060514 2008-07-17 2009-06-09 広角光学系および撮像装置 WO2010007845A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-186334 2008-07-17
JP2008186334 2008-07-17

Publications (1)

Publication Number Publication Date
WO2010007845A1 true WO2010007845A1 (ja) 2010-01-21

Family

ID=41550253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060514 WO2010007845A1 (ja) 2008-07-17 2009-06-09 広角光学系および撮像装置

Country Status (1)

Country Link
WO (1) WO2010007845A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179616B1 (en) 2011-01-20 2012-05-15 Largan Precision, Co. Optical lens assembly for image taking
JP2015203769A (ja) * 2014-04-14 2015-11-16 京セラ株式会社 撮像レンズおよび撮像装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261510A (ja) * 1991-02-16 1992-09-17 Copal Co Ltd 超広角レンズ
JP2003344773A (ja) * 2002-05-22 2003-12-03 Matsushita Electric Ind Co Ltd 撮影装置
JP2004333721A (ja) * 2003-05-06 2004-11-25 Minolta Co Ltd 撮影装置
JP2007164079A (ja) * 2005-12-16 2007-06-28 Elmo Co Ltd 魚眼レンズユニット
JP2009003455A (ja) * 2007-06-25 2009-01-08 Ricoh Co Ltd 画像形成レンズ系を有する画像処理システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04261510A (ja) * 1991-02-16 1992-09-17 Copal Co Ltd 超広角レンズ
JP2003344773A (ja) * 2002-05-22 2003-12-03 Matsushita Electric Ind Co Ltd 撮影装置
JP2004333721A (ja) * 2003-05-06 2004-11-25 Minolta Co Ltd 撮影装置
JP2007164079A (ja) * 2005-12-16 2007-06-28 Elmo Co Ltd 魚眼レンズユニット
JP2009003455A (ja) * 2007-06-25 2009-01-08 Ricoh Co Ltd 画像形成レンズ系を有する画像処理システム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179616B1 (en) 2011-01-20 2012-05-15 Largan Precision, Co. Optical lens assembly for image taking
JP2015203769A (ja) * 2014-04-14 2015-11-16 京セラ株式会社 撮像レンズおよび撮像装置

Similar Documents

Publication Publication Date Title
JP5282272B2 (ja) 広角光学系および撮像装置
CN113238358B (zh) 摄像镜头
CN109313323B (zh) 摄像光学系统、透镜部件以及摄像装置
JP5585663B2 (ja) 広角レンズ,撮像光学装置及びデジタル機器
JP5475978B2 (ja) 撮像レンズ、およびカメラモジュールならびに撮像機器
JPWO2009041382A1 (ja) 広角光学系、撮像レンズ装置、モニタカメラおよびデジタル機器
JPWO2009066532A1 (ja) 広角光学系、撮像レンズ装置、モニタカメラおよびデジタル機器
JP5084335B2 (ja) 撮像レンズ
WO2012176379A1 (ja) 撮像光学系、撮像装置およびデジタル機器
CN204086668U (zh) 摄像镜头
CN103718079B (zh) 广角透镜、摄像光学装置及数码设备
JP2005284153A (ja) 撮像レンズ
CN111344617B (zh) 拍摄镜头、拍摄光学装置以及数码设备
CN206440879U (zh) 摄像镜头
JP2012042840A (ja) 撮像レンズ
CN105008977B (zh) 摄影光学系统、摄影光学装置以及数字设备
JP2013156457A (ja) 撮像レンズ、撮像装置、及び携帯端末
KR20180072355A (ko) 광각 렌즈 및 이를 포함한 촬상 장치
JP2008158413A (ja) 撮影レンズ及びそれを有する撮像装置
WO2013031122A1 (ja) 撮像光学系、撮像装置およびデジタル機器
WO2012164877A1 (ja) 撮像光学系、撮像装置およびデジタル機器
JP2009145809A (ja) 撮像レンズおよび撮像装置
JP2010025995A (ja) 広角光学系および撮像装置
CN104570303A (zh) 变焦透镜
CN104981723B (zh) 摄影光学系统、摄影光学装置以及数字设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09797773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09797773

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP