WO2010004999A1 - 配合原料の水分測定方法及び水分測定装置 - Google Patents

配合原料の水分測定方法及び水分測定装置 Download PDF

Info

Publication number
WO2010004999A1
WO2010004999A1 PCT/JP2009/062381 JP2009062381W WO2010004999A1 WO 2010004999 A1 WO2010004999 A1 WO 2010004999A1 JP 2009062381 W JP2009062381 W JP 2009062381W WO 2010004999 A1 WO2010004999 A1 WO 2010004999A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
raw material
absorbance
measuring
reference wavelength
Prior art date
Application number
PCT/JP2009/062381
Other languages
English (en)
French (fr)
Inventor
杉浦 雅人
正樹 矢野
松本 俊司
國永 学
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to BRPI0915698A priority Critical patent/BRPI0915698A2/pt
Priority to EP09794443.3A priority patent/EP2309252B1/en
Priority to CN2009801258747A priority patent/CN102084239B/zh
Priority to KR1020117000090A priority patent/KR101247445B1/ko
Priority to JP2010519786A priority patent/JP4890645B2/ja
Publication of WO2010004999A1 publication Critical patent/WO2010004999A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • C22B1/20Sintering; Agglomerating in sintering machines with movable grates
    • C22B1/205Sintering; Agglomerating in sintering machines with movable grates regulation of the sintering process
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/16Sintering; Agglomerating
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/317Special constructive features
    • G01N2021/3174Filter wheel

Definitions

  • the present invention relates to a moisture measuring method and a moisture measuring device for blended raw materials.
  • the present invention relates to a technique for measuring moisture in a sintered raw material obtained by blending a plurality of types of raw materials before blending using absorption of infrared water.
  • sintering raw materials obtained by blending two or more brands of iron ore as raw materials and auxiliary raw materials such as powdered coke and limestone as fuel are sintered in a sintering machine.
  • auxiliary raw materials such as powdered coke and limestone as fuel
  • the iron ore and the auxiliary raw material before blending are referred to as a pre-blending raw material
  • the raw material after blending is referred to as a blended raw material or a sintered raw material.
  • the sintering process water is added to the sintering raw material in a mixer and mixed and granulated. Next, the granulated sintered raw material is charged in layers in a sintering machine, and the surface is ignited. The sintering machine sucks air from below the charged sintering raw material. Thereby, air passes toward the downward direction from the upper direction of a sintering raw material. Then, the sintering reaction proceeds gradually downward from the surface while the powder coke burns.
  • the granulation of the sintering raw material is a process for producing pseudo particles of about 3 to 5 mm through the moisture contained in the sintering raw material.
  • the pseudo particles have a structure in which fine particles having a particle size of 0.5 mm or less are mainly attached to core particles having a particle size of 1 mm or more.
  • the granulation property of the sintering raw material greatly depends on the moisture content. For example, if there is not enough moisture, fine particles remain and the air permeability in the sintering machine deteriorates, resulting in a decrease in productivity. On the other hand, even if the water is excessive, the bonding force between the particles decreases, so that it is not possible to make particles having a target size.
  • moisture management of the sintering raw material is particularly important in the granulation process of the sintering machine.
  • it is necessary to measure the moisture content of the sintering raw material after granulation on the outlet side of the mixer. Then, the amount of water added is managed so that the measured moisture content of the sintered raw material becomes the target value.
  • the moisture of iron ore sent from the raw material yard by a belt conveyor is not constant. For example, if there is rain when raw materials are stacked in the yard, the moisture content is different between the surface layer and the inside of the yard mountain. Therefore, it is desirable to constantly monitor the moisture content of the sintering material, and to change the amount of water added when the moisture content changes to keep the moisture content of the sintering material constant. Thereby, the air permeability in a sintering machine is maintained favorably, and stable operation and sintering quality can be ensured.
  • the dry mass method is an accurate and reliable moisture measurement method.
  • a sample of a sintering raw material is taken from a conveyance line, and the sample is completely dried by a dryer equipped with an atmosphere heating chamber and an infrared lamp.
  • the moisture content which the sample of the sintering raw material contained was calculated
  • the dry mass method requires an operation of sampling and a drying time (30 minutes to 2 hours), and the measurement is intermittent. There is also a problem that the time delay until the measurement value is obtained is extremely large.
  • a moisture content measuring method using an infrared moisture meter as a method for measuring the moisture content of a measurement object online without collecting a sample of a sintering raw material.
  • the surface of the object to be measured is irradiated with infrared rays and the reflected light is observed.
  • infrared rays are absorbed according to the amount of moisture at a specific wavelength of infrared rays, and the spectral reflectance at that wavelength decreases.
  • the moisture content of the object to be measured is measured.
  • the three-wavelength infrared moisture meter In three-wavelength type infrared moisture meter wavelengths around 1.9 ⁇ m or 2.0 ⁇ m below as the absorption wavelength lambda W by water is used. Reference wavelengths ( ⁇ L , ⁇ S ) are respectively determined on the long wavelength side and the short wavelength side of the absorption wavelength ⁇ W by water. For the reference wavelengths ( ⁇ L , ⁇ S ), a wavelength that is as close as possible to the absorption wavelength ⁇ W and is not affected by moisture is selected.
  • the reference spectral reflectance r W0e of the measurement object at the wavelength ⁇ W is calculated.
  • the reference spectral reflectance of the measurement object, the object to be measured in the dry state is a calculated value assuming the spectral reflectance at a wavelength lambda W.
  • w the moisture content of the measurement object (usually expressed in mass%).
  • k the absorbance of the object to be measured.
  • a and b are constants depending on the characteristics of the object to be measured. If the constants a and b corresponding to the object to be measured are inaccurate, an error occurs in the moisture measurement.
  • the relationship between the water content w of the object to be measured and the infrared absorbance k due to the water varies depending on the type of the object to be measured.
  • One reason is that the penetration depth of infrared rays varies depending on the substance.
  • Another reason is that the amount of water near the surface of the object to be measured observed with infrared rays and the total amount of water contained in the object to be measured do not match due to the influence of water absorption or the like of the object to be measured.
  • the infrared absorbance k C and the water content w C due to the water content are experimentally measured in advance for the sample of the object to be measured. Based on the measurement result, the relationship between the absorbance k and the water content w in the measurement object is determined as shown in equation (4).
  • the relational expression between the absorbance k and the water content w is called a calibration curve.
  • the relationship (calibration curve) between the moisture content w and the absorbance k of the sintered raw material Even if the constants a and b in the above equation (4) are experimentally determined in advance, the relationship between w and k changes due to subsequent changes in the composition of the sintering raw material. Therefore, in order to accurately measure the moisture content w of the sintering raw material using a three-wavelength infrared moisture meter, the measurement is performed while correcting the relationship between w and k, that is, the calibration curve in a timely manner based on actual measurements. Need to do.
  • Patent Document 1 when measuring the moisture of powder with an infrared moisture meter outdoors, the measurement fluctuation due to the change in atmospheric humidity cannot be ignored. Therefore, Patent Document 1 discloses a method of measuring the atmospheric humidity in the measurement optical path using infrared rays and correcting the moisture measurement value using infrared rays according to the humidity measurement value. Specifically, the constant b in the above equation (4) is changed according to the humidity measurement value.
  • Patent Document 2 discloses that in a method for measuring moisture content of a sintered ore raw material using an infrared moisture meter, the properties of the mixed raw material are slightly different each time the raw material composition is changed, so that the moisture meter is calibrated every time the composition is changed. . Specifically, a correction value is automatically calculated from the deviation between the target moisture value obtained from the moisture control device and the moisture indication value using a statistical method, and the moisture value drift (b in equation (4) above is changed). Is calibrated by zero drift operation.
  • Patent Document 3 is a method for measuring moisture content of a sintered raw material using infrared rays. Every time the sintering raw material is mixed, precise moisture measurement is performed by an absolute dry-type moisture measuring means immediately after the change. Corresponds to the measured moisture value by infrared absorption. Then, a new calibration curve is calculated by performing linear regression using the measured values of the prescribed number of times. In the embodiment, the prescribed number of times is normally 5 to 6 times.
  • the present invention quickly corrects the relationship between the absorbance k and the water content w (calibration curve) even when the raw material composition is changed in the measurement of the water content of the raw material using absorption by infrared water.
  • An object of the present invention is to provide a moisture measuring method and a moisture measuring device capable of measuring the moisture content w of the blended raw material.
  • the present invention employs the following means in order to solve the above problems.
  • the water content measurement method of the blending raw material using the three-wavelength infrared moisture meter of the present invention is the wavelength ⁇ absorbed by water in the moisture content measuring method of the blending raw material using the three-wavelength infrared moisture meter.
  • k A reference wavelength combination in which b of aw + b can be regarded as zero within the allowable measurement error range of the infrared moisture meter is used regardless of the blending ratio of the raw material before blending.
  • a k 0 square sum average value which is a value obtained by dividing the square sum of the absorbance k 0 of each of the plurality of raw materials before mixing by the number of the raw materials before mixing, is calculated.
  • a long wavelength side reference wavelength candidate ⁇ L ′ having a k 0 square sum average value of 0.001 or less among the plurality of long wavelength side reference wavelength candidates ⁇ L ′. and selecting as the lambda L; may be further provided with.
  • the long wavelength side reference wavelength candidate ⁇ L ′ having the smallest k 0 square sum average value is set as the long wavelength side reference wavelength ⁇ L. You may choose.
  • a step of measuring; k 0 square which is a value obtained by dividing the sum of squares of absorbance k 0 of each of the plurality of raw materials before mixing by the number of raw materials before mixing for each of the plurality of reference wavelength combination candidates Calculating a sum average value;
  • the k 0 square sum average values and selecting as the reference wavelength combination of the reference wavelength combination candidates to be 0.001 or less; may further comprise a.
  • the reference wavelength combination candidate having the smallest k 0 square sum average value among the plurality of reference wavelength combination candidates is the reference wavelength combination.
  • the reference wavelength combination may be selected using a plurality of bandpass filters that pass a specific wavelength.
  • the reference wavelength combination may be selected based on a result of continuous-wave infrared spectroscopy.
  • the blended material is a sintered material; the wavelength ⁇ W absorbed by the water is 1.9 ⁇ m or more and 2.0 ⁇ m or less. Yes;
  • the long wavelength side reference wavelength ⁇ L may be a wavelength selected from a wavelength range of 2.2 ⁇ m to 2.4 ⁇ m.
  • the short wavelength side reference wavelength ⁇ S may be a wavelength selected from a wavelength range of 1.6 ⁇ m to 1.8 ⁇ m.
  • the water content measuring apparatus for the blended raw material of the present invention includes a light source for irradiating the blended raw material with infrared rays; a detector for detecting the reflected light of the infrared; wavelength ⁇ W absorbed by water, and longer than ⁇ W
  • a band-pass filter that transmits each of the three wavelengths of the long-wavelength side reference wavelength ⁇ L and the short-wavelength side reference wavelength ⁇ S shorter than ⁇ W ; and the infrared spectral reflectances r W , r L , and r S , respectively.
  • the moisture content of the blended raw material was calculated.
  • the short wavelength side wavelength ⁇ S may be a wavelength selected from a wavelength range of 1.6 ⁇ m to 1.8 ⁇ m.
  • the method for measuring the moisture content of the blended material according to the present invention uses the moisture content measuring apparatus for the blended material described in (11) above, and previously measured the absorbance k C of the sample of the blended material using the dry mass method. Divide by the measured moisture content w C of the blended raw material sample to calculate the proportionality coefficient a, measure the absorbance k for any blended raw material, and divide the absorbance k by the proportional coefficient a to obtain the blended raw material. The moisture content w of is measured.
  • the moisture content of the sample of the blended raw material is measured offline by dry mass method after changing the raw material blend.
  • a calibration curve can be created from the measurement-containing water content w C and the infrared absorbance k C at the time when the measurement is performed only once. That is, the calibration curve can be corrected accurately and quickly. This makes it possible to continuously and accurately measure the water content w of the blended raw material by infrared measurement.
  • a suitable long wavelength side reference wavelength ⁇ L can be selected.
  • the optimum long wavelength side reference wavelength ⁇ L can be selected.
  • a suitable reference wavelength combination can be selected.
  • an optimal reference wavelength combination can be selected.
  • a suitable reference wavelength can be selected with a simple configuration.
  • a suitable reference wavelength can be accurately selected.
  • the above inventions (8) and (9) when a sintered raw material is used as a blending raw material, the relationship between the absorbance k and the moisture content w of the sintered raw material is a linear expression that passes near the origin. Therefore, the same effect as the above (1) can be obtained.
  • the moisture content of the sintered raw material can be measured accurately and quickly.
  • rW0e and rW0a can be suitably matched by appropriately selecting the reference wavelengths ⁇ S and ⁇ L.
  • “b becomes zero” means that even if b is regarded as zero, the influence is within the allowable error range in moisture measurement.
  • the present embodiment will be described using a sintered raw material as an object to be measured, the applicable object of the present invention is not limited to the measurement of moisture content in the sintered raw material.
  • the present invention can also be applied to, for example, a method for measuring the moisture content of a blended raw material obtained by blending a plurality of pre-blending raw materials.
  • All of the infrared moisture meters that are currently used generally have a value of 1.96 ⁇ m as the water absorption wavelength ⁇ W , a value of 1.8 ⁇ m as the reference wavelength ⁇ S on the short wavelength side, and a reference wavelength ⁇ L on the long wavelength side A value of 2.1 ⁇ m is adopted.
  • the absorbance k measured by the infrared moisture meter is compared with the moisture content w measured by the dry mass method for the same sample. .
  • the standard spectral reflectance rW0e is calculated by the above equation (2)
  • the absorbance k is calculated by the above equation (3).
  • the blended sintering raw material is a blend of several types of these raw materials A, B, C, D, and when the moisture content of the sintered raw material after blending is measured with an infrared moisture meter, The relationship between the moisture content and the absorbance k measured with an infrared moisture meter changes both the slope a and the intercept value b depending on the blending conditions.
  • the measurement of the moisture content w C by the dry mass method and the measurement of the absorbance k C by the infrared moisture meter are performed on two or more sintered raw material samples having different moisture contents. It is necessary to prepare two or more sets of measurement values. However, it is difficult to obtain such measurement values quickly.
  • the spectral reflectance rW0a is measured for each of the raw materials A, B, and C before blending in a completely dried state. Specifically, measurement is performed using a FT-IR infrared spectrometer at a wavelength in a continuous infrared region (range of 1.6 ⁇ m or more and 2.4 ⁇ m or less). The results are shown in FIGS. 2A, 2B, and 2C.
  • the spectral reflectance measured when the wavelength is 1.96 ⁇ m (that is, the absorption wavelength ⁇ W by water) is obtained.
  • This spectral reflectance is the true spectral reflectance rW0a of each of the raw materials A, B, and C before blending in a dried state.
  • the wavelength is 1.8 ⁇ m (that is, the short wavelength side reference wavelength ⁇ S )
  • the wavelength is 2.1 ⁇ m (that is, the long wavelength side reference wavelength ⁇ L ).
  • Spectral reflectances r S and r L measured at times are obtained.
  • the raw material before blending has a formation spectrum (for example, an intrinsic spectral characteristic spectrum in the case of iron ore), so that the true spectral reflectance r W0a in the dry state is It can be seen that the reference spectral reflectance rW0e is deviated. In particular, the degree of deviation is large in the raw material B before blending. For this reason, it was found that the absorbance did not become zero even when the water content was zero.
  • a formation spectrum for example, an intrinsic spectral characteristic spectrum in the case of iron ore
  • the reference wavelength shorter wavelength side 1.8 .mu.m not fixed with the longer wavelength side 2.1 .mu.m, the true spectral reflectance of the material prior to blending the dry state r W0a and the reference spectral reflectance r W0e and is possible match
  • the measurement accuracy of the infrared moisture meter can be improved by changing (resetting) the slope a of the calibration curve with the moisture measurement value w C of the raw material sample before blending obtained by the dry mass method being true. Can be increased. That is, since an accurate calibration curve can be obtained, the water content w of the blended material can be determined with high accuracy from the measured absorbance k of the blended material.
  • the spectral reflectance rW0a and the reference spectral reflectance rW0e are matched as much as possible.
  • the selection of the appropriate reference wavelength should be made with consideration given to almost all pre-combination raw materials, not to take into account specific pre-combination raw materials. Therefore, a suitable reference wavelength was searched for by the following method. Seven kinds (A to G) of brands of main raw materials used as sintering raw materials were selected as raw material samples. These pre-mixing raw material samples were dried to make the water content zero. The wavelength ⁇ W that is absorbed by the water was 1.96 ⁇ m.
  • Candidates for reference wavelength ⁇ S on the short wavelength side were 1.6 ⁇ m, 1.7 ⁇ m, and 1.8 ⁇ m.
  • Candidates of 2.1 ⁇ m, 2.2 ⁇ m, 2.3 ⁇ m, and 2.4 ⁇ m were used as reference wavelengths ⁇ L on the long wavelength side.
  • spectral reflectances (r S and r L ) at the respective candidate wavelengths of ⁇ S and ⁇ L were measured.
  • the absorbance k 0 of the sample of the raw material before blending according to the following formula (3) ′ was calculated.
  • k 0 ⁇ ln (r W0a / r W0e ) (3) ′ Since the dry state is to substitute zero for w in the equation (4), k 0 is equal to b.
  • the square of the absorbance k 0 of the raw material thus calculated was also calculated for each of the seven types.
  • the sum (that is, the sum of squares) of the squares of the respective absorbance k 0 was calculated.
  • a value obtained by dividing the square sum by the number of raw materials before blending was calculated.
  • a suitable reference wavelength for a plurality of types of raw materials before blending is selected by evaluating the square sum of k 0 , but the present invention is not limited to such an evaluation method. Absent.
  • a suitable reference wavelength may be selected by evaluating the sum of absolute values of k 0 , the sum of squares of k 0 , or the like.
  • a suitable reference wavelength may be selected by calculating a sum of squares or the like with a weight according to the mixing ratio.
  • the reference wavelength ⁇ L on the long wavelength side is in the range of 2.2 ⁇ m or more and 2.4 ⁇ m or less
  • the square sum of k 0 is 0.001 or less. And can be held to very few levels.
  • the reference wavelength ⁇ L on the long wavelength side is in the range of 2.2 ⁇ m or more and 2.4 ⁇ m or less
  • the reference wavelength ⁇ S on the short wavelength side is any wavelength in the range of 1.6 ⁇ m or more and 1.8 ⁇ m or less. Even so, the mean square sum of k 0 can be reduced.
  • the absorbance k 0 according to the above equation (3) ′ is shown. Both ⁇ W are 1.96 ⁇ m.
  • sample names: ⁇ , ⁇ , ⁇ The raw material to be blended and the blending amount were changed, and three kinds of sintered raw materials (after blending) (sample names: ⁇ , ⁇ , ⁇ ) were prepared.
  • samples of sintered raw materials were prepared in which the moisture content was varied from 0 to 7%.
  • the moisture content w by dry mass method was evaluated.
  • ⁇ W is 1.96 ⁇ m
  • ⁇ S 1.8 ⁇ m
  • ⁇ L 2.1 ⁇ m
  • ⁇ S 1.7 ⁇ m
  • ⁇ L 2.3 ⁇ m.
  • the horizontal axis is the moisture content w evaluated by the dry mass method
  • the vertical axis is the absorbance k obtained by infrared moisture measurement
  • the sintered raw materials ⁇ , ⁇ , and ⁇ after mixing are compared.
  • both the slope a and the intercept b of the relationship between the moisture content w and the absorbance k of the sintered raw material (after blending) vary depending on the type of the sintered raw material.
  • the slope a changes, but the relationship between the moisture content and the absorbance passes through the origin in any of the sintering raw materials. Recognize.
  • the water was removed by drying plurality of mixing before the raw material, respectively, water and the absorbance measured k 0 for each previous raw material formulation is removed, the square sum average absorbance k 0 of the plurality of formulation before the raw material was measured
  • the infrared moisture measurement is performed by selecting the reference wavelengths ⁇ S and ⁇ L so that the mean square sum of k 0 becomes a small value when calculated, a plurality of raw materials before blending are blended as measurement targets. It can be seen that even when the sintered raw material is used, the relationship (calibration curve) between the absorbance k and the water content w is always on a straight line passing through the vicinity of the origin.
  • b is in the vicinity of zero regardless of the composition, but strictly speaking, b is within 0 ⁇ 0.005. This uncertainty of 0.005 corresponds to an error of 0.2% in moisture measurement. Therefore, if the error allowed in moisture measurement is 0.2%, there is no practical problem even if b is regarded as zero. Thus, b being equal to or less than the allowable measurement error indicates that even if b is regarded as zero, the influence is within an error range allowed for moisture measurement.
  • the absorbance k 0 When the absorbance k 0 is measured for a plurality of pre-combination raw materials from which moisture has been removed and ⁇ S and ⁇ L are selected such that the square sum of the absorbance k 0 is small, the square sum of the absorbance k 0 is 0. If ⁇ S and ⁇ L that are 001 or less are selected, the square sum average of the absorbance k 0 is 1 ⁇ 2 or less compared to the conventional case, and a highly accurate moisture measurement can be performed.
  • ⁇ L has a greater influence on the moisture measurement accuracy of the sintered raw material.
  • lambda using the values which have been conventionally used as S lambda L only to optimize may select lambda L of square sum average of the absorbance k 0 is reduced.
  • the most preferable result can be obtained by selecting a reference wavelength combination having the smallest square sum of the absorbance k 0 .
  • a plurality of ⁇ L , or a combination of a plurality of ⁇ S and ⁇ L , for a reference spectral reflection at a wavelength ⁇ W is used.
  • calculating the rate r W0e it is necessary to determine the absorbance k 0 from r W0a and r W0e actually measured with respect dried preformulation material of the sample.
  • the spectral reflectance at each ⁇ L and ⁇ S can be measured by using a bandpass filter of the wavelength.
  • the bandpass filter a filter that passes infrared rays having a wavelength of ⁇ 0.05 ⁇ m can be used.
  • infrared spectrometry result of the continuous wavelength the predetermined lambda L, spectral reflectance at lambda S r L, by reading the r S It is also possible to select an optimum ⁇ L or an optimum combination of ⁇ S and ⁇ L.
  • an FT-IR spectrophotometer can be used.
  • the wavelength of 2.2 ⁇ m or more and 2.4 ⁇ m or less is used as the reference wavelength ⁇ L on the long wavelength side.
  • the reference wavelength ⁇ L is used as the reference wavelength ⁇ L on the long wavelength side.
  • the reference spectral reflectance r W0e at wavelength ⁇ W is calculated from the above, the absorbance k of the sintered raw material is obtained from r W and r W0e, and the moisture content w C of the sintered raw material sample measured in advance by a dry mass method or the like a method of calculating the water content w of the sintering raw material from the relationship between the water content w and the absorbance k containing determined based on the absorbance k C (cali
  • the moisture content w of the sintered raw material is determined from the relationship between the moisture content w C and the absorbance k determined based on the moisture content w C of the sample of the blended raw material measured in advance and the absorbance k C.
  • the relationship between the water content w and the absorbance k passes through the vicinity of the origin, so that the moisture content of the sintered raw material can be calculated by dividing the absorbance k by the proportional coefficient a.
  • the conventionally used ⁇ S may be used as it is, but ⁇ S is selected from a wavelength range of 1.6 ⁇ m to 1.8 ⁇ m.
  • the wavelength to be used may be used.
  • the moisture measuring apparatus 1 of the present invention for measuring the moisture content of a sintering raw material using absorption of infrared rays by water is more effective than the first infrared ray having a wavelength ⁇ W absorbed by water and the wavelength ⁇ W.
  • a light source 2 that irradiates the sintering material with a second infrared ray having a long wavelength ⁇ L and a third infrared ray having a wavelength ⁇ S shorter than the wavelength ⁇ W , and reflected light of the first to third infrared rays ,
  • a band-pass filter 4 that transmits infrared rays of three wavelengths of wavelength ⁇ W , wavelength ⁇ L , and wavelength ⁇ S , and an arithmetic device 5.
  • Spectral reflectances r W , r L , and r S of the sintering raw material are the band pass filters of the wavelength ⁇ W absorbed by water, the reference wavelength ⁇ L on the long wavelength side, and the reference wavelength ⁇ S on the short wavelength side, respectively. 4 (4 w , 4 L , 4 S ), respectively.
  • the absorption wavelength falling within the scope a wavelength 1.9 ⁇ m or 2.0 ⁇ m as lambda W is use, the wavelength to be selected from 2.2 ⁇ m or 2.4 ⁇ m or less in the wavelength range as the lambda L is used.
  • the relationship between the water content w and the absorbance k passes through the vicinity of the origin in any sintered raw material 6.
  • a band-pass filter selection device 7 using motor rotation can be used for selection of the three band-pass filters 4 (4 w , 4 L , 4 S ).
  • the moisture measuring apparatus of the sintering material of the present invention may be to use a wavelength selected from 1.6 ⁇ m or 1.8 ⁇ m below as lambda S.
  • the brand and blending ratio of the raw material before blending of the sintered raw material after blending are Even if it changes, the relationship between the absorbance k and the water content w in the infrared analysis is a linear expression that always passes near the origin.
  • the relationship between the moisture content w and the absorbance k is: Since it passes through the vicinity of the origin, it is possible to calculate the moisture content of the sintered raw material by dividing the absorbance k by the proportional coefficient a. Therefore, for any sintered raw material, for example, for the sintered raw material charged into the sintering machine at a timing determined within one day, the absorbance k C is measured, and the moisture content w is determined by a dry mass method. If C is measured and the proportionality constant a is calculated by the equation (1), the measurement accuracy of the moisture measuring method and the moisture measuring device of the present invention can always be maintained accurately.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

 配合原料の水分測定方法は、3波長式赤外線水分計を用いた配合原料の含有水分測定方法において、水により吸収される波長λより長い長波長側参照波長λと、前記波長λより短い短波長側参照波長λと、の参照波長組み合わせとして、前記配合原料の含有水分量wと吸光度kとの関係式k=aw+bのbが、前記配合前原料の配合比率によらず、前記赤外線水分計の許容測定誤差の範囲内でゼロと見なせる参照波長組み合わせを用いる。

Description

配合原料の水分測定方法及び水分測定装置
 本発明は、配合原料の水分測定方法及び水分測定装置に関する。特に本発明は、赤外線の水による吸収を利用して、複数の種類の配合前原料を配合して得られる焼結原料中の水分を測定する技術に関連する。
 本願は、2008年7月7日に、日本に出願された特願2008-176786号に基づき優先権を主張し、その内容をここに援用する。
 焼結鉱を製造する際には、原料として二以上の銘柄の鉄鉱石と、燃料である粉コークスや石灰石等の副原料とを配合して得られた焼結原料を焼結機内で焼結して焼結鉱とする。ここでは、配合する前の鉄鉱石および副原料を配合前原料と呼び、配合した後の原料を配合原料あるいは焼結原料と呼ぶ。
 焼結工程では、ミキサーにおいて焼結原料に水を添加して混合し、造粒する。次に、造粒した焼結原料を焼結機に層状に装入し、その表面に着火する。焼結機は装入した焼結原料の下方から空気を吸引する。これにより、焼結原料の上方から下方に向けて空気が通過する。そして、粉コークスが燃焼しながら表面から下方向に徐々に焼結反応が進行する。
 焼結原料の造粒とは、焼結原料中の含有水分を媒介として3~5mm程度の擬似粒子を作る工程である。この擬似粒子は、粒径1mm以上の核粒子に主に粒径0.5mm以下の細かい粒子が付着した構造を有する。このとき、焼結原料の造粒性は含有水分量に大きく依存する。例えば、水分が足りなければ細かい粒子が残り焼結機での通気性が悪くなり生産性が低下する。逆に、水分が過剰であっても粒子間の結合力が低下するので目標とするサイズの粒子を作ることができない。従って、焼結機の造粒工程では焼結原料の水分管理が特に重要である。焼結機に装入する焼結原料の含有水分量を一定に保持するためには、ミキサー出側の造粒後の焼結原料の含有水分量を測定する必要がある。そして、測定された焼結原料の含有水分量が目標値になるように水添加量を管理する。
 原料ヤードからベルトコンベアで送られてくる鉄鉱石の水分は一定ではない。例えば、原料がヤードに積まれている状態で降雨があれば、ヤードの山の表層と内部で水分が異なる。従って、焼結原料の含有水分量を常時監視しておき、含有水分量が変化したら水添加量を変更して焼結原料の含有水分量を一定に保つことが望ましい。これにより、焼結機内の通気性が良好に維持され、安定した操業と焼結品質を確保することができる。
 乾燥質量法は、正確で信頼性の高い水分測定方法である。この方法は、焼結原料の試料を搬送ラインから採取し、雰囲気加熱チャンバーや赤外線ランプを備える乾燥機でその試料を完全に乾燥させる。そして、乾燥前後で測定したその焼結原料の試料の質量を比較することで、その焼結原料の試料が含有していた水分量が求められる。しかしながら、乾燥質量法は試料採取という作業と乾燥時間(30分~2時間)が必要であり、測定は間欠的になる。また、測定値が得られるまでの時間遅れがきわめて大きいという問題がある。
 焼結原料の試料を採取することなくオンラインで被測定対象物の含有水分量を測定する方法として、赤外線水分計を用いた含有水分測定方法がある。この方法においては、被測定対象物の表面に赤外線を照射し、反射光を観察する。赤外線の光路に水分が存在すると、赤外線の特定波長では水分量に応じて赤外線が吸収され、その波長での分光反射率が低下する。この現象を利用して被測定対象物の含有水分量を測定する。非接触で連続的な測定が可能であり、時間遅れなく被測定対象物の含有水分量が判明するという利点がある。
 以下、3波長式赤外線水分計について詳しく説明する。3波長式赤外線水分計においては、水による吸収波長λとして1.9μm以上2.0μm以下付近の波長が用いられる。水による吸収波長λの長波長側と短波長側に参照波長(λ、λ)がそれぞれ定められる。参照波長(λ、λ)には、吸収波長λのできるだけ近くの波長であり、且つ水分による影響を受けない波長が選択される。
 λ、λ、λの3波長で被測定対象物の分光反射率r、r、rをそれぞれ測定する。測定したrとrとに基づき、波長λにおける被測定対象物の基準分光反射率rW0eを算出する。ここで被測定対象物の基準分光反射率とは、乾燥状態の被測定対象物の、波長λにおける分光反射率を仮定した計算値である。通常は、波長と分光反射率との関係図において、(λ、r)と(λ、r)との間を直線で結び、波長λにおけるその直線上の値をrW0eとする。すなわち、以下に示す(2)式で表現される。rとrW0eとから、以下に示す(3)式によって被測定対象物の吸光度kを求め、求められた被測定対象物の吸光度kを所定の一次式、例えば以下に示す(4)式に代入し、被測定対象物の含有水分量wを定める。
  a=k/w                     …(1)
  rW0e=r+(λ-λ)×(r-r)/(λ-λ)  …(2)
  k=-ln(r/rW0e)               …(3)
  k=a×w+b                   …(4)
 ここで、wは被測定対象物の含有水分量(通常、質量%で表示)である。kは被測定対象物の吸光度である。a、bは被測定物の特性に依存した定数である。被測定物に対応した定数a、bが不正確であると水分測定に誤差を生じる。
 被測定対象物の含有水分量wと、水分による赤外線吸光度kと、の関係は、被測定対象物の種類によって異なる。赤外線の浸透深さが物質によって異なることが、理由の1つである。また、被測定対象物の吸水性などの影響により、赤外線で観測する被測定対象物の表層付近の水分量と被測定対象物の全体の含有水分量とが一致しないことも理由の他の1つである。そこで、被測定対象物の試料について、含有水分量による赤外線吸光度kCと含有水分量wCとを予め実験的に測定しておく。そして、この測定結果に基づいて、被測定対象物における吸光度kと含有水分量wとの関係を(4)式のように定めておく。吸光度kと含有水分量wの関係式は検量線と呼ばれる。
 ここで、焼結原料を被測定対象物として、上記3波長式赤外線水分計を用いて含有水分量を測定する場合、焼結原料の含有水分量wと吸光度kとの関係(検量線)については、予め実験的に上記(4)式の定数a、bを定めたとしても、その後の焼結原料の配合変更などによって、wとkとの関係は変化する。従って、3波長式赤外線水分計を用いて焼結原料の含有水分量wを正確に測定するためには、wとkとの関係、即ち検量線を実測に基づいてタイムリーに修正しつつ測定を行う必要がある。
 特許文献1においては、屋外で粉体の水分を赤外線水分計で測定するに際し、大気湿度の変化による測定変動が無視できない程度であるとしている。そこで、特許文献1では、赤外線による測定光路中の大気湿度を測定し、湿度測定値に応じて赤外線による水分測定値を補正する方法を開示している。具体的には、湿度測定値に応じて、上記(4)式の定数bを変化させている。
 特許文献2は、赤外線水分計による焼結鉱原料の水分測定方法において、混合原料の性状が原料配合変更毎に少しずつ異なるため、配合変更のたびに水分計を校正することを開示している。具体的には、水分制御装置から得られる目標水分値と水分指示値の偏差から統計的手法を用いて自動的に補正値を算出し、水分値のドリフト(上記(4)式のbの変動に相当)をゼロドリフト操作によって校正している。
特許文献3に開示されている方法は、赤外線による焼結原料の水分測定方法において、焼結原料の配合変更のつど、その直後に絶対乾燥式の水分測定手段により精密水分測定を行い、同時刻の赤外線吸収による水分測定値を対応させている。そして、規定回数の両者の測定値を用い、一次回帰を行って新たな検量線を算出している。実施例においては、規定回数として通常は5~6回としている。
特開昭59-72047号公報 特開昭62-839号公報 特開平6-34532号公報
 配合した焼結原料の含有水分量wを赤外線測定により求める場合、大気湿度の変化による測定変動は重大ではないことが判明した。
 一方、特許文献2、3に記載の通り、焼結原料の配合を変更すると、赤外線水分計で測定した吸光度kと含有水分量wとの関係が変化する。従って、原料配合を変更したような場合には吸光度kと含有水分量wとの関係、即ち検量線を速やかに修正する必要がある。ここで、原料配合を変更した際のkとwとの関係(検量線)の変動は、上記(4)式における定数bが変動するだけでなく、定数aも変動することが判明した。従って、特許文献2に記載の発明のように、定数bのみが変動するとの前提でドリフト調整を行ったのでは、正確な水分測定を行い得ないことがわかった。また、特許文献3に記載のように、規定回数のオフラインでの乾燥質量法測定を行って一次回帰を行おうとしても、焼結原料の含有水分量は短時間の間ではさほど変化しないので、正確な一次回帰式を得るに十分な水分の変化が得られない。また、規定回数の乾燥質量法測定には時間がかかるので、迅速に修正を行うことが困難となる。
本発明は、赤外線の水による吸収を利用した配合原料の含有水分測定において、原料配合が変更になっても速やかに吸光度kと含有水分量wとの関係(検量線)を修正し、常に正確に配合原料の含有水分量wの測定を行うことのできる水分測定方法及び水分測定装置を提供することを目的とする。
 本発明は、上記課題を解決するために以下の手段を採用した。
(1)本発明の、3波長式赤外線水分計を用いた配合原料の含有水分測定方法は、3波長式赤外線水分計を用いた配合原料の含有水分測定方法において、水により吸収される波長λより長い長波長側参照波長λと、前記波長λより短い短波長側参照波長λと、の参照波長組み合わせとして、前記配合原料の含有水分量wと吸光度kとの関係式k=aw+bのbが、前記配合前原料の配合比率によらず、前記赤外線水分計の許容測定誤差の範囲内でゼロと見なせる参照波長組み合わせを用いる。
(2)上記(1)に記載の配合原料の含有水分測定方法は、前記長波長側参照波長λの候補である長波長側参照波長候補λ’を複数仮定する工程と;複数の前記長波長側参照波長候補λ’の各々を用いた場合ごとに、水分が除去された状態の前記複数の配合前原料各々の吸光度kを測定する工程と;複数の前記長波長側参照波長候補λ’の各々を用いた場合ごとに、前記複数の配合前原料各々の前記吸光度kの二乗和を前記配合前原料の個数で除した値である、k二乗和平均値を計算する工程と;前記複数の長波長側参照波長候補λ’のうち、前記k二乗和平均値が0.001以下になる長波長側参照波長候補λ’を、前記長波長側参照波長λとして選択する工程と;を更に備えても良い。
(3)上記(2)に記載の配合原料の水分測定方法では、前記k二乗和平均値が最も小さい値となる長波長側参照波長候補λ’を前記長波長側参照波長λとして選択しても良い。
(4)上記(2)に記載の配合原料の水分測定方法は、前記長波長側参照波長λの候補である長波長側参照波長候補λ’を複数仮定する工程と;前記短波長側参照波長λの候補である短波長側参照波長候補λ’を複数仮定する工程と;複数の前記長波長側参照波長候補λ’と、複数の前記短波長側参照波長候補λ’と、を組み合わせた参照波長組み合わせ候補を複数仮定する工程と;複数の前記参照波長組み合わせ候補各々を用いた場合ごとに、水分が除去された状態の前記複数の配合前原料各々の吸光度kを測定する工程と;複数の前記参照波長組み合わせ候補各々を用いた場合ごとに、前記複数の配合前原料各々の吸光度kの二乗和を配合前原料の個数で除した値である、k二乗和平均値を計算する工程と;前記複数の参照波長組み合わせ候補のうち、前記k二乗和平均値が0.001以下になる参照波長組み合わせ候補を前記参照波長組み合わせとして選択する工程と;を更に備えても良い。
(5)上記(4)に記載の配合原料の水分測定方法では、前記複数の参照波長組み合わせ候補のうち、前記k二乗和平均値が最も小さい値となる参照波長組み合わせ候補を前記参照波長組み合わせとして選択しても良い。
(6)上記(1)に記載の配合原料の水分測定方法では、前記参照波長組み合わせは、特定の波長を通すバンドパスフィルターを複数利用して選択されても良い。
(7)上記(1)に記載の配合原料の水分測定方法では、前記参照波長組み合わせは、連続波長の赤外線分光測定結果に基づき選択されても良い。
(8)上記(1)に記載の配合原料の水分測定方法では、前記配合原料は焼結原料であり;前記水により吸収される波長λは、1.9μm以上2.0μm以下の波長であり;前記長波長側参照波長λは、2.2μm以上2.4μm以下の波長範囲から選択される波長であっても良い。
(9)上記(1)に記載の配合原料の水分測定方法では、前記短波長側参照波長λは、1.6μm以上1.8μm以下の波長範囲から選択される波長であっても良い。
(10)前記(1)に記載の配合原料の水分測定方法では、前記配合原料の試料の吸光度kを測定する工程と;乾燥質量法によって前記配合原料の試料の含有水分量wを測定する工程と;前記配合原料の試料の吸光度kを、前記配合原料の試料の含有水分量wで除算することで比例係数aを算出する工程と;前記配合原料の吸光度kを、前記比例係数aで除算することで前記配合原料の含有水分量を算出する工程と;を備えても良い。
(11)本発明の配合原料の水分測定装置は、赤外線を配合原料に照射する光源と;前記赤外線の反射光を検出する検出器と;水により吸収される波長λと、λより長い長波長側参照波長λと、λより短い短波長側参照波長λと、の3波長それぞれを透過するバンドパスフィルターと;前記赤外線の分光反射率r、r、rをそれぞれ算出し、前記分光反射率rと前記分光反射率rとから基準分光反射率rW0eを算出し、前記分光反射率rと前記分光反射率rW0eとから前記配合原料の吸光度kを算出し、予め測定した配合原料の試料の含有水分量wと吸光度kとに基づき作成された、配合原料の含有水分量wと吸光度kとの関係から、前記配合原料の含有水分量を算出する演算部と;を有する、配合原料の水分測定装置であって、前記配合原料は焼結原料であり;前記水により吸収される波長λは1.9μm以上2.0μm以下の波長であり;前記長波長側参照波長λは2.2μm以上2.4μm以下の波長範囲から選択される波長である。
(12)上記(11)に記載の配合原料の水分測定装置では、前記短波長側波長λは1.6μm以上1.8μm以下の波長範囲から選択される波長であっても良い。
(13)本発明の配合原料の水分測定方法は、上記(11)に記載の配合原料の水分測定装置を用い、予め測定した配合原料の試料の吸光度kを、予め乾燥質量法を用いて測定した配合原料の試料の含有水分量wで除算して比例係数aを算出し、任意の配合原料について吸光度kを測定し、前記吸光度kを前記比例係数aで除算することによって前記配合原料の含有水分量wを測定する。
 上記(1)の本発明によれば、吸光度kと含有水分量wとの関係が原点近傍を通過する一次式となるため、原料配合変更後のオフラインで乾燥質量法により配合原料の試料の水分測定を1回だけ行ってそのときの測定含有水分量wと赤外線吸光度kとから検量線を作成することができる。即ち、検量線を正確且つ迅速に修正することができる。これにより、配合原料の含有水分量wを赤外線測定によって連続的に正確に測定することが可能となる。
 上記(2)の発明によれば、好適な長波長側参照波長λを選択出来る。
 上記(3)の発明によれば、最適な長波長側参照波長λを選択出来る。
 上記(4)の発明によれば、好適な参照波長組み合わせを選択出来る。
 上記(5)の発明によれば、最適な参照波長組み合わせを選択出来る。
 上記(6)の発明によれば、簡単な構成で好適な参照波長を選択できる。
 上記(7)の発明によれば、正確に好適な参照波長を選択出来る。
 上記(8)、(9)の発明によれば、配合原料として焼結原料が用いられる際に、焼結原料の吸光度kと含有水分量wとの関係が原点近傍を通過する一次式となるため、上記(1)と同様の効果が得られる。
 上記(10)の発明によれば、正確且つ迅速な焼結原料の含有水分測定が可能となる。
配合前原料A,B,C,Dごとに乾燥質量法で測定した含有水分量(%)と赤外線水分計で測定した吸光度kとの関係を示す図である。 配合前原料Aを乾燥した状態で連続する赤外線領域の波長で測定した分光反射率を示す図である。 配合前原料Bを乾燥した状態で連続する赤外線領域の波長で測定した分光反射率を示す図である。 配合前原料Cを乾燥した状態で連続する赤外線領域の波長で測定した分光反射率を示す図である。 参照波長(λ、λ)の組み合わせ別に、配合前原料7銘柄の乾燥状態での吸光度kの二乗和平均を比較する図である。 配合前原料ごとに乾燥状態吸光度kの評価結果を示す図であり、λ=1.7μm、λ=2.3μmの波長を用いた場合(塗り潰した正方形)と、λ=1.8μm、λ=2.1μmの波長を用いた場合(塗り潰していない正方形)を示す。 配合後の焼結原料α、β、γについて、λ=1.8μm、λ=2.1μmの波長を用いた場合の、乾燥質量法で評価した含有水分量wと赤外線水分測定で得られた吸光度kとの関係を示す図である。 配合後の焼結原料α、β、γについて、λ=1.7μm、λ=2.3μmの波長を用いた場合の、乾燥質量法で評価した含有水分量wと赤外線水分測定で得られた吸光度kとの関係を示す図である。 本発明の焼結原料の水分測定装置を示す概念図である。
 赤外線の水による吸収を利用した配合原料(焼結原料)の含有水分量wの測定において、原料配合を変更した際のkとwとの関係(検量線)は、上述の通り、上記(4)式における定数aとbとがともに変動する。そのため、原料配合変更後の正しい定数aとbとを求めるためには、水分量の異なる2以上の配合原料の試料を採取し、それぞれの含有水分量wと、吸光度kと、を測定する必要がある。これにより、異なった含有水分量における2以上の測定値を得ることができるため、原料配合変更後の正しい定数aとbとを求めることができる。
 ここで、原料配合を変更した際に(4)式のaは変動するにしてもbが変動しないようにできれば、修正すべきは定数aのみとなる。従って、原料変更後の配合原料の試料について測定した吸光度kと真の含有水分量wとが1組あれば足りることとなる。
 従来、3波長式赤外線水分計において、水分吸収波長λとして1.9μm付近の吸収帯を用いて焼結原料の含有水分量wを測定するに際し、参照波長λ=1.8μm、λ=2.1μmが固定値として用いられていた。そしてこの場合、測定した焼結原料の分光反射率r、rに基づき、基準分光反射率rW0eを前記(2)式で計算した結果、計算した基準分光反射率rW0eと、焼結原料を乾燥して測定した乾燥状態での真の分光反射率rW0aとが一致しないことが明らかとなった。また、rW0eとrW0aとの差は配合前原料鉄鉱石や配合後の焼結原料によって異なる。
 これに対し、基準分光反射率rW0eと乾燥状態での真の分光反射率rW0aとを一致させることができれば、前記(3)式で吸光度kを算出したとき、水分wがゼロのときに吸光度kがゼロになり、吸光度kと含有水分量wとの関係が、
   k=a×w  …(5)
となる。即ち(4)式のbがゼロとなる。この場合、定めるべき定数がaひとつとなるので、原料配合変更後の焼結原料の試料に対して乾燥質量法水分測定を1回行えば定数aを定めることができる。そして、参照波長λ、λを適切に選択することにより、rW0eとrW0aとを好適に一致させ得ることが明らかとなった。
尚、ここで言う「bがゼロになる」とは、bをゼロと見なしてもその影響が水分測定における許容誤差の範囲内であることを意味する。
 以下、焼結原料を被測定対象物として本実施形態を説明するが、本発明の適応対象は焼結原料の含有水分測定に限られるものではない。本発明は、例えば、複数の配合前原料を配合して得られる配合原料の水分測定方法にも適用できる。
 現在、一般に用いられている赤外線水分計はいずれも、水吸収波長λとして1.96μmの値、短波長側の参照波長λとして1.8μmの値、長波長側の参照波長λとして2.1μmの値を採用している。
 配合される前の配合前原料の銘柄4種類A,B,C,Dについてそれぞれ、赤外線水分計により測定した吸光度kと、同じ試料について乾燥質量法により測定した含有水分量wとの比較を行う。一般に用いられている赤外線分光計を用い、基準分光反射率rW0eを前記(2)式で計算し、吸光度kを前記(3)式で計算する。測定した含有水分量wと計算した吸光度kとの関係を比較すると、図1に示す結果が得られる。吸光度kと、乾燥質量法による含有水分量wとの関係は、配合前原料の銘柄A,B,C,D毎に直線的関係を有する。その直線を前記(4)式で表すとすると、配合前原料の銘柄A,B,C,D毎に直線の傾きaが異なり、また縦軸切片の値bも異なることが明らかである。配合した焼結原料は、これらの配合前原料の銘柄A,B,C,Dを数種類配合したものであり、配合後の焼結原料の含有水分量を赤外線水分計で測定する場合にも、含有水分量と赤外線水分計で測定する吸光度kとの関係は、配合条件に応じて傾きa、切片の値bのいずれも変化してしまう。また、配合後の焼結原料の含有水分量wと吸光度kとの関係は、配合前の個別銘柄の関係を配合割合に応じて加算したものに一致しないことも明らかとなった。これは、配合した焼結原料中で水分が均一に分布せず、水の吸収性がよい銘柄に水分が偏在することなどが原因であろうと推定される。
 従って、焼結原料の含有水分量を赤外線水分計により精度良く測定するためには、配合する銘柄や配合する割合を変更するたびに、変更後の配合の焼結原料の、含有水分量wと赤外線水分計による吸光度kとの関係(検量線)を迅速に修正する必要がある。また、その修正についても、焼結原料の含有水分量wと吸光度kとの関係を前記(4)式のような一次式で表したとき、縦軸切片bのみならず、傾きaも修正する必要がある。aとbとをともに修正するためには、異なる含有水分量を有する2以上の焼結原料の試料に対して乾燥質量法による含有水分量wの測定と赤外線水分計による吸光度kの測定とを行い、2組以上の測定値を用意する必要がある。しかしながら、このような測定値を迅速に得ることは難しい。
 次に、赤外線分光計を用いて、配合前原料A,B,Cそれぞれについて、完全に乾燥した状態で分光反射率rW0aを測定する。具体的には、FT-IR赤外線分光計を用い、連続する赤外線領域の波長(1.6μm以上2.4μm以下の範囲)で測定を行う。その結果を図2A,図2B,図2Cに示す。
 図2A、図2B,図2Cを参照し、波長が1.96μm(即ち、水による吸収波長λ)のときに測定した分光反射率を求める。この分光反射率は、乾燥させた状態の配合前原料A、B、Cそれぞれのの真の分光反射率rW0aである。また、図2A、図2B,図2Cを参照し、波長が1.8μm(即ち、短波長側参照波長λ)のとき、波長が2.1μm(即ち、長波長側参照波長λ)のときに測定した分光反射率r、rを求める。図2A,図2B,図2Cには、上述した各参照波長における分光反射率r、rを直線で結んで求めた基準分光反射率rW0eがそれぞれ記入されている。この基準分光反射率rW0eはすなわち(2)式で計算するrW0eである。
 図2A、図2B、図2Cから明らかなように、配合前原料には地合スペクトル(例えば鉄鉱石であれば固有の分光特性スペクトル)があるため、乾燥状態における真の分光反射率rW0aと基準分光反射率rW0eとが乖離していることがわかる。特に配合前原料Bで乖離の度合いが大きい。このため水分がゼロであっても吸光度がゼロにならないことがわかった。
 そこで、参照波長を短波長側1.8μm、長波長側2.1μmと固定するのではなく、乾燥状態の配合前原料の真の分光反射率rW0aと基準分光反射率rW0eとができるだけ一致するように参照波長を選定することができるか、検討を行った。このような参照波長を選定することができれば、吸光度kと含有水分量wとの関係が原点から伸びる直線となるので、wとkとの関係式(検量線)がk=a×wと表現され、未知の係数はaのみとなる。そうすると、間欠的に得られる、乾燥質量法での配合前原料の試料の水分測定値wを真として、検量線の傾きaを変更(再設定)することで、赤外線水分計の測定精度を高めることができる。即ち、正確な検量線を得られるため、測定された配合原料の吸光度kから精度良くその配合原料の含有水分量wを決定できる。
 ただし、複数の配合前原料(鉄鉱石や副原料)が配合される焼結原料について含有水分量を測定する場合には、分光反射率rW0aと基準分光反射率rW0eとが極力一致するような参照波長の選択は、特定の配合前原料について考慮して選択するのではなく、ほぼ全ての配合前原料について考慮して選択しなければならない。そこで次に述べる手法で好適な参照波長を探索した。焼結原料として用いられる主な配合前原料の銘柄7種類(A~G)を配合前原料の試料として選択した。これら配合前原料の試料を乾燥して含有水分量をゼロとした。水により吸収される波長λを1.96μmとした。短波長側の参照波長λとして1.6μmと1.7μm、1.8μmを候補とした。長波長側の参照波長λとして2.1μm、2.2μm、2.3μm、2.4μmを候補とした。そして、λおよびλの各候補波長における分光反射率(それぞれr、r)を測定した。波長λでの乾燥状態における真の分光反射率測定値rW0aと、(2)で計算する基準分光反射率rW0eに基づき、下記(3)’式によって配合前原料の試料の吸光度kを算出した。
  k=-ln(rW0a/rW0e)    …(3)’
乾燥状態とは(4)式のwにゼロを代入することであるから、kはbに等しい。
 こうして算出した配合前原料の吸光度kの二乗を、7種類それぞれについても計算した。次に、それぞれの吸光度kの二乗に対し、その和(即ち二乗和)を計算した。そして、その二乗和を配合前原料の数で割った値(即ち二乗和平均)を算出した。λとλとの組み合わせ毎に、計算した二乗和平均を図3に示す。図3は、二乗和平均の値が右に向かって小さくなるように並べてある。図3から明らかなように、長波長側の参照波長λを2.1μm(現在の通常の赤外線水分計が使用している値)とした場合は吸光度kの二乗和平均が最も大きくなることがわかる。これは、図2から見て取れるように、焼結原料の反射スペクトルの2.1μm付近に小さなピーク(形状は焼結原料の銘柄により異なる)が存在することが原因である。一方、短波長側の参照波長λを1.7μm、長波長側の参照波長λを2.3μmとしたときに、kの二乗和平均を最も小さくすることができた。なお、上記実施形態ではk0の二乗和平均を評価することで、複数種類の配合前原料に対する好適な参照波長を選択しているが、本発明はそのような評価手法に限定されるものではない。本発明は、例えばk0の絶対値の総和や、k0の四乗和等を評価して好適な参照波長を選択しても良い。さらに、配合割合が常に多い配合前原料あるいは常に少ない配合前原料ある場合、その配合割合に応じた重みを付けて二乗和などを計算して好適な参照波長を選択しても良い。
 尚、被測定対象物が焼結原料の場合には、長波長側の参照波長λが2.2μm以上2.4μm以下の範囲内にあれば、kの二乗和平均を0.001以下と非常に少ないレベルに保持することができる。更に、長波長側の参照波長λが2.2μm以上2.4μm以下の範囲内にあるときには、短波長側の参照波長λが1.6μm以上1.8μm以下の範囲内のいずれの波長であっても、kの二乗和平均を小さくできる。
 図4には、配合前原料A~Gのそれぞれについて、λ=1.8μm、λ=2.1μmの波長を用いた場合と、λ=1.7μm、λ=2.3μmの波長を用いた場合の、上記(3)’式による吸光度kを示している。λはいずれも1.96μmである。図4から明らかなように、λ=1.7μm、λ=2.3μmの波長を用いた場合(図中、塗り潰した正方形)は、λ=1.8μm、λ=2.1μmの波長を用いた場合(図中、塗り潰していない正方形)と対比し、吸光度kすなわち(4)式のbがどの鉄鉱石銘柄でも非常に小さな値となることが明らかである。
 次に、配合前の原料の個別銘柄ではなく、複数の配合前原料を配合した焼結原料について、λとλを変更したときの吸光度kと、乾燥質量法で測定した含有水分量wとの対比を行った。
 配合する配合前原料と配合量を変化させ、3種類の焼結原料(配合後)(サンプル名:α、β、γ)を用意した。これら3種類の焼結原料について、含有水分量を0~7%で変化させた焼結原料の試料を準備した。各焼結原料の試料について、乾燥質量法による含有水分量wの評価を行った。
 赤外線水分測定において、λを1.96μmとし、λ=1.8μm、λ=2.1μmの波長を用いた場合と、λ=1.7μm、λ=2.3μmの波長を用いた場合について、吸光度kを評価した。吸光度kの評価に際しては、(2)式及び(3)式を用いた。
 横軸を乾燥質量法で評価した含有水分量w、縦軸を赤外線水分測定で得られた吸光度kとし、配合後の焼結原料α、β、γについて比較を行った。図5に従来から汎用的に使われている波長セットλ=1.8μm、λ=2.1μmの波長を用いた場合を示す。また、図6に配合前原料ごとの評価で乾燥状態での吸光度kの二乗和平均が最も低い値を示した波長セットλ=1.7μm、λ=2.3μmの波長を用いた場合を示す。図5によると、焼結原料(配合後)の含有水分量wと吸光度kとの関係は、焼結原料の種類によって、傾きaと切片bの両方が変動していることがわかる。それに対し図6によると、焼結原料(配合後)の種類が変わると、傾きaは変動するものの、いずれの焼結原料でも含有水分量と吸光度との関係は原点を通過していることがわかる。
 即ち、複数の配合前原料をそれぞれ乾燥して水分を除去し、水分を除去した配合前原料のそれぞれについて吸光度kを測定し、測定した複数の配合前原料の吸光度kの二乗和平均を算出したとき、kの二乗和平均が小さな値となるような参照波長λとλとを選択して赤外線水分測定を行うこととすれば、測定対象として複数の配合前原料が配合された焼結原料を用いた場合においても、吸光度kと含有水分量wの関係(検量線)は常に原点近傍を通過する直線上にあることがわかる。すると、検量線k=aw+bにおいて、許容測定誤差に照らしてb=0と見なすことができる。この結果、配合前原料の銘柄や割合が変化した場合において、配合変更後の焼結原料について乾燥質量法で評価した含有水分量wと、赤外線吸光法で評価した吸光度kのデータが1セットあれば、このデータから、上記(1)式を用いてaを算出し、このaで前記(5)式を修正することにより、前記(5)式によって焼結原料の含有水分量wを精度良く測定することが可能になる。bに関する許容測定誤差とは次に述べる概念である。図6では配合によらずbがゼロ付近にあるが、厳密にはbが0±0.005以内である。この0.005の不確かさは水分測定における誤差0.2%に相当する。よって、もし水分測定で許容される誤差が0.2%であれば、bをゼロと見なしても実用上問題ない。このように、bが許容測定誤差以下ということは、bをゼロと見なしてもその影響が水分測定で許される誤差範囲内であることを示す。
 水分を除去した複数の配合前原料について吸光度kを測定し、吸光度kの二乗和平均が小さくなるようなλとλを選択するに際しては、吸光度kの二乗和平均が0.001以下となるλとλを選択すれば、従来と比較して吸光度kの二乗和平均が1/2以下となり、精度の良い水分測定を行うことができる。
 また、λとλとのうち、λの方が焼結原料の水分測定精度に影響が大きい。従って、λとしては従来から用いられている値を用い、λのみを最適化すべく、上記吸光度kの二乗和平均が小さくなるλを選択しても良い。
 また、吸光度kの二乗和平均が最も小さい値となった参照波長組み合わせを選択すれば、最も好ましい結果を得ることができる。
 最適なλの選択、あるいは最適なλとλとの組み合わせの選択のためには、複数のλ、あるいは複数のλとλとの組み合わせについて、波長λにおける基準分光反射率rW0eを算出し、乾燥された配合前原料の試料に対して実測したrW0aとrW0eから吸光度kを求めることが必要である。このとき、各λ、λにおける分光反射率の測定に際しては、当該波長のバンドパスフィルターを用いることによって行うことができる。バンドパスフィルターは、当該波長の±0.05μmの赤外線を通過するフィルターを用いることができる。
 また、バンドパスフィルターを用いるのではなく、連続波長の赤外線分光測定を行い、当該連続波長の赤外線分光測定結果から、所定のλ、λにおける分光反射率r、rを読み取ることによって、最適なλ、あるいは最適なλとλとの組み合わせの選択を行うこともできる。連続波長の赤外線分光測定に際しては、例えばFT-IR分光光度計を用いることができる。
 以上詳述してきたことから明らかなように、本発明では焼結原料の含有水分量を赤外線水分計によって測定するに際し、長波長側の参照波長λとして2.2μm以上2.4μm以下の波長範囲から選択する適切な波長を用いる。これにより、焼結原料の配合条件が変わっても、含有水分量wと吸光度kとの関係(検量線)で傾きは変動するものの、いずれの焼結原料でも含有水分量wと吸光度kとの関係(検量線)は原点近傍を通過する。従って、赤外線を焼結原料に照射し、その反射光を検出し、赤外線の水による吸収を利用してその焼結原料の含有水分量wを測定する方法であって、水により吸収される波長λと、λより長波長側の参照波長λ、短波長側の参照波長λの3波長で分光反射率r、r、rを測定し、このrとrとから波長λにおける基準分光反射率rW0eを算出し、rとrW0eから焼結原料の吸光度kを求め、予め乾燥質量法等により測定した焼結原料の試料の含有水分量wと吸光度kとに基づき求めた含有水分量wと吸光度kとの関係(検量線)から焼結原料の含有水分量wを算出する方法において、前記λとして波長1.9以上2.0μm以下の範囲に属する吸収波長を用い、前記λとして2.2μm以上2.4μm以下の波長範囲から選択する波長を用いることを特徴とする焼結原料の水分測定方法により、従来に比較して好ましい焼結原料の水分測定を行うことが可能となる。
 上記本発明の方法において、予め測定した配合原料の試料の含有水分量wと、吸光度kとに基づき求めた含有水分量wと吸光度kとの関係から焼結原料の含有水分量wを算出するに際し、含有水分量wと吸光度kとの関係は原点近傍を通過するので、吸光度kを比例係数aで除算して焼結原料の含有水分量を算出することが可能である。尚、予め配合原料の試料の含有水分量wを測定するためには、乾燥質量法を用いることが好適である。
 上記実施の形態において、短波長側の参照波長λとしては、従来から用いられているλをそのまま用いることとしてもよいが、λとして1.6μm以上1.8μm以下の波長範囲から選択する波長を用いてもよい。
 次に、上記本発明の水分測定方法を実現する本発明の焼結原料の水分測定装置について図7に基づいて説明する。
 本発明の、赤外線の水による吸収を利用して焼結原料の含有水分量を測定する水分測定装置1は、水により吸収される波長λを有する第1の赤外線と、波長λよりも長い波長λを有する第2の赤外線と、波長λよりも短い波長λを有する第3の赤外線と、を焼結原料に照射する光源2と、第1~第3の赤外線の反射光を検出する検出器3と、波長λ、波長λ、波長λの3波長それぞれの赤外線を透過するバンドパスフィルター4と、演算装置5とを有する。焼結原料の分光反射率r、r、rは、水により吸収される波長λと、長波長側の参照波長λ、短波長側の参照波長λのそれぞれのバンドパスフィルター4(4、4、4)を用いてそれぞれ求められる。演算装置5は、rとrとから波長λにおける基準分光反射率rW0eを算出し、rとrW0eから吸光度kを求め、予め測定した焼結原料の試料の含有水分量wと吸光度kとに基づき求めた含有水分量wと吸光度kとの関係から焼結原料の含有水分量wを算出する。前記λとして波長1.9μm以上2.0μm以下の範囲に属する吸収波長が用られ、前記λとして2.2μm以上2.4μm以下の波長範囲から選択する波長が用いられる。
 このような本発明の焼結原料の水分測定装置を用いることにより、いずれの焼結原料6でも含有水分量wと吸光度kとの関係は原点近傍を通過することとなる。3枚のバンドパスフィルター4(4、4、4)の選択については、モーターの回転を用いたバンドパスフィルター選択装置7を用いることができる。
 上記本発明の焼結原料の水分測定装置において、λとして1.6μm以上1.8μm以下から選択する波長を用いることとすることができる。
 以上のようにして適切な参照波長を選択した本発明の配合原料(又は焼結原料)の水分測定方法又は水分測定装置においては、配合後の焼結原料の配合前原料の銘柄や配合割合が変化しても、赤外線分析における吸光度kと含有水分量wとの関係は、常に原点近傍を通過する一次式となる。つまり、予め測定した焼結原料の試料の含有水分量wと吸光度kとから求められる検量線から焼結原料の含有水分量を算出するに際し、含有水分量wと吸光度kとの関係は原点近傍を通過するので、吸光度kを比例係数aで除算して焼結原料の含有水分量を算出することが可能となる。従って、任意の焼結原料について、例えば1日のうちで決められたタイミングにおいて焼結機に装入される焼結原料について、前記吸光度kを測定するとともに、乾燥質量法によって含有水分量wを測定し、前記(1)式によって比例定数aを算出することとすれば、本発明の水分測定方法及び水分測定装置の測定精度を常に正確に保持することが可能となる。
 1 水分測定装置
 2 光源
 3 検出器
 4 バンドパスフィルター
 5 演算装置
 6 焼結原料
 7 バンドパスフィルター選択装置

Claims (13)

  1.  3波長式赤外線水分計を用いた配合原料の含有水分測定方法において、
     水により吸収される波長λより長い長波長側参照波長λと、前記波長λより短い短波長側参照波長λと、の参照波長組み合わせとして、前記配合原料の含有水分量wと吸光度kとの関係式k=aw+bのbが、前記配合前原料の配合比率によらず、前記赤外線水分計の許容測定誤差の範囲内でゼロと見なせる参照波長組み合わせを用いることを特徴とする、配合原料の水分測定方法。
  2.  前記長波長側参照波長λの候補である長波長側参照波長候補λ’を複数仮定する工程と;
     複数の前記長波長側参照波長候補λ’の各々を用いた場合ごとに、水分が除去された状態の前記複数の配合前原料各々の吸光度kを測定する工程と;
     複数の前記長波長側参照波長候補λ’の各々を用いた場合ごとに、前記複数の配合前原料各々の前記吸光度kの二乗和を前記配合前原料の個数で除した値である、k二乗和平均値を計算する工程と;
     前記複数の長波長側参照波長候補λ’のうち、前記k二乗和平均値が0.001以下になる長波長側参照波長候補λ’を、前記長波長側参照波長λとして選択する工程と;
    を更に備えることを特徴とする、請求項1に記載の配合原料の水分測定方法。
  3.  前記k二乗和平均値が最も小さい値となる長波長側参照波長候補λ’を前記長波長側参照波長λとして選択することを特徴とする請求項2に記載の配合原料の水分測定方法。
  4.  前記長波長側参照波長λの候補である長波長側参照波長候補λ’を複数仮定する工程と;
     前記短波長側参照波長λの候補である短波長側参照波長候補λ’を複数仮定する工程と;
     複数の前記長波長側参照波長候補λ’と、複数の前記短波長側参照波長候補λ’と、を組み合わせた参照波長組み合わせ候補を複数仮定する工程と;
     複数の前記参照波長組み合わせ候補各々を用いた場合ごとに、水分が除去された状態の前記複数の配合前原料各々の吸光度kを測定する工程と;
     複数の前記参照波長組み合わせ候補各々を用いた場合ごとに、前記複数の配合前原料各々の吸光度kの二乗和を配合前原料の個数で除した値である、k二乗和平均値を計算する工程と;
     前記複数の参照波長組み合わせ候補のうち、前記k二乗和平均値が0.001以下になる参照波長組み合わせ候補を前記参照波長組み合わせとして選択する工程と; を更に備えることを特徴とする、請求項2に記載の配合原料の水分測定方法。
  5.  前記複数の参照波長組み合わせ候補のうち、前記k二乗和平均値が最も小さい値となる参照波長組み合わせ候補を前記参照波長組み合わせとして選択することを特徴とする請求項4に記載の配合原料の水分測定方法。
  6.  前記参照波長組み合わせは、特定の波長を通すバンドパスフィルターを複数利用して選択されることを特徴とする請求項1に記載の配合原料の水分測定方法。
  7.  前記参照波長組み合わせは、連続波長の赤外線分光測定結果に基づき選択されることを特徴とする請求項1に記載の配合原料の水分測定方法。
  8.  前記配合原料は焼結原料であり;
     前記水により吸収される波長λは、1.9μm以上2.0μm以下の波長であり;
     前記長波長側参照波長λは、2.2μm以上2.4μm以下の波長範囲から選択される波長である;
    ことを特徴とする請求項1に記載の配合原料の水分測定方法。
  9.  前記短波長側参照波長λは、1.6μm以上1.8μm以下の波長範囲から選択される波長であることを特徴とする請求項8に記載の配合原料の水分測定方法。
  10.  前記配合原料の試料の吸光度kを測定する工程と;
     乾燥質量法によって前記配合原料の試料の含有水分量wを測定する工程と;
     前記配合原料の試料の吸光度kを、前記配合原料の試料の含有水分量wで除算することで比例係数aを算出する工程と;
     前記配合原料の吸光度kを、前記比例係数aで除算することで前記配合原料の含有水分量wを算出する工程と;
     を備えることを特徴とする請求項1に記載の配合原料の水分測定方法。
  11.  赤外線を配合原料に照射する光源と;
     前記赤外線の反射光を検出する検出器と;
     水により吸収される波長λと、λより長い長波長側参照波長λと、λより短い短波長側参照波長λと、の3波長それぞれを透過するバンドパスフィルターと;
     前記赤外線の分光反射率r、r、rをそれぞれ算出し、前記分光反射率rと前記分光反射率rとから基準分光反射率rW0eを算出し、前記分光反射率rと前記分光反射率rW0eとから前記配合原料の吸光度kを算出し、予め測定した配合原料の試料の含有水分量wと吸光度kとに基づき作成された、配合原料の含有水分量wと吸光度kとの関係から、前記配合原料の含有水分量wを算出する演算部と;
    を有する、配合原料の水分測定装置であって、
     前記配合原料は焼結原料であり;
     前記水により吸収される波長λは1.9μm以上2.0μm以下の波長であり;
     前記長波長側参照波長λは2.2μm以上2.4μm以下の波長範囲から選択される波長である;
    ことを特徴とする配合原料の水分測定装置。
  12.  前記短波長側波長λは1.6μm以上1.8μm以下の波長範囲から選択される波長であることを特徴とする請求項11に記載の配合原料の水分測定装置。
  13.  請求項11に記載の配合原料の水分測定装置を用い、
     予め測定した配合原料の試料の吸光度kを、予め乾燥質量法を用いて測定した配合原料の試料の含有水分量wで除算して比例係数aを算出し、
     任意の配合原料について吸光度kを測定し、前記吸光度kを前記比例係数aで除算することによって前記配合原料の含有水分量wを測定する
    ことを特徴とする配合原料の水分測定方法。
PCT/JP2009/062381 2008-07-07 2009-07-07 配合原料の水分測定方法及び水分測定装置 WO2010004999A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BRPI0915698A BRPI0915698A2 (pt) 2008-07-07 2009-07-07 método para medir o conteúdo de água em um composto e dispositivo de medição de conteúdo de água
EP09794443.3A EP2309252B1 (en) 2008-07-07 2009-07-07 Method for measuring water content in a compound and water content measuring device
CN2009801258747A CN102084239B (zh) 2008-07-07 2009-07-07 配合原料的水分测定方法
KR1020117000090A KR101247445B1 (ko) 2008-07-07 2009-07-07 배합 원료의 수분 측정 방법 및 수분 측정 장치
JP2010519786A JP4890645B2 (ja) 2008-07-07 2009-07-07 配合原料の水分測定方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008176786 2008-07-07
JP2008-176786 2008-07-07

Publications (1)

Publication Number Publication Date
WO2010004999A1 true WO2010004999A1 (ja) 2010-01-14

Family

ID=41507112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062381 WO2010004999A1 (ja) 2008-07-07 2009-07-07 配合原料の水分測定方法及び水分測定装置

Country Status (6)

Country Link
EP (1) EP2309252B1 (ja)
JP (1) JP4890645B2 (ja)
KR (1) KR101247445B1 (ja)
CN (1) CN102084239B (ja)
BR (1) BRPI0915698A2 (ja)
WO (1) WO2010004999A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211414A (ja) * 2013-04-22 2014-11-13 新日鐵住金株式会社 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム
JP2014211413A (ja) * 2013-04-22 2014-11-13 新日鐵住金株式会社 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム
JP2015014462A (ja) * 2013-07-03 2015-01-22 新日鐵住金株式会社 被覆状態判定装置、被覆状態判定方法、被覆状態判定システム及びプログラム
JP2019131847A (ja) * 2018-01-30 2019-08-08 Jfeスチール株式会社 焼結鉱の製造方法および高炉操業方法
JP2020030072A (ja) * 2018-08-21 2020-02-27 Jfeスチール株式会社 気中分散微粒子の発生判定方法及び装置並びに塊状物質の性状測定方法及び装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2669659A1 (de) * 2012-06-01 2013-12-04 ABB Schweiz AG Verfahren zur Kalibrierung eines Rohmaterialanalysesystems
CN102914499B (zh) * 2012-11-02 2015-03-18 中冶长天国际工程有限责任公司 一种烧结过程中检测混合料水分的方法和装置
CN104730181B (zh) * 2013-12-18 2017-10-24 北京普源精电科技有限公司 谱峰终点调整方法及具有谱峰终点调整功能的色谱工作站
CN106104259B (zh) * 2014-03-14 2018-11-09 泰尔茂株式会社 成分测定装置、方法以及存储介质
CN104390880A (zh) * 2014-11-02 2015-03-04 中南林业科技大学 一种木材含水率快速检测方法
KR101954340B1 (ko) * 2016-08-09 2019-03-05 한전원자력연료 주식회사 분광기를 이용한 우라늄산화물(UOx)의 소결밀도 분석 방법
CN106644970A (zh) * 2016-09-30 2017-05-10 华南理工大学 一种利用紫外‑可见分光光度法同时测定溶液中亚甲基蓝和二价铜离子的三波长光谱方法
CN110087541B (zh) * 2016-12-26 2022-03-04 三菱电机株式会社 生物体物质测定装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972047A (ja) 1982-10-18 1984-04-23 Kawasaki Steel Corp 粉体の水分測定方法
JPS622839B2 (ja) 1984-11-21 1987-01-21 Sanyo Electric Co
JPH03231140A (ja) * 1990-02-06 1991-10-15 Japan Tobacco Inc 赤外線水分測定装置
JPH0483814A (ja) * 1990-07-26 1992-03-17 Nippon Steel Corp 配合原料の水分添加制御方法及び装置
JPH0634532A (ja) 1992-07-20 1994-02-08 Nkk Corp 焼結原料の水分測定方法
JPH07198599A (ja) * 1993-12-28 1995-08-01 Japan Tobacco Inc 赤外線水分測定方法と装置
JPH08136452A (ja) * 1994-11-04 1996-05-31 Chino Corp 水分計
JP2002116142A (ja) * 2000-10-06 2002-04-19 Solt Industry Center Of Japan 赤外線を用いた塩の水分、粒径およびマグネシウム濃度の同時測定方法および測定の補正方法
JP2002518670A (ja) * 1998-06-12 2002-06-25 ラジオメーター・メディカル・アクティーゼルスカブ 分光光度計の品質制御法
JP2003035663A (ja) * 2001-07-19 2003-02-07 Ishikawajima Harima Heavy Ind Co Ltd 吸収スペクトルの検量線作成方法
JP2008176786A (ja) 2007-01-16 2008-07-31 Xerox Corp 文書情報ワークフロー

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4266878A (en) * 1978-12-26 1981-05-12 Norlin Industries, Inc. Apparatus for measurement of soil moisture content
JPH0265153U (ja) * 1988-11-04 1990-05-16
CN1022514C (zh) * 1989-11-15 1993-10-20 上海第二工业大学 红外水分测量装置
JP2000146834A (ja) * 1998-11-05 2000-05-26 Hitachi Ltd 水分測定方法および水分測定装置および電気機器製造方法
CN2482077Y (zh) * 2001-04-12 2002-03-13 宜昌市创世纪环保有限责任公司 高精度红外水分仪
JP4678593B2 (ja) * 2005-10-24 2011-04-27 住友金属工業株式会社 焼結原料の水分計測方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972047A (ja) 1982-10-18 1984-04-23 Kawasaki Steel Corp 粉体の水分測定方法
JPS622839B2 (ja) 1984-11-21 1987-01-21 Sanyo Electric Co
JPH03231140A (ja) * 1990-02-06 1991-10-15 Japan Tobacco Inc 赤外線水分測定装置
JPH0483814A (ja) * 1990-07-26 1992-03-17 Nippon Steel Corp 配合原料の水分添加制御方法及び装置
JPH0634532A (ja) 1992-07-20 1994-02-08 Nkk Corp 焼結原料の水分測定方法
JPH07198599A (ja) * 1993-12-28 1995-08-01 Japan Tobacco Inc 赤外線水分測定方法と装置
JPH08136452A (ja) * 1994-11-04 1996-05-31 Chino Corp 水分計
JP2002518670A (ja) * 1998-06-12 2002-06-25 ラジオメーター・メディカル・アクティーゼルスカブ 分光光度計の品質制御法
JP2002116142A (ja) * 2000-10-06 2002-04-19 Solt Industry Center Of Japan 赤外線を用いた塩の水分、粒径およびマグネシウム濃度の同時測定方法および測定の補正方法
JP2003035663A (ja) * 2001-07-19 2003-02-07 Ishikawajima Harima Heavy Ind Co Ltd 吸収スペクトルの検量線作成方法
JP2008176786A (ja) 2007-01-16 2008-07-31 Xerox Corp 文書情報ワークフロー

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014211414A (ja) * 2013-04-22 2014-11-13 新日鐵住金株式会社 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム
JP2014211413A (ja) * 2013-04-22 2014-11-13 新日鐵住金株式会社 表面状態判定装置、表面状態判定方法、表面状態判定システム及びプログラム
JP2015014462A (ja) * 2013-07-03 2015-01-22 新日鐵住金株式会社 被覆状態判定装置、被覆状態判定方法、被覆状態判定システム及びプログラム
JP2019131847A (ja) * 2018-01-30 2019-08-08 Jfeスチール株式会社 焼結鉱の製造方法および高炉操業方法
JP2020030072A (ja) * 2018-08-21 2020-02-27 Jfeスチール株式会社 気中分散微粒子の発生判定方法及び装置並びに塊状物質の性状測定方法及び装置

Also Published As

Publication number Publication date
EP2309252A4 (en) 2017-08-30
JP4890645B2 (ja) 2012-03-07
CN102084239A (zh) 2011-06-01
CN102084239B (zh) 2013-03-13
EP2309252A1 (en) 2011-04-13
BRPI0915698A2 (pt) 2016-02-10
JPWO2010004999A1 (ja) 2012-01-05
EP2309252B1 (en) 2019-02-20
KR20110015677A (ko) 2011-02-16
KR101247445B1 (ko) 2013-03-26

Similar Documents

Publication Publication Date Title
JP4890645B2 (ja) 配合原料の水分測定方法
Müller et al. Design and performance of a three-wavelength LED-based total scatter and backscatter integrating nephelometer
US4771176A (en) Method for quantitative analysis of hydrocarbon
CA2757192C (en) Spectroscopy having correction for broadband distortion for analyzing multi-component samples
Moffat et al. Meeting the International Conference on Harmonisation’s Guidelines on Validation of Analytical Procedures: Quantification as exemplified by a near-infrared reflectance assay of paracetamol in intact tabletsThe opinions expressed in the following article are entirely those of the authors and do not necessarily represent the views of either The Royal Society of Chemistry or the Editor of The Analyst.
CN108732127B (zh) 一种检测烟丝中各组分掺配比例的方法
US20190212256A1 (en) Sensor for a virtually simultaneous measurement of a transmission and/or forward scattering and/or remission and for a simultaneous measurement of the transmission and forward scattering or transmission and remission of a liquid sample
MX2012010902A (es) Metodo de caracterizacion de un pigmento de color de dispersion.
CN107290375A (zh) 测定萤石中氟化钙、碳酸钙、硫、铁及二氧化硅含量的方法
US7641826B2 (en) Methods for monitoring binder mix loading of fiber glass mats
US6690015B1 (en) Method for the spectroscopic determination of the concentration of alcohols with 1 to 5 carbon atoms
Kessler et al. Using scattering and absorption spectra as MCR-hard model constraints for diffuse reflectance measurements of tablets
JP2010107223A (ja) 焼結原料の含有水分量測定方法及び含有水分量測定装置
CN109596654A (zh) X荧光光谱和红外光谱法联用测定塑料中溴锑元素的方法
CN112229488A (zh) 用于复合片材的重量测量的在线等级选择
CN107655852A (zh) 婴幼儿配方奶粉中必要营养素的近红外光谱快速检测方法
CN108037084B (zh) 一种适用于光度法原理水质自动分析仪的抗干扰测量方法
JP2008281569A (ja) ブリスターの充填量を検査する方法
Quevauviller Certified reference materials for the quality control of inorganic analyses of manufactured products (glass, polymers, paint coatings)
JPH063264A (ja) 近赤外分析法における検量線の作成方法
JP2010091376A (ja) 焼結原料の含有水分量測定装置
Bos et al. Non-destructive analysis of small irregularly shaped homogenous samples by X-ray fluorescence spectrometry
Conceição et al. Characterization of potassium dichromate solutions for spectrophotometercalibration
JP4678593B2 (ja) 焼結原料の水分計測方法
BRPI0915698B1 (pt) Método para medir o conteúdo de água em um composto e dispositivo de medição de conteúdo de água

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980125874.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09794443

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519786

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20117000090

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009794443

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 82/CHENP/2011

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: PI0915698

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110105