WO2010004178A1 - Dispositif d'evaluation de l'acceleration transversale d'un vehicule automobile et procede correspondant - Google Patents

Dispositif d'evaluation de l'acceleration transversale d'un vehicule automobile et procede correspondant Download PDF

Info

Publication number
WO2010004178A1
WO2010004178A1 PCT/FR2009/051226 FR2009051226W WO2010004178A1 WO 2010004178 A1 WO2010004178 A1 WO 2010004178A1 FR 2009051226 W FR2009051226 W FR 2009051226W WO 2010004178 A1 WO2010004178 A1 WO 2010004178A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
variable
boolean
vehicle
threshold
Prior art date
Application number
PCT/FR2009/051226
Other languages
English (en)
Inventor
Rémi Vandekerkhove
Original Assignee
Renault S.A.S.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renault S.A.S. filed Critical Renault S.A.S.
Priority to JP2011517196A priority Critical patent/JP5579714B2/ja
Priority to EP09784437A priority patent/EP2307253B1/fr
Priority to US13/003,392 priority patent/US8930097B2/en
Publication of WO2010004178A1 publication Critical patent/WO2010004178A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/17Using electrical or electronic regulation means to control braking
    • B60T8/172Determining control parameters used in the regulation, e.g. by calculations involving measured or detected parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18145Cornering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/109Lateral acceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/26Wheel slip
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/28Wheel speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position

Definitions

  • the present invention relates to a method for detecting a turning situation with a view, in particular, to the preparation of a set point for a transmission of a motor-drive unit of a motor vehicle. It also relates to a device implementing such a detection method.
  • An automated transmission of a motor vehicle conventionally comprises a control unit receiving one or more input parameters interpreting, inter alia, the state of the road: slope, change of slope, curvature, ... Then, according to the values of these parameters, the control block delivers a transmission ratio setpoint to be applied, possibly accompanied by "blocking" instructions temporarily prohibiting, for the sake of a better driving comfort, upward or downward changes of ratio, for example in certain cases where the vehicle is cornering.
  • a driver driving a motor vehicle equipped with a conventional automatic transmission must indeed face uncomfortable driving situations.
  • the patent FR 2,779,793 filed by the Applicant describes a system for automatic adaptation of a vehicle gearbox in a cornering situation.
  • the system detects a turning situation depending on the transverse acceleration of the vehicle, and then, depending on the engine speed and the resistant forces applied to the vehicle, adapts the shift strategy.
  • the transverse acceleration can be determined either by accelerometers, or calculated from the rotational speeds of a right wheel and a non-driving left wheel of the vehicle, as described in patent FR 2802 646 filed by the Applicant. .
  • the calculation proposed by the patent FR 2802 646 assumes that the wheels adhere to the roadway without slippage, and therefore requires that the speed sensors measure the rotation of non-driving wheels of the vehicle.
  • Patent GB 2 381 873 (Robert Bosch GmbH) proposes to simultaneously use a transverse acceleration calculation from the vehicle wheel speeds, and the measurement results of a transverse accelerometer, in order to evaluate the transverse acceleration with more reliability.
  • This patent proposes to exclude as valid the transverse acceleration values exceeding a predefined threshold, whether this acceleration is derived from the measurement of the accelerometer or deduced from the wheel speeds.
  • This patent proposes to suspend the interpretation of transverse acceleration in case of excessive slippage, defined by an inner wheel speed at the turn greater than the forward speed of the vehicle, or by a wheel speed outside the turn less than the speed of the vehicle.
  • This method requires the simultaneous presence of wheel speed sensors and a transverse accelerometer, with the associated costs and operational risks.
  • the present invention aims to remedy the shortcomings of the aforementioned documents.
  • the object of the present invention is to provide a method for detecting the phases during which the sliding of the driving wheels with respect to the ground is too great, which leads to overestimating the transverse acceleration. Such overestimation may indeed lead to an inadvertent prohibition of a change of ratio amount, in the absence of a turn of the road that would justify such a ban.
  • the present invention provides a device and a method for evaluating the transverse acceleration of the vehicle that uses sensors already installed on the vehicle to other effects.
  • the invention makes it possible in particular to make use of the data of sensors of the driving wheel speeds of the vehicle, and is therefore particularly advantageous for improving the driving comfort of vehicles which do not have no means of measuring the speed of the non-drive wheels of the vehicle.
  • the principle of the invention is to make a first estimate of the transverse acceleration of the vehicle from the rotational speeds of a right wheel and a left wheel, then to perform a series of tests to check if this estimated value is reliable or not. If the reliability of the estimated value is not confirmed, the transverse acceleration is assigned an arbitrary value, for example the null value, or another constant identifiable by the control methods that use this transverse acceleration.
  • a device for evaluating the transverse acceleration of a motor vehicle comprises means for measuring the rotational speeds of two wheels of the vehicle and a module for estimating the transverse acceleration of the vehicle from of these speeds.
  • the device further comprises a validation module able to calculate, as a function of vehicle operating parameters, in particular the rotational speeds of said wheels and the gear ratio engaged, a Boolean slip variable which is negative if the estimated transverse acceleration by the module is relevant to detect a turn, and that is positive in the opposite case.
  • said wheels are a driving right wheel and a driving left wheel belonging to the same set of wheels of the vehicle.
  • the device further comprises a correction module adapted to deliver a corrected value of the transverse acceleration so that said corrected value is equal to the previously estimated value of the transverse acceleration if the Boolean variable slip is negative, and that this corrected value is equal to an arbitrary constant in the opposite case.
  • This variant may comprise a delay device inducing a delay of either the value change or the positive to negative, the slip variable, or the change in value of the corrected value of the transverse acceleration when it ceases to be equal to said arbitrary constant.
  • the validation module comprises a first Boolean module capable of delivering a first Boolean variable on wheel acceleration.
  • This module comprises a first means for calculating the accelerations of the two wheels, a second means for calculating a plausible acceleration threshold of these wheels as a function of the gear ratio engaged, and the first means for comparing the accelerations of each of the two wheels. with respect to said plausible wheel acceleration threshold, second means for comparing the speed difference between the two wheels with respect to a difference threshold, and means for storing the wheel acceleration Boolean variable.
  • the validation module further comprises a second Boolean module receiving the value of the driver acceleration setpoint and adapted to deliver a second Boolean variable pedal stroke turn.
  • This validation module includes a summing means that adds the Boolean variable on wheel acceleration and the Boolean variable of pedal stroke in turn to obtain the Boolean slip variable.
  • the second Boolean module comprises means for shifting the driver acceleration setpoint with respect to the time, comprises means for comparing the acceleration setpoint, its derivative, and the transverse acceleration previously estimated, respectively with respect to three set point threshold values, setpoint derivative threshold, accelerated centrifugation threshold, and includes means for storing the boolean variable of turn pedal stroke.
  • a device for detecting a turning situation for motor vehicle body control comprises one of the evaluation devices described above, as well as a module arbitration system capable of deciding whether the vehicle is in a cornering situation.
  • This arbitration module comprises a comparison means of the transverse acceleration of the vehicle with respect to a first arbitration threshold value. It may also include a means for comparing the derivative of the acceleration with respect to the time of this acceleration, with respect to a second arbitration threshold value.
  • the arbitration module can be configured to decide that the vehicle is in a turning situation if the estimated transversal acceleration or its derivative are greater than their respective arbitration thresholds.
  • a method for evaluating the transverse acceleration of a motor vehicle in which the rotational speeds of two driving wheels of the vehicle are measured, the transverse acceleration of the vehicle is estimated from these wheel speeds, and calculated according to vehicle operating parameters, including rotational speeds of said drive wheels and the gear ratio engaged, a boolean slip variable which is negative if the transverse acceleration estimated by the module is relevant to detect a turn and that is positive in the opposite case.
  • the calculation of the Boolean slip variable can also take into account the driver acceleration setpoint, for example the position of the vehicle acceleration pedal and / or the derivative by compared to the time of this position of the accelerator pedal.
  • the corresponding transverse acceleration is then corrected by assigning it an arbitrary value.
  • the Boolean slippage variable is the sum of a first Boolean variable on wheel acceleration and a second Boolean variable of turn pedal stroke whose calculation comprises the following steps:
  • a first plausible acceleration threshold of wheels is calculated as a function of the gear ratio engaged; if the time derivative of one of the measured wheel rotation speeds is greater than this first plausible wheel acceleration threshold, the wheel acceleration variable is positive; if the two time derivatives of the measured wheel rotation speeds are lower than this first plausible wheel acceleration threshold and that simultaneously the difference in rotational speeds of the two wheels is less than a threshold of deviation, constant, the wheel acceleration variable is negative; in other cases the wheel acceleration variable retains its value;
  • the driver acceleration setpoint, its derivative, and the estimated transverse acceleration of the vehicle are compared with respect to three setpoint threshold, setpoint derivative threshold and accelerated centrifugation threshold values; if the three values are simultaneously greater than their respective thresholds, the variable of pedal stroke in turn is positive; if the transverse acceleration of the vehicle is less than its respective threshold, the variable pedal stroke in turn is negative; in other cases, the variable of pedal stroke while cornering retains its value.
  • FIG. 1 is a block diagram of an exemplary embodiment of a device for calculating the transverse acceleration of a vehicle according to the invention
  • FIG. 2 more precisely represents an exemplary embodiment of a logic block of FIG. 1;
  • FIG. 3 more precisely represents an exemplary embodiment of another logic block of FIG.
  • a device for evaluating the transverse acceleration of a vehicle comprises a validation module 2, a transverse acceleration estimation module D3 and a module D4 correction.
  • the validation module 2 itself comprises two logical blocks D 1 and D 2 and a logic adder 3.
  • the logic block D 1 receives, via connections 4, the values of the angular speeds of rotation V Rd and V Rg issued respectively from a speed sensor. of rotation 6 of a right wheel and a rotational speed sensor 7 of a left wheel of the same set of wheels of the vehicle.
  • the block D 1 receives, via a connection 5, the value "transmission" of the gear engaged in the transmission system of the vehicle.
  • the module for estimating the transverse acceleration D3 receives, via connections 8, the same values of speeds of rotation Vrd and Vrg coming from the sensors 6 and 7.
  • the module D3 transmits an estimated value ⁇ t of transverse acceleration by a connection 9 to the logic block D2, and transmits the same value ⁇ t by a connection 10 to the correction module D4.
  • the logic block D2 also receives, via a connection 11, a "pedal" value representing the acceleration setpoint of the driver, which may be, for example, the angular position of an accelerator pedal.
  • This acceleration setpoint could also correspond to, inter alia, throttle lever angle, throttle position, or throttle angle.
  • the values passing through the connections 5 and 11 may, for example, be sent by an on-board computer and transmitted to the blocks D 1 and D 2 via the multiplex network or any other means of communication between computers.
  • the logic blocks D 1 and D 2 respectively send a boolean value PatD 1 through a connection 12, and a boolean value PatD 2 via a connection 13 to the logic adder 3, which sends a logic variable "Skate" through a connection 14 to the module. correction D4.
  • the correction module D4 delivers a corrected transverse acceleration ⁇ t that can be sent, depending on the applications, to a system for managing an automatic control box of the vehicle, to a system for controlling the orientation of the headlights when cornering, or any other system using transverse acceleration and able to accommodate the uncertainty ranges of the calculation of the transverse acceleration according to the invention.
  • the value of the transverse acceleration thus estimated ⁇ t is transmitted to block D2 which uses it to calculate the variable PatD2, and is also transmitted to the correction module D4. From the operating parameters of the vehicle, ie rotation speeds of the two wheels equipped with the sensors 6 and 7, the gear ratio engaged and the driver acceleration set point, as well as the transverse acceleration estimated by the block D3, the logic blocks D1 and D2 compute the Boolean variables PatD1 and PatD2.
  • the correction module D4 calculates a corrected value ⁇ t of the transverse acceleration as follows: If the Boolean variable Skating corresponding to the instant at which the transverse acceleration ⁇ t is estimated is negative, the corrected value ⁇ t is equal to the value estimated ⁇ t; if the Boolean variable Skating corresponding to the instant at which the transverse acceleration ⁇ t is estimated is positive, the corrected value ⁇ t is equal to an arbitrary value ⁇ Q.
  • the arbitrary value ⁇ Q may for example be chosen equal to zero, so that the management device of the laws of passage of the automatic transmission interprets this result as corresponding to a lack of turn of the roadway.
  • the value ⁇ 0 could be chosen equal to an arbitrary negative constant, for example the value -1.
  • the correction module D4 can impose on ⁇ t a delay ⁇ t (for example of the order of 0.01 seconds to 1 second) while maintaining the value ⁇ t each time. has its value ⁇ 0 during a period ⁇ t after the Boolean variable Skating has become negative again. The delay can also be imposed directly on the variable Skate when it passes from the positive value (1) to the negative value (0).
  • the block D 1 represents a flowchart for calculating the Boolean variable PatD 1 on wheel acceleration by the logic block D 1 in FIG. 1.
  • the block D 1 receives, via connection 4, the speed values. angular rotation of two wheels Vrg and Vrd of the same set of wheels, and receives through the connection 5 the identifier of the gear ratio engaged.
  • the block D 1 keeps in a memory 20 the value of the boolean variable PatD 1 calculated at the previous calculation time (computation time t-1).
  • the connection 4 is connected to a calculation block 22, the connection 5 is connected to a calculation block 21, capable of reading in a stored map 23.
  • Three test blocks 24, 25, 26 make it possible, starting from the stored value in the memory 20, and values calculated by the blocks 21 and 22, to assign a value to the boolean variable PatD 1 at time t.
  • the two values Grg and Grd are sent by the connections 27 and 28 respectively to the test blocks 24 and 25.
  • the value ⁇ is sent to the test block 26 by the connection 29.
  • the calculation block 21 extracted from the map 23, in according to the transmission ratio engaged "Transmission", the SGplaus value representing the plausible acceleration threshold for a Grg or Grd wheel in the absence of slip of this wheel.
  • This threshold maps SGplaus is chosen such that SGplaus multiplied by the radius of a wheel is close to the value of the maximum acceleration that can reach the vehicle for the engaged transmission ratio.
  • This SGplaus value is sent to test blocks 24 and 25 through connections 18 and 19 respectively.
  • Blocks 24 and 25 give the value PatD 1 a positive value (or denoted 1) if one of the wheel accelerations is greater than the plausible value SGplaus.
  • Block 26 analyzes the case where the two values Grg and Grd are in the plausibility range, that is to say less than SGplaus. If the difference ⁇ between the two wheel speeds is reduced, that is to say less than an arbitrary ⁇ gap threshold (close to zero, for example ⁇ equal to 0.1 km / h), the hypothesis skating is discarded,
  • PatD l takes a negative value (also denoted 0). If both Grg and Grd are in the plausibility range and the difference between the two wheel speeds is greater than the threshold ⁇ , the block 26 assigns to the value PatD l at time t, the value, extracted from the memory 20 by the connection 30, that had PatD l at the instant of previous calculation (instant t-1). In this way, in the block D 1, a start of wheel slip is detected when one of the wheel accelerations passes above the plausibility threshold, and the Boolean variable continues to signal the state of skating as long as both wheel speeds do not pass through an identical value.
  • the beginning of the skating is characterized by a sudden increase in the speed of the inner wheel at the turn, therefore by a peak of acceleration of the wheel in question.
  • Blocks 24 and 25 detect these slip starts.
  • the end of the skating is characterized by a crossing of the curves of the speeds of the two wheels, because the speed of the inner wheel at the turn is lower than the speed of the outer wheel when both roll without skating. Block 26 thus detects this end of skating.
  • the logic block D 1 is able to detect most of the phenomena of turning slip by the calibration of the plausible wheel accelerations stored in the map 23.
  • the logic block D 1 may constitute by itself the validation module 2, in which case the variable Skating identifies with the variable PatD l.
  • the corollary is that on the other hand, some skating cases are not then detected by the logic block D l.
  • the role of the logic block D2 is to indicate some of the cases of skating not detected by the block D 1 because of the calibration chosen for the thresholds of the map 23.
  • the logic block D 2 detects specifically slip caused by depressing the accelerator pedal during a turn. It does not detect any case of skating corresponding to a situation of oversteer, because the cases of oversteer are produce when the accelerator pedal is released.
  • FIG. 3 represents a flowchart for calculating the Boolean variable PatD2 on wheel acceleration by the logic block D2 of FIG. 1.
  • the block D2 receives, via the connection 9, the value of the transverse acceleration ⁇ t estimated by the block D3 of FIG. 1 and receives, via the connection 11, the driver acceleration setpoint, represented by the angular position "pedal" of the acceleration pedal of the vehicle.
  • the block D2 keeps in a memory 31 the value of the Boolean variable PatD2 calculated at the previous calculation time (computation time t-1).
  • the logic block D2 comprises a calculation block 32 and three test blocks 32, 34, and 35 which make it possible, from the value stored in the memory 31, to calculate the value calculated by the calculation block 32, and values ⁇ t. and Pedal, to assign a value to the boolean variable PatD2 at time t.
  • the connection 1 1 is connected to the calculation block 32 and to the test block 34.
  • the calculation block 32 sends a value "Pedal variation" to the test block 35 via a connection 38.
  • the test block 35 has access to the memory 31 by a connection 36.
  • the block 33 makes a comparison between the transverse acceleration ⁇ t estimated by the block D3 and an accelerated centrifugation threshold ⁇ t p i aus .
  • Block 33 assigns a negative value (also denoted 0) to PatD2 at time t.
  • Block 32 calculates the derivative with respect to the time of the Pedal variable, and delivers via connection 38 a Pedal Variation value representing the angular speed of displacement of the accelerator pedal.
  • the test blocks 34 and 35 make the comparisons of the Pedal value and its Pedal Variation derivative respectively with respect to two constant thresholds "setpoint threshold” and "Derivative threshold (set point)". If the Pedal value and the value of its derivative Variation
  • the value PatD2 at time t takes the positive value (also noted 1).
  • the block 35 assigns to the value PatD2 at the instant t, the value, extracted from the memory 31 by the connection 36, that had PatD2 at the previous computation time (instant t-1).
  • the role of the block D2 is to detect the cases of skating occurring during a sudden accelerator pedal stroke of the driver during a turn, particularly in cases where the skating situation has not been detected by the logic block D l.
  • the accelerated centrifugation threshold ⁇ tpiaus which is a constant value, is advantageously chosen high in the field of plausible accelerations of the vehicle. In practice, an acceleration close to 10ms "2 , for example between 8 and
  • One of the applications of the method is the management of the laws of passage of the transmission according to the curvature of the roadway on which the vehicle is traveling.
  • the application of the method is not limited to this transmission ratio management: it can be applied to the management of any vehicle component which requires an estimation of the transverse acceleration of the vehicle, and which is nevertheless capable of accommodate the unavailability of this information in cases of wheel spinning.
  • the reasoning described above on the choice of Boolean variables and the values attributed to them must of course be understood in the functional sense.
  • the positive and negative values of the variables could be designated by other pairs of values, Yes / No, True / False, Skating / Adherent ...
  • the Boolean values could have opposite definitions to that of the description and the claims.
  • the logical propositions cited are then reformulated accordingly.
  • the embodiment of the invention in the form of logic blocks or calculation blocks can be in the form of electronic components or physically independent computers arranged as described above.
  • the invention can also be realized by programming all the logic blocks and the calculation blocks described in software form, the corresponding program and its subprograms being implemented in one or more computers, integrated or not to the control unit. electronic.
  • the invention makes it possible to offer, at lower cost, on vehicles equipped with only two wheel speed sensors on its driving wheels (for example for front-wheel drive vehicles without ABS), comfort functions using the value of the wheel.
  • transverse acceleration of the vehicle such as the management of the laws of passage of an automatic control box, or the orientation of the headlights when cornering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Regulating Braking Force (AREA)
  • Control Of Transmission Device (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

Un dispositif d'évaluation de l'accélération transversale d'un véhicule automobile, comprend des moyens de mesure (6,7) des vitesses de rotation de deux roues du véhicule et un module (D3) d'estimation de l'accélération transversale du véhicule à partir de ces vitesses. Il comprend en outre un module de validation (2) apte à calculer, en fonction de paramètres de fonctionnement du véhicule, notamment des vitesses de rotation desdites roues et du rapport de transmission engagé, une variable booléenne de patinage qui est négative si l'accélération transversale estimée par le module est pertinente pour détecter un virage, et qui est positive dans le cas contraire.

Description

Dispositif d'évaluation de l'accélération transversale d'un véhicule automobile et procédé correspondant
La présente invention concerne un procédé de détection d'une situation de virage en vue notamment de l' élaboration d'une consigne pour une transmission d' un groupe moto-propulseur de véhicule automobile. Elle concerne aussi un dispositif mettant en œuvre un tel procédé de détection.
Une transmission automatisée de véhicule automobile comporte classiquement un bloc de commande recevant un ou plusieurs paramètres d' entrée interprétant entre autres, l'état de la route : pente, changement de pente, courbure, ... Puis, en fonction des valeurs de ces paramètres, le bloc de commande délivre une consigne de rapport de transmission à appliquer, assortie éventuellement de consignes de "blocage" interdisant temporairement, en vue d'un meilleur confort de conduite, les changements de rapports montants ou descendant, par exemple dans certains cas où le véhicule est en situation de virage. En phase de virage, un conducteur, au volant d'un véhicule automobile équipé d'une transmission automatique classique doit en effet faire face à des situations de conduite inconfortables.
Par exemple, en abordant un virage, le conducteur relâche généralement la pédale d' accélération. La boîte de vitesse automatique qui était au préalable sur un rapport donné, passe alors directement au rapport supérieur du fait des lois de passage classique d'une boîte de vitesse automatique. Elle prive ainsi le véhicule automobile de frein moteur. Le passage au rapport supérieur provoque alors une sensation désagréable d'embarquement du véhicule automobile.
On connaît déjà dans l' état de la technique, des procédés et des dispositifs associés qui permettent d' effectuer des adaptations pour tenter d' améliorer le confort du conducteur et des passagers en phase de virage.
Le brevet FR 2 779 793 déposé par la demanderesse décrit un système d'adaptation automatique d'une boîte de vitesse de véhicule en situation de virage. Le système détecte une situation de virage en fonction de l'accélération transversale du véhicule, puis en fonction du régime moteur et des efforts résistants appliqués au véhicule, adapte la stratégie de changement de rapport. L'accélération transversale peut-être déterminée soit par des accéléromètres, soit calculée à partir des vitesses de rotation d'une roue droite et d'une roue gauche non motrices du véhicule, tel que décrit dans le brevet FR 2802 646 déposé par la demanderesse. Le calcul proposé par le brevet FR 2802 646 suppose que les roues adhèrent à la chaussée sans glissement, et nécessite donc que les capteurs de vitesse mesurent la rotation de roues non motrices du véhicule.
Le brevet GB 2 381 873 (Robert Bosch GmbH) propose d'utiliser simultanément un calcul d'accélération transversale à partir des vitesses des roues du véhicules, et les résultats de mesure d'un accéléromètre transversal, afin d'évaluer l'accélération transversale avec plus de fiabilité. Ce brevet propose d'écarter comme non valides les valeurs d'accélération transversale dépassant un seuil prédéfini, que cette accélération soit issue de la mesure de l'accéléromètre ou déduite des vitesses des roues. Ce brevet propose de suspendre l'interprétation de l'accélération transversale en cas de patinage excessif, défini par une vitesse de roue intérieure au virage supérieure à la vitesse d'avancement du véhicule, ou par une vitesse de roue extérieure au virage inférieure à la vitesse d'avancement du véhicule.
Cette méthode nécessite la présence simultanée de capteurs de vitesses de roues et d'un accéléromètre transversal, avec les coûts et les aléas de fonctionnement qui s'y rattachent.
La présente invention vise à remédier aux lacunes des documents précités. L' objet de la présente invention est de proposer un procédé permettant de détecter les phases pendant lesquelles le glissement des roues motrices par rapport au sol est trop important, ce qui conduit surestimer l' accélération transversale. Une telle surestimation peut en effet conduire à interdire de manière intempestive un changement de rapport montant, en absence d'un virage de la chaussée qui justifierait une telle interdiction.
La présente invention propose un dispositif et un procédé d'évaluation de l'accélération transversale du véhicule qui utilise des capteurs déjà installés sur le véhicule à d'autres effets. L'invention permet notamment d'exploiter les données de capteurs de vitesses de roues motrices du véhicule, et est à ce titre particulièrement avantageuse pour améliorer le confort de conduite de véhicules qui ne disposent pas de moyen de mesure de la vitesse des roues non motrices du véhicule.
Le principe de l'invention consiste à effectuer une première estimation de l'accélération transversale du véhicule à partir des vitesses de rotation d'une roue droite et d'une roue gauche, puis à effectuer une série de tests pour vérifier si cette valeur estimée est fiable ou non. Si la fiabilité de la valeur estimée n'est pas confirmée, on affecte à l'accélération transversale une valeur arbitraire, par exemple la valeur nulle, ou une autre constante identifiable par les procédés de commande qui utilisent cette accélération transversale.
Les tests de fiabilité sont effectués en fonction d'autres paramètres de fonctionnement du véhicule qui sont également accessibles dans la configuration "de série" du véhicule, c'est-à-dire sans capteur spécifique à l'invention. Dans un mode de réalisation, un dispositif d'évaluation de l'accélération transversale d'un véhicule automobile comprend des moyens de mesure des vitesses de rotation de deux roues du véhicule et un module d'estimation de l'accélération transversale du véhicule à partir de ces vitesses. Le dispositif comprend en outre un module de validation apte à calculer, en fonction de paramètres de fonctionnement du véhicule, notamment des vitesses de rotation desdites roues et du rapport de transmission engagé, une variable booléenne de patinage qui est négative si l'accélération transversale estimée par le module est pertinente pour détecter un virage, et qui est positive dans le cas contraire.
Avantageusement, lesdites roues sont une roue droite motrice et une roue gauche motrice appartenant à un même train de roues du véhicule.
Dans une variante de réalisation, le dispositif comprend en outre un module de correction apte à délivrer une valeur corrigée de l'accélération transversale de manière à ce que ladite valeur corrigée soit égale à la valeur estimée précédemment de l'accélération transversale si la variable booléenne de patinage est négative, et que cette valeur corrigée soit égale à une constante arbitraire dans le cas contraire.
Cette variante peut comprendre un dispositif de retard induisant une temporisation soit du changement de valeur, de positive à négative, de la variable de patinage, soit du changement de valeur de la valeur corrigée de l'accélération transversale lorsqu'elle cesse d'être égale à ladite constante arbitraire.
Dans un mode de réalisation préféré, le module de validation comprend un premier module booléen apte à délivrer une première variable booléenne de sur accélération de roue. Ce module comprend un premier moyen de calcul des accélérations des deux roues, un second moyen de calcul d'un seuil d'accélération plausible de ces roues en fonction du rapport de transmission engagé, des premiers moyens de comparaison des accélérations de chacune des deux roues par rapport audit seuil d'accélération plausible de roues, des seconds moyens de comparaison de la différence de vitesse entre les deux roues par rapport à un seuil d'écart, et des moyens de mémorisation de la variable booléenne de sur accélération de roue. Dans une variante du mode de réalisation précédent, le module de validation comprend en outre un second module booléen recevant la valeur de la consigne d'accélération du conducteur et apte à délivrer une seconde variable booléenne de coup de pédale en virage. Ce module de validation comprend un moyen de sommation qui additionne la variable booléenne de sur accélération de roue et la variable booléenne de coup de pédale en virage pour obtenir la variable booléenne de patinage.
De manière préférentielle, dans cette variante de réalisation le second module booléen comprend un moyen de dérivation par rapport au temps de la consigne d'accélération du conducteur, comprend des moyens de comparaison de la consigne d'accélération, de sa dérivée, et de l'accélération transversale estimée précédemment, respectivement par rapport à trois valeurs de seuil de consigne, de seuil de dérivée de consigne, de seuil de centrifugation accélérée, et comprend des moyens de mémorisation de la variable booléenne de coup de pédale en virage.
Dans un autre mode de réalisation, un dispositif de détection d'une situation de virage pour commande d'organe de véhicule automobile, notamment pour commande de transmission automatisée, comprend un des dispositifs d'évaluation décrits ci-dessus, ainsi qu'un module d'arbitrage apte à décider si le véhicule est en situation de virage. Ce module d'arbitrage comprend un moyen de comparaison de l'accélération transversale du véhicule par rapport à une première valeur de seuil d'arbitrage. Il peut également comprendre un moyen de comparaison de la dérivée de l'accélération par rapport au temps de cette accélération, par rapport à une seconde valeur de seuil d'arbitrage. Avantageusement, le module d'arbitrage peut être configuré pour décider que le véhicule est en situation de virage si l'accélération transversale estimée ou sa dérivée sont supérieures à leurs seuils d'arbitrage respectifs.
Selon un autre aspect, il est proposé un procédé d'évaluation de l'accélération transversale d'un véhicule automobile, dans lequel on mesure les vitesses de rotation de deux roues motrices du véhicule, on estime l'accélération transversale du véhicule à partir de ces vitesses de roues, et on calcule en fonction de paramètres de fonctionnement du véhicule, notamment des vitesses de rotation desdites roues motrices et du rapport de transmission engagé, une variable booléenne de patinage qui est négative si l'accélération transversale estimée par le module est pertinente pour détecter un virage et qui est positive dans le cas contraire.
Dans une variante de mise en œuvre de ce procédé, le calcul de la variable booléenne de patinage peut également prendre en compte la consigne d'accélération du conducteur, par exemple la position de la pédale d'accélération du véhicule et/ou la dérivée par rapport au temps de cette position de la pédale d'accélération.
Dans un mode de mise en œuvre préféré du procédé, si la variable de patinage est positive, on corrige ensuite l'accélération transversale correspondante en lui attribuant une valeur arbitraire.
Avantageusement, la variable booléenne de patinage est la somme d'une première variable booléenne de sur accélération de roue et d'une seconde variable booléenne de coup de pédale en virage dont le calcul comprend les étapes suivantes :
- on calcule, à l'aide d'une cartographie mémorisée, un premier seuil d'accélération plausible de roues en fonction du rapport de transmission engagé; si la dérivée par rapport au temps d'une des vitesses mesurées de rotation de roues est supérieure à ce premier seuil d'accélération plausible de roues, la variable de sur accélération de roue est positive; si les deux dérivées par rapport au temps des vitesses mesurées de rotation de roues sont inférieures à ce premier seuil d'accélération plausible de roues et que simultanément la différence de vitesses de rotation des deux roues est inférieure à un seuil d'écart, constant, la variable de sur accélération de roue est négative; dans les autres cas la variable de sur accélération de roue conserve sa valeur ;
- on calcule la dérivée par rapport au temps de la consigne d'accélération du conducteur;
- on compare la consigne d'accélération du conducteur, sa dérivée, et l'accélération transversale estimée du véhicule par rapport à trois valeurs de seuil de consigne, de seuil de dérivée de consigne, et de seuil de centrifugation accélérée; si les trois valeurs sont simultanément supérieures à leurs seuils respectifs, la variable de coup de pédale en virage est positive; si l'accélération transversale du véhicule est inférieure à son seuil respectif, la variable de coup de pédale en virage est négative; dans les autres cas la variable de coup de pédale en virage conserve sa valeur.
D' autres avantages et caractéristiques apparaîtront à l' examen de la description détaillée d'un mode de réalisation nullement limitatif, et des dessins annexés, sur lesquels : - la figure 1 est un schéma synoptique d'un exemple de réalisation d'un dispositif de calcul de l'accélération transversale d'un véhicule selon l'invention,
- la figure 2 représente plus précisément un exemple de réalisation d'un bloc logique de la figure 1 , - la figure 3 représente plus précisément un exemple de réalisation d'un autre bloc logique de la figure 1.
Dans la description suivante, des éléments analogues, identiques ou similaires seront désignés par les mêmes chiffres de référence. Tel qu'il est illustré sur la figure 1 , un dispositif d'évaluation de l'accélération transversale d'un véhicule (non représenté) comprend un module de validation 2, un module d'estimation de l'accélération transversale D3 et un module de correction D4. Le module de validation 2 comprend lui-même deux blocs logiques D l et D2 et un additionneur logique 3. Le bloc logique D l reçoit par des connexions 4 les valeurs des vitesses angulaires de rotation Vrd et Vrg issues respectivement d'un capteur de vitesse de rotation 6 d'une roue droite et d'un capteur de vitesse de rotation 7 d'une roue gauche d'un même train de roues du véhicule. Le bloc D l reçoit par une connexion 5 la valeur "Rtransmission" du rapport engagé dans le système de transmission du véhicule. Le module d'estimation de l'accélération transversale D3 reçoit par des connexions 8 les mêmes valeurs de vitesses de rotation Vrd et Vrg issues des capteurs 6 et 7. Le module D3 transmet une valeur estimée γt d'accélération transversale par une connexion 9 au bloc logique D2, et transmet la même valeur γt par une connexion 10 au module de correction D4. Le bloc logique D2 reçoit en outre par une connexion 1 1 , une valeur "pédale" traduisant la consigne d'accélération du conducteur, qui peut être par exemple la position angulaire d'une pédale d'accélération. Cette consigne d'accélération pourrait aussi correspondre, entre autres, à un angle de manette d'accélérateur, une position de curseur d'accélération ou un angle de papillon des gaz. Les valeurs transitant par les connexions 5 et 1 1 peuvent par exemple être envoyées par un ordinateur de bord et transmises aux blocs D l et D2 via le réseau multiplexe ou tout autre moyen de communication entre calculateurs. Les blocs logiques D l et D2 envoient respectivement une valeur booléenne PatD l par une connexion 12, et une valeur booléenne PatD2 par une connexion 13 vers l'additionneur logique 3, qui envoie une variable logique "Patinage" par une connexion 14 au module de correction D4. Le module de correction D4 délivre une accélération transversale corrigée γt qui peut être envoyée, suivant les applications, à un système de gestion d'une boîte de commande automatique du véhicule, à un système de contrôle de l'orientation des phares en virage, ou tout autre système utilisant l'accélération transversale et pouvant s'accommoder des plages d'incertitude du calcul de l'accélération transversale suivant l'invention. Le module d'estimation de l'accélération transversale D3 , à partir des vitesses angulaires de rotation des deux roues Vrd et Vrg, effectue une estimation de l'accélération transversale γt qu'aurait le véhicule si aucune des deux roues ne se trouvait en situation de glissement par rapport à la chaussée. Cette estimation peut par exemple être effectuée par la méthode décrite dans la demande de brevet FR 2802 646 au nom de la demanderesse. La valeur de l'accélération transversale ainsi estimée γt est transmise au bloc D2 qui l'utilise pour calculer la variable PatD2, et est également transmise au module de correction D4. A partir des paramètres de fonctionnement du véhicule, i.e. des vitesses de rotation des deux roues équipées des capteur 6 et 7, du rapport de transmission engagé et de la consigne d'accélération du conducteur, ainsi que de l'accélération transversale estimée par le bloc D3, les blocs logiques D l et D2 calculent les variables booléennes PatD l et PatD2. Ces deux valeurs sont envoyées sur l'additionneur 3 qui délivre par la connexion 14 la variable booléenne de patinage "Patinage" , somme logique de PatD l et PatD2, qui est positive si l'une des variables PatD l ou PatD2 est positive (ou notée 1 ), et qui est négative (ou notée 0) si les deux variables PatD l et PatD2 sont négatives (égales à zéro) . Cette variable Patinage est donc négative si les tests effectués par D l et D2 ne détectent pas de glissement d'une des deux roues, elle est positive si un glissement d'au moins une des roues est détecté.
Le module de correction D4 calcule une valeur corrigée γt de l'accélération transversale comme suit : Si la variable booléenne Patinage correspondant à l'instant auquel est estimée l'accélération transversale γt est négative, la valeur corrigée γt est égale à la valeur estimée γt; si la variable booléenne Patinage correspondant à l'instant auquel est estimée l'accélération transversale γt est positive, la valeur corrigée γt est égale à une valeur arbitraire χQ . La valeur arbitraire χQ peut par exemple être choisie égale à zéro, afin que le dispositif de gestion des lois de passage de la transmission automatique interprète ce résultat comme correspondant à une absence de virage de la chaussée. Dans une variante de l'invention, la valeur γ0 pourrait être choisie égale à une constante arbitraire négative, par exemple la valeur - 1. De cette manière, le ou les systèmes utilisant la valeur de l'accélération transversale peuvent détecter une situation de patinage potentiel à la lecture de γt . Dans une variante de réalisation qui peut se combiner à la précédente, le module de correction D4 peut imposer à γt une temporisation δt (par exemple de l'ordre de 0,01 secondes à 1 seconde) en maintenant chaque fois la valeur γt a sa valeur γ0 durant une période δt après que la variable booléenne Patinage soit redevenu négative. La temporisation peut également être imposée directement à la variable Patinage, lorsqu'elle passe de la valeur positive ( 1 ) à la valeur négative (0) . La figure 2 représente un organigramme de calcul de la variable booléenne PatD l de sur accélération de roue par le bloc logique D l de la figure 1. A un instant de calcul t, le bloc D l reçoit par la connexion 4 les valeurs de vitesses angulaires de rotation de deux roues Vrg et Vrd d'un même train de roues, et reçoit par la connexion 5 l'identifiant du rapport de transmission engagé. Parallèlement, le bloc D l garde dans une mémoire 20 la valeur de la variable booléenne PatD l calculée à l'instant de calcul précédent (instant de calcul t- 1 ) . La connexion 4 est reliée à un bloc de calcul 22, la connexion 5 est reliée à un bloc de calcul 21 , capable de lire dans une cartographie mémorisée 23. Trois blocs de tests 24, 25, 26 permettent, à partir de la valeur stockée dans la mémoire 20, et des valeurs calculées par les blocs 21 et 22, d'attribuer une valeur à la variable booléenne PatD l à l'instant t. Le bloc de calcul 22 calcule les accélérations Grg et Grd des deux roues en dérivant leurs vitesses Vrg et Vrd par rapport au temps. Le bloc 22 calcule également la valeur absolue de la différence Δ des deux vitesses Vrg et Vrd, soit Δ = |Vrg-Vrd| . Les deux valeurs Grg et Grd sont envoyées par les connexions 27 et 28 respectivement aux blocs de test 24 et 25. La valeur Δ est envoyée au bloc de test 26 par la connexion 29. Le bloc de calcul 21 extrait de la cartographie 23 , en fonction du rapport de transmission engagé "Rtransmission" , la valeur SGplaus représentant le seuil d'accélération plausible pour une roue Grg ou Grd en absence de glissement de cette roue. Ce seuil cartographie SGplaus est choisi tel que SGplaus multiplié par le rayon d'une roue soit proche de la valeur de l' accélération maximale que peut atteindre le véhicule pour le rapport de transmission engagé. Cette valeur SGplaus est envoyée aux blocs de tests 24 et 25 par les connexions 18 et 19 respectivement. Les blocs 24 et 25 attribuent à la valeur PatD l une valeur positive (ou notée 1 ) si l'une des accélérations de roues est supérieure à la valeur plausible SGplaus. Le bloc 26 analyse le cas où les deux valeurs Grg et Grd sont dans le domaine de plausibilité, c'est-à-dire inférieures à SGplaus. Si la différence Δ entre les deux vitesses de roues est réduite, c'est-à-dire inférieure à un seuil d'écart ε arbitraire (proche de zéro, par exemple ε égal à 0, 1 km/h), l'hypothèse du patinage est écartée,
PatD l prend une valeur négative (aussi notée 0) . Si les deux valeurs Grg et Grd sont dans le domaine de plausibilité et que la différence entre les deux vitesses de roues est supérieure au seuil ε, le bloc 26 affecte à la valeur PatD l à l'instant t, la valeur, extraite de la mémoire 20 par la connexion 30, qu'avait PatD l à l'instant de calcul précédent (instant t- 1 ) . De cette manière, dans le bloc D l , un début de patinage de roue est détecté lorsque l'une des accélérations de roues passe au dessus du seuil de plausibilité, et la variable booléenne continue à signaler l'état de patinage tant que les deux vitesses de roues ne passent pas par une valeur identique. En effet, dans la pratique, le début du patinage se caractérise par une brusque augmentation de la vitesse de la roue intérieure au virage, donc par un pic d' accélération de la roue en question. Les blocs 24 et 25 détectent ces débuts de patinage. La fin du patinage se caractérise par un croisement des courbes des vitesses des deux roues, car la vitesse de la roue intérieure au virage est inférieure à la vitesse de la roue extérieure lorsque les deux roulent sans patiner. Le bloc 26 détecte donc cette fin de patinage.
Le bloc logique D l est en mesure de détecter la plupart des phénomènes de patinage en virage grâce à la calibration des accélérations plausibles de roues stockées dans la cartographie 23. Dans une variante de réalisation de l'invention, le bloc logique D l peut constituer à lui seul le module de validation 2, auquel cas la variable Patinage s'identifie à la variable PatD l . Les seuils SGplaus de la cartographie 23 sont calibrés à des valeurs suffisamment élevées pour limiter le nombre de fausses détections de patinage (résultat de calcul Patinage= l alors qu'aucune des deux roues ne glisse). Si le véhicule se trouve en situation de survirage, l'invention évite ainsi de détecter l'accélération transversale γt comme non valide, ce qui est nécessaire notamment pour un bonne gestion des lois de passage de la transmission automatique. Le corollaire est qu'en revanche, certains cas de patinage ne sont alors pas détectés par le bloc logique D l .
Le rôle du bloc logique D2 dont le fonctionnement est détaillé figure 2, est de signaler certains des cas de patinage non détectés par le bloc D l du fait de la calibration choisie pour les seuils de la cartographie 23. Le bloc logique D2 détecte spécifiquement des cas de patinage provoqués par un enfoncement de la pédale d'accélérateur pendant un virage. Il ne détecte donc aucun cas de patinage correspondant à une situation de survirage, car les cas de survirage se produisent lors d'un relâchement de la pédale d'accélérateur.
La figure 3 représente un organigramme de calcul de la variable booléenne PatD2 de sur accélération de roue par le bloc logique D2 de la figure 1. A un instant de calcul t, le bloc D2 reçoit par la connexion 9 le valeur de l'accélération transversale γt estimée par le bloc D3 de la figure l et reçoit par la connexion 1 1 la consigne d'accélération du conducteur, représentée par la position angulaire "Pédale" de la pédale d'accélération du véhicule. Parallèlement, le bloc D2 garde dans une mémoire 31 la valeur de la variable booléenne PatD2 calculée à l'instant de calcul précédent (instant de calcul t- 1 ) .
Le bloc logique D2 comporte un bloc de calcul 32 et trois blocs de tests 32, 34, et 35 qui permettent, à partir de la valeur stockée dans la mémoire 31 , de la valeur calculée par le bloc de calcul 32, et des valeurs γt et Pédale, d'attribuer une valeur à la variable booléenne PatD2 à l'instant t. La connexion 1 1 est reliée au bloc de calcul 32 et au bloc de test 34. Le bloc de calcul 32 renvoie une valeur "Variation Pédale" au bloc de test 35 par une connexion 38. Le bloc de test 35 a accès à la mémoire 31 par une connexion 36. Le bloc 33 effectue une comparaison entre l'accélération transversale γt estimée par le bloc D3 et un seuil de centrifugation accélérée γtpiaus. Si γt est inférieure au seuil γtpiauS, l'hypothèse du patinage est exclue, et le bloc 33 affecte une valeur négative (aussi notée 0) à PatD2 à l'instant t. Le bloc 32 calcule la dérivée par rapport au temps de la variable Pédale, et délivre par la connexion 38 une valeur Variation Pédale représentant la vitesse angulaire de déplacement de la pédale d'accélérateur. Dans le cas où γt est inférieure au seuil de centrifugation accélérée γtpiaus, les blocs de test 34 et 35 effectuent les comparaisons de la valeur Pédale et de sa dérivée Variation Pédale respectivement par rapport à deux seuils constants "Seuil de Consigne" et "Seuil de Dérivée (de consigne) " . Si la valeur Pédale et la valeur de sa dérivée Variation
Pédale sont toutes deux supérieures à leurs seuils respectifs, la valeur PatD2 à l'instant t prend la valeur positive (aussi notée 1 ) . Dans le cas contraire, le bloc 35 affecte à la valeur PatD2 à l'instant t, la valeur, extraite de la mémoire 31 par la connexion 36, qu'avait PatD2 à l'instant de calcul précédent (instant t- 1 ). Le rôle du bloc D2 est de détecter les cas de patinage survenant lors d'un coup de pédale d'accélérateur du conducteur en cours de virage, notamment dans les cas de figures où la situation de patinage n'a pas été détectée par le bloc logique D l . A cette fin, le seuil de centrifugation accélérée γtpiaus, qui est une valeur constante, est avantageusement choisi élevé dans le domaine des accélérations plausibles du véhicule. En pratique, une accélération proche de 10ms"2, par exemple comprise entre 8 et
12ms"2 permet d'obtenir un niveau de détection raisonnable.
Une des applications du procédé est la gestion des lois de passage de la transmission en fonction de la courbure de la chaussée sur laquelle circule le véhicule. L'application du procédé ne se limite cependant pas à cette gestion des rapports de transmission : il peut être appliqué à la gestion de tout organe du véhicule qui nécessite une estimation de l'accélération transversale du véhicule, et qui est cependant capable de s'accommoder de l'indisponibilité de cette information lors des cas de patinage des roues motrices. Le raisonnement décrit plus haut sur le choix des variables booléennes et les valeurs qui leur sont attribuées, doit bien sûr être compris au sens fonctionnel. Les valeurs positives et négatives des variables pourraient êtres désignées par d'autres couples de valeurs, Oui/Non, Vrai/Faux, Patinant/Adhérent... Les valeurs booléennes pourraient avoir des définitions opposées à celle de la description et des revendications, les propositions logiques citées étant alors reformulées en conséquence.
La réalisation de l'invention sous forme de blocs logiques ou de blocs de calculs, peut se faire sous forme de composants électroniques ou de calculateurs physiquement indépendants agencés comme décrit plus haut. L'invention peut également être réalisée en programmant tous les blocs logiques et les blocs de calculs décrits sous forme logicielle, le programme correspondant, ainsi que ses sous programmes, étant implantés dans un ou plusieurs calculateurs, intégrés ou non à l'unité de commande électronique.
L'invention permet de proposer à moindre coût, sur des véhicules équipés de seulement deux capteurs de vitesses de roues sur ses roues motrices (par exemple pour des véhicules à traction avant dépourvus d'ABS), des fonctions de confort utilisant la valeur de l'accélération transversale du véhicule, telles que la gestions des lois de passage d'une boîte de commande automatique, ou l'orientation des phares en virage.

Claims

REVENDICATIONS
1. Dispositif d'évaluation de l'accélération transversale d'un véhicule automobile, comprenant des moyens de mesure (6, 7) des vitesses de rotation de deux roues du véhicule et un module d'estimation (D3) de l'accélération transversale du véhicule à partir de ces vitesses, caractérisé en ce qu'il comprend en outre un module de validation (2) apte à calculer, en fonction de paramètres de fonctionnement du véhicule, notamment des vitesses de rotation desdites roues et du rapport de transmission engagé, une variable booléenne de patinage qui est négative si l'accélération transversale estimée par le module est pertinente pour détecter un virage, et qui est positive dans le cas contraire.
2. Dispositif d'évaluation selon la revendication 1 , dans lequel lesdites roues sont une roue droite motrice et une roue gauche motrice appartenant à un même train de roues du véhicule.
3. Dispositif d'évaluation suivant l'une des revendications précédentes, comprenant en outre un module de correction (D4) apte à délivrer une valeur corrigée de l'accélération transversale de manière à ce que ladite valeur corrigée soit égale à la valeur estimée précédemment de l'accélération transversale si la variable booléenne de patinage est négative, et que cette valeur corrigée soit égale à une constante arbitraire dans le cas contraire.
4. Dispositif d'évaluation selon l'une des revendications précédentes, dans lequel le module de validation (2) comprend un premier module booléen (D l ) apte à délivrer une première variable booléenne de sur accélération de roue, lequel module (D l ) comprend un premier moyen de calcul (22) des accélérations des deux roues, un second moyen de calcul (21 ) d'un seuil d'accélération plausible de ces roues en fonction du rapport de transmission engagé, des premiers moyens de comparaison (24, 25) des accélérations de chacune des deux roues par rapport audit seuil d'accélération plausible de roues, des seconds moyens de comparaison (26) de la différence de vitesse entre les deux roues par rapport à un seuil d'écart, et des moyens de mémorisation (20) de la variable booléenne de sur accélération de roue.
5. Dispositif d'évaluation selon la revendication précédente, dans lequel le module de validation (2) comprend en outre un second module booléen (D2) recevant la valeur de la consigne d'accélération du conducteur et apte à délivrer une seconde variable booléenne de coup de pédale en virage, et dans lequel le module de validation (2) comprend un moyen de sommation (3) qui additionne la variable booléenne de sur accélération de roue et la variable booléenne de coup de pédale en virage pour obtenir la variable booléenne de patinage.
6. Dispositif d'évaluation selon la revendication précédente, dans lequel le second module booléen (D2) comprend un moyen (32) de dérivation par rapport au temps de la consigne d'accélération du conducteur, comprend des moyens de comparaison de la consigne d'accélération (34), de sa dérivée (35), et de l'accélération transversale (33) estimée précédemment, respectivement par rapport à trois valeurs de seuil de consigne, de seuil de dérivée de consigne, de seuil de centrifugation accélérée, et comprend des moyens de mémorisation (31 ) de la variable booléenne de coup de pédale en virage.
7. Dispositif de détection d'une situation de virage pour commande d'organe de véhicule automobile, notamment pour commande de transmission automatisée, comprenant un dispositif d'évaluation suivant l'une des revendications précédentes ainsi qu'un module d'arbitrage apte à décider si le véhicule est en situation de virage, ledit module d'arbitrage comprenant des moyens de comparaison de l'accélération transversale du véhicule et de la dérivée par rapport au temps de cette accélération, respectivement à une première valeur de seuil d'arbitrage et une seconde valeur de seuil d'arbitrage.
8. Procédé d'évaluation de l'accélération transversale d'un véhicule automobile, dans lequel on mesure les vitesses de rotation de deux roues motrices du véhicule, on estime l'accélération transversale du véhicule à partir de ces vitesses de roues, et on calcule en fonction de paramètres de fonctionnement du véhicule, notamment des vitesses de rotation desdites roues motrices et du rapport de transmission engagé, une variable booléenne de patinage qui est négative si l'accélération transversale estimée par le module est pertinente pour détecter un virage et qui est positive dans le cas contraire.
9. Procédé d'évaluation selon la revendication précédente, dans lequel, si la variable de patinage est positive, on corrige ensuite l'accélération transversale correspondante en lui attribuant une valeur arbitraire.
10. Procédé d'évaluation suivant les revendications 8 ou 9, dans lequel la variable booléenne de patinage est la somme d'une première variable booléenne de sur accélération de roue et d'une seconde variable booléenne de coup de pédale en virage dont le calcul comprend les étapes suivantes :
- on calcule, à l'aide d'une cartographie mémorisée (23), un seuil d'accélération plausible de roues en fonction du rapport de transmission engagé; si la dérivée par rapport au temps d'une des vitesses mesurées de rotation de roues est supérieure à ce seuil d'accélération plausible de roues, la variable de sur accélération de roue est positive; si les deux dérivées par rapport au temps des vitesses mesurées de rotation de roues sont inférieures à ce seuil d'accélération plausible de roues et que simultanément la différence de vitesses de rotation des deux roues est inférieure à un seuil d'écart, constant, la variable de sur accélération de roue est négative; dans les autres cas la variable de sur accélération de roue conserve sa valeur ;
- on calcule la dérivée par rapport au temps de la consigne d'accélération du conducteur;
- on compare la consigne d'accélération du conducteur, sa dérivée, et l'accélération transversale estimée du véhicule par rapport à trois valeurs de seuil de consigne, de seuil de dérivée de consigne, et de seuil de centrifugation accélérée; si les trois valeurs sont simultanément supérieures à leurs seuils respectifs, la variable de coup de pédale en virage est positive; si l'accélération transversale du véhicule est inférieure à son seuil respectif, la variable de coup de pédale en virage est négative; dans les autres cas la variable de coup de pédale en virage conserve sa valeur.
PCT/FR2009/051226 2008-07-09 2009-06-26 Dispositif d'evaluation de l'acceleration transversale d'un vehicule automobile et procede correspondant WO2010004178A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011517196A JP5579714B2 (ja) 2008-07-09 2009-06-26 自動車の横加速度を評定するための装置および対応する方法
EP09784437A EP2307253B1 (fr) 2008-07-09 2009-06-26 Dispositif d'evaluation de l'acceleration transversale d'un vehicule automobile et procede correspondant
US13/003,392 US8930097B2 (en) 2008-07-09 2009-06-26 Device for evaluating the transverse acceleration of an automobile vehicle and corresponding method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0854669 2008-07-09
FR0854669A FR2933657B1 (fr) 2008-07-09 2008-07-09 Dispositif d'evaluation de l'acceleration transversale d'un vehicule automobile et procede correspondant

Publications (1)

Publication Number Publication Date
WO2010004178A1 true WO2010004178A1 (fr) 2010-01-14

Family

ID=40342203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2009/051226 WO2010004178A1 (fr) 2008-07-09 2009-06-26 Dispositif d'evaluation de l'acceleration transversale d'un vehicule automobile et procede correspondant

Country Status (5)

Country Link
US (1) US8930097B2 (fr)
EP (1) EP2307253B1 (fr)
JP (1) JP5579714B2 (fr)
FR (1) FR2933657B1 (fr)
WO (1) WO2010004178A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104091053B (zh) * 2014-06-26 2017-09-29 李南君 用于自动检测行为模式的方法和设备
US10293923B2 (en) * 2015-10-06 2019-05-21 Goodrich Corporation Robustness and availability of aircraft acceleration evaluation
DE102019113490A1 (de) * 2019-05-21 2020-11-26 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Verfahren zur Plausibilisierung einer Querbeschleunigung und einer Anzahl weiterer Eingangsgrößen eines Getriebeschaltprogramms eines automatisierten Schaltgetriebes eines Kraftfahrzeugs

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4403335A1 (de) * 1993-02-04 1994-08-11 Mazda Motor Schlupfsteuersystem für ein Fahrzeug
DE4429242A1 (de) * 1993-08-20 1995-02-23 Mazda Motor Traktionsregelsystem für ein Fahrzeug
DE19510104C1 (de) * 1995-03-20 1996-08-14 Bayerische Motoren Werke Ag ABS- und/oder ASC-Regelsystem für Kraftfahrzeuge
DE19528625A1 (de) * 1995-08-04 1997-02-06 Bosch Gmbh Robert System zur Bestimmung der Übersetzungsänderung bei einem Automatikgetriebe
US5876101A (en) * 1994-06-13 1999-03-02 Nippondenso Co., Ltd. Automotive antiskid control system
DE19911301A1 (de) * 1999-03-13 2000-09-14 Zahnradfabrik Friedrichshafen Verfahren zur Steuerung eines Automatgetriebes mit Ermittlung eines Querbeschleunigungswertes
DE19962328A1 (de) * 1999-12-23 2001-06-28 Bosch Gmbh Robert Verfahren und Einrichtung zum Erkennen einer Kurvenfahrt eines Fahrzeugs
US20050140207A1 (en) * 2003-12-29 2005-06-30 Bendix Commercial Vehicle Systems Llc ABS control system for off-road driving conditions

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758398B2 (ja) * 1987-04-07 1998-05-28 本田技研工業株式会社 無段変速機付車両の変速制御方法
JP2623829B2 (ja) * 1989-05-19 1997-06-25 日産自動車株式会社 アンチスキッド制御装置
US5216608A (en) * 1990-01-25 1993-06-01 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Apparatus and a method for estimating the friction coefficient of a road surface and controlling a driving condition of a vehicle in accordance with the estimated friction coefficient
DE4200997C2 (de) * 1992-01-16 1994-02-03 Steyr Daimler Puch Ag Verfahren zur Ermittlung der fahrdynamischen Sicherheitsreserve von Kraftfahrzeugen
US5671144A (en) * 1995-05-01 1997-09-23 Zexel Torsen Inc. Combined power limiting and power distributing traction control system for improving vehicle performance in turns
JPH09207745A (ja) * 1996-01-30 1997-08-12 Nissan Motor Co Ltd アンチスキッド制御装置
JPH09226556A (ja) * 1996-02-21 1997-09-02 Aisin Seiki Co Ltd 車両の運動制御装置
EP1053150A1 (fr) * 1998-02-07 2000-11-22 Continental Teves AG & Co. oHG Procede et dispositif pour la detection d'un virage, en particulier d'un virage survire, et pour la stabilisation d'un vehicule en cas de virage survire
FR2779793B1 (fr) * 1998-06-15 2000-07-21 Renault Procede et dispositif d'adaptation automatique des boites de vitesses en situation de virage
JP3709087B2 (ja) * 1998-12-16 2005-10-19 株式会社日立製作所 ブレーキ制御装置
JP3695197B2 (ja) * 1999-02-12 2005-09-14 日産自動車株式会社 アンチスキッド制御装置
US20020022915A1 (en) * 1999-12-15 2002-02-21 Chen Hsien Heng Motor vehicle with supplemental rear steering having open and closed loop modes
WO2002074593A1 (fr) * 2001-03-16 2002-09-26 Bendix Commercial Vehicle Systems Llc Procede et appareil permettant de predire et d'empecher un retournement de vehicule
DE10140604C1 (de) * 2001-08-18 2003-04-17 Daimler Chrysler Ag Verfahren zur Beeinflussung des Wankverhaltens von Kraftfahrzeugen
JP4602186B2 (ja) * 2005-07-28 2010-12-22 日信工業株式会社 車両用ブレーキ液圧制御装置
US20070179699A1 (en) * 2006-02-02 2007-08-02 Kinsey Gerald L Method of controlling electronic differential
FR2912185B1 (fr) * 2007-02-05 2009-03-13 Siemens Vdo Automotive Sas Dispositif et procede de traitement de signaux de cliquetis d'un moteur a combustion interne, a reduction d'influence de bruits parasites
US8332113B2 (en) * 2007-04-16 2012-12-11 Advics Co., Ltd Brake control apparatus for vehicle
WO2009137304A1 (fr) * 2008-05-05 2009-11-12 Crown Equipment Corporation Contrôle du patinage pour un véhicule de manipulation de matériaux

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4403335A1 (de) * 1993-02-04 1994-08-11 Mazda Motor Schlupfsteuersystem für ein Fahrzeug
DE4429242A1 (de) * 1993-08-20 1995-02-23 Mazda Motor Traktionsregelsystem für ein Fahrzeug
US5876101A (en) * 1994-06-13 1999-03-02 Nippondenso Co., Ltd. Automotive antiskid control system
DE19510104C1 (de) * 1995-03-20 1996-08-14 Bayerische Motoren Werke Ag ABS- und/oder ASC-Regelsystem für Kraftfahrzeuge
DE19528625A1 (de) * 1995-08-04 1997-02-06 Bosch Gmbh Robert System zur Bestimmung der Übersetzungsänderung bei einem Automatikgetriebe
DE19911301A1 (de) * 1999-03-13 2000-09-14 Zahnradfabrik Friedrichshafen Verfahren zur Steuerung eines Automatgetriebes mit Ermittlung eines Querbeschleunigungswertes
DE19962328A1 (de) * 1999-12-23 2001-06-28 Bosch Gmbh Robert Verfahren und Einrichtung zum Erkennen einer Kurvenfahrt eines Fahrzeugs
US20050140207A1 (en) * 2003-12-29 2005-06-30 Bendix Commercial Vehicle Systems Llc ABS control system for off-road driving conditions

Also Published As

Publication number Publication date
FR2933657A1 (fr) 2010-01-15
EP2307253B1 (fr) 2012-12-12
FR2933657B1 (fr) 2010-08-20
US8930097B2 (en) 2015-01-06
JP2011527260A (ja) 2011-10-27
EP2307253A1 (fr) 2011-04-13
US20110178685A1 (en) 2011-07-21
JP5579714B2 (ja) 2014-08-27

Similar Documents

Publication Publication Date Title
EP2217476B1 (fr) Systeme de controle d'un vehicule comportant une determination de sa vitesse par rapport au sol
EP2176951B1 (fr) Dispositif d'assistance pour un vehicule
EP2758257B1 (fr) Procede d'estimation de la resistance au roulement d'une roue de vehicule
EP2870042A1 (fr) Procédé de détection du sens de déplacement d'un véhicule automobile
EP2183500A1 (fr) Dispositif et procede de determination d'une cartographie du couple transmis par un embrayage equipant un vehicule automobile et systeme d'assistance a un demarrage en cote d'un vehicule automobile equipe d'un tel dispositif
EP2307253B1 (fr) Dispositif d'evaluation de l'acceleration transversale d'un vehicule automobile et procede correspondant
EP1584530A1 (fr) Procédé d'assitance à la conduite en descente et dispositif associé
EP3030447B1 (fr) Controle du freinage regeneratif dans un vehicule electrique ou hybride
FR2905107A1 (fr) Procede de controle de trajectoire d'un vehicule.
EP2558320B1 (fr) Systeme de commande d'un actionneur de transfert de couple a modes de fonctionnement multiples
EP2900541A1 (fr) Gestion d'assistance de direction d'un vehicule automobile
EP2082939B1 (fr) Procédé et système d'estimation d'adhérence dans un véhicule automobile
EP1659018B1 (fr) Dispositif et procédé de contrôle de la vitesse d'un véhicule ferroviaire et système comprenant de tels dispositifs
EP2766232B1 (fr) Adaptation d'une consigne de freinage regeneratif
EP2176110B1 (fr) Procede d'estimation d'une vitesse longitudinale d'un vehicule, dispositif pour sa mise en oeuvre
FR2915802A1 (fr) Procede et systeme de determination d'adherence pour vehicule automobile
EP2176111B1 (fr) Procede d'estimation du glissement des roues d'un vehicule et dispositif pour sa mise en oeuvre
WO2002032733A1 (fr) Dispositif et procede pour detecter l'adherence d'un pneumatique de vehicule sur le sol
EP2830895B1 (fr) Procede d'estimation de la resistance au roulement de roues equipant un train d'un vehicule
FR2871889A1 (fr) Systeme de determination de la vitesse longitudinale d'un vehicule a roues
EP1538042B1 (fr) Système et procédé de commande de l'accélération d'un véhicule automobile dans une pente
WO2008040901A1 (fr) Procede de detection de reprise d'adherence d'une roue de vehicule automobile et dispositif associe
FR2922026A3 (fr) Procede d'estimation de la vitesse longitudinale d'un vehicule automobile
FR2920707A3 (fr) Procede de detection de l'adherence d'une roue de vehicule automobile
FR2914605A3 (fr) Procede de signalisation de la limite d'adherence d'un vehicule et dispositif de mise en oeuvre d'un tel procede

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09784437

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2009784437

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2011517196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13003392

Country of ref document: US