WO2010004066A1 - Matrices tridimensionales de monetita porosa estructurada para ingeniería tisular y regeneración ósea, y método de preparación de las mismas - Google Patents

Matrices tridimensionales de monetita porosa estructurada para ingeniería tisular y regeneración ósea, y método de preparación de las mismas Download PDF

Info

Publication number
WO2010004066A1
WO2010004066A1 PCT/ES2009/000358 ES2009000358W WO2010004066A1 WO 2010004066 A1 WO2010004066 A1 WO 2010004066A1 ES 2009000358 W ES2009000358 W ES 2009000358W WO 2010004066 A1 WO2010004066 A1 WO 2010004066A1
Authority
WO
WIPO (PCT)
Prior art keywords
monetite
matrix
diameter
cylinder
cells
Prior art date
Application number
PCT/ES2009/000358
Other languages
English (en)
French (fr)
Other versions
WO2010004066A8 (es
Inventor
Julio FONT PÉREZ
María Begoña CASTRO FEO
Olmo Basterrechea Del
María Dolores GARCÍA VÁZQUEZ
Jorge Rubio Retama
Enrique LÓPEZ CABARCOS
Carmen RUEDA RODRÍGUEZ
Faleh TAMIMI MARIÑO
Mohammad Hamdan Ali Alkhraisat
Original Assignee
Histocell, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Histocell, S.L. filed Critical Histocell, S.L.
Priority to MX2011000162A priority Critical patent/MX2011000162A/es
Priority to ES09793974.8T priority patent/ES2676070T3/es
Priority to EP09793974.8A priority patent/EP2298696B1/en
Priority to JP2011517180A priority patent/JP5759370B2/ja
Priority to CN200980126930.9A priority patent/CN102089238B/zh
Priority to CA2729920A priority patent/CA2729920C/en
Priority to RU2010153515/15A priority patent/RU2491960C9/ru
Priority to US13/002,939 priority patent/US9320828B2/en
Priority to BRPI0910349-0A priority patent/BRPI0910349B1/pt
Priority to AU2009267935A priority patent/AU2009267935A1/en
Publication of WO2010004066A1 publication Critical patent/WO2010004066A1/es
Publication of WO2010004066A8 publication Critical patent/WO2010004066A8/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/12Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3804Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by specific cells or progenitors thereof, e.g. fibroblasts, connective tissue cells, kidney cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/36Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix
    • A61L27/38Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells
    • A61L27/3839Materials for grafts or prostheses or for coating grafts or prostheses containing ingredients of undetermined constitution or reaction products thereof, e.g. transplant tissue, natural bone, extracellular matrix containing added animal cells characterised by the site of application in the body
    • A61L27/3843Connective tissue
    • A61L27/3847Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/42Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having an inorganic matrix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24744Longitudinal or transverse tubular cavity or cell

Definitions

  • the present invention is framed within tissue engineering and, in particular, bone regeneration.
  • the invention relates to a porous three-dimensional matrix of biocompatible monetite, structured porosity, predefined and reabsorbable, as well as the method of synthesis capable of producing said material and its applications.
  • These matrices constitute a perfect base for cell colonization and proliferation allowing its application in tissue engineering and bone regeneration thanks to its advantageous properties of biocompatibility, reabsorption, osteoinduction, revascularization, etc.
  • Biomaterials have been used for almost a century to repair or replace bone segments of the musculoskeletal system.
  • a bone-like material that is biocompatible, has no adverse biological reactions, is reabsorbable and gradually degrades as the new tissue forms, thus gradually transferring the loads to the new one. bone, avoiding a second surgical intervention for implant removal.
  • the degradation and reabsorption of the bone Ia carry out the osteoclasts. These are cells derived from monocytes, which are fixed to the surface of the bone. Once fixed, they start releasing protons outside, in order to lower the pH of the external medium. With this acidic environment, hydroxyapatite crystals that are part of the bone mineral component are solubilized. Bone hydroxyapatite is solubilized in amorphous calcium phosphate particles, which are eliminated by macrophages, or in Ca 2+ and PO 4 3 ions that accumulate in the extracellular fluid.
  • osteoclasts are also responsible for the degradation of the organic phase of the bone through enzymatic processes.
  • the mechanical properties of the bone substitute should be as similar as possible to those of the spongy bone.
  • the material must also help the stability of the fracture and be sufficiently resistant to reduce the necessary time of immobilization or external support. Said material must be reabsorbable, biocompatible and osteoinductive, that is, it must attract mesenchin cells and other cell types located near the implant and favor its differentiation into osteoblasts, and also osteoconductors, that is, it must act as a template for the formation of new bone.
  • the non-absorbable materials used so far in bone implants are being replaced by the absorbable ones.
  • These biomaterials do not interfere with the development and growth of the newly formed bone, since they are gradually replaced by host tissue. In addition, they have a greater biocompatibility, participate in a natural way in bone reconstruction and do not need to eliminate them, by surgery, after bone regeneration. These materials have to be maintained long enough for the correct regeneration of the bone and gradually disintegrate without causing damage to the patient and without intervening in the proper development and growth of the bone.
  • the biomaterials that form forming a mineral calcium phosphate have special interest in bone regeneration since they resemble the mineral phase of the natural bone and are susceptible to bone remodeling and reabsorption due to their metastable crystalline structure.
  • calcium phosphates stand out; hydroxyapatite (PAH), tricalcium phosphate (B-TCP) and dicalcium phosphate dihydrate (DCPD) (Stubbs et al, 2004; Schnettler et al 2004).
  • PAH hydroxyapatite
  • B-TCP tricalcium phosphate
  • DCPD dicalcium phosphate dihydrate
  • Hydroxyapatite has been one of the most interesting. This material is per se the inorganic phase of which the bones are formed and that is why it has been widely used in bone regeneration. Examples of this are some commercial products such as Interpore 200® Interpore 500®, Cerasorb® and Collagraft®. However, and because it has one of the most stable crystalline structures, the material suffers from a slow reabsorption.
  • PAH is the material with the highest biocompatibility, as it is the closest to the crystals formed by the bone, but it is not reabsorbable in vivo.
  • the degradation of this material is produced by contact with solutions with a low pH and by phagocytosis. Through the solution, amorphous calcium phosphate particles are released that can be eliminated by macrophages by phagocytosis or be embedded in the new bone formed. Macrophages can dissolve these particles and restore Ca and P to the organism pool (Frayssinet et al 1999; Be Spotifyd et al 1996). However, it has not been observed that these particles give rise to osteoclastic activation (Frayssinet et al 1999).
  • B-TCP has more osteoconductivity and better reabsorption than PAH (Franco et al 2006). It is considered as a moderately reabsorbable material, in vivo studies it has been observed that it takes at least one year for its reabsorption in animals and 6 to 8 months in humans (Wiltfang et al 2003; Suba et al 2004). Its degradation increases calcium deposits and this is associated with increased alkaline phosphatase activity, an enzyme that is involved in bone formation (Trisi et al 2003; Sugawara et al 2004).
  • the DCPD is also biocompatible, osteoconductive and the most reabsorbable because it is the most soluble at physiological pH. This allows new bone to form faster. It biodegrades in physiological environments and is reabsorbed by adjacent cells (Tris et al 2003). It is proven that it is reabsorbed in vivo, up to three times faster than PAH and B-TCP (Herrón et al 2003; Chow et al 2003; Tas & Bhaduri 2004; Tamini et al 2006;).
  • the Monetite is reabsorbed in vivo in a similar manner and time. It dissolves at physiological pH, gradually in the extracellular tissues that surround the implant and the cells that colonize it, (endothelial cells, osteoclasts, osteoblasts, macrophages %) would be responsible for its elimination or reuse as it happens in the bone.
  • the biomaterial has an adequate porosity that allows the colonization and cell proliferation, vascularization, increase of the contact surface and therefore increase of the surface of interaction with the host tissue that allows the acceleration of bone regeneration. These characteristics must be accompanied by a correct rate of resorption that gives the cells the time necessary for regeneration.
  • Gbureck, Uwe et al 2007, refer to Brusita and Moneti ⁇ a implants prepared by the three-dimensional printing technique. To achieve these implants, firstly, Brusite matrices are obtained which are hydrothermally dehydrated by being transformed into Monetite.
  • US6605516 presents bone substitutes with a controlled anatomical shape that fit exactly to the morphology of the lesion.
  • Said substitutes are composed of chemically consolidated calcium phosphate cement materials.
  • the invention also relates to porogenic molds and phases that allow obtaining calcium phosphates with external geometries and macroporous architectures by using said molds.
  • the invention presents Brusite materials, not presenting Monetite materials and neither being the macroporous structures presented therein valid for the purpose of the present invention.
  • the present invention provides monetite matrices (metastable phase of calcium phosphate of monetite), with a high thermal stability that allows the sterilization of the material by autoclaving, thus simplifying the sterilization processes and also, due to its specific structural arrangement of pores, disposition that is obtained thanks to a specific design of the material , supposes an improvement of the osteoinductive capacity of materials proposed by the state of the art since it is synthesized in the form of a porous block with defined macroporosity characteristics defined by increasing the specific surface, as well as the area of contact with the osteoblasts and facilitating the work processes Nutrient support for cells, a crucial factor for osteogeneration. All this together with its high resorption capacity in the appropriate period of time so that the adjacent cells colonic the material and can replace the reabsorbed material by physiological bone matrix.
  • the cells of the implant area, osteoblasts of the adjacent bone, mesenchymal stem cells of the bone marrow and endothelial cells of the systemic circulation must be able to colonize simultaneously and homogeneous biomaterial. This will allow the formation of a new physiological bone matrix as the biomaterial is resorbed and the development of a new vascular system, which will be the one that supplies the blood supply necessary for the survival of the new tissue.
  • porous structure An important property to take into account in relation to this aspect is the porous structure, because it influences both the biodegradability, the greater the porosity degree, the better the resorption, as in the cellular colonization.
  • the materials must have pore sizes and interconnections that allow colonization of both endothelial cells (for the formation of new blood vessels) and bone cells.
  • microporous and interconnected character which allows the diffusion of nutrients and gases and also of the metabolites of the cellular activity.
  • Bone is not a compact material but has different porosities that intercommunicate. Interconnected pore systems communicate the solid (cortical) bone with the spongy (trabecular) bone ( Figure 16). These porosities range from 100-150 ⁇ m in the cortex to 500-600 ⁇ m in the spongy.
  • the present invention presents a new tissue engineering system, intended to regenerate the bone structure by addressing a healing strategy rather than merely repair. Said regeneration has application against osteoporosis.
  • Tissue engineering is considered as a discipline that improves, maintains and repairs pathologies in organs and tissues.
  • the creation of a system based on tissue engineering involves the integration of viable cells, a biocompatible material specially designed for a biomedical application and signaling molecules that regulate the cellular activities that are required at each moment of treatment.
  • the present invention provides matrices with non-random porosity geometry, that is, ordered or predefined, composed of monetite, in whose design the porosities of the bone have been taken into account, so that it is of neovascularization and cellular colonization.
  • Said material is presented sterilized, ready for use and thanks to its specific design, it achieves a specific structural arrangement of pores, that is, a spatial distribution and spatial configuration of ordered porosity induced and previously established, which implies an improvement of the osteoinductive capacity against other calcium phosphates, including other combinations of calcium phosphate that include monetite.
  • Said matrices are obtained in the form of a porous block with defined macro, meso and microporosity characteristics that increase the specific surface, as well as the zone of contact with the osteoblasts, facilitating the processes of nutrient transport for the cells, a crucial factor for the osteogeneration
  • monetite matrices of the invention has taken into account the characteristic porosities of natural bone, porosities that allow neovascularization and cell colonization.
  • the new matrices of the invention are composed of the Monetita biomaterial, a dehydrated DPCD (DPC), ideal for bone regeneration.
  • Said matrices are made up of at least 95% ⁇ 5% monetite, preferably 95% monetite and more preferably 100% monetite.
  • Traces of material correspond to beta tetracalcium phosphate. In vitro degradation of this material does not affect cell proliferation and is also bioactive, non-cytotoxic, non-mutagenic and hemocompatible as shown in example 4.
  • the matrices of the invention are reabsorbed in the appropriate period of time so that the adjacent cells colonize the material and can replace the reabsorbed material by physiological bone matrix.
  • Matrix refers to any three-dimensional structure useful in bone regeneration that allows cell growth and proliferation of the invading cells.
  • Ratimal stem cells preferably obtained from adipose tissue, but can also be from bone marrow or any other location that has been shown to be the source of these cells.
  • These cells can be used differentiated towards the osteoblastic or endothelial lineage.
  • Endothelial cells - Combinations of adult mesenchymal stem cells not differentiated or differentiated towards osteoblastic or endothelial lineage, osteoblasts, osteoclasts, bone osteocytes and endothelial cells.
  • Macropores when the pores have diameters greater than or equal to 100 microns.
  • Wlesoporos when the pores have diameters less than 100 microns but greater than or equal to 10 microns.
  • Micropores When the pores have a diameter less than 10 microns.
  • Amorphous matrix That which presents a random porosity geometry, not ordered or predefined, that does not follow a spatial distribution and spatial configuration of ordered and previously established porosity, regardless of whether said porosity is natural (intrinsic to the material) or induced.
  • Structured or structured porosity matrix The one that presents a non-random, ordered or predefined porosity geometry, presenting a spatial distribution and spatial configuration of induced and previously established ordered porosity.
  • the matrices of the present invention are matrices of structured porosity with a predefined porosity that gives them a series of ideal properties for use in bone regeneration.
  • Osteoinduction bone neoformation by apposition to the material, forming a framework for cell proliferation with osteoblastic activity, forming new bone. It is the act or process of stimulating osteogenesis.
  • Osteogenesis generation or development of bone tissue, through the differentiation of mesenchymal cells to osteoblasts.
  • Bone regeneration formation of new bone that, after a remodeling process, is identical to the existing one. Bone regeneration causes a response in which blood vessels, cells and extracellular matrix are involved.
  • the biomaterial of the invention finds application in tissue engineering and bone regeneration and, therefore, can be used in the treatment of the following bone pathologies:
  • Cell colonization capacity of cell expansion over the biomaterial, being able to proliferate and increase the cell population until invading the entire matrix.
  • a measure of the ability to colonize a matrix is the analysis of the number of cells on the biomaterial over time (data from the proliferation graph).
  • Cell adhesion ability of cells to bind to other cells or to a matrix. Adhesion can be produced by specific interactions such as electrostatic forces and is regulated by specific proteins called adhesion molecules. The ability to adhere to a biomaterial can be analyzed by microscopic visualization of the cells arranged on the biomaterial. The contact surface between the cells and biomaterial will be a representative measure of the affinity that the cells have for that biomaterial.
  • the present invention refers to biocompatible three-dimensional matrices, of structured porosity composed of porous monetite, hereinafter matrices of the invention, comprising three-dimensional matrices of structured porosity monetite, corresponding to cylindrical macropores of between 350-650 ⁇ m in diameter , uniformly separated between 0.4-0.6mm from each other.
  • Said monetite presents the intrinsic porosity of the material, on which the indicated structured macroporosity is induced.
  • said structured porosity is distributed in the maximum area of the matrix that allows said matrix to maintain its mechanical stability in a stable manner.
  • said maximum area is the remainder of removing the outer perimeter zone of the matrix, which ranges between 0.1 and 0.9 mm in width, preferably 0.5 mm in width.
  • the materials used in osteogenesis must mimic the morphology, structure and function of the bone to achieve a correct integration into the host tissue.
  • the structure determined by the porosity and the pore diameter of the materials used in bone regeneration influences bone formation both in vivo and in vivo.
  • the pores are necessary for the formation of bone tissue, since they allow the migration and proliferation of osteoblasts and mesenchymal cells and also vascularization.
  • the material of the invention provides the necessary conditions to achieve the correct regeneration of the bone thanks to its porosity characteristics that allow the colonization and proliferation of the cell types necessary for such effect.
  • the minimum diameter required for bone formation was considered around 100 ⁇ m, so that the processes of migration and cell transport could be carried out.
  • diameters greater than 300 ⁇ m are proposed since the presence of these macropores increases bone formation because they allow the formation of capillaries inside.
  • Vascularization affects the development of osteogenesis. The pores with small diameters favor hypoxia conditions and do not induce osteogenesis but chondrogenesis.
  • the long and large tunnel-shaped pores of the matrix of the invention allow its vascularization and the development of osteogenesis.
  • pores with high diameters increase the contact surface, which also increases the surface of interaction with the host tissue, which will accelerate the degradation carried out by macrophages.
  • the vascular network that can be formed is irregular in the biomaterial structure and cannot connect to the vascular network of the bone, so that the implant cannot be integrated effectively with the receptor tissue.
  • the porosity structure adopted by the matrices of the present invention takes into account the incorporation of pores with the appropriate size so that the required cell species coexist and a bone and vascular network can be formed throughout the implant and also the connection with The receiving area, so that tissue integration can occur.
  • the new design incorporates macropores of 350 ⁇ m -650 ⁇ m in cylindrical form (in the form of a tunnel), which completely cross the structure of the material, for a suitable cellular colonization (in terms of different cell types and a sufficient number of each type) of the cells of adjacent tissues, as well as an integration with the recipient tissue.
  • macropores of 350 ⁇ m -650 ⁇ m in cylindrical form (in the form of a tunnel), which completely cross the structure of the material, for a suitable cellular colonization (in terms of different cell types and a sufficient number of each type) of the cells of adjacent tissues, as well as an integration with the recipient tissue.
  • a micropore network for a sufficient diffusion of nutrients, gases and waste products of cellular metabolism.
  • amorphous biomaterials which show a distribution of unstructured and non-predefined macroporos, produced in the process of obtaining the cement of the present invention, have pores that do not connect the internal structure. That is, the number of macropores is insufficient and its distribution inappropriate so that adequate colonization of the cells can occur, these being mostly relegated to the surface of the material.
  • the success in the process of formation of a new bone is directly related to the amount of bone-forming cells that intervene in the process, as well as in the formation of a consistent vascular network throughout the biomaterial.
  • the matrices of structured porosity material of the invention which have a spatial distribution and spatial configuration of ordered, induced and previously established macropores, allow a wide cellular colonization throughout the biomaterial, a greater diffusion of nutrients and signaling molecules that will determine cell behavior.
  • the matrices of the invention with a high percentage of porosity, especially macroporosity, in which there are pores with high diameters (> 300 ⁇ m, specifically between 350 and 650 ⁇ m, and preferably 500 ⁇ 60 ⁇ m) and in shape of continuous tunnels, the osseointegration of the implant will increase after surgery.
  • the present invention refers to the method of synthesis of the matrices of the invention, which comprises the formation of a monetite matrix of structured porosity comprising:
  • the product obtained in stage 1 results in a solid phase that is mixed with distilled water to give rise to a liquid phase.
  • the invention proposes the use of tricalcium-beta phosphate as basic calcium phosphate, and calcium monophosphate as acid phosphate.
  • the molar ratio of basic phosphate / acid phosphate is 1.6-1.8 for a time of approximately 10 minutes, the concentration of porogen 1-20% by weight and Ia retardant between 0.4-0.6% by weight; preferably base phosphate / acid phosphate molar ratio of 1,785, porogen concentration 3-
  • the molar ratio of basic phosphate / acid phosphate to carry out the mixture is 1.6-1.8, preferably 1.785, for a time of approximately 10 minutes.
  • Calcium carbonate is added in concentrations between 1-20% by weight, preferably between 3-10%.
  • the invention proposes the use of pyrophosphate in a proportion of 0.4-0.6% by weight, with 0.54% being the preferred option.
  • the mold of the invention used for the development of the biomaterial refers to any mold that has cylindrical punches, whose base has a diameter of between 350- and 650 ⁇ m, and that are separated from each other between 0.4 and 0.6 mm, .
  • Said mold can be constructed of silicone, metal, resistant plastic material or any type of material that allows it to be applied in its use.
  • the mold can have any desired shape, depending on the shape and size of the biomaterial that is required to repair a particular bone defect for each patient, always maintaining the obtained biomaterial the characteristic porosity characteristics of the biomaterial of the invention, that is, cylindrical macroporos with a diameter between 350- and 650 ⁇ m, more preferably 500 ⁇ m ⁇ 60 ⁇ m in diameter, uniformly separated between 0.4 and 0.6 mm, more preferably 0.5mm ⁇ 60 ⁇ m, in addition to the intrinsic porosity of the biomaterial.
  • Said molds allow obtaining the matrices of the invention, in which the structured porosity is distributed in the maximum area of the matrix that allows said matrix to maintain its mechanical stability in a stable manner.
  • said molds allow the obtaining of matrices in which the maximum area in which the structured porosity is distributed is the remaining area of eliminating the outer perimeter zone of the matrix, between 0.1 and 0.9mm of width, preferably 0.5 mm width.
  • the invention also contemplates the use of more than one mold:
  • a first mold that allows obtaining monetite matrices, in the desired form but without structured porosity
  • a second mold that, on a flat surface, has cylindrical punches, with a diameter of between 350- and 650 ⁇ m, preferably 500 ⁇ m ⁇ 60 ⁇ m, and that are separated from each other between 0.4 and 0.6 mm, preferably 500 ⁇ m ⁇ 60 ⁇ m. Said second mold must be applied, after removing the first mold, introducing into it the pieces obtained with the first mold. The second mold is covered with a lid as shown in Figure 1c.
  • the biomaterial of the invention can be presented in the form of tablets, sheets, cylinders, etc., and any other form that is useful for repairing a particular bone defect of a patient.
  • the mold has the shape of a tablet or cylinder with a diameter between 2 and 50 mm, preferably between 2 and 15 mm and a height between 1 and 50 mm, preferably between 1 and 5 mm, and more preferably:
  • the punches are cylindrical with a diameter of 500 ⁇ m ⁇ 60 ⁇ m, separated
  • a first mold is made of silicone and has cylindrical holes for pads or cylinders of the size of the matrices of the invention to be manufactured.
  • said gaps have a diameter between 2 and 50 mm, preferably between 2 and 15 mm and height between 1 and 50 mm, preferably between 1 and 5 mm, and more preferably:
  • Said molds do not intervene in the formation of macropores.
  • the second mold is metallic, it has the dimension of each of the previous pieces, and at its base, evenly distributed, it has cylindrical punches of 500 microns ⁇ 60 ⁇ m, separated from each other 500micras ⁇ 60 ⁇ m, which give place to the macroporous component of the monetite matrices, distributed respecting a minimum perimeter zone of 0.5mm (taken from the edge of the tablet) free of punches.
  • said metal molds have a diameter between 2 and 50 mm, preferably between 2 and 15 mm and height between 1 and 50 mm, preferably between 1 and 5 mm, and more preferably:
  • the procedure is the same as the previous one, with the difference that immediately after making the mixture of the solid and the liquid phase, the first silicone mold is filled.
  • the silicone mold pieces are removed.
  • the pieces are introduced into the metal mold with punches (covering with the metal lid according to Figure 1c), until the setting ends in a water bath at 37 0 C for 30 minutes.
  • they are removed from the metal mold obtaining the cylindrical pieces with the determined porosity.
  • the formed matrices are subjected to autoclaving between 120 and 13O 0 C for 24-25 minutes, producing their conversion to Monetita, completely sterilized and suitable for use.
  • the use of these molds gives rise to monetite tablets of structured porosity.
  • said pads have a diameter between 2 and 50 mm, preferably between 2 and 15 mm and height between 1 and 50 mm, preferably between 1 and 5 mm, and more preferably:
  • diameter 10mm and height 3 to 5mm preferably 3mm or 5mm, which have a uniform distribution of 64 macropores with a diameter of 500 ⁇ m ⁇ 60 ⁇ m, separated 500 ⁇ m ⁇ 60 ⁇ m from each other.
  • the monetite tablets have a minimum perimeter zone of
  • the final distribution of macropores in said tablets respects both the minimum perimeter zone of 0.5mm free of macropores, as well as the size and distance between pores (as described above).
  • the products of the present invention find application in the field of tissue engineering, and bone regeneration.
  • the monetite matrices of the invention obtained through the defined molds, are applicable for the support and growth of cells and the previously defined applications.
  • the tablets of the invention are applied in the form of several units (as a set of pieces), being arranged so that they adapt completely to the bone defect space, facilitating the homogeneous entry of nutrients, gases and cells throughout the entire area to be repaired, facilitating its recovery thanks to this provision and preventing necrotic areas from occurring.
  • the invention refers to the use of the matrices of the invention as growth support for mesenchymal cells of different origins, including adipose origin, osteoblasts, endothelial cells and combinations of undifferentiated or differentiated adult mesenchymal stem cells towards osteoblastic lineage. or endothelial, osteoblasts, osteoclasts, bone osteocytes and endothelial cells, for use in bone regeneration.
  • the Monetite matrices of structured porosity of the invention are reabsorbed in vivo in a longer time and similar way than the DCPD, avoiding the inconvenience of its transformation into HA (as example 10 shows where the structured porosity matrices of the invention are compared against brushite matrices made with the structured porosity of the matrices of the present invention).
  • these matrices will dissolve at physiological pH, gradually in the extracellular tissues that surround the implant and the cells that colonize it, (endothelial cells, osteoclasts, osteoblasts, macrophages ...) will be responsible for their elimination or reuse As happens in the bone.
  • its combination with calcium carbonate in the process of obtaining it, prevents its transformation to PAH.
  • DPCD reabsorption Ia begins between 4 and 8 week time period which is suitable for the adjacent cells to colonize the material and can replace material reabsorbed by physiological bone matrix. This biodegradability is adjusted to what happens in the organism, where bone growth in defects can take place in a period of time between 2 and 6 months, depending on the type of bone and the size of the defect (Francone V. 2004 ).
  • the monetite can show very low resistance and elasticity with respect to that of the trabecular bone (elasticity 50-100 MPa and compression 5-10 MPa). However, it would be almost impossible to match the mechanical properties of the bone. And, it has been shown that it is sufficient for the material to achieve sufficient mechanical properties to support cell growth, since the cells, upon invading the material will form the organic phase of the implant and improve the mechanical properties.
  • the porous monetite matrices of the invention meet this requirement.
  • Monetite material is absorbable, reabsorbable, bioactive, has characteristics similar to bone. This material allows cell growth both on its surface and inside, once in the bone defect, it will allow the cells (endothelial, osteoblasts, osteoclasts ...) to form the necessary scaffold that will connect to the healthy bone. Subsequently, the monetite will be eliminated little by little, without undergoing transformation to hydroxy apatite, by the action of the osteoclasts, and the osteoblasts will synthesize the new mineral phase that will replace the monetite, completely eliminating the initial defect.
  • a first object of the invention relates to a three-dimensional matrix of monetite of structured porosity characterized by presenting in its structure vertical cylindrical macroporos between 350 and 650 ⁇ m in diameter, which longitudinally cross the matrix from one end to the other, there being a separation between 0.4-0.6 mm between each macropore.
  • the diameter of the macropores is preferably 500 ⁇ m ⁇ 60 ⁇ m.
  • the separation between macropores is preferably 500 ⁇ m ⁇ 60 ⁇ m.
  • Another object of the invention relates to the monetite matrix of structured porosity whose content in monetite is at least 90%, preferably 95% and more preferably 100%.
  • a following object of the invention constitutes the monetite matrices of structured porosity characterized by being obtained by thermal transformation of a precursor material.
  • said precursor material that is thermally transformed to monetite consists of a mixture of a solid phase composed of basic calcium phosphates, acidic calcium phosphates, a porogen and a retardant that is set by the addition of distilled water.
  • the basic phosphate / acid phosphate molar ratio is 1, 6 -1, 8, the concentration of porogens 1-20% by weight, that of retarder between 0.4-0.6% by weight and The proportion (P / L) is 3.
  • the basic phosphate / acid phosphate molar ratio is 1785, the concentration of porogens is 3-10% by weight and the retardant is 0.54% in weight.
  • the acidic calcium phosphate is calcium monophosphate, the basic calcium phosphate is beta tricalcium phosphate, the porogenic agent calcium carbonate and the retardant is sodium pyrophosphate.
  • the precursor material is Brushite.
  • Another object of the invention constitutes the three-dimensional matrices of monetite of structured porosity according to previous claims characterized in that they can adopt any type of form required for the repair of a particular bone or tissue defect.
  • said die consists of a cylinder with a base diameter between 2 and 50 mm, and a height between 1 and 50 mm.
  • said cylinder has a base diameter between 2 and 15 mm, and a height between 1 and 5 mm.
  • said cylinder has a minimum perimeter zone of 0.5mm free of macropores.
  • the cylinder has:
  • Another object of the invention relates to the mold for the preparation of a three-dimensional matrix according to the objects of the previous invention, characterized by presenting a homogeneous distribution of punches of 360-660 ⁇ m in diameter uniformly separated between 0.4-0.6 mm from each other .
  • Said mold can be composed of silicone, metal, resistant plastic or any other material that allows its application, being able to adopt any type of required form.
  • the mold has a cylinder shape with a base diameter between 2 and ⁇ mm and a height between 1 and 60 mm.
  • said cylinder has a base diameter between 2 and 1 ⁇ mm and a height between 1 and ⁇ mm.
  • said cylinder has:
  • the molar ratio of basic phosphate / acid phosphate is 1.6-1.8, the concentration of porogen is 1-20% by weight, that of retardant between 0.4-0.6% by weight and the proportion (P / L) is 3.
  • the molar ratio of basic phosphate / acid phosphate is 1,785, the concentration of porogens is 3-10 % by weight and the retarder is 0.54% by weight.
  • the acidic calcium phosphate is calcium monophosphate
  • the basic calcium phosphate is beta tricalcium phosphate
  • the porogenic agent calcium carbonate and the retardant is sodium pyrophosphate.
  • the product of phase 1 is Brushite.
  • thermal sterilization is carried out by autoclaving.
  • said autoclaving is carried out at 120-130 0 C and for 24-25 minutes.
  • the mold used is the mold described in the preceding objects of invention.
  • a silicone mold having a cylinder shape with a base diameter between 2 and 50mm, and a height between 1 and 50mm is used prior to the use of said molds.
  • said silicone mold has a base diameter between 2 and 15 mm and a height between 1 and 5 mm.
  • Another object of the invention constitutes the use of the mold described in the objects of the previous invention, for obtaining calcium phosphates that take their form.
  • said calcium phosphate consists of monetite.
  • Another object of the invention relates to the use of three-dimensional matrices of monetite of structured porosity as a support for cell cultures.
  • Another object of the invention relates to the three dimensional matrices of monetite of structured porosity characterized in that they additionally comprise cells.
  • said cells are mesenchymal cells, osteoblasts, osteoclasts, osteocytes, endothelial cells or combinations thereof.
  • Another object of the invention relates to the use of three-dimensional monetite matrices of structured porosity with or without cells, for the preparation of a therapeutic agent for the regeneration of bone structure.
  • said bone structure regeneration is carried out to combat osteoporosis. DESCRIPTION OF THE FIGURES.
  • Figure 1 a) Metal pieces fixed on a glass plate of the same size as the Monetita cylinders to be synthesized b) Silicone molds obtained from the pieces of Figure 1a), with the holes of the size of the pieces that are going to be manufactured, without taking into account for the moment the formation of the macropores c) Metallic mold with metallic punches that will give rise to a homogeneous controlled macroporosity in the monetite matrix.
  • Figure 2 Design of an example of a mold used to obtain the monetite matrix, with a homogeneous distribution of vertical pores of 500 ⁇ 60 mm in diameter, regularly spaced and reproducible.
  • Figure 3 Photograph of one of the porous monetite matrix shapes seen in elevation (a) and in profile (b). In this image the cylindrical pores of equal size can be seen, distributed regularly by the structure of the matrix and how these pores completely cross the structure.
  • Figure 4 Particular embodiments of the monomers / tablets of the invention and their dimensions a) tablet of 5 mm in diameter ( ⁇ ) and 3 mm in height (h) with a total of 12 macropores of 0.5 mm spaced diameters ( ⁇ .m) to each other for 0.5mm (dm) b) 10mm diameter ( ⁇ ) and 3 or 5mm high (h) pickup, with a total of 64 macropores of 0.5mm diameter ( ⁇ .m) spaced apart from each other by 0.5mm (dm) c) 8mm diameter ( ⁇ ) and 3 or 5mm high (h) pickup with a total of 39 macropores of 0.5mm diamete ( ⁇ .
  • Figure 5 X-ray diffraction of the precursor porous brushite (before heat treatment) and porous monetite (after heat treatment) obtained after the material transformation and sterilization process.
  • the structural analysis of the samples (Rietvel analysis) after the autoclave sterilization shows that the material consists mainly of monetite 95 ⁇ 5% and the rest is ⁇ tricalcium phosphate (also called ⁇ -TCP).
  • ⁇ -TCP tricalcium phosphate
  • Figure 6 Front (a) and lateral (b) images of the amorphous monetite matrix, that is, without the structured porosity.
  • the porosity that is appraised is inherent to the process of obtaining, the majority of the porosity of the biomaterial is composed of micropores, in which the cell colonization cannot be carried out,
  • Figure 7 Scanning electron microscopy images at different magnifications of the monetite biomaterial without controlled porosity. These images show a fundamentally microporous biomaterial (c) and with the minimum presence of some macropores (b) arranged randomly, by way of cavities, which in no case get through the matrix (a, b).
  • Figure 8 Scanning electron microscopy image in which the monetite biomaterial of the invention is observed with pores of 500 ⁇ im distributed by the matrix.
  • Figure 9 Graph of the cytotoxicity study of the Monetite biomaterial of the invention in L929 cells. From the MTT test it is observed that there are no significant differences in the proliferation of L929 cells between those that have been in contact with the monetite and those that have not, which makes it possible to conclude that the structured porosity monetite of the invention is not cytotoxic.
  • Figures 10 Images of inverted phase contrast microscopy obtained from the "Mouse Lymphoma assay". As a result of the test, representative images of wells considered as (a) and (b) positive (mutant cells, colony growth) or (c) and (d) as negative (non-mutant cells, absence of colonies) are shown.
  • Figure 11 Histogram of the frequencies of mutation of the Monetite of structured porosity of the invention in the presence (Monetite + S9) and absence (Monetite) of metabolic activation. Said frequencies compared to the negative and positive controls used in the presence and absence of metabolic activation allow us to conclude that the monetite of structured porosity of the invention is not a mutagenic biomaterial.
  • Figure 12 Determination of the hemocompatibility of the monetite biomaterial of the invention. Osteoblast and AMSC culture media that were for 24 hours in Contact with the monetite of the invention were used to determine the percentage of hemolysis against positive and negative controls. From the graph it can be concluded that the Monetite of the invention is a hemocompatible biomaterial.
  • FIG. 13 Scanning electron microscopy images at different magnifications of a structured macroporosity monetite matrix according to the invention.
  • the macropores allow mesenchymal stem cells to colonize the surface of the biomaterial (a) and be introduced by said macropores (b, d).
  • (c) we observe the longitudinal section of a macropore.
  • Cells interact with each other by emitting cytoplasmic prolongations, just as occurs in a physiological tissue.
  • Figure 14 Scanning electron microscopy images of mesenchymal stem cells arranged in the monetite biomaterial of uncontrolled porosity. It can be seen that the cells are arranged on the surface of the matrix, without the possibility of colonizing its interior, since they have a size significantly larger than the microporosity that characterizes the biomaterial.
  • Figure 15 Proliferation of mesenchymal stem cells arranged on the monetite material with uncontrolled porosity (gray) compared to those arranged on the monetite biomaterial of structured porosity of the invention (black).
  • Figure 16 Bone tissue morphological scheme: 1. Cortical bone. 2. Trabecular bone. 3 Haver system. 4 Blood vessel. 5 Havers Channel. 6 Volkmann Channel. 7 Periosteum. 8 Bone lining. 9 Glasses of the periosteum. 10 Osteoclasts 11 Osteoblast. 12 Osteocytes.
  • Figures 17 and 18 SEM images in which it can be observed at x40 magnification and at x80 magnification as different concentrations of AMSC predifferentiated to bone are arranged on the same surface of the biomaterial of the invention.
  • Figures 17a and b refer to the biomaterial without cells
  • Figures 17 c-h are relative to the different cell concentrations used from 0.5x106 to 2x106 cells.
  • Figures 18 ah refer to the cell concentrations employed from 3x106 to 6x106 cells.
  • Figure 19 Images of confocal micorcopy of the cells on (a) the surface of the structured porosity monetite biomaterial of the invention and (b) inside the macropore channels of said biomaterial after several days in culture.
  • the AMSC nuclei predifferentiated inside the pores of the biomaterial are observed (the reconstruction of the pore in its entirety is carried out by mounting serial images). From these images it is observed how an increase of cells occurs in the surface of the biomaterial as well as the walls of the macropores as the growing time increases.
  • Figures 20 and 21 Zenith images of SEM at different magnifications of the AMSC cells predifferentiated in the biomaterial at different association times (1, 4, 7, 10 and 15 days on the surface of the biomaterial ( Figures 20 ae respectively) and on the inside the channels of the biomaterial macropores (figures 21 ae respectively).
  • Figure 22 and 23 Analysis of the expression of the genes involved in osteogenesis in AMSC such as osteonectin (OTN), osteocalcin (OCA), osteopontin (OPN), type 1 collagen (COL-1), TGF- ⁇ 1 and alkaline phosphatase ( FA), using RT-PCR in undifferentiated AMSC cells ( Figure 22) and predifferentiated ( Figure 23) alone and associated with the biomaterial for 4, 7, 10 and 15 days.
  • OTN osteonectin
  • OCA osteocalcin
  • OPN osteopontin
  • COL-1 type 1 collagen
  • FA alkaline phosphatase
  • Figure 24 Images of confocal microscopy of the unmarked.
  • Figure 24 indicates the observations that must be made in the reading of each of the following figures 25 to 31.
  • Figure 24 is divided into 4 quadrants: the upper left quadrant (i) refers To the staining of the nuclei of the cells, the upper right quadrant (H) refers to the marking of only the protein, the lower left quadrant (iii) refers to the double staining of cell nuclei + protein and the lower right quadrant (iv) refers to the triple staining in which the cell nuclei + protein + biomaterial are observed.
  • the figures a-f are also subdivided with the aforementioned quadrants, the indicated information must be interpreted in each of them.
  • Figures 25-26 Image of confocal microscopy of the imununmark of COL-1 of the AMSC predifferentiated on the surface (topview, figure 25) and inside the channels (sideview, figure 26) of the biomaterial at different times of cultivation.
  • Figure 27-28 Image of confocal microscopy of the osteocalcin imnunmark in the AMSC predifferentiated on the surface (topview, figure 27) and inside the channels (sideview, figure 28) of the biomaterial at different times of cultivation.
  • Figures 29-30 Image of confocal microscopy of the osteopontin mnunmark in the AMSC predifferentiated on the surface (topview, figure 29) and inside the channels (sideview, figure 30) of the biomaterial at different times of cultivation.
  • Figure 31 Image of confocal microscopy of the imununmark of type-1 collagen, osteocalcin and osteopontin in the pre-differentiated AMSCs, growing on the surface of the biomaterial (topview figure 31 ac) and inside the channels (sideview, figure 31 df) during 4 days. These results indicate that the predifferentiated MSCs found in the biomaterial are capable of synthesizing and secreting proteins related to bone synthesis.
  • Figure 32 and 33 Analysis of fundamental elements by SEM-EDX of the biomaterial and the AMSC associated with the Monetite of structured porosity of the invention for 4 and 7 days (figure 32) and 10 and 15 days (figure 33).
  • the images of the left column refer to the specific areas in the center of the channels from which the analyzes of the elements present in the cells (images of the right column) have been performed.
  • the graphs indicate a different distribution of elements than the one found in the biomaterial.
  • FIG 34 Image of SEM-EDX in which the distribution of the basic elements in an area in which only AMSC are found is shown. In the images of Calcium and Phosphorus, you can see the electrodense particles, formed by the two elements (they are in the same location of the area).
  • FIG. 35 Secretion of TGF- ⁇ 1 (pg / ml), obtained from different concentrations of predifferentiated cells growing without monetite for 7 days in culture. A gradual increase in the concentration of TGF- ⁇ 1 (pg / ml) is observed for lower cell concentrations and a slight decrease or destabilization for higher cell concentrations due to the negative feed-back mechanism of TGF- ⁇ 1.
  • FIG. 36 Secretion of TGF- ⁇ 1 (pg / ml) obtained from pre-differentiated cells over time in culture. 2x10 6 cells were seeded on a 6cm 2 surface, analyzed
  • the secretion at different times in culture observing a typical behavior of feedback mechanisms that consists of an increase in the synthesis and secretion of the mechanism followed by a decrease in secretion until a new increase in secretion begins.
  • FIG. 37 Secretion of TGF- ⁇ 1 (pg / ml), obtained from different concentrations of predifferentiated cells growing on the biomaterial for 7 days in culture. From this graph it can be seen how the presence of the factor in the medium correlates with the increase in the number of cells in the biomaterial.
  • FIG 38 Secretion of TGF- ⁇ 1 (pg / ml) obtained from predifferentiated cells growing on the biomaterial over time in culture. 2x10 6 cells were seeded on the biomaterials, the secretion is analyzed at different times in culture. The graph shows how there is an increase in secretion from day 1 to day 10 of cultivation, at which point it begins to stabilize and descend moderately.
  • Example 1 Method of synthesis of the matrices of the invention
  • the solid phase comprises but is not limited to an acidic calcium phosphate, a basic calcium phosphate, a porogen such as calcium carbonate and a setting retardant such as sodium pyrophosphate.
  • the solid phase of the calcium cement consists of a basic calcium phosphate and acidic calcium phosphate.
  • the basic calcium phosphate is tricalcium-beta phosphate ( ⁇ -TCP) and the acidic calcium phosphate is calcium monophosphate.
  • ⁇ -TCP tricalcium-beta phosphate
  • the two components are mixed in a molar ratio of 1,785 in mortar with hand for 10 minutes.
  • Calcium carbonate is added in concentrations between 1-20% (weight / weight) preferably between 3-10%.
  • Sodium pyrophosphate 0.54% (weight / weight) is used as a retarder of the setting reaction.
  • ⁇ -TCP tricalcium-beta phosphate
  • 34.42g of DCPD and 10.01 g CC in 2: 1 molar ratio
  • the mixture is heated in the oven (Veckstar) at 900 0 C for 14 hours.
  • the synthesis of ⁇ -TCP occurs according to the reaction: 2CaHPO4 -2H2O + CaCO3 ⁇ Ca3 (PO4) 2 + 5H2O + CO2
  • the powder is then screened and the powder having a particle size smaller than 322 ⁇ m is used.
  • the liquid phase consists of distilled or double distilled water.
  • the solid phase formed by 0.8 g of anhydrous calcium monophosphate, 1.4 g of beta tricalcium phosphate, 12 mg of sodium pyrophosphate and 110 mg of carbonate is weighed and 0.77 ml of the liquid phase is mixed in a ratio.
  • the cement is set for 30 minutes in a water bath at 37 0 C.
  • the bicarbonate reacts with the hydrogenations of the medium, decomposing into carbon dioxide, forming holes and thus generating a spongy brushite matrix.
  • the biomaterial is then washed several times in distilled water to remove acid residues in the medium until it reaches a pH close to 7, which is optimal for cell growth to be carried out in later stages.
  • sterilization is carried out.
  • the process used for said sterilization comprises autoclaving the set material in a temperature range 120-130 0 C for 24-25 minutes. During this process the brushite is transformed into monetite.
  • the resulting cement, brushite is arranged on a surface shaped of interest for setting and subsequent sterilization, thus obtaining a matrix amorphous, with little presence of macropores and irregular distribution thereof, as can be seen in figures 6 a and b,
  • Figure 3 shows an example of a structured porosity matrix of monetite produced by the process described in the invention.
  • the resulting material shows a spongy appearance with a given pore distribution.
  • Figure 5 shows the diffraction diagram of the samples before and after heat treatment in the autoclave. It can be seen in Figure 4 that the heat treatment in addition to sterilizing the material causes the crystalline transformation of the brushite to monetite structure.
  • Example 2 Concrete realization of concrete monetite tablets with structured porosity.
  • the powder component formed by 0.8 g of anhydrous calcium monophosphate, 1.4 g of beta tricalcium phosphate, 12 mg of sodium pyrophosphate and 110 mg of calcium carbonate was mixed for 30 seconds with 0.77 ml of water.
  • the molds described below were applied to the cement for 30 seconds.
  • silicone molds with the following dimensions and number of punches were used:
  • the punches are cylindrical, with a diameter between 500 ⁇ m ⁇ 60 ⁇ m, separated 500 ⁇ m ⁇ 60 ⁇ m from each other, and distributed respecting a perimeter of 0.5mm (taken from the edge into the mode) free of punches.
  • the structure of said punches is that of those represented in Figure 2.
  • the bicarbonate reacts with the hydrogenations of the medium decomposing into carbon dioxide forming holes and thus generating a spongy brushite matrix.
  • the biomaterial is then washed several times in distilled water to remove acid residues in the medium until it reaches a pH close to 7, which is the optimum for cell growth.
  • the resulting material consists of the specified spongy cylindrical pads, constituted by the structured porosity biomatrix of the invention, of the dimensions indicated in each case, with macroporos homogeneously distributed in said pads.
  • the indicated molds allowed to obtain the following matrices with homogeneously distributed cylindrical pores, with an average pore size of 500 ⁇ m ⁇ 60 ⁇ m, separated 0.5mm ⁇ 60 ⁇ m from each other, which allow to connect the micro and macropores generated by the porogen:
  • these monetite tablets of the invention obtained, have a perimeter of 0.5mm (taken from the edge of the tablet into the same) free of macropores, allowing them to maintain the conditions of mechanical stability and strength necessary to be used in its applications.
  • the silicone mold is used to obtain Monetite cylinders of adequate size (without intervening in this phase in the formation of mcaroporosity).
  • liquid siliciona was added on the glass plate with the metal parts, and it was expected to polymerize. Once polymerized, it was removed from the glass plate.
  • the silicone molds obtained have cylindrical holes of the size of the Monetite units to be manufactured ( Figure 1b). These silicone molds with the holes of the The size of the pieces to be manufactured do not have punches and, therefore, do not yet contemplate the formation of macropores.
  • metal molds were manufactured with the dimension of each piece of Monetite obtained with each of the indicated silicone molds.
  • Said metal molds consist of two parts, a first one that presents the punches that give rise to the reproducible macroporous component and a lid ( Figure 1c).
  • the dimensions of the metal molds manufactured were as follows:
  • the punches are cylindrical, with a diameter between 500 ⁇ m ⁇ 60 ⁇ m, separated 500 ⁇ m ⁇ 60 ⁇ m from each other, and distributed respecting a perimeter of 0.5mm (taken from the edge into the mold) free of punches.
  • the silicone molds were filled with the product immediately resulting from mixing the solid phase and the liquid phase.
  • the silicone mold pieces were removed. The process is simple since the mold is like a very flexible rubber. - Thirdly, the pieces were introduced into the metal mold with the punches, and covered. Said mold is introduced into a water bath at 37 0 C for 30 minutes until the setting ends.
  • the formed matrices are subjected to autoclaving between 120 and 13O 0 C for 24-25 minutes, producing their conversion to Monetita, completely sterilized and suitable for use.
  • the pieces obtained presented the same porosity and dimensions as the pieces obtained in example 1a (figure 4).
  • Example 3 Comparative studies between Monetita matrices of structured porosity and Amorphous Monetita
  • the biomaterial arranged in the form of an amorphous matrix obtains an uncontrolled porosity. That is, they show an irregular macropore distribution, produced during the process of obtaining cement, described in examples 1.1 to 1-6.
  • the macropores of the amorphous matrix are hollow in the biomaterial and do not connect the internal structure (Figure 7).
  • FIGS 6c and 8 show a monetite matrix with structured macropores.
  • the homogeneous distribution of the macropores can be seen.
  • the monetite matrix of structured porosity will favor a correct bone regeneration by providing adequate conditions for the correct colonization and cell proliferation.
  • the macropores (100 to 500 ⁇ M) allow an optimal means for the integral colonization of the cells provided in the matrix, as well as the neovascularization and migration of osteoblasts and oatebclasts of the implant area and the formation of new bone homogeneously throughout the structure provided.
  • the structured porosity biomaterial developed in the present invention has a characteristic macroporous structure, which will allow a complete and homogeneous distribution of the osteogenic cells provided in the matrix and also the entry of cells from the recipient tissue, which will colonize and integrate The new structure, to begin its resorption process as well as form a new bone matrix that will be deposited on the implant to give rise to new bone, with mechanical and physiological characteristics very similar to the original tissue.
  • sheep were used to which a critical defect was made in the tibia and a stabilization. by osteosynthesis techniques.
  • the unstructured Monetita biomaterial was applied in 3 of them and the structured one in 3 others, leaving the adjacent leg in all of them as a control (with formation of the critical defect and stabilization of the fracture but without biomaterial filling) .
  • Prior to the implantation of the biomaterials they were seeded with an equal number of mesenchymal stem cells from the adipose tissue obtained from the sheep.
  • the formation of new bone tissue is observed restricted to the peripheral area to the implant, leaving the rest of the matrix without cell colonization, nor by the previously seeded cells, or by those of the recipient tissue, and also the formation of a new vascularization is not induced.
  • the in vitro tests performed referred to cytotoxicity, genotoxicity (mutagenecity) and hemocompatibility, taking into account that the biomaterial of structured porosity monetite of the invention can be considered as an implantable product that will be in permanent contact with the bone, being The duration of the contact exceeding 30 days.
  • these assays determine cell lysis (cell death), cell growth inhibition and other effects on cells caused by medical devices, materials and / or their extracts.
  • the extraction conditions being the thickness of the materials> 0.5 mm, 3 cm2 of the material have been put in contact with 1 ml of the culture medium that acts as an extracting agent.
  • the cell line used, to test the cytotoxicity of the material was the fibroblastic line of mouse L929 grown in DMEM culture medium with 10% fetal bovine serum.
  • the cytotoxicity and proliferation of the monetite of structured porosity was determined by the MTT test.
  • This test is based on the metabolic reduction of MTT by the mitochondrial enzyme succinate dehydrogenase in a colored compound (formazan) and determines the mitochondrial functionality of the cells that have been in contact with the monetite of the invention, based on positive and negative controls established.
  • the amount of live cells in the culture is proportional to the amount of formazan produced and therefore to the amount of absorbance recorded by a spectrophotometer.
  • the in vivo mutagenic potential of the Monetite of structured porosity of the invention was determined by the test called "Mouse Lymphoma Assay". That essay is based on the quantification of thymidine kinase gene mutations in L5178TK +/- mouse lymphoma cells, induced or not after treatment of these cells with the Monetite biomaterial of structured porosity.
  • Cells deficient in the Thymidine Kinase (TK) gene due to the TK - / - mutation are resistant to the cytotoxic effects of trifluorothymidine (TFT).
  • TFT trifluorothymidine
  • the cells capable of producing TK are sensitive to TFT, which inhibits metabolism and stops cell division.
  • mutant cells are capable of proliferating in the presence of TFT, while normal cells containing at least one allele of the TK gene are not.
  • the test was carried out in 96-well plates and the final result was obtained after visually counting the positive wells (figures 10 a and b), where the growth of a cell colony is observed) and the negative ones (figures 10 c and d, where it is not observe any growth). Once the positive and negative wells of each 96 plate are counted, a series of formulas established for the test are applied and the results are expressed in terms of mutation frequencies.
  • the cells were exposed to the product to be tested in the presence and absence of an adequate metabolic activation system, since sometimes it may happen that a product to be tested is not mutagenic, but that the metabolites generated are in vivo from that product.
  • the system most commonly used to simulate in vitro liver metabolism is a postmitochondrial fraction called S9 to which cofactors are added and obtained from rat livers treated with enzyme inducers such as Arochlor 1254.
  • S9 postmitochondrial fraction
  • Arochlor 1254 enzyme inducers
  • MMS Methylmethanesulfonate
  • the hemolysis tests evaluate the effects produced on the blood or its components by medical devices or materials that come into contact with the blood, using an appropriate model or system.
  • the hemolysis tests determine the degree of lysis of the red blood cells and the release of hemoglobin caused by medical devices, materials and / or their in vivo extracts.
  • the hemocompatibility of the structured porosity monetite of the invention was determined by a colorimetric assay for the determination of hemoglobin in whole blood and of hemoglobin released to the plasma when the blood is exposed to the monetite. Since the biomaterial is in the solid phase, cell culture media (osteoblasts and AMSC) that were in contact for 24 hours with the monetite were tested. The results show that the coefficient of variation of the calibration lines, samples and quality controls (% CV) is ⁇ 20% in all cases (except in the case of calibrator 6) and 2/3 of the straight line values Quality control shows a percentage of difference from the theoretical (% PVDF) ⁇ 20%, so that the test results are within the established acceptance criteria.
  • the hemolysis percentages of the compounds used were the following, considering the hemoglobin concentration value of 10.19 mg / ml as 100% of hemolysis as presented by the blood used:
  • Example 5 Comparative study of bioactivity between the amorphous porous monetite matrix and the structured porosity monetite matrix
  • bioactivity of a material will depend on both its chemical-physical composition and its structure.
  • a study is carried out to determine the effect of the use of the amorphous matrix or of the structured porosity matrix indicated on the proliferation capacity of mesenchymal stem cells, one of the cell lines involved in the process of bone regeneration along with osteoblasts of the recipient tissue.
  • the porous biomatrix was obtained, as described above, it was washed with pH 7.4 culture medium for one or two hours to hydrate and neutralize the pH (changing the culture medium 2 or 3 times). Subsequently, adult mesenchymal stem cells of adipose tissue (ATMC) were seeded directly on the material, at a concentration of 0.5.10 6 -6.10 6 cells per cm 2 . After two hours of planting, culture medium was added to cover all the material, renewing it every two or three days.
  • ATMC adipose tissue
  • the cells were cultured in the biomaterial for 7 days, after which, the biomatrix on whose surface the cells had adhered by electron microscopy was analyzed. scanning (SEM), to observe the ability of adhesion and colonization of said cells on the biomaterial of porous monetite.
  • the images obtained by SEM show that mesenchymal stem cells are able to adhere perfectly to the biomaterial, adopting an adequate morphology and that they also establish intercellular contacts, as occurs in a physiological tissue (figure 13 c and d) .
  • the cells expand perfectly with the biomaterial, interacting maximally with it and emitting cytoplasmic extensions (filipodes), which increase the contact surface and increase the level of intercellular contact.
  • the biomaterial of structured porosity provides a greater surface in which cells can adhere, proliferate and begin to perform their functions in the process of bone regeneration. That is, they can initiate the creation of a new bone matrix that will replace the biomaterial and express signaling molecules that will enhance and direct bone remodeling and neovascularization.
  • the cells over time give proliferation values lower than the number of cells arranged in time 0 hours.
  • These cells have no place to distribute and are compacted in the macropores without continuity of the surface, inhibiting their proliferation and being located only on the surface of the material without the possibility of colonizing its interior, they could only be introduced into the few randomly arranged macropores.
  • These macropores are found by way of cavities that, in no case penetrate the entire structure, which would make it difficult to interact with the surrounding tissue in vivo and the arrival of nutrients and oxygen to all cells.
  • These cells can only be distributed on the surface of the biomaterial. These cells they are compacted due to lack of space, inhibiting their proliferation and locating most of them only on the surface of the material.
  • the cells arranged in the matrix of monetite with structured porosity are distributed throughout all the pores, inside these and by the surface of the material giving growth values greater than time 0 hours. These cells are not compacted by having a larger surface area of contact with the material and therefore do not inhibit their growth.
  • the implant For bone regeneration to succeed, the implant must be integrated into the bone structure of the organism.
  • the patient's cells endothelial, osteoblasts, osteoclasts, macrophages, etc.
  • the patient's cells endothelial, osteoblasts, osteoclasts, macrophages, etc.
  • a sufficient quantity of cells in the product is necessary so that a potent trophic effect is created, which activates the area and triggers the regenerative process.
  • the biomaterial must provide a high number of cells, but without said cells reaching the porous structure of the biomaterial.
  • the cellular contribution must be important since as the biomaterial is degraded, it has to be replaced by matrix synthesized by the cells themselves.
  • the ideal amount of cells is that which occupies practically the entire surface of the biomaterial but does not produce the clogging of the porous structure, for the following reasons:
  • the procedure used consisted in sowing 1 cm diameter, 0.5 cm high monetite discs, and 64 macropores with a diameter of 500 ⁇ m, with increasing cell concentrations ranging from half a million cells to 6 million per biomaterial (0, 5x10 6 -1x10 6 -2x10 6 -3x10 6 -4x10 6 -5x10 6 -6x10 6).
  • the cells are kept in contact with the biomaterial for 8 days, to allow their adaptation and settlement.
  • the results are analyzed by SEM.
  • Example 7 Analysis of the evolution of the cells in the matrix. Analysis of the cellular state in the matrix at different times. Once the appropriate cell dose range was selected for disposal in the biomaterial, the evolution of the cells in the biomaterial of structured porosity over time was studied. For this, an in vitro cell behavior analysis was carried out at different times. 7.1 Observation of predifferentiated cells in the structured porosity matrix over time:
  • SEM SEM and also a visualization of the cells with nuclear Hoechts staining by confocal microscopy.
  • the visualization by SEM provides data on the affinity and interaction capacity of the cells with the biomaterial, through the observation of the contact surface.
  • the processing of the samples for SEM eliminates cells from the biomaterial, which can be visualized by fluorescent techniques.
  • the SIDEVIEW image ( Figure 19b) is an assembly of several serial images to be able to observe the cells throughout the length of the macropore.
  • the cells colonize the inside of the channels from day 1 of association. As time goes by, a greater cellular upholstery and large aggregates are observed at 10 and 15 days of culture.
  • the images of the results of observation by SEM also show images of the surface of the biomaterial (TOPVIEW) and of the interior of the pore as a whole (SIDEVIEW).
  • the AMSC interacts adequately and homogeneously with the biomaterial of the structured porosity monetite of the invention, the majority of its surface is invaded, without the pore filling, which will allow the passage of nutrients and host cells that will go to the trophic call of the AMSC.
  • the Monetite biomaterial of structured porosity has a macroporous distribution that favors the homogeneous distribution of cells throughout the matrix.
  • this porous arrangement allows the arrival of nutrients, gases and signaling molecules produced by the same cells. All this determines that the cells are in better conditions and that they can intercommunicate more effectively to express their osteogenic phenotype.
  • the new biomaterial structure potentiates the osteoinductive effect of the nature of the matrix (derived from calcium phosphate, like bone), and induces the expression of genes related to osteogenic differentiation.
  • analyzes of the expression of genes related to bone differentiation are performed, by RT-PCR, comparing the structure of the amorphous Monetite matrix with respect to the structured porous.
  • RNA from the cells that are on the biomaterials and analysis of the expression of the following genes by RT-PCR: alkaline phosphatase, osteopontin, osteonectin and osteocalcin. These genes are directly related to the bone differentiation process and are activated as mesenchymal stem cells and osteoblasts carry out their bone differentiation process.
  • the results indicate an induction of the expression of osteoinductive genes in the cells that are in the Monetite biomaterial of structured porosity with respect to the amorphous.
  • osteoblasts With respect to osteoblasts, an induction of late differentiation gene expression such as alkaline phosphatase and osteoclacin is observed.
  • AMSC cells express all the genes studied, osteonectin, osteocalcin, osteopontin collagen type 1, TGF- ⁇ 1 and the enzyme alkaline phosphatase.
  • osteonectin, osteocalcin, collagen Type 1 and TGF- ⁇ 1 maintain their expression at 4, 7, 10 and 15 days of the culture on the biomaterial. Osteopontin expression appears decreased at 4 and 7 days, but is recovered and maintained at 10 and 15 days of culture in the biomaterial.
  • the expression of the alkaline phosphatase enzyme is very light in the AMSC, it is lost during cultivation in the biomaterial and begins its expression after 15 days of culture.
  • Type 1 collagen, osteopontin and osteonectin are expressed early in osteoprogenitor cells. Osteocalcin appears when mineralization begins.
  • the AMSC express both proteins involved in the beginning of osteoblast differentiation and in the final phase of said differentiation. In addition, they are capable of synthesizing collagen, which is part of the organic component of the bone matrix. These proteins once synthesized can be adsorbed and be trapped in the new matrix that is formed.
  • the alkaline phosphatase is an enzyme that releases inorganic phosphorus from phosphoric esters, necessary for mineralization, that is, it participates in the mineralization of bone and in the maturation of the osteoid matrix and therefore its expression is very late in the process Give cell differentiation.
  • TGF- ⁇ 1 is a potent stimulator of bone formation, potentiates osteoblast differentiation and bone matrix synthesis and inhibits the synthesis of proteases that degrade the matrix. In fact, it is being used as a prognostic serological marker of the consolidation capacity in the process of evolution of pseudoarthrosis.
  • the predifferentiated cells still show the same pattern of expression of the genes related to bone regeneration as the AMSC without differentiating.
  • the pre-differentiated AMSCs are arranged in the biomaterial, the expression of these genes is maintained, showing no signs of interaction that decrease the expression of genes involved in bone regeneration ( Figure 23).
  • the low expression of the alkaline phosphatase enzyme may be due to the fact that in the initial stages of the formation of the osteoid matrix this enzyme does not intervene preferentially. In the beginning of the formation of the bone in the first place there is the synthesis and excretion of proteins to the matrix, these form an ordered structure in which calcium salts will be deposited. The alkaline phosphatase intervenes at the end of the process when the mineralization occurs. This enzyme generates phosphate ions (which in this case are already provided by the biomaterial) and the increase in the concentration of these ions in the matrix creates nucleation centers for the deposition of mineral salts.
  • the structured Monetite biomaterial of the invention unlike that of amorphous Monetite, allows a complete colonization of both its external and internal structure by the cells, the arrival of nutrients and gases throughout its structure to maintain high viability profiles and an induction of proliferation, as well as a better expression of genes related to osteosynthesis and generation of new bone matrix.
  • Example 8 Analysis of the secretion of extracellular matrix in the biomaterial of structured porosity by the cells over time. POWER.
  • Bone is a highly vascularized mineralized connective tissue that contains specialized cells, organic matrix formed by proteins and mineral phase composed of calcium salts.
  • the protein matrix Ie allows to be flexible and tolerate tension, while calcium salts Ie give firmness and resistance to pressure.
  • the components of the protein matrix are first synthesized, forming an ordered structure in which the calcium salts will subsequently be deposited.
  • the protein matrix represents one third of the bone weight. It is formed by proteins such as type-1 collagen (> 95%) and others that are involved in calcium fixation, such as osteocalcin.
  • Collagen-1 and OPN are expressed early in osteoprogenitor cells.
  • the OCA appears when the mineralization begins and is a useful marker for the final stages of osteoblastic differentiation.
  • the predifferentiated cells synthesize in their cytoplasm type 1 collagen, osteopontin and osteocalcin as it happens in bone cells. It has also been shown that predifferentiated cells express the genes of OPN, OCA and type 1 collagen when they are arranged on the monetite matrices of structured porosity of the invention.
  • TOPVIEW images (figures 25, 27, 29 and 31a) of the biomaterial surface are presented, and SIDEVIEW images (figures 26, 28, 30 and 31b), corresponding to reconstructions of longitudinal cuts inside the pore.
  • the AMSC are capable of synthesizing calcium deposits to form the mineral phase of the bone.
  • the osteoblasts participate in the mineralization of the organic matrix, producing 100 nm matrix vesicles surrounded by membrane, in which Ca 2+ and PO4 2 accumulate, rich in alkaline phosphatase and pyrophosphatase, enzymes capable of generating PO4 ions 2-.
  • the increase in these ions causes nucleation centers to form, necessary for mineral salts to deposit.
  • osteocalcin which according to the results obtained, is part of the organic matrix that synthesizes the predifferentiated cells on the biomaterial.
  • the high expression of this protein suggests that cells can secrete calcium deposits to form the mineral of the new bone. Therefore, it is interesting to study whether these cells can release calcium deposits to the extracellular environment.
  • This calcium could be part of the new matrix, either forming hydroxyapatite crystals or binding to proteins and being absorbed in the matrix as in the body. The procedure carried out was as follows:
  • the images of the results obtained show specific areas in which the distribution of elementary chemical elements has been analyzed by means of SEM-EDX (figures 32 and 33). This technique allows to determine which elements and their proportion in a sample using a high definition. In this case, it is possible to determine if the cells are producing elements related to the mineralization of the bone matrix.
  • the graphs of figures 32 and 33 indicate a different distribution of elements from that found in the biomaterial. A completely different distribution of elements appears, among which Silicon is a novelty, a distinctive element from cells, which does not appear in any sample taken in the biomaterial and a very significant increase in Carbon. That is to say in cells we can distinguish:
  • electrodense particles appear increasingly whose main chemical composition is phosphorus and calcium ( Figure 34).
  • Electronse particles of Calcium and Phosphorus are synthesized and excreted by the cells, since they appear associated with silicon (exclusive of the cells) and the points of Measurements have been taken in an area without biomaterial.
  • These particles can be matrix vesicles that are found in the organism, in which Ca 2+ and PO 4 2 " accumulate. These elements are what initiate the formation of the new mineralized bone matrix.
  • Silicon formed by the cells is very relevant as an indicator of new matrix formation and bone regeneration capacity. In the body, silicon is concentrated in osteoblasts and is involved in the production of the matrix and in the deposit of mineral salts.
  • Silicon acts as an element that allows longitudinal links between proteins and polysaccharides or between polysaccharides. It is involved in the formation of the protein structure ordered in the matrix, so that the correct bone mineralization is carried out.
  • Example 9 Analysis of the ability of autocrine secretion of growth factors related to bone regeneration by cells when they are arranged in the biomaterial of monetite with structured porosity. POWER.
  • TGF- ⁇ 1 is an important factor in bone remodeling since it is synthesized by osteoblasts, enhancing their differentiation and favoring the synthesis of osteoid matrix (Riancho et Ia 2003). TGF- ⁇ 1 has chemotactic effects on osteoblast precursors, stimulating its proliferation and collagen synthesis (Fernandez-Tresguerres et al 2006).
  • Figure 36 shows the secretion of the growth factor by the predifferentiated cells over time in culture. A peak is observed in the synthesis and secretion to the medium at 4 days after cultivation, then a decrease until day 10, after which a new increase in secretion begins.
  • - 1 o synthesis and secretion are given to the medium.
  • - 2nd it joins its specific receptor on the surface of the recipient cell to exercise its function, at which time a decrease in its presence in the culture medium can be observed.
  • the presence of the factor in the medium correlates with the increase in the number of cells in the biomaterial, until a stabilization of the secretion occurs again, which may be due to the fact that it is not necessary to increase the levels for its performance.
  • This increase may also not be related to an increase in the number of cells, but due to an induction to enhance the synthesis of extracellular matrix. As of day 10 of association, its synthesis decreases or the factor is mostly linked to receptors exerting their function, not being observed freely in the culture medium.
  • the feed-back mechanism of the factor is regulated somewhat differently than that observed when the cells do not grow on the Monetite matrix of structured porosity of the invention, so that the increase in secretion is maintained until day 10, descending from this day.
  • predifferentiated cells growing on the monetite biomaterial of structured porosity are capable of synthesizing and secreting the TGF- ⁇ 1 factor to the outside environment.
  • the expression of the factor remains constant throughout the time in culture except for day 7 in which a slight lower expression
  • the expression in predifferentiated cells growing with and without biomaterial it is similar. Therefore, it is assumed that the different quantification of the factor in both cases is due to a difference in the speed of binding to the receiver and transmission of the signal inside.
  • the cells that grow on the biomaterial may also have more receptors and the factor is mostly linked to them, which would be an enhancement of the bone regeneration process, so the detection of the soluble factor in these cases is lower.
  • the predifferentiated cells growing on the monetite biomaterial of structured porosity of the invention synthesize and secrete the TGF- ⁇ 1 culture medium. This factor may favor the synthesis of osteoid matrix.
  • Example 10 In vivo comparison of the monetite matrices of structured porosity of the invention against structured porosity matrices of Brushita.
  • the structured Monetite biomaterial of the present invention has advantages over Brushita, since it is more stable and has a more adequate resorption rate and adapted to bone remodeling.
  • exposure to the rabbit skull was carried out by means of a sagittal incision of the scalp.
  • the periosteum was carefully dissected, bicortical defects of 1 cm in diameter were prepared.
  • the results showed that the implantation zone showed no signs of inflammation with any of the biomaterials used.
  • the histological study evidenced the formation of new bone since week 4, as well as the first signs of resorption (perforations in the biomaterials, areas of osteoclast clustering).
  • Monetite material can still be observed, which provides more stability to the bone regeneration process and more coupling with the bone remodeling phase.
  • the increase in the resorption time of the Monetite biomaterial of the invention will lead to the formation of greater bone mass, since the osteoblasts will have more time for the formation and deposition of a new mineralized bone matrix.
  • the resorption rate of the Monetite is more adjusted to bone remodeling, maintaining for longer the adequate scaffolding for the colonization of the osteoblasts and for the synthesis of new bone matrix, without risk of formation of Hydroxyapatite, due to a too high resorption rate, as can happen in the case of Brushita.
  • Example 11 Comparison of a particular embodiment of the structured porosity monetite matrix of the invention against a monetite matrix with different porosity structure.
  • the biomaterial developed in the present invention has characteristics that are of special relevance to achieve an effective bone regeneration, among which are a homogeneously distributed microporosity and macroporosity, and its application as a set of pieces, which will allow a better adaptation to the bone defect, a homogeneous entry of nutrients, gases and cells throughout the area to be repaired, so that they do not give rise to necrotic areas.
  • the regenerative capacity of the tablets of the invention of 5 mm in diameter, 3 mm high and 12 macropores of 0.5 mm in diameter separated by 0.5 mm were compared between if with respect to a Monetita biomaterial that presents the porosity structure of example 1 of the patent application US6605516.
  • Said matrix corresponds to a cylinder 10mm in diameter by 10mm high, which has a central channel 2mm in diameter and a hexagonal net of 0.5mm diameter cylindrical pores, parallel to the central 2mm macropore, and separated by a distance of 1mm from each other.
  • said matrix does not have a homogeneous pore diameter control, and must be applied in a single piece, so that the full size conforms to the bone defect.
  • the histomorphometric analysis confirmed 3 months after implantation a colonization of the osteblasts and osteoclasts of the bone throughout the biomaterial structure of the structured porosity monetite of the invention, and the formation of new bone in a homogeneous way, with a total integration the same at 6 months with an incipient vascular network that will allow the survival of the new tissue formed without the formation of necrotic areas.
  • practically all of the new tissue formed is restricted to the peripheral area to the implant, leaving its inner area with a significantly lower colonization of adjacent tissue cells and with no signs of formation of new blood vessels .
  • bone defects in patients do not form perfect forms, as occurs when these defects are induced in sheep, as part of an experimental study. Bone defects are very different and the edges of the fracture are often very irregular. In some cases the space that constitutes the bone defect is very limited, as occurs for example in hypertrophic pseudoarthrosis, so introducing a single preformed block that fits in the area is very complicated and is not able to conform to a deformed area .
  • the use of the design of the invention a set of Monetita biomaterial pieces, of small size, with a homogeneous macroporic structure, allows its adaptation to complicated bone defects and of different shapes and dimensions, so that the affected area is completely exposed to the biomaterial and the cells provided to activate the healing process.

Abstract

La presente invención se enmarca dentro de la ingeniería tisular y, en concreto dentro de la regeneración ósea. La invención se refiere a una matriz tridimensional porosa de monetita biocompatible, de porosidad estructurada, predefinida y reabsorbible, así como al método de síntesis capaz de producir dicho material y sus aplicaciones. Estas matrices constituyen una base perfecta para la colonización y proliferación celular permitiendo su aplicación ingeniería tisular y regeneración ósea gracias a sus ventajosas propiedades de biocompatibilidad, reabsorción, osteoinducción, revascularización etc.

Description

Matrices tridimensionales de monetita porosa estructurada para ingeniería tisular y regeneración ósea, y método de preparación de las mismas.
CAMPO DE LA INVENCIÓN
La presente invención se enmarca dentro de Ia ingeniería tisular y, en concreto dentro de Ia regeneración ósea. La invención se refiere a una matriz tridimensional porosa de monetita biocompatible, de porosidad estructurada, predefinida y reabsorbible, así como al método de síntesis capaz de producir dicho material y a sus aplicaciones. Estas matrices constituyen una base perfecta para Ia colonización y proliferación celular permitiendo su aplicación en ingeniería tisular y regeneración ósea gracias a sus ventajosas propiedades de biocompatibilidad, reabsorción, osteoinducción, revascularización, etc.
ANTECEDENTES DE LA INVENCIÓN
La pérdida de masa y calidad ósea es un grave problema de salud que resulta aún más frecuente en pacientes de edad avanzada.
El éxito en Ia regeneración de un defecto óseo utilizando materiales tridimensionales, que iniciaimente son colonizados por células progenitoras in vito, depende en gran medida de las características y estructura del material.
Desde hace casi un siglo se utilizan biomateriales para reparar o reemplazar segmentos óseos del sistema musculoesquelético.
EI uso de injertos de hueso autógeno, es decir del propio individuo, es un método muy utilizado para rellenar cavidades óseas y para reconstrucciones quirúrgicas. Sin embargo, existe un suministro limitado de hueso y además se somete al paciente a un trauma adicional para obtener el injerto. Otra opción Ia constituyen los aloinjertos de donantes que también presentan inconvenientes como una velocidad de neoformación ósea más lenta, inferior capacidad osteogénica, velocidad de reabsorción, menor revascularización así como un mayor riesgo de respuesta inmunogénica y transmisión de agentes patógenos.
Lo ideal es obtener un material similar al hueso, que sea biocompatible, no presente reacciones biológicas adversas, sea reabsorbible y se degrade de forma paulatina a medida que se forma el nuevo tejido, transfiriendo así las cargas de forma progresiva al nuevo hueso, evitando una segunda intervención quirúrgica para Ia extracción del implante. Un material cuyos productos de degradación sean de fácil eliminación y no tóxicos, que sea osteoinductivo e induzca Ia formación de tejido óseo.
En el organismo, Ia degradación y reabsorción del hueso Ia llevan a cabo los osteoclastos. Éstas son unas células derivadas de los monocitos, las cuales se fijan a Ia superficie del hueso. Una vez fijadas, empiezan a liberar protones al exterior, con el fin de descender el pH del medio externo. Con este ambiente ácido se consiguen solubilizar los cristales de hidroxiapatita que forman parte del componente mineral del hueso. La hidroxiapatita del hueso se solubiliza en partículas de fosfato de calcio amorfos, que son eliminados por los macrófagos, o en iones de Ca 2+ y PO4 3" que se acumulan en el líquido extracelular. Estos iones difunden hacia los capilares sanguineos entrando en Ia circulación sistémica para ser eliminados por Ia orina a través del riñon. Estos iones liberados también pueden ser reutilizados por los osteoblastos para formar hueso nuevo. Los osteoclastos son los encargados también de Ia degradación de Ia fase orgánica del hueso mediante procesos enzimáticos.
La investigación en nuevos biomateriales para reparación ósea trata de reducir al máximo Ia necesidad del injerto óseo, buscando un sustituto artificial que con el tiempo se reabsorba y/o integre con el hueso adyacente y además sirva de fijación en fracturas osteoporóticas. Las propiedades mecánicas del sustituto óseo deben ser Io mas parecidas posibles a las del hueso esponjoso. El material debe además ayudar a Ia estabilidad de Ia fractura y ser suficientemente resistente para disminuir el tiempo necesario de inmovilización o soporte externo. Dicho material debe ser reabsorbible, biocompatible y osteoinductivo, es decir debe atraer células mesenquinales y otros tipos celulares situados cerca del implante y favorecer su diferenciación en osteoblastos, y también osteoconductor, es decir debe actuar como molde para Ia formación de nuevo hueso.
Buscando una similitud con Io que sucede en el organismo, se están sustituyendo los materiales no reabsorbibles utilizados hasta ahora en los implantes óseos por los reabsorbibles. Estos biomateriales no interfieren en el desarrollo y crecimiento del hueso nuevo formado, ya que son reemplazados de forma gradual por tejido del huésped. Además, presentan una mayor biocompatibilidad, participan de una manera natural en Ia reconstrucción ósea y no se necesita eliminarlos, mediante cirugía, tras Ia regeneración del hueso. Estos materiales tienen que mantenerse el tiempo suficiente para que se de Ia correcta regeneración del hueso y desintegrarse gradualmente sin producir daños al paciente y sin intervenir en el correcto desarrollo y crecimiento del hueso. Los biomateriales que fraguan formando un fosfato calcico mineral tienen especial interés en regeneración ósea ya que se asemejan a Ia fase mineral del hueso natural y son susceptibles de remodelado óseo y de reabsorción debido a su estructura cristalina metaestable.
Entre los materiales reabsorbibles que se están empleando como sustitutos óseos destacan los fosfatos de calcio; hidroxiapatita (HAP), fosfato tricalcico (B-TCP) y el fosfato dicálcico dihidratado (DCPD) (Stubbs et al, 2004; Schnettler et al 2004). Estos materiales poseen una excelente biocompatibilidad por su parecido químico y cristalino al componente mineral del hueso, pero presentan diferencias en cuanto a Ia solubilidad y capacidad de reabsorción in vivo.
La hidroxiapatita (HAP) ha sido uno de los que más interés ha generado. Este material, es per se Ia fase inorgánica de Ia que están formados los huesos y es por ello por Io que ha sido ampliamente utilizado en regeneración ósea. Ejemplo de ello son algunos productos comerciales como Interpore 200® Interpore 500®, Cerasorb® y Collagraft®. Sin embargo, y debido a que presenta una de las estructuras cristalinas más estables, el material adolece de una lenta reabsorción.
La HAP es el material que presenta mayor biocompatibilidad, por ser el más parecido a los cristales formados por el hueso, pero no es reabsorbible in vivo. La degradación de este material se produce por contacto con soluciones con un pH bajo y por fagocitosis. Mediante Ia disolución se liberan partículas de fosfato calcico amorfo que pueden ser eliminados por los macrófagos por fagocitosis o quedar embebidos en el nuevo hueso formado. Los macrófagos pueden disolver estas partículas y restaurar el Ca y P al pool del organismo (Frayssinet et al 1999; Benahmed et al 1996). Sin embargo, no se ha observado que estas partículas den lugar a activación osteoclástica (Frayssinet et al 1999).
Todos los estudios realizados corroboran Ia resistencia de este material a Ia degradación una vez está implantado en el organismo, debido a su escasa solubilidad a pH fisiológicos. Implantes de este tipo en animales, se reabsorben un 5,4% en 6 meses frente a diferencia de los basados en B-TCP, que Io hacen en un 85%. (Eggli et al 1988).
En el hombre, los implantes realizados con Bio-Oss (HAP) se consideran como no reabsorbibles, ya que los estudios llevados a cabo demuestran que se necesita entre 3-6 años para que se reabsorban debido a Ia actividad osteoclástica (Taylor et al 2002). La presencia de este material en el organismo durante tanto tiempo puede interferir en el proceso de remodelado óseo, así como en Ia capacidad de osteointegración (Affe et al
2005; De Boever 2005).
A causa de esto, este material ha sido tradicionalmente empleado en mezclas con material orgánico como polímeros para aumentar su reabsorción. Ejemplos de estas aplicaciones están descritos en US5866155 dónde se describe Ia incorporación de hidroxiapatita en matrices de poliláctico ó en US-A5741329 que es una variación de US5866155 donde se pretende corregir algunos defectos derivados de Ia acidificación local del medio tras Ia incorporación de los cementos en el organismo.
Por ello, con el fin de mejorar Ia capacidad de reabsorción de los fosfatos calcicos e incrementar su capacidad osteconductora, en los últimos años se han utilizado fases cristalinas de fosfato calcico menos estables que Ia hidroxiapatita 6. como el B-TCP y DCPD (Brushita) que presentan mejor solubilidad y reabsorción in vivo.
El B-TCP presenta más osteoconductividad y una mejor reabsorción que Ia HAP (Franco et al 2006). Se considera como un material moderadamente reabsorbible, en estudios in vivo se ha observado que se necesita al menos un año para su reabsorción en animales y de 6 a 8 meses en humanos (Wiltfang et al 2003; Suba et al 2004). Su degradación aumenta los depósitos de calcio y esto está asociado a una mayor actividad fosfatasa alcalina, enzima que interviene en Ia formación de hueso (Trisi et al 2003; Sugawara et al 2004).
El DCPD es también biocompatible, osteoconductivo y el más reabsorbible por ser el más soluble a pH fisiológicos. Esto permite que se forme hueso nuevo de forma más rápida. Se biodegrada en ambientes fisiológicos y es reabsorbido por las células adyacentes (Tris et al 2003). Esta comprobado que se reabsorbe in vivo, hasta tres veces más rápido que Ia HAP y el B-TCP (Herrón et al 2003; Chow et al 2003; Tas & Bhaduri 2004; Tamini et al 2006;).
Estudios sugieren que parte del material DPDC puede convertirse en HAP después de su implante, esto puede retrasar varias semanas Ia eliminación del implante por parte de los osteoclastos (Constanz et al 1998). Esta conversión puede hacer que las células acidifiquen el medio y disminuya Ia biocompatibilidad del material junto con una reducción en su reabsorción. La adición de sales de Mg y de Ca (carbonato calcico) o su combinación con B- TCP pueden evitar esta conversión.
Usando este material se observa que se da de manera equilibrada, generación de hueso y eliminación del material a partir de Ia 4a semana (Fallet et al 2006) y Ia 8a semana postintervención (Constanz et al 1998). Esto es importante ya que si Ia degradación fuera mayor que Ia síntesis se crearía inestabilidad y reacciones inflamatorias. Así, entre estos fosfatos calcicos, Ia brushita (DPCD) es uno de los materiales de mayor interés en Ia regeneración ósea. Debido a sus interesantes propiedades existen en al actualidad cementos de brushita diseñados para el fraguado in situ. Así por ejemplo en las patentes US6733582 y US2006213398 son reivindicados cementos de brushita de fraguado in situ siendo Chronoss Inject® un producto de este tipo ya comercializado. Sin embargo este material tiene un gran problema a Ia hora de ser esterilizado ya que se descompone cuando se calienta Io que dificulta su apropiada esterilización.
El estado de Ia técnica contempla diferentes publicaciones relativas a Ia esterilización de cementos que pueden ser empleados como sucedáneos de material óseo, así como sobre los métodos empleados para realizar dichas matrices y su esterilización. Sin embargo, tal y como refleja la solicitud de patente JP2004018459, cuando dichos cementos son esterilizados por autoclave, las características de dichos cementos se ven alteradas traduciéndose en Ia obtención de sucedáneos de mineral óseo que no reúnen las características necesarias para su empleo en regeneración ósea en cuanto a reabsorción, estabilidad y colonización y demás propiedades esenciales.
Como sucede con el DPCD, Ia Monetita se reabsorbe in vivo en tiempo y modo similar. Se disuelve a pH fisiológicos, de manera gradual en los tejidos extracelulares que envuelven el implante y las propias células que Io colonizan, (células endoteliales, osteoclastos, osteoblastos, macrófagos...) serían los responsables de su eliminación o reutilización como sucede en el hueso.
Documentos como US20060263443 presentan Monetita, fosfato dicálcico anhidro (DCPA), obtenido por deshidratación de Brushita, en combinación con otros biomateriales de fosfato calcico. Debido a Ia combinación, los resultados de esterilización no han sido aceptables para Ia utilización de estos materiales en implantes y regeneración ósea. Adicionalmente, estos materiales constituyen intermediarios de reacción y no estructuras con capacidad propia para ser empleadas en el campo técnico de Ia regeneración ósea.
Adicionalmente, para una correcta regeneración ósea, es necesario que el biomaterial presente una porosidad adecuada que permita Ia colonización y proliferación celular, vascularización, aumento de Ia superficie de contacto y por tanto aumento de Ia superficie de interacción con el tejido huésped que permita Ia aceleración de Ia regeneración ósea. Estas características deben ir acompañadas de una correcta tasa de reabsorción que proporcione a las células el tiempo necesario para Ia regeneración. Así, Gbureck, Uwe et al 2007, se refieren a implantes de Brusita y Monetiía preparados mediante Ia técnica de impresión tridimensional. Para conseguir dichos implantes, en primer lugar se obtienen matrices de Brusita que son deshidratadas hidrotérmicamente tansformándose en Monetita. Sin embargo, en Ia tabla 2 de dicho artículo se muestra que el material de fosfato de calcio definido como Monetita en dicho artículo, únicamente presenta un contenido del 63% en Monetita, no especificando ni el tamaño ni Ia distribución de su porosidad, presentado una porosidad desestructurada. Así, dichas estructuras no son válidas a los efectos de Ia presente invención.
US6605516 presenta sustitutos de hueso con forma anatómica controlada que se ajustan de forma exacta a Ia morfología de Ia lesión. Dichos sustitutos están compuestos por materiales de cementos de fosfato calcico químicamente consolidados. La invención también se refiere a moldes y fases porogénicas que permitan obtener fosfatos calcicos con geometrías externas y arquitecturas macroporosas mediante el uso de dichos moldes. Sin embargo, en sus realizaciones particulares, Ia invención presenta materiales de Brusita, no presentando materiales de Monetita y no siendo tampoco las estructuras macroporosas en él presentadas válidas al objeto de Ia presente invención.Así, Ia presente invención proporciona matrices de monetita (fase metaestable de fosfato calcico de monetita), con una elevada estabilidad térmica que permite Ia esterilización del material mediante autoclavado, simplificando así los procesos de esterilización y que además, por su disposición específica estructural de poros, disposición que se obtienen gracias a un diseño específico del material, supone una mejora de Ia capacidad osteoinductiva de materiales propuestos por el estado de Ia técnica ya que es sintetizada en forma de bloque poroso con unas características de macroporosidad estructurada definidas incrementando Ia superficie específica, así como Ia zona de contacto con los osteoblastos y facilitando los procesos de transporte de nutrientes para las células, factor crucial para Ia osteogeneración. Todo ello junto con su elevada capacidad de reabsorción en el periodo de tiempo adecuado para que las células adyacentes colonicen el material y puedan reemplazar el material reabsorbido por matriz ósea fisiológica.
La degradación in vitro de las matrices de Ia invención no afecta a Ia proliferación celular y además son bioactivas, no citotóxicas, no mutagénicas y hemocompatibles. DESCRIPCIÓN DE LA INVENCIÓN.
Para que un biomaterial pueda dar lugar a una regeneración ósea estable, las células de Ia zona del implante, osteoblastos del hueso adyacente, células madre mesenquimales de Ia médula ósea y células endoteliales de Ia circulación sistémica, deben ser capaces de colonizar de forma simultánea y homogénea el biomaterial. Esto permitirá Ia formación de una nueva matriz ósea fisiológica a medida que se va resorbiendo el biomaterial y el desarrollo de un nuevo sistema vascular, que será el que suministre el aporte sanguíneo necesario para Ia supervivencia del nuevo tejido.
Una propiedad importante a tener en cuenta en relación a este aspecto es Ia estructura porosa, porque influye tanto en Ia biodegradabilidad, a mayor grado de porosidad mejor es Ia reabsorción, como en Ia colonización celular. Los materiales deben poseer tamaños de poros e interconexiones que permitan Ia colonización tanto de células endoteliales (para Ia formación de nuevos vasos sanguíneos) como de las células óseas. Además, el carácter microporoso e interconectado, que permite Ia difusión de nutrientes y gases y también de los metabolitos propios de Ia actividad celular. El hueso no es un material compacto sino que posee porosidades diferentes que se intercomunican. Sistemas de poros interconectados comunican el hueso macizo (cortical) con el esponjoso (trabecular) (Figura 16). Estas porosidades van desde los 100-150 μm en el cortical a 500-600 μm en el esponjoso.
La presente invención presenta un nuevo sistema de ingeniería tisular, destinado a regenerar Ia estructura ósea abordando una estrategia curativa en vez de meramente reparadora. Dicha regeneración tiene aplicación frente a Ia osteoporosis.
La ingeniería tisular se plantea como una disciplina que mejora, mantiene y repara patologías en órganos y en tejidos. La creación de un sistema basado en Ia ingeniería tisular implica Ia integración de células viables, un material biocompatible diseñado especialmente para una aplicación biomédica y moléculas de señalización que regulan las actividades celulares que se requieren en cada momento del tratamiento.
Así, Ia presente invención proporciona matrices con geometría de porosidad no aleatoria, es decir, ordenada o predefinida, compuestas de de monetita, en cuyo diseño se han tenido en cuenta las porosidades del hueso, para que se de Ia neovascularización y Ia colonización celular. Dicho material se presenta esterilizado, listo para su uso y gracias a su diseño específico, consigue una disposición específica estructural de poros, es decir, una distribución espacial y configuración espacial de porosidad ordenada inducida y previamente establecida, que supone una mejora de Ia capacidad osteoinductiva frente a otros fosfatos de calcio, incluidos otras combinaciones de fosfato de calcio que incluyan monetita.
Dichas matrices son obtenidas en forma de bloque poroso con unas características de macro, meso y microporosidad definidas que incrementan Ia superficie específica, así como Ia zona de contacto con los osteoblastos, facilitando los procesos de transporte de nutrientes para las células, factor crucial para Ia osteogeneración.
El diseño de estas matrices de monetita de Ia invención ha tenido en cuenta las porosidades características del hueso natural, porosidades que permiten Ia neovascularización y Ia colonización celular.
Las nuevas matrices de Ia invención están compuestas por el biomaterial Monetita, un DPCD deshidratado (DPC), ideal para Ia regeneración ósea. Dichas matrices están constituidas al menos por un 95% ± 5% de monetita, preferiblemente por un 95% de monetita y más preferiblemente por un 100% de monetita. Las trazas de material corresponden a fosfato tetracálcico beta. La degradación in vitro de este material no afecta a Ia proliferación celular y además es bioactivo, no citotóxico, no mutagénico y hemocompatible como se demuetra en el ejemplo 4.
Gracias a su diseño y composición, las matrices de Ia invención se reabsorben en el periodo de tiempo adecuado para que las células adyacentes colonicen el material y puedan reemplazar el material reabsorbido por matriz ósea fisiológica.
Matriz se refiere a cualquier estructura tridimensional de utilidad en regeneración ósea que permita el crecimiento y proliferación celular de las células que Ia invadan.
Como células se entiende:
células madre mesequimales adultas obtenidas preferentemente del tejido adiposo, pero también pueden ser de médula ósea o cualquier otra localización que se haya demostrado que puede ser fuente de estas células.
Estas células pueden utilizarse diferenciadas hacia Ia estirpe osteoblástica o endotelial.
- Osteoblastos obtenidos de fragmentos de hueso.
- Células endoteliales. - Combinaciones de células madre mesenquimales adultas no diferenciadas o diferenciadas hacia Ia estirpe osteoblástica o endotelial, osteoblastos, osteoclastos, osteocitos de hueso y células endoteliales.
Macroporos: cuando los poros presentan diámetros mayores o iguales a 100 mieras.
Wlesoporos: cuando los poros presentan diámetros menores de 100 mieras pero mayores o iguales a 10 mieras.
Microporos: Cuando los poros presentan un diámetro menor de 10 mieras.
Matriz amorfa: Aquella que, presenta una geometría de porosidad aleatoria, no ordenada ni predefinida, que no sigue una distribución espacial y configuración espacial de porosidad ordenada y previamente establecida, independientemente de que dicha porosidad sea natural (intrínseca al material) o inducida.
Matriz Estructurada o de porosidad estructurada: Aquella que presenta una geometría de porosidad no aleatoria, ordenada o predefinida, presentando una distribución espacial y configuración espacial de porosidad ordenada inducida y previamente establecida.!. Las matrices de Ia presente invención son matrices de porosidad estructurada con una porosidad predefinida que les confiere una serie de propiedades ideales para su uso en regeneración ósea.
Osteoinducción: neoformación ósea por aposición hasta el material, formando un armazón para Ia proliferación celular con actividad osteoblástica, formando hueso nuevo. Es el acto o proceso de estimular Ia osteogénesis.
Osteogénesis: generación o desarrollo de tejido óseo, a través de Ia diferenciación de las células mesenquimáticas hacia osteoblastos.
Regeneración ósea: formación de hueso nuevo que, tras un proceso de remodelado, sea idéntico al preexistente. En Ia regeneración ósea origina una respuesta en Ia que están involucrados los vasos sanguíneos, las células y Ia matriz extracelular. El biomaterial de Ia invención encuentra aplicación en Ia ingeniería tisular y regeneración ósea y, por tanto, puede emplearse en el tratamiento de las siguientes patologías óseas:
• Pseudoartrosis hipertrófica y no hipertrófica
• Osteonecrosis • Osteoporosis
• Defectos óseos producidos tras la retirada de una prótesis, extirpación de un tumor, por desórdenes bioquímicos y metabólicos o enfermedades congénitas.
• Tratamiento de lesiones y traumatismos
• Tratamiento de fracturas óseas
• Cualquier patología en Ia que sea necesaria Ia reparación del tejido óseo.
• Tratamiento de defectos óseos maxilofaciales.
• Aumento óseo previa a Ia aplicación de implantes dentales
Colonización celular: capacidad de expansión de las células sobre el biomaterial, siendo capaces de proliferar y aumentar Ia población celular hasta invadir toda Ia matriz. Una medida de Ia capacidad de colonización de una matriz es el análisis del número de células sobre el biomaterial a Io largo del tiempo (datos de Ia gráfica de proliferación).
Adhesión celular: capacidad que presentan las células de unirse a otras células o a una matriz. La adhesión se puede producir por interacciones específicas como las fuerzas eletrostáticas y está regulada por proteínas específicas denominadas moléculas de adhesión. La capacidad de adhesión a un biomaterial puede analizarse mediante Ia visualización al microscopio de las células dispuesta sobre el biomaterial. La superficie de contacto entre las células y biomaterial, será una medida representativa de Ia afinidad que presenten las células por ese biomaterial.
En un primer aspecto Ia presente invención hace referencia a matrices tridimensionales biocompatibles, de porosidad estructurada compuestas por monetita porosa, en adelante matrices de Ia invención, que comprende matrices tridimensionales de monetita de porosidad estructurada, correspondiente a macroporos cilindricos de entre 350-650μm de diámetro, separados uniformemente entre 0,4-0,6mm entre si. Dicha monetita presenta Ia porosidad intrínseca del material, sobre Ia que se induce Ia macroporosidad estructurada indicada.
En las matrices de Ia invención, dicha porosidad estructurada se distribuye en el área máxima de Ia matriz que permita que dicha matriz mantenga su estabilidad mecánica de forma estable. En una realización particular, dicha área máxima es Ia restante de eliminar Ia zona perimetral exterior de Ia matriz, que oscila entre 0,1 y 0,9mm de anchura, preferiblemente 0,5 mm de anchura.
Así, los materiales que se emplean en osteogénesis deben imitar Ia morfología, estructura y función del hueso para conseguir una correcta integración en el tejido del huésped.
Está comprobado que Ia estructura determinada por Ia porosidad y el diámetro de poro de los materiales usados en regeneración ósea influye en Ia formación del hueso tanto in vito como in vivo. Los poros son necesarios para que se dé Ia formación de tejido óseo, ya que permiten Ia migración y Ia proliferación de los osteoblastos y células mesenquimales y también Ia vascularización. Así, el material de Ia invención proporciona las condiciones necesarias para conseguir Ia correcta regeneración del hueso gracias a sus características de porosidad que permiten Ia colonización y proliferación de los tipos celulares necesarios para tal efecto.
Resultados in vitro llevados a cabo con matrices de otros materiales muestran que, una baja porosidad estimula Ia osteogénesis ya que se produce agregación celular Io que suprime Ia proliferación estimulando Ia osteogénesis. Estos mismos experimentos muestran que una elevada porosidad no afecta a Ia adhesión celular pero si aumenta Ia proliferación ya que hay un aumento de Ia superficie de contacto y también se facilita el transporte de oxígeno y nutrientes (Takahashi et al, 2004). Según estos resultados, Ia osteogénesis no se ve afectada por el tamaño de poro pero si aumenta con un número bajo de poros.
Por otro lado, in vivo, se requiere una integración y penetración de las células en el material así como Ia vascularización del mismo, para que se incorpore al tejido del individuo. Una elevada porosidad y tamaño de poro, como Ia proporcionada por las matrices de Ia invención facilita estos requerimientos.
Inicialmente, según primeros estudios el diámetro mínimo requerido para Ia formación de hueso se consideraba en torno a 100μm, para que pudieran llevarse a cabo los procesos de migración y transporte celular. Sin embargo, en Ia actualidad, se proponen diámetros superiores a 300 μm ya que Ia presencia de estos macroporos aumenta Ia formación de hueso debido a que permiten Ia formación de capilares en su interior. La vascularización afecta al desarrollo de Ia osteogénesis. Los poros con diámetros pequeños favorecen condiciones de hipoxia y no inducen osteogénesis sino condrogénesis.
Así, los poros largos y grandes en forma de túnel de la matriz de Ia invención permiten su vascularización y el desarrollo de Ia osteogénesis. Además, los poros con diámetros elevados aumentan Ia superficie de contacto, Io que aumenta también Ia superficie de interacción con el tejido huésped, Io que va a acelerar Ia degradación que realizan los macrófagos.
En el caso de matrices amorfas, que presentan una geometría de porosidad aleatoria, Ia red vascular que se pueda llegar a formar es irregular en Ia estructura del biomaterial y no podrá conectar con Ia red vascular del hueso, de manera que el implante no podrá integrarse de forma eficaz con el tejido del receptor.
Sin embargo,. Ia estructura de porosidad adoptada por las matrices de Ia presente invención tiene en cuenta Ia incorporación de poros con el tamaño adecuado para que convivan las especies celulares requeridas y se pueda formar un entramado óseo y vascular en todo el implante y además se permita Ia conexión con Ia zona receptora, para que se pueda dar lugar Ia integración tisular.
El nuevo diseño incorpora macroporos de 350μm -650μm en forma cilindrica (en forma de túnel), que atraviesan totalmente Ia estructura del material, para una colonización celular adecuada (en cuanto a diferentes tipos celulares y a número suficiente de cada tipo) de las células de los tejidos adyacentes, así como una integración con el tejido receptor. Además, en toda Ia estructura contiene una red de microporos, para una suficiente difusión de nutrientes, gases y productos de desecho del metabolismo celular.
Tal y como se observa en las figura 13 Ia ventaja en cuanto a Ia colonización celular de las matrices de Ia invención puede verse reflejada en estudios directos de visualización celular al microscopio electrónico de barrido. Sin embargo, tal y como se muestra en Ia figura 14, los biomateriales amorfos, que muestran una distribución de macroporos desestructurada y no predefinida, producidos en el proceso de obtención del cemento de Ia presente invención, presentan poros que no conectan Ia estructura interna. Es decir, el número de macroporos es insuficiente y su distribución inapropiada para que se pueda dar una colonización adecuada de las células, quedando estas relegadas en su mayoría a Ia superficie del material.
El éxito en el proceso de formación de un nuevo hueso está directamente relacionado con Ia cantidad de células formadoras de hueso que intervengan en el proceso, así como en Ia formación de una consistente red vascular por todo el biomaterial. Así, tal y como se muestra en Ia figura 14 las matrices de material de porosidad estructurada de Ia invención, que presentan una distribución espacial y configuración espacial de macroporos ordenada, inducida y previamente establecida, permiten una amplia colonización celular por todo el biomaterial, una mayor difusión de nutrientes y de moléculas de señalización que van a determinar el comportamiento celular.
Por Io tanto las matrices de Ia invención, con un porcentaje elevado de porosidad, especialmente de macroporosidad, en el que hay poros con diámetros elevados (>300μm, en concreto entre 350 y 650 μm, y preferentemente 500 ±60 μm) y en forma de túneles continuos, aumentará Ia osteointegración del implante después de Ia cirugía.
En un segundo aspecto, Ia presente invención hace referencia al método de síntesis de las matrices de Ia invención, que comprende Ia formación de una matriz de monetita de porosidad estructurada que comprende:
- Formación de una fase sólida, correspondiente a una matriz porosa de brushita mediante Ia utilización combinada de porógenos, retardante y métodos mecánicos durante Ia reacción de fraguado entre un fosfato calcico ácido y un fosfato calcico básico.
- Mezcla de Ia fase sólida con agua destilada para dar lugar a Ia fase líquida
- Aplicación en el cemento obtenido en Ia etapa 2, de uno o más moldes, uno de ellos con punzones cilindricos, que presentan un diámetro de entre 350 y 650 μm, y más preferentemente 500μm ± 60μm, durante el fraguado para generar en las matrices poros cilindricos verticales de entre 350 y 650 μm, y más preferentemente 500μm ± 60μm de diámetro separados entre 0,4-0,6 mm y más preferentemente separados por 0,5mm ± 60μm de distancia.
- Esterilización de Ia brushita porosa y transformación térmica a monetita porosa.
En concreto, en el método de síntesis empleado, el producto obtenido en Ia etapa 1 , da lugar a una fase sólida que se mezcla con agua destilada para dar lugar a una fase líquida. Como realización preferente, Ia invención propone el uso de fosfato tricálcico -beta como fosfato calcico básico, y monofostato calcico como fosfato ácido.
Según Ia invención, para llevar a cabo Ia mezcla, Ia relación molar de fosfato básico/ fosfato ácido es de 1,6-1,8 durante un tiempo de aproximadamente 10 minutos, Ia concentración de porógeno 1-20% en peso y Ia de retardante entre 0,4-0,6% en peso; preferentemente relación molar de fosfato básico/ fosfato ácido de 1.785, concentración de porógenos 3-
10% en peso y Ia de retardante es 0,54% en peso.
La relación molar de fosfato básico/ fosfato ácido para llevar a cabo Ia mezcla es de 1,6 -1 ,8, preferentemente 1.785, durante un tiempo de aproximadamente 10 minutos. El carbonato calcico se añade en concentraciones entre 1-20% en peso, preferiblemente entre 3-10%. Como retardante de Ia reacción de fraguado Ia invención propone el empleo de pirofosfatosódico en una proporción del 0,4 - 0,6 %en peso, siendo 0,54% la opción preferencial.
Esta fase sólida así obtenida es mezclada con Ia fase líquida (agua destilada), en una relación (P/L) de 3.
Con respecto a fosfatos calcicos ácidos y básicos, porógenos y retardantes a emplear en Ia invención, el experto en Ia materia conoce los distintos posibles compuestos y combinaciones a emplear.
Con Ia pasta obtenida se rellenan moldes que permiten obtener las matrices de Ia invención, que presentan Ia distribución de poros estructurada anteriormente indicada.
El molde de Ia invención, empleado para el desarrollo del biomaterial se refiere a cualquier molde que presente punzones cilindricos, cuya base presente un diámetro de entre 350- y 650μm, y que estén separados entre si entre 0,4 y 0,6 mm,. Dicho molde puede estar construido en silicona, metal, material plástico resistente o cualquier tipo de material que Ie permita ser aplicado en su uso.
El molde puede presentar cualquier forma deseada, en función de Ia forma y tamaño de biomaterial que se requiera para reparar un defecto óseo particular para cada paciente, manteniendo siempre el biomaterial obtenido las características de porosidad características del biomaterial de Ia invención, es decir macroporos cilindricos de diámetro de entre 350- y 650μm, más preferentemente 500μm ± 60μm de diámetro, separados uniformemente entre si entre 0,4 y 0,6 mm, más preferiblemente 0.5mm ± 60μm, además de Ia porosidad intrínseca del biomaterial.
Dichos moldes permiten Ia obtención de las matrices de Ia invención, en las que Ia porosidad estructurada se distribuye en el área máxima de Ia matriz que permita que dicha matriz mantenga su estabilidad mecánica de forma estable. En una realización particular, dichos moldes permiten Ia obtención de matrices en las que el área máxima en Ia que se distribuye Ia porosidad estructurada es el área restante de eliminar Ia zona perimetral exterior de Ia matriz, de entre 0,1 y 0,9mm de anchura, preferiblemente 0,5 mm de anchura.
La invención también contempla el uso de más de un molde:
- Un primer molde que permita Ia obtención de las matrices de monetita, en Ia forma deseada pero sin Ia porosidad estructurada
- Un segundo molde que, en una superficie plana presenta punzones cilindricos, de diámetro de entre 350- y 650μm, preferentemente 500 μm ± 60μm, y que estén separados entre si entre 0,4 y 0,6 mm, preferentemente 500μm ± 60μm. Dicho segundo molde, debe ser aplicado, tras retirar el primer molde, introduciendo en él las piezas obtenidas con el primer molde. El segundo molde es tapado con una tapa según se muestra en Ia figura 1c.
Así, el biomaterial de Ia invención puede presentarse en forma de pastillas, láminas, cilindros, etc., y cualquier otra forma que sea útil para reparar un defecto óseo particular de un paciente.
En un aspecto preferente de Ia invención, el molde presenta Ia forma de una pastilla o cilindro de diámetro entre 2 y 50 mm, preferiblemente entre 2 y 15 mm y de altura entre 1 y 50mm, preferiblemente entre 1 y 5mm, y más preferiblemente:
- de diámetro 10mm y altura de 3 a 5mm, preferiblemente 3 o 5 mm, que presenta 64 punzones, o
- de diámetro 8mm y altura de 3 a 5mm, preferiblemente 3 o 5 mm, que presenta 39 punzones, o
- de diámetro 7mm y altura de 3 a 5mm, preferiblemente 3 o 5 mm, que presenta 28 punzones, o
- de diámetro 5mm y altura 3 mm, que presenta 12 punzones En todos los casos, los punzones son cilindricos de diámetro 500μm ± 60μm, separados
500μm ± 60μm entre si, y distribuidos respetando una zona perimetral de 5mm (tomado desde el borde de Ia pastilla) libre de punzones.
Un minuto después de iniciar el fraguado del cemento, éste se dispone durante aproximadamente 30 minutos en el molde, antes de que finalice su solidificación, y se retira, habiéndose formado los poros determinados por el molde. Una vez ha fraguado totalmente, Ia matriz de brushita formada se somete a autoclavado entre 120 y 13O0C durante 24-25 minutos, produciéndose su conversión a Monetita, completamente esterilizada y apta para su uso.
En otro aspecto preferente de Ia invención, un primer molde es de silicona y presenta huecos cilindricos para pastillas o cilindros del tamaño de las matrices de Ia invención que se desea fabricar. En una realización particular de Ia invención, dichos huecos presentan diámetro entre 2 y 50 mm, preferiblemente entre 2 y 15 mm y altura entre 1 y 50mm, preferiblemente entre 1 y 5mm, y más preferiblemente:
- diámetro 10mm y altura de 3 a 5mm, preferiblemente 3 o 5 mm,
- diámetro 8mm y altura de 3 a 5mm, preferiblemente 3 o 5 mm,
- diámetro 7mm y altura de 3 a 5mm, preferiblemente 3 o 5 mm,
- diámetro 5mm y altura 3 mm,
Dichos moldes no intervienen en Ia formación de los macroporos.
En este aspecto de Ia invención, el segundo molde es metálico, presenta Ia dimensión de cada una de las piezas anteriores, y en su base, distribuidos uniformemente, presenta punzones cilindricos de 500 mieras ± 60μm, separados entre si 500micras ± 60μm, que dan lugar al componente macroporoso de las matrices de monetita, distibuídos respetando una zona perimetral mínima de 0,5mm (tomado desde el borde de Ia pastilla) libre de punzones. En una realización particular, dichos moldes metálicos presentan diámetro entre 2 y 50 mm, preferiblemente entre 2 y 15mm y altura entre 1 y 50mm, preferiblemente entre 1 y 5mm, y más preferiblemente:
- diámetro 10mm y altura de 3 a 5mm, preferiblemente 3 o 5 mm, y 64 punzones o - diámetro 8mm y altura de 3 a 5mm, preferiblemente 3 o 5 mm, y 39 punzones o
- diámetro 7mm y altura de 3 a 5mm, preferiblemente 3 o 5 mm, y 28 punzones o
- diámetro 5mm y altura 3 mm, y 12 punzones
en todos los casos respetando una zona perimetral mínima de 0,5mm (tomado desde el borde del cilindro) libre de punzones.
En este caso, el procedimiento es igual que el anterior, con Ia diferencia de que inmediatamente después de realizar Ia mezcla de Ia fase sólida y Ia líquida, se rellena el primer molde de silicona. Antes de que el biomaterial finalice su fraguado, se retiran las piezas del molde de silicona. Posteriormente se introducen las piezas en el molde metálico con punzones (tapándose con Ia tapa metálica según Ia figura 1c), hasta que finaliza el fraguado en un baño de agua a 370C durante 30 minutos. Una vez solidificado, se retiran del molde metálico obteniendo las piezas cilindricas con Ia porosidad determinada. Las matrices formadas se someten a autoclavado entre 120 y 13O0C durante 24-25 minutos, produciéndose su conversión a Monetita, completamente esterilizada y apta para su uso. El empleo de estos moldes da lugar a pastillas de monetita de porosidad estructurada. En una realización particular, dichas pastillas presentan diámetro entre 2 y 50 mm, preferiblemente entre 2 y 15mm y altura entre 1 y 50mm, preferiblemente entre 1 y 5mm, y más preferiblemente:
diámetro 10mm y altura de 3 a 5mm preferentemente 3mm o 5mm, que presentan una distribución uniforme de 64 macroporos de diámetro 500μm ± 60μm, separados 500μm ± 60μm entre si.
- diámetro 8mm y altura de 3 a 5mm, preferiblemente 3mm o 5 mm, que presenta 39 macroporos de diámetro 500μm ± 60μm, separados 500μm ±
60μm entre si.
- diámetro 7mm y altura de 3 a 5mm preferentemente 3mm o 5mm que presenta 28 macroporos de diámetro 500μm ± 60μm, separados 500μm ± 60μm entre si.
- diámetro 05mm y altura 0,3 mm que presenta 12 macroporos de diámetro
500μm ± 60μm, separados 500μm ± 60μm entre si. En todos los casos, las pastillas de monetita presentan una zona perimetral mínima de
0,5mm (tomado desde el borde de Ia pastilla) libre de macroporos que les permite mantener las condiciones de estabilidad mecánica y fortaleza necesarias para ser empleadas en sus aplicaciones.
Así, Ia distribución final de macroporos en dichas pastillas respeta tanto Ia zona perimetral mínima de 0,5mm libre de macroporos, así como ei tamaño y distancia entre poros (según Io descrito anteriormente).
Los productos de Ia presente invención encuentran aplicación en el campo de Ia ingeniería tisular, y regeneración ósea. Así las matrices de monetita de Ia invención, obtenidas a través de los moldes definidos son de aplicación para el soporte y crecimiento de células y las aplicaciones anteriormente definidas.
En una realización particular las pastillas de Ia invención son aplicadas en forma de varias unidades (como un conjunto de piezas), disponiéndose de manera que se adaptan completamente al espacio del defecto óseo, facilitando Ia entrada homogénea de nutrientes, gases y células en toda Ia zona a reparar, facilitando su recuperación gracias a dicha disposición y evitando que se den zonas necróticas.
En un aspecto preferido Ia invención hace referencia al uso de las matrices de Ia invención como soporte de crecimiento para células mesenquimales de distintos orígenes, incluido origen adiposo, osteoblastos, células endoteliales y combinaciones de células madre mesenquimales adultas no diferenciadas o diferenciadas hacia Ia estirpe osteoblástica o endotelial, osteoblastos, osteoclastos, osteocitos de hueso y células endoteliales, para su empleo en regeneración ósea.
Las matrices de Monetita de porosidad estructurada de Ia invención, se reabsorben in vivo en mayor tiempo y modo similar que el DCPD, evitando el inconveniente de su transformación en HA (como muestra el ejemplo 10 donde se comparan las matrices de porosidad estructurada de Ia invención frente a matrices de brushita realizadas con Ia porosidad estructurada de las matrices de Ia presente invención). Así, dichas matrices se disolverán a pH fisiológicos, de manera gradual en los tejidos extracelulares que envuelven el implante y las propias células que Io colonizan, (células endoteliales, osteoclastos, osteoblastos, macrófagos...) serán los responsables de su eliminación o reutilización como sucede en el hueso. Además, su combinación con Carbonato Calcico, en el proceso de su obtención, evita su transformación a HAP. Tal y como sucede con el DPCD su reabsorción comienza entre Ia 4a y 8a semana, periodo de tiempo que es adecuado para que las células adyacentes colonicen el material y puedan reemplazar el material reabsorbido por matriz ósea fisiológica. Esta biodegradabilidad está ajustada a Io que ocurre en el organismo, en donde el crecimiento óseo en los defectos puede tener lugar en un periodo de tiempo comprendido entre 2 y 6 meses, dependiendo del tipo de hueso y del tamaño del defecto (Francone V. 2004).
Además de Ia biodegradabilidad, otras propiedades como Ia rugosidad y textura del material de Ia invención se han tenido en cuenta en el estudio de las matrices. Así, según las pruebas biológicas realizadas a las matrices de monetita porosa con macroporosidad estructurada de Ia invención, se demuestra una adhesión al material superior al 95%, donde las células no cambian su morfología en contacto con el material, y colonizan toda Ia superficie comunicándose entre ellas como en cualquier tejido funcional.
Hay que tener en cuenta que Ia monetita puede mostrar resistencia y elasticidad muy baja con respecto a Ia del hueso trabecular (elasticidad 50-100 MPa y compresión 5-10 MPa). Sin embargo, sería casi imposible igualar las propiedades mecánicas del hueso. Y, se ha demostrado que es suficiente con que el material alcance propiedades mecánicas suficientes para soportar el crecimiento celular, ya que las células, al invadir el material formarán Ia fase orgánica del implante y mejorarán las propiedades mecánicas. Las matrices de monetita porosa de Ia invención, cumplen con este requisito.
El material monetita es reabsorbible, reabsorbible, bioactivo, presenta características similares al hueso. Este material permite el crecimiento celular tanto en su superficie como en su interior, una vez en el defecto óseo, permitirá que las células (endoteliales, osteoblastos, osteoclastos...) formen el andamio necesario que se conectará al hueso sano. Posteriormente Ia monetita se irá eliminando poco a poco, sin sufrir transformación a Hidroxi apatito, por acción de los osteoclastos, y los osteoblastos irán sintetizando Ia nueva fase mineral que irá sustituyendo Ia monetita, eliminando por completo el defecto inicial.
Así, un primer objeto de invención se refiere a una matriz tridimensional de monetita de porosidad estructurada caracterizada por presentar en su estructura macroporos cilindricos verticales de entre 350 y 650 μm de diámetro, que atraviesan longitudinalmente Ia matriz de un extremo a otro, existiendo una separación de entre 0,4-0,6 mm entre cada macroporo. En una realización particular el diámetro de los macroporos es de preferentemente 500 μm ± 60 μm. En otra realización particular, la separación entre macroporos es de preferentemente 500 μm ± 60 μm. Otro objeto de invención se refiere a Ia matriz de monetita de porosidad estructurada cuyo contenido en monetita es al menos del 90%, preferentemente 95% y más preferentemente 100%.
Un siguiente objeto de invención Io constituyen las matrices de monetita de porosidad estructurada caracterizadas por ser obtenidas por transformación térmica de un material precursor. En una realización particular, dicho material precursor que es transformado térmicamente a monetita consite en una mezcla de una fase sólida compuesta por fosfatos calcicos básicos, fosfatos calcicos ácidos, un porógeno y un retardante que es fraguada por adición de agua destilada. En otra realización particular, Ia relación molar de fosfato básico/ fosfato ácido es de 1 ,6 -1 ,8, Ia concentración de porógenoes 1-20% en peso, la de retardante entre 0,4-0,6% en peso y Ia proporción (P/L) es de 3. En otra realización particular, Ia relación molar de fosfato básico/ fosfato ácido es de1.785, Ia concentración de porógenoes 3-10% en peso y Ia de retardante es 0,54% en peso. En otra realización particular el fosfato calcico ácido es monofosfato calcico, el fosfato calcico básico es fosfato tricálcico beta, el agente porógeno carbonato calcico y el retardante es pirofosfato sódico. En otra realización particular el material precursor es Brushita.
Otro objeto de invención Io constituyen las matrices tridimensionales de monetita de porosidad estructurada según reivindicaciones anteriores caracterizada porque pueden adoptar cualquier tipo de forma requerida para Ia reparación de un defecto óseo o tisular particular. En una realización particular, dicha matriz consiste en un cilindro con diámetro de base entre 2 y 50 mm, y de altura entre 1 y 50mm. En otra realización particular dicho cilindro presenta diámetro de base entre 2 y 15 mm, y altura entre 1 y 5mm. En otra realización particular, dicho cilindro presenta una zona perimetral mínima de 0,5mm libre de macroporos. En otras realizaciones particulares, el cilindro presenta:
- diámetro 10mm, altura de 5mm, y 64 macroporos cilindricos con diámetro de 500 μm +60 μm, uniformemente separados 500μm ± 60μm entre si que atraviesan longitudinalmente Ia matriz.
- diámetro 10mm, altura de 3mm, y 64 macroporos cilindricos con diámetro de 500 μm ±60 μim, uniformemente separados 500μm ± 60μm entre si que atraviesan longitudinalmente la matriz.
- diámetro 8mm, altura de 5 mm, y 39 macroporos cilindricos con diámetro 500μm ± 60μm, separados 500μm ± 60μm entre si que atraviesan longitudinalmente Ia matriz. - diámetro 8mm, altura de 3mm, y 39 macroporos de diámetro δOOμm ±
60μm, separados δOOμim ± 60μm entre si que atraviesan longitudinalmente Ia matriz.
- diámetro 7mm, altura de 5mm, y 28 macroporos de diámetro δOOμm ± . 60μm, separados δOOμm ± 60μm entre si que atraviesan longitudinalmente Ia matriz.
- diámetro 7mm, altura de 3mm, y 28 macroporos de diámetro 500μm ± 60μm, separados δOOμm ± 60μm entre si que atraviesan longitudinalmente Ia matriz.
- diámetro δmm, altura 3 mm, y 12 macroporos de diámetro δOOμm ± 60μm, separados δOOμm ± 60μm entre si que atraviesan longitudinalmente Ia matriz.
en todos ellos respetando una zona perimetral de 0,δmm desde el borde de dicho cilindro hacia el centro del mismo, que queda libre de macroporos.
Otro objeto de invención se refiere al molde para Ia preparación de una matriz tridimensional según los objetos de invención anteriores, caracterizado por presentar una distribución homogénea de punzones de 360-660 μm de diámetro separados uniformemente entre 0,4- 0,6 mm entre si. Dicho molde puede estar compuesto por silicona, metal, plástico resistente o cualquier otro material que permita su aplicación, pudiendo adoptar cualquier tipo de forma requerida.
En una realización particular, el molde presenta forma cilindro con diámetro de base entre 2 y δOmm y de altura entre 1 y 60 mm. En otra realización particular dicho cilindro presenta diámetro de base entre 2 y 1δ mm y de altura entre 1 y δ mm. En otras realizaciones particulares, dicho cilindro presenta:
- diámetro 10mm, altura de δmm, y 64 punzones cilindricos con diámetro de base de 600 μm ±60 μm, uniformemente separados 0,δmm ± 60μm entre si.
- diámetro 10mm, altura de 3mm, y 64 punzones cilindricos con diámetro de base de δOO μm ±60 μm, uniformemente separados 0,δmm ± 60μm entre si. - diámetro 8mm, altura de 5 mm, y 39 punzones cilindricos con diámetro de base de 500 μm +60 μm, uniformemente separados 0,5mm ± 60μm entre si.
- diámetro 8mm, altura de 3mm, y 39 punzones cilindricos con diámetro de base de 500 μm ±60 μm, uniformemente separados 0,5mm ± 60μm entre si.
- diámetro 7mm, altura de 5mm, y 28 punzones cilindricos con diámetro de base de 500 μm ±60 μm, uniformemente separados 0,5mm ± 60μm entre si.
- diámetro 7mm, altura de 3mm, y 28 punzones cilindricos con diámetro de base de 500 μm ±60 μm, uniformemente separados 0,5mm ± 60μm entre si.
- diámetro 5mm, altura 3 mm, y 12 punzones cilindricos con diámetro de base de 500 μm ±60 μm, uniformemente separados 0,5mm ± 60μm entre si.
distribuidos en todos ellos respetando un área perimetral de 0,5mm de ancho libre de punzones, tomado desde el borde hacia el interior del cilindro.
Un siguiente objeto de invención se refiere al método de síntesis de las matrices tridimensionales de monetita de porosidad estructurada caracterizado por comprender las etapas de:
1) mezcla de una fase sólida compuesta por fosfatos calcicos básicos, fosfatos calcicos ácidos, un porógeno y un retardante. Que es fraguado por adición de agua destilada, dando lugar a Ia fase líquida
2) aplicación de al menos un molde en el cemento durante el fraguado para generar macroporos cilindricos verticales de entre 350 y 650 μm de diámetro, separados uniformemente 0,4-0,6 mm entre si
3) esterilización del material precursor formado y transformación térmica a monetita.
En una realización particular, en Ia etapa 1 del método, Ia relación molar de fosfato básico/ fosfato ácido es de 1,6-1,8, Ia concentración de porógeno es 1-20% en peso, Ia de retardante entre 0,4-0,6% en peso y Ia proporción (P/L) es de 3. En otra realización particular, Ia relación molar de fosfato básico/ fosfato ácido es de1.785, Ia concentración de porógenoes 3-10% en peso y Ia de retardante es 0,54% en peso. En otra realización particular, el fosfato calcico ácido es monofosfato calcico, el fosfato calcico básico es fosfato tricálcico beta, el agente porógeno carbonato calcico y el retardante es pirofosfato sódico. En otra realización particular, el producto de Ia fase 1 es Brushita.
En otra realización particular, en Ia etapa 3 del método, Ia esterilización térmica se lleva a cabo por autoclavado. En otra realización particular, dicho autoclavado se lleva a cabo a 120-130 0C y durante 24-25 minutos.
En otra realización particular, en Ia etapa 2 del método, el molde empleado es el molde descrito en los objetos de invención anteriores. En otra realización particular, previo al empleo de dichos moldes, se emplea un molde de silicona que presenta forma de cilindro con diámetro de base entre 2 y 50mm, y de altura entre 1 y 50mm. En otra realización particular, dicho molde de silicona presenta diámetro de base entre 2 y 15 mm y altura entre 1 y 5mm.
Otro objeto de invención Io constituye el uso del molde descrito en los objetos de invención anteriores, para Ia obtención de fosfatos calcicos que adopten su forma. En una realización particular, dicho fosfato de calcio consiste en monetita.
Otro objeto de invención se refiere al uso de las matrices tridimensionales de monetita de porosidad estructurada como soporte para cultivos celulares.
Otro objeto de invención se refiere a las matrices tridimensionales de monetita de porosidad estructurada caracterizadas porque adicionalmente comprenden células. En una realización particular, dichas dichas células son células mesenquimales, osteoblastos, osteoclastos, osteocitos, células endoteliales o combinaciones de ellas.
Otro objeto de invención se refiere al uso de las matrices tridimensionales de monetita de porosidad estructurada con o sin células, para Ia preparación de un agente terapéutico para Ia regeneración de estructura ósea. En una realización particular, dicha regeneración de estructura ósea se lleva a cabo para combatir Ia osteoporosis. DESCRIPCIÓN DE LAS FIGURAS.
Figura 1: a) Piezas de metal fijadas en una placa de cristal del mismo tamaño que los cilindros de Monetita que se quieren sintetizar b) Moldes de silicona obtenidos a partir de las piezas de Ia figura 1a), con los huecos del tamaño de las piezas que se van fabricar, sin tener en cuenta por ahora Ia formación de los macroporos c) Molde de metálico con punzones metálicos que van a dar lugar a una macroporosidad controlada y homogénea en Ia matriz de monetita.
Figura 2: Diseño de un ejemplo de molde utilizado para Ia obtención de Ia matriz de monetita, con una distribución homogénea de poros verticales de 500 ± 60 mm, de diámetro, regularmente espaciados y de forma reproducible.
Figura 3: Fotografía de una de las formas de matriz de monetita porosa vista de alzado (a) y de perfil (b). En esta imagen se pueden apreciar los poros cilindricos de igual tamaño, distribuidos de forma regular por Ia estructura de Ia matriz y cómo estos poros atraviesan completamente Ia estructura.
Figura 4: Realizaciones particulares de los monómeros/pastillas de Ia invención y sus dimensiones a) pastilla de 5 mm de diámetro (φ) y 3 mm de altura (h) con un total de 12 macroporos de 0,5 mm de diameto distanciados (φ.m) entre sí por 0,5mm (d.m) b) pastilla de 10 mm de diámetro (φ) y 3 ó 5 mm de altura (h), con un total de 64 macroporos de 0,5 mm de diameto (φ.m) distanciados entre sí por 0,5mm (d.m) c) pastilla de 8 mm de diámetro (ψ)y 3 ó 5 mm de altura (h) con un total de 39 macroporos de 0,5 mm de diameto (φ.m) distanciados entre sí por 0,5mm (d.m) y d) pastilla de 7 mm de diámetro (φ) y 3 ó 5 mm de altura (h) con un total de 28 macroporos de 0,5 mm de diameto (φ.m) distanciados entre sí por 0,5mm (d.m). Todas ellas respetan Ia zona perimetral de 0,5mm de ancho libre de macroporos.
Figura 5: Difracción de rayos X de Ia brushita porosa precursora (antes del tratamiento térmico) y monetita porosa (después del tratamiento térmico) obtenida tras el proceso de transformación y esterilización del material. Los 3 picos más altos que aparecen en el gráfico de difracción de rayos X, definen en el caso del gráfico superior (a) a Ia Brushita y en el gráfico inferior (b) son característicos de Ia monetita. El análisis estructural de las muestras (análisis de Rietvel) después de Ia esterilización con autoclave muestra que el material consta principalmente de monetita 95±5 % y el resto es fosfato tricálcico β (también denominado β-TCP). Para establecer Ia composición del material el diagrama de difracción del biomaterial se comparó con diagramas modelo de brushita (ICSD 016132) y de monetita (ICSD 38128).
Figura 6: Imágenes frontal (a) y lateral (b) de Ia matriz de monetita amorfa, es decir, sin Ia porosidad estructurada. La porosidad que se aprecia es inherente al proceso de obtención, Ia mayoría de Ia porosidad del biomaterial Io componen microporos, en los que no puede llevarse a cabo Ia colonización celular, (c) Imagen del diseño de Ia matriz de monetita de Ia invención con los poros de tamaño definido en torno a los 500 μm, distribuidos en Ia estructura del biomaterial.
Figura 7: Imágenes de microscopía electrónica de barrido a diferentes aumentos, del biomaterial de monetita sin porosidad controlada. En estas imágenes se aprecia un biomaterial fundamentalmente microporoso (c) y con Ia presencia mínima de algunos macroporos (b) dispuestos de forma aleatoria, a modo de oquedades, que en ningún caso llegan a atravesar Ia matriz (a, b).
Figura 8: Imagen de microscopía electrónica de barrido en Ia que se observa el biomaterial de monetita de Ia invención con poros de 500 μim distribuidos por Ia matriz.
Figura 9: Gráfica del estudio de citotoxicidad del biomaterial Monetita de Ia invención en las células L929. Del ensayo MTT se observa que no existen diferencias significativas en Ia proliferación de las células L929 entre aquellas que han estado en contacto con Ia monetita y las que no, Io que permite concluir que Ia monetita de porosidad estructurada de Ia invención no es citotóxica.
Figuras 10: Imágenes de microscopía invertida de contraste de fases obtenidas del ensayo "Mouse Lymphoma assay". Como resultado del ensayo se muestran imágenes representativas de pocilios considerados como (a) y (b) positivos (células mutantes, crecimiento de colonias) o (c) y (d) como negativas (células no mutantes, ausencia de colonias).
Figura 11: Histograma de las frecuencias de mutación de Ia Monetita de porosidad estructurada de Ia invención en presencia (Monetita + S9) y ausencia (Monetita) de activación metabólica. Dichas frecuencias comparadas con los controles negativos y positivos empleados en presencia y ausencia de activación metabólica nos permite concluir que Ia monetita de porosidad estructurada de Ia invención no es un biomaterial mutagénico.
Figura 12: Determinación de Ia hemocompatibilidad del biomaterial de monetita de Ia invención. Los medios de cultivos de osteoblastos y AMSC que estuvieron durante 24h en contacto con Ia monetita de Ia invención fueron empleados para determinar el porcentaje de hemolisis frente a controles positivos y negativos. A partir de Ia gráfica se puede concluir que Ia Monetita de Ia invención es un biomaterial hemocompatible.
Figura 13: Imágenes de microscopía electrónica de barrido a distintos aumentos de una matriz de monetita de macroporosidad estructurada según Ia invención. Los macroporos permiten a las células madre mesenquimales colonizar Ia superficie del biomaterial (a) e introducirse por dichos macroporos (b, d). En (c) observamos el corte longitudinal de un macroporo. (c) Las células ¡nteraccionan entre ellas emitiendo prolongaciones citoplasmáticas, al igual que ocurre en un tejido a nivel fisiológico.
Figura 14: Imágenes de microscopía electrónica de barrido de las células madre mesenquimales dispuestas en el biomaterial de monetita de porosidad no controlada. Se puede apreciar que las células se disponen en Ia superficie de Ia matriz, sin posibilidad de colonizar su interior, puesto que tienen un tamaño significativamente mayor que Ia microporosidad que caracteriza al biomaterial.
Figura 15: Proliferación de las células madre mesenquimales dispuestas sobre el material de monetita con porosidad no controlada (gris) frente a las dispuestas sobre el biomaterial de monetita de porosidad estructurada de Ia invención (negro).
Figura 16: Esquema morfológico del tejido óseo: 1. Hueso cortical. 2. Hueso trabecular. 3 Sistema de havers. 4 Vaso sanguíneo. 5 Canal de Havers. 6 Canal de Volkmann. 7 Periostio. 8 Revestimiento óseo. 9 Vasos del periostio. 10 Osteoclastos. 11 Osteoblasto. 12 Osteocitos.
Figuras 17 y 18: Imágenes de SEM en Ia que se puede observar a x40 aumentos y a x80 aumentos como diferentes concentraciones de AMSC prediferenciadas hacia hueso se disponen sobre una misma superficie del biomaterial de Ia invención. Las figuras 17a y b hacen referencia al biomaterial sin células, las figuras 17 c-h son relativas a las distintas concentraciones celulares empleadas desde 0,5x106 hasta 2x106 células. Las figuras 18 a- h hacen referencia a las concentraciones celulares empleadas desde 3x106 hasta 6 x106 células.
Figura 19: Imágenes de micorcopía confocal de las células sobre (a) Ia superficie del biomaterial de monetita de porosidad estructurada de Ia invención y (b) en el interior de los canales del macroporo de dicho biomaterial tras varios días en cultivo. En las imágenes de (b) se observan los núcleos de AMSC prediferenciadas en el interior de los poros del biomaterial (Ia reconstrucción del poro en su totalidad se realiza mediante el montaje de imágenes seriadas). A partir de estas imágenes se observa como se produce un aumento de células en Ia superficie del biomaterial así como las paredes de los macroporos a medida que el tiempo de cultivo aumenta.
Figuras 20 y 21: Imágenes cenitales de SEM a distintos aumentos de las células AMSC prediferenciadas en el biomaterial a distintos tiempos de asociación (1 , 4, 7, 10 y 15 días en Ia superficie del biomaterial (figuras 20 a-e respectivamente) y en el interior de los canales de los macroporos del biomaterial (figuras 21 a-e respectivamente).
Figura 22 y 23: Análisis de Ia expresión de los genes implicados en Ia osteogénesis en AMSC como osteonectina (OTN), osteocalcina (OCA), osteopontina (OPN), colágeno tipo 1 (COL-1), TGF-β1 y fosfatase alcalina (FA), mediante RT-PCR en células AMSC sin diferenciar (figura 22) y prediferenciadas (figura 23) solas y asociadas al biomaterial durante 4, 7, 10 y 15 días. A Ia vista de los geles se puede concluir que tanto las células indiferenciadas como prediferenciadas no ven modificadas Ia expresión de los genes implicados en Ia osteogénesis y que por Io tanto, mantienen su estado funcional orientado hacia Ia formación de células óseas, capaces de sintetizar matriz extracelular que sustituya el biomaterial que se va degradando para regenerar el defecto óseo.
Figura 24: Imágenes de microscopía confocal del ¡mnunomarcaje. La figura 24 indica las observaciones que deben realizarse en Ia lectura de cada una de las siguientes figuras 25 a 31. Así, tal y como se observa, Ia figura 24 se encuentra dividida en 4 cuadrantes: el cuadrante superior izquierdo (i) hace referencia a Ia tinción de los núcleos de las células, el cuadrante superior derecho (H) se refiere a al mareaje de sólo Ia proteína, el cuadrante inferior izquierdo (iii) hace referencia a Ia doble tinción de núcleos celulares + proteína y el cuadrante inferior derecho (iv) se refiere a Ia triple tinción en Ia que se observan los núcleos celulares + proteína + biomaterial. En las figuras 25-31 , cada una de las figuras a-f también están subdivididas con los cuadrantes mencionados, debiendo interpretarse en cada uno de ellos Ia información indicada.
Figuras 25- 26: Imagen de microscopía confocal del imnunomarcaje del COL-1 de las AMSC prediferenciadas en Ia superficie (topview, figura 25) y en el interior de los canales (sideview, figura 26) del biomaterial a distintos tiempos de cultivo.
Figura 27-28: Imagen de microscopía confocal del imnunomarcaje del Osteocalcina en las AMSC prediferenciadas en Ia superficie (topview, figura 27) y en el interior de los canales (sideview, figura 28) del biomaterial a distintos tiempos de cultivo. Figuras 29-30: Imagen de microscopía confocal del ¡mnunomarcaje del osteopontina en las AMSC prediferenciadas en Ia superficie (topview, figura 29) y en el interior de los canales (sideview, figura 30) del biomaterial a distintos tiempos de cultivo.
Figura 31: Imagen de microscopía confocal del imnunomarcaje de colágeno tipo-1, osteocalcina y osteopontina en las AMSC prediferenciadas, creciendo sobre Ia superficie del biomaterial (topview figura 31 a-c) y en el interior de los canales (sideview, figura 31 d-f) durante 4 días. Estos resultados indican que las MSC prediferenciadas que se encuentran en el biomaterial son capaces de sintetizar y secretar proteínas relacionadas con Ia síntesis ósea.
Figura 32 y 33: Análisis de elementos fundamentales por SEM-EDX del biomaterial y las AMSC asociadas a Ia Monetita de porosidad estructurada de Ia invención durante 4 y 7 días (figura 32) y 10 y 15 días (figura 33). Las imágenes de Ia columna izquierda se refieren a las zonas puntuales en el centro de los canales a partir de los cuales se han realizado los análisis de los elementos presentes en las células (imágenes de Ia columna derecha). Los gráficos indican una distribución de elementos distinta a Ia encontrada en el biomaterial. Así se produce un aumento de Ia síntesis de las partículas (Calcio, fósforo y silicio) por parte de las células a Io largo del tiempo en asociación con el biomaterial de porosidad estructurada de Ia invención. Se concluye por tanto, que se dan las condiciones adecuadas para Ia formación de las sales de calcio necesarias para que se forme Ia fase mineral del hueso.
Figura 34: Imagen de SEM-EDX en Ia que se muestra Ia distribución de los elementos básicos en un área en Ia que solo se encuentran AMSC. En las imágenes del Calcio y Fósforo, se pueden apreciar las partículas electrodensas, formadas por los dos elementos (se encuentran en Ia misma localización del área).
Figura 35: Secreción de TGF-β1(pg/mI), obtenida de diferentes concentraciones de células prediferenciadas creciendo sin monetita durante 7 días en cultivo. Se observa un aumento gradual en Ia concentración de TGF-β1(pg/mI) para concentraciones celulares inferiores y un ligero descenso o desestabilización para concentraciones celulares superiores debido al mecanismo feed-back negativo del TGF-β1 .
Figura 36: Secreción de TGF-β1(pg/ml) obtenida de las células prediferenciadas a Io largo del tiempo en cultivo. Se sembraron 2x106 células sobre una superficie de 6cm2, se analiza
Ia secreción a diferentes tiempos en cultivo, observándose un comportamiento típico de mecanismos de feedback que consiste en un aumento de Ia síntesis y secreción del mecanismo seguido de un descenso de Ia secreción hasta que se inicia un nuevo aumento en Ia secreción.
Figura 37: Secreción de TGF-β1(pg/ml), obtenida de diferentes concentraciones de células prediferenciadas creciendo sobre el biomaterial durante 7 días en cultivo. A partir de esta gráfica se puede observar como Ia presencia del factor en el medio se correlaciona con el incremento del número de células en el biomaterial.
Figura 38: Secreción de TGF-β1(pg/ml) obtenida de las células prediferenciadas creciendo sobre el biomaterial a Io largo del tiempo en cultivo. Se sembraron 2x106 células sobre los biomateriales, se analiza Ia secreción a diferentes tiempos en cultivo. De Ia gráfica se desprende como hay un aumento de Ia secreción desde el día 1 hasta el día 10 de cultivo, momento a partir del cual empieza a estabilizarse y descender moderadamente.
EJEMPLOS
Los siguientes ejemplos sirven para ilustrar pero no limitan Ia presente Invención.
Ejemplo 1: Método de síntesis de las matrices de Ia invención
Para llevar a cabo Ia síntesis de las matrices de Ia invención se procedió a mezclar con agua bidestilada (fase líquida) una fase sólida.
La fase sólida comprende pero no se limita a un fosfato calcico ácido, un fosfato calcico básico, un agente porógeno como carbonato calcico y un retardante del fraguado como el pirofosfato sódico.
1.1 Preparación de la fase sólida
La fase sólida del cemento calcico consta de un fosfato calcico básico y fosfato calcico ácido. El fosfato calcico básico es fosfato tricálcico-beta (β-TCP) y el fosfato calcico ácido es monofosfato calcico. Se mezclan los dos componentes en una relación molar de 1.785 en mortero con mano durante 10 minutos. Se añade el carbonato calcico en concentraciones entre 1-20% (peso/peso) preferiblemente entre 3-10%. Se emplea el pirofosfato sódico 0.54% (peso/peso) como retardante de Ia reacción de fraguado.
En concreto, para Ia preparación de fosfato tricálcico-beta (β-TCP) se mezclan 34.42g de DCPD y 10.01 g CC (en relación molar 2:1) en un mortero de cristal y se homogeniza con mano durante 15 minutos. Se calienta Ia mezcla en horno (Veckstar) a 900 0C durante 14 horas. La síntesis del β-TCP ocurre según Ia reacción: 2CaHPO4 -2H2O + CaCO3 → Ca3 (PO4 )2 + 5H2O + CO2
A continuación, se tamiza el polvo y se utiliza el polvo que tiene tamaño de partícula menor de 322 μm.
1.2 Preparación de Ia fase líquida v Síntesis de esponjas de monetita
La fase líquida está constituida por agua destilada o bidestilada.
Se pesa Ia fase sólida formado por 0.8 g de monofosfato calcico anhidro, 1.4 g de fosfato tricálcico beta, 12 mg de pirofosfato sódico y 110 mg de carbonato y se mezcla 0,77 mi de Ia fase líquida en una relación. polvo líquido (P/L) de 3 en una placa de vidrio durante 30 s.
1.3 Proceso de fraguado
Se fragua el cemento durante 30 minutos en baño de agua a 37 0C.
La reacción de fraguado ocurre según Ia reacción:
Ca3(PO4J2 + Ca(H2PO4)2 + 8H2O → 4CaHPO4.2H2O
Durante Ia reacción de fraguado el bicarbonato reacciona con los hidrogeniones del medio descomponiéndose en dióxido de carbono formando unos huecos y generando así una matriz esponjosa de brushita.
1.4 Proceso de lavado
A continuación el biomaterial se lava varias veces en agua destilada para eliminar restos de ácidos en el medio hasta llegar a un pH cercano a 7, Io cual resulta óptimo para el crecimiento celular que se llevara a cabo en etapas posteriores.
1.5 Proceso de transformación de Brushita a monetita
Una vez se obtiene el material fraguado mediante el proceso descrito en anteriormente, se procede a Ia esterilización del mismo. El proceso empleado para dicha esterilización comprende autoclavar el material fraguado en un rango de temperatura 120-1300C durante 24-25 minutos. Durante este proceso Ia brushita se transforma en monetita.
Proceso de transformación de brushita a monetita:
CaHPO4.2H2O → 120°C → CaHPO4 + 2H2O (gas) . ,6 Método de síntesis de Ia matriz de monetita porosa amorfa.
Una vez hecha Ia mezcla de los compuestos, tal y como se describe anteriormente (ejemplo 1.1 a 1.2), el cemento resultante, brushita, se dispone sobre una superficie con forma de interés para su fraguado y su posterior esterilización, obteniéndose así, una matriz amorfa, con escasa presencia de macroporos y distribución irregular de los mismos, tal y como se puede observar en las figuras 6 a y b,
1.7 Método de síntesis de Ia matriz de monetita de porosidad estructurada
Tras Ia obtención del cemento mediante el proceso descrito en los ejemplo 1.1 a 1.2, un minuto después de iniciar el fraguado se aplicó al cemento durante 30 segundos el molde de silicona que se muestra en Ia figura 2. Una vez el material ha fraguado se procede a su esterilización tal y como se describe anteriormente (ejemplo 1.5).
El empleo de diferentes moldes permite obtener materiales que presentan poros cilindricos con un tamaño medio de 500 ±60 μm y que permiten conectar los micro y macroporos generados por el porógeno.
La figura 3 muestra un ejemplo de matriz de porosidad estructurada de monetita producida mediante el proceso descrito en Ia invención. Como resultado de Ia generación de dióxido de carbono durante Ia reacción de fraguado así como Ia aplicación del molde descrito anteriormente, el material resultante muestra un aspecto esponjoso con una distribución de poros dada. Obteniendo de esta forma un biomaterial estéril de monetita, con porosidad estructurada que puede ser utilizado sin más tratamientos como matriz para crecimiento celular.
La figura 5 muestra el diagrama de difracción de las muestras antes y después del tratamiento térmico en el autoclave. Se puede observar en Ia figura 4 que el tratamiento térmico además de esterilizar el material provoca Ia transformación cristalina de Ia estructura de brushita a monetita.
Ejemplo 2: Realización concreta de pastillas de monetita concretas con porosidad estructurada.
A modo de ejemplo y con el fin de obtener cementos con características óptimas el componente en polvo formado por 0.8 g de monofosfato calcico anhidro, 1.4 g de fosfato tricálcico beta, 12 mg de pirofosfato sódico y 110 mg de carbonato calcico se mezcló durante 30 segundos con 0.77 mi de agua. Un minuto después de iniciar el fraguado se aplicó al cemento durante 30 segundos los moldes que se describen a continuación.
2.1 Utilización de un solo molde en el proceso de obtención de matrices cilindricas de monetita de porosidad estructurada
Para Ia realización concreta de este ejemplo se emplearon moldes de silicona con las siguientes dimensiones y número de punzones:
a) 1cm de diámetro, 5 mm o 3 mm de altura y 64 punzones
b) 0,8cm de diámetro, 5 mm o 3 mm de altura y 39 punzones
c) 0,7cm de diámetro, 5 mm o 3 mm de altura y 28 punzones
d) 0,5 cm de diámetro 3 mm de altura y 12 punzones
En todos los moldes, los punzones son cilindricos, con un diámetro comprendido entre 500μm ± 60μm, separados 500μm ± 60μm entre si, y distribuidos respetando un perímetro de 0,5mm (tomado desde el borde hacia el interior del mode) libre de punzones. La estructura de dichos punzones es Ia de los respresentados en Ia figura 2.
Durante Ia reacción de fraguado, tal y como se describe en el ejemplo 1.7, el bicarbonato reacciona con los hidrogeniones del medio descomponiéndose en dióxido de carbono formando unos huecos y generando así una matriz esponjosa de brushita.
A continuación el biomaterial se lava varias veces en agua destilada para eliminar restos de ácidos en el medio hasta llegar a un pH cercano a 7, que es el óptimo para el crecimiento celular.
Posteriormente el material se esteriliza. En el proceso de esterilización en autoclave a 130 0C durante 24 minutos Ia brushita se transforma en monetita obteniéndose así un biomaterial estéril de monetita que puede ser utilizado sin más tratamientos como matriz para crecimiento celular.
Así, el material resultante consiste en las pastillas cilindricas esponjosa especificadas, constituidas por Ia biomatriz de porosidad estructurada de Ia invención, de las dimensiones indicadas en cada caso, con macroporos distribuidos de forma homogénea en dichas pastillas. El empleo de cada uno de. los moldes indicados permitió obtener las siguientes matrices con poros cilindricos homogéneamente distribuidos, con un tamaño medio de poro de 500μm ±60 μm, separados 0,5mm ±60 μm entre si, que permiten conectar los micro y macroporos generados por el porógeno :
a) pastillas cilindricas de 1cm de diámetro, 0,5 cm o 0,3 cm de altura y con 64 macroporos (figura 4b)
b) pastillas cilindricas de 0,8cm de diámetro, 0,5 cm o 0,3 cm de altura y con 39 macroporos (figura 4c)
c) pastillas cilindricas de 0,7cm de diámetro, 0,5 cm o 0,3 cm de altura y con 28 macroporos (figura 4d)
d) pastillas cilindricas de 0,5 cm de diámetro, 0,3 cm de altura y con 12 macroporos (figura 4a) '
Tal y como se muestra en Ia figura 4, estas pastillas de monetita de Ia invención obtenidas, presentan un perímetro de 0,5mm (tomado desde el borde de Ia pastilla hacia el interior de Ia misma) libre de macroporos, permitiéndoles mantener las condiciones de estabilidad mecánica y fortaleza necesarias para ser empleadas en sus aplicaciones.
2.2 Utilización de dos moldes en el proceso de obtención de matrices cilindricas de monetita de porosidad estructurada
Para Ia realización concreta de este ejemplo, se emplearon dos tipos de molde, uno de silicona (figura 1b) y otro de metal (figura 1c).
El molde de silicona se utiliza para Ia obtención de los cilindros de Monetita de tamaño adecuado (sin intervenir en esta fase en Ia formación de Ia mcaroporosidad).
Para Ia síntesis del molde de silicona, en primer lugar se dispusieron fijadas en una placa de cristal, unas piezas cilindricas con el mismo tamaño que las piezas de Monetita que se deseaba obtener (figura 1a).
A continuación, se añadió siliciona líquida sobre Ia placa de cristal con las piezas metálicas, y se esperó a que polimerizara. Una vez polimerizado, se sacó de Ia placa de cristal. Los moldes de silicona obtenidos, presentan huecos cilindricos del tamaño de las unidades de Monetita que se desea fabricar (figura 1 b). Dichos moldes de silicona con los huecos del tamaño de las piezas que se van a fabricar no presentan punzones y, por Io tanto, no contemplan todavía Ia formación de los macroporos.
Se obtuvieron 7 moldes de silicona diferentes, que presentan huecos cilindricos de las siguientes dimensiones:
- diámetro 10mm y altura 5mm o 3 mm,
- diámetro 8mm y altura 5 mm o 3 mm,
- diámetro 7mm y altura 3 o 5mm,
- diámetro 5mm y altura 3 mm,
Por otro lador se fabricaron moldes metálicos con Ia dimensión de cada pieza de Monetita obtenida con cada uno de los moldes de siliciona indicados. Dichos moldes metálicos constan de dos partes, una primera que presenta los punzones que dan lugar al componente macroporoso reproducible y una tapa (figura 1c). En concreto, las dimensiones de los moldes metálicos fabricados fue Ia siguiente:
a) 1cm de diámetro, 0,5 cm o 0,3 cm de altura y 64 punzones
b) 0,8cm de diámetro, 0,5 cm o 0,3 cm de altura y 39 punzones
c) 0,7cm de diámetro, 0,5 cm o 0,3 cm de altura y 28 punzones
d) 0,5 cm de diámetro, 0,3 cm de altura y 12 punzones
En todos los. moldes, los punzones son cilindricos, con un diámetro comprendido entre 500μm ± 60μm, separados 500μm ± 60μm entre si, y distribuidos respetando un perímetro de 0,5mm (tomado desde el borde hacia el interior del molde) libre de punzones.
Una vez fabricados los moldes, Ia creación de las piezas de monetita siguió el siguiente proceso:
- En primer lugar se rellenaron los moldes de silicona con el producto inmediatamente resultante de realizar Ia mezcla de Ia fase sólida y Ia fase líquida.
- En segundo lugar, antes de que el biomaterial finalice su fraguado, se retiraron las piezas del molde de silicona. El proceso es sencillo ya que el molde es como una goma muy flexible. - En tercer lugar se introdujeron las piezas en el molde metálico con los punzones, y se taparon. Dicho molde es introducido en un baño de agua a 370C durante 30 minutos hasta que finaliza el fraguado.
Un vez que solidificaron totalmente, se retiraron del molde metálico obteniendo piezas cilindricas con Ia porosidad deseada.
Las matrices formadas se someten a autoclavado entre 120 y 13O0C durante 24-25 minutos, produciéndose su conversión a Monetita, completamente esterilizada y apta para su uso.
Las piezas obtenidas presentaron Ia misma porosidad y dimensiones que las piezas obtenidas en el ejemplo 1a (figura 4).
Ejemplo 3: Estudios comparativos entre las matrices de Monetita de porosidad estructurada y Monetita amorfa
3.1 Estudio microscópico
A continuación se llevo a cabo un ensayo comparativo de estructura microscópica de las matrices amorfas y de las de porosidad estructurada de Ia invención. Para llevar a cabo dicho ensayo se emplearon técnicas de microscopía electrónica de barrido mediante procedimientos conocidos para un experto en Ia materia.
Estructura microscópica de Ia Matriz de monetita porosa amorfa
El biomaterial dispuesto en forma de matriz amorfa (figuras 6 a, b), obtiene una porosidad no controlada. Es decir, muestran una distribución de macroporos irregular, producida durante el proceso de obtención del cemento, descrito en los ejemplos 1.1 a 1-6. Los macroporos de Ia matriz amorfa son huecos en el biomaterial y no conectan Ia estructura interna (figura 7).
En cuanto al número y distribución de macroporos, se observa Ia escasez de los mismos. La presencia de macroporos es mínima y están dispuestos de forma aleatoria (figura 7).
Así, estas estructuras no favorecerán una correcta regeneración ósea al no proporcionar las condiciones necesarias para Ia correcta colonización y proliferación celular.
Estructura microscópica de Ia Matriz de monetita porosa estructurada
Las figuras 6c y 8, por Io contrario, muestra una matriz de monetita con macroporos estructurados. En la imagen de microscopía de barrido (figura 8) se puede apreciar Ia distribución homogénea de los macroporos. Al contrario que Ia estructura anterior, Ia matriz de monetita de porosidad estructurada favorecerá una correcta regeneración ósea al proporcionar las condiciones adecuadas para Ia correcta colonización y proliferación celular.
3.2 Estudio comparativo in vivo
Uno de los aspectos más relevantes a Ia hora de diseñar un biomaterial para promover Ia regeneración ósea es desarrollar una estructura que cuente con una porosidad adecuada para Ia colonización celular y Ia difusión de gases y nutrientes. De forma particular, los macroporos (de 100 a 500 μM) permiten un medio óptimo para Ia colonización integral de las células aportadas en Ia matriz, así como Ia neovascularización y migración de osteoblastos y oatebclastos de Ia zona del implante y Ia formación de nuevo hueso de forma homogénea en toda Ia estructura proporcionada.
El biomaterial de porosidad estructurada desarrollado en Ia presente invención cuenta con una estructura macroporosa característica, que va a permitir una completa y homogénea distribución de las células osteogénicas proporcionadas en Ia matriz y además Ia entrada de células del tejido receptor, que van a colonizar e integrar Ia nueva estructura, para iniciar su proceso de resorción así como formar nueva matriz ósea que se irá depositando sobre el implante para dar lugar a nuevo hueso, con unas características mecánicas y fisiológicas muy similares al tejido original.
Para determinar Ia ventaja que constituye el diseño desarrollado en este trabajo, con respecto a una porosidad no estructurada en macroporos, se realizó un estudio comparativo de Ia capacidad de regeneración ósea entre biomateriales de Monetita sin estructuración de macroporos y con estructuración de la macroporosidad.
Para ello, se utilizaron ovejas a las que se realizó un defecto crítico en Ia tibia y una estabilización. por técnicas de osteosíntesis. En el defecto creado, se aplicó en 3 de ellas el biomaterial de Monetita no estructurado y en otras 3 el estructurado, dejando en todas ellas Ia pata adyacente como control (con formación del defecto crítico y estabilización de Ia fractura pero sin relleno de biomaterial). Previamente a Ia implantación de los biomateriales, éstos fueron sembrados con un número igual de células madre mesenquimales del tejido adiposo obtenido de las ovejas.
Para determinar Ia formación de nuevo hueso, se realizó un control radiográfico continuo y un estudio histológico a los 3 y 6 meses de Ia implantación. Los resultados muestran una clara ventaja del biomaterial con macroporosidad, con respecto al que no Io tiene. A partir de los 3 meses de Ia implantación se puede observar una mayor colonización de los osteblastos y osteoclastos del hueso en toda Ia estructura del biomaterial macroporoso, y Ia formación de nuevo hueso de forma homogénea. A los 6 meses, se observa una total integración del material macroporoso con el diseño de Ia invención, con formación de una nueva vascularización, que va a permitir Ia generación de un hueso estable, con difusión de nutrientes y oxígeno en toda su integridad y sin formación de zonas necróticas. Sin embargo, cuando el biomaterial no presenta una estructuración de macroporos, se observa Ia formación de nuevo tejido óseo restringida a Ia zona periférica al implante, quedando el resto de Ia matriz sin colonización celular, ni por parte de las células previamente sembradas, ni por las del tejido receptor, y además no se encuentra inducida Ia formación de una nueva vascularización.
Estos resultados permiten concluir que Ia Monetita macroporosa presenta evidentes ventajas con respecto a Ia formación de nuevo hueso, debido a Ia colonización de toda Ia estructura de Ia matriz por parte de las células de Ia zona de implantación, para dar lugar a una resorción, formación de matriz ósea e inducción de una nueva vascularización, de forma homogénea.
Ejemplo 4: Estudios in vitro de Biocompatibilidad
Previamente a combinar con células el material de monetita de porosidad estructurada de Ia invención, es necesario demostrar que dicho material es biocompatible.
Los ensayos in vitro realizados se refirieron a citotoxicidad, genotoxicidad (mutagenecidad) y hemocompatibilidad, teniendo en cuenta que el biomaterial de monetita de porosidad estructurada de Ia invención puede ser considerado como un producto implantable que va a estar en contacto permanente con el hueso, siendo Ia duración del contacto superior a 30 días.
4.1 Citotoxicidad
Utilizando técnicas de cultivo celular, estos ensayos determinan Ia lisis celular (muerte de las células), Ia inhibición del crecimiento celular y otros efectos sobre las células causados por los productos sanitarios, las materiales y/o sus extractos.
Mediante este ensayo se determina si el material en estudio, Monetita de porosidad estructurada, es tóxico para las células, afecta a su proliferación y viabilidad. El material analizado fue Ia matriz de monetita de porosidad estructurada obtenido en el ejemplo 1, de dimensiones 1cm de diámetro, 5 mm de altura y 64 macroporos, empleando como control Positivo: PVC, y como Control Negativo: polietileno de alta densidad.
En cuanto a las condiciones de extracción, al ser el espesor de los materiales >0.5 mm, 3 cm2 del material tienen se pusieron en contacto con 1 mi del medio de cultivo que actúa como agente extractor.
La línea celular empleada, para testar Ia citotoxicidad del material, fue Ia línea fibroblástica de ratón L929 cultivada en medio de cultivo DMEM con el 10% de suero fetal bovino.
Se determinó Ia citotoxicidad y proliferación de Ia monetita de porosidad estructurada mediante el ensayo de MTT. Este ensayo se basa en Ia reducción metabólica del MTT por el enzima mitocondrial succinato deshidrogenasa en un compuesto coloreado (formazán) y determina Ia funcionabilidad mitocondrial de las células que han estado en contacto con Ia monetita de Ia invención, en función de controles positivos y negativos establecidos. De esta manera, Ia cantidad de células vivas en el cultivo es proporcional a Ia cantidad de formazán producido y por Io tanto a Ia cantidad de absorbancia registrada mediante un espectrofotómetro.
Como control positivo se utilizó un biomaterial estándar citotóxico comercial, y como controles negativos se utilizaron el vicryl y polietileno de alta densidad, también comerciales. La representación gráfica de las curvas de proliferación obtenidas para las células L929 en cada uno de los casos se observa en Ia figura 9.
Los resultados obtenidos no muestran diferencias significativas entre Ia proliferación de las células L929 en Monetita estructurada de Ia invención y en el control negativo, demostrando que Ia matriz de monetita de porosidad estructurada de Ia invención no es un biomaterial citotóxico.
4.2 Mutagenicidad
En los ensayos de genotoxicidad, se utilizan cultivos celulares de mamíferos o no mamíferos u otras técnicas, para determinar las mutaciones genéticas, los cambios en Ia estructura o en el número de cromosomas y otras alteraciones del ADN o de los genes causadas por Ia toxicidad de los productos sanitarios los materiales y/o sus extractos.
Se determinó el potencial mutagénico in vito de Ia Monetita de porosidad estructurada de Ia invención mediante el ensayo denominado "Mouse Lymphoma Assay". Dicho ensayo está basado en Ia cuantificación de mutaciones en el gen timidina kinasa en las células de linfoma de ratón L5178TK+/-, inducidas o no tras el tratamiento de estas células con el biomaterial Monetita de porosidad estructurada. Las células deficientes en el gen Timidina Kinasa (TK) a causa de Ia mutación TK-/- son resistentes a los efectos citotóxicos de Ia trifluorotimidina (TFT). Las células capaces de producir TK son sensibles a Ia TFT, que inhibe el metabolismo y detiene Ia división celular. Así pues, las células mutantes son capaces de proliferar en presencia de TFT, mientras que las células normales que contienen al menos un alelo del gen TK no Io son. El ensayo se realizó en placas de 96 pocilios y el resultado final se obtuvo tras contar visualmente los pocilios positivos (figuras 10 a y b), en donde se observa el crecimiento de una colonia de células) y los negativos (figuras 10 c y d, donde no se observa crecimiento alguno). Una vez contados los pocilios positivos y negativos de cada placa de 96, se aplican una serie de fórmulas establecidas para el ensayo y los resultados se expresan en términos de frecuencias de mutación.
Para llevar a cabo el ensayo, las células se expusieron al producto a testar en presencia y ausencia de un sistema adecuado de activación metabólica, dado que en ocasiones puede ocurrir que un producto a testar no sea mutagénico, pero que sí Io sean los metabolitos generados in vivo a partir de ese producto.
El sistema más comúnmente empleado para simular in vitro el metabolismo hepático es una fracción postmitocondrial denominada S9 a Ia que se añaden cofactores y que se obtiene de hígados de rata tratados con inductores enzimáticos como el Aroclor 1254. De esta manera, previamente al tratamiento celular, el producto a testar se trata durante 2 h con Ia mezcla denominada S9, y transcurrido ese tiempo se tratan las células con el sobrenadante obtenido de esta mezcla tras Ia centrifugación de Ia misma.
Para el tratamiento de las células se utilizaron los siguientes productos:
- Como controles positivos:
• Metilmetanosulfonato (MMS) en ausencia de activación metabólica.
• 3-Metilclorantreno (3-MCA) en presencia de activación metabólica.
Como controles negativos:
» Medio de células L5178YTK+/- incubado durante 24 h.
• Medio de células L5178YTK+/- en presencia de activación metabólica incubado durante 24 h. Como producto a testar:
• Medio de células L5178YTK+/- incubado durante 24 h con el biomaterial Monetita.
" Medio de células L5178YTK+/- incubado durante 24 h con el biomaterial Monetita en presencia de activación metabólica.
Los resultados obtenidos (representados en Ia figura 11) muestran que tanto en presencia como en ausencia de activación metabólica se observa que los controles negativos utilizados en el experimento inducen una frecuencia de mutación baja y parecida a Ia que presentan las células que se han cultivado en presencia de Ia Monetita de porosidad estructurada. La existencia de células mutadas cultivadas con su medio de cultivo se debe a Ia alta tasa espontánea de mutación que poseen estas células, de esta manera, esta frecuencia de mutación se establece como background. En cuanto a los controles positivos, Ia frecuencia de mutación inducida en las células L5178YTK+/- es claramente superior (unas 7 veces más en ambos casos) al que inducen Ia Monetita o el medio de cultivo. Estos resultados demuestran que Ia Monetita NO es un biomaterial MUTAGÉNICO.
4.3 Hemocompatibilidad
Estos ensayos evalúan los efectos producidos sobre Ia sangre o sus componentes por productos sanitarios o materiales que entran en contacto con Ia sangre, utilizando un modelo o sistema apropiado. Los ensayos de hemolisis determinan el grado de lisis de los hematíes y Ia liberación de hemoglobina causadas por los productos sanitarios, materiales y/o sus extrastos in vito.
Se determinó Ia hemocompatibilidad de Ia monetita de porosidad estructurada de Ia invención mediante un ensayo colorimétrico de determinación de hemoglobina en sangre total y de hemoglobina liberada al plasma cuando Ia sangre se expone a Ia monetita. Dado que el biomaterial se encuentra en fase sólida, se testaron medios de cultivo de células (osteoblastos y AMSC) que estuvieron en contacto durante 24 horas con Ia monetita. Los resultados muestran que el coeficiente de variación de las rectas de calibración, muestras y controles de calidad (%CV) es ≤20% en todos los casos (excepto en el caso del calibrador 6) y 2/3 de los valores de Ia recta de control de calidad presentan un porcentaje de diferencia frente al teórico (%PVDF) ≤20%, por Io que los resultados del ensayo se encuentran dentro de los criterios de aceptación establecidos. Los porcentajes de hemolisis de los compuestos utilizados fueron los siguientes, considerando como 100% de hemolisis el valor de concentración de hemoglobina de 10,19 mg/ml que presenta Ia sangre utilizada:
Figure imgf000042_0001
Estos resultados, representados en Ia figura 12 permiten concluir que Ia Monetita de porosidad estructurada de Ia invención, es un biomaterial hemocompatible.
Ejemplo 5: Estudio comparativo de bioactividad entre Ia matriz de monetita porosa amorfa y Ia matriz de monetita de porosidad estructurada
La bioactividad de un material va a depender tanto de su composición químico-física como de su estructura.
Así en el presente ejemplo se lleva a un estudio para determinar el efecto que tiene el empleo de Ia matriz amorfa o de Ia matriz de porosidad estructurada indicadas sobre Ia capacidad de proliferación de células madre mesenquimales, una de las estirpes celulares implicadas en el proceso de regeneración ósea junto con los osteoblastos del tejido receptor.
Una vez obtenida Ia biomatriz porosa, tal y como se ha descrito anteriormente, se procedió a su lavado con medio de cultivo de pH 7.4 durante una o dos horas para hidratar y neutralizar el pH (cambiando el medio de cultivo 2 o 3 veces). Posteriormente, células madre mesenquimales adultas de tejido adiposo (ATMC) fueron sembradas directamente sobre el material, a una concentración de 0,5.106-6.106 células por cm2. Trascurridas dos horas de Ia siembra, se adicionó medio de cultivo hasta cubrir todo el material, renovándolo cada dos o tres días.
Las células se cultivaron en el biomaterial durante 7 días, tras Io cual, se procedió a analizar Ia biomatriz en cuya superficie se habían adherido las células por microscopía electrónica de barrido (SEM), para observar Ia capacidad de adhesión y colonización de dichas células sobre el biomaterial de monetita porosa.
Las imágenes obtenidas por SEM (ver figura 13 a y b), demuestran que las células madre mesenquimales son capaces de adherirse perfectamente al biomaterial, adoptando una morfología adecuada y que además establecen contactos intercelulares, como ocurre en un tejido a nivel fisiológico (figura 13 c y d). Como puede observarse en las figuras 13 c y d las células se expanden perfectamente con el biomaterial, interaccionando de forma máxima con el mismo y emitiendo prolongaciones citoplasmáticas (filipodios), que aumentan Ia superficie de contacto e incrementan el nivel de contacto intercelular.
El biomaterial de porosidad estructurada proporciona una mayor superficie en Ia que las células se pueden adherir, proliferar e iniciar a realizar sus funciones en el proceso de regeneración ósea. Es decir, pueden iniciar Ia creación de nueva matriz ósea que va a sustituir al biomaterial y expresar moléculas de señalización que potenciarán y dirigirán el remodelado óseo y Ia neovascularización.
Por el contrario, el empleo de Ia matriz amorfa como soporte para el crecimiento celular, muestra que Ia distribución aleatoria de poros no es adecuada para que se pueda dar lugar a una colonización eficiente de las células (figura 14 a y b), quedando estas relegadas en su mayoría a Ia superficie de Ia matriz puesto que tienen un tamaño significativamente mayor que Ia microporosidad que caracteriza al biomaterial.
Los resultados tal y como se muestran en Ia figura 15 demuestran que en Ia matriz de monetita de porosidad estructurada se cuantifican un mayor número de células. A las 24 de cultivo las células en Ia matriz de monetita de porosidad estructura proliferan 1.5 veces más con respecto a las que se encuentran en Ia matriz de monetita amorfa, llegando a ser Ia proliferación 1.8 veces superior a las 48 horas de cultivo.
En Ia matriz de Ia monetita amorfa, las células a Io largo del tiempo dan valores de proliferación inferiores al número de células dispuestas en el tiempo 0 horas. Estas células no tienen sitio para distribuirse y se compactan en los macroporos sin continuidad de Ia superficie, inhibiendo su proliferación y localizándose solamente en Ia superficie del material sin posibilidad de colonizar su interior, solamente podrían introducirse en los escasos macroporos dispuestos de forma aleatoria. Estos macroporos se encuentran a modo de oquedades que, en ningún caso penetran por toda Ia estructura, Io que dificultaría su interacción con el tejido circundante in vivo y Ia llegada de nutrientes y oxígeno a todas las células. Estas células solo pueden distribuirse por Ia superficie del biomaterial. Estas células se compactan por falta de espacio, inhibiendo su proliferación y localizándose Ia mayoría de ellas tan solo en Ia superficie del material.
Sin embargo las células dispuestas en Ia matriz de monetita con porosidad estructurada se distribuyen por todos los poros, en el interior de estos y por Ia superficie del material dando valores de crecimiento superiores al tiempo 0 horas. Estas células no se compactan al tener mayor superficie de contacto con el material y por tanto no inhiben su crecimiento.
Ejemplo 6. Determinación del número de células a implantar por superficie de matriz
No existen estudios que permitan estandarizar o conocer el número de células óptimo en este tipo de bimateriales, por Io que los distintos investigadores llevan a cabo de forma específica sus adaptaciones para conseguir el máximo resultado clínico.
Para que Ia regeneración ósea tenga éxito el implante tiene que integrarse en Ia estructura ósea del organismo. Para ello, las células del paciente, (endoteliales, osteoblastos, osteoclastos, macrófagos, etc) tienen que interaccionar con el producto y colonizarlo, junto con las células aportadas. Por otro lado, es necesaria una cantidad de células en el producto suficiente para que se cree un efecto trófico potente, que active Ia zona y desencadene el proceso regenerativo.
Para que pueda producirse Ia convivencia entre las células del paciente y las del producto, un potente efecto trófico del producto y una homogénea distribución celular y difusión de nutrientes, gases y productos de desecho del metabolismo, el biomaterial debe aportar un número alto de células, pero sin que dichas células lleguen a obturar Ia estructura porosa del biomaterial.
Además, el aporte celular debe ser importante puesto que a medida que se vaya degradando el biomaterial, éste tiene que ser reemplazado por matriz sintetizada por las propias células.
En conclusión, Ia cantidad idónea de células es aquella que ocupe prácticamente Ia totalidad de Ia superficie del biomaterial pero que no produzca Ia obturación de Ia estructura porosa, por los siguientes motivos:
- Conseguir el efecto trófico suficiente para activar el proceso de regeneración ósea.
- Sintetizar suficiente matriz extracelular para reemplazar al biomaterial. - Permitir Ia llegada y asentamiento de células del paciente implicadas en Ia regeneración ósea, entre las que se encuentran las células endoteliales encargadas de Ia neovascularización.
Para determinar el número de células a implantar por superficie de biomaterial, se realizó Ia siembra de concentraciones crecientes de células en el biomaterial y se observó al SEM, el grado de colonización de Ia estructura. Este estudio también permite determinar si Ia forma de siembra empleada es adecuada para que Ia distribución de las células sea homogénea.
El procedimiento empleado consistió en sembrar discos de monetita de 1cm de diámetro, 0,5 cm de altura, y 64 macroporos con un diámetro de 500 μm, con concentraciones celulares crecientes que abarcan desde medio millón de células hasta 6 millones por biomaterial (0,5x106-1x106-2x106-3x106-4x106-5x106-6x106). Las células se mantienen durante 8 días en contacto con el biomaterial, para permitir su adaptación y asentamiento. Los resultados se analizan por SEM.
Las imágenes (Figuras 17 y 18) indican que a medida que aumenta Ia concentración celular se incrementa el grado de colonización del biomaterial de monetita de porosidad estructurada de Ia invención, puesto que Ia capacidad de adhesión al biomaterial es cercano al 100%. Cuando se aplica Ia dosis inferior, Ia superficie del biomaterial no muestra una invasión completa, sino que este fenómeno comienza a visualizarse a partir de las dosis de
2x10δ y 3x106 de células. Sin embargo, los poros de 500 μm comienzan a obturarse a partir de Ia siembra de 4 x106 células y a las dosis de 5 x106 y 6 x106 se encuentran totalmente obturados. Además, a partir de Ia dosis de 1 x106 células ya se observa ocupación del interior de los poros del biomaterial, aumentando dicha ocupación con Ia dosis celular.
Según los resultados obtenidos, para los biomateriales utilizados que tienen una superficie de contacto total de aproximadamente 6 cm2, una buena cantidad de células estaría comprendida entre 2 y 3 millones de células, Io que resulta entre 300.000 y 500.000 células por cm2.
Ejemplo 7. Análisis de Ia evolución de las células en Ia matriz. Análisis del estado celular en Ia matriz a diferentes tiempos. Una vez seleccionado el rango de dosis celular adecuado para su disposición en el biomaterial, a continuación se estudió Ia evolución de las células en el biomaterial de porosidad estructurada a Io largo del tiempo. Para ello, se llevó a cabo un análisis del comportamiento celular in vitro a distintos tiempos. 7.1 Observación de las células prediferenciadas en la matriz de porosidad estructurada a Io largo del tiempo:
Para poder observar de forma adecuada a las células en el biomaterial de porosidad estructurada, se realizó una observación directa por microscopia electrónica de barrido
(SEM) y además una visualización de las células con tinción nuclear de Hoechts por microscopía confocal. La visualización por SEM proporciona datos sobre Ia afinidad y capacidad de interacción de las células con el biomaterial, a través de Ia observación de Ia superficie de contacto. Sin embargo, es posible que el procesado de las muestras para SEM elimine células del biomaterial, que pueden ser visualizadas mediante técnicas fluorescentes.
El procedimiento llevado a cabo fue el siguiente:
• Siembra de 300.000 AMSC prediferenciadas por cm2 de biomaterial.
• Realización del procesado para SEM o Ia tinción nuclear de Hoechts y visualización por microscopía confocal.
• Análisis de Ia distribución y grado de interacción de las células en el biomaterial transcurridos 1 , 4, 7, 10 y 15 días de asociación.
Las imágenes de los resultados de observación por microscopía confocal muestran de forma muy específica y con un mínimo ruido de fondo los núcleos celulares teñidos con Hoechts. Se obtuvieron imágenes de las células en Ia superficie de biomaterial (TOPVIEW) y en el interior de los canales de los macroporos (SIDEVIEW), previa fractura controlada del biomaterial.
En Ia imagen TOPVIEW (Figura 19a), se observa que a medida que transcurre el tiempo de cultivo se da un aumento en el número de células en Ia superficie del biomaterial, que van cubriendo las paredes de los macroporos y obturando Ia superficie de todos a partir de los 10 días de cultivo.
La imagen SIDEVIEW (Figura 19b) es un montaje de varias imágenes seriadas para poder observar las células en toda Ia longitud del macroporo. Las células colonizan el interior de los canales desde el día 1 de asociación. A medida que transcurre el tiempo, se observa un mayor tapizado celular y grandes agregados a los 10 y 15 días de cultivo. Las imágenes de los resultados de observación por SEM muestran también imágenes de Ia superficie del biomaterial (TOPVIEW) y del interior del poro en su totalidad (SIDEVIEW).
En las imágenes TOPVIEW (Figura 20), se observa el aumento del grado de colonización a medida que transcurre el tiempo de cultivo. Se observa una obturación de los poros a partir del 7o día de cultivo, llegándose a obturar prácticamente Ia totalidad de los poros a los 15 días.
En las imágenes SIDEVIEW (Figura 21), observamos un menor número de células, incluso en los tiempos largos, debido a pérdidas producidas en el procesamiento de las muestras. Sin embargo, nos ofrece un análisis claro de Ia naturaleza de Ia interacción de las células con el biomaterial utilizando criterios morfológicos. Las células muestran una gran superficie en contacto con el biomaterial observando un gran número de extensiones citoplasmáticas, y además son capaces incluso de introducirse en su estructura interna.
Una vez analizadas las imágenes de Hoesch y SEM, se puede concluir que, en torno a los 4 días, las AMSC interaccionan de forma adecuada y homogénea con el biomaterial de monetita de porosidad estructurada de Ia invención, se invade Ia mayoría de su superficie, sin producirse Ia obturación de poros, Io que permitirá el paso de nutrientes y de células del huésped que acudirán a Ia llamada trófica de las AMSC.
7.2 Determinación del efecto osteoinductor del material de monetita de porosidad estructurada. Análisis de expresión génica de células mesenquimales adultas obtenidas del tejido adiposo (ATMC) sin diferenciar, por comparación de Ia estructura de matriz de monetita con porosidad estructurada frente a Monetita amorfa.
El biomaterial de Monetita de porosidad estructurada tiene una distribución macroporosa que favorece Ia distribución homogénea de las células por toda Ia matriz. Además esta disposición porosa permite mejor Ia llegada de nutrientes, gases y las moléculas de señalización producidas por las mismas células. Todo ello determina que las células se encuentren en mejores condiciones y que puedan intercomunicarse de forma más efectiva para expresar su fenotipo osteogénico. Por este motivo, es posible que Ia nueva estructura del biomaterial potencie el efecto osteoinductivo de Ia naturaleza de Ia matriz (derivado del fosfato calcico, al igual que el hueso), e induzca Ia expresión de genes relacionados con Ia diferenciación osteogénica. Para determinar este efecto inductor de Ia osteogénesis debido a Ia nueva estructura macroporosa, se realizan análisis de Ia expresión de genes relacionados con Ia diferenciación ósea, mediante RT-PCR, comparando Ia estructura de Ia matriz de Monetita amorfa con respecto a Ia porosa estructurada.
Para ello se va lleva a cabo el siguiente experimento:
1.- Disposición de células madre mesenquimales adultas obtenidas del tejido adiposo y osteoblastos de hueso humano, sobre las matrices porosas de Monetita amorfa y de Monetita con porosidad estructurada, a una concentración de 106 células/cm3.
2.- Mantenimiento en cultivo durante 7 días sobre los biomateriales, para permitir que Ia estructura del biomaterial actúe sobre el comportamiento celular.
3.- Extracción del RNA de las células que se encuentran sobre los biomateriales y análisis de Ia expresión de los siguientes genes mediante RT-PCR: fosfatasa alcalina, osteopontina, osteonectina y osteocalcina. Estos genes se encuentran directamente relacionados con el proceso de diferenciación ósea y se activan a medida que las células madre mesenquimales y los osteoblastos llevan a cabo su proceso diferenciación hacia hueso.
Los resultados indican una inducción de Ia expresión de genes osteoinductores en las células que se encuentran en el biomaterial de Monetita de porosidad estructurada con respecto a Ia amorfa.
En las células madre mesenquimales se produce una inducción en los genes de diferenciación temprana osteopontina y osteonectina y en menor medida de los genes de diferenciación tardía fosfatasa alcalina y osteocalcina, con respecto a las células dispuestas en Ia Monetita amorfa.
Con respecto a los osteoblastos, se observa una inducción de Ia expresión de genes de diferenciación tardía como Ia fosfatasa alcalina y Ia osteoclacina.
Estos resultados demuestran que Ia estructura del biomaterial tiene una influencia directa en el comportamiento celular. La distribución macroporosa homogénea y con poros capaces de atravesar Ia estructura en su totalidad, dándose una mayor interconexión porosa, permite una mayor comunicación intercelular y un mejor estado celular por el acceso a los nutrientes y los gases. Esta situación permite expresar de forma más efectiva el fenotipo celular y potencia el efecto osteoinductor producido por Ia composición del biomaterial. Este efecto se verá multiplicado cuando el biomaterial sea incorporado al defecto óseo in vivo, en donde las señales osteogénicas se multiplicarán en el entorno del defecto óseo, para que pueda darse una reparación tisular. Estas señales reclutarán osteoblastos del hueso y células madre mesenquimales de Ia médula ósea, que podrán invadir el biomaterial de forma homogénea, y producir nueva matriz ósea que irá sustituyendo al biomaterial que se va resorbiendo, para producir una reparación estable.
Estudio del mantenimiento del estado de diferenciación de las células dispuestas en el biomaterial de monetita de porosidad estructurada a Io largo del tiempo (comparación del comportamiento de ATMC prediferenciadas y sin diferenciar)
Como se indicaba anteriormente, además de su disposición y distribución, es importante averiguar el estado funcional de las células en el biomaterial de porosidad estructurada a Io largo del tiempo, para determinar el mantenimiento del estado de diferenciación osteogénica, es decir, si se mantiene Ia orientación hacia Ia formación de células óseas, capaces de sintetizar matriz extracelular que sustituya el biomaterial que se va degradando, para regenerar el defecto óseo.
En este estudio se analizó el mantenimiento de Ia expresión de genes implicados en Ia osteogénesis en AMSC prediferenciadas dispuestas en el biomaterial. Con este objetivo, se analizó Ia expresión de los siguientes genes implicados en el proceso de osteogénesis mediante RT-PCR: osteopontina (OPN), osteocalcina (OCA), osteonectina (OTN), TGF-β1 , fosfatasa alcalina (FA) y colágeno tipo I (COL-1) (figura 22).
El procedimiento llevado a cabo fue el siguiente:
- Disposición de 300.000 células AMSC sin diferenciar y prediferenciadas por cm2 del biomaterial.
Análisis de Ia expresión de Ia fosfatasa alcalina, osteocalcina, osteopontina, colágeno tipo-1 y el TGF-β1, a los tiempos de 1 , 4, 7, 10 y 15 días en cultivo de asociación con el biomaterial.
En cuanto a los resultados con AMSC sin diferenciar, como se puede observar en Ia figura 22, las células AMSC expresan todos los genes estudiados, osteonectina, osteocalcina, osteopontina colágeno tipo 1 , TGF-β1 y Ia enzima fosfatasa alcalina.
Esta expresión no se modifica cuando se cultivan sobre el biomaterial de porosidad estructurada en los tiempos analizados. En concreto, osteonectina, osteocalcina, colágeno tipo 1 y TGF-β1 mantienen su expresión a los 4, 7, 10 y 15 días del cultivo sobre el biomaterial. La expresión de osteopontina aparece disminuida a los 4 y 7 días, pero se recupera y mantiene a los 10 y 15 días de cultivo en el biomaterial. Sin embargo, Ia expresión de Ia enzima fosfatasa alcalina es muy ligera en las AMSC, se pierde durante el cultivo en el biomaterial e inicia su expresión a partir de los 15 días de cultivo.
El colágeno tipo 1, Ia osteopontina y Ia osteonectina se expresan de forma temprana en las células osteoprogenitoras. La osteocalcina aparece cuando se inicia Ia mineralización. En este caso, las AMSC expresan tanto proteínas implicadas en el inicio de Ia diferenciación osteoblástica como en Ia fase final de dicha diferenciación. Además, son capaces de sintetizar colágeno, que forma parte del componente orgánico de Ia matriz del hueso. Estas proteínas una vez sintetizadas pueden ser adsorbidas y quedar atrapadas en Ia nueva matriz que se forme.
La fosfatasa alcalina es una enzima que libera fosforo inorgánico a partir de esteres fosfóricos, necesarios para Ia mineralización, es decir, participa en Ia mineralización del hueso y en Ia maduración de Ia matriz osteoide y por Io tanto su expresión es muy tardía en el proceso dé diferenciación celular.
El TGF-β1 es un potente estimulador de Ia formación ósea, potencia Ia diferenciación osteoblástica y Ia síntesis de matriz ósea e inhibe Ia síntesis de proteasas que degradan Ia matriz. De hecho, está siendo utilizado como marcador serológico pronóstico de Ia capacidad de consolidación en el proceso de evolución de Ia pseudoartrosis.
En cuanto a los resultados con AMSC prediferenciadas. cuando las células se prediferencian hacia hueso durante 8 días y se disponen en cultivo sobre Ia Monetita de porosidad estructurada de Ia invención (figura 23), no se producen variaciones en el perfil de expresión génica.
Las células prediferenciadas muestran todavía el mismo patrón de expresión de los genes relacionados con Ia regeneración ósea que las AMSC sin diferenciar. Cuando las AMSC prediferenciadas se disponen en el biomaterial, se mantiene Ia expresión de estos genes, no evidenciándose signos de interacción que disminuyan Ia expresión de genes implicados en Ia regeneración ósea (Figura 23).
La baja expresión de Ia enzima fosfatasa alcalina puede ser debida a que en las fases iniciales de Ia formación de Ia matriz osteoide no interviene este enzima de forma preferente. En el inicio de Ia formación del hueso en primer lugar se da Ia síntesis y excreción de proteínas a Ia matriz, éstas forman una estructura ordenada en Ia que se depositarán las sales de calcio. La fosfatasa alcalina interviene al final del proceso cuando se produce Ia mineralización. Este enzima genera iones fosfato (que en este caso ya los está proporcionando el biomaterial) y el aumento de Ia concentración de estos iones en Ia matriz crea centros de nucleación para el depósito de sales minerales.
Así, como conclusión final cabe indicar que el biomaterial de Monetita estructurada de Ia invención, a diferencia del de Monetita amorfa, permite una colonización completa tanto de su estructura externa como interna por parte de las células, Ia llegada de nutrientes y gases a toda su estructura para mantener unos altos perfiles de viabilidad y una inducción de Ia proliferación, así como una meyor expresión de los genes relacionados con Ia osteosíntesis y generación de nueva matriz ósea.
Ejemplo 8. Análisis de Ia secreción de matriz extracelular en el biomaterial de porosidad estructurada por parte de las células a Io largo del tiempo. POTENCIA.
8.1 Estudio de Ia expresión de las proteínas implicadas en Ia formación de Ia matriz extracelular a Io largo del tiempo (OPN, OCA, Colágeno tipo 1).
El hueso es un tejido conjuntivo mineralizado muy vascularizado que contiene células especializadas, matriz orgánica formada por proteínas y fase mineral compuesta por sales de calcio. La matriz proteica Ie permite ser flexible y tolerar Ia tensión, mientras que las sales de calcio Ie dan firmeza y resistencia a Ia presión. En el proceso de formación del hueso, primero se sintetizan los componentes de Ia matriz proteica, conformando una estructura ordenada en Ia que posteriormente se depositaran las sales de calcio.
La matriz proteica representa un tercio del peso óseo. Está formada por proteínas como el colágeno tipo-l (>95%) y otras que intervienen en Ia fijación del calcio, como Ia osteocalcina
(OCA-15%) y osteopontina (OPN). El colágeno-l y OPN se expresan de forma temprana en las células osteoprogenitoras. La OCA aparece cuando se inicia Ia mineralización y es un marcador útil para estadios finales de diferenciación osteoblástica. Las células prediferenciadas sintetizan en su citoplasma el colágeno tipo 1 , osteopontina y osteocalcina como sucede en las células de hueso. También se ha demostrado que las células prediferenciadas expresan los genes de OPN, OCA y colágeno tipo 1 cuando están dispuestas sobre las matrices de monetita de porosidad estructurada de Ia invención. Por ello, es importante determinar si estas células, además de expresar sus genes, son capaces de sintetizar estas proteínas y excretarlas para formar Ia estructura ordenada en Ia matriz, imprescindible para el depósito de las sales de calcio en Ia formación del nuevo hueso. El procedimiento llevado a cabo fue el siguiente:
- Disposición de 300.000 AMSC prediferenciadas por cm2 del biomaterial.
- Inmunodetección de las proteínas de matriz extra celular ósea OPN, OCA y COL-1 en el biomaterial.
- Análisis mediante microscopía confocal a los tiempos 1 , 4, 7, 10 y 15 días de asociación con el biomaterial.
Como en ocasiones anteriores, se presentan imágenes TOPVIEW (figuras 25, 27, 29 y 31a) de Ia superficie del biomaterial, e imágenes SIDEVIEW (figuras 26, 28, 30 y 31b), correspondientes a reconstrucciones cortes longitudinales del interior del poro.
La interpretación de las imágenes de inmunomarcaje (Figuras 25 y 26), indican Ia formación y secreción de Colágeno I desde el primer día de asociación, Io que va aumentando a medida que transcurre el tiempo. También se observa un aumento del número de células en el biomaterial desde el día 1 hasta el 15, Io que corrobora Ia capacidad de colonización del biomaterial de porosidad structurada por las AMSC, como se ha determinado en experimentos previos.
En las imágenes SIDEVIEW (figura 26), no se aprecia mareaje de colágeno a partir del día 7 de asociación, Io que es debido a Ia obturación que se produce en los poros, como se ha observado en las imágenes de SEM (figuras 17-18 y 20-21), que impide Ia difusión del anticuerpo al interior del biomaterial. Este fenómeno ocurre en todos los inmunomarcajes realizados, a partir del día 7 de asociación.
En cuanto a Osteocalcina, las AMSC prediferenciadas producen y secretan OCA en el biomaterial de forma creciente a medida que avanza el tiempo de asociación. Las imágenes de Ia zona interna de los poros solo muestran mareaje hasta los 7 días, de nuevo por Ia obturación de los poros y Ia dificultad en Ia difusión del anticuerpo. Sin embargo estas imágenes nos permiten observar una gran colonización de los núcleos a medida que avanza el tiempo de cultivo en el biomaterial, en toda Ia longitud del poro (Figuras 27 y 28).
En el caso de Ia osteopontina (OPN) (figuras 29 y 30) también se observa una síntesis y excreción de Ia proteína en el biomaterial, desde el día 1 al 15 de asociación. De nuevo las imágenes del interior de los poros (figura 30) son más pobres por Ia dificultad en Ia difusión del anticuerpo. Para corroborar que Ia falta de señal en el interior longitudinal de los poros a Io largo del tiempo, es debido a Ia dificultad en Ia difusión del anticuerpo, se llevó a cabo el inmunomarcaje de las proteínas previa fractura del biomaterial de forma que queda al descubierto Ia pared del poro interno en su totalidad, de esta forma se tiene acceso directo a toda Ia superficie interior de los poros (figuras 26, 28, 30 y 31b).
Como se puede observar en Ia figura 31 , a los 4 días, tiempo posible de asociación del biomaterial de Ia invención previo a Ia realización del implante en el paciente, se observa una marca contundente de todas las proteínas analizadas tanto en Ia superficie del biomaterial de Ia invención, como en toda Ia longitud de Ia superficie interna de los poros. Estos resultados indican que las MSC prediferenciadas que se encuentran en el biomaterial de porosidad estructurada son capaces de sintetizar y secretar proteínas relacionadas con Ia síntesis ósea como el colágeno tipo I, osteopontina y osteocalcina.
8.2 Análisis del calcio sintetizado por las células sobre el biomaterial a Io largo del tiempo mediante EDX.
Se ha comprobado que las AMSC prediferenciadas en el biomaterial, son capaces de iniciar
Ia síntesis de proteínas para formación de nuevo hueso, pero para que se pueda producir una matriz ósea estable es necesario que se produzca, además, un proceso de mineralización.
Para determinar este hecho, se analiza si las AMSC son capaces de sintetizar depósitos de calcio para formar Ia fase mineral del hueso.
En el organismo, los osteoblastos participan en Ia mineralización de Ia matriz orgánica, produciendo vesículas de matriz de 100 nm rodeadas de membrana, en Ia que se acumula Ca 2+ y PO4 2-, ricas en fosfatasa alcalina y pirofosfatasa, enzimas capaces de generar iones PO4 2-. El aumento de estos iones hace que se formen centros de nucleación, necesarios para que se depositen las sales minerales.
Una de las proteínas de unión al calcio es Ia osteocalcina, que según los resultados obtenidos, se encuentra formando parte de Ia matriz orgánica que sintetizan las células prediferenciadas sobre el biomaterial. La alta expresión de esta proteína, sugiere que las células pueden secretar depósitos de calcio para formar el mineral del nuevo hueso. Por ello, es interesante estudiar si estas células pueden liberar depósitos de calcio al medio extracelular. Este calcio podría formar parte de Ia nueva matriz, bien formando cristales de hidroxiapatita o uniéndose a las proteínas y quedando absorbido en Ia matriz como sucede en el organismo. El procedimiento llevado a cabo fue el siguiente:
Disposición de AMSC prediferenciadas sobre el biomaterial a Ia misma concentración que en las experiencias anteriores.
- Mantenimiento en asociación durante 4, 7, 10, y 15 días.
- Análisis del calcio mediante SEM asociado a EDX (dispersión de Ia energía mediante rayos X). Esta técnica permite analizar y discernir los elementos químicos que se encuentran en una muestra.
Las imágenes de los resultados obtenidos muestran zonas puntuales en las que se ha analizado Ia distribución de elementos químicos elementales mediante SEM-EDX (figuras 32 y 33). Esta técnica permite determinar qué elementos y su proporción en una muestra utilizando una alta definición. En este caso permite determinar si las células están produciendo elementos relacionados con Ia mineralización de Ia matriz ósea.
En primer lugar se analizaron los elementos que aparecen en el biomaterial solo y se busca una forma de distinguirlos de Ia matriz ósea producida por las células, ya que los elementos implicados son los mismos (Ca y P).
En el análisis del biomaterial de porosidad estructurada de Ia invención sin AMSC se distinguen los siguientes elementos:
- 3 picos de calcio que emite energía en tres líneas α, β y λ dependiendo de hasta qué nivel energético penetren los electrones incidentes. La línea λ se solapa con Ia del carbono y es más difícil de discernir.
- Oxígeno
- Fósforo
- Carbono
Análisis de las AMSC en el biomaterial de porosidad estructurada de Ia invención:
Para poder determinar los elementos presentes en las células, sin interferencia de los del biomaterial, se han tomado como referencia, puntos en el centro de los canales, alejados de las paredes del biomaterial, por Io que las medidas y los elementos detectados corresponden exclusivamente a las células. Se han realizado medidas a los 4, 7, 10 y 15 días de asociación.
Los gráficos de las figuras 32 y 33 indican una distribución de elementos diferente de Ia encontrada en el biomaterial. Aparece una distribución completamente diferente de elementos, entre los que se encuentra como novedad el Silicio, elemento distintivo procedente de las células, que no aparece en ninguna muestra tomada en el biomaterial y un aumento muy significativo del Carbono. Es decir en las células podemos distinguir:
- Calcio en sus 3 líneas de energía
- Oxigeno
- Fósforo
- Silicio
- Carbono
A los 4 días de asociación, todavía no se observan partículas electrodensas procedentes de las células. La distribución de los elementos nos muestra un patrón diferente al de Ia monetita, los picos del calcio son muy bajos y aparecen otros picos como el del silicio y otros elementos que forman parte de las células, (figura 32b y c)
A los 7 días, se observan en las células partículas más electrodensas, y Ia distribución de sus elementos es algo diferente. Sobre todo en Io referente a los picos del calcio, los cuales aparecen más intensos en las partículas, (figura 32d y e)
A los 10 y 15 días de cultivo se observan las células ocupando completamente el centro del poro y sobre ellas claramente partículas electrodensas, con picos muy intensos en calcio y fósforo. Cuando analizamos Ia composición química de las células nos da un patrón de líneas de calcio bastante más bajas que cuando analizamos Ia composición de las partículas electrodensas, tanto a los 10 como a los 15 días del cultivo, (figuras 33 a-b y c-d)
Según los resultados obtenidos a Io largo del tiempo de asociación, aparecen partículas electrodensas de forma creciente cuya composición química principal es fósforo y calcio (figura 34).
Estas partículas electrodensas de Calcio y Fósforo son sintetizadas y excretadas por las células, ya que aparecen asociadas al silicio (exclusivo de las células) y los puntos de medida se han tomado en una zona sin biomaterial. Estas partículas pueden ser vesículas de matriz que se encuentran en el organismo, en las que se acumulan Ca2+ y PO4 2". Estos elementos son los que inician Ia formación de Ia nueva matriz ósea mineralizada.
El hecho de que aparezca. Silicio formado por las células es muy relevante como indicador de formación de nueva matriz y de Ia capacidad de regeneración ósea. En el organismo, el silicio se concentra en los osteoblastos e interviene en Ia producción de Ia matriz y en el depósito de las sales minerales.
Estudios llevados a cabo por Schwarz y Carliste demuestran un papel importante del silicio en Ia osteogénesis. Según estos autores, el silicio se presenta en tasas elevadas en sitios de calcificación. Demuestran que en lugares en los que se produce un proceso intenso de calcificación, como es el caso de las fracturas, se encuentran importantes concentraciones de silicio.
El silicio actúa como elemento que permite enlaces longitudinales entre las proteínas y los polisacáridos o bien entre los polisacáridos. Interviene en Ia formación de Ia estructura proteica ordenada en Ia matriz, para que se lleve a cabo Ia correcta mineralización del hueso.
En conclusión, el aumento de Ia síntesis de las partículas a Io largo del tiempo en asociación con el biomaterial de monetita de porosidad estructurada, compuestas de Calcio, Fósforo y Silicio, indica que se dan las condiciones adecuadas para Ia formación de las sales de calcio necesarias para que se forme Ia fase mineral del hueso.
Ejemplo 9. Análisis de Ia capacidad de secreción autocrina de factores de crecimiento relacionados con Ia regeneración ósea por parte de las células cuando están dispuestas en el biomaterial de monetita de porosidad estructurada. POTENCIA.
Los factores de crecimiento son proteínas producidas por las células óseas que actúan como moduladores de las funciones celulares. Está descrito en Ia bibliografía que el TGF-β1 es un factor importante en el remodelado óseo ya que es sintetizado por los osteoblastos potenciando su diferenciación y favoreciendo Ia síntesis de matriz osteoide (Riancho et Ia 2003). El TGF-β1 tiene efectos quimiotácticos sobre los precursores de los osteoblastos, estimulando su proliferación y Ia síntesis de colágeno (Fernandez-Tresguerres et al 2006).
Es tanta su implicación en Ia regeneración ósea, que está siendo utilizado como marcador pronóstico en serología para determinar Ia capacidad que puede tener un individuo de curar una fractura complicada (Zimmermen, 2005). Para determinar Ia capacidad que tienen las AMSC prediferenciadas de secretar este factor de crecimiento con o sin biomaterial de monetita de porosidad estructurada, se lleva a cabo Ia cuantificación del factor soluble en los medios de cultivo. Estos medios proceden del cultivo de células prediferenciadas solas o de células prediferenciadas en contacto con el biomaterial.
El procedimiento llevado a cabo fue el siguiente:
- Disposición de diferentes concentraciones celulares: 0,5-1-2-3-4-5 millones de células prediferenciadas en 6 cm2 de superficie y en un volumen de 1,5 mi de medio. Cultivo durante 7 días.
- Disposición de 2x106 células prediferenciadas en 6 cm2 de superficie en un volumen de 1,5 mi de medio de cultivo durante 1 , 4, 7, 10 y 15 días de cultivo.
- Análisis por ELISA de Ia cantidad de TGF-β1 soluble.
Los resultados muestran que en todos los casos se observa una presencia relevante del factor en el medio (figuras 35-38). Las concentraciones detectadas varían dependiendo del momento del metabolismo celular y del uso que se esté produciendo del factor en Ia célula.
Cuando las células crecen sin el biomaterial de porosidad estructurada, se observa un aumento gradual en Ia concentración de TGF-β1en las concentraciones celulares inferiores, proporcional al número de células por superficie (Figura 35). En las concentraciones superiores se aprecia un ligero descenso o estabilización, que puede ser debido a que el factor esté ejerciendo su función unido al receptor, a que haya ya cumplido su función y comience a degradarse, a que Ia concentración elevada esté inhibiendo su propia síntesis por un mecanismo de feed-back.
En Ia figura 36 se representa Ia secreción del factor de crecimiento por parte de las células prediferenciadas a Io largo del tiempo en cultivo. Se observa un pico en Ia síntesis y secreción al medio a los 4 días del cultivo, posteriormente un descenso hasta el día 10, a partir del cual, inicia un nuevo aumento en Ia secreción.
Este comportamiento es típico de los factores de crecimiento que actúan según un mecanismo feed-back:
- 1o: se da Ia síntesis y secreción al medio. - 2°: se une a su receptor específico en Ia superficie de Ia célula receptora para ejercer su función, momento en el que se puede observar una disminución de su presencia en el medio de cultivo.
- 3o: si sigue siendo necesario para Ia activación de determinados procesos celulares, comienza de nuevo su síntesis y secreción al medio para mantener su efecto hasta que Ia célula determine Ia inhibición de su síntesis.
Cuando las células se encuentran dispuestas en el biomaterial, los resultados demuestran que también son capaces de sintetizar y secretar al medio de cultivo el factor TGF-β1 (Figura 37).
La presencia del factor en el medio se correlaciona con el incremento del número de células en el biomaterial, hasta que se produce de nuevo una estabilización de Ia secreción, que puede ser debida a que no se necesite incrementar los niveles para su actuación.
Asimismo, una misma concentración celular dispuesta sobre monetita de porosidad estructurada a Io largo del tiempo en cultivo, aumenta Ia secreción del factor, Io que puede ir relacionado con el incremento celular a Io largo del tiempo (figura 38). En concreto los resultados muestran que hay un aumento de Ia secreción desde el día 1 hasta el 10 de cultivo, momento a partir del cual empieza a estabilizarse y descender moderadamente.
Este incremento también puede no estar relacionado con un aumento en el número de células, sino deberse a una inducción para potenciar Ia síntesis de matriz extracelular. A partir del día 10 de asociación, desciende su síntesis o bien el factor se encuentra en su mayoría unido a receptores ejerciendo su función, no observándose de forma libre en el medio de cultivo.
En este caso el mecanismo feed-back del factor se regula algo diferente al que se observa cuando las células no crecen sobre Ia matriz de Monetita de porosidad estructurada de Ia invención, de manera que el incremento en Ia secreción se mantiene hasta el día 10, descendiendo a partir de este día.
En conclusión, las células prediferenciadas creciendo sobre el biomaterial de monetita de porosidad estructurada son capaces de sintetizar y secretar al medio exterior el factor TGF- β1. Como se ha demostrado en el estudio de Ia expresión génica de este factor, en las células prediferenciadas creciendo en el biomaterial, Ia expresión del factor se mantiene constante a Io largo del tiempo en cultivo a excepción del día 7 en el que se observaba una ligera menor expresión. Además, Ia expresión en las células prediferenciadas creciendo con y sin biomaterial es similar. Por ello, cabe suponer que Ia diferente cuantificación del factor en ambos casos sea debida a una diferencia en Ia velocidad de unión al receptor y de transmisión de Ia señal al interior. O también puede que tengan más receptores las células que crecen sobre el biomaterial y el factor se encuentre en su mayoría unido a ellos, Io que supondría una potenciación del proceso de regeneración ósea, por ello Ia detección del factor soluble en estos casos es menor.
En resumen las células prediferenciadas, creciendo sobre el biomaterial de monetita de porosidad estructurada de Ia invención sintetizan y secretan al medio de cultivo TGF-β1. Este factor puede favorecer Ia síntesis de matriz osteoide.
Ejemplo 10. Comparación in vivo de las matrices de monetita de porosidad estructurada de Ia invención frente a matrices de porosidad estructurada de Brushita.
El biomaterial de Monetita estructurada de Ia presente invención presenta ventajas frente a Ia Brushita, puesto que es más estable y presenta una tasa de resorción más adecuada y adaptada al remodelado óseo.
Se realizó un estudio para determinar Ia tasa de resorción de los biomateriales de Monetita de porosidad estructurada y de biomateriales de Brushita con Ia misma estructura de porosidad que los de Ia presente invención, mediante Ia utilización de un modelo de defecto crítico en hueso calvario de conejos. Se incluyeron 6 conejos de Ia variedad New Zeland en el estudio, utilizando 3 animales para el análisis de Ia capacidad de reabsorción de cada biomaterial. Para ello, Ia exposición al cráneo del conejo se llevó a cabo mediante una incisión sagital del cuero cabelludo. A continuación, se diseccionó cuidadosamente el periostio, se prepararon defectos bicorticales de 1 cm de diámetro. En cada animal se dispusieron los biomateriales en uno de los defectos, dejando el contralateral como control. Se irrigó generosamente Ia zona de la cirugía y se suturó el periostio, los tejidos subcutáneos y el cuello cabelludo utilizando las técnicas quirúrgicas adecuadas.
Transcurridas 4, 8 y 12 semanas de Ia implantación, se procedió al sacrificio de los animales y se llevó a cabo Ia recolección de las piezas implantadas, para su análisis histomorfométrico. El tiempo más adecuado para Ia total resorción de un biomaterial utilizado para inducir Ia regeneración ósea en humanos, se estima entre los 6 a 18 meses. Esta tasa de resorción es importante puesto que si el biomaterial es muy soluble y Ia degradación demasiado rápida, los osteoblastos pierden el andamiaje que les va a permitir mantenerse e ir produciendo y disponiendo nueva matriz ósea, sin embargo, si el biomaterial utilizado es demasiado estable, los osteoclastos no podrán producir una degradación sincronizada con Ia formación de nuevo hueso por parte de los osteoblastos. Por este motivo es necesario aplicar un biomaterial cuya degradación permita el remodelado óseo y que además los iones y productos de degradación no produzcan alteraciones significativas en el pH del entorno y en las células osteogénicas. En este caso, los resultados mostraron que Ia zona de implantación no mostró signos de inflamación con ninguno de los biomateriales utilizados. Con ambos biomateriales, el estudio histológico evidenció Ia formación de nuevo hueso ya desde Ia semana 4, así como los primeros signos de resorción (perforaciones en los biomateriales, zonas de agrupación de osteoclastos). Sin embargo, si bien se observa que Ia Brushita ha sido mayoritariamente resorbida a las 12 semanas de Ia implantación, todavía se puede observar material de Monetita, Io que proporciona más estabilidad al proceso de regeneración ósea y más acoplamiento con Ia fase de remodelado óseo. El aumento del tiempo de resorción del biomaterial de Monetita de Ia invención, va a dar lugar a Ia formación de mayor masa ósea, puesto que los osteoblastos van a contar con más tiempo para Ia formación y el depósito de nueva matriz ósea mineralizada.
Así, se puede concluir que Ia tasa de resorción de Ia Monetita se encuentra más ajustada al remodelado óseo, manteniendo durante más tiempo el andamiaje adecuado para Ia colonización de los osteoblastos y para Ia síntesis de nueva matriz ósea, sin riesgo de formación a Hidroxiapatita, debido a una tasa de resorción demasiado alta, como puede ocurrir en el caso de Ia Brushita.
Ejemplo 11 : Comparación de una realización particular de Ia matriz de monetita de porosidad estructurada de Ia invención frente a una matriz de monetita con diferente estructura de porosidad.
El biomaterial desarrollado en Ia presente invención presenta características que son de especial relevancia para conseguir una efectiva regeneración ósea, entre las que se encuentran una microporosidad y macroporosidad homogéneamente distribuida, y su aplicación en forma de conjunto de piezas, Io que va a permitir una mejor adaptación al defecto óseo, una entrada homogénea de los nutrientes, gases y células en toda Ia zona a reparar, de forma que no se den lugar a zonas necróticas.
Para estudiar Ia ventaja del biomaterial de Ia invención y su forma de aplicación, se comparó Ia capacidad regenerativa de las pastillas de Ia invención de 5 mm de diámetro, 3 mm de alto y 12 macroporos de 0,5mm de diámetro separadas 0,5mm entre si con respecto a un biomaterial de Monetita que presenta Ia estructura de porosidad del ejemplo 1 de Ia solicitud de patente US6605516. Dicha matriz, corresponde a un cilindro de 10mm de diámetro por 10mm de alto, que presenta un canal central de 2mm de diámetro y una red hexagonal de poros cilindricos de 0,5mm de diámetro, paralelos al macroporo central de 2mm, y separados por una distancia de 1mm entre si. Así, dicha matriz no presenta un control de diámetro de poros homogéneo, y debe ser aplicada en una única pieza.de forma que el tamaño completo se ajusta al defecto óseo.
Se llevó a cabo un análisis de Ia formación de nuevo hueso y vascularización en Ia zona de Ia implantación de los dos tipos de biomateriales. Para Ia experimentación in vivo, se utilizaron 6 ovejas a las que se realizó un defecto crítico en Ia tibia y una estabilización por técnicas de osteosíntesis. En el defecto creado, se aplicó en 3 de ellas un conjunto de piezas del biomaterial de monetita de porosidad estructurada de Ia invención y en otras 3 una pieza única de biomaterial ajustada al tamaño del defecto, dejando en todas ellas Ia pata adyacente como control (con formación del defecto crítico y estabilización de Ia fractura pero sin relleno de biomaterial). Previamente a Ia implantación de los biomateriales, éstos fueron sembrados con un número igual de células madre mesenquimales del tejido adiposo obtenido de las ovejas.
El análisis del nuevo tejido óseo formado y resorción de ambos tipos de biomateriales se realizó mediante un control radiográfico continuo y un estudio histológico a los 3 y 6 meses de Ia implantación. Las radiografías seriadas permiten observar una completa integración del biomaterial de porosidad estructurada de Ia invención en Ia zona del implante, así como una resorción activa de dicho biomaterial, que todavía persiste a los 6 meses, ya que su tasa de degradación se encuentra ajustada al remodelado óseo con este diseño. A nivel radiográfico no se observan cambios en el biomaterial dispuesto como bloque único en Ia zona implantada. El análisis histomorfométrico permitió confirmar a los 3 meses de Ia implantación una colonización de los osteblastos y osteoclastos del hueso en toda Ia estructura del biomaterial de monetita de porosidad estructurada de Ia invención, y Ia formación de nuevo hueso de forma homogénea, con una total integración del mismo a los 6 meses con una incipiente red vascular que va a permitir Ia supervivencia del nuevo tejido formado sin formación de zonas necróticas. Sin embargo, en el interior del bloque único, prácticamente Ia totalidad del nuevo tejido formado se restringe a Ia zona periférica al implante, quedando su zona interior con una significativa inferior colonización de las células del tejido adyacente y sin signos de formación de nuevos vasos sanguíneos. La distribución homogénea de los poros con un diámetro de 500 μM y una separación entre ellos también de 500 μM en el biomaterial, produce una gran superficie de contacto tanto en Ia zona superficial como en el interior del biomaterial de Ia invención, Io que mejora Ia capacidad de interacción con el tejido de Ia zona dañada, produciéndose zonas de actividad en cuanto a Ia generación de nuevo hueso en todas las zonas del biomaterial de forma simultánea. Estos resultados permiten concluir que el tejido receptor de Ia implantación ¡nteracciona de forma significativamente más adecuada con el biomaterial de Ia invención, para dar lugar a Ia formación de nuevo tejido óseo vascularizado de forma homogénea. Sin embargo, Ia utilización de un bloque único de Monetita del ejemplo 1 de Ia solicitud de patente US6605516, dificulta Ia interrelación e integración en Ia zona del defecto óseo. La formación de nuevo hueso y Ia colonización celular en su interior es significativamente menor incluso a los 6 meses de Ia implantación.
Por otro lado, en Ia mayoría de las ocasiones los defectos óseos en los pacientes no forman formas perfectas, como ocurre cuando estos defectos se inducen en las ovejas, como parte de un estudio experimental. Los defectos óseos son muy dispares y los bordes de Ia fractura en numerosas ocasiones son muy irregulares. En algunos casos el espacio que constituye el defecto óseo es muy limitado, como ocurre por ejemplo en Ia pseudoartrosis hipertrófica, por Io que introducir un bloque único preformado que se acople en Ia zona es muy complicado y no es capaz de amoldarse a una zona deformada. La utilización del diseño de Ia invención, un conjunto de piezas de biomaterial de Monetita, de pequeño tamaño, con una estructuración homogénea de macroporos, permite su adaptación a defectos óseos complicados y de diferentes formas y dimensiones, de forma que Ia zona afectada queda totalmente expuesta al biomaterial y a las células aportadas para activar el proceso de curación.
BIBLIOGRAFÍA
- Chow LC, Markovic M, Takagi S. 2003. A dual constant composition titration system as an in vivo resorption model for comparing dissolution rates of calcium phosphate biomaterials. J Biomed Mater Res B: Appl Biomater 65: 245-251.
- Constanz BR, Barr BM, lson IC, Fulmer MT, Baker J, mckinney L, Goodman SB, Gunasekaren S, Delaney DC, Ross J, Poser RD. 1998. Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites. J Biomed Mater Res B: appl Biomater 43: 451-461.
- De Boever AL & De Boever JA. 2005. Guided bone regeneration around nonsubmerged implants in narrow alveolar ridges: a prospective long-term clinical study. Clinical Oral Implants Research 16: 549-556.
- Eggli PS, Muller W, Schenk RK. 1988. Porous Hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bone ingrowth and implant substitution. Clin Orthop 232: 127-138.
- Fernandez-Tresguerres I, Alobera MA, del Canto M, Blanco L. Bases fisiológicas de Ia regeneración ósea II. El proceso de remodelado. Med. oral patol. oral cir.bucal (Internet) v.11 n.2 Madrid mar.-abr. 2006 2006.
- Tamimi FM, Torres J, Tresguerres I, Clemente C, López Cabarcos E, Blanco LJ. Bone augmentation ¡n rabbit calvariae: comparative study between Bio-Oss and a novel β-TCP/DCPD granúlate. J Clin Periodontol 2006; 33: 922-928. 2006.
- Franco J, Souto A, Rey P, Uitian F, Martínez lnsua A. 2006. Procesamiento cerámico de B-TCP para Ia fabricación de piezas implantables. Bol. Soc. Esp.
Ceram. V., 45 (4) 265-270.
- Gimeno MD. Sustitutivos óseos en fracturas del radio distal. Patología del Aparato Locomotor, 2007; 5 Supl. II: 82-90. Frayssinel P, Vidalain JP, Rauz X, Cartillier JC, Rouquet N. 1999. Hydroxiapatite partióle migration. European journal of Orthopaedic surgery & traumatology (9) 2: 95-98.
- Gbureck U, Holzel T, Klammert U, Würzler K, Müller FA, Barralet JE. Resorbable dicalcium phosphate bone substitutes made by 3D powder printing. Adv Funct Mater 2007; 17: 3940-5.Herron S, Thordarson DB, Winet H, Luk A, Bao JY. 2003. Ingrowth of bone into absorbable bone cement: An in vivo microscopio evaluation. Am J Orthop 12: 581-584.
- Riancho JA, Gutiérrez GE. Factores reguladores de Ia resorción ósea. Rev Metab Oseo Min 2003; 1(2): 51-66.Schnettler R, Stahl PJ, AIt V, Pavlidid T, Dingledein E, Wenish S. 2004. Calcium Phosphate-Based bone Subtitutes. Eur J Trau ma 30: 219-229.
- Schwarz K. Significance and functions of silicon ¡n warm-blooded animáis. Review and Outlook. Biochemintry of Silicon and Related Problems. Plenum. Nueava York. 1977: 207-230. Carlisle EM. Silicon. Handbook of nutritionally essential mineral elements. Dekker. Nueva York. 1997: 603-618.
- Suba Z, Takacs D, Gyulai-Gaal S, Kovacs K. 2004. Facilitation of beta-tricalcium phosphate-induced alveolar bone regeneration by platelet-rich plasma ¡n beagle dogs: a histologic and histomorphometric study. International Journal of oral and
Maxilofacial Implants 19: 832-838.
- Sugawara A, Fujikawwa K, Takagi S, Chow LC, Nishiyama M, Murai S. Histopathological and cell enzyme studies of calcium phosphate cements. Dent Mater J 2004; 23: 613-620.Stubbs D, Deakin P, Chapman-Sheath P, Bruce J,
Debes W, Gillies RM, Walha WR. 2004. In vivo evaluatión of resorbable bone graft substitutes in a rabbit tibial defect model. Biomaterials 25: 5037-5044.
- Takahashi Y, tabata Y. (2004). Effect of the fiber diameter and porosity of non- woven PET fabrics on the osteogenic differentiation of mesenchymal stem cells. J Biomater Sci Polym Ed 15 (1): 41-57.
- Tamini FM, Torres J, TResguerres I, Blanco L, López-Cabarcos E. 2006. Vertical bone augmentation with granulated brushite cement set in glycolic acid. lnt J Biomed Mater Res 80a: 1-10.
- Tamini FM, Torres J, Tresguerres I, Clemente C, López-Cabarcos E, Blanco LJ. 2006. Bone augmentation in rabbit calvariae: comparative study between Bio-
OssR and a novel B-TCP/DCPD granúlate. J Clin Periodontol 33: 922-928.
- Tas C & Bhaduri SB. 2004. Chemical processing of cahpo.2H2o: its conversión of hydroxiapatite. Journal of American Ceramic Society 87: 2195-2200.
- Taylor JC, Cuff SE, Leger JP, Morra A, Anderson GI. 2002. In vito osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study. International Journal of Oral and Maxillofacial Implants 17: 321-330.
- Trisi P, Rao W, Rebaudi A, Fiore P. 2003. Histologic effect of pure-phase beta- tricalcium phosphate on bone regeration ¡n human artificial jawbone defects. International Journal of periodontics restorative Dentistry 23: 69-77.
- Wiltfang J, Schlegel KA, Schultze S, Nkenke E, Zimmermann R, Kessler P. Sinus floor augmentation with beta-tricalciumphosphate (beta-TCP): does platelet-rich plasma promote its osseus integration and degradation? Clin Oral Implants 2003 Apr; 14 (2): 213-8. G.Zimmermann, P.Henle, M.Küsswetter, A.Moghaddam, A.Wentzensen, W.Richter,
S.Weiss. TGF-β1 as a marker of delayed fracture healing.Soπe, 2005 (36): 779- 785.

Claims

REIVINDICACIONES
1. Matriz tridimensional de monetita de porosidad estructurada caracterizada por presentar en su estructura macroporos cilindricos verticales de entre 350 y 650 μm de diámetro, que atraviesan longitudinalmente Ia matriz de un extremo a otro, existiendo una separación de entre 0,4-0,6 mm entre cada macroporo.
2. Matriz tridimensional de monetita de porosidad estructurada según reivindicación 1 caracterizada porque dichos macroporos presentan un diámetro de preferentemente 500 μm ± 60 μm
3. Matriz tridimensional de monetita de porosidad estructurada según reivindicación 2 caracterizada porque Ia distancia entre macroporos es de preferentemente 0,5 mm ±
60 μm entre si.
4. Matriz tridimensional de monetita de porosidad estructurada según reivindicaciones anteriores caracterizada porque el contenido en monetita de Ia matriz es al menos del 90%.
5. Matriz tridimensional de monetita de porosidad estructurada según reivindicación 4 caracterizada porque el contenido en monetita de Ia matriz es preferentemente del 95%.
6. Matriz tridimensional de monetita de porosidad estructurada según reivindicaciones 4 y 5 caracterizada porque el contenido en monetita de Ia matriz es más preferentemente del 100%.
7. Matriz tridimensional de monetita de porosidad estructurada según reivindicaciones anteriores caracterizada por ser obtenida por transformación térmica de un material precursor.
8. Matriz tridimensional de monetita de porosidad estructurada según reivindicación 7 caracterizada porque el material precursor que es transformado térmicamente a monetita consite en una mezcla de una fase sólida compuesta por fosfatos calcicos básicos, fosfatos calcicos ácidos, un porógeno y un retardante que es fraguada por adición de agua destilada.
9. Matriz tridimensional de monetita de porosidad estructurada según la reivindicación 8 caracterizada porque Ia relación molar de fosfato básico/ fosfato ácido es de 1 ,6 -1 ,8, Ia concentración de porógenoes 1-20% en peso, Ia de retardante entre 0,4-0,6% en peso y Ia proporción (P/L) es de 3.
10. Matriz tridimensional de monetita de porosidad estructurada según Ia reivindicación 9 caracterizada porque Ia relación molar de fosfato básico/ fosfato ácido es de1.785, Ia concentración de porógenoes 3-10% en peso y Ia de retardante es 0,54% en peso.
11. Matriz tridimensional de monetita de porosidad estructurada según las reivindicaciones 7 a 10 caracterizada porque el fosfato calcico ácido es monofosfato calcico, el fosfato calcico básico es fosfato tricálcico beta, el agente porógeno carbonato calcico y el retardante es pirofosfato sódico.
12. Matriz tridimensional de monetita de porosidad estructurada según reivindicaciones 7 a 11 caracterizada porque el material precursor es Brushita.
13. Matriz tridimensional de monetita de porosidad estructurada según reivindicaciones anteriores caracterizada porque puede adoptar cualquier tipo de forma requerida para Ia reparación de un defecto óseo o tisular particular.
14. Matriz según Ia reivindicación 13, caracterizada por consistir en un cilindro con diámetro de base entre 2 y 50 mm, y de altura entre 1 y 50mm.
15. Matriz según Ia reivindicación 14, caracterizada porque dicho cilindro presenta un diámetro de base entre 2 y 15 mm, y de altura entre 1 y 5mm.
16. Matriz según reivindicaciones 14-15, caracterizada porque presenta una zona perimetral mínima de 0,5mm libre de macroporos.
17. Matriz según reivindicación 16 caracterizada porque dicho cilindro presenta un diámetro de base de 10mm, altura de 5mm, y 64 macroporos cilindricos con diámetro de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si que atraviesan longitudinalmente Ia matriz, respetando una zona perimetral de 0,5 mm desde el borde de dicho cilindro hacia el centro del mismo que queda libre de macroporos.
18. Matriz según reivindicación 16 caracterizada porque dicho cilindro presenta un diámetro de base de 10mm, altura de 3mm, y 64 macroporos cilindricos con diámetro de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si que atraviesan longitudinalmente Ia matriz, respetando una zona perimetral de 0,5 mm desde el borde de dicho cilindro hacia el centro del mismo que queda libre de macroporos.
19. Matriz según reivindicación 16 caracterizada porque dicho cilindro presenta un diámetro de base de 8mm, altura de 5mm, y 39 macroporos cilindricos con diámetro de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si que atraviesan longitudinalmente Ia matriz respetando una zona perimetral de 0,5 mm desde el borde de dicho cilindro hacia el centro del mismo que queda libre de macroporos.
20. Matriz según reivindicación 16 caracterizada porque dicho cilindro presenta un diámetro de base de 8mm, altura de 3mm, y 39 macroporos cilindricos con diámetro de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si que atraviesan longitudinalmente Ia matriz respetando una zona perimetral de 0,5 mm desde el borde de dicho cilindro hacia el centro del mismo que queda libre de macroporos.
21. Matriz según reivindicación 16 caracterizada porque dicho cilindro presenta un diámetro de base de 7mm, altura de 5mm, y 28 macroporos cilindricos con diámetro de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si que atraviesan longitudinalmente Ia matriz respetando una zona perimetral de 0,5 mm desde el borde de dicho cilindro hacia el centro del mismo que queda libre de macroporos.
22. Matriz según reivindicación 16 caracterizada porque dicho cilindro presenta un diámetro de base de 7mm, altura de 3mm, y 28 macroporos cilindricos con diámetro de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si que atraviesan longitudinalmente Ia matriz respetando una zona perimetral de 0,5 mm desde el borde de dicho cilindro hacia el centro del mismo que queda libre de macroporos.
23. Matriz según reivindicación 16 caracterizada porque dicho cilindro presenta un diámetro de base de 5mm, altura de 3mm, y 12 macroporos cilindricos con diámetro de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si que atraviesan longitudinalmente Ia matriz respetando una zona perimetral de 0,5 mm desde el borde de dicho cilindro hacia el centro del mismo que queda libre de macroporos.
24. Molde para Ia preparación de una matriz tridimensional según cualquiera de las reivindicaciones 1 a 23 caracterizado por presentar una distribución homogénea de punzones de 350-650 μm de diámetro separados uniformemente entre 0,4-0,6 mm entre si.
25. Molde según reivindicación 24 caracterizado por estar compuesto por silicona, metal, plástico resistente o cualquier otro material.
26. Molde según reivindicaciones 24 a 25 caracterizado porque puede adoptar cualquier tipo de forma requerida para Ia reparación de un defecto óseo o tisular particular.
27. Molde según reivindicación 26 caracterizado porque presenta forma de cilindro con diámetro de base entre 2 y 50 mm, y de altura entre 1 y 50mm.
28. Molde según reivindicación 27 caracterizado porque presenta forma de cilindro con diámetro de base entre 2 y 15 mm, y de altura entre 1 y 5mm.
29. Molde según reivindicación 28 caracterizado porque dicho cilindro presenta diámetro de 10mm, altura de 5mm, y 64 punzones cilindricos con diámetro de base de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si, distribuidos respetando una zona perimetral de 0,5mm de ancho libre de punzones, tomado desde el borde hacia el interior del cilindro.
30. Molde según reivindicación 28 caracterizado porque dicho cilindro presenta diámetro de 10mm, altura de 3mm, y 64 punzones cilindricos con diámetro de base de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si, distribuidos respetando una zona perimetral de 0,5mm de ancho libre de punzones, tomado desde el borde hacia el interior del cilindro.
31. Molde según reivindicación 28 caracterizado porque dicho cilindro presenta diámetro de 8mm, altura de 5mm, y 39 punzones cilindricos con diámetro de base de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si, distribuidos respetando una zona perimetral de 0,5mm de ancho libre de punzones, tomado desde el borde hacia el interior del cilindro.
32. Molde según reivindicación 28 caracterizado porque dicho cilindro presenta diámetro de 8mm, altura de 3mm, y 39 punzones cilindricos con diámetro de base de 500 μm +60 μm, uniformemente separados 0,5 mm ± 60μm entre si, distribuidos respetando una zona perimetral de 0,5mm de ancho libre de punzones, tomado desde el borde hacia el interior del cilindro.
33. Molde según reivindicación 28 caracterizado porque dicho cilindro presenta diámetro de 7mm, altura de 5mm, y 28 punzones cilindricos con diámetro de base de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si, distribuidos respetando una zona perimetral de 0,5mm de ancho libre de punzones, tomado desde el borde hacia el interior del cilindro.
34. Molde según reivindicación 28 caracterizado porque dicho cilindro presenta diámetro de 7mm, altura de 3mm, y 28 macroporos cilindricos con diámetro de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si, distribuidos respetando una zona perimetral de 0,5mm de ancho libre de punzones, tomado desde el borde hacia el interior del cilindro.
35. Molde según reivindicación 28 caracterizado porque dicho cilindro presenta diámetro de 5mm, altura de 3mm, y 12 punzones cilindricos con diámetro de base de 500 μm ±60 μm, uniformemente separados 0,5 mm ± 60μm entre si, distribuidos respetando una zona perimetral de 0,5mm de ancho libre de punzones, tomado desde el borde hacia el interior del cilindro.
36. Método de síntesis de una matriz tridimensional de monetita de porosidad estructurada caracterizado por comprender las etapas de:
1) Mezcla de una fase sólida compuesta por fosfatos calcicos básicos, fosfatos calcicos ácidos, un porógeno y un retardante. Que es fraguado por adición de agua destilada, dando lugar a Ia fase líquida
2) Aplicación de al menos un molde en el cemento durante el fraguado para generar macroporos cilindricos verticales de entre 350 y 650 μm de diámetro, separados uniformemente 0,4-0,6 mm entre si
3) Esterilización del material precursor formado y transformación térmica a monetita.
37. Método de síntesis según reivindicación 36 caracterizado porque en Ia etapa 1 Ia relación molar de fosfato básico/ fosfato ácido es de 1 ,6 -1,8, Ia concentración de porógenoes 1-20% en peso, Ia de retardante entre 0,4-0,6% en peso y Ia proporción
(P/L) es de 3.
38. Método de síntesis según reivindicación 37 caracterizado porque en Ia etapa 1 Ia relación molar de fosfato básico/ fosfato ácido es de1.785, Ia concentración de porógenoes 3-10% en peso y Ia de retardante es 0,54% en peso.
39. Método de síntesis según reivindicaciones 36-38 caracterizado porque en Ia etapa 1 el fosfato calcico ácido es monofosfato calcico, el fosfato calcico básico es fosfato tricálcico beta, el agente porógeno carbonato calcico y el retardante es pirofosfato sódico.
40. Método de síntesis según reivindicaciones 36 a 39 caracterizado porque el producto de Ia fase 1 es Brushita.
41. Método de síntesis según reivindicaciones 36 a 40 caracterizado porque en Ia etapa 3, Ia esterilización térmica se lleva a cabo por autoclavado.
42. Método de síntesis según reivindicación 41 caracterizado porque dicho autoclavado se lleva a cabo a 120-130 0C y durante 24-25 minutos.
43. Método según reivindicaciones 36 a 42 caracterizado porque en Ia etapa 2 el molde empleado consiste en el molde según las reivindicaciones 24 a 35.
44. Método según reivindicación 43 caracterizado porque previo al empleo del los moldes según reivindicaciones 24-35 se emplea un molde de silicona que presenta forma de cilindro con diámetro de base entre 2 y 50 mm y de altura entre 1 y 50 mm.
45. Método según reivindicación 44 caracterizado porque dicho molde de silicona presenta forma de cilindro con diámetro de base entre 2 y 15 mm y de altura entre 1 y 5 mm.
46. Método según cualquiera de las reivindicaciones 43 a 45 caracterizado porque el molde consiste en el molde según Ia reivindicación 29.
47. Método según cualquiera de las reivindicaciones 43 a 45 caracterizado porque el molde consiste en el molde según Ia reivindicación 30.
48. Método según cualquiera de las reivindicaciones 43 a 45 caracterizado porque el molde consiste en el molde según Ia reivindicación 31.
49. Método según cualquiera de las reivindicaciones 43 a 45 caracterizado porque el molde consiste en el molde según Ia reivindicación 32.
50. Método según cualquiera de las reivindicaciones 43 a 45 caracterizado porque el molde consiste en el molde según Ia reivindicación 33.
51. Método según cualquiera de las reivindicaciones 43 a 45 caracterizado porque el molde consiste en el molde según Ia reivindicación 34.
52. Método según cualquiera de las reivindicaciones 43 a 45 caracterizado porque el molde consiste en el molde según Ia reivindicación 35.
53. Uso del molde según reivindicaciones 24 a 35 para Ia obtención de fosfatos calcicos que adopten su forma.
54. Uso del molde según reivindicación 53 caracterizado porque el fosfato de calcio consiste en monetita.
55. Matrices tridimensionales de monetita de porosidad estructurada según cualquiera de las reivindicaciones 1 a 23 caracterizadas porque adicionalmente comprenden células.
56. Matrices tridimensionales de monetita de porosidad estructurada según reivindicación 55, caracterizadas porque dichas células son células mesenquimales, osteoblastos, osteoclastos, osteocitos, células endoteliales o combinaciones de ellas.
57. Uso de las matrices tridimensionales de monetita de porosidad estructurada según cualquiera de las reivindicaciones 1 a 23, 55 y 56 para Ia preparación de un agente terapéutico para regeneración de estructura ósea.
58. Uso de las matrices tridimensionales según reivindicación 57 caracterizado porque dicha regeneración de estructura ósea se lleva a cabo para combatir Ia osteoporosis.
PCT/ES2009/000358 2008-07-08 2009-07-08 Matrices tridimensionales de monetita porosa estructurada para ingeniería tisular y regeneración ósea, y método de preparación de las mismas WO2010004066A1 (es)

Priority Applications (10)

Application Number Priority Date Filing Date Title
MX2011000162A MX2011000162A (es) 2008-07-08 2009-07-08 Matrices tridimencionales de monetita porosa estructurada para ingenieria tisular y regeneracion osea, y metodo de preparacion de las mismas.
ES09793974.8T ES2676070T3 (es) 2008-07-08 2009-07-08 Matrices tridimensionales de monetita porosa estructurada para ingeniería tisular y regeneración ósea, y método de preparación de las mismas
EP09793974.8A EP2298696B1 (en) 2008-07-08 2009-07-08 Three-dimensional matrices of structured porous monetite for tissue engineering and osseous regeneration, and method for the preparation thereof
JP2011517180A JP5759370B2 (ja) 2008-07-08 2009-07-08 組織工学および骨の再生のための、構造化された多孔率を有するモネタイトの三次元マトリクス、および、当該三次元マトリクスの調製方法
CN200980126930.9A CN102089238B (zh) 2008-07-08 2009-07-08 用于组织工程和骨再生的结构化多孔三斜磷钙石的三维基质及其制备方法
CA2729920A CA2729920C (en) 2008-07-08 2009-07-08 Three-dimensional matrices of structured porous monetite for tissue engineering and bone regeneration, and method of preparation thereof
RU2010153515/15A RU2491960C9 (ru) 2008-07-08 2009-07-08 Трехмерные матрицы из структурированного пористого монетита для тканевой инженерии и регенерации кости и способ их получения
US13/002,939 US9320828B2 (en) 2008-07-08 2009-07-08 Three-dimensional matrices of structured porous monetite for tissue engineering and bone regeneration, and method of the preparation thereof
BRPI0910349-0A BRPI0910349B1 (pt) 2008-07-08 2009-07-08 Biomaterial na forma de um conjunto de partes e método de síntese de uma matriz tridimensional de monetita com porosidade estruturada
AU2009267935A AU2009267935A1 (en) 2008-07-08 2009-07-08 Three-dimensional matrices of structured porous monetite for tissue engineering and osseous regeneration, and method for the preparation thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EPPCT/ES08/000482 2008-07-08
PCT/ES2008/000482 WO2010004057A1 (es) 2008-07-08 2008-07-08 MATRICES TRIDIMENSIONALES DE MONETITA POROSA ESTRUCTURADA PARA INGENIERIA TISULAR Y REGENERACION OSEA, Y METODO DE PREPARACIόN DE LAS MISMAS

Publications (2)

Publication Number Publication Date
WO2010004066A1 true WO2010004066A1 (es) 2010-01-14
WO2010004066A8 WO2010004066A8 (es) 2011-03-24

Family

ID=41506711

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/ES2008/000482 WO2010004057A1 (es) 2008-07-08 2008-07-08 MATRICES TRIDIMENSIONALES DE MONETITA POROSA ESTRUCTURADA PARA INGENIERIA TISULAR Y REGENERACION OSEA, Y METODO DE PREPARACIόN DE LAS MISMAS
PCT/ES2009/000358 WO2010004066A1 (es) 2008-07-08 2009-07-08 Matrices tridimensionales de monetita porosa estructurada para ingeniería tisular y regeneración ósea, y método de preparación de las mismas

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/ES2008/000482 WO2010004057A1 (es) 2008-07-08 2008-07-08 MATRICES TRIDIMENSIONALES DE MONETITA POROSA ESTRUCTURADA PARA INGENIERIA TISULAR Y REGENERACION OSEA, Y METODO DE PREPARACIόN DE LAS MISMAS

Country Status (13)

Country Link
US (1) US9320828B2 (es)
EP (1) EP2298696B1 (es)
JP (1) JP5759370B2 (es)
KR (1) KR101629041B1 (es)
CN (1) CN102089238B (es)
AU (1) AU2009267935A1 (es)
BR (1) BRPI0910349B1 (es)
CA (1) CA2729920C (es)
ES (1) ES2676070T3 (es)
MX (1) MX2011000162A (es)
PT (1) PT2298696T (es)
RU (1) RU2491960C9 (es)
WO (2) WO2010004057A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110305736A1 (en) * 2010-06-10 2011-12-15 Dr. Suwelack Skin & Health Care Ag Stratiform Perforated Biomatrices
WO2012101428A1 (en) * 2011-01-24 2012-08-02 King's College London Method of making monetite

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009073781A2 (en) 2007-12-07 2009-06-11 Zimmer Orthopaedic Surgical Products, Inc. Spacer molds and methods therfor
CA2742050C (en) 2008-10-29 2014-11-25 Scott M. Sporer Spacer molds with releasable securement
US8709149B2 (en) 2008-11-12 2014-04-29 Ossdsign Ab Hydraulic cements, methods and products
BR112012022686B1 (pt) 2010-03-10 2021-04-20 Oss-Q Ab implante de mosaico, método para a preparação de um implante e uso de um implante
US9463046B2 (en) 2011-08-22 2016-10-11 Ossdsign Ab Implants and methods for using such implants to fill holes in bone tissue
US20130066327A1 (en) 2011-09-09 2013-03-14 Håkan Engqvist Hydraulic cement compositions with low ph methods, articles and kits
US8591645B2 (en) 2011-09-09 2013-11-26 Ossdsign Ab Hydraulic cements with optimized grain size distribution, methods, articles and kits
AU2013267381B2 (en) * 2012-05-30 2016-03-31 New York University Tissue repair devices and scaffolds
AU2013358613B9 (en) * 2012-12-14 2017-11-02 Ossdsign Ab Cement-forming compositions, monetite cements, implants and methods for correcting bone defects
WO2014125381A2 (en) 2013-02-12 2014-08-21 Ossdsign Ab Mosaic implants, kits and methods for correcting bone defects
US9220597B2 (en) 2013-02-12 2015-12-29 Ossdsign Ab Mosaic implants, kits and methods for correcting bone defects
TWI615136B (zh) * 2013-12-06 2018-02-21 財團法人金屬工業研究發展中心 椎間植入物及其製備方法
KR20170043110A (ko) 2014-08-14 2017-04-20 오에스에스디자인 아베 뼈 결함 교정을 위한 뼈 이식
GB2535487A (en) * 2015-02-17 2016-08-24 Biocomposites Ltd Device to fill a bone void whilst minimising pressurisation
EP3380046B1 (en) 2015-11-24 2021-07-14 OssDsign AB Bone implants and methods for correcting bone defects
WO2017209136A1 (ja) 2016-05-30 2017-12-07 富士フイルム株式会社 リン酸カルシウム成形体の製造方法、リン酸カルシウム成形体及び移植用材料
CN113632188B (zh) * 2018-12-21 2023-08-08 生物智慧公司 药物洗脱型手术制品及相关方法
KR102316847B1 (ko) * 2019-09-24 2021-10-26 가톨릭관동대학교산학협력단 연골 재생용 스캐폴드

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741329A (en) 1994-12-21 1998-04-21 Board Of Regents, The University Of Texas System Method of controlling the pH in the vicinity of biodegradable implants
US5866155A (en) 1996-11-20 1999-02-02 Allegheny Health, Education And Research Foundation Methods for using microsphere polymers in bone replacement matrices and composition produced thereby
JP2004018459A (ja) 2002-06-17 2004-01-22 Pentax Corp リン酸カルシウム―合成樹脂複合体及びその製造方法
US6733582B1 (en) 1999-12-09 2004-05-11 Dr. H. C. Robert Mathys Stiftung Brushite hydraulic cement stabilized with a magnesium salt
US6905516B1 (en) 1999-05-19 2005-06-14 Ecole Polytechnique Federale De Lausanne (Epfl) Calcium phosphate bone substitute
US20060213398A1 (en) 2003-05-23 2006-09-28 Jake Barralet Calcium phosphate bone cements
US20060263443A1 (en) 2001-01-24 2006-11-23 Ada Foundation Premixed self-hardening bone graft pastes

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5531794A (en) * 1993-09-13 1996-07-02 Asahi Kogaku Kogyo Kabushiki Kaisha Ceramic device providing an environment for the promotion and formation of new bone
US6294187B1 (en) * 1999-02-23 2001-09-25 Osteotech, Inc. Load-bearing osteoimplant, method for its manufacture and method of repairing bone using same
DE19940717A1 (de) * 1999-08-26 2001-03-01 Gerontocare Gmbh Resorblerbares Knochenersatz- und Knochenaufbaumaterial
JP4669932B2 (ja) * 2000-05-02 2011-04-13 学校法人日本大学 生体材料用組成物及びその硬化体
US7087200B2 (en) * 2001-06-22 2006-08-08 The Regents Of The University Of Michigan Controlled local/global and micro/macro-porous 3D plastic, polymer and ceramic/cement composite scaffold fabrication and applications thereof
JP3934418B2 (ja) * 2001-12-27 2007-06-20 日本特殊陶業株式会社 リン酸カルシウム硬化体並びにリン酸カルシウム多孔体及びその製造方法
JP2003325653A (ja) * 2002-05-09 2003-11-18 Ngk Spark Plug Co Ltd リン酸カルシウム多孔体
DE10323079A1 (de) * 2003-05-22 2004-12-09 Gerber, Thomas, Prof., Dr. Verfahren zur Herstellung von porösen siliziumdioxidhaltigem Hydroxylapatitgranulat mit kontrollierter Morphologie
JP2005046530A (ja) * 2003-07-31 2005-02-24 National Institute Of Advanced Industrial & Technology 多孔質リン酸カルシウム硬化体、その製造方法及びそれを用いた人工骨及び薬剤徐放体
US6994726B2 (en) * 2004-05-25 2006-02-07 Calcitec, Inc. Dual function prosthetic bone implant and method for preparing the same
CN1891665A (zh) * 2005-07-08 2007-01-10 上海国睿生命科技有限公司 骨修复用β-磷酸三钙多孔陶瓷材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5741329A (en) 1994-12-21 1998-04-21 Board Of Regents, The University Of Texas System Method of controlling the pH in the vicinity of biodegradable implants
US5866155A (en) 1996-11-20 1999-02-02 Allegheny Health, Education And Research Foundation Methods for using microsphere polymers in bone replacement matrices and composition produced thereby
US6905516B1 (en) 1999-05-19 2005-06-14 Ecole Polytechnique Federale De Lausanne (Epfl) Calcium phosphate bone substitute
US6733582B1 (en) 1999-12-09 2004-05-11 Dr. H. C. Robert Mathys Stiftung Brushite hydraulic cement stabilized with a magnesium salt
US20060263443A1 (en) 2001-01-24 2006-11-23 Ada Foundation Premixed self-hardening bone graft pastes
JP2004018459A (ja) 2002-06-17 2004-01-22 Pentax Corp リン酸カルシウム―合成樹脂複合体及びその製造方法
US20060213398A1 (en) 2003-05-23 2006-09-28 Jake Barralet Calcium phosphate bone cements

Non-Patent Citations (25)

* Cited by examiner, † Cited by third party
Title
CHOW LC; MARKOVIC M; TAKAGI S.: "A dual constant composition titration system as an in vivo resorption model for comparing dissolution rates of calcium phosphate biomaterials", J BIOMED MATER RES B: APPL BIOMATER, vol. 65, 2003, pages 245 - 251
CONSTANZ BR; BARR BM; ISON IC; FULMER MT; BAKER J; MCKINNEY L; GOODMAN SB; GUNASEKAREN S; DELANEY DC; ROSS J: "Histological, chemical, and crystallographic analysis of four calcium phosphate cements in different rabbit osseous sites", J BIOMED MATER RES B: APPL BIOMATER, vol. 43, 1998, pages 451 - 461
DE BOEVER AL; DE BOEVER JA.: "Guided bone regeneration around nonsubmerged implants in narrow alveolar ridges: a prospective long-term clinical study", CLINICAL ORAL IMPLANTS RESEARCH, vol. 16, 2005, pages 549 - 556
EGGLI PS; MULLER W; SCHENK RK.: "Porous Hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomorphometric and histologic study of bone ingrowth and implant substitution", CLIN ORTHOP, vol. 232, 1988, pages 127 - 138, XP009046877
FERNANDEZ-TRESGUERRES I; ALOBERA MA; DEL CANTO M; BLANCO L.: "Bases fisiologicas de la regeneracion 6sea II. El proceso de remodelado", MED. ORAL PATOL. ORAL CIR.BUCAL (INTERNET), vol. 11, no. 2, 2006
FRANCO J; SOUTO A; REY P; UITIAN F; MARTINEZ INSUA A: "Procesamiento ceramico de B-TCP para la fabricaci6n de piezas implantables", BOL. SOC. ESP. CERAM. V., vol. 45, no. 4, 2006, pages 265 - 270
FRAYSSINEL P; VIDALAIN JP; RAUZ X; CARTILLIER JC; ROUQUET N.: "Hydroxyapatite particle migration", EUROPEAN JOURNAL OF ORTHOPAEDIC SURGERY & TRAUMATOLOGY, vol. 2, no. 9, 1999, pages 95 - 98
G.ZIMMERMANN; P.HENLE; M.KUSSWETTER; A.MOGHADDAM; A.WENTZENSEN; W.RICHTER: "S.Weiss. TGF-pl as a marker of delayed fracture healing", BONE, no. 36, 2005, pages 779 - 785
GBURECK U; HOLZEL T; KLAMMERT U; WURZLER K; MULLER FA: "Barralet JE. Resorbable dicalcium phosphate bone substitutes made by 3D powder printing", ADV FUNCT MATER, vol. 17, 2007, pages 3940 - 5
GBURECK, UWE ET AL.: "Resorbable Dicalcium Phosphate Bone Substitutes Prepared by 3D Powder Printing", ADV. FUNCT. MATER., vol. 17, 2007, pages 3940 - 3945, XP008115995 *
GIMENO MD.: "Sustitutivos 6seos en fracturas del radio distal", PATOLOGIA DEL APARATO LOCOMOTOR, no. 5, 2007, pages 82 - 90
HERRON S; THORDARSON DB; WINET H; LUK A; BAO JY.: "Ingrowth of bone into absorbable bone cement: An in vivo microscopic evaluation", AM J ORTHOP, vol. 12, 2003, pages 581 - 584
RIANCHO JA; GUTIERREZ GE: "Factores reguladores de la resorcion osea", REV METAB OSEO MIN, vol. 1, no. 2, 2003, pages 51 - 66
SCHNETTLER R; STAHL PJ; ALT V; PAVLIDID T; DINGLEDEIN E; WENISH S.: "Calcium Phosphate-Based bone Substitutes", EUR J TRAUMA, vol. 30, 2004, pages 219 - 229
STUBBS D; DEAKIN P; CHAPMAN-5 SHEATH P; BRUCE J; DEBES W; GILLIES RM; WALHA WR: "In vivo evaluation of resorbable bone graft substitutes in a rabbit tibial defect model", BIOMATERIALS, vol. 25, 2004, pages 5037 - 5044, XP004504192, DOI: doi:10.1016/j.biomaterials.2004.02.014
SUBA Z; TAKACS D; GYULAI-GAAL S; KOVACS K.: "Facilitation of beta-tricalcium phosphate-induced alveolar bone regeneration by platelet-rich plasma in beagle dogs: a histologic and histomorphometric study", INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL IMPLANTS, vol. 19, 2004, pages 832 - 838
SUGAWARA A; FUJIKAWWA K; TAKAGI S; CHOW LC, NISHIYAMA M; MURAI S.: "Histopathological and cell enzyme studies of calcium phosphate cements", DENT MATER J, vol. 23, 2004, pages 613 - 620
TAKAHASHI Y; TABATA Y.: "Effect of the fiber diameter and porosity of nonwoven PET fabrics on the osteogenic differentiation of mesenchymal stem cells", J BIOMATER SCI POLYM ED, vol. 15, no. 1, 2004, pages 41 - 57
TAMIMI FM; TORRES J; TRESGUERRES I; CLEMENTE C; LOPEZ CABARCOS E; BLANCO LJ.: "Bone augmentation in rabbit calvariae: comparative study between Bio-Oss and a novel P-TCP/DCPD granulate", J CLIN PERIODONTOL, vol. 33, 2006, pages 922 - 928
TAMINI FM; TORRES J; TRESGUERRES I; BLANCO L, LOPEZ-CABARCOS E.: "Vertical bone augmentation with granulated brushite cement set in glycolic acid", INT J BIOMED MATER RES, vol. 80A, 2006, pages 1 - 10
TAMINI FM; TORRES J; TRESGUERRES I; CLEMENTE C; LOPEZ-CABARCOS E; BLANCO LJ.: "Bone augmentation in rabbit calvariae: comparative study between Bio-OssR and a novel B-TCP/DCPD granulate", J CLIN PERIODONTOL, vol. 33, 2006, pages 922 - 928
TAS C; BHADURI SB: "Chemical processing of cahpo.2H2o: its conversion of hydroxyapatite", JOURNAL OF AMERICAN CERAMIC SOCIETY, vol. 87, 2004, pages 2195 - 2200, XP055192793, DOI: doi:10.1111/j.1151-2916.2004.tb07490.x
TAYLOR JC; CUFF SE; LEGER JP; MORRA A; ANDERSON GI: "In vitro osteoclast resorption of bone substitute biomaterials used for implant site augmentation: a pilot study", INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL IMPLANTS, vol. 17, 2002, pages 321 - 330
TRISI P; RAO W; REBAUDI A; FIORE P.: "Histologic effect of pure-phase betatricalcium phosphate on bone regeneration in human artificial jawbone defects", INTERNATIONAL JOURNAL OF PERIODONTICS RESTORATIVE DENTISTRY, vol. 23, 2003, pages 69 - 77
WILTFANG J; SCHLEGEL KA; SCHULTZE S; NKENKE E; ZIMMERMANN R; KESSLER P.: "Sinus floor augmentation with beta-tricalciumphosphate (beta-TCP): does platelet-rich plasma promote its osseus integration and degradation?", CLIN ORAL IMPLANTS, vol. 14, no. 2, April 2003 (2003-04-01), pages 213 - 8

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110305736A1 (en) * 2010-06-10 2011-12-15 Dr. Suwelack Skin & Health Care Ag Stratiform Perforated Biomatrices
US8481802B2 (en) * 2010-06-10 2013-07-09 Medskin Solutions Dr. Suwelack Ag Stratiform perforated biomatrices
WO2012101428A1 (en) * 2011-01-24 2012-08-02 King's College London Method of making monetite

Also Published As

Publication number Publication date
BRPI0910349A2 (pt) 2015-10-06
US20110158963A1 (en) 2011-06-30
CN102089238A (zh) 2011-06-08
EP2298696B1 (en) 2018-03-21
EP2298696A4 (en) 2015-08-12
PT2298696T (pt) 2018-06-25
JP5759370B2 (ja) 2015-08-05
WO2010004057A1 (es) 2010-01-14
MX2011000162A (es) 2011-05-24
RU2491960C9 (ru) 2013-11-10
AU2009267935A1 (en) 2010-01-14
CN102089238B (zh) 2014-03-26
BRPI0910349B1 (pt) 2019-03-06
CA2729920C (en) 2013-11-19
KR101629041B1 (ko) 2016-06-09
WO2010004066A8 (es) 2011-03-24
CA2729920A1 (en) 2010-01-14
ES2676070T3 (es) 2018-07-16
KR20110061542A (ko) 2011-06-09
RU2491960C2 (ru) 2013-09-10
EP2298696A1 (en) 2011-03-23
JP2011529429A (ja) 2011-12-08
RU2010153515A (ru) 2012-08-20
US9320828B2 (en) 2016-04-26

Similar Documents

Publication Publication Date Title
ES2676070T3 (es) Matrices tridimensionales de monetita porosa estructurada para ingeniería tisular y regeneración ósea, y método de preparación de las mismas
Bouler et al. Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response
Horch et al. Synthetic, pure-phase beta-tricalcium phosphate ceramic granules (Cerasorb®) for bone regeneration in the reconstructive surgery of the jaws
Yuan et al. Material-dependent bone induction by calcium phosphate ceramics: a 2.5-year study in dog
Calvo‐Guirado et al. Retracted: Histomorphometric and mineral degradation study of Ossceram®: a novel biphasic B‐tricalcium phosphate, in critical size defects in rabbits
BRPI1005792B1 (pt) Materiais de regeneração óssea a base de combinações de monetita e outros compostos de cálcio e silício biotativos
Kang et al. Comparative study on biodegradation and biocompatibility of multichannel calcium phosphate based bone substitutes
Trbakovic et al. A new synthetic granular calcium phosphate compound induces new bone in a sinus lift rabbit model
US20230084724A1 (en) Method for producing hydroxyapatite-bioglass materials, said materials and products thereof
Saska et al. Bone substitute materials in implant dentistry
Daculsi et al. Smart calcium phosphate bioceramic scaffold for bone tissue engineering
Cui et al. Bioceramics: Materials, properties, and applications
Daculsi et al. The essential role of calcium phosphate bioceramics in bone regeneration
Manassero et al. Coral scaffolds in bone tissue engineering and bone regeneration
Daculsi et al. Tricalcium phosphate/hydroxyapatite biphasic ceramics
AU2015200992B2 (en) Three-Dimensional Matrices of Structured Porous Monetite for Tissue and Engineering and Osseous Regeneration, and Method for the Preparation Thereof
ES2334298B1 (es) Constructo util para terapia de regeneracion de tejidos, procedimiento de obtencion y aplicaciones.
Park et al. Bone regeneration capacity of two different macroporous biphasic calcium materials in rabbit calvarial defect.
Arısan Biodegradation of injectable calcium phosphate bone cements: a dental perspective
Dorozhkin Kudrinskaja square, Moscow, Russia
RU2175249C2 (ru) Хирургический костный имплантат
Pastorino Calcium phosphate cements and foams: characterization of porosity and use as local drug delivery devices
Manchinasetty Preparation and characterization of calcium phosphate ceramics and polymer composites as potential bone substitutes
Xue et al. Repairing rabbit’s radial bone defects using injectable nano-hydroxyapatite composite scaffold co-cultured with bone marrow mesenchymal stem cells
Daculsi et al. Multiphasic Biomaterials: A Concept for Bone Substitutes Developed in the" Pays de la Loire"

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980126930.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09793974

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: MX/A/2011/000162

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 9184/DELNP/2010

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2729920

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2009267935

Country of ref document: AU

ENP Entry into the national phase

Ref document number: 2011517180

Country of ref document: JP

Kind code of ref document: A

Ref document number: 20117000398

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2009793974

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2009267935

Country of ref document: AU

Date of ref document: 20090708

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2010153515

Country of ref document: RU

ENP Entry into the national phase

Ref document number: PI0910349

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20110107