WO2010001852A1 - 光変調器 - Google Patents

光変調器 Download PDF

Info

Publication number
WO2010001852A1
WO2010001852A1 PCT/JP2009/061843 JP2009061843W WO2010001852A1 WO 2010001852 A1 WO2010001852 A1 WO 2010001852A1 JP 2009061843 W JP2009061843 W JP 2009061843W WO 2010001852 A1 WO2010001852 A1 WO 2010001852A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
elastic wave
surface acoustic
comb
acousto
Prior art date
Application number
PCT/JP2009/061843
Other languages
English (en)
French (fr)
Inventor
雅芳 角野
浩 今井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2010519059A priority Critical patent/JPWO2010001852A1/ja
Publication of WO2010001852A1 publication Critical patent/WO2010001852A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/33Acousto-optical deflection devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/24Function characteristic beam steering

Definitions

  • the present invention relates to a light modulator using an acousto-optic material.
  • FIG. 1 shows the configuration of a bulk type acousto-optic device described in Patent Document 1 (Japanese Patent Application Laid-Open No. 06-273705).
  • This bulk-type acousto-optic element has an acousto-optic medium 200, a piezoelectric vibrator 201 formed on the end face of the acousto-optic medium 200, and a high frequency power supply 202 for driving the piezoelectric vibrator 201.
  • the piezoelectric vibrator 201 When a high frequency voltage is supplied to the piezoelectric vibrator 201, the piezoelectric vibrator 201 vibrates, thereby generating an ultrasonic wave traveling wave 203 in the acousto-optic medium 200.
  • the refractive index periodically changes in the area of the acousto-optic medium 200 covered by the ultrasonic traveling wave 203.
  • incident light 206 is made incident at the Bragg diffraction angle ⁇ in this refractive index change region, first-order diffracted light 204 is generated.
  • the refractive index change region is not formed, so the incident light 206 passes through the acoustooptic medium 200 as it is and is emitted as the undiffracted light 205.
  • FIG. 2 shows the configuration of the waveguide type acousto-optic device.
  • an optical waveguide 301 and comb electrodes 302 and 303 are formed on the piezoelectric element 300.
  • the optical waveguide 301 is formed by raising the refractive index of a region of about the wavelength of light by a pronto exchange method, and its height is 0.8 ⁇ m.
  • the comb-shaped electrode 302 comprises first and second electrode portions provided with a plurality of linear electrodes arranged at equal intervals, and the first and second electrode portions are alternately arranged with each other. ing.
  • the comb electrode 303 also has the same structure as the comb electrode 302.
  • the comb electrodes 302 and 303 are formed on both sides of the optical waveguide 301 so as to face each other.
  • a surface acoustic wave is generated in the vicinity of the surface of the piezoelectric element 300.
  • the surface elastic waves from the comb electrodes 302 and 303 change the refractive index of the central portion of the optical waveguide 301 (the region sandwiched by the comb electrodes 302 and 303).
  • diffracted light is generated.
  • the above-mentioned waveguide type acousto-optic device is used as a device for modulating single mode infrared light of 10 mW or less.
  • the size of the acousto-optic medium 200 and the piezoelectric vibrator 201 is large, and the size of the cross section of the region where the ultrasonic traveling wave 203 is generated is about several millimeters.
  • the voltage supplied to the piezoelectric vibrator 201 is several tens of volts or more, and the power consumption of the bulk type acoustooptic device is several tens of watts or more.
  • the bulk acoustooptic device has a large device size and a large amount of power consumption.
  • Non-Patent Document 1 The waveguide type acousto-optic device for optical communication described in Non-Patent Document 1 has the following problems.
  • the waveguide-type acousto-optic element has a structure in which incident light is confined in a waveguide of about the size of the light wavelength, so the light density in the waveguide becomes extremely high depending on the intensity of the incident light.
  • the waveguide may be damaged.
  • the optical damage resistance of the waveguide type acoustooptic device is low.
  • an image display apparatus such as a laser display
  • light modulation is performed on high-power light of, for example, 100 mW or more. It is difficult to apply a waveguide type acousto-optic device having low resistance to light damage to an image display apparatus in which such light modulation of high output light is performed.
  • a typical surface acoustic wave is distributed at the depth of its wavelength (typically about 20 ⁇ m).
  • the region in which light propagating in the waveguide interacts with the surface acoustic wave is a region which is at most as narrow as the wavelength of light, and in other wide regions, the surface acoustic wave does not contribute to the diffraction of light.
  • the energy utilization factor of surface acoustic waves is small.
  • the interaction length (in this case, the same as the waveguide length) needs to be 2 mm or more. Therefore, it is difficult to miniaturize the element.
  • the diameter of the light beam for image display is 500 ⁇ m or more, and various optical systems are needed to put it in a waveguide with a thickness of about 1 ⁇ m, and light loss occurs accordingly.
  • the light insertion loss is large when the light beam for image display is introduced into the waveguide.
  • the number of parts of the device is increased.
  • the manufacturing cost is also increased because the element itself is large and its structure is complicated.
  • An object of the present invention is to provide a compact light modulator that can solve each of the above problems and can modulate a high-power light beam.
  • the light modulator of the present invention is An acousto-optic medium, Elastic wave generation means for generating surface acoustic waves or interface elastic waves in the acousto-optic medium, In the acousto-optic medium, an elastic wave propagation area to which the surface elastic wave or the interface elastic wave generated by the elastic wave generating means is formed is made of the same material.
  • the first-order diffracted wave generated when passing through the wave propagation region, and the light whose incident light propagates in the acousto-optic medium with the elastic wave generating means stopped are different directions from the second end face. It is emitted.
  • FIG. 3 is a schematic view showing the configuration of the optical modulator according to the first embodiment of the present invention.
  • the light modulator includes an acousto-optic medium 1 and surface acoustic wave generating means 2 formed on the surface of the acousto-optic medium 1.
  • the acousto-optic medium 1 is a medium for causing the surface acoustic wave generated by the surface acoustic wave generating means 2 to interact with the incident light. Such interaction between surface acoustic waves and incident light is generally referred to as acousto-optic effect.
  • the acousto-optic medium 1 is formed of a material capable of obtaining an acousto-optic effect, such as acousto-optic material doped with quartz or an impurity.
  • the impurity is, for example, Er (erbium), In (indium) or the like.
  • the surface acoustic wave generating means 2 comprises, for example, a plurality of linear electrodes arranged at equal intervals on the same plane, and counting from one side, the even-numbered linear electrode group and the odd-numbered linear electrode group Is configured to apply a high frequency voltage.
  • An example of such an electrode structure is an electrode structure composed of first and second comb electrodes. In the first and second comb electrodes, linear electrodes corresponding to the comb teeth of each other are alternately arranged, and the intervals between the linear electrodes are equal. In addition, not only is the distance between the linear electrodes completely equal, but also that the distance between the linear electrodes is deviated due to a manufacturing error or the like, if the intervals of the linear electrodes are equal intervals. Also included.
  • the surface acoustic wave is a traveling wave that travels along the surface of the acousto-optic medium 1 along the direction in which the linear electrodes are arranged (the direction intersecting the longitudinal direction of the linear electrodes), and refraction is performed along the traveling direction A periodic change in the rate occurs.
  • the surface acoustic wave advancing region 3 which is a region (elastic wave propagation region) covered by the surface acoustic wave is made of the same material, and the depth thereof is about the wavelength of the surface acoustic wave.
  • the depth of the region covered by the surface acoustic wave of wavelength ⁇ is taken to be that wavelength ⁇ .
  • the wavelength ⁇ of the surface acoustic wave (or the depth of the area covered by the surface acoustic wave 3) is the interval (period) of the linear electrodes and the frequency of the high frequency voltage applied between the linear electrodes (surface acoustic wave generation) It depends on the driving frequency of the means 2).
  • the width L of the surface acoustic wave advancing region 3 (the width in the longitudinal direction of the linear electrode) is the interaction length at which the acousto-optic effect occurs.
  • one of the side surfaces facing each other across the surface acoustic wave advancing region 3 is the incident end surface, and the other is the output end surface.
  • the surface on which the surface acoustic wave generating means 2 is formed is a plane intersecting with each of the incident end face and the output end face.
  • the incident angle of the light beam with respect to the incident end face of the acoustooptic medium 1 is set such that the light beam from the incident end face enters the surface acoustic wave advancing region 3 at a predetermined incident angle.
  • the predetermined incident angle is an angle that satisfies the condition that light beam from the incident end face is refracted when passing through the surface acoustic wave traveling region 3, and more preferably, the light beam is the surface elastic wave traveling region This angle satisfies the condition that Bragg diffraction occurs when passing through 3.
  • FIG. 4 schematically shows the diffraction in the optical modulator shown in FIG.
  • the surface acoustic wave travels in the vicinity of the surface of the acousto-optic medium 1 from the near side toward the far side toward the drawing.
  • the light beam 4 is incident on the incident end face of the acousto-optic medium 1 from the left side in the drawing.
  • Bragg diffraction generates a first-order diffracted wave 4a.
  • the first-order diffracted wave 4 a is emitted from the emission end face of the acousto-optic medium 1 to the outside.
  • the surface acoustic wave advancing region 3 is not formed, so the incident light beam 4 propagates in the acoustooptic medium 1 as it is without being diffracted and exits. It is emitted from the end face to the outside.
  • the traveling direction of the light from the emission end face is the same as the traveling direction of the zero-order light.
  • the optical axis of the first order diffracted wave 4a emitted from the emission end face at the time of supply of the high frequency voltage is a Bragg relative to the optical axis of the light (0th order light) emitted from the emission end face when the supply of the high frequency voltage is stopped. It is inclined by the diffraction angle. Therefore, by controlling the supply of the high frequency voltage to the surface acoustic wave generating means 2, it is possible to switch the traveling direction of the output light from the emitting end face, and thereby the light beam 4 can be modulated.
  • the first order diffracted wave 4a is used as the output light of the light modulator.
  • the diameter of the light beam 4 is defined by the wavelength ⁇ of the surface acoustic wave (or the depth of the area covered by the surface acoustic wave 3).
  • an optical system for causing the light beam 4 to enter the acoustooptic medium an optical system including an antireflective film provided on the incident end face, a reflecting mirror, an aspheric lens, etc. Is used.
  • the light beam 4 is a parallel luminous flux having an elliptical cross-sectional shape, and the beam diameter of the light beam 4 is set such that most of the light beam 4 passes through at least a part of the surface acoustic wave traveling region 3.
  • the beam width in the depth direction (X direction) is the vertical beam width d v (z), and the beam width in the horizontal direction (Y direction) is horizontal It is called a beam width d h (z).
  • the vertical beam width d v (z) be approximately equal to or slightly smaller than the depth ⁇ of the area (elastic wave propagation area) covered by the surface acoustic wave 3. This is because, if the portion of the light beam passing through the region not reached by the surface acoustic wave 3 is increased, the light beam portion is not diffracted, and the extinction ratio at the time of modulation decreases. However, the area of the edge portion of the elliptical cross-sectional shape of the light beam is small, and the vertical beam width has a somewhat spread distribution depending on the position in the Z direction.
  • the vertical beam width d v (z) smaller than 1.2 ⁇ ⁇ .
  • the degree of decrease of the extinction ratio can be suppressed to 5% or less which is a normal specification of the display.
  • the light beam intensity in the case of using quartz crystal is about 200 mW at the maximum when the vertical beam width is ⁇ .
  • the light beam intensity required for the display is usually 20 mW to 200 mW, depending on the size and configuration of the screen. Therefore, it is desirable to make the vertical beam width d v (z) larger than 0.1 ⁇ ⁇ .
  • the depth of the surface acoustic wave advancing region 3 is ⁇ (the depth ⁇ corresponds to the distance between the linear electrodes), the width is L (the width L is the width of the intersection of the linear electrodes)
  • Vertical beam width d v (z) for any z (0 ⁇ z ⁇ L) where 0.1 ⁇ ⁇ ⁇ d v (z) ⁇ 1.2 ⁇ ⁇ Fulfill. More preferably, the vertical beam width d v (z) satisfies the condition 0.7 ⁇ ⁇ ⁇ d v (z) ⁇ .
  • the width direction of the surface acoustic wave advancing region 3 is a direction (Z direction) perpendicular to each of the depth direction (X direction) and the advancing direction (Y direction).
  • the depth ⁇ is, for example, about 30 ⁇ m.
  • the horizontal beam width d h (z) must be greater than 2 ⁇ ⁇ . This is because if the number of surface acoustic waves falling within the horizontal beam width (counted as one at one wavelength) is less than three, the diffraction efficiency is reduced. In order to obtain high diffraction efficiency, it is necessary to make the modulation frequency f smaller than v / 2 ⁇ .
  • the horizontal beam width d h (z) in the Y direction is 2 ⁇ ⁇ d h (z) with respect to the propagation velocity v of the surface acoustic wave.
  • the extinction ratio can be increased by increasing the light amount (brightness) of the first order diffracted wave 4a.
  • the light amount (brightness) of the first-order diffracted wave 4 a is proportional to the amount of light beam incident on the surface acoustic wave traveling region 3.
  • the beam diameter of the light beam 4 so as to satisfy the above-described conditions, most of the light beam 4 passes through the surface acoustic wave traveling region 3 even when the drive frequency f of the light modulator is set high. It will be done. Therefore, for example, even when modulation is performed in a high band of 30 MHz or more, the extinction ratio can be increased.
  • the light modulator of the present embodiment does not have a waveguide structure in the acousto-optic medium 1.
  • the acousto-optic medium 1 is made of a material (quartz or an acousto-optic material doped with impurities) excellent in resistance to light damage. Therefore, in the case of modulating a high-power light beam, for example, a light beam of 100 mW or more, the problem that the acousto-optic medium 1 is damaged does not occur.
  • a single mode light beam enters into the acoustooptic medium 1
  • the incident light passes through the surface acoustic wave traveling region 3 while maintaining the single mode.
  • high-order diffracted waves other than the first-order diffracted wave 4a are small and can be ignored.
  • a single mode first order diffracted wave 4a can be obtained.
  • single-mode output light can be obtained.
  • the interaction length L needs to be 2 mm or more, but according to the light modulator of this embodiment, for example, the depth of the surface acoustic wave traveling region 3 (surface elasticity When the wave length is 20 ⁇ m, the interaction length L is 400 ⁇ m. Thus, since the interaction length L can be reduced, the optical modulator can be miniaturized.
  • the area where interaction occurs is limited in the waveguide, and the area is a narrow area at most about the wavelength of incident light. Therefore, for example, when a surface acoustic wave having a wavelength of 20 ⁇ m is generated, the depth of the area of the surface acoustic wave is 20 ⁇ m, but the interaction occurs only in a narrow area in the waveguide. Energy utilization rate is low.
  • the beam diameter of the light beam 4 is set according to the depth and the interaction length of the surface acoustic wave traveling region 3. In other words, conditions for causing the light beam 4 to be incident on the entire surface acoustic wave traveling region 3 can be set. Thereby, interaction can be generated in a wide area in the surface acoustic wave traveling area 3, and the energy utilization factor of the surface acoustic wave can be improved.
  • the surface acoustic wave generating means 2 by forming the surface acoustic wave generating means 2 with a comb-shaped electrode, the electrode area (capacitance) and the driving voltage can be reduced as compared with the piezoelectric vibrator, and the power consumption can be reduced. Therefore, it is possible to provide a small element with low power consumption.
  • a comb electrode with a high driving frequency it is possible to provide an optical modulator capable of driving in a high band of, for example, 20 MHz or more.
  • Second Embodiment In order to allow the light beam to efficiently enter the surface acoustic wave traveling region 3, it is desirable to use a optical system to narrow the light beam diameter.
  • an embodiment including such an optical system will be described.
  • FIG. 5 is a view for explaining the configuration of the optical modulator according to the second embodiment of the present invention
  • the partial view shown by the arrow 100A is a schematic view seen from the upper surface side of the optical modulator.
  • the partial view shown by the arrow 100B is a schematic view seen from the side of the light modulator.
  • a piezoelectric material 108 having a comb electrode 102 formed on the surface is formed on a support substrate 101.
  • the piezoelectric material 108 is, for example, quartz.
  • the material of the support substrate 101 is, for example, silicon (Si).
  • the comb-shaped electrode 102 is a surface acoustic wave generating means, and comprises first and second comb-shaped electrodes in which linear electrodes corresponding to the respective comb teeth are alternately arranged, and the intervals between the linear electrodes are equal. It is.
  • a surface acoustic wave 110 a is generated in the vicinity of the surface of the piezoelectric material 108.
  • the traveling speed of the surface acoustic wave 110 a is 3157 m / s.
  • the period of the first comb electrode (the distance between the comb teeth) and the period of the second comb electrode (the distance between the comb teeth) are the same.
  • the periods of the first and second comb electrodes are referred to as Do.
  • L be the interaction length of the comb electrode 102.
  • the area (elastic wave propagation area) covered by the surface elastic wave 110 a is made of the same material, and the depth from the surface is the same as the period ⁇ .
  • an ultrasonic wave absorbing portion 103 for absorbing the surface acoustic wave 110 a is formed.
  • the cross-sectional area in the direction perpendicular to the surface acoustic wave traveling direction of the ultrasonic wave absorbing portion 103 is desirably equal to or larger than the cross-sectional area of the elastic wave propagation region.
  • any material or shape may be used as the ultrasonic wave absorption unit 103.
  • one of the end surfaces positioned in the direction intersecting with the traveling direction of the surface acoustic wave 110a is an incident end surface, and the other is an output end surface.
  • a front end anti-reflection film 106 is formed on the incident end surface, and a rear end anti-reflection film 107 is formed on the output end surface.
  • condensing lenses 105a and 105b are provided on the support substrate 101 via optical jigs 109a and 109b, respectively.
  • the condenser lens 105 a condenses the incident light beam 104.
  • the incident light beam 104 is a collimated beam.
  • the light beam condensed by the condenser lens 105 a enters the piezoelectric material 108 from the incident end face of the piezoelectric material 108.
  • the incident light beam is incident on the area covered by the surface acoustic wave 110 a at a predetermined incident angle.
  • the predetermined incident angle is an angle that satisfies the condition that Bragg diffraction occurs.
  • the shape of the cross section of the light beam focused by the focusing lens 105a in the area covered by the surface acoustic wave 110a is elliptical, and the vertical beam width d and the horizontal beam width W in the cross section are the same as the vertical beam width d described above. Each condition on v (z) and horizontal beam width d h (z) is satisfied.
  • the vertical beam width d and the horizontal beam width W can be adjusted by the position, focal length, direction (optical axis direction), etc. of the focusing lens 105a.
  • the condenser lens 105 b is provided in the traveling direction of the light beam (here, the diffracted light beam 104 a) from the emission end face of the piezoelectric material 108.
  • the diffracted light beam 104 a is diffused light (first-order diffracted light), and the condenser lens 105 b is used to collimate the diffracted light beam 104 a.
  • a ray passing through the center of the cross section of the diffracted light beam 104a in a direction crossing the traveling direction (the ray trajectory corresponds to the optical axis of the diffracted light beam 104a) coincides with the optical axis of the condensing lens 105b.
  • the angle between the optical axis of the diffracted light beam 104a and the optical axis of the outgoing light beam 104b (zero-order light) emitted from the emitting end face when the supply of the high frequency voltage is stopped is 2 ⁇ . This angle 2 ⁇ is equal to the Bragg diffraction angle.
  • a surface acoustic wave 110a is generated near the surface of the piezoelectric material 108.
  • Bragg diffraction occurs when the light beam obtained by condensing the incident light beam 104 by the condenser lens 105a passes through the area covered by the surface acoustic wave 110a, and as a result, the diffracted light beam 104a is emitted from the output end face of the piezoelectric material 108. Be done.
  • the diffracted light beam 104a is collimated by the condenser lens 105b.
  • the diffracted light beam 104a converted into this parallel light beam is used as an output light of the light modulator.
  • the surface acoustic wave 110 a is not generated, so the light beam condensed by the condensing lens 105 a propagates in the piezoelectric material 108 as it is without being diffracted. Then, the outgoing light beam 104b is emitted from the outgoing end surface. The outgoing light beam 104b deviates from the optical path of the diffracted light beam 104a which is the output light of the light modulator.
  • FIG. 6 shows the beam propagation distance dependency of the diameter of the light beam.
  • the vertical axis shows the diameter r of the light beam
  • the horizontal axis shows the propagation direction x of the beam.
  • the point at which the propagation direction x is 0 corresponds to the incident position of the light beam in the area of the surface acoustic wave.
  • a graph of the R light beam (630 nm) is shown in dash-dotted lines
  • a graph of the G light beam (530 nm) is shown in broken lines
  • a graph of the B light beam (470 nm) is shown in solid lines.
  • the depth ⁇ of the area covered by the surface acoustic wave is ⁇ 20 ⁇ m.
  • any light beam of R light beam, G light beam and B light beam if the vertical beam width d is 15 ⁇ m, the interaction length L is 2 mm, and the depth ⁇ of the area covered by the surface acoustic wave is 20 ⁇ m
  • the light beam can be contained within a certain area.
  • the vertical beam width d and the horizontal beam width W of the light beam, the depth ⁇ of the area covered by the surface acoustic wave, and the interaction length L take into consideration diffraction efficiency, optical damage resistance, light density, device size, etc. It is desirable to set appropriately. For example, when the vertical beam width d is 15 ⁇ m and the depth ⁇ is 20 ⁇ m, the interaction length L may be about 400 ⁇ m. Even in such a setting, the element size can be reduced without impairing the diffraction efficiency and the optical damage resistance.
  • a condenser lens with a short focal length is used.
  • the vertical beam width d and the horizontal beam width W are determined by the depth ⁇ and the interaction length L of the area of the surface acoustic wave.
  • the interaction length L can be reduced from 2 mm to 400 ⁇ m, so that the element size can be reduced.
  • the depth MHz is 20 ⁇ m
  • the horizontal beam width W is 105 ⁇ m.
  • the maximum allowable light density in visible light of quartz is 100 W / mm 2 or more, and the maximum allowable light output is
  • the light modulator of the present embodiment it is possible to provide a light beam modulator for a display that modulates high-power visible light of 200 mW or more in a high band of 30 MHz or more.
  • FIG. 7 is a schematic view for explaining the configuration of the optical modulator according to the third embodiment of the present invention.
  • This light modulator has the same configuration as the light modulator of the second embodiment except that surface acoustic wave generating means (comb-shaped electrodes) are provided on the front surface and the back surface of the piezoelectric material, respectively.
  • surface acoustic wave generating means comb-shaped electrodes
  • a surface comb electrode 102 a is formed on the surface of the piezoelectric material 108, and a back surface comb electrode 102 b is formed on the back surface of the piezoelectric material 108.
  • the surface comb electrode 102a and the back surface comb electrode 102b both have the same configuration as the comb electrode 102 shown in FIG. 5, and first and second line electrodes alternately corresponding to the comb teeth of each other are arranged. It consists of a comb-shaped electrode, and the space
  • the first and second comb electrodes of the surface comb electrode 102a are disposed at positions facing the first and second comb electrodes of the back surface comb electrode 102b, respectively. Respective periods of the first and second comb electrodes constituting the front comb electrode 102 a and the back comb electrode 102 b are the same as each other. Here, the period of the first and second comb electrodes is referred to as ⁇ .
  • a first surface acoustic wave of wavelength ⁇ is generated in the vicinity of the surface of the surface of the piezoelectric material 108 on which the surface comb electrode 102a is provided.
  • a second surface acoustic wave of wavelength ⁇ is generated near the surface of the surface of the piezoelectric material 108 on which the back surface comb electrode 102b is provided.
  • the traveling directions of the first and second surface acoustic waves are the same.
  • the periodic change of the refractive index formed along the traveling direction of the first surface acoustic wave is the same as the periodic change of the refractive index formed along the traveling direction of the second surface acoustic wave. It is. Therefore, when the area covered by the first surface acoustic wave and the area covered by the second surface elastic wave overlap each other in the depth direction, the first and second surface acoustic waves are integrated into one surface. It can be regarded as an elastic wave.
  • the depth from the surface side on which the surface comb electrode 102 a is formed is a region on which the first surface acoustic wave extends, and the surface on which the back surface comb electrode 102 b is formed in the region on which the second surface acoustic wave is spread
  • the depth from the bottom is also a wolf. Therefore, if the distance between the surface on which the surface comb electrode 102a is formed and the surface on which the back surface comb electrode 102b is formed is 2 ⁇ or less, the area covered by the first surface acoustic wave and the area covered by the second surface elastic wave And overlap each other in the depth direction.
  • the thickness of the piezoelectric material 108 is set so that the area covered by the first surface acoustic wave and the area covered by the second surface acoustic wave overlap each other in the depth direction.
  • the light beam condensed by the condensing lens 105a is incident at a predetermined incident angle on the area where the first and second surface acoustic waves extend.
  • the predetermined incident angle is an angle that satisfies the condition that Bragg diffraction occurs.
  • the cross-sectional shape of the light beam collected by the condensing lens 105 a in the area of the first and second surface acoustic waves is elliptical, and the vertical beam width d and horizontal beam width W in the cross section are , The above-mentioned conditions regarding the vertical beam width d v (z) and the horizontal beam width d h (z).
  • the range in the depth direction of the area in which the surface acoustic wave is extended is extended by about 2 times at the maximum as compared with the second embodiment.
  • the output of the modulatable light beam can be increased accordingly.
  • the second embodiment and capable of modulating a light beam of 200 mW in this embodiment, it is possible to modulate a light beam of approximately 400 W, which is twice that.
  • the light modulators of the first to third embodiments use surface acoustic waves, but interface acoustic waves can be used instead of surface acoustic waves.
  • interface acoustic waves can be used instead of surface acoustic waves.
  • FIG. 8 is a view for explaining the configuration of the optical modulator according to the fourth embodiment of the present invention
  • the partial view shown by the arrow 200A is a schematic view seen from the upper surface side of the optical modulator.
  • the partial view shown by the arrow 200 B is a schematic view seen from the side of the light modulator.
  • This light modulator has the same configuration as the light modulator of the second embodiment except that an interfacial elastic wave generating means is provided instead of the surface acoustic wave generating means.
  • an embedded comb electrode 112 which is an interfacial elastic wave generating means is formed in the piezoelectric material 108.
  • the embedded comb electrode 112 includes first and second comb electrodes in which linear electrodes corresponding to each other's comb teeth are alternately arranged, and the intervals between the linear electrodes are equal.
  • the period of the first comb electrode (the distance between the comb teeth) and the period of the second comb electrode (the distance between the comb teeth) are the same.
  • the period of each of the first and second comb electrodes is taken as ⁇ .
  • L be the interaction length of the comb electrode 102.
  • an interfacial elastic wave 110 b of wavelength ⁇ is generated in the piezoelectric material 108.
  • the propagation velocity of the surface acoustic wave 110 b is faster than the propagation velocity of the surface acoustic wave.
  • the surface acoustic wave 110 b travels in the vicinity of a plane (plane intersecting with each of the incident end surface and the emission end surface) including the linear electrodes in the piezoelectric material 108 in the direction intersecting the longitudinal direction of the linear electrodes. .
  • the area (elastic wave propagation area) covered by the interfacial elastic wave 110 b is made of the same material.
  • the interfacial elastic wave 110b exists in the upper and lower direction of the plane, and the depth thereof is about the wavelength ⁇ . Therefore, the range in the depth direction of the area covered by the interfacial elastic wave 110 b is about 2 ⁇ .
  • the entire area (depth 2 ⁇ ) covered by the interface elastic wave 110b is used as the interaction area between the light beam and the interface elastic wave
  • the area covered by the interface elastic wave 110b is used as an interaction area.
  • an ultrasonic wave absorbing portion 103 for absorbing the interface elastic wave 110b is formed.
  • the light beam condensed by the condenser lens 105 a enters the piezoelectric material 108 from the incident end face of the piezoelectric material 108.
  • the incident light beam is incident on the area covered by the interfacial elastic wave 110b at a predetermined incident angle.
  • the area covered by the interfacial elastic wave 110b is an area located below the plane including the linear electrodes.
  • the predetermined incident angle is an angle that satisfies the condition such that Bragg diffraction occurs.
  • the shape of the cross section of the light beam focused by the focusing lens 105a in the area covered by the surface acoustic wave 110b is elliptical, and the vertical beam width d and the horizontal beam width W in the cross section are the same as the vertical beam width d described above. Each condition on v (z) and horizontal beam width d h (z) is satisfied.
  • the vertical beam width d and the horizontal beam width W can be adjusted by the position, focal length, direction (optical axis direction), etc. of the focusing lens 105a.
  • the condenser lens 105 b is provided in the traveling direction of the light beam (here, the diffracted light beam 104 a) from the emission end face of the piezoelectric material 108.
  • the diffracted light beam 104 a is diffused light (first-order diffracted light), and the condenser lens 105 b is used to collimate the diffracted light beam 104 a.
  • a ray passing through the center of the cross section of the diffracted light beam 104a in a direction crossing the traveling direction (the ray trajectory corresponds to the optical axis of the diffracted light beam 104a) coincides with the optical axis of the condensing lens 105b.
  • the angle between the optical axis of the diffracted light beam 104a and the optical axis of the outgoing light beam 104b (zero-order light) emitted from the emitting end face when the supply of the high frequency voltage is stopped is 2 ⁇ . This angle 2 ⁇ is equal to the Bragg diffraction angle.
  • an interfacial elastic wave 110b is generated inside the piezoelectric material.
  • the diffracted light beam 104 a is emitted from the emission end face of the piezoelectric material 108.
  • the diffracted light beam 104a is collimated by the condenser lens 105b.
  • the diffracted light beam 104a converted into this parallel light beam is used as an output light of the light modulator.
  • the interfacial elastic wave 110 b is not generated, so the light beam from the condensing lens 105 a propagates in the piezoelectric material 108 as it is without being diffracted. Then, the outgoing light beam 104b is emitted from the outgoing end surface. The outgoing light beam 104b deviates from the optical path of the diffracted light beam 104a which is the output light of the light modulator.
  • optical modulator according to the present embodiment can also achieve the effects described in the second embodiment.
  • the propagation velocity of the surface acoustic wave 110b is faster than the propagation velocity of the surface acoustic wave, it is possible to provide an optical modulator capable of driving in a higher band as compared with the configuration using the surface acoustic wave. . According to the present embodiment, it is possible to provide an optical modulator capable of driving in a high band of, for example, 100 MHz or more. In order to realize a large high definition display, an optical modulator capable of high speed modulation is required. According to the present embodiment, since high-speed modulation is possible, a large high-definition display can be realized.
  • FIG. 9 is a schematic view for explaining the configuration of the optical modulator according to the fifth embodiment of the present invention.
  • This light modulator has the same configuration as that of the light modulator according to the fourth embodiment except that two interfacial elastic wave generating means (comb-like electrodes) are provided at opposing portions in the depth direction in the piezoelectric material. belongs to.
  • the embedded comb electrodes 112 a and 112 b are formed in the piezoelectric material 108 so as to face each other in the depth direction.
  • the embedded comb electrodes 112a and 112b both have the same configuration as the embedded comb electrode 112 shown in FIG. 8, and the first and second comb electrodes in which linear electrodes corresponding to the respective comb teeth are alternately arranged. And the intervals between the linear electrodes are equal.
  • the first and second comb electrodes of the embedded comb electrode 112a are disposed at positions facing the first and second comb electrodes of the embedded comb electrode 112b, respectively. Respective periods of the first and second comb electrodes constituting the embedded comb electrode 112 a and the embedded comb electrode 112 b are the same as each other. Here, the period of the first and second comb electrodes is referred to as ⁇ .
  • a first interfacial elastic wave of wavelength ⁇ ⁇ is generated inside the piezoelectric material 108.
  • a second interfacial elastic wave of wavelength ⁇ ⁇ is generated inside the piezoelectric material 108.
  • the traveling directions of the first and second interfacial elastic waves are the same.
  • the periodic change of the refractive index formed along the traveling direction of the first interfacial elastic wave is the same as the periodic change of the refractive index formed along the traveling direction of the second interfacial elastic wave. It is. Therefore, when the area covered by the first interfacial elastic wave and the area covered by the second front interface elastic wave overlap each other in the depth direction, the first and second interfacial elastic waves are integrated into one. It can be regarded as an interfacial elastic wave.
  • the first interfacial elastic waves are respectively present in the upper and lower directions of the plane, and the depths thereof are both together
  • the wavelength is about ⁇ .
  • the second interfacial elastic waves are respectively present in the upper and lower directions of the plane, Both the depths are about the wavelength ⁇ .
  • the distance between the plane including the linear electrodes forming the embedded comb electrode 112a and the plane including the linear electrodes forming the embedded comb electrode 112b is 2 ⁇ or less, the area covered by the first interfacial elastic wave and the second area Regions of the surface acoustic wave overlap each other in the depth direction.
  • the distance between the embedded comb electrodes 112 a and 112 b is set such that the area where the first interface elastic wave and the area where the second interface elastic wave extend overlap each other in the depth direction. .
  • the light beam condensed by the condensing lens 105a is incident on the area where the first and second interfacial elastic waves extend at a predetermined incident angle.
  • the predetermined incident angle is an angle that satisfies the condition that Bragg diffraction occurs.
  • the cross-sectional shape of the light beam collected by the condensing lens 105 a in the area where the first and second interfacial elastic waves extend is an elliptical shape, and the vertical beam width d and the horizontal beam width W in the cross section are , The above-mentioned conditions regarding the vertical beam width d v (z) and the horizontal beam width d h (z).
  • the range in the depth direction of the area in which the interfacial elastic wave extends is expanded by at most about twice as compared with that of the fourth embodiment.
  • the output of the modulatable light beam can be increased accordingly.
  • the third embodiment when it is possible to modulate a light beam of 200 mW, in the present embodiment, it is possible to modulate a light beam of about 400 W which is twice that.
  • a small-sized optical modulator capable of modulating large-output visible light of 200 mW or more with a high band of 30 MHz or more and a high extinction ratio Can be provided.
  • Such light modulators are suitable for light beam modulators for laser displays that modulate high-power visible light.
  • the light modulators according to the first to fifth embodiments are an example of the present invention, and the configuration can be changed as appropriate.
  • the velocity of the surface acoustic wave (or interface elastic wave) it is possible to enhance the diffraction efficiency at the time of high speed modulation and to lower the light density.
  • the propagation velocity of the surface acoustic wave when using quartz as the piezoelectric material is 3157 m / s
  • the propagation of the surface acoustic wave when using LN (lithium niobate) as the piezoelectric material The speed is 4000 m / s. Therefore, by using LN as the piezoelectric material, the diffraction efficiency and the light density can be improved.
  • LiNbO 3 crystal doped with several percent of impurities such as Er (erbium) and In (indium) has resistance to light damage three or more times that of quartz
  • LiNbO doped with such impurities as a piezoelectric material By using three crystals, it is possible to provide a structure excellent in resistance to light damage. In this case, it is possible to modulate a light beam of about 1 W.
  • an impurity may be introduced into the quartz.
  • the light damage resistance can be improved.
  • a Gaussian beam may be used as the light beam.
  • the focusing distance of the focusing lens changes depending on the wavelength of the light beam.
  • FIG. 10 shows the relationship between the diameter of the light beam and the beam focusing distance for each wavelength.
  • a graph of the R light beam (630 nm) is shown in dash-dotted lines
  • a graph of the G light beam (530 nm) is shown in broken lines
  • a graph of the B light beam (470 nm) is shown in solid lines.
  • the focusing distance in the case of focusing an R light beam having a diameter of 500 ⁇ m is 38 mm.
  • the focusing distance in the case of focusing a B light beam with a diameter of 600 ⁇ m is 60 mm.
  • the focusing lens of the light modulator needs to be designed in consideration of the wavelength of the light beam to be modulated.
  • FIG. 11 shows the relationship between the diameter of the light beam and the beam focusing distance for each beam waist.
  • the beam waist 10 ⁇ m graph is shown by a solid line
  • the beam waist 15 ⁇ m graph is shown by a broken line
  • the beam waist 20 ⁇ m graph is shown by an alternate long and short dash line.
  • the light modulator of the present invention can be applied to an optical communication apparatus, an image display apparatus, an image forming apparatus, and the like.
  • the light modulator of the present invention can be used as a deflector.
  • FIG. 12 is a schematic view showing an example of the image display device.
  • the image display apparatus includes laser light sources 402, 403, 404, collimator lenses 405, 406, 407, a reflection mirror 408, dichroic mirrors 409, 410, a horizontal scanning mirror 415, a vertical scanning mirror 416, and light modulators 418, 419, It has the housing
  • FIG. The light modulators 418, 419, 420 are the light modulators of the present invention.
  • a collimator lens 405, an optical modulator 418, and a reflection mirror 408 are arranged in order.
  • the parallel luminous flux from the collimator lens 405 enters the light modulator 418.
  • the light modulator 418 operates in accordance with a control signal supplied from a control unit (not shown). While the control signal is on (a high frequency voltage supply period), a high frequency voltage is applied to the comb electrode in the light modulator 418 to generate a surface acoustic wave or an interfacial elastic wave.
  • the incident light passes through the area where the surface acoustic wave or the interface elastic wave is generated, Bragg diffraction occurs, and the first-order diffracted wave is output from the optical modulator 418 as the output light.
  • the output light is directed to the reflection mirror 408.
  • the control signal is off (voltage supply stop period)
  • the surface acoustic wave or the interface elastic wave is not generated, so the incident light passes through the light modulator 418.
  • the light transmitted through the light modulator 418 deviates from the light path toward the reflecting mirror 408.
  • a collimator lens 406 In the traveling direction of the laser light from the laser light source 403, a collimator lens 406, an optical modulator 419, and a dichroic mirror 409 are arranged in order.
  • the parallel luminous flux from the collimator lens 406 enters the light modulator 419.
  • the same operation as that of the light modulator 418 is performed.
  • the output light of the light modulator 419 goes to the dichroic mirror 409.
  • a collimator lens 407, a light modulator 420, and a dichroic mirror 410 are sequentially disposed in the traveling direction of the laser light from the laser light source 404.
  • the parallel light flux from the collimator lens 407 enters the light modulator 420.
  • the same operation as the light modulator 418 is performed.
  • the output light of the light modulator 420 is directed to the dichroic mirror 410.
  • the dichroic mirror 409 is provided at a position where the light flux from the light modulator 419 and the light flux reflected by the reflection mirror 408 intersect.
  • the dichroic mirror 409 has wavelength selection characteristics so as to reflect the light from the light modulator 419 and to transmit the light from the reflection mirror 408.
  • the dichroic mirror 410 is provided at a position where the light flux from the light modulator 420 and the light flux from the dichroic mirror 409 intersect.
  • the dichroic mirror 410 has wavelength selection characteristics such as to reflect the light from the light modulator 420 and to transmit the light from the dichroic mirror 409.
  • the horizontal scanning mirror 415 is disposed in the traveling direction of the light beam from the dichroic mirror 410, and its operation is controlled by a horizontal scanning control signal from a control unit (not shown).
  • the vertical scanning mirror 416 is disposed in the traveling direction of the light beam from the horizontal scanning mirror 415, and its operation is controlled by a vertical scanning control signal from a control unit (not shown).
  • the laser light sources 402, 403, and 404 light sources that emit laser light of a color corresponding to the three primary colors of R, G, and B are used.
  • a color image can be displayed on the screen 417 by controlling the light modulators 418, 419, 420 on and off and controlling the horizontal scanning mirror 415 and the vertical scanning mirror 416.
  • the depth of the elastic wave propagation region (the direction perpendicular to the electrode surface including the linear electrodes of the comb-like electrodes constituting the elastic wave generating means) is the wavelength of the surface acoustic wave or the interfacial elastic wave (It is about the same as the period of each linear electrode of the comb electrode), and almost the entire range in the depth direction can be used as a region for modulating incident light.
  • the range of the interaction area between the incident light and the surface acoustic wave or interface elastic wave is sufficient compared to the waveguide type acousto-optic device Therefore, the light density can be reduced by that amount, and the light damage resistance is also improved. As a result, it is possible to modulate a light beam of high light output.
  • the energy utilization and the diffraction efficiency of the surface acoustic wave or the interface elastic wave are also improved.
  • the expanded interaction area can increase the diameter of the collected beam in the elastic wave propagation area.
  • the configuration of the focusing optical system in this case is simpler than that of the focusing optical system in which the light beam is introduced into the waveguide.
  • the interaction area is expanded, it is possible to obtain sufficient diffraction efficiency even if the width (interaction length) of the elastic wave propagation area is reduced. Therefore, the width (interaction length) of the elastic wave propagation region can be made smaller than that of the waveguide type acousto-optic device, and the device can be miniaturized accordingly.
  • the power consumption of the elastic wave generating means constituted by the comb electrodes is smaller than that of a bulk type acoustooptic device using a piezoelectric vibrator. Therefore, power consumption can be reduced.
  • the size of the cross section of the elastic wave propagation area in the present invention is smaller than the cross section of the area in which the ultrasonic traveling wave occurs in the bulk type acousto-optic element, the element can be miniaturized accordingly.
  • the outgoing light when the incident light is in the single mode, the outgoing light also maintains the single mode.
  • single mode output light can be obtained.

Abstract

 光変調器は、音響光学媒体1と、音響光学媒体1内に表面弾性波を発生する表面弾性波発生手段2とを有する。音響光学媒体1内は、表面弾性波発生手段2により発生した表面弾性波が及ぶ領域である表面弾性波進行領域3が同一材料よりなる。音響光学媒体1は、表面弾性波の進行方向と交差する方向に、表面弾性波進行領域3を挟んで対向する第1および第2の端面を備える。第1の端面から入射した入射光が表面弾性波進行領域3を通過する際に生じる一次回折波と、表面弾性波発生手段2を停止した状態で入射光が音響光学媒体1内を伝播する光とが、それぞれ第2の端面から異なる方向に出射される。

Description

光変調器
 本発明は、音響光学材料を用いた光変調器に関する。
 図1に、特許文献1(特開平06-273705号公報)に記載のバルク型音響光学素子の構成を示す。このバルク型音響光学素子は、音響光学媒体200と、音響光学媒体200の端面に形成された圧電振動子201と、圧電振動子201を駆動するための高周波電源202とを有する。
 高周波電圧が圧電振動子201に供給されると、圧電振動子201が振動し、それにより音響光学媒体200内に超音波進行波203が発生する。音響光学媒体200内の超音波進行波203が及ぶ領域においては、屈折率が周期的に変化する。この屈折率変化領域に、入射光206をブラッグ回折角θで入射させると、一次回折光204を生じる。一方、圧電振動子201への高周波電圧の供給を停止すると、屈折率変化領域は形成されないため、入射光206はそのまま音響光学媒体200を通過し、非回折光205として出射される。
 上記の他、非特許文献1(Japanese Journal of Applied Physics Vol. 46, No. 2, pp. 669-674)に記載の光通信用の導波路型音響光学素子がある。図2に、その導波路型音響光学素子の構成を示す。
 図2に示すように、光導波路301および櫛形電極302、303が、圧電素子300上に形成されている。光導波路301は、プロント交換法で光の波長程度の領域の屈折率を高めることで形成したものであって、その高さは0.8μmである。
 櫛形電極302は、等間隔に配置された複数の線状電極を備えた第1および第2の電極部からなり、第1および第2の電極部は、互いの線状電極が交互に配置されている。櫛形電極303も、櫛形電極302と同様の構造のものである。櫛形電極302、303は対向するように光導波路301の両側に形成されている。
 櫛形電極302、303に高周波電圧を印加すると、圧電素子300の表面近傍に表面弾性波が発生する。櫛形電極302、303からの表面弾性波により、光導波路301の中央部(櫛形電極302、303により挟まれた領域)の屈折率が変化する。光導波路301内を伝播する光がその屈折率変化領域に入射すると回折光が生じる。
 上記の導波路型音響光学素子は、10mW以下のシングルモードの赤外光を変調するための素子として用いられる。
 しかしながら、上述した音響光学素子には、以下のような問題がある。
 特許文献1に記載のバルク型音響光学素子においては、音響光学媒体200や圧電振動子201のサイズが大きく、超音波進行波203が生じる領域の断面の大きさは数ミリメートル程度である。また、圧電振動子201への供給電圧は数十V以上であり、バルク型音響光学素子の消費電力は数十W以上である。このように、バルク型音響光学素子においては、素子サイズが大きく、消費電力も多い、という問題がある。
 特に、レーザディスプレイ等の画像表示装置においては、光変調器の小型化および消費電力化が望まれており、上記のバルク型音響光学素子を、そのような画像表示装置に適用することは困難である。
 非特許文献1に記載の光通信用の導波路型音響光学素子においては、以下のような問題がある。
 (1)導波路型音響光学素子は、入射光が光の波長程度のサイズの導波路に閉じ込められる構造であるため、入射光の強度によっては、導波路内の光密度が極めて高くなって、導波路が損傷してしまう場合がある。このように、導波路型音響光学素子の光損傷耐性は低い。一方、レーザディスプレイ等の画像表示装置では、例えば100mW以上の高出力光に対する光変調が行われる。このような高出力光の光変調が行われる画像表示装置に、光損傷耐性の低い導波路型音響光学素子を適用することは困難である。
 なお、導波路型音響光学素子を画像表示装置に適用する場合、赤外光より波長の短い可視光を導波路型音響光学素子で変調することになる。この場合、導波路の厚みはさらに薄くなり、光損傷が生じ易くなる。また、導波路に用いられるLiNbO3材料の光損傷耐性は、ガラスに比べて2桁以上低い。光通信応用では、信号光をファイバーアンプにより増幅して中継することから、高い光出力が必ずしも要求されないため、上記のような光損傷問題は顕在しなかった。
 (2)導波路の断面サイズを拡大して光密度を下げることで、上記の光損傷問題を回避することは可能である。しかし、導波路の断面サイズを拡大すると、導波路内を伝播する光は、シングルモードを維持できずにマルチモードになり、音響波とのブラッグ回折により各導波モードの回折光の進行方向がお互いに異なってしまう。このため、導波路の断面サイズを拡大した場合は、回折効率が著しく低下する、という問題が生じる。
 (3)典型的な表面弾性波は、その波長(典型的には20μm程度)の深さに分布する。導波路内を伝播する光が表面弾性波と相互作用する領域は、たかだか光の波長程度の狭い領域であり、それ以外の広い領域においては、表面弾性波は光の回折に寄与しない。このように、表面弾性波のエネルギー利用率が小さい。
 また、導波路型音響光学素子では、十分な回折光を得るために、相互作用長(この場合は導波路長に同じ)を2mm以上にする必要がある。このため、素子の小型化が困難である。
 (4)画像表示用の光ビームの直径は500μm以上であり、それを厚さ1μm程度の導波路に入れるためには、様々な光学系を必要とし、その分、光損失が生じる。このように、画像表示用の光ビームを導波路に入れる際の光挿入損失が大きい、という問題がある。加えて、装置の部品点数が増大する、という不利益も生じる。さらに、素子自体が大きく、その構造が複雑であるために、製造コストも増大する。
 本発明の目的は、上記の各問題を解決することができ、高出力の光ビームを変調することができる、小型の光変調器を提供することにある。
 上記目的を達成するため、本発明の光変調器は、
 音響光学媒体と、
 上記音響光学媒体内に表面弾性波または界面弾性波を発生する弾性波発生手段とを有し、
 上記音響光学媒体内は、上記弾性波発生手段により発生した表面弾性波または界面弾性波が及ぶ弾性波伝播領域が同一材料より形成され、
 上記表面弾性波または界面弾性波の進行方向と交差する方向に、上記弾性波伝播領域を挟んで対向する第1および第2の端面を備え、該第1の端面から入射した入射光が上記弾性波伝播領域を通過する際に生じる一次回折波と、上記弾性波発生手段を停止した状態で上記入射光が上記音響光学媒体内を伝播する光とが、それぞれ上記第2の端面から異なる方向に出射される。
バルク型音響光学素子の構成を示す模式図である。 光通信用の導波路型音響光学素子の構成を示す模式図である。 本発明の第1の実施形態である光変調器の構成を示す模式図である。 図3に示す光変調器におけるブラッグ回折を説明するための模式図である。 本発明の第2の実施形態である光変調器の構成を説明するための模式図である。 光ビームの直径のビーム伝播距離依存性を示す特性図である。 本発明の第3の実施形態である光変調器の構成を説明するための模式図である。 本発明の第4の実施形態である光変調器の構成を説明するための模式図である。 本発明の第5の実施形態である光変調器の構成を説明するための模式図である。 光ビームの直径とビーム集光距離との関係を波長別に示す特性図である。 光ビームの直径とビーム集光距離との関係をビームウェスト別に示す特性図である。 本発明の光変調器を備える画像表示装置の一例を示す模式図である。
1 音響光学媒体
2 表面弾性波発生手段
3 表面弾性波進行領域
 次に、本発明の実施形態について図面を参照して説明する。
 (第1の実施形態)
 図3は、本発明の第1の実施形態である光変調器の構成を示す模式図である。
 図3を参照すると、光変調器は、音響光学媒体1と、音響光学媒体1の表面に形成された表面弾性波発生手段2とを備える。音響光学媒体1は、表面弾性波発生手段2により発生した表面弾性波と入射光を相互作用させるための媒体である。このような表面弾性波と入射光の相互作用は、一般に、音響光学効果と呼ばれている。音響光学媒体1は、音響光学効果を得ることのできる材料、例えば、水晶や不純物がドープされた音響光学材料より形成される。不純物は、例えばEr(エルビウム)、In(インジウム)等である。
 表面弾性波発生手段2は、例えば、同一平面上に等間隔に配置された複数の線状電極からなり、一方の側から数えて偶数番目の線状電極群と奇数番目の線状電極群との間に高周波電圧が印加されるように構成されている。このような電極構造の一例として、第1および第2の櫛形電極からなる電極構造がある。第1および第2の櫛形電極は、互いの櫛歯に相当する線状電極が交互に配置されており、各線状電極間の間隔は等間隔である。なお、線状電極の間隔が等間隔であるとは、各線状電極間の距離が完全に一致している状態だけでなく、製造誤差等により線状電極間の間隔にズレが生じている状態をも含む。
 高周波電圧が櫛形電極間に印加されることで、音響光学媒体1の表面近傍に表面弾性波が生じる。表面弾性波は、線状電極の並び方向(線状電極の長さ方向と交差する方向)に沿って音響光学媒体1の表面部分を進行する進行波であり、その進行方向に沿って、屈折率の周期的な変化が生じる。
 表面弾性波が及ぶ領域(弾性波伝播領域)である表面弾性波進行領域3は同一材料よりなり、その深さは、表面弾性波の波長程度とされる。例えば、波長Λの表面弾性波が及ぶ領域の深さは、その波長Λとされる。なお、表面弾性波の波長Λ(または表面弾性波3が及ぶ領域の深さ)は、線状電極の間隔(周期)および線状電極群間に印加される高周波電圧の周波数(表面弾性波発生手段2の駆動周波数)によって決まる。表面弾性波進行領域3の幅L(線状電極の長さ方向における幅)が、音響光学効果が生じる相互作用長である。
 音響光学媒体1の側面のうち、表面弾性波進行領域3を挟んで対向する側面の一方が入射端面とされ、他方が出射端面とされている。表面弾性波発生手段2が形成される表面は、これら入射端面および出射端面のそれぞれと交差する平面よりなる。
 入射端面からの光ビームが表面弾性波進行領域3に所定の入射角で入射するように、音響光学媒体1の入射端面に対する光ビームの入射角度が設定される。ここで、所定の入射角は、入射端面からの光ビームが表面弾性波進行領域3を通過する際に屈折するような条件を満たす角度であり、より望ましくは、光ビームが表面弾性波進行領域3を通過する際にブラッグ回折が生じるような条件を満たす角度である。
 図4に、図3に示した光変調器における回折を模式的に示す。表面弾性波は、音響光学媒体1の表面近傍を、図面に向かって手前側から奥側に向かって進行する。光ビーム4は、図面に向かって左側から音響光学媒体1の入射端面に入射する。入射した光ビーム4が表面弾性波進行領域3を通過する際に、ブラッグ回折により、1次回折波4aが生じる。1次回折波4aは、音響光学媒体1の出射端面から外部に向けて出射される。
 表面弾性波発生手段2への高周波電圧の供給を停止すると、表面弾性波進行領域3は形成されないため、入射した光ビーム4は、回折することなく、そのまま音響光学媒体1内を伝播し、出射端面から外部に向けて出射される。この出射端面からの光の進行方向は、0次光の進行方向と同じである。
 高周波電圧の供給時に出射端面から出射される1次回折波4aの光軸は、高周波電圧の供給を停止した場合に出射端面から出射される光(0次光)の光軸に対して、ブラッグ回折角だけ傾いている。したがって、表面弾性波発生手段2への高周波電圧の供給を制御することで、出射端面からの出力光の進行方向を切り替えることができ、これにより、光ビーム4を変調することができる。通常、1次回折波4aを光変調器の出力光として利用する。
 光ビーム4の径は、表面弾性波の波長Λ(または表面弾性波3が及ぶ領域の深さ)により規定される。図3および図4には示されていないが、光ビーム4を音響光学媒体1に入射させるための光学系として、入射端面に設けられる反射防止膜、反射鏡、非球面レンズなどからなる光学系が用いられる。光ビーム4は、断面形状が楕円形状の平行光束であり、光ビーム4の殆どが、表面弾性波進行領域3の少なくとも一部を通過するように、光ビーム4のビーム径が設定される。
 ここでは、図4に示されるように、光ビーム4の断面形状において、深さ方向(X方向)のビーム幅を垂直ビーム幅d(z)、水平方向(Y方向)のビーム幅を水平ビーム幅d(z)と呼ぶ。
 光ビームの回折効率を考慮すると、垂直ビーム幅d(z)は表面弾性波3が及ぶ領域(弾性波伝播領域)の深さΛ程度、あるいはΛよりやや小さいことが望ましい。なぜならば表面弾性波3が及ばない領域を通過する光ビームの部分が増大すると、その光ビーム部分は回折されないため、変調時の消光比が低下するからである。しかしながら、光ビームの楕円断面形状の縁の部分の面積は小さく、垂直ビーム幅がZ方向の位置に依存してやや広がる分布を有する。このことを考慮し、垂直ビーム幅d(z)は1.2×Λより小さくすることが望ましい。この条件を満たすことで、消光比の低下の度合いをディスプレイにおける通常の仕様である5%以下に抑えることができる。
 ビームの断面積が小さくなると、高い消光比が得られるが、光密度が高くなるので、使用できる光ビームの強度が制限される。詳細は後述するが、水晶を用いた場合の光ビーム強度は、垂直ビーム幅がΛのとき、最大で200mW程度である。ディスプレイに要求される光ビーム強度は、画面の大きさや構成に依存し、通常20mW~200mWである。従って垂直ビーム幅d(z)は、0.1×Λより大きくすることが望ましい。
 これらの条件により、表面弾性波進行領域3の深さをΛ(深さΛは、線状電極の間隔に相当する)、幅をL(幅Lは、線状電極の交差部の幅に相当する)とするとき、任意のz(0≦z≦L)に対して、垂直ビーム幅d(z)は、0.1×Λ<d(z)<1.2×Λの条件を満たす。より望ましくは、垂直ビーム幅d(z)は、0.7×Λ<d(z)<Λの条件を満たす。ここで、表面弾性波進行領域3の幅方向は、深さ方向(X方向)および進行方向(Y方向)のそれぞれに垂直な方向(Z方向)である。深さΛは、例えば、30μm程度である。
 Y方向の水平ビーム幅d(z)は、弾性波発生手段である表面弾性波発生手段(または界面弾性波発生手段)の駆動周波数fを表面弾性波(または界面弾性波)の伝播速度vで割った値W(=v/f)、あるいはそれより小さい値である。なぜなら水平ビーム幅がWより大きいと、個々の変調信号を十分に分離できなくなり、ディスプレイ画像の解像度が低下するからである。
 また水平ビーム幅d(z)は2×Λより大きくなくてはならない。なぜなら、水平ビーム幅の中に入る表面弾性波の数(1波長で1個と数えたときの)が3個より少ないと、回折効率が低下するからである。高い回折効率を得るには、変調周波数fをv/2Λより小さくする必要がある。
 結局、光変調器を周波数f(MHz)で駆動する場合、表面弾性波の伝播速度vに対して、Y方向の水平ビーム幅d(z)は、2×Λ<d(z)≦W(=v/f>2×Λ)の条件を満たす。
 本実施形態では、1次回折波4aを光変調器の出力光として用いるので、1次回折波4aの光量(輝度)を大きくすることで、消光比を高めることができる。1次回折波4aの光量(輝度)は、表面弾性波進行領域3に入射する光ビームの量に比例する。上述した垂直ビーム幅d(z)および水平ビーム幅d(z)の各条件を満たすことで、光ビーム4の殆どが表面弾性波進行領域3を通過することになる。これにより、消光比を高くすることができる。
 また、上記の各条件を満たすように光ビーム4のビーム径を設定することで、光変調器の駆動周波数fを高く設定した場合も、光ビーム4の殆どが表面弾性波進行領域3を通過することになる。したがって、例えば30MHz以上の高帯域で変調する場合でも、消光比を高くすることができる。
 また、本実施形態の光変調器は、非特許文献1に記載されたような導波路型音響光学素子とは異なり、音響光学媒体1内に導波路構造を持たない。加えて、音響光学媒体1は、光損傷耐性に優れた材料(水晶や、不純物をドープした音響光学材料)により構成されている。このため、高出力の光ビーム、例えば100mW以上の光ビームを変調する場合に、音響光学媒体1が損傷してしまう、といった問題は生じない。
 加えて、シングルモードの光ビームが音響光学媒体1内に入射した場合、その入射光は、シングルモードを維持したまま表面弾性波進行領域3を通過する。ブラッグ回折の条件を満たす場合、1次回折波4a以外の高次の回折波は小さく、無視することができる。よって、シングルモードの1次回折波4aを得ることができる。このように、本実施形態の光変調器によれば、シングルモードの出力光を得ることができる。シングルモードの1次回折波4aを得るために、光ビームとしてガウシアンビームを用いることが望ましい。
 さらに、導波路型音響光学素子では、相互作用長Lを2mm以上にする必要があったが、本実施形態の光変調器によれば、例えば、表面弾性波進行領域3の深さ(表面弾性波の波長に対応する)を20μmとした場合、相互作用長Lは400μmとなる。このように、相互作用長Lを小さくすることができるので、光変調器の小型化が可能である。
 また、導波路型音響光学素子では、相互作用が生じる領域は導波路内に限られており、その領域は、たかだか入射光の波長程度の狭い領域である。したがって、例えば、波長が20μmの表面弾性波を発生させた場合、表面弾性波の及ぶ領域の深さは20μmであるが、導波路内の狭い領域でしか相互作用は生じないため、表面弾性波のエネルギー利用率は低い。これに対して、本実施形態の光変調器によれば、光ビーム4のビーム径は、表面弾性波進行領域3の深さおよび相互作用長に応じて設定される。換言すると、表面弾性波進行領域3の全体に光ビーム4を入射させるような条件を設定することができる。これにより、表面弾性波進行領域3内の広い領域において相互作用を生じさせることができ、表面弾性波のエネルギー利用率を向上することができる。
 また、表面弾性波発生手段2を櫛形電極により構成することで、圧電振動子に比べて、電極面積(容量)および駆動電圧を小さくができ、消費電力を小さくできる。よって、低消費電力で小型の素子を提供することが可能である。加えて、駆動周波数の高い櫛形電極を用いることで、例えば20MHz以上の高帯域での駆動が可能な光変調器を提供することができる。
 (第2の実施形態)
 光ビームを表面弾性波進行領域3内に効率よく入射させるためには、光学系を用いて、光ビーム径を絞ることが望ましい。ここでは、そのような光学系を備える実施形態について説明する。
 図5は、本発明の第2の実施形態である光変調器の構成を説明するための図であって、矢印100Aによって示される部分図は、光変調器の上面側から見た模式図であり、矢印100Bによって示される部分図は、光変調器の側面側から見た模式図である。図5に示すように、櫛形電極102が表面に形成された圧電材料108が支持基板101上に形成されている。圧電材料108は、例えば水晶である。支持基板101の材料は、例えばシリコン(Si)である。
 櫛形電極102は、表面弾性波発生手段であって、互いの櫛歯に相当する線状電極が交互に配置された第1および第2の櫛形電極からなり、各線状電極間の間隔は等間隔である。高周波電圧を第1および第2の櫛形電極の間に供給することで、圧電材料108の表面近傍に、表面弾性波110aが発生する。圧電材料108が水晶より構成される場合、表面弾性波110aの進行速度は3157m/sである。
 第1の櫛形電極の周期(櫛歯の間隔)と第2の櫛形電極の周期(櫛歯の間隔)は同じであり、ここでは、第1および第2の櫛形電極のそれぞれの周期をΛとする。また、櫛形電極102の相互作用長をLとする。表面弾性波110aが及ぶ領域(弾性波伝播領域)は同一の材料からなり、その表面からの深さは、周期Λに同じである。
 圧電材料108内の、櫛形電極102にて発生した表面弾性波110aの進行方向には、この表面弾性波110aを吸収するための超音波吸収部103が形成されている。超音波吸収部103の表面弾性波進行方向に垂直な方向における断面積は、弾性波伝播領域の断面積以上とすることが望ましい。超音波(表面弾性波や海面弾性波)を吸収できるのであれば、超音波吸収部103としてどのような材料や形状のものを用いてもよい。
 圧電材料108の端面のうち、表面弾性波110aの進行方向と交差する方向に位置する端面の一方が入射端面とされ、他方が出射端面とされている。前端反射防止膜106が入射端面上に形成され、後端反射防止膜107が出射端面上に形成されている。支持基板101上には、さらに集光レンズ105a、105bがそれぞれ光学冶具109a、109bを介して設けられている。
 集光レンズ105aは、入射光ビーム104を集光する。入射光ビーム104は、平行光束である。集光レンズ105aにより集光された光ビームは、圧電材料108の入射端面から圧電材料108内に入射する。この入射した光ビームは、表面弾性波110aが及ぶ領域に対して所定の入射角で入射する。ここで、所定の入射角は、ブラッグ回折が生じるような条件を満たす角度である。
 集光レンズ105aによって集光された光ビームの、表面弾性波110aが及ぶ領域における断面の形状は楕円形状であり、その断面における垂直ビーム幅dおよび水平ビーム幅Wが、前述の垂直ビーム幅d(z)および水平ビーム幅d(z)に関する各条件を満たす。垂直ビーム幅dおよび水平ビーム幅Wは、集光レンズ105aの位置、焦点距離、向き(光軸方向)等により調整することが可能である。
 集光レンズ105bは、圧電材料108の出射端面からの光ビーム(ここでは、回折光ビーム104a)の進行方向に設けられている。回折光ビーム104aは拡散光(一次回折光)であり、集光レンズ105bは、回折光ビーム104aを平行光束にするために用いる。回折光ビーム104aの、その進行方向と交差する方向における断面の中心を通る光線(この光線軌跡は回折光ビーム104aの光軸に対応する)は、集光レンズ105bの光軸と一致する。回折光ビーム104aの光軸と、高周波電圧の供給を停止した場合に出射端面から出射される出射光ビーム104b(0次光)の光軸とのなす角度は2θである。この角度2θは、ブラッグ回折角に等しい。
 次に、本実施形態の光変調器の動作について説明する。
 高周波電圧が櫛形電極102に供給されると、圧電材料108の表面近傍に表面弾性波110aが発生する。入射光ビーム104を集光レンズ105aにより集光した光ビームが、表面弾性波110aが及ぶ領域を通過する際にブラッグ回折が生じ、その結果、回折光ビーム104aが圧電材料108の出射端面から出射される。回折光ビーム104aは、集光レンズ105bにより平行光束とされる。この平行光束とされた回折光ビーム104aが、光変調器の出力光として用いられる。
 櫛形電極102への高周波電圧の供給が停止されると、表面弾性波110aが発生しないため、集光レンズ105aにより集光した光ビームは、回折することなく、そのまま圧電材料108内を伝播する。そして、出射光ビーム104bが出射端面から出射される。出射光ビーム104bは、光変調器の出力光である回折光ビーム104aの光路から外れる。
 このように、櫛形電極102への高周波電圧の供給を制御することで、光変調器の出力光(回折光ビーム104a)のオンオフを制御することができる。
 本実施形態の光変調器によっても、第1の実施形態で説明した作用効果を得ることができる。
 図6は、光ビームの直径のビーム伝播距離依存性を示す。縦軸は光ビームの直径rを示し、横軸はビームの伝播方向xを示す。伝播方向xが0である点が、表面弾性波の及ぶ領域における、光ビームの入射位置に対応する。R光ビーム(630nm)のグラフが一点鎖線で示され、G光ビーム(530nm)のグラフが破線で示され、B光ビーム(470nm)のグラフが実線で示されている。表面弾性波の及ぶ領域の深さΛは、~20μmである。
 R光ビーム、G光ビームおよびB光ビームのいずれの光ビームにおいても、垂直ビーム幅dが15μmであれば、相互作用長Lが2mmで、表面弾性波の及ぶ領域の深さΛが20μmである領域内に、光ビームを収めることができる。
 なお、光ビームの垂直ビーム幅dおよび水平ビーム幅W、表面弾性波の及ぶ領域の深さΛ、および相互作用長Lは、回折効率、光損傷耐性、光密度、素子サイズ等を考慮して適宜に設定することが望ましい。例えば、垂直ビーム幅dが15μmで、深さΛが20μmである場合、相互作用長Lを400μm程度にしてもよい。このような設定においても、回折効率や光損傷耐性を損なうことなく、素子サイズを小さくすることができる。
 また、垂直ビーム幅dや水平ビーム幅Wを小さくした場合は、焦点距離の短い集光レンズを用いることになる。焦点距離の短い集光レンズを用いることで、集光レンズと圧電材料108の間隔を小さくすることが可能となり、その分、光変調器のサイズを小さくすることができる。垂直ビーム幅dおよび水平ビーム幅Wは、表面弾性波の及ぶ領域の深さΛおよび相互作用長Lにより決まる。
 本実施形態の光変調器によれば、例えば、相互作用長Lを2mmから400μmに削減することができるので、素子サイズを小さくすることができる。
 また、20MHzの変調周波数で変調器を駆動する場合において、深さΛを20μmとし、水平ビーム幅Wを105μmとする。水晶の可視光における最大許容光密度は、100W/mm2以上であり、最大許容光出力は、
Figure JPOXMLDOC01-appb-M000001
で与えられる。これは、大型ディスプレイ用のレーザ光源に必要なレベルの光出力を得ることが可能であることを意味する。すなわち、本実施形態の光変調器によれば、200mW以上の大出力の可視光を30MHz以上の高帯域で変調するディスプレイ用の光ビーム変調器を提供することが可能である。
 (第3の実施形態)
 表面弾性波が及ぶ領域の深さ方向における範囲を広げることで、より高出力の光ビームを変調することが可能となる。ここでは、そのような高出力の光ビームを変調可能な光変調器の構成について説明する。
 図7は、本発明の第3の実施形態である光変調器の構成を説明するための模式図である。この光変調器は、表面弾性波発生手段(櫛形電極)が圧電材料の表面および裏面のそれぞれに設けられた点以外は、第2の実施形態の光変調器と同様の構成のものである。
 表面櫛形電極102aが圧電材料108の表面に形成され、裏面櫛形電極102bが圧電材料108の裏面に形成されている。表面櫛形電極102aおよび裏面櫛形電極102bはいずれも、図5に示した櫛形電極102と同じ構成であって、互いの櫛歯に相当する線状電極が交互に配置された第1および第2の櫛形電極からなり、各線状電極間の間隔は等間隔である。
 表面櫛形電極102aの第1および第2の櫛形電極はそれぞれ、裏面櫛形電極102bの第1および第2の櫛形電極と対向する位置に配置されている。表面櫛形電極102aおよび裏面櫛形電極102bを構成する第1および第2の櫛形電極のそれぞれの周期は互いに同じである。ここでは、第1および第2の櫛形電極の周期をΛとする。
 表面櫛形電極102aに高周波電圧を印加することで、圧電材料108の表面櫛形電極102aが設けられた面の表面近傍に、波長Λの第1の表面弾性波が発生する。これと同様に、裏面櫛形電極102bに高周波電圧を印加することで、圧電材料108の裏面櫛形電極102bが設けられた面の表面近傍に、波長Λの第2の表面弾性波が発生する。第1および第2の表面弾性波の進行方向は同じである。また、第1の表面弾性波の進行方向に沿って形成される屈折率の周期的な変化も、第2の表面弾性波の進行方向に沿って形成される屈折率の周期的な変化と同じである。したがって、第1の表面弾性波の及ぶ領域と第2の表面弾性波の及ぶ領域とが、その深さ方向において互いに重なる場合は、第1および第2の表面弾性波は統合された1つの表面弾性波とみなすことができる。
 第1の表面弾性波の及ぶ領域の、表面櫛形電極102aが形成された面側からの深さはΛであり、第2の表面弾性波の及ぶ領域の、裏面櫛形電極102bが形成された面からの深さもΛである。したがって、表面櫛形電極102aが形成された面と裏面櫛形電極102bが形成された面との間隔が2Λ以下であれば、第1の表面弾性波の及ぶ領域と第2の表面弾性波の及ぶ領域とが、その深さ方向において互いに重なる。本実施形態では、第1の表面弾性波の及ぶ領域と第2の表面弾性波の及ぶ領域とが、その深さ方向において互いに重なるように、圧電材料108の厚さが設定されている。
 また、本実施形態においては、集光レンズ105aにより集光された光ビームは、第1および第2の表面弾性波の及ぶ領域に対して所定の入射角で入射する。ここで、所定の入射角は、ブラッグ回折が生じるような条件を満たす角度である。
 また、集光レンズ105aによって集光された光ビームの、第1および第2の表面弾性波の及ぶ領域における断面の形状は楕円形状であり、その断面における垂直ビーム幅dおよび水平ビーム幅Wが、前述の垂直ビーム幅d(z)および水平ビーム幅d(z)に関する各条件を満たす。
 以上のように構成された本実施形態の光変調器によれば、第2の実施形態のものに比べて、表面弾性波の及ぶ領域の深さ方向における範囲を、最大で2倍程度、広げることができるので、その分、変調可能な光ビームの出力を高めることができる。具体的には、第2の実施形態のもので、200mWの光ビームを変調可能である場合、本実施形態では、その2倍の400W程度の光ビームを変調可能である。このように、より大出力のディスプレイ用の光ビーム変調器を提供することが可能である。
 (第4の実施形態)
 第1から第3の実施形態の光変調器は表面弾性波を利用するものであるが、表面弾性波に代えて界面弾性波を利用することもできる。ここでは、そのような界面弾性波を利用して光ビームを変調する光変調器の構成について説明する。
 図8は、本発明の第4の実施形態である光変調器の構成を説明するための図であって、矢印200Aによって示される部分図は、光変調器の上面側から見た模式図であり、矢印200Bによって示される部分図は、光変調器の側面側から見た模式図である。この光変調器は、表面弾性波発生手段に代えて界面弾性波発生手段が設けられた点以外は、第2の実施形態の光変調器と同様の構成のものである。
 図8に示すように、界面弾性波発生手段である埋め込み櫛形電極112が圧電材料108内に形成されている。埋め込み櫛形電極112は、互いの櫛歯に相当する線状電極が交互に配置された第1および第2の櫛形電極からなり、各線状電極間の間隔は等間隔である。第1の櫛形電極の周期(櫛歯の間隔)と第2の櫛形電極の周期(櫛歯の間隔)は同じである。ここでは、第1および第2の櫛形電極のそれぞれの周期をΛとする。また、櫛形電極102の相互作用長をLとする。
 高周波電圧を第1および第2の櫛形電極の間に供給することで、圧電材料108内に波長Λの界面弾性波110bが発生する。界面弾性波110bの伝播速度は、表面弾性波の伝播速度より速い。
 界面弾性波110bは、圧電材料108内の、各線状電極を含む平面(入射端面および出射端面のそれぞれと交差する平面)の近傍を、線状電極の長手方向と交差する方向に向かって進行する。界面弾性波110bが及ぶ領域(弾性波伝播領域)は同一の材料からなる。各線状電極を含む平面に垂直な方向(圧電材料の深さ方向)において、界面弾性波110bは、その平面の上下方向にそれぞれ存在し、その深さはともに波長Λ程度とされる。したがって、界面弾性波110bが及ぶ領域の深さ方向における範囲は2Λ程度となる。光ビームと界面弾性波との相互作用領域として、界面弾性波110bが及ぶ領域全体(深さ2Λ)を用いることが可能であるが、本実施形態では、便宜上、界面弾性波110bが及ぶ領域のうち、各線状電極を含む平面の下方に位置する領域(深さΛ)を相互作用領域として用いる。
 圧電材料108内の、界面弾性波110bの進行方向には、この界面弾性波110bを吸収するための超音波吸収部103が形成されている。
 集光レンズ105aにより集光された光ビームは、圧電材料108の入射端面から圧電材料108内に入射する。この入射した光ビームは、界面弾性波110bが及ぶ領域に対して所定の入射角で入射する。ここでは、界面弾性波110bが及ぶ領域は、各線状電極を含む平面の下方に位置する領域とする。所定の入射角は、ブラッグ回折が生じるような条件を満たす角度である。
 集光レンズ105aによって集光された光ビームの、界面弾性波110bが及ぶ領域における断面の形状は楕円形状であり、その断面における垂直ビーム幅dおよび水平ビーム幅Wが、前述の垂直ビーム幅d(z)および水平ビーム幅d(z)に関する各条件を満たす。垂直ビーム幅dおよび水平ビーム幅Wは、集光レンズ105aの位置、焦点距離、向き(光軸方向)等により調整することが可能である。
 集光レンズ105bは、圧電材料108の出射端面からの光ビーム(ここでは、回折光ビーム104a)の進行方向に設けられている。回折光ビーム104aは拡散光(一次回折光)であり、集光レンズ105bは、回折光ビーム104aを平行光束にするために用いる。回折光ビーム104aの、その進行方向と交差する方向における断面の中心を通る光線(この光線軌跡は回折光ビーム104aの光軸に対応する)は、集光レンズ105bの光軸と一致する。回折光ビーム104aの光軸と、高周波電圧の供給を停止した場合に出射端面から出射される出射光ビーム104b(0次光)の光軸とのなす角度は2θである。この角度2θは、ブラッグ回折角に等しい。
 次に、本実施形態の光変調器の動作について説明する。
 高周波電圧が埋め込み櫛形電極112に供給されると、圧電材料108内部に界面弾性波110bが発生する。集光レンズ105aからの光ビームが、界面弾性波110bが及ぶ領域を通過する際にブラッグ回折が生じ、その結果、回折光ビーム104aが圧電材料108の出射端面から出射される。回折光ビーム104aは、集光レンズ105bにより平行光束とされる。この平行光束とされた回折光ビーム104aが、光変調器の出力光として用いられる。
 埋め込み櫛形電極112への高周波電圧の供給が停止されると、界面弾性波110bが発生しないため、集光レンズ105aからの光ビームは、回折することなく、そのまま圧電材料108内を伝播する。そして、出射光ビーム104bが出射端面から出射される。出射光ビーム104bは、光変調器の出力光である回折光ビーム104aの光路から外れる。
 このように、埋め込み櫛形電極112への高周波電圧の供給を制御することで、光変調器の出力光(回折光ビーム104a)のオンオフを制御することができる。
 本実施形態の光変調器によっても、第2の実施形態で説明した作用効果を得ることができる。
 また、界面弾性波110bの伝播速度は、表面弾性波の伝播速度より速いため、表面弾性波を利用する形態に比べて、より高帯域での駆動が可能な光変調器を提供することができる。本実施形態によれば、例えば100MHz以上の高帯域での駆動が可能な光変調器を提供することができる。大型高精細ディスプレイを実現するには、高速変調が可能な光変調器が必要である。本実施形態によれば、高速変調が可能であるので、大型高精細ディスプレイを実現することができる。
 (第5の実施形態)
 界面弾性波が及ぶ領域の深さ方向における範囲を広げることで、より高出力の光ビームを変調することが可能となる。ここでは、そのような高出力の光ビームを変調可能な光変調器の構成について説明する。
 図9は、本発明の第5の実施形態である光変調器の構成を説明するための模式図である。この光変調器は、2つの界面弾性波発生手段(櫛形電極)が圧電材料内の深さ方向において対向する部分に設けられた点以外は、第4の実施形態の光変調器と同様の構成のものである。
 埋め込み櫛形電極112a、112bが、圧電材料108内部に、深さ方向において対向するように形成されている。埋め込み櫛形電極112a、112bはいずれも、図8に示した埋め込み櫛形電極112と同じ構成であって、互いの櫛歯に相当する線状電極が交互に配置された第1および第2の櫛形電極からなり、各線状電極間の間隔は等間隔である。
 埋め込み櫛形電極112aの第1および第2の櫛形電極はそれぞれ、埋め込み櫛形電極112bの第1および第2の櫛形電極と対向する位置に配置されている。埋め込み櫛形電極112aおよび埋め込み櫛形電極112bを構成する第1および第2の櫛形電極のそれぞれの周期は互いに同じである。ここでは、第1および第2の櫛形電極の周期をΛとする。
 埋め込み櫛形電極112aに高周波電圧を印加することで、圧電材料108内部に波長Λの第1の界面弾性波が発生する。これと同様に、埋め込み櫛形電極112bに高周波電圧を印加することで、圧電材料108内部に波長Λの第2の界面弾性波が発生する。第1および第2の界面弾性波の進行方向は同じである。また、第1の界面弾性波の進行方向に沿って形成される屈折率の周期的な変化も、第2の界面弾性波の進行方向に沿って形成される屈折率の周期的な変化と同じである。したがって、第1の界面弾性波の及ぶ領域と第2の表界面弾性波の及ぶ領域とが、その深さ方向において互いに重なる場合は、第1および第2の界面弾性波は統合された1つの界面弾性波とみなすことができる。
 埋め込み櫛形電極112aを構成する各線状電極を含む平面に垂直な方向(圧電材料の深さ方向)において、第1の界面弾性波は、その平面の上下方向にそれぞれ存在し、その深さはともに波長Λ程度とされる。これと同様に、埋め込み櫛形電極112bを構成する各線状電極を含む平面に垂直な方向(圧電材料の深さ方向)において、第2の界面弾性波は、その平面の上下方向にそれぞれ存在し、その深さはともに波長Λ程度とされる。埋め込み櫛形電極112aを構成する各線状電極を含む平面と埋め込み櫛形電極112bを構成する各線状電極を含む平面との間隔が2Λ以下であれば、第1の界面弾性波の及ぶ領域と第2の界面弾性波の及ぶ領域とが、その深さ方向において互いに重なる。本実施形態では、第1の界面弾性波の及ぶ領域と第2の界面弾性波の及ぶ領域とが、その深さ方向において互いに重なるように、埋め込み櫛形電極112a、112bの間隔が設定されている。
 また、本実施形態においては、集光レンズ105aにより集光された光ビームは、第1および第2の界面弾性波の及ぶ領域に対して所定の入射角で入射する。ここで、所定の入射角は、ブラッグ回折が生じるような条件を満たす角度である。
 また、集光レンズ105aによって集光された光ビームの、第1および第2の界面弾性波の及ぶ領域における断面の形状は楕円形状であり、その断面における垂直ビーム幅dおよび水平ビーム幅Wが、前述の垂直ビーム幅d(z)および水平ビーム幅d(z)に関する各条件を満たす。
 以上のように構成された本実施形態の光変調器によれば、第4の実施形態のものに比べて、界面弾性波の及ぶ領域の深さ方向における範囲を、最大で2倍程度、広げることができるので、その分、変調可能な光ビームの出力を高めることができる。具体的には、第3の実施形態のもので、200mWの光ビームを変調可能である場合、本実施形態では、その2倍の400W程度の光ビームを変調可能である。このように、より大出力のディスプレイ用の光ビーム変調器を提供することが可能である。
 以上説明した第1から第5の実施形態の光変調器によれば、200mW以上の大出力の可視光を30MHz以上の高帯域かつ高消光比で変調することができる、小型の光変調器を提供することができる。このような光変調器は、大出力の可視光を変調するレーザディスプレイ用の光ビーム変調器に最適である。
 第1から第5の実施形態による光変調器は本発明の一例であり、その構成は適宜に変更することができる。例えば、圧電材料や集光レンズは、回折効率、光密度、光損傷耐性等を考慮して設計することが望ましい。
 例えば、各実施形態において、表面弾性波(または界面弾性波)の速度を速くすることで、高速変調時の回折効率を高め、光密度を下げることができる。具体的には、圧電材料として水晶を用いた場合の表面弾性波の伝播速度は3157m/sであるのに対して、圧電材料としてLN(リチウムナイオベート)を用いた場合の表面弾性波の伝播速度は4000m/sである。したがって、圧電材料としてLNを用いることで、回折効率および光密度の改善を図ることができる。
 また、Er(エルビウム)やIn(インジウム)等の不純物が数%ドープされたLiNbO3結晶は水晶の3倍以上の光損傷耐性を有することから、圧電材料としてこのような不純物がドープされたLiNbO3結晶を用いることで、光損傷耐性に優れた構造を提供することができる。この場合、1W程度の光ビームを変調することが可能となる。
 また、圧電材料として水晶を用いる場合において、水晶に不純物を導入してもよい。水晶に不純物を導入することで、光損傷耐性を向上させることができる。
 さらに、光ビームとしてガウシアンビームを用いてもよい。
 また、光ビームの波長によって集光レンズの集光距離が変わる。図10に、光ビームの直径とビーム集光距離との関係を波長別に示す。R光ビーム(630nm)のグラフが一点鎖線で示され、G光ビーム(530nm)のグラフが破線で示され、B光ビーム(470nm)のグラフが実線で示されている。この関係から分かるように、直径500μmのR光ビームを集光する場合の集光距離は38mmである。また、直径600μmのB光ビームを集光する場合の集光距離は60mmである。このように波長によって集光距離が変わることから、光変調器の集光レンズは、変調すべき光ビームの波長を考慮して設計する必要がある。
 図11に、光ビームの直径とビーム集光距離との関係をビームウェスト別に示す。ビームウェスト10μmのグラフが実線で示され、ビームウェスト15μmのグラフが破線で示され、ビームウェスト20μmのグラフが一点鎖線で示されている。この関係から、ビームウェストを小さくすると集光距離が短くなることが分かる。集光距離を短くすることで、素子サイズを小さくすることができる。しかし、この場合は、光密度が上がるため、その分、変調すべき光ビームの光強度を低くする必要がある。このように、素子サイズと光強度の間にはトレードオフの関係がある。したがって、集光レンズの設計においては、このトレードオフの関係を考慮する必要がある。
 本発明の光変調器は、光通信装置、画像表示装置や画像形成装置等に適用することができる。また、本発明の光変調器は、光スイッチの他、偏向器として用いることができる。
 以下に、本発明の光変調器の適用例として、画像表示装置を説明する。
 図12は、画像表示装置の一例を示す模式図である。この画像表示装置は、レーザ光源402、403、404、コリメータレンズ405、406、407、反射ミラー408、ダイクロイックミラー409、410、水平走査ミラー415、垂直走査ミラー416、および光変調器418、419、420を収容した筐体400を有する。光変調器418、419、420は、本発明の光変調器である。
 レーザ光源402からのレーザ光の進行方向に、コリメータレンズ405、光変調器418、および反射ミラー408が順に配置されている。コリメータレンズ405からの平行光束が光変調器418に入射する。光変調器418は、不図示の制御部から供給される制御信号に従って動作する。制御信号がオンの期間(高周波電圧供給期間)は、光変調器418内の櫛形電極に高周波電圧が印加され、表面弾性波または界面弾性波が発生する。この結果、入射光が表面弾性波または界面弾性波が発生した領域を通過する際にブラッグ回折が生じ、出力光として一次回折波が光変調器418から出力される。出力光は、反射ミラー408へ向かう。一方、制御信号がオフの期間(電圧供給停止期間)は、表面弾性波または界面弾性波が発生しないため、入射光は光変調器418を透過する。この光変調器418を透過した光は、反射ミラー408へ向かう光路から外れる。
 レーザ光源403からのレーザ光の進行方向に、コリメータレンズ406、光変調器419、およびダイクロイックミラー409が順に配置されている。コリメータレンズ406からの平行光束が光変調器419に入射する。光変調器419においても、光変調器418と同様な動作が行われる。光変調器419の出力光は、ダイクロイックミラー409へ向かう。
 レーザ光源404からのレーザ光の進行方向に、コリメータレンズ407、光変調器420、およびダイクロイックミラー410が順に配置されている。コリメータレンズ407からの平行光束が光変調器420に入射する。光変調器420においても、光変調器418と同様な動作が行われる。光変調器420の出力光は、ダイクロイックミラー410へ向かう。
 ダイクロイックミラー409は、光変調器419からの光束と反射ミラー408にて反射された光束とが交差する位置に設けられている。ダイクロイックミラー409は、光変調器419からの光を反射し、反射ミラー408からの光を透過するような波長選択特性を有している。
 ダイクロイックミラー410は、光変調器420からの光束とダイクロイックミラー409からの光束とが交差する位置に設けられている。ダイクロイックミラー410は、光変調器420からの光を反射し、ダイクロイックミラー409からの光を透過するような波長選択特性を有している。
 水平走査ミラー415は、ダイクロイックミラー410からの光束の進行方向に配置されており、不図示の制御部からの水平走査制御信号によりその動作が制御される。垂直走査ミラー416は、水平走査ミラー415からの光束の進行方向に配置されており、不図示の制御部からの垂直走査制御信号によりその動作が制御される。
 レーザ光源402、403、404として、R、G、Bの3原色に対応する色のレーザ光を出射する光源を用いる。光変調器418、419、420をオンオフ制御し、かつ、水平走査ミラー415および垂直走査ミラー416を制御することで、スクリーン417上に、カラー画像を表示することができる。
 以上説明した本発明によれば、弾性波伝播領域の深さ(弾性波発生手段を構成する櫛形電極の各線状電極を含む電極面に垂直な方向)は、表面弾性波または界面弾性波の波長(櫛形電極の各線状電極の周期に同じ)程度であり、その深さ方向におけるほぼ全範囲を、入射光を変調するための領域として利用することができる。深さ方向において、入射光が弾性波伝播領域の全範囲を通過する場合、その入射光と表面弾性波または界面弾性波との相互作用領域の範囲は、導波路型音響光学素子に比べて十分に広いので、その分、光密度を低下させることができ、光損傷耐性も向上する。この結果、高光出力の光ビームを変調することが可能となる。
 また、相互作用領域が拡大したことにより、表面弾性波または界面弾性波のエネルギー利用率や回折効率も向上する。
 さらに、相互作用領域が拡大したことにより、弾性波伝播領域における集光ビーム径を大きくすることができる。この場合の集光光学系の構成は、光ビームを導波路内に入れる場合の集光光学系に比べて簡単である。
 さらに、相互作用領域が拡大したことにより、弾性波伝播領域の幅(相互作用長)を小さくしても十分な回折効率を得ることが可能である。よって、導波路型音響光学素子に比べて、弾性波伝播領域の幅(相互作用長)を小さくすることができ、その分、素子の小型化を図ることができる。
 また、櫛形電極より構成される弾性波発生手段の消費電力は、圧電振動子を用いるバルク型音響光学素子に比べて小さい。よって、省消費電力化が可能である。
 また、本発明における弾性波伝播領域の断面の大きさは、バルク型音響光学素子における超音波進行波が生じる領域の断面に比べて小さいので、その分、素子の小型化が可能である。
 また、本発明によれば、入射光がシングルモードである場合、出射光もシングルモードを維持する。このように、シングルモードの出力光を得ることができる。
 以上、実施形態を参照して本発明を説明したが、本発明は上述した実施形態に限定されるものではない。本発明の構成および動作については、本発明の趣旨を逸脱しない範囲において、当業者が理解し得る様々な変更を行うことができる。
 この出願は、2008年7月2日に出願された日本出願特願2008-173537を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (15)

  1.  音響光学媒体と、
     前記音響光学媒体内に表面弾性波または界面弾性波を発生する弾性波発生手段とを有し、
     前記音響光学媒体内は、前記弾性波発生手段により発生した表面弾性波または界面弾性波が及ぶ弾性波伝播領域が同一材料より形成され、
     前記表面弾性波または界面弾性波の進行方向と交差する方向に、前記弾性波伝播領域を挟んで対向する第1および第2の端面を備え、該第1の端面から入射した入射光が前記弾性波伝播領域を通過する際に生じる一次回折波と、前記弾性波発生手段を停止した状態で前記入射光が前記音響光学媒体内を伝播する光とが、それぞれ前記第2の端面から異なる方向に出射される、光変調器。
  2.  前記音響光学媒体は、前記第1および第2の端面のそれぞれと交差する平面よりなる第1の面を備え、前記弾性波発生手段は、前記第1の面に形成されている、請求の範囲第1項に記載の光変調器。
  3.  前記音響光学媒体は、前記第1および第2の端面のそれぞれと交差する平面よりなる第1の面と、該第1の面に対向する第2の面とを備え、前記弾性波発生手段は、前記第1および第2の面のそれぞれに形成されている、請求の範囲第1項に記載の光変調器。
  4.  前記弾性波発生手段は、同一平面上に平行に配置された複数の線状電極からなる第1および第2の櫛形電極を有し、該第1および第2の櫛形電極は、互いの線状電極が交互に配置されている、請求の範囲第1項乃至第3項のいずれか1項に記載の光変調器。
  5.  前記弾性波発生手段は、前記音響光学媒体の内部に形成されている、請求の範囲第1項に記載の光変調器。
  6.  前記弾性波発生手段は、前記第1および第2の端面のそれぞれと交差する第1の平面上に平行に配置された複数の線状電極からなる第1および第2の櫛形電極を有し、該第1および第2の櫛形電極は、互いの線状電極が交互に配置されている、請求の範囲第5項に記載の光変調器。
  7.  前記弾性波発生手段は、前記第1および第2の端面のそれぞれと交差する第1の平面上に平行に配置された複数の線状電極からなる第1および第2の櫛形電極と、前記第1の平面と対向する第2の平面上に平行に配置された複数の線状電極からなる第3および第4の櫛形電極とを有し、
     前記第1および第2の櫛形電極は、互いの線状電極が交互に配置され、前記第3および第4の櫛形電極は、互いの線状電極が交互に配置されている、請求の範囲第6項に記載の光変調器。
  8.  光ビームを前記弾性波伝播領域に集光するための集光レンズをさらに有する、請求の範囲第1項から第7項のいずれか1項に記載の光変調器。
  9.  前記弾性波発生手段を構成する櫛形電極の各線状電極の周期Λに対して、前記集光レンズによって前記弾性波伝播領域に集光される光のビーム径の前記各線状電極を含む平面に垂直な方向における幅が、0.1×Λより大きく、かつ、1.2×Λより小さい、請求の範囲第8項に記載の光変調器。
  10.  前記弾性波発生手段を構成する櫛形電極の各線状電極の周期Λに対して、前記集光レンズによって前記弾性波伝播領域に集光される光のビーム径の前記各線状電極を含む平面に垂直な方向における幅が、0.7×Λより大きく、かつ、Λより小さい、請求の範囲第8項に記載の光変調器。
  11.  前記弾性波発生手段を構成する櫛形電極の各線状電極の周期Λ、前記弾性波発生手段の駆動周波数f、および前記表面弾性波または界面弾性波の伝播速度vに対して、前記集光レンズによって前記弾性波伝播領域に集光される光のビーム径の前記各線状電極を含む平面に垂直な方向と直交する方向における幅が、2×Λより大きく、かつ、v/f以下である、請求の範囲第8項から第10項のいずれか1項に記載の光変調器。
  12.  前記集光レンズにより集光した光ビームがガウシアンビームである、請求の範囲第8項から第11項のいずれか1項に記載の光変調器。
  13.  前記第1および第2の端面に反射防止膜を有する、請求の範囲第1項から第12項のいずれか1項に記載の光変調器。
  14.  前記音響光学媒体が水晶よりなる、請求の範囲第1項から第13項のいずれか1項に記載の光変調器。
  15.  前記音響光学媒体が、不純物を含む水晶よりなる、請求の範囲第1項から第13項のいずれか1項に記載の光変調器。
PCT/JP2009/061843 2008-07-02 2009-06-29 光変調器 WO2010001852A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010519059A JPWO2010001852A1 (ja) 2008-07-02 2009-06-29 光変調器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-173537 2008-07-02
JP2008173537 2008-07-02

Publications (1)

Publication Number Publication Date
WO2010001852A1 true WO2010001852A1 (ja) 2010-01-07

Family

ID=41465947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/061843 WO2010001852A1 (ja) 2008-07-02 2009-06-29 光変調器

Country Status (2)

Country Link
JP (1) JPWO2010001852A1 (ja)
WO (1) WO2010001852A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020154017A (ja) * 2019-03-18 2020-09-24 株式会社東芝 光学偏向素子、光学偏向装置及び移動体

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107530A (ja) * 1983-11-16 1985-06-13 Nec Corp 音響光学スペクトラム・アナライザ
JPH01150120A (ja) * 1987-12-08 1989-06-13 Anritsu Corp 表面弾性波高速光偏向素子
JPH03248488A (ja) * 1990-02-26 1991-11-06 Hoya Corp コヒーレント光の分布帰還型ミラー
JP2007093806A (ja) * 2005-09-27 2007-04-12 Epson Toyocom Corp 回折素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60107530A (ja) * 1983-11-16 1985-06-13 Nec Corp 音響光学スペクトラム・アナライザ
JPH01150120A (ja) * 1987-12-08 1989-06-13 Anritsu Corp 表面弾性波高速光偏向素子
JPH03248488A (ja) * 1990-02-26 1991-11-06 Hoya Corp コヒーレント光の分布帰還型ミラー
JP2007093806A (ja) * 2005-09-27 2007-04-12 Epson Toyocom Corp 回折素子

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020154017A (ja) * 2019-03-18 2020-09-24 株式会社東芝 光学偏向素子、光学偏向装置及び移動体
JP7051742B2 (ja) 2019-03-18 2022-04-11 株式会社東芝 光学偏向素子、光学偏向装置及び移動体

Also Published As

Publication number Publication date
JPWO2010001852A1 (ja) 2011-12-22

Similar Documents

Publication Publication Date Title
US11243450B2 (en) Saw modulator having optical power component for extended angular redirection of light
US5724463A (en) Projection display with electrically controlled waveguide-routing
US5912997A (en) Frequency converter optical source for switched waveguide
US4974942A (en) Active flat-design video screen
US5835458A (en) Solid state optical data reader using an electric field for routing control
US8620117B2 (en) Optical device, optical deflection device, and optical modulation device
US10416468B2 (en) Light field generator devices with series output couplers
JP4529347B2 (ja) 波長変換装置
JP5249009B2 (ja) 光変調器
WO2010001852A1 (ja) 光変調器
JP2005091925A (ja) 光制御素子
US11119383B2 (en) Telescope arrays and superimposed volume gratings for light field generation
JP5249008B2 (ja) 光変調器
US7646531B1 (en) Wavelength conversion devices having multi-component output faces and systems incorporating the same
JP5249007B2 (ja) 光変調器
US20190302569A1 (en) Multi-mode illumination of surface acoustic wave modulator
JP5218564B2 (ja) 光スイッチ、画像表示装置、画像形成装置、及び光スイッチの製造方法
JPH04181231A (ja) 導波路型電気光学デバイス
JPH01107213A (ja) 光導波路素子
JP2005266187A (ja) 波面曲率変調器および画像表示装置
JP2005106954A (ja) レーザ波長変換素子
JP2834844B2 (ja) 光スイッチアレイ
JP2837511B2 (ja) 光スイッチアレイ
JPH0786625B2 (ja) 光偏向装置
JPH0659163A (ja) 光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773430

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010519059

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773430

Country of ref document: EP

Kind code of ref document: A1