WO2010001646A1 - Dispensing nozzle bore blot detecting method, and specimen dispensing apparatus - Google Patents

Dispensing nozzle bore blot detecting method, and specimen dispensing apparatus Download PDF

Info

Publication number
WO2010001646A1
WO2010001646A1 PCT/JP2009/055631 JP2009055631W WO2010001646A1 WO 2010001646 A1 WO2010001646 A1 WO 2010001646A1 JP 2009055631 W JP2009055631 W JP 2009055631W WO 2010001646 A1 WO2010001646 A1 WO 2010001646A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispensing nozzle
dispensing
sample
nozzle
inner diameter
Prior art date
Application number
PCT/JP2009/055631
Other languages
French (fr)
Japanese (ja)
Inventor
勲 三枝
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Publication of WO2010001646A1 publication Critical patent/WO2010001646A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1016Control of the volume dispensed or introduced
    • G01N2035/1018Detecting inhomogeneities, e.g. foam, bubbles, clots

Definitions

  • the present invention relates to a method for detecting the inside diameter of a dispensing nozzle in an analyzer for analyzing a sample such as blood or urine, and a sample dispensing apparatus.
  • a dispensing device having a dispensing pump and a dispensing nozzle connected to the dispensing pump is provided, and the dispensing nozzle is moved to the sample aspirating position, the sample discharging position, and the nozzle washing position by the nozzle transfer unit.
  • a predetermined amount of sample is dispensed from the sample container into the reaction container by moving and operating the dispensing pump.
  • serum or plasma is used as a sample. Since solids such as fibrin are present in the sample, the solids are connected to a dispensing nozzle or the like. The piping may be clogged.
  • Patent Document 1 nozzle clogging is determined after sample suction by the dispensing device, and when it is determined that clogging has occurred, the dispensing nozzle is cleaned by the nozzle cleaning device, but the dispensing nozzle is clogged. It has not been confirmed whether or not it has been completely washed, and even if the dirt in the dispensing nozzle cannot be completely removed, the dispensing process is performed as is, and the specimen or liquid sample may be wasted. It was.
  • the present invention has been made in view of the above, and can determine at any time whether or not the dispensing nozzle is contaminated, reducing the time for retesting without wasting a liquid sample containing a specimen or a reagent. It is an object of the present invention to provide a method for detecting the inside diameter of a possible dispensing nozzle.
  • the method for detecting the inside diameter of the dispensing nozzle of the present invention uses a sample dispensing apparatus equipped with a dispensing nozzle that performs suction and discharge of the sample.
  • Dispensing nozzle inner diameter dirt detection method for detecting the inner diameter dirt of the dispensing nozzle after cleaning, and detecting a pressure change at the time of suction or discharge of the dispensing nozzle in a pipe connected to the dispensing nozzle
  • a calculation step for calculating the number of peaks of the pressure change waveform from the pressure change detected in the detection step, and presence / absence of contamination of the dispensing nozzle inner diameter based on the number of peaks calculated in the calculation step
  • a determination step for determining.
  • the method for detecting the dispensing nozzle inner diameter contamination includes the step of determining the presence or absence of the dispensing nozzle inner diameter contamination when the number of the peaks exceeding a predetermined threshold is 2 or less. It is determined that the dispensing nozzle is contaminated with an inner diameter.
  • the method of detecting the inside diameter of the dispensing nozzle includes a dispensing nozzle clogging detection step for detecting clogging of the dispensing nozzle by a pressure waveform at the time of sample suction or discharge by the sample dispensing device, A dispensing probe washing step for washing the dispensing probe after discarding the suction sample when it is determined that the dispensing nozzle is clogged by the dispensing nozzle clogging detection step, and after the dispensing probe washing step, It is characterized in that the presence or absence of dirt on the inner diameter of the dispensing nozzle is determined based on a change in pressure when the washing water is discharged from the dispensing nozzle.
  • the specimen dispensing apparatus of the present invention is a specimen dispensing apparatus having a dispensing nozzle that performs suction and discharge of a specimen, and a pressure detection unit that detects a pressure change in a pipe connected to the dispensing nozzle. And calculating means for calculating the number of peaks of the pressure change waveform from the pressure change in the pipe detected by the pressure detecting means at the time of suction or discharge of the dispensing nozzle, and the number of peaks calculated by the calculating means And determining means for determining the presence or absence of the inner diameter contamination of the dispensing nozzle.
  • the determination means determines that the dispensing nozzle has an inner diameter dirt when the number of the peaks exceeding a predetermined threshold is 2 or less.
  • the method for determining presence / absence of contamination of the inner diameter of the dispensing nozzle and the sample dispensing apparatus include the number of peaks of the pressure change waveform based on the pressure change in the pipe detected during the suction or discharge of the dispensing nozzle. Therefore, it is possible to determine at any time whether or not the dispensing nozzle is contaminated with the inner diameter, and it is possible to reduce the time for performing re-examination without wasting a liquid sample containing a specimen or a reagent.
  • FIG. 1 is a schematic configuration diagram of an analyzer that uses the sample dispensing apparatus according to the present embodiment.
  • FIG. 2 is a block diagram showing the configuration of the sample dispensing apparatus according to this embodiment.
  • FIG. 3 is a diagram illustrating a pressure waveform when the cleaning water is discharged from a clean dispensing nozzle.
  • FIG. 4 is a diagram illustrating a pressure waveform at the time of discharging the cleaning water when the dispensing nozzle is contaminated with an inner diameter.
  • FIG. 5 is a diagram for explaining a method of calculating the number of peaks of the pressure change waveform from the detected pressure change.
  • FIG. 1 is a schematic configuration diagram of an analyzer that uses the sample dispensing apparatus according to the present embodiment.
  • FIG. 2 is a block diagram showing the configuration of the sample dispensing apparatus according to this embodiment.
  • FIG. 3 is a diagram illustrating a pressure waveform when the cleaning water is discharged from a clean dispensing nozzle.
  • FIG. 4 is
  • FIG. 6 is a flowchart illustrating a method for determining the presence / absence of dirt on the inner diameter of the dispensing nozzle according to the present embodiment.
  • FIG. 7A is a diagram illustrating a pressure waveform from when a sample is sucked and discharged by a dispensing nozzle to after that is washed.
  • FIG. 7-2 is a diagram showing a pressure waveform from when the sample is sucked and discharged by the dispensing nozzle to when it is washed.
  • FIG. 7C is a diagram illustrating a pressure waveform from when the specimen is aspirated and discharged by the dispensing nozzle to after that is washed.
  • FIG. 7A is a diagram illustrating a pressure waveform from when a sample is sucked and discharged by a dispensing nozzle to after that is washed.
  • FIG. 7-2 is a diagram showing a pressure waveform from when the sample is sucked and discharged by the dispensing nozzle to when it is
  • FIG. 7-4 is a diagram showing a pressure waveform from when the specimen is aspirated and discharged by the dispensing nozzle to after that is washed.
  • FIG. 8 is a flowchart illustrating a method for determining the presence or absence of dispensing nozzle inner diameter contamination according to a modification of the present embodiment.
  • FIG. 1 is a schematic configuration diagram showing a configuration of an analyzer 1 that uses the method for detecting the inside diameter contamination of a dispensing nozzle according to the present invention.
  • the analyzer 1 dispenses a sample and a reagent to be analyzed into a reaction vessel 32, and optically measures a reaction that occurs in the dispensed reaction vessel 32, and an analyzer including the measurement mechanism 9. 1 and a control mechanism 10 for analyzing the measurement result in the measurement mechanism 9 as well as controlling the whole.
  • the analyzer 1 automatically analyzes a plurality of specimens by the cooperation of these two mechanisms.
  • the sample table 2 is rotated in the direction indicated by the arrow by the driving means, and a plurality of storage portions 21 are provided on the outer periphery at regular intervals along the circumferential direction.
  • a sample container 22 storing a sample is detachably stored in each storage unit 21, a sample container 22 storing a sample is detachably stored in each storage unit 21, a sample container 22 storing a sample is detachably stored in each storage unit 21, a sample container 22 storing a sample is detachably stored.
  • the sample container 22 has an opening 22a that opens upward.
  • the sample container 22 is transported to the sample aspirating position where the sample is aspirated by the sample dispensing device 5.
  • the sample container 22 is attached with an identification label (not shown) having sample information relating to the type of sample contained and the analysis item, and the sample table 2 reads the information on the identification label of the sample container 22.
  • the unit 23 is provided.
  • the reagent table 4 is rotated in the direction indicated by the arrow by the driving means, and a plurality of storage portions 41 whose sections are formed into fan-shaped recesses are arranged at equal intervals along the circumferential direction.
  • a reagent container 42 storing a reagent is detachably stored in each storage unit 41.
  • the reagent container 42 has an opening 42a that opens upward.
  • the reagent table 4 rotates, the reagent container 42 is transported to the reagent suction position where the reagent is sucked by the reagent dispensing device 7.
  • an identification label (not shown) having reagent information relating to the type, lot number, etc. of the contained reagent is affixed, and the reagent table 4 is an identification label of the reagent container 42.
  • a reading unit 43 for reading the information is provided.
  • the sample dispensing device 5 is provided with a dispensing nozzle for aspirating and discharging the sample at the tip, and freely moves up and down in the vertical direction and rotates around the vertical line passing through its base end as a central axis.
  • the sample dispensing mechanism 5 is provided between the sample table 2 and the reaction table 3, sucks the sample in the sample container 22 conveyed to the predetermined position by the sample table 2 with a dispensing nozzle, rotates the arm, The sample is dispensed into the reaction container 32 conveyed to a predetermined position by the reaction table 3, and the sample is transferred into the reaction container 32 on the reaction table 3 at a predetermined timing.
  • the reagent dispensing device 7 is provided with a dispensing nozzle for sucking and discharging the reagent at the tip, and freely moves up and down in the vertical direction and rotates around the vertical line passing through its base end as a central axis.
  • the reagent dispensing mechanism 7 is provided between the reagent table 4 and the reaction table 3.
  • the reagent in the reagent container 42 transported to a predetermined position by the reagent table 4 is sucked by the dispensing nozzle, the arm is swung,
  • the reagent is dispensed into the reaction container 32 transported to a predetermined position by the reaction table 3, and the reagent is transferred into the reaction container 32 on the reaction table 3 at a predetermined timing.
  • the sample dispensing nozzle cleaning device 6 is provided between the sample table 2 and the reaction table 3 and is provided in the middle of the trajectory of the horizontal movement of the dispensing nozzle 50 in the sample dispensing device 5 to clean the reagent dispensing nozzle.
  • the apparatus 8 is provided between the reagent table 4 and the reaction table 3 and in the middle of the trajectory of the horizontal movement of the dispensing nozzle 50 in the reagent dispensing apparatus 7.
  • the reaction table 3 is rotated in the direction indicated by the arrow by the driving means, and the outer periphery is provided with a plurality of recesses 31 which are a plurality of reaction container storage portions at equal intervals along the circumferential direction.
  • a reaction vessel 32 is detachably accommodated in each recess 31.
  • the reaction container 32 is transported to the reagent discharge position where the reagent is discharged by the reagent dispensing device 7 and to the sample discharge position where the sample is discharged by the sample dispensing device 5.
  • openings through which the measurement light passes are formed on both sides of each recess 31 in the radial direction.
  • a photometric device 33, a cleaning device 34, and a stirring device 35 are arranged in the vicinity of the outer periphery of the reaction table 3.
  • the reaction vessel 32 is made of a transparent material that transmits 80% or more of the light contained in the analysis light emitted from the light source 33a of the photometric device 33, for example, glass containing heat-resistant glass, synthetic resin such as cyclic olefin or polystyrene.
  • the photometric device 33 is arranged near the outer periphery of the reaction table 3, and splits the analysis light transmitted through the reaction vessel 32 holding the liquid and the light source 33a for emitting the analysis light for analyzing the liquid held in the reaction vessel 32. And a light receiving portion 33b for receiving light.
  • the light source 33 a and the light receiving portion 33 b are disposed at positions facing each other in the radial direction with the concave portion 31 of the reaction table 3 interposed therebetween.
  • the cleaning device 34 has a discharging means for discharging the liquid and the cleaning liquid from the reaction vessel 32 and a cleaning liquid dispensing means.
  • the cleaning device 34 dispenses the cleaning solution after discharging the photometric liquid from the reaction vessel 32 after photometry.
  • the cleaning device 34 cleans the inside of the reaction vessel 32 by repeating the dispensing and discharging operations of the cleaning liquid a plurality of times. The reaction vessel 32 washed in this way is used again for analysis of a new specimen.
  • the stirring device 35 is a device for stirring the liquid held in the reaction vessel 32, and has a pulse motor, an arm, a cam, a stirring plate, and the like.
  • the control unit 101 includes a sample table 2, a sample dispensing device 5, a reaction table 3, a photometric device 33, a cleaning device 34, a stirring device 35, a reagent dispensing device 7, a reagent table 4, reading units 23 and 43, and a nozzle cleaning device. 6 and 8, connected to the analysis unit 103, the input unit 102, the storage unit 104, the transmission / reception unit 107, the output unit 105, and the like.
  • the control unit 101 executes control of the analyzer 1 by reading out the program stored in the storage unit 104 from the memory.
  • the analysis unit 103 is connected to the photometry device 33 via the control unit 101, analyzes the component concentration of the sample from the absorbance of the liquid in the reaction container 32 based on the amount of light received by the light receiving unit 33b, and controls the analysis result to the control unit 101.
  • the input unit 102 is a part that performs an operation of inputting an inspection item or the like to the control unit 101. For example, a keyboard or a mouse is used.
  • the output unit 105 displays analysis contents, alarms, and the like, and a display panel or the like is used. Note that the input unit 102 and the output unit 105 may be realized by a touch panel.
  • the output unit 105 is configured using a printer, a speaker, and the like, and outputs various information related to analysis under the control of the control unit 101.
  • the transmission / reception unit 107 has a function as an interface for performing transmission / reception of information according to a predetermined format via a communication network (not shown).
  • the reagent is sequentially dispensed from the reagent container 42 by the reagent dispensing device 7 into the plurality of reaction containers 32 conveyed along the circumferential direction by the rotating reaction table 3.
  • the reaction container 32 into which the reagent has been dispensed is transported along the circumferential direction by the reaction table 3, and the specimens are sequentially dispensed from the plurality of specimen containers 22 held on the specimen table 2 by the specimen dispensing apparatus 5.
  • reaction container 32 into which the specimen has been dispensed is transported to the stirring device 35 by the reaction table 3, and the dispensed reagent and specimen are sequentially stirred and reacted.
  • the reaction container 32 that holds the reaction solution in which the sample and the reagent have reacted in this way passes through the photometric device 33 when the reaction table 3 rotates again, and transmits the luminous flux of the analysis light emitted from the light source.
  • the light beam that has passed through the reaction solution is side-lighted by the light receiving unit 33b, and the analysis unit 103 analyzes the component concentration and the like.
  • the reaction vessel 32 is washed by the washing device 34 and then used again for analyzing the specimen.
  • FIG. 2 is a block diagram showing the configuration of the sample dispensing device 5 of the present invention.
  • the sample dispensing device 5 includes a dispensing nozzle 50, a syringe 52, a pressure sensor 54, a washing water pump 56, and the like.
  • the dispensing nozzle 50 is connected to a syringe 52, a pressure sensor 54, and a washing water pump 56 by a pipe 59.
  • the dispensing nozzle 50 is transported in the vertical direction indicated by the arrow Z and the horizontal direction indicated by the arrow X in the figure by the nozzle driving unit 51, and aspirates the sample from the sample container 22 stored in the storage unit 21 of the sample table 2.
  • the sample is dispensed by discharging the sample into the reaction container 32 housed in the recess 31 of the reaction table 3.
  • the syringe 52 is a syringe pump that sucks and discharges the specimen by reciprocating the plunger 52b in the cylinder 52a by driving the plunger driving unit 53.
  • the plunger 52b By moving the plunger 52b backward in the cylinder 52a by driving the plunger drive unit 53, the dispensing nozzle 50 sucks the sample in the sample container 22, and by driving the plunger drive unit 53, the plunger 52b is moved to the cylinder.
  • the specimen is discharged into the reaction container 32 by moving forward in 52a.
  • the pressure sensor 54 detects the pressure in the pipe 59 and outputs it to the amplification circuit 57 as a pressure signal (analog).
  • the washing water pump 56 sucks up the degassed washing water L1 stored in the tank 58 and pumps it into the pipe 59 through the electromagnetic valve 55 provided between the pressure sensor 54 and the washing water pump 56.
  • the electromagnetic valve 55 is switched to “open” when the suctioned wash water L1 is pumped into the pipe 59 by a control signal from the control unit 101, and the dispensing nozzle 50 sucks the sample by the syringe 52.
  • it is switched to “closed”.
  • the amplification circuit 57 amplifies the pressure signal (analog) output from the pressure sensor 54 and outputs the amplified pressure signal to the dirt detection unit 13.
  • the stain detection unit 13 includes a processing unit 13a, a detection unit 13b, a calculation unit 13c, and a determination unit 13d.
  • the processing unit 13a converts the pressure signal (analog) input from the amplifier circuit 57 into a digital signal, and an A / D converter, for example, is used.
  • the detection unit 13b detects the pressure in the pipe 59 from the pressure signal converted into a digital signal by the processing unit 13a.
  • the calculation unit 13c calculates the number of peaks of the pressure change waveform from the pressure change detected by the detection unit 13b, and outputs the calculation result to the determination unit 13d.
  • the determination part 13d determines the presence or absence of the internal diameter dirt of the dispensing nozzle 50 based on the number of the peaks calculated by the calculation part 13c.
  • the control unit 101 controls the operation of the nozzle driving unit 51, the plunger driving unit 53, the washing water pump 56, and the electromagnetic valve 55.
  • the presence or absence of contamination determined by the determination unit 13d may be displayed on the display device by the output unit via the control unit 101, or may be notified to the operator by generating an alarm sound from the alarm device.
  • the method of detecting the inner diameter contamination of the dispensing nozzle of this embodiment is after the sample dispensing by the dispensing nozzle 50 and the sample dispensing nozzle of the dispensing nozzle 50. It is used to detect whether or not dirt remains in the dispensing nozzle 50 after cleaning by the cleaning device 6.
  • the cleaning water pump 56 is continuously driven to discharge the cleaning water L1 in the tank 58 from the dispensing nozzle 50.
  • the pressure waveform in the pipe 59 at the time is detected, the number of peaks of the pressure change waveform is calculated, and the presence or absence of the inner diameter contamination of the dispensing nozzle 50 is determined based on the calculated number of peaks.
  • FIG. 3 is an enlarged view of a pressure waveform when the cleaning water L1 is discharged from the dispensing nozzle 50 having a clean inner diameter to the specimen dispensing nozzle cleaning device 6.
  • the waveform until the input of the drive signal S is stopped.
  • W a plurality of peaks P1, P2, and P3 are seen.
  • the waveform W has only one peak as shown in FIG. FIG. 4 shows a case where the dirt of the dispensing nozzle 50 is severe, and a mountain appears as the degree of dirt decreases.
  • the calculation unit 13c calculates the number N0 of the peaks P in the same manner and stores it in the determination unit 13d.
  • the determination unit 13d compares the number Ni of the peaks P calculated by the calculation unit 13c with N0, and determines that there is dirt on the inner diameter of the dispensing nozzle 50 when the number Ni is smaller than the number N0 (Ni ⁇ N0). .
  • the wash water pump 56 is driven to discharge the wash water L1 in the tank 58 from the dispensing nozzle 50, and the pressure sensor 54 detects the pressure waveform in the pipe 59 at the time of discharge (step S10).
  • the calculation unit 13c calculates the number of peaks Ni (step S12), and the determination unit 13d compares the calculated number of peaks Ni with the number of peaks N0 to determine whether or not the inner diameter contamination of the dispensing nozzle 50 is present. Determination is made (step S14).
  • step S14: No When the number Ni of peaks is equal to or greater than the number N0 of peaks (step S14: No), the determination unit 13d determines that there is no contamination of the inner diameter of the dispensing nozzle 50, and dispenses a new sample (step S16). In this case, the output unit 105 may display the fact on the display before dispensing a new sample. On the other hand, when the number Ni of peaks is smaller than the number N0 of peaks (step S14: Yes), the determination unit 13d determines that there is dirt on the inner diameter of the dispensing nozzle 50 and notifies the abnormality (step S18).
  • the display device In order to notify the abnormality, for example, the display device indicates that the inner diameter contamination of the dispensing nozzle is present, or generates an alarm sound by an alarm.
  • the dispensing nozzle 50 in order to clean the inner diameter dirt of the dispensing nozzle 50, the dispensing nozzle 50 is washed by suction and discharge of the detergent in a storage tank in which a detergent separately provided in the analyzer is stored, The dispensing nozzle 50 is removed from the sample dispensing device 5 and ultrasonic cleaning or the like is performed.
  • the dispensing nozzle inner diameter contamination detection method and the sample dispensing apparatus close the electromagnetic valve 55, drive the syringe 52, and discharge the washing water L ⁇ b> 1 from the dispensing nozzle 50. Accordingly, since it is only necessary to detect a pressure change in the pipe 59, it is possible to easily determine whether the dispensing nozzle 50 is contaminated with an inner diameter at any time.
  • FIGS. 7A to 7D show pipes 59 to which the dispensing nozzles 50 are connected during the suction operation period (T1), the discharge operation period (T2), and the cleaning operation period (T3) by the cleaning water discharge. It is a pressure waveform inside.
  • Fig. 7-1 is a normal sample (low-viscosity serum)
  • Fig. 7-2 is a high-viscosity sample such as bodily fluid such as bone marrow or dialysis patient
  • Figs. 7-3 and 7-4 are plasmas containing fibrin.
  • Fig. 7-3 shows part of the dispensing nozzle blocked by the action of fibrin
  • Fig. 7-4 shows the complete dispensing nozzle by the action of fibrin. It is a pressure waveform of the state obstruct
  • the syringe 52 and the dispensing nozzle 50 connected by the pipe 59 are filled with the cleaning water L1 up to the tip of the dispensing nozzle 50.
  • the plunger driving unit 53 is driven, the plunger 52b is moved backward in the cylinder 52a, and a predetermined amount of each specimen is sucked into the dispensing nozzle 50 (T1 in FIGS. 7-1 to 7-4), and the nozzle driving unit 51, the dispensing nozzle 50 is raised and moved horizontally to the sample discharge position on the reaction table 3, and then the dispensing nozzle 50 is lowered again.
  • the sucked sample is discharged into the reaction container 32 when the dispensing nozzle is not clogged. (T2 in FIGS. 7-1 to 7-4).
  • the dispensing nozzle 50 is raised again by the nozzle drive unit 51, moved horizontally to the specimen dispensing nozzle cleaning device 6, then lowered again, the electromagnetic valve 55 is switched to open, and the washing water pump 56 is turned on. It is driven to pump the cleaning water L1 in the tank 58 to the pipe 59 and discharge the cleaning water L1 from the dispensing nozzle 50 to the sample dispensing nozzle cleaning device 6 to clean the dispensing nozzle 50 (FIG. 7-1). ⁇ T3 in FIG. 7-4).
  • the negative pressure is maintained in the pipe 59 at the time t1 after the sample aspiration (T1) and before the discharge (T2). Is clogged and a predetermined amount of sample is not aspirated. Therefore, when the sample is used for analysis, an accurate analysis value cannot be obtained, and therefore the aspirated sample is discarded, and the dispensing nozzle is cleaned by the sample dispensing nozzle cleaning device 6 to remove clogging.
  • the method for detecting the inner diameter contamination of the dispensing nozzle of the present invention is performed by the sample dispensing nozzle cleaning device 6 of the dispensing nozzle 50 that dispenses the sample having the pressure waveform as shown in FIGS. 7-3 and 7-4. After washing, it is used for checking whether or not dirt is present in the dispensing nozzle 50.
  • the sample dispensing device 5 sucks a sample from the sample container 22 by the dispensing nozzle 50 (step S100), and detects the clogging of the dispensing nozzle 50 by detecting the pressure waveform after the sample is sucked (step S102). .
  • the sample is discharged into the reaction container 32 (step S104).
  • the dispensing nozzle 50 is cleaned by the specimen dispensing nozzle cleaning device 6 (step S106).
  • step S102 when clogging of the dispensing nozzle 50 is detected by the clogging determination means after the sample is inhaled (step S102: Yes, in the case of FIGS. 7-3 and 7-4), the specified amount of the sample is not aspirated, When the sample is used for analysis, an accurate analysis value cannot be obtained, and the sample is discharged to the sample dispensing nozzle cleaning device 6 and discarded (step S108).
  • the dispensing nozzle 50 is cleaned by the sample dispensing nozzle cleaning device 6 to remove clogging (step S110).
  • the cleaning water pump 56 is continuously driven to supply the cleaning water L1 in the tank 58.
  • the pressure sensor 54 detects the pressure waveform in the pipe 59 at the time of discharge (step S112), and the calculation unit 13c calculates the number Ni of peaks based on the pressure change waveform (step S114). ), The determination unit 13d compares the calculated number of peaks Ni with the number of peaks N0 to determine whether the dispensing nozzle 50 is contaminated with an inner diameter (step S116).
  • step S116: No the determination unit 13d determines that the inner diameter of the dispensing nozzle 50 is not contaminated, and dispenses a new sample (step S100). In this case, the output unit 105 may display the fact on the display before dispensing a new sample.
  • step S116: Yes the determination unit 13d determines that there is dirt on the inner diameter of the dispensing nozzle 50 and notifies the abnormality (step S118).
  • the display device In order to notify the abnormality, for example, the display device indicates that the inner diameter contamination of the dispensing nozzle is present, or generates an alarm sound by an alarm.
  • the dispensing nozzle 50 in order to clean the inner diameter dirt of the dispensing nozzle 50, the dispensing nozzle 50 sucks and discharges the detergent in the storage tank in which the detergent provided separately in the analyzer is stored. The injection nozzle 50 is removed from the specimen dispensing apparatus 5 and ultrasonic cleaning or the like is performed.
  • the method for detecting the inner diameter contamination of the dispensing nozzle and the sample dispensing device in the sample dispensing apparatus of the present invention only needs to detect the pressure change in the pipe 59, the presence or absence of the inner diameter contamination of the dispensing nozzle 50 is determined. The determination can be easily made at any time, and the time for performing the retest can be reduced without wasting the liquid sample containing the specimen and the reagent.
  • the dispensing nozzle inner diameter contamination detection method and the sample dispensing apparatus of the present invention are useful in an analyzer that optically measures a reaction product between a sample and a reagent and analyzes the components of the sample.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

Provided are a method for always deciding the presence or absence of a bore blot of a dispensing nozzle, and a specimen dispensing apparatus. The dispensing nozzle bore blot detecting method comprises a detecting step for detecting, after the dispensing and rinsing operations, the pressure change in a pipeline (59), which connects a dispensing nozzle (50), at the suction/discharge of the dispensing nozzle (50) by a pressure sensor (54), a computing step for computing the number of peaks of the pressure change waveforms by a computing unit (13c) from the pressure changes detected, and a deciding step for deciding the bore blot of the dispensing nozzle by a decision unit (13d) on the basis of the number of peaks computed.

Description

分注ノズル内径汚れ検知方法および検体分注装置Dispensing nozzle inner diameter contamination detection method and specimen dispensing apparatus
 本発明は、血液や尿などの検体を分析する分析装置における分注ノズル内径汚れ検知方法および検体分注装置に関するものである。 The present invention relates to a method for detecting the inside diameter of a dispensing nozzle in an analyzer for analyzing a sample such as blood or urine, and a sample dispensing apparatus.
 生化学などの自動分析装置においては、分注ポンプおよびこれに連結された分注ノズルを有する分注装置を設け、ノズル移送部により分注ノズルを検体吸引位置、検体吐出位置およびノズル洗浄位置に移動して、分注ポンプを吸排動作させることにより、検体容器から所定量の検体を反応容器に分注するようにしている。この種の自動分析装置においては、検体として、血清あるいは血漿などが使用されるが、前記検体中にはフィブリンなどの固形物が存在するため、その固形物が分注ノズルやそれに連結されている配管に詰まる場合がある。分注ノズルに詰まりが生じると、所定量の検体を反応容器に分注できないため、分析結果に重大な悪影響を及ぼすことになる。このため、分注動作中の所定のタイミングにおける圧力センサの出力をモニタすることにより、分注ノズルが実際に詰まっているのか、骨髄等の血清以外の体液や、透析患者の血清等の粘性の高い検体を分注したのかを判別して、再検処理数を低減する分注装置が提案されている(例えば、特許文献1参照)。 In automatic analyzers such as biochemistry, a dispensing device having a dispensing pump and a dispensing nozzle connected to the dispensing pump is provided, and the dispensing nozzle is moved to the sample aspirating position, the sample discharging position, and the nozzle washing position by the nozzle transfer unit. A predetermined amount of sample is dispensed from the sample container into the reaction container by moving and operating the dispensing pump. In this type of automatic analyzer, serum or plasma is used as a sample. Since solids such as fibrin are present in the sample, the solids are connected to a dispensing nozzle or the like. The piping may be clogged. When the dispensing nozzle is clogged, a predetermined amount of sample cannot be dispensed into the reaction container, which has a serious adverse effect on the analysis result. For this reason, by monitoring the output of the pressure sensor at a predetermined timing during the dispensing operation, whether the dispensing nozzle is actually clogged, body fluid other than serum such as bone marrow, and the viscosity of serum from dialysis patients, etc. There has been proposed a dispensing apparatus that discriminates whether a high sample has been dispensed and reduces the number of retest processes (see, for example, Patent Document 1).
特開平11-83868号公報Japanese Patent Laid-Open No. 11-83868
 しかしながら、特許文献1では、分注装置による検体吸引後、ノズル詰まりを判定し、詰まり発生と判定した場合は前記分注ノズルはノズル洗浄装置にて洗浄されているが、分注ノズルの詰まりが完全に洗浄されたか否かは確認されておらず、分注ノズル内の汚れが完全に除去しきれない場合であってもそのまま分注処理がなされ、検体や液体試料が無駄になることがあった。 However, in Patent Document 1, nozzle clogging is determined after sample suction by the dispensing device, and when it is determined that clogging has occurred, the dispensing nozzle is cleaned by the nozzle cleaning device, but the dispensing nozzle is clogged. It has not been confirmed whether or not it has been completely washed, and even if the dirt in the dispensing nozzle cannot be completely removed, the dispensing process is performed as is, and the specimen or liquid sample may be wasted. It was.
 本発明は、上記に鑑みてなされたものであって、分注ノズル内径汚れの有無をいつでも判定することができ、検体や試薬を含む液体試料を無駄にせず、再検を行う時間を減らすことが可能な分注ノズル内径汚れの検知方法を提供することを目的とする。 The present invention has been made in view of the above, and can determine at any time whether or not the dispensing nozzle is contaminated, reducing the time for retesting without wasting a liquid sample containing a specimen or a reagent. It is an object of the present invention to provide a method for detecting the inside diameter of a possible dispensing nozzle.
 上述した課題を解決し、目的を達成するために、本発明の分注ノズル内径汚れの検知方法は、検体の吸引および吐出を行なう分注ノズルを備えた検体分注装置を用いて、分注洗浄終了後の前記分注ノズル内径汚れを検知する分注ノズル内径汚れ検知方法であって、前記分注ノズルを接続した配管内における前記分注ノズルの吸引または吐出時の圧力変化を検出する検出ステップと、前記検出ステップにて検出した前記圧力変化から圧力変化波形の山の数を演算する演算ステップと、前記演算ステップにて演算した前記山の数に基づいて前記分注ノズル内径汚れの有無を判定する判定ステップと、を含むことを特徴とする。 In order to solve the above-described problems and achieve the object, the method for detecting the inside diameter of the dispensing nozzle of the present invention uses a sample dispensing apparatus equipped with a dispensing nozzle that performs suction and discharge of the sample. Dispensing nozzle inner diameter dirt detection method for detecting the inner diameter dirt of the dispensing nozzle after cleaning, and detecting a pressure change at the time of suction or discharge of the dispensing nozzle in a pipe connected to the dispensing nozzle A calculation step for calculating the number of peaks of the pressure change waveform from the pressure change detected in the detection step, and presence / absence of contamination of the dispensing nozzle inner diameter based on the number of peaks calculated in the calculation step And a determination step for determining.
 また、本発明の分注ノズル内径汚れの検知方法は、上記の発明において、前記分注ノズル内径汚れの有無を判定する工程は、所定の閾値を越える前記山の数が2以下の場合に前記分注ノズルに内径汚れが有ると判定することを特徴とする。 Further, in the above-mentioned invention, the method for detecting the dispensing nozzle inner diameter contamination according to the present invention includes the step of determining the presence or absence of the dispensing nozzle inner diameter contamination when the number of the peaks exceeding a predetermined threshold is 2 or less. It is determined that the dispensing nozzle is contaminated with an inner diameter.
 また、本発明の分注ノズル内径汚れの検知方法は、上記の発明において、前記検体分注装置による検体吸引または吐出時の圧力波形により分注ノズル詰まりを検知する分注ノズル詰まり検知ステップと、前記分注ノズル詰まり検知ステップにより分注ノズルに詰まりが有ると判定された場合に、吸引検体廃棄後分注プローブを洗浄する分注プローブ洗浄ステップと、を含み、前記分注プローブ洗浄ステップ後に、分注ノズルから洗浄水吐出時の圧力変化に基づいて前記分注ノズル内径汚れの有無を判定することを特徴とする。 In addition, in the above invention, the method of detecting the inside diameter of the dispensing nozzle according to the present invention includes a dispensing nozzle clogging detection step for detecting clogging of the dispensing nozzle by a pressure waveform at the time of sample suction or discharge by the sample dispensing device, A dispensing probe washing step for washing the dispensing probe after discarding the suction sample when it is determined that the dispensing nozzle is clogged by the dispensing nozzle clogging detection step, and after the dispensing probe washing step, It is characterized in that the presence or absence of dirt on the inner diameter of the dispensing nozzle is determined based on a change in pressure when the washing water is discharged from the dispensing nozzle.
 また、本発明の検体分注装置は、検体の吸引および吐出を行なう分注ノズルを備えた検体分注装置であって、前記分注ノズルを接続した配管内における圧力変化を検出する圧力検知手段と、前記分注ノズルの吸引または吐出時に、前記圧力検知手段が検出した前記配管内の圧力変化から圧力変化波形の山の数を演算する演算手段と、前記演算手段が演算した前記山の数に基づいて前記分注ノズルの内径汚れの有無を判定する判定手段と、を備えたことを特徴とする。 The specimen dispensing apparatus of the present invention is a specimen dispensing apparatus having a dispensing nozzle that performs suction and discharge of a specimen, and a pressure detection unit that detects a pressure change in a pipe connected to the dispensing nozzle. And calculating means for calculating the number of peaks of the pressure change waveform from the pressure change in the pipe detected by the pressure detecting means at the time of suction or discharge of the dispensing nozzle, and the number of peaks calculated by the calculating means And determining means for determining the presence or absence of the inner diameter contamination of the dispensing nozzle.
 また、本発明の検体分注装置は、上記の発明において、前記判定手段は、所定の閾値を越える前記山の数が2以下の場合に前記分注ノズルに内径汚れが有ると判定することを特徴とする。 In the specimen dispensing apparatus of the present invention, in the above invention, the determination means determines that the dispensing nozzle has an inner diameter dirt when the number of the peaks exceeding a predetermined threshold is 2 or less. Features.
 本発明にかかる検体分注装置における分注ノズルの内径汚れの有無判定方法および検体分注装置は、前記分注ノズルの吸引または吐出時に検出した配管内の圧力変化から圧力変化波形の山の数を演算するので、分注ノズルの内径汚れの有無をいつでも判定することができ、検体や試薬を含む液体試料を無駄にせず、再検を行う時間を減らすことができるという効果を奏する。 In the sample dispensing apparatus according to the present invention, the method for determining presence / absence of contamination of the inner diameter of the dispensing nozzle and the sample dispensing apparatus include the number of peaks of the pressure change waveform based on the pressure change in the pipe detected during the suction or discharge of the dispensing nozzle. Therefore, it is possible to determine at any time whether or not the dispensing nozzle is contaminated with the inner diameter, and it is possible to reduce the time for performing re-examination without wasting a liquid sample containing a specimen or a reagent.
図1は、本実施の形態にかかる検体分注装置を使用する分析装置の概略構成図である。FIG. 1 is a schematic configuration diagram of an analyzer that uses the sample dispensing apparatus according to the present embodiment. 図2は、本実施の形態にかかる検体分注装置の構成を示すブロック図である。FIG. 2 is a block diagram showing the configuration of the sample dispensing apparatus according to this embodiment. 図3は、清浄な分注ノズルの洗浄水吐出時の圧力波形を示す図である。FIG. 3 is a diagram illustrating a pressure waveform when the cleaning water is discharged from a clean dispensing nozzle. 図4は、分注ノズルに内径汚れが存在する場合の洗浄水吐出時の圧力波形を示す図である。FIG. 4 is a diagram illustrating a pressure waveform at the time of discharging the cleaning water when the dispensing nozzle is contaminated with an inner diameter. 図5は、検出した圧力変化から圧力変化波形の山の数の演算方法を説明する図である。FIG. 5 is a diagram for explaining a method of calculating the number of peaks of the pressure change waveform from the detected pressure change. 図6は、本実施の形態にかかる分注ノズル内径汚れの有無の判定方法について説明するフローチャートである。FIG. 6 is a flowchart illustrating a method for determining the presence / absence of dirt on the inner diameter of the dispensing nozzle according to the present embodiment. 図7-1は、分注ノズルで検体を吸引、吐出し、その後洗浄するまでの圧力波形を示す図である。FIG. 7A is a diagram illustrating a pressure waveform from when a sample is sucked and discharged by a dispensing nozzle to after that is washed. 図7-2は、分注ノズルで検体を吸引、吐出し、その後洗浄するまでの圧力波形を示す図である。FIG. 7-2 is a diagram showing a pressure waveform from when the sample is sucked and discharged by the dispensing nozzle to when it is washed. 図7-3は、分注ノズルで検体を吸引、吐出し、その後洗浄するまでの圧力波形を示す図である。FIG. 7C is a diagram illustrating a pressure waveform from when the specimen is aspirated and discharged by the dispensing nozzle to after that is washed. 図7-4は、分注ノズルで検体を吸引、吐出し、その後洗浄するまでの圧力波形を示す図である。FIG. 7-4 is a diagram showing a pressure waveform from when the specimen is aspirated and discharged by the dispensing nozzle to after that is washed. 図8は、本実施の形態の変形例にかかる分注ノズル内径汚れの有無の判定方法について説明するフローチャートである。FIG. 8 is a flowchart illustrating a method for determining the presence or absence of dispensing nozzle inner diameter contamination according to a modification of the present embodiment.
符号の説明Explanation of symbols
 1   分析装置
 2   検体テーブル
 21  収納部
 22  検体容器
 22a 開口部
 23  読取部
 3   反応テーブル
 31  凹部
 32  反応容器
 33  測光装置
 33a 光源
 33b 受光部
 34  洗浄装置
 35  攪拌装置
 4   試薬テーブル
 41  収納部
 42  試薬容器
 42a 開口部
 43  読取部
 5   検体分注装置
 6   検体分注ノズル洗浄装置
 7   試薬分注装置
 8   試薬分注ノズル洗浄装置
 9   測定機構
 10  制御機構
 13  汚れ検知部
 13a 処理部
 13b 検出部
 13c 演算部
 13d 判定部
 50  分注ノズル
 51  ノズル駆動部
 52  シリンジ
 52a シリンダー
 52b プランジャー
 53  プランジャー駆動部
 54  圧力センサ
 55  電磁弁
 56  洗浄水ポンプ
 58  タンク
 101 制御部
 102 入力部
 103 分析部
 104 記憶部
 105 出力部
 107 送受信部
 L1  洗浄水
 P   圧力変化波形の山
 W   圧力変化波形
 S   駆動信号
DESCRIPTION OF SYMBOLS 1 Analyzer 2 Sample table 21 Storage part 22 Sample container 22a Opening part 23 Reading part 3 Reaction table 31 Recessed part 32 Reaction container 33 Photometric device 33a Light source 33b Light receiving part 34 Washing device 35 Stirring device 4 Reagent table 41 Storage part 42 Reagent container 42a Opening part 43 Reading part 5 Specimen dispensing device 6 Specimen dispensing nozzle washing device 7 Reagent dispensing device 8 Reagent dispensing nozzle washing device 9 Measuring mechanism 10 Control mechanism 13 Dirt detection unit 13a Processing unit 13b Detection unit 13c Calculation unit 13d Determination Part 50 Dispensing nozzle 51 Nozzle drive part 52 Syringe 52a Cylinder 52b Plunger 53 Plunger drive part 54 Pressure sensor 55 Solenoid valve 56 Washing water pump 58 Tank 101 Control part 102 Input part 103 Analysis part 104 Storage part 105 Mountain W pressure change waveform S drive signal of the force section 107 transmitting and receiving unit L1 wash water P pressure change waveform
 以下、図面を参照して、本発明に係る分注ノズルの内径汚れの検知方法の好適な実施の形態について説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一部分には同一の符号を付している。 Hereinafter, with reference to the drawings, a description will be given of a preferred embodiment of a method for detecting an inner diameter contamination of a dispensing nozzle according to the present invention. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.
 図1は、本発明にかかる分注ノズルの内径汚れの検知方法を使用する分析装置1の構成を示す概略構成図である。分析装置1は、分析対象である検体および試薬を反応容器32にそれぞれ分注し、分注した反応容器32内で生じる反応を光学的に測定する測定機構9と、測定機構9を含む分析装置1全体の制御を行うとともに測定機構9における測定結果の分析を行う制御機構10とを備える。分析装置1は、これらの二つの機構が連携することによって複数の検体の分析を自動的に行う。 FIG. 1 is a schematic configuration diagram showing a configuration of an analyzer 1 that uses the method for detecting the inside diameter contamination of a dispensing nozzle according to the present invention. The analyzer 1 dispenses a sample and a reagent to be analyzed into a reaction vessel 32, and optically measures a reaction that occurs in the dispensed reaction vessel 32, and an analyzer including the measurement mechanism 9. 1 and a control mechanism 10 for analyzing the measurement result in the measurement mechanism 9 as well as controlling the whole. The analyzer 1 automatically analyzes a plurality of specimens by the cooperation of these two mechanisms.
 検体テーブル2は、駆動手段によって矢印で示す方向に回転され、外周には周方向に沿って等間隔で配置される収納部21が複数設けられている。各収納部21は、検体を収容した検体容器22が着脱自在に収納される。検体容器22は、上方に向けて開口する開口部22aを有している。また、検体テーブル2が回転すると、検体容器22は検体分注装置5によって検体が吸引される検体吸引位置に搬送される。なお、検体容器22には、収容された検体の種類や分析項目に関する検体情報を有する識別ラベル(図示せず)が貼り付けられ、検体テーブル2は、検体容器22の識別ラベルの情報を読み取る読取部23を備えている。 The sample table 2 is rotated in the direction indicated by the arrow by the driving means, and a plurality of storage portions 21 are provided on the outer periphery at regular intervals along the circumferential direction. In each storage unit 21, a sample container 22 storing a sample is detachably stored. The sample container 22 has an opening 22a that opens upward. When the sample table 2 rotates, the sample container 22 is transported to the sample aspirating position where the sample is aspirated by the sample dispensing device 5. The sample container 22 is attached with an identification label (not shown) having sample information relating to the type of sample contained and the analysis item, and the sample table 2 reads the information on the identification label of the sample container 22. The unit 23 is provided.
 試薬テーブル4は、駆動手段によって矢印で示す方向に回転され、断面が扇形の凹部に成形された収納部41が周方向に沿って等間隔で複数配置されている。各収納部41には、試薬を収納した試薬容器42が着脱自在に収納される。試薬容器42は、上方に向けて開口する開口部42aを有している。また、試薬テーブル4が回転すると、試薬容器42は試薬分注装置7によって試薬が吸引される試薬吸引位置に搬送される。なお、試薬容器42の外径方向には、収容された試薬の種類やロット番号等に関する試薬情報を有する識別ラベル(図示せず)が貼り付けられ、試薬テーブル4は、試薬容器42の識別ラベルの情報を読み取る読取部43を備えている。 The reagent table 4 is rotated in the direction indicated by the arrow by the driving means, and a plurality of storage portions 41 whose sections are formed into fan-shaped recesses are arranged at equal intervals along the circumferential direction. In each storage unit 41, a reagent container 42 storing a reagent is detachably stored. The reagent container 42 has an opening 42a that opens upward. When the reagent table 4 rotates, the reagent container 42 is transported to the reagent suction position where the reagent is sucked by the reagent dispensing device 7. In the outer diameter direction of the reagent container 42, an identification label (not shown) having reagent information relating to the type, lot number, etc. of the contained reagent is affixed, and the reagent table 4 is an identification label of the reagent container 42. A reading unit 43 for reading the information is provided.
 検体分注装置5は、検体の吸引および吐出を行なう分注ノズルが先端部に取り付けられ、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアームを備える。検体分注機構5は、検体テーブル2と反応テーブル3との間に設けられ、検体テーブル2によって所定位置に搬送された検体容器22内の検体を分注ノズルによって吸引し、アームを旋回させ、反応テーブル3によって所定位置に搬送された反応容器32に分注して検体を所定タイミングで反応テーブル3上の反応容器32内に移送する。 The sample dispensing device 5 is provided with a dispensing nozzle for aspirating and discharging the sample at the tip, and freely moves up and down in the vertical direction and rotates around the vertical line passing through its base end as a central axis. Provide an arm. The sample dispensing mechanism 5 is provided between the sample table 2 and the reaction table 3, sucks the sample in the sample container 22 conveyed to the predetermined position by the sample table 2 with a dispensing nozzle, rotates the arm, The sample is dispensed into the reaction container 32 conveyed to a predetermined position by the reaction table 3, and the sample is transferred into the reaction container 32 on the reaction table 3 at a predetermined timing.
 試薬分注装置7は、試薬の吸引および吐出を行なう分注ノズルが先端部に取り付けられ、鉛直方向への昇降および自身の基端部を通過する鉛直線を中心軸とする回転を自在に行なうアームを備える。試薬分注機構7は、試薬テーブル4と反応テーブル3との間に設けられ、試薬テーブル4によって所定位置に搬送された試薬容器42内の試薬を分注ノズルによって吸引し、アームを旋回させ、反応テーブル3によって所定位置に搬送された反応容器32に分注して試薬を所定タイミングで反応テーブル3上の反応容器32内に移送する。 The reagent dispensing device 7 is provided with a dispensing nozzle for sucking and discharging the reagent at the tip, and freely moves up and down in the vertical direction and rotates around the vertical line passing through its base end as a central axis. Provide an arm. The reagent dispensing mechanism 7 is provided between the reagent table 4 and the reaction table 3. The reagent in the reagent container 42 transported to a predetermined position by the reagent table 4 is sucked by the dispensing nozzle, the arm is swung, The reagent is dispensed into the reaction container 32 transported to a predetermined position by the reaction table 3, and the reagent is transferred into the reaction container 32 on the reaction table 3 at a predetermined timing.
 検体分注ノズル洗浄装置6は、検体テーブル2と反応テーブル3との間であって、検体分注装置5における分注ノズル50の水平移動の軌跡の途中位置に設けられ、試薬分注ノズル洗浄装置8は、試薬テーブル4と反応テーブル3との間であって、試薬分注装置7における分注ノズル50の水平移動の軌跡の途中位置に設けられる。 The sample dispensing nozzle cleaning device 6 is provided between the sample table 2 and the reaction table 3 and is provided in the middle of the trajectory of the horizontal movement of the dispensing nozzle 50 in the sample dispensing device 5 to clean the reagent dispensing nozzle. The apparatus 8 is provided between the reagent table 4 and the reaction table 3 and in the middle of the trajectory of the horizontal movement of the dispensing nozzle 50 in the reagent dispensing apparatus 7.
 反応テーブル3は、駆動手段によって矢印で示す方向に回転され、外周には周方向に沿って複数の反応容器収納部である凹部31が等間隔で設けられている。各凹部31には、反応容器32が着脱自在に収納される。また、反応テーブル3が回転すると、反応容器32は試薬分注装置7によって試薬が吐出される試薬吐出位置に、検体分注装置5によって検体が吐出される検体吐出位置に搬送される。反応テーブル3は、各凹部31の半径方向両側に測定光が通過する開口が形成されている。反応テーブル3の外周近傍には、測光装置33、洗浄装置34及び攪拌装置35が配置されている。 The reaction table 3 is rotated in the direction indicated by the arrow by the driving means, and the outer periphery is provided with a plurality of recesses 31 which are a plurality of reaction container storage portions at equal intervals along the circumferential direction. A reaction vessel 32 is detachably accommodated in each recess 31. When the reaction table 3 rotates, the reaction container 32 is transported to the reagent discharge position where the reagent is discharged by the reagent dispensing device 7 and to the sample discharge position where the sample is discharged by the sample dispensing device 5. In the reaction table 3, openings through which the measurement light passes are formed on both sides of each recess 31 in the radial direction. In the vicinity of the outer periphery of the reaction table 3, a photometric device 33, a cleaning device 34, and a stirring device 35 are arranged.
 反応容器32は、測光装置33の光源33aから出射された分析光に含まれる光の80%以上を透過する透明素材、例えば、耐熱ガラスを含むガラス、環状オレフィンやポリスチレン等の合成樹脂が使用される。 The reaction vessel 32 is made of a transparent material that transmits 80% or more of the light contained in the analysis light emitted from the light source 33a of the photometric device 33, for example, glass containing heat-resistant glass, synthetic resin such as cyclic olefin or polystyrene. The
 測光装置33は、反応テーブル3の外周近傍に配置され、反応容器32に保持された液体を分析する分析光を出射する光源33aと、液体を保持した反応容器32を透過した分析光を分光して受光する受光部33bとを有している。測光装置33は、前記光源33aと受光部33bが反応テーブル3の凹部31を挟んで半径方向に対向する位置に配置されている。 The photometric device 33 is arranged near the outer periphery of the reaction table 3, and splits the analysis light transmitted through the reaction vessel 32 holding the liquid and the light source 33a for emitting the analysis light for analyzing the liquid held in the reaction vessel 32. And a light receiving portion 33b for receiving light. In the photometric device 33, the light source 33 a and the light receiving portion 33 b are disposed at positions facing each other in the radial direction with the concave portion 31 of the reaction table 3 interposed therebetween.
 洗浄装置34は、反応容器32から液体や洗浄液を排出する排出手段と、洗浄液の分注手段とを有している。洗浄装置34は、測光終了後の反応容器32から測光後の液体を排出した後、洗浄液を分注する。洗浄装置34は、洗浄液の分注と排出の動作を複数回繰り返すことにより、反応容器32の内部を洗浄する。このようにして洗浄された反応容器32は、再度、新たな検体の分析に使用される。 The cleaning device 34 has a discharging means for discharging the liquid and the cleaning liquid from the reaction vessel 32 and a cleaning liquid dispensing means. The cleaning device 34 dispenses the cleaning solution after discharging the photometric liquid from the reaction vessel 32 after photometry. The cleaning device 34 cleans the inside of the reaction vessel 32 by repeating the dispensing and discharging operations of the cleaning liquid a plurality of times. The reaction vessel 32 washed in this way is used again for analysis of a new specimen.
 攪拌装置35は、反応容器32に保持された液体を攪拌する装置であり、パルスモータ、アーム、カム、攪拌板等を有している。 The stirring device 35 is a device for stirring the liquid held in the reaction vessel 32, and has a pulse motor, an arm, a cam, a stirring plate, and the like.
 制御部101は、検体テーブル2、検体分注装置5、反応テーブル3、測光装置33、洗浄装置34、攪拌装置35、試薬分注装置7、試薬テーブル4、読取部23および43、ノズル洗浄装置6および8、分析部103、入力部102、記憶部104、送受信部107および出力部105等と接続される。制御部101は、記憶部104が記憶するプログラムをメモリから読み出すことにより分析装置1の制御を実行する。 The control unit 101 includes a sample table 2, a sample dispensing device 5, a reaction table 3, a photometric device 33, a cleaning device 34, a stirring device 35, a reagent dispensing device 7, a reagent table 4, reading units 23 and 43, and a nozzle cleaning device. 6 and 8, connected to the analysis unit 103, the input unit 102, the storage unit 104, the transmission / reception unit 107, the output unit 105, and the like. The control unit 101 executes control of the analyzer 1 by reading out the program stored in the storage unit 104 from the memory.
 分析部103は、制御部101を介して測光装置33に接続され、受光部33bが受光した光量に基づく反応容器32内の液体の吸光度から検体の成分濃度等を分析し、分析結果を制御部101に出力する。入力部102は、制御部101へ検査項目等を入力する操作を行う部分であり、例えば、キーボードやマウス等が使用される。出力部105は、分析内容や警報等を表示するもので、ディスプレイパネル等が使用される。なお、入力部102および出力部105は、タッチパネルによって実現するようにしてもよい。出力部105は、プリンタ、スピーカー等を用いて構成され、制御部101の制御のもと、分析に関する諸情報を出力する。送受信部107は、図示しない通信ネットワークを介して所定の形式にしたがった情報の送受信を行なうインターフェースとしての機能を有する。 The analysis unit 103 is connected to the photometry device 33 via the control unit 101, analyzes the component concentration of the sample from the absorbance of the liquid in the reaction container 32 based on the amount of light received by the light receiving unit 33b, and controls the analysis result to the control unit 101. The input unit 102 is a part that performs an operation of inputting an inspection item or the like to the control unit 101. For example, a keyboard or a mouse is used. The output unit 105 displays analysis contents, alarms, and the like, and a display panel or the like is used. Note that the input unit 102 and the output unit 105 may be realized by a touch panel. The output unit 105 is configured using a printer, a speaker, and the like, and outputs various information related to analysis under the control of the control unit 101. The transmission / reception unit 107 has a function as an interface for performing transmission / reception of information according to a predetermined format via a communication network (not shown).
 以上のように構成される分析装置1は、回転する反応テーブル3によって周方向に沿って搬送されてくる複数の反応容器32に、試薬分注装置7により試薬容器42から試薬を順次分注される。試薬が分注された反応容器32は、反応テーブル3によって周方向に沿って搬送され、検体分注装置5によって検体テーブル2に保持された複数の検体容器22から検体が順次分注される。 In the analyzer 1 configured as described above, the reagent is sequentially dispensed from the reagent container 42 by the reagent dispensing device 7 into the plurality of reaction containers 32 conveyed along the circumferential direction by the rotating reaction table 3. The The reaction container 32 into which the reagent has been dispensed is transported along the circumferential direction by the reaction table 3, and the specimens are sequentially dispensed from the plurality of specimen containers 22 held on the specimen table 2 by the specimen dispensing apparatus 5.
 そして、検体が分注された反応容器32は、反応テーブル3によって攪拌装置35へ搬送され、分注された試薬と検体が順次攪拌されて反応する。このようにして検体と試薬が反応した反応液を保持した反応容器32は、反応テーブル3が再び回転したときに測光装置33を通過し、光源から出射された分析光の光束が透過する。このとき、反応液を透過した光束は、受光部33bで側光され、分析部103によって成分濃度等が分析される。そして、分析が終了した反応容器32は、洗浄装置34によって洗浄された後、再度検体の分析に使用される。 Then, the reaction container 32 into which the specimen has been dispensed is transported to the stirring device 35 by the reaction table 3, and the dispensed reagent and specimen are sequentially stirred and reacted. The reaction container 32 that holds the reaction solution in which the sample and the reagent have reacted in this way passes through the photometric device 33 when the reaction table 3 rotates again, and transmits the luminous flux of the analysis light emitted from the light source. At this time, the light beam that has passed through the reaction solution is side-lighted by the light receiving unit 33b, and the analysis unit 103 analyzes the component concentration and the like. After the analysis is completed, the reaction vessel 32 is washed by the washing device 34 and then used again for analyzing the specimen.
 以下、本発明の検体分注装置における分注ノズルの内径汚れの有無判定方法および検体分注装置にかかる実施の形態について、図面を参照しつつ詳細に説明する。 Hereinafter, embodiments of the method for determining the presence / absence of inner diameter contamination of the dispensing nozzle and the sample dispensing apparatus in the sample dispensing apparatus of the present invention will be described in detail with reference to the drawings.
 図2は、この発明の検体分注装置5の構成を示すブロック図である。検体分注装置5は、図2に示すように、分注ノズル50、シリンジ52、圧力センサ54、洗浄水ポンプ56等を備えている。 FIG. 2 is a block diagram showing the configuration of the sample dispensing device 5 of the present invention. As shown in FIG. 2, the sample dispensing device 5 includes a dispensing nozzle 50, a syringe 52, a pressure sensor 54, a washing water pump 56, and the like.
 分注ノズル50は、配管59によってシリンジ52、圧力センサ54及び洗浄水ポンプ56と接続されている。分注ノズル50は、ノズル駆動部51によって図中矢印Zで示す上下方向および矢印Xで示す水平方向に搬送され、検体テーブル2の収納部21に収納された検体容器22から検体を吸引し、この検体を反応テーブル3の凹部31に収納された反応容器32に吐出することによって検体を分注する。 The dispensing nozzle 50 is connected to a syringe 52, a pressure sensor 54, and a washing water pump 56 by a pipe 59. The dispensing nozzle 50 is transported in the vertical direction indicated by the arrow Z and the horizontal direction indicated by the arrow X in the figure by the nozzle driving unit 51, and aspirates the sample from the sample container 22 stored in the storage unit 21 of the sample table 2. The sample is dispensed by discharging the sample into the reaction container 32 housed in the recess 31 of the reaction table 3.
 シリンジ52は、プランジャー駆動部53の駆動によってプランジャー52bをシリンダー52a内を往復動させることにより検体を吸引・吐出するシリンジポンプである。プランジャー駆動部53の駆動によりプランジャー52bをシリンダー52a内を後退移動させることにより、分注ノズル50は検体容器22内の検体を吸引し、プランジャー駆動部53の駆動によりプランジャー52bをシリンダー52a内を進出移動させることにより、反応容器32に検体を吐出させる。 The syringe 52 is a syringe pump that sucks and discharges the specimen by reciprocating the plunger 52b in the cylinder 52a by driving the plunger driving unit 53. By moving the plunger 52b backward in the cylinder 52a by driving the plunger drive unit 53, the dispensing nozzle 50 sucks the sample in the sample container 22, and by driving the plunger drive unit 53, the plunger 52b is moved to the cylinder. The specimen is discharged into the reaction container 32 by moving forward in 52a.
 圧力センサ54は、配管59内の圧力を検出し、圧力信号(アナログ)として増幅回路57へ出力する。 The pressure sensor 54 detects the pressure in the pipe 59 and outputs it to the amplification circuit 57 as a pressure signal (analog).
 洗浄水ポンプ56は、タンク58に貯留された脱気した洗浄水L1を吸い上げ、圧力センサ54との間に設けた電磁弁55を介して配管59内に圧送する。このとき、電磁弁55は、制御部101からの制御信号によって、吸い上げた洗浄水L1を配管59内に圧送する場合には「開」に切り替えられ、シリンジ52によって分注ノズル50が検体を吸引し、吐出する場合には「閉」に切り替えられる。 The washing water pump 56 sucks up the degassed washing water L1 stored in the tank 58 and pumps it into the pipe 59 through the electromagnetic valve 55 provided between the pressure sensor 54 and the washing water pump 56. At this time, the electromagnetic valve 55 is switched to “open” when the suctioned wash water L1 is pumped into the pipe 59 by a control signal from the control unit 101, and the dispensing nozzle 50 sucks the sample by the syringe 52. However, when discharging, it is switched to “closed”.
 増幅回路57は、圧力センサ54から出力される圧力信号(アナログ)を増幅し、増幅した圧力信号を汚れ検知部13へ出力する。 The amplification circuit 57 amplifies the pressure signal (analog) output from the pressure sensor 54 and outputs the amplified pressure signal to the dirt detection unit 13.
 汚れ検知部13は、処理部13a、検出部13b、演算部13cおよび判定部13dを備えている。 The stain detection unit 13 includes a processing unit 13a, a detection unit 13b, a calculation unit 13c, and a determination unit 13d.
 処理部13aは、増幅回路57から入力される圧力信号(アナログ)をデジタル信号に変換処理する部分で、例えばA/D変換器が使用される。検出部13bは、処理部13aによってデジタル信号に変換された圧力信号から配管59内の圧力を検出する。演算部13cは、検出部13bが検出した圧力変化から圧力変化波形の山の数を演算し、演算結果を判定部13dに出力する。判定部13dは、演算部13cが演算した山の数に基づいて分注ノズル50の内径汚れの有無を判定する。 The processing unit 13a converts the pressure signal (analog) input from the amplifier circuit 57 into a digital signal, and an A / D converter, for example, is used. The detection unit 13b detects the pressure in the pipe 59 from the pressure signal converted into a digital signal by the processing unit 13a. The calculation unit 13c calculates the number of peaks of the pressure change waveform from the pressure change detected by the detection unit 13b, and outputs the calculation result to the determination unit 13d. The determination part 13d determines the presence or absence of the internal diameter dirt of the dispensing nozzle 50 based on the number of the peaks calculated by the calculation part 13c.
 制御部101は、ノズル駆動部51、プランジャー駆動部53、洗浄水ポンプ56および電磁弁55の作動を制御する。判定部13dにより判定された汚れの有無は、制御部101を介して出力部によりディスプレイ装置に表示させ、あるいは警報装置によって警報音を発することによってオペレータに告知させてもよい。 The control unit 101 controls the operation of the nozzle driving unit 51, the plunger driving unit 53, the washing water pump 56, and the electromagnetic valve 55. The presence or absence of contamination determined by the determination unit 13d may be displayed on the display device by the output unit via the control unit 101, or may be notified to the operator by generating an alarm sound from the alarm device.
 以上のように構成される検体分注装置5において、本形態の分注ノズルの内径汚れ検知方法は、分注ノズル50による検体分注後であって、当該分注ノズル50の検体分注ノズル洗浄装置6による洗浄後に、前記分注ノズル50内に汚れが残存するか否かを検知するために使用される。 In the sample dispensing apparatus 5 configured as described above, the method of detecting the inner diameter contamination of the dispensing nozzle of this embodiment is after the sample dispensing by the dispensing nozzle 50 and the sample dispensing nozzle of the dispensing nozzle 50. It is used to detect whether or not dirt remains in the dispensing nozzle 50 after cleaning by the cleaning device 6.
 本形態では、上記の分注ノズル50の検体分注ノズル洗浄装置6での洗浄後、引き続き洗浄水ポンプ56を駆動してタンク58内の洗浄水L1を分注ノズル50から吐出し、該吐出時の配管59内の圧力波形を検出し、圧力変化波形の山の数を演算して、演算した山の数に基づいて分注ノズル50の内径汚れの有無を判定する。 In this embodiment, after the above-described dispensing nozzle 50 is cleaned by the specimen dispensing nozzle cleaning device 6, the cleaning water pump 56 is continuously driven to discharge the cleaning water L1 in the tank 58 from the dispensing nozzle 50. The pressure waveform in the pipe 59 at the time is detected, the number of peaks of the pressure change waveform is calculated, and the presence or absence of the inner diameter contamination of the dispensing nozzle 50 is determined based on the calculated number of peaks.
 図3は、内径に汚れのない分注ノズル50から洗浄水L1を検体分注ノズル洗浄装置6に吐出する際の圧力波形を拡大して示したものである。分注ノズル50の内径に汚れがない場合には、図3に示すように、駆動信号Sがプランジャー駆動部53に入力された後、駆動信号Sの入力が停止されるまでの間、波形Wには複数の山P1、P2、P3が見られる。 FIG. 3 is an enlarged view of a pressure waveform when the cleaning water L1 is discharged from the dispensing nozzle 50 having a clean inner diameter to the specimen dispensing nozzle cleaning device 6. When the inner diameter of the dispensing nozzle 50 is not contaminated, as shown in FIG. 3, after the drive signal S is input to the plunger drive unit 53, the waveform until the input of the drive signal S is stopped. In W, a plurality of peaks P1, P2, and P3 are seen.
 これに対し、分注ノズル50内に汚れが存在すると、圧力変化が緩慢になる。このため、図4に示すように、波形Wには山が1つだけとなる。図4は、分注ノズル50の汚れがひどい場合であり、汚れの程度が少なくなるに従って山が出現してくる。 On the other hand, when dirt is present in the dispensing nozzle 50, the pressure change becomes slow. For this reason, the waveform W has only one peak as shown in FIG. FIG. 4 shows a case where the dirt of the dispensing nozzle 50 is severe, and a mountain appears as the degree of dirt decreases.
 従って、本形態では、山の数に基づいて前記分注ノズルの内径汚れの有無を判定する。即ち、図5に示すように、駆動信号Sがプランジャー駆動部53に入力された後、駆動信号Sの入力が停止されるまでの信号出力時間tにおいて、駆動信号Sが入力された後の最大電圧値よりも所定値ΔV(=2V)だけ小さい電圧値を閾値Tsとして設定し、判定部13dに記憶させる。そして、信号出力時間tにおいて、演算部13cは、波形Wに含まれる閾値Tsを超える電圧値を有する山Pの数Niを演算する。一方、予め清浄な分注ノズルで洗浄水L1を吐出させた場合にも、演算部13cは、同様にして山Pの数N0を演算し、判定部13dに記憶させる。判定部13dは、演算部13cが演算した山Pの数NiとN0を比較し、数Niが数N0よりも小さい場合に(Ni<N0)、分注ノズル50の内径汚れがあると判定する。 Therefore, in this embodiment, the presence or absence of dirt on the inner diameter of the dispensing nozzle is determined based on the number of peaks. That is, as shown in FIG. 5, after the drive signal S is input to the plunger drive unit 53, the signal output time t until the input of the drive signal S is stopped after the drive signal S is input. A voltage value smaller than the maximum voltage value by a predetermined value ΔV (= 2V) is set as the threshold value Ts and stored in the determination unit 13d. Then, at the signal output time t, the calculation unit 13c calculates the number Ni of peaks P having a voltage value exceeding the threshold value Ts included in the waveform W. On the other hand, even when the cleaning water L1 is discharged in advance with a clean dispensing nozzle, the calculation unit 13c calculates the number N0 of the peaks P in the same manner and stores it in the determination unit 13d. The determination unit 13d compares the number Ni of the peaks P calculated by the calculation unit 13c with N0, and determines that there is dirt on the inner diameter of the dispensing nozzle 50 when the number Ni is smaller than the number N0 (Ni <N0). .
 以下、汚れ検知部13による分注ノズル50の内径汚れの有無の判定と判定結果に基づく対処を図6に示すフローチャートに基づいて説明する。先ず、洗浄水ポンプ56を駆動してタンク58内の洗浄水L1を分注ノズル50から吐出して、圧力センサ54により該吐出時の配管59内の圧力波形を検出し(ステップS10)、圧力変化波形に基づき演算部13cは山の数Niを演算し(ステップS12)、判定部13dは演算した山の数Niと山のN0数を比較して、分注ノズル50の内径汚れの有無を判定する(ステップS14)。 Hereinafter, the determination of the presence or absence of the inner diameter contamination of the dispensing nozzle 50 by the contamination detection unit 13 and the countermeasure based on the determination result will be described based on the flowchart shown in FIG. First, the wash water pump 56 is driven to discharge the wash water L1 in the tank 58 from the dispensing nozzle 50, and the pressure sensor 54 detects the pressure waveform in the pipe 59 at the time of discharge (step S10). Based on the change waveform, the calculation unit 13c calculates the number of peaks Ni (step S12), and the determination unit 13d compares the calculated number of peaks Ni with the number of peaks N0 to determine whether or not the inner diameter contamination of the dispensing nozzle 50 is present. Determination is made (step S14).
 山の数Niが山の数N0以上場合(ステップS14:No)、判定部13dは、分注ノズル50の内径汚れがないと判定し、新たな検体の分注を行なう(ステップS16)。この場合、新たな検体の分注の前に、出力部105はディスプレイにその旨を表示してもよい。一方、山の数Niが山の数N0より小さい場合(ステップS14:Yes)、判定部13dは分注ノズル50の内径汚れがあると判定し、異常を告知する(ステップS18)。異常の告知は、例えば、ディスプレイ装置に分注ノズルの内径汚れが存在する旨を表示し、あるいはアラームによって警報音を発する。この告知に従い、分注ノズル50の内径汚れを洗浄するために、分析装置内に別途設けられた洗剤が貯留された貯留槽で、洗剤の吸引・吐出により当該分注ノズル50を洗浄したり、当該分注ノズル50を検体分注装置5から取り外して超音波洗浄などを行なう。 When the number Ni of peaks is equal to or greater than the number N0 of peaks (step S14: No), the determination unit 13d determines that there is no contamination of the inner diameter of the dispensing nozzle 50, and dispenses a new sample (step S16). In this case, the output unit 105 may display the fact on the display before dispensing a new sample. On the other hand, when the number Ni of peaks is smaller than the number N0 of peaks (step S14: Yes), the determination unit 13d determines that there is dirt on the inner diameter of the dispensing nozzle 50 and notifies the abnormality (step S18). In order to notify the abnormality, for example, the display device indicates that the inner diameter contamination of the dispensing nozzle is present, or generates an alarm sound by an alarm. In accordance with this notification, in order to clean the inner diameter dirt of the dispensing nozzle 50, the dispensing nozzle 50 is washed by suction and discharge of the detergent in a storage tank in which a detergent separately provided in the analyzer is stored, The dispensing nozzle 50 is removed from the sample dispensing device 5 and ultrasonic cleaning or the like is performed.
 このように、本形態の検体分注装置における分注ノズルの内径汚れ検知方法および検体分注装置は、電磁弁55を閉じてシリンジ52を駆動し、分注ノズル50から洗浄水L1を吐出することにより、配管59内の圧力変化を検出すればよいので、分注ノズル50の内径汚れの有無をいつでも簡単に判定することができる。 As described above, in the sample dispensing apparatus according to this embodiment, the dispensing nozzle inner diameter contamination detection method and the sample dispensing apparatus close the electromagnetic valve 55, drive the syringe 52, and discharge the washing water L <b> 1 from the dispensing nozzle 50. Accordingly, since it is only necessary to detect a pressure change in the pipe 59, it is possible to easily determine whether the dispensing nozzle 50 is contaminated with an inner diameter at any time.
 一方、本形態の変形例として、分注ノズル50による検体吸引時に分注ノズル50の詰まりが発生した場合であって、前記分注ノズル50の検体分注ノズル洗浄装置6による洗浄後に、前記分注ノズル50内に汚れが残存するか否かを検知するための使用が例示される。 On the other hand, as a modified example of the present embodiment, when the dispensing nozzle 50 is clogged during the sample suction by the dispensing nozzle 50, after the dispensing nozzle cleaning device 6 of the dispensing nozzle 50 cleans, The use for detecting whether dirt remains in the injection nozzle 50 is exemplified.
 以下に、分注ノズルの詰まり検知について説明する。 Below, the clogging detection of the dispensing nozzle is explained.
 図7-1~図7-4は、異なる検体の吸引動作期間(T1)、吐出動作期間(T2)および洗浄水吐出による洗浄動作期間(T3)の、分注ノズル50が接続された配管59内の圧力波形である。図7-1は正常な検体(低粘度の血清)、図7-2は骨髄等の体液や透析患者の血清等の粘度の高い検体、図7-3および図7-4はフィブリンを含む血漿等の検体の吸引・吐出・ノズル洗浄時の圧力波形であるが、図7-3はフィブリンの作用により分注ノズルが一部閉塞、図7-4は、フィブリンの作用により分注ノズルが完全に閉塞した状態の圧力波形である。 FIGS. 7A to 7D show pipes 59 to which the dispensing nozzles 50 are connected during the suction operation period (T1), the discharge operation period (T2), and the cleaning operation period (T3) by the cleaning water discharge. It is a pressure waveform inside. Fig. 7-1 is a normal sample (low-viscosity serum), Fig. 7-2 is a high-viscosity sample such as bodily fluid such as bone marrow or dialysis patient, and Figs. 7-3 and 7-4 are plasmas containing fibrin. Fig. 7-3 shows part of the dispensing nozzle blocked by the action of fibrin, and Fig. 7-4 shows the complete dispensing nozzle by the action of fibrin. It is a pressure waveform of the state obstruct | occluded.
 検体分注前の検体分注装置5において、配管59にて連結されたシリンジ52および分注ノズル50には、洗浄水L1が分注ノズル50の先端まで満たされている。 In the sample dispensing apparatus 5 before sample dispensing, the syringe 52 and the dispensing nozzle 50 connected by the pipe 59 are filled with the cleaning water L1 up to the tip of the dispensing nozzle 50.
 プランジャー駆動部53を駆動して、プランジャー52bをシリンダー52a内で後退移動させ分注ノズル50内に各検体を所定量吸い込み(図7-1~図7-4のT1)、ノズル駆動部51によって分注ノズル50を上昇させ、反応テーブル3の検体吐出位置まで水平移動後、再び分注ノズル50を下降させ、吸い込んだ検体は、分注ノズルの詰まりがない場合は反応容器32に吐出する(図7-1~図7-4のT2)。 The plunger driving unit 53 is driven, the plunger 52b is moved backward in the cylinder 52a, and a predetermined amount of each specimen is sucked into the dispensing nozzle 50 (T1 in FIGS. 7-1 to 7-4), and the nozzle driving unit 51, the dispensing nozzle 50 is raised and moved horizontally to the sample discharge position on the reaction table 3, and then the dispensing nozzle 50 is lowered again. The sucked sample is discharged into the reaction container 32 when the dispensing nozzle is not clogged. (T2 in FIGS. 7-1 to 7-4).
 そして、ノズル駆動部51によって分注ノズル50を再度上昇させ、検体分注ノズル洗浄装置6まで水平移動後、再び分注ノズル50を下降させ、電磁弁55を開に切り替え、洗浄水ポンプ56を駆動してタンク58内の洗浄水L1を配管59に圧送し、洗浄水L1を分注ノズル50から検体分注ノズル洗浄装置6に吐出することにより分注ノズル50を洗浄する(図7-1~図7-4のT3)。 Then, the dispensing nozzle 50 is raised again by the nozzle drive unit 51, moved horizontally to the specimen dispensing nozzle cleaning device 6, then lowered again, the electromagnetic valve 55 is switched to open, and the washing water pump 56 is turned on. It is driven to pump the cleaning water L1 in the tank 58 to the pipe 59 and discharge the cleaning water L1 from the dispensing nozzle 50 to the sample dispensing nozzle cleaning device 6 to clean the dispensing nozzle 50 (FIG. 7-1). ~ T3 in FIG. 7-4).
 図7-1および図7-2では、検体吸引(T1)後で吐出(T2)前のt1時において、配管59内の圧力は大気圧に戻っていることから、分注ノズル50の詰まりもなく、所定量の検体が吸入されているため、反応容器32に検体を吐出後、他の検体の分注に備えて分注ノズル50は検体分注ノズル洗浄装置6にて洗浄される。 In FIGS. 7-1 and 7-2, since the pressure in the pipe 59 returns to the atmospheric pressure at time t1 after the sample aspiration (T1) and before the discharge (T2), the clogging of the dispensing nozzle 50 also occurs. Since a predetermined amount of the sample is inhaled, the dispensing nozzle 50 is cleaned by the sample dispensing nozzle cleaning device 6 in preparation for dispensing other samples after the sample is discharged into the reaction container 32.
 図7-3および図7-4では、検体吸引(T1)後で吐出(T2)前のt1時において、程度の差はあるものの配管59内は陰圧のままであり、分注ノズル50には詰まりが発生し所定量の検体は吸引されていない。したがって、該検体を分析に用いると正確な分析値が得られないため、吸引した検体は廃棄され、分注ノズルは詰まり除去のために検体分注ノズル洗浄装置6で洗浄される。 7-3 and 7-4, the negative pressure is maintained in the pipe 59 at the time t1 after the sample aspiration (T1) and before the discharge (T2). Is clogged and a predetermined amount of sample is not aspirated. Therefore, when the sample is used for analysis, an accurate analysis value cannot be obtained, and therefore the aspirated sample is discarded, and the dispensing nozzle is cleaned by the sample dispensing nozzle cleaning device 6 to remove clogging.
 本発明の分注ノズルの内径汚れの検知方法は、上記図7-3および図7-4のような圧力波形を示す検体を分注した分注ノズル50の検体分注ノズル洗浄装置6での洗浄後に、分注ノズル50内に汚れが存在しているか否かの確認に使用される。 The method for detecting the inner diameter contamination of the dispensing nozzle of the present invention is performed by the sample dispensing nozzle cleaning device 6 of the dispensing nozzle 50 that dispenses the sample having the pressure waveform as shown in FIGS. 7-3 and 7-4. After washing, it is used for checking whether or not dirt is present in the dispensing nozzle 50.
 図8のフローチャートを用いて、検体吸引時に分注ノズル詰まりが発生した場合の、本発明の分注ノズル内径汚れの有無の判定方法と判定結果に基づく対処について説明する。 Referring to the flowchart of FIG. 8, a description will be given of a method for determining the presence / absence of dispensing nozzle inner diameter contamination according to the present invention and a countermeasure based on the determination result when the dispensing nozzle is clogged during sample suction.
 先ず、検体分注装置5は、分注ノズル50により検体容器22から検体を吸入し(ステップS100)、検体吸入後の圧力波形を検出して分注ノズル50の詰まりを判別する(ステップS102)。検体吸入後に詰まり判定手段により分注ノズル50の詰まりを検知しなかった場合(ステップS102:No、図7-1および図7-2の場合)、検体を反応容器32に吐出し(ステップS104)、別の検体の分注に備えて(ステップS100)、検体分注ノズル洗浄装置6で分注ノズル50を洗浄する(ステップS106)。 First, the sample dispensing device 5 sucks a sample from the sample container 22 by the dispensing nozzle 50 (step S100), and detects the clogging of the dispensing nozzle 50 by detecting the pressure waveform after the sample is sucked (step S102). . When clogging of the dispensing nozzle 50 is not detected by the clogging determination means after the sample is inhaled (step S102: No, in the case of FIGS. 7-1 and 7-2), the sample is discharged into the reaction container 32 (step S104). In preparation for dispensing another specimen (step S100), the dispensing nozzle 50 is cleaned by the specimen dispensing nozzle cleaning device 6 (step S106).
 一方、検体吸入後、詰まり判定手段により分注ノズル50の詰まりを検知した場合(ステップS102:Yes、図7-3および図7-4の場合)、規定量の検体は吸引されておらず、該検体を分析に用いると正確な分析値が得られないため、該検体は検体分注ノズル洗浄装置6に吐出されて廃棄される(ステップS108)。 On the other hand, when clogging of the dispensing nozzle 50 is detected by the clogging determination means after the sample is inhaled (step S102: Yes, in the case of FIGS. 7-3 and 7-4), the specified amount of the sample is not aspirated, When the sample is used for analysis, an accurate analysis value cannot be obtained, and the sample is discharged to the sample dispensing nozzle cleaning device 6 and discarded (step S108).
 その後、分注ノズル50は、詰まりを除去するために検体分注ノズル洗浄装置6で洗浄され(ステップS110)、洗浄終了後、引き続き洗浄水ポンプ56を駆動してタンク58内の洗浄水L1を分注ノズル50から吐出して、圧力センサ54により該吐出時の配管59内の圧力波形を検出し(ステップS112)、圧力変化波形に基づき演算部13cは山の数Niを演算し(ステップS114)、判定部13dは演算した山の数Niと山のN0数を比較して、分注ノズル50の内径汚れの有無を判定する(ステップS116)。 Thereafter, the dispensing nozzle 50 is cleaned by the sample dispensing nozzle cleaning device 6 to remove clogging (step S110). After the cleaning is completed, the cleaning water pump 56 is continuously driven to supply the cleaning water L1 in the tank 58. After discharging from the dispensing nozzle 50, the pressure sensor 54 detects the pressure waveform in the pipe 59 at the time of discharge (step S112), and the calculation unit 13c calculates the number Ni of peaks based on the pressure change waveform (step S114). ), The determination unit 13d compares the calculated number of peaks Ni with the number of peaks N0 to determine whether the dispensing nozzle 50 is contaminated with an inner diameter (step S116).
 山の数Niが山の数N0以上場合(ステップS116:No)、判定部13dは、分注ノズル50の内径汚れがないと判定し、新たな検体の分注を行なう(ステップS100)。この場合、新たな検体の分注の前に、出力部105はディスプレイにその旨を表示してもよい。一方、山の数Niが山の数N0より小さい場合(ステップS116:Yes)、判定部13dは分注ノズル50の内径汚れがあると判定し、異常を告知する(ステップS118)。異常の告知は、例えば、ディスプレイ装置に分注ノズルの内径汚れが存在する旨を表示し、あるいはアラームによって警報音を発する。この告知に従い、分注ノズル50の内径汚れを洗浄するために、分析装置内に別途設けられた洗剤が貯留された貯留槽で、当該分注ノズル50で洗剤を吸引・吐出させたり、当該分注ノズル50を検体分注装置5から取り外して超音波洗浄などを行なう。 If the number of peaks Ni is equal to or greater than the number of peaks N0 (step S116: No), the determination unit 13d determines that the inner diameter of the dispensing nozzle 50 is not contaminated, and dispenses a new sample (step S100). In this case, the output unit 105 may display the fact on the display before dispensing a new sample. On the other hand, when the number of peaks Ni is smaller than the number of peaks N0 (step S116: Yes), the determination unit 13d determines that there is dirt on the inner diameter of the dispensing nozzle 50 and notifies the abnormality (step S118). In order to notify the abnormality, for example, the display device indicates that the inner diameter contamination of the dispensing nozzle is present, or generates an alarm sound by an alarm. In accordance with this notification, in order to clean the inner diameter dirt of the dispensing nozzle 50, the dispensing nozzle 50 sucks and discharges the detergent in the storage tank in which the detergent provided separately in the analyzer is stored. The injection nozzle 50 is removed from the specimen dispensing apparatus 5 and ultrasonic cleaning or the like is performed.
 このように、本発明の検体分注装置における分注ノズルの内径汚れ検知方法および検体分注装置は、配管59内の圧力変化を検出すればよいので、分注ノズル50の内径汚れの有無をいつでも簡単に判定することができ、検体や試薬を含む液体試料を無駄にせず、再検を行う時間を減らすことができる。 As described above, since the method for detecting the inner diameter contamination of the dispensing nozzle and the sample dispensing device in the sample dispensing apparatus of the present invention only needs to detect the pressure change in the pipe 59, the presence or absence of the inner diameter contamination of the dispensing nozzle 50 is determined. The determination can be easily made at any time, and the time for performing the retest can be reduced without wasting the liquid sample containing the specimen and the reagent.
 以上のように、本発明の分注ノズル内径汚れ検知方法および検体分注装置は、検体と試薬との反応物を光学的に測定して検体の成分を分析する分析装置において有用である。 As described above, the dispensing nozzle inner diameter contamination detection method and the sample dispensing apparatus of the present invention are useful in an analyzer that optically measures a reaction product between a sample and a reagent and analyzes the components of the sample.

Claims (5)

  1.  検体の吸引および吐出を行なう分注ノズルを備えた検体分注装置を用いて、分注洗浄終了後の前記分注ノズル内径汚れを検知する分注ノズル内径汚れ検知方法であって、
     前記分注ノズルを接続した配管内における前記分注ノズルの吸引または吐出時の圧力変化を検出する検出ステップと、
     前記検出ステップにて検出した前記圧力変化から圧力変化波形の山の数を演算する演算ステップと、
     前記演算ステップにて演算した前記山の数に基づいて前記分注ノズル内径汚れの有無を判定する判定ステップと、
     を含むことを特徴とする分注ノズル内径汚れ検知方法。
    Dispensing nozzle inner diameter dirt detection method for detecting the dispensing nozzle inner diameter dirt after the end of the dispensing cleaning, using a sample dispensing apparatus having a dispensing nozzle for performing suction and discharge of the specimen,
    A detection step of detecting a pressure change at the time of suction or discharge of the dispensing nozzle in a pipe connected to the dispensing nozzle;
    A calculation step of calculating the number of peaks of the pressure change waveform from the pressure change detected in the detection step;
    A determination step of determining the presence or absence of the dispensing nozzle inner diameter contamination based on the number of peaks calculated in the calculation step;
    A method for detecting dirt inside a dispensing nozzle, comprising:
  2.  前記判定ステップは、所定の閾値を越える前記山の数が2以下の場合に前記分注ノズルに内径汚れが有ると判定することを特徴とする請求項1に記載の分注ノズル内径汚れ検知方法。 2. The dispensing nozzle inner diameter contamination detection method according to claim 1, wherein the determination step determines that the dispensing nozzle has an inner diameter contamination when the number of the peaks exceeding a predetermined threshold is 2 or less. .
  3.  前記検体分注装置による検体吸引または吐出時の圧力波形により分注ノズル詰まりを検知する分注ノズル詰まり検知ステップと、
     前記分注ノズル詰まり検知ステップにより分注ノズルに詰まりが有ると判定された場合に、吸引検体廃棄後分注プローブを洗浄する分注プローブ洗浄ステップと、
     を含み、前記分注プローブ洗浄ステップ後に、分注ノズルから洗浄水吐出時の圧力変化に基づいて前記分注ノズル内径汚れの有無を判定することを特徴とする請求項1または2に記載の分注ノズル内径汚れ検知方法。
    Dispensing nozzle clogging detecting step for detecting clogging of the dispensing nozzle by the pressure waveform at the time of sample aspiration or discharge by the sample dispensing device;
    A dispensing probe washing step for washing the dispensing probe after discarding the aspirating sample when it is determined that the dispensing nozzle is clogged by the dispensing nozzle clogging detection step;
    3. The dispensing according to claim 1, wherein after the dispensing probe cleaning step, the presence / absence of dirt on the inside of the dispensing nozzle is determined based on a pressure change when the washing water is discharged from the dispensing nozzle. Note Nozzle bore contamination detection method.
  4.  検体の吸引および吐出を行なう分注ノズルを備えた検体分注装置であって、
     前記分注ノズルを接続した配管内における圧力変化を検出する圧力検知手段と、
     前記分注ノズルの吸引または吐出時に、前記圧力検知手段が検出した前記配管内の圧力変化から圧力変化波形の山の数を演算する演算手段と、
     前記演算手段が演算した前記山の数に基づいて前記分注ノズルの内径汚れの有無を判定する判定手段と、
     を備えたことを特徴とする検体分注装置。
    A sample dispensing device having a dispensing nozzle for aspirating and discharging a sample,
    Pressure detecting means for detecting a pressure change in the pipe connected to the dispensing nozzle;
    Calculation means for calculating the number of peaks of the pressure change waveform from the pressure change in the pipe detected by the pressure detection means at the time of suction or discharge of the dispensing nozzle;
    Determining means for determining the presence or absence of inner diameter contamination of the dispensing nozzle based on the number of peaks calculated by the calculating means;
    A specimen dispensing apparatus comprising:
  5.  前記判定手段は、所定の閾値を越える前記山の数が2以下の場合に前記分注ノズルに内径汚れが有ると判定することを特徴とする請求項4に記載の検体分注装置。 5. The sample dispensing apparatus according to claim 4, wherein the determination unit determines that the dispensing nozzle is contaminated with an inner diameter when the number of peaks exceeding a predetermined threshold is 2 or less.
PCT/JP2009/055631 2008-07-01 2009-03-23 Dispensing nozzle bore blot detecting method, and specimen dispensing apparatus WO2010001646A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008172587A JP2010014434A (en) 2008-07-01 2008-07-01 Dispensing nozzle bore dirt detection method and specimen dispenser
JP2008-172587 2008-07-01

Publications (1)

Publication Number Publication Date
WO2010001646A1 true WO2010001646A1 (en) 2010-01-07

Family

ID=41465751

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055631 WO2010001646A1 (en) 2008-07-01 2009-03-23 Dispensing nozzle bore blot detecting method, and specimen dispensing apparatus

Country Status (2)

Country Link
JP (1) JP2010014434A (en)
WO (1) WO2010001646A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110926566A (en) * 2018-09-20 2020-03-27 深圳迈瑞生物医疗电子股份有限公司 Liquid level detection method, sample analyzer and computer storage medium
US11169166B2 (en) 2015-02-23 2021-11-09 Hitachi High-Tech Corporation Automatic analyzer

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6261941B2 (en) * 2013-10-24 2018-01-17 東芝メディカルシステムズ株式会社 Automatic analyzer
WO2024075441A1 (en) * 2022-10-06 2024-04-11 株式会社日立ハイテク Automatic analysis device and method for cleaning probe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183868A (en) * 1997-09-11 1999-03-26 Olympus Optical Co Ltd Sample dispensing device
JPH11271318A (en) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd Dispensing apparatus and analyzer using the dispensing apparatus as component
JP2003533701A (en) * 2000-05-15 2003-11-11 デイド・ベーリング・インコーポレイテッド How to verify the integrity of fluid transfer
JP2007240328A (en) * 2006-03-08 2007-09-20 Olympus Corp Dispensing device and dispensation method
JP2007322318A (en) * 2006-06-02 2007-12-13 Olympus Corp Sample dispenser

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1183868A (en) * 1997-09-11 1999-03-26 Olympus Optical Co Ltd Sample dispensing device
JPH11271318A (en) * 1998-03-19 1999-10-08 Olympus Optical Co Ltd Dispensing apparatus and analyzer using the dispensing apparatus as component
JP2003533701A (en) * 2000-05-15 2003-11-11 デイド・ベーリング・インコーポレイテッド How to verify the integrity of fluid transfer
JP2007240328A (en) * 2006-03-08 2007-09-20 Olympus Corp Dispensing device and dispensation method
JP2007322318A (en) * 2006-06-02 2007-12-13 Olympus Corp Sample dispenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11169166B2 (en) 2015-02-23 2021-11-09 Hitachi High-Tech Corporation Automatic analyzer
CN110926566A (en) * 2018-09-20 2020-03-27 深圳迈瑞生物医疗电子股份有限公司 Liquid level detection method, sample analyzer and computer storage medium

Also Published As

Publication number Publication date
JP2010014434A (en) 2010-01-21

Similar Documents

Publication Publication Date Title
JP4949389B2 (en) Automatic analyzer
EP2157435B1 (en) Nozzle cleaning method, nozzle cleaning device, and automatic analyzer
US7803626B2 (en) Automatic analyzer and method for determining abnormality in dispensing of dispensing system
JP6018828B2 (en) Automatic analyzer
WO2010001646A1 (en) Dispensing nozzle bore blot detecting method, and specimen dispensing apparatus
JP2010071765A (en) Dispensing probe cleaning method and automatic analyzing apparatus
JP2011163909A (en) Automatic analyzer and washing method for dispensing means
JP4365804B2 (en) Apparatus and method for determining clogged state in pipe
WO2011093347A1 (en) Automatic analyzing device
JP2010197047A (en) Dispensation method, dispenser, and analyzer
JP5111328B2 (en) Automatic analyzer
JP2006010363A (en) Automatic analyzer
US20230204609A1 (en) Automatic analysis apparatus and maintenance method in automatic analysis apparatus
JP3120180U (en) Automatic analyzer
JP2007240328A (en) Dispensing device and dispensation method
JP6711690B2 (en) Automatic analyzer
JP2014157073A (en) Automatic analyzer
WO2013042551A1 (en) Automatic analysis apparatus
JPS6224151A (en) Suction discharger for automatic chemical analyzer
WO2010150502A1 (en) Automatic analysis device
JPH1048220A (en) Dispenser
JP6057754B2 (en) Automatic clinical analyzer and method
JP2010112832A (en) Autoanalyzer
JP2013029531A (en) Automatic analyzer
JP5372646B2 (en) Automatic analyzer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09773224

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09773224

Country of ref document: EP

Kind code of ref document: A1