JP5111328B2 - Automatic analyzer - Google Patents

Automatic analyzer Download PDF

Info

Publication number
JP5111328B2
JP5111328B2 JP2008268070A JP2008268070A JP5111328B2 JP 5111328 B2 JP5111328 B2 JP 5111328B2 JP 2008268070 A JP2008268070 A JP 2008268070A JP 2008268070 A JP2008268070 A JP 2008268070A JP 5111328 B2 JP5111328 B2 JP 5111328B2
Authority
JP
Japan
Prior art keywords
dispensing
dispensing nozzle
nozzle
gas
automatic analyzer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008268070A
Other languages
Japanese (ja)
Other versions
JP2010096640A (en
Inventor
明大 島瀬
重範 亘
英利 杉山
克宏 神原
克史 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi High Tech Corp
Original Assignee
Hitachi High Technologies Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi High Technologies Corp filed Critical Hitachi High Technologies Corp
Priority to JP2008268070A priority Critical patent/JP5111328B2/en
Publication of JP2010096640A publication Critical patent/JP2010096640A/en
Application granted granted Critical
Publication of JP5111328B2 publication Critical patent/JP5111328B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Description

本発明は、血液,尿等の検体に対し定性・定量分析を行う自動分析装置に係り、特に所定量のサンプル,試薬などの液体を移しかえる分注機構を備えた自動分析装置に関する。   The present invention relates to an automatic analyzer that performs qualitative / quantitative analysis on specimens such as blood and urine, and more particularly to an automatic analyzer that includes a dispensing mechanism that transfers a predetermined amount of a liquid such as a sample or a reagent.

一般に、自動分析装置において、検体容器から検体を、試薬容器から試薬を、それぞれ所定量吸引し反応容器に吐出する動作(以下、分注と称する)を伴う。自動分析装置には正確で再現よい分析結果が何よりも求められているが、そのためには前述の分注動作を正確で再現よく行うことが重要となる。   In general, an automatic analyzer is accompanied by an operation (hereinafter referred to as “dispensing”) in which a predetermined amount of a sample from a sample container and a reagent from a reagent container are aspirated and discharged to a reaction container. An automatic analyzer is required to obtain an accurate and reproducible analysis result above all. To that end, it is important to perform the above-described dispensing operation accurately and with good reproducibility.

一方で、近年はランニングコスト低減の観点から反応液量の微量化、すなわち分注の微量化も求められているが、一般的に分注の微量化は、分注量に対するばらつきの量が相対的に大きくなり、分注精度の向上の観点からは不利な方向にはたらく。   On the other hand, in recent years, from the viewpoint of reducing running costs, it is also required to reduce the amount of reaction solution, that is, to reduce the amount of dispensing. In general, the amount of variation relative to the amount of dispensing is relative to the amount of dispensing. However, it is disadvantageous from the viewpoint of improving dispensing accuracy.

以上のことから、分注精度への影響が少ない微量分注技術の開発が求められている。   In view of the above, development of a microdispensing technique that has little effect on dispensing accuracy is required.

連続的に分析を行う自動分析装置において、分注ノズルは、検体容器から検体を吸引し、反応容器上に移動し、反応容器に検体を吐出した後、洗浄位置に移動し、洗浄水で洗浄した後、再び検体容器に移動して、次の項目測定のための分注を行う。なお、上記は検体分注に関する説明であるが、試薬分注に関してもほぼ同様であるため、以下検体分注についてのみ説明する。   In automatic analyzers that perform continuous analysis, the dispensing nozzle draws the sample from the sample container, moves it to the reaction container, discharges the sample to the reaction container, moves to the washing position, and rinses with washing water After that, the sample is moved again to the sample container and dispensed for the next item measurement. Although the above description is related to sample dispensing, since the same applies to reagent dispensing, only sample dispensing will be described below.

上記動作において、分注ノズルが検体を吸引した後、検体容器から引上げる際、検体の一部がノズル先端に付着・残留すると、これを反応容器に持込んでしまう(図2(a)参照)。また、反応容器に検体を吐出した後、反応容器から引上げる際も同様で、この場合は検体の一部を持出してしまう(図2(b)参照)。前者を検体持込み、後者を検体持出しと称し、これらの量が分注量のばらつきに影響を与える。   In the above operation, when the dispensing nozzle aspirates the sample and then pulls it up from the sample container, if a part of the sample adheres or remains on the tip of the nozzle, it is brought into the reaction container (see FIG. 2A). ). The same applies when the specimen is discharged from the reaction container and then pulled out from the reaction container. In this case, a part of the specimen is taken out (see FIG. 2B). The former is called sample bring-in and the latter is called sample take-out, and these amounts affect the dispersion of the dispensed amount.

また、分注ノズルを洗浄した後、ノズル先端に付着・残留した洗浄水を検体容器に持込み(図2(c)参照。以下、洗浄水持込みと称する)、中の検体が薄まることにより発生する項目間での誤差の問題もある。   Further, after washing the dispensing nozzle, the washing water adhering to or remaining at the tip of the nozzle is brought into the specimen container (see FIG. 2C, hereinafter referred to as washing water carry-in), and the specimen is thinned. There is also a problem of errors between items.

これら、分注ノズル先端に付着する各液体の影響、特に分析精度への影響は、分注量が微量になるにつれて大きくなるため、反応液量低減を実現するためには解決しなければならない問題の一つである。   The effect of each liquid adhering to the tip of the dispensing nozzle, especially the effect on analysis accuracy, increases as the dispensed amount becomes smaller, so a problem that must be solved in order to reduce the amount of the reaction solution one of.

上記問題に対するアプローチとしては、付着させないようにするか、付着した後に取り除くか、のいずれかが考えられる。   As an approach to the above problem, it is possible to either prevent adhesion or remove after adhesion.

液体を付着させないようにする方法として、分注ノズル先端に電解研磨,撥水コーティングなどの表面処理を施すことが考えられる。しかし、汚れ,撥水コーティングの剥離などにより、効果が持続しないのが現状である。   As a method for preventing the liquid from adhering, surface treatment such as electrolytic polishing and water repellent coating may be applied to the tip of the dispensing nozzle. However, the current situation is that the effect is not maintained due to dirt, peeling of the water repellent coating, and the like.

また、付着した後に取り除く方法として、分注ノズル先端にブロー気流を当てる方法が特許文献1に記載されている。   Moreover, as a method of removing after adhering, Patent Document 1 describes a method of applying a blow air current to the tip of a dispensing nozzle.

また、ブロー気流を当てる方法として、ポンプや電磁弁を使用している例が、特許文献2,3に記載されている。   Patent Documents 2 and 3 describe examples in which a pump or a solenoid valve is used as a method for applying a blown airflow.

特開昭57−127853号公報JP-A-57-127853 特開2004−101480号公報JP 2004-101480 A 特開2000−74929号公報JP 2000-74929 A

分注ノズル先端の付着液体を除去することで分注精度が向上するのは望ましいことだが、分注のシーケンスが増えることになる。しかし、そのために分注サイクル時間を延ばし、分注処理能力を犠牲にするようなことは望ましくない。そのため、分注ノズル先端付着液体除去機能は、従来の分注サイクル時間を変えることなく追加できることが望ましい。つまり、分注ノズルが液面から離れ、気体を噴出すべき段階において、分注ノズルの動作を止めることなく、分注ノズルが動いたまま気体噴出できることが望ましい。   Although it is desirable to improve the dispensing accuracy by removing the liquid adhering to the tip of the dispensing nozzle, the dispensing sequence increases. However, it is not desirable to extend the dispensing cycle time and sacrifice the dispensing throughput. Therefore, it is desirable that the dispensing nozzle tip attached liquid removing function can be added without changing the conventional dispensing cycle time. That is, it is desirable that gas can be ejected while the dispensing nozzle is moving without stopping the operation of the dispensing nozzle at the stage where the dispensing nozzle is separated from the liquid surface and the gas should be ejected.

前述の特許文献では、そのあたりの検討がなされていないが、まず考えられる方法として、気体の噴出をシーケンスで制御する方法、すなわち分注ノズルが液中に突込んだ状態から、上昇し始めて一定時間後に気体の噴出を行う方法が考えられる。しかし、そのタイミングが遅すぎると、その間分注ノズルは先端に液体を付着させたまま上昇し、高い位置から付着液体を飛散させることになる。飛沫が別検体に混入すると誤測定する恐れが有り、また装置に付着すると、装置の汚染だけでなく、清掃時に感染する危険性もある。逆にタイミングが早すぎると、分注ノズル先端が液面から離れてなかったり、液面すれすれではね返しを浴びたりして効果が無かったりすることが考えられる。   In the above-mentioned patent document, although the examination around that has not been made, as a first conceivable method, a method of controlling gas ejection in a sequence, that is, a state in which the dispensing nozzle starts to rise from a state in which it has entered the liquid and is constant A method of ejecting gas after time can be considered. However, if the timing is too late, the dispensing nozzle rises while the liquid is attached to the tip, and the attached liquid is scattered from a high position. If droplets are mixed with another specimen, there is a risk of erroneous measurement. If the droplets adhere to the apparatus, there is a risk of not only contamination of the apparatus but also infection during cleaning. On the other hand, if the timing is too early, the tip of the dispensing nozzle may not be separated from the liquid level, or it may be ineffective due to splashing when the liquid level passes.

本発明の目的は、分注ノズル先端に付着した液体を除去するとともに、除去にあたって他への影響が生じにくい機構を備えた分注機構を備える自動分析装置を提供することにある。   An object of the present invention is to provide an automatic analyzer that includes a dispensing mechanism that includes a mechanism that removes liquid adhering to the tip of a dispensing nozzle and is less likely to affect other components during removal.

上記課題を解決するための手段として、以下の構成をとる。   As means for solving the above problems, the following configuration is adopted.

すなわち、検体または試薬を分注するための分注ノズルと、前記分注ノズルの状態を監視するセンサと、前記分注ノズルに係合され、前記分注ノズル先端に気体を噴出することができる気体噴出ノズルと、前記気体噴出ノズルから噴出する気体を供給する気体供給装置と、備える分注装置において、前記分注ノズルの状態に応じ、前記気体供給装置を制御する。分注ノズルの状態は、被分注液の液面と分注ノズル先端が接触しているかを検知する液面センサ,(分注ノズルが他の物体と接触しているか否かを検知する)接触センサ,(分注ノズル内の圧力を検出する)圧力センサなどを使用して検知することができる。   That is, a dispensing nozzle for dispensing a specimen or a reagent, a sensor for monitoring the state of the dispensing nozzle, and the dispensing nozzle are engaged, and gas can be ejected to the tip of the dispensing nozzle. In a dispensing device provided with a gas ejection nozzle and a gas supply device that supplies gas ejected from the gas ejection nozzle, the gas supply device is controlled according to the state of the dispensing nozzle. The state of the dispensing nozzle is a liquid level sensor that detects whether the liquid level of the liquid to be dispensed is in contact with the tip of the dispensing nozzle (detects whether the dispensing nozzle is in contact with other objects) It can be detected using a contact sensor, a pressure sensor (which detects the pressure in the dispensing nozzle), or the like.

本発明により、以下の効果が挙げられる。   The present invention has the following effects.

すなわち、検体または試薬の持込み・持出しを最小限に抑え、それによって分注量のばらつきを最小限に抑えるといった本来の目的を、処理能力の低下や検体の飛散などの不都合な点なく実現できる。   That is, the original purpose of minimizing sample / reagent carry-in / take-out and thereby minimizing the variation in the dispensed amount can be realized without inconveniences such as a reduction in processing capacity and sample scattering.

また、洗浄水持込みを最小限に抑え、薄まりによって発生する誤差を最小限に抑えるといった目的も、処理能力の低下や検体の飛散などの不都合な点なく実現できる。   In addition, the purpose of minimizing the amount of washing water brought in and minimizing errors caused by thinning can be realized without inconveniences such as a reduction in processing capacity and scattering of specimens.

さらに、分注ノズル先端の付着液体除去後は、分注ノズルを高速移動させても検体を飛散らす心配は無いから、積極的に高速移動させて、系の処理能力を高めることができる。   Furthermore, after removing the liquid adhering to the tip of the dispensing nozzle, there is no fear that the specimen will be scattered even if the dispensing nozzle is moved at high speed. Therefore, the processing capability of the system can be increased by actively moving at high speed.

また、本発明を液面検知機能と組合わせることで、確実な液面検知が可能となるから、分注の信頼性を向上させることができる。   Further, by combining the present invention with the liquid level detection function, reliable liquid level detection is possible, so that the reliability of dispensing can be improved.

図1に本発明の分注装置を示す。   FIG. 1 shows a dispensing apparatus of the present invention.

中空管からなる分注ノズル1は配管3を介してシリンジ4と接続され、さらに電磁弁5を介して給水ポンプ6,給水タンク7が接続され、流路内は水(システム水)8で満たされている。検体や試薬に対する主な分注動作は、上記の構成でなされる。すなわち、シリンジ内のプランジャ9の往復運動により、検体や試薬の分注を行い、分注ノズル内部の洗浄は給水ポンプにより供給されるシステム水によってなされ、これは電磁弁で切替えられている。   Dispensing nozzle 1 composed of a hollow tube is connected to syringe 4 via pipe 3, and further, water supply pump 6 and water supply tank 7 are connected via electromagnetic valve 5, and the inside of the flow path is water (system water) 8. be satisfied. The main dispensing operation for specimens and reagents is performed with the above-described configuration. That is, the specimen and reagent are dispensed by the reciprocating motion of the plunger 9 in the syringe, and the inside of the dispensing nozzle is cleaned by the system water supplied by the water supply pump, which is switched by the electromagnetic valve.

一方、分注ノズルには気体噴出ノズル2が係合されていて、気体噴出ノズルの開口部は分注ノズルの先端に向けられている。分注ノズルと気体噴出ノズルは、2本を平行に配置した構造であっても、分注ノズルを内管、気体噴出ノズルを外管とした同心円状に配置した構造であっても、どちらでも構わない。また、気体噴出ノズルは複数本の場合もある。   On the other hand, the gas ejection nozzle 2 is engaged with the dispensing nozzle, and the opening of the gas ejection nozzle is directed to the tip of the dispensing nozzle. Even if the dispensing nozzle and the gas ejection nozzle have a structure in which two nozzles are arranged in parallel, either the structure in which the dispensing nozzle is arranged in a concentric shape with the inner pipe and the gas ejection nozzle as an outer pipe, either I do not care. There may be a plurality of gas ejection nozzles.

気体噴出ノズルは配管10を介して、気体供給装置11と接続され、噴出気体はここから供給される。気体供給装置としては、エアポンプと電磁弁の組合わせ、あるいは、空気砲のような仕組みが考えられる。   The gas ejection nozzle is connected to the gas supply device 11 via the pipe 10, and the ejection gas is supplied from here. As the gas supply device, a combination of an air pump and a solenoid valve, or a mechanism like an air cannon can be considered.

なお、分注ノズルおよびこれに係合された気体噴出ノズルは、図示しない駆動装置によって検体容器内や反応容器内などの所定の位置に移動することができる。駆動方法としてはθ−z駆動やxyz駆動などがある。   The dispensing nozzle and the gas ejection nozzle engaged with the dispensing nozzle can be moved to predetermined positions such as the inside of the sample container and the reaction container by a driving device (not shown). Driving methods include θ-z driving and xyz driving.

ところで、分注ノズルには、その状態を監視すべく様々な検出機能を持たせられている。このことは多くの文献で紹介され、実際に、多くの装置で実装されている。   By the way, the dispensing nozzle is provided with various detection functions in order to monitor its state. This has been introduced in many documents and is actually implemented in many devices.

例えば、特開2000−213978号公報には分注ノズルに液面検知機能を持たせた例が記載されている。   For example, Japanese Patent Laid-Open No. 2000-213978 describes an example in which a dispensing nozzle has a liquid level detection function.

また、特開2001−91522号公報には分注ノズルに接触検知機能を持たせた例が記載されている。   Japanese Patent Application Laid-Open No. 2001-91522 describes an example in which a dispensing nozzle has a contact detection function.

分注ノズルの管内圧力検知機能としては、圧力センサを分注流路内に組込んだ特開2004−125780号公報の例が挙げられる。   As an in-pipe pressure detection function of the dispensing nozzle, an example of Japanese Patent Application Laid-Open No. 2004-125780 in which a pressure sensor is incorporated in a dispensing flow path is given.

本発明は、これら検知機能の信号を元に、付着液体除去のタイミングを最適化すべく気体供給装置を制御することである。   The present invention is to control the gas supply device so as to optimize the timing of removing the attached liquid based on the signals of these detection functions.

種々の検知器12から得られた信号は制御部13に送られ、制御部では図3のフローに従い気体供給装置を制御する。   Signals obtained from the various detectors 12 are sent to the control unit 13, which controls the gas supply device according to the flow of FIG.

以下、実際の分注の流れに合わせて説明する。検体分注と試薬分注とではその流れはほとんど同じであるから、ここでは検体分注について説明する。   Hereinafter, it demonstrates according to the flow of actual dispensing. Since the flow of the sample dispensing and the reagent dispensing are almost the same, the sample dispensing will be described here.

分注ノズルは検体容器14上に移動し、液面検知を効かせながら下降し、液面検知信号が入るとその信号割込みにより下降を停止する。その状態で検体を吸引する。検体吸引後、分注ノズルは上昇を開始するが、このときも液面の監視を行う。液面離脱の信号が入るまで上昇を続け、その信号が入ると制御部は気体供給装置へ気体噴出の命令を出す。これにより、分注ノズルの先端に付着・残留した検体は検体容器に吹き戻され、検体の持込みを最小限に抑えることができる。この後は必要に応じ、分注ノズルを高速で移動させてもよい。なお、信号が入ってから気体の噴出までの間は、全くの同時でも所定の時間挟むようにしても構わない。   The dispensing nozzle moves onto the specimen container 14 and descends while effecting the liquid level detection. When a liquid level detection signal is received, the dispensing nozzle stops the descent due to the signal interruption. In this state, the sample is aspirated. After the sample is aspirated, the dispensing nozzle starts to rise, and the liquid level is also monitored at this time. The controller continues to rise until a signal for detaching the liquid level is received, and when the signal is received, the control unit issues a command to eject gas to the gas supply device. As a result, the sample adhering or remaining at the tip of the dispensing nozzle is blown back to the sample container, and the sample can be kept to a minimum. Thereafter, the dispensing nozzle may be moved at high speed as necessary. It should be noted that the period from when the signal is received until the gas is ejected may be sandwiched for a predetermined time at the same time.

検体吸引後、分注ノズルは反応容器15上に移動し、反応容器に下降する。反応容器への下降も液面センサや接触センサで反応容器底を探査しながら下降することが多い。ここでは接触センサを効かせながら下降する場合を考える。分注ノズルが反応容器底にあたると接触センサが入り、下降を停止する。その状態で検体の吐出を行う。なお、このような場合は分注ノズルの先端が斜めにカットされノズル先端が容器底に接触していても吐出可能な工夫がされていることが多い。検体吐出が終わると分注ノズルは上昇を開始するが、接触センサがOFFになるまで上昇を続け、OFFになると制御部は気体供給装置へ気体噴出の命令を出す。これによりノズルの先端に付着した検体を反応容器に吹き落とし、検体の持出しを最小限にすることができる。なお、接触センサがOFFになってから気体の噴出までの間は、全くの同時でも所定の時間挟むようにしても構わない。   After sample aspiration, the dispensing nozzle moves onto the reaction vessel 15 and descends into the reaction vessel. In many cases, the reaction vessel descends while searching the bottom of the reaction vessel using a liquid level sensor or a contact sensor. Here, consider the case of descending while using the contact sensor. When the dispensing nozzle hits the bottom of the reaction vessel, the contact sensor enters and stops descending. In this state, the specimen is discharged. In such a case, in many cases, the tip of the dispensing nozzle is cut obliquely and the device is capable of discharging even if the nozzle tip is in contact with the container bottom. When the specimen discharge is finished, the dispensing nozzle starts to rise, but continues to rise until the contact sensor is turned off, and when it is turned off, the control unit issues a gas ejection command to the gas supply device. As a result, the specimen adhering to the tip of the nozzle is blown down to the reaction container, and the specimen can be taken out to the minimum. It should be noted that a predetermined time may be sandwiched between the time when the contact sensor is turned off and the time when gas is ejected.

一連の分注動作が終了した後、分注ノズルは洗浄槽16に移動して、洗浄する。このときも液面センサを活用する。洗浄はシステム水による分注ノズル内部の洗浄に加え、分注ノズル外壁に外部から洗浄水を当てて洗浄するが、液面センサを効かせながら洗浄し、洗浄液供給停止により液が触れなくなると、制御部は気体供給装置へ気体噴出の命令を出す。これにより、付着水を吹き落とす。   After a series of dispensing operations is completed, the dispensing nozzle moves to the washing tank 16 and is washed. At this time, the liquid level sensor is utilized. In addition to cleaning the inside of the dispensing nozzle with system water, washing is performed by applying washing water from the outside to the outer wall of the dispensing nozzle. The control unit issues a gas ejection command to the gas supply device. Thereby, the adhering water is blown off.

図4は、検体吸引のための分注ノズル下降において、液面検知停止後、気体噴出し、液面の存在を再度確認することで、分注ノズルが確実に液面下にある状態で分注できるようにする方法である。検体や試薬の表面が泡立っていると、泡面を液面と誤検知し停止してしまう可能性がある。もしそのような誤検知が発生すると、所定量の分注ができず、測定結果不良に繋がる。本発明を利用すれば、確実な液面検知が可能であるから、信頼性を向上させることができる。   FIG. 4 shows that when the dispensing nozzle descends for sample aspiration, after the liquid level detection is stopped, the gas is ejected and the presence of the liquid level is checked again to ensure that the dispensing nozzle is reliably under the liquid level. It is a method to be able to note. If the surface of the specimen or reagent is bubbling, the bubbling surface may be erroneously detected as a liquid level and stopped. If such a false detection occurs, a predetermined amount cannot be dispensed, leading to poor measurement results. If the present invention is used, reliable liquid level detection is possible, and thus reliability can be improved.

図4に示す通り、分注ノズルは検体容器上に移動し、液面検知を効かせながら下降する。液面検知信号が入るとそのその信号割込みにより、ノズルの下降を停止する。しかる後、気体を噴出し、再度液面有無を確認する。ここで、液面有りと判断されたらそのまま次動作に移るが、液面無しと判断されたら、再度ノズル下降に戻る。気体噴出後液面ありと判断されるまでこのループを繰り返すが、何度目かのループでアラームを出すようにしてもよい。   As shown in FIG. 4, the dispensing nozzle moves onto the sample container and descends while effecting the liquid level detection. When a liquid level detection signal is input, the lowering of the nozzle is stopped by the signal interruption. After that, gas is blown out and the liquid level is confirmed again. Here, if it is determined that there is a liquid level, the process proceeds to the next operation as it is. If it is determined that there is no liquid level, the process returns to lowering the nozzle again. This loop is repeated until it is determined that there is a liquid level after gas ejection, but an alarm may be issued several times.

次に、管内圧力センサを使用した場合の動きについて説明する。   Next, the movement when the in-pipe pressure sensor is used will be described.

分注装置が扱う液体の中には、粘性や濡れ性が低いものから高いものまであり、分注ノズルへの付着の程度、気体噴出時の液切れのよさについても、それぞれ変わってくる。付着液体の除去のみの観点では、気体の噴出をただ強くすればいいが、液切れのよい液体においては飛散のリスクが高まること、またエネルギー的にも不必要な噴出は避けた方が望ましいから、液性に合わせて制御できることが望ましい。液切れのよさは、液体の粘性や管の濡れ性等複雑なメカニズムであるが、吸引時の内部圧力を測定すればおおよその推定はできる。詰まり検知・異常吸引検知として使用されている管内圧力センサを利用し、この信号に応じ、噴出する気体の流量,流速,時間等を制御する。   The liquids handled by the dispensing device range from low to high in viscosity and wettability, and the degree of adhesion to the dispensing nozzle and the ease of running out of the liquid during gas ejection vary. From the standpoint of removing only the adhering liquid, it is only necessary to strengthen the gas jet. However, it is desirable to avoid the jetting that is unnecessary in terms of energy because the risk of splashing is increased in a liquid with good drainage. It is desirable to be able to control the liquidity. The goodness of liquid breakage is a complicated mechanism such as the viscosity of the liquid and the wettability of the tube, but it can be roughly estimated by measuring the internal pressure during suction. In-pipe pressure sensors used for clogging detection and abnormal suction detection are used, and the flow rate, flow rate, time, etc. of the gas to be ejected are controlled according to this signal.

図1は、この発明の実施例にかかる自動分析装置の構成例を示している。自動分析装置は一般的に、検体を装置にセットするための検体ディスク101,その検体の分注を行うための検体分注装置102,反応容器である反応セル103およびその保持具である反応ディスク104,測定項目に応じた試薬をセットする試薬ディスク105,その試薬の分注を行うための試薬分注機構106,反応セル中に分注された検体と試薬を攪拌するための攪拌機構107,反応液を比色分析する光度計108,分析が終了した反応液の吸引および反応セルの洗浄を行う洗浄機構109,そしてこれらの制御部からなる。本発明の分注装置を、検体分注装置または試薬分注装置のいずれか、あるいは両方に組込むことで、本発明の利点を生かした自動分析装置ができる。   FIG. 1 shows a configuration example of an automatic analyzer according to an embodiment of the present invention. An automatic analyzer generally has a specimen disk 101 for setting a specimen in the apparatus, a specimen dispensing apparatus 102 for dispensing the specimen, a reaction cell 103 as a reaction container, and a reaction disk as a holder thereof. 104, a reagent disk 105 for setting a reagent according to a measurement item, a reagent dispensing mechanism 106 for dispensing the reagent, a stirring mechanism 107 for stirring the sample dispensed into the reaction cell and the reagent, A photometer 108 for colorimetrically analyzing the reaction liquid, a washing mechanism 109 for sucking the reaction liquid after the analysis and washing the reaction cell, and a control section thereof. By incorporating the dispensing device of the present invention into either or both of the sample dispensing device and the reagent dispensing device, an automatic analyzer utilizing the advantages of the present invention can be made.

本発明に関わる分注装置の概略構成図である。It is a schematic block diagram of the dispensing apparatus in connection with this invention. 分注動作における課題を説明するための図である。It is a figure for demonstrating the subject in dispensing operation | movement. 本発明の分注装置を用いて、気体噴出を制御するアルゴリズムを示す図である。It is a figure which shows the algorithm which controls gas ejection using the dispensing apparatus of this invention. 本発明の分注装置を用いて、分注ノズルの液面検知後、分注ノズル先端に気体を噴出し、再度液面を監視することで液面を確実に検知するアルゴリズムを示す。An algorithm for reliably detecting the liquid level by using the dispensing apparatus of the present invention to detect the liquid level of the dispensing nozzle, then ejecting gas to the tip of the dispensing nozzle and monitoring the liquid level again will be shown. 本発明の分注装置が適用可能な自動分析装置の概略構成図である。It is a schematic block diagram of the automatic analyzer which can apply the dispensing apparatus of this invention.

符号の説明Explanation of symbols

1 分注ノズル
2 気体噴出ノズル
3 配管(分注用)
4 シリンジ
5 電磁弁
6 給水ポンプ
7 給水タンク
8 水(システム水)
9 プランジャ
10 配管(気体噴出用)
11 気体供給装置
12 検知器
13 制御部
101 検体ディスク
102 検体分注装置
103 反応セル
104 反応ディスク
105 試薬ディスク
106 試薬分注装置
107 攪拌機構
108 光度計
109 洗浄機構
1 Dispensing nozzle 2 Gas ejection nozzle 3 Piping (for dispensing)
4 Syringe 5 Solenoid valve 6 Water supply pump 7 Water supply tank 8 Water (system water)
9 Plunger 10 Piping (for gas ejection)
DESCRIPTION OF SYMBOLS 11 Gas supply apparatus 12 Detector 13 Control part 101 Sample disk 102 Sample dispensing apparatus 103 Reaction cell 104 Reaction disk 105 Reagent disk 106 Reagent dispensing apparatus 107 Stirring mechanism 108 Photometer 109 Cleaning mechanism

Claims (3)

液体を分注するための分注ノズルと、
前記分注ノズルの状態を監視する状態監視センサと、
前記分注ノズルに係合され、前記分注ノズル先端に気体を噴出する気体噴出ノズルと、
前記気体噴出ノズルから噴出する気体を供給する気体供給装置と、
前記状態監視センサからの情報に基づき、前記気体供給装置を制御する制御機構と、を備え、
前記状態監視センサは、前記分注ノズルが前記液体を反応容器に吐出するときに、前記分注ノズルと前記反応容器の底が接触しているか否かを検知する接触センサであり、
前記液体の吐出中に前記反応容器底に接触していた前記分注ノズルの、前記液体吐出後の上昇に伴う、前記接触センサのオフ信号に基づき、前記気体供給装置の気体噴出を制御することを特徴とする自動分析装置。
A dispensing nozzle for dispensing liquid;
A state monitoring sensor for monitoring the state of the dispensing nozzle;
A gas ejection nozzle that is engaged with the dispensing nozzle and ejects gas to the tip of the dispensing nozzle;
A gas supply device for supplying gas ejected from the gas ejection nozzle;
A control mechanism for controlling the gas supply device based on information from the state monitoring sensor,
The state monitoring sensor is a contact sensor that detects whether or not the dispensing nozzle is in contact with the bottom of the reaction container when the dispensing nozzle discharges the liquid into the reaction container.
Controlling gas ejection of the gas supply device based on an off signal of the contact sensor accompanying the rise after the liquid ejection of the dispensing nozzle that has been in contact with the reaction container bottom during the liquid ejection. Automatic analyzer characterized by
請求項1記載の自動分析装置において、
さらに、分注ノズルのノズル内の圧力を検出する圧力センサを備え、前記圧力センサの信号に応じ、前記気体供給装置が噴出する気体の流量、流速、又は噴射時間を制御することを特徴とする自動分析装置。
The automatic analyzer according to claim 1, wherein
Furthermore, the pressure sensor which detects the pressure in the nozzle of a dispensing nozzle is provided, The flow volume of the gas which the said gas supply apparatus ejects, the flow velocity, or the injection time is controlled according to the signal of the said pressure sensor. Automatic analyzer.
請求項1又は2記載の自動分析装置において、
前記気体噴出ノズルから気体を噴出した後、前記分注ノズルを高速で移動させるように制御する制御機構を備えたことを特徴とする自動分析装置。
The automatic analyzer according to claim 1 or 2,
An automatic analyzer comprising a control mechanism for controlling the dispensing nozzle to move at a high speed after gas is ejected from the gas ejection nozzle .
JP2008268070A 2008-10-17 2008-10-17 Automatic analyzer Active JP5111328B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008268070A JP5111328B2 (en) 2008-10-17 2008-10-17 Automatic analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008268070A JP5111328B2 (en) 2008-10-17 2008-10-17 Automatic analyzer

Publications (2)

Publication Number Publication Date
JP2010096640A JP2010096640A (en) 2010-04-30
JP5111328B2 true JP5111328B2 (en) 2013-01-09

Family

ID=42258429

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008268070A Active JP5111328B2 (en) 2008-10-17 2008-10-17 Automatic analyzer

Country Status (1)

Country Link
JP (1) JP5111328B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012173222A (en) * 2011-02-23 2012-09-10 Toshiba Corp Automatic analyzer
US9234906B2 (en) * 2011-07-01 2016-01-12 Beckman Coulter, Inc. Low carryover liquid handling probe for an automated analyzer
JP2013064673A (en) * 2011-09-20 2013-04-11 Hitachi High-Technologies Corp Automatic analyzer
EP3287793B1 (en) * 2015-04-24 2023-10-18 Hitachi High-Tech Corporation Autoanalyzer and method
EP3321689A1 (en) * 2016-11-09 2018-05-16 Siemens Healthcare Diagnostics Products GmbH System for pipetting liquids in an automatic analyzer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57199857U (en) * 1981-06-16 1982-12-18
JPS63109373A (en) * 1986-10-27 1988-05-14 Kyoto Daiichi Kagaku:Kk Sampling method and apparatus therefor
JPH0197865A (en) * 1987-10-09 1989-04-17 Seiko Instr & Electron Ltd Automatic pipette
JPH01227063A (en) * 1988-03-07 1989-09-11 Maikuronikusu Kk Pre-treatment apparatus for liquid analysis
JP2549325B2 (en) * 1991-09-04 1996-10-30 協和メデックス株式会社 Specimen sampling method for automatic analyzer and its apparatus
JPH07270431A (en) * 1994-03-31 1995-10-20 Shimadzu Corp Automatic biochemical analyzer
JP3907819B2 (en) * 1998-03-23 2007-04-18 オリンパス株式会社 Liquid level detector
JP3584799B2 (en) * 1999-09-20 2004-11-04 株式会社日立製作所 Liquid dispensing device
JP3742580B2 (en) * 2001-04-11 2006-02-08 株式会社堀場製作所 Automatic urine storage test device
JP2007309888A (en) * 2006-05-22 2007-11-29 Olympus Corp Dispensing device

Also Published As

Publication number Publication date
JP2010096640A (en) 2010-04-30

Similar Documents

Publication Publication Date Title
EP2157435B1 (en) Nozzle cleaning method, nozzle cleaning device, and automatic analyzer
JP5686744B2 (en) Automatic analyzer
JP5309142B2 (en) Automatic analyzer
WO2010104072A1 (en) Analyzer and method for cleaning dispenser probe
JP6647288B2 (en) Automatic analyzer and method
JP6018828B2 (en) Automatic analyzer
JP2009042067A (en) Automatic analyzer
JP2013134142A (en) Automatic analyzer
WO2006123771A1 (en) Method of detecting dispensed quantity, and liquid suction monitoring dispensing apparatus
WO2010098053A1 (en) Chemical analysis device
US11231433B2 (en) Automatic analyzer and cleaning method
JP5111328B2 (en) Automatic analyzer
JP3868102B2 (en) Dispensing device and analyzer comprising this dispensing device as a component
EP3767299B1 (en) Automatic analyzing apparatus, and method for detecting flow path clogging of the automatic analyzing apparatus
WO2011093347A1 (en) Automatic analyzing device
JP3120180U (en) Automatic analyzer
WO2010001646A1 (en) Dispensing nozzle bore blot detecting method, and specimen dispensing apparatus
CN112689764A (en) Automatic analyzer
WO2002003078A1 (en) Liquid dispensing method and device
EP3971583B1 (en) Automatic analyzing device
JP7339142B2 (en) automatic analyzer
EP3859347B1 (en) Automated analyzer and cleaning method
JP7110222B2 (en) Automated analyzer and probe cleaning method
JP6057754B2 (en) Automatic clinical analyzer and method
WO2021215068A1 (en) Dispensing device, automated analysis device, and dispensing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120419

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120615

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120911

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121009

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151019

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5111328

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350