JP3907819B2 - Liquid level detector - Google Patents

Liquid level detector Download PDF

Info

Publication number
JP3907819B2
JP3907819B2 JP7450998A JP7450998A JP3907819B2 JP 3907819 B2 JP3907819 B2 JP 3907819B2 JP 7450998 A JP7450998 A JP 7450998A JP 7450998 A JP7450998 A JP 7450998A JP 3907819 B2 JP3907819 B2 JP 3907819B2
Authority
JP
Japan
Prior art keywords
liquid level
liquid
probe
signal
detected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7450998A
Other languages
Japanese (ja)
Other versions
JPH11271328A (en
Inventor
敦 松下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corp filed Critical Olympus Corp
Priority to JP7450998A priority Critical patent/JP3907819B2/en
Publication of JPH11271328A publication Critical patent/JPH11271328A/en
Application granted granted Critical
Publication of JP3907819B2 publication Critical patent/JP3907819B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、容器内の液体をプローブ等を用いて液面検知する方式に関し、例えば液面検知の後に吸引過程を行う自動分析装置等を想定した液面検知方式に関する。
【0002】
【従来の技術】
近年、医療分野をはじめとして各種の分析装置がこれまでにも幾つかの提案されている。特に分析装置自体の処理速度の高速化が進むに伴ない、検知に使用されるプローブ( 電極) の移動速度も更に高速であることが要求されている。よって、試料( サンプル) の液面検知のための下降動作において検知判定を誤検知防止の為にある時間遅らせると、サンプリング・プローブの駆動手段へ停止信号を送るのが遅れてしまい、結果としてそのプローブが試料内へ潜り込む深さが増えてしまう。特に試料が微量な場合においては、容器の底面にプローブ先端が接触してしまう恐れがある。また試料が容器内に充分ある場合でも、プローブが必要以上に深く試料内部に挿入されたり、異なる試料間におけるコンタミネーションの影響も増大してしまう。
このように、プローブや分注ノズル等の停止動作に関する技術においても次のようなものが提案されている。一般的には、発振器とこの発振器に接続した電極と、その電極により誘導される信号を受信するプローブを用いて液面を検知する液面検知装置において、液面検知した際にそのプローブを停止させる液面検知技術が既にあった。
【0003】
また近年の特開平8−210896号公報には、液面検知装置により液面を検知しプローブを停止させた後、液体の吸引動作中にその液面検知装置の出力に基づきプローブ内の液体の吸引状態をモニタしてその良否を判定するような自動化学分析装置の提案もある。
さらに特開平8−114604号公報には、プローブが液面を検知して吸引を終了するまでの間プローブが液面に接触し続けたか否かを判定する判定手段を有し、この判定手段にて接触が検知され続けないと判断された際にこの状況を操作者に通知するという自動分析装置の提案もある。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の従来技術にはそれぞれ解決しなければならない問題点がある。例えば、血液等の試料表面に泡が付着していたり、外来ノイズ等の影響で液面を誤検知してしまっても、液面を検知したとみなし吸引動作を行うため、プローブ先端が試料に充分に潜り込んでおらず試料の空吸いが起こってしまう。このような場合、試料がラック上に在るときには、他の分析動作は通常通り行われ、ラックは移動してしまうため、その試料を再分注するには時間がかかってしまうという不具合があった。
この一因は、泡、外来ノイズまたは静電気などにより液面検知センサが接触信号と検知してから離脱信号を検知する迄の時間が、プローブが液面に接触した場合と比べると極めて短時間の信号であるため、所定時間以上の信号が入力したときは、液面検知信号と判断して駆動手段へ停止信号を送りそのプローブの降下を停止させることが一般的であったことにもよる。
【0005】
また、特開平8−210896号および特開平8−114604号公報の問題点としては、吸引中に空吸いであると判断したり、吸引中に液面からプローブが離れたことを検知しても、途中まで吸引した試料が無駄になってしまい、試薬が先に分注されている場合には試薬も無駄になる。そしてそのサイクルでは分注を行わないため、分析も行わないことになってしまう。その後の処理方法は、次サイクルで再度分注を行うか、吸引が正確に行われなかったことを操作者に知らせるだけというものである。よって、このような再分注や操作者への通知を繰り返していると全検体の分析時間が長く要してしまう。また、空吸いを判断後、再下降し吸引をやり直すことも考えられるが、その場合、吸引動作をリセットする時間が余計にかかってしまうという不具合があった。
【0006】
そこで本発明の目的は、液面検知装置が泡、外来ノイズまたは静電気などにより液面を誤検知した場合であっても、分析のシーケンスに影響を与えることなく、プローブが上点から下降し分注等を行う一連の動作を、その分析の1サイクル中の定められた時間内に行うことのできる液面検知装置を提供することにある。
【0007】
【課題を解決するための手段】
上記の目的を達成するために、本発明の第1の態様に係る液面検知装置は、所定の液体を収容する収容容器に対して該液体を吸引するか所望の液体を添加する液体移送手段と、前記液体移送手段の先端が該液体の表面に接触したことを所定の接触信号により検知するとともに、該液体から離れたことを所定の離脱信号により検知する検知手段と、前記液体移送手段の先端を前記容器内に下降させ、前記接触信号が検知された後、該先端から該液体を液体移送する前に前記離脱信号が検知されたか否かを判定する判定手段と、を具備し、前記検知手段により前記接触信号が検知された後、所定の駆動手段によって前記液体移送手段が液体移送動作に移行させる前に前記離脱信号が検知され、かつ、前記検知手段により接触信号が検知されてから離脱信号が検出されるまでの時間が、前記液体移送手段が停止に要する時間よりも短い場合に、前記判定手段は、前記接触信号が検知された位置は真の液面でないと判定する
【0008】
また、本発明の第2の態様に係る液面検知装置は、本発明の第1の態様に係る液面検知装置において、前記液体移送手段が液面を誤検知した場合でも、前記液体移送手段があらかじめ設定された上点から下降して正しい液面を検知後、液体移送動作までを行う一連の動作を、分析の1サイクル中の定められた時間内に行うように制御する。
【0009】
【作用】
本発明に係わる請求項の態様による液面検知方式においては、以上の手段により次のような作用を奏する。すなわちこの液面検知方法では、液面検知装置が外来ノイズや静電気、泡などにより液面を誤検知しても、分析のシーケンスに影響を与えることなくプローブが上点から下降し、正しい液面を検知する。そしてその後の分注等を行う一連の動作を、分析の1サイクル中の定められた時間内に連続かつ自動的に行うことを可能とする。
【0010】
【発明の実施の形態】
以下、本発明の液面検知装置についての複数の実施形態例およびそれらの変形例を挙げて詳しく説明する。
(第1実施形態例)
図1には、本発明の第1実施形態例および後述の第2実施形態例としての液面検知装置の構成が示され、また図2(a), (b)にはこの液面検知装置のプローブの先端位置と容器内の液体との位置関係を拡大して示している。
【0011】
本発明の実施形態例に係わる液面検知装置10は図1に示すように構成されている。すなわち、所望の検知対象とする液体20を収容した例えば試験管等の液体収容容器4内にアクセス(挿入・挿脱)できる分注ノズル等に付設された金属製のプローブ1と、このプローブ1を図示の如く鉛直方向に保持するアーム2と、このアーム2を上下動で鉛直方向に動かすと共に回動で水平方向(x方向)に動かす駆動手段3と、プローブ1を介して得られた電気的変化を感知して所定の信号を発生するセンサ7と、このセンサ7からの信号を入力してこの液体の液面を検知する液面検知回路5と、この液面検知回路5から送られた信号に基づき真の液面であるか否かを判定する判定手段6とからこの液面検知装置10は構成される。
【0012】
センサ7は、プローブ1の先端が何らかの液体に触れるとアナログの電気信号を液面検知回路5に送るが、この信号は「接触信号」として認識される。またこのプローブ1の先端がその触れたものから離れると「離脱信号」として認識されるアナログ信号を液面検知回路5に送る。液面検知回路5は送られた各信号をデジタル変換して判定手段6に供給する。一方、判定手段6と接続された駆動手段3はこの判定手段6の指令で駆動されるが、判定手段6はまた常にその駆動状態を認識している。
【0013】
このように、試料及び試薬の液体20が収容された容器4の上部開口のほぼ中央に向けてプローブ1を真っすぐ下降させ、更に容器4内に浸入させた後に、容器4内の液面にこのプローブ1の先端が接触すると、液面検知回路5は接触信号を検知し、直ちに駆動手段3に信号を送り、所定の深さまでこのプローブ1を容器4内へ下降させ停止させる。そして所定の分注手段(不図示)により所定の吸引動作後、駆動手段3によりプローブ1を上昇させ、プローブ先端が液面から離れると検知回路5は離脱信号を検知する。
この際、近年の分析装置の高速化に伴なって試料の分注動作をより素早く行う必要があるため、駆動手段3によりプローブ1は高速でその液体20を収容する容器4内へ下降する。
【0014】
前述の目的を達成するために本発明において、判定手段6は、液面検知のためのセンサ7が発した接触信号を認識し、駆動手段3によりプローブ1が停止動作中、もしくは停止しても、このプローブ1が次なる吸引動作を行う以前にセンサ7によって離脱信号が発せられたか否かを判定する。そしてこの判定手段6が、離脱信号が検知されてプローブ1が液面に接触していないと判定された際には、駆動手段3によってプローブ1を再駆動し、真の液面を検知するように制御を行う。
【0015】
一般に、図2(a)中に示す如く例えば血液等のタンパク質を含む液体表面には遠心分離、攪拌、分注等の処理後に気泡や泡21が生じることがあるが、液体表面の泡21へプローブ1が接触したことにより液面検知回路5があたかも液面に接触したかのような接触信号を検知した場合にも、プローブ1の試料への潜り込み深さを必要以上に大きくすることを防ぐために、接触信号が検出されたと同時に駆動手段3へ停止信号を送る必要がある。
【0016】
例えば、プローブ1が泡21に接触し、接触信号が液面検知回路5により検知されたときは、検知回路5は駆動手段3へ停止信号を送り、プローブ1は停止動作を開始する。しかしプローブ1が泡21に接触したため検知回路5は接触信号を検知するが、その直後に通常は泡が割れて消えることによりすぐに離脱信号を検知する。ここで、泡が高粘性により消えない場合でも、プローブ1が泡を突き抜けることによって同様に離脱信号を検知する。
このとき判定手段6は、液面検知回路5に接触信号が検出されてから、離脱信号が検出されるまでの時間が、プローブ1が停止に要する時間tよりも短い場合においては、この位置が液面でないと判定する。
【0017】
ここまでの動作を、図2(a)に示すプローブ1の先端位置と容器4の位置関係に基づき説明すると、例えば容器4内の血液等の表面に生じた数個の泡21は、真の液面の位置(d3)の上に任意に分散し重なり合って位置d1の高さに存在する。図2(a)中の破線矢印方向にプローブ1が下降動作を行いこの位置d1でプローブ先端がこの泡21に触れると、これを液面として誤検知する場合が起こる。その場合、判定手段の判断で更に下降を続けて図2(b)に示すように位置d2を通過してその下の液面の位置d3まで降下動作を続ける。この位置を真の液面と判断すると、図示の潜り込み深さを停止位置とする位置d4まで減速しながら降下し停止する。
【0018】
ここで図3には、その時の液面検知装置のプローブ1の降下動作に伴なうパルス信号のパルスレートの変化をグラフで示す。このパルス信号は、駆動手段を構成する機構中に例えばタイミングベルト等を用いて発生され。そのパルスレートは駆動速度に比例する。このパルス数をカウントすることによりモニタしまた制御することができる。このグラフによれば、上点に停止していたプローブは降下速度を増してt1で一定の下降速度に達し、その後は一定速度で液面に向かって降下を続ける。プローブはt2において何らかの液体に接触して接触信号(但し誤検知信号)を発する。判定手段は直ちにノズルの下降動作を停止させるため駆動手段に指令すると減速が始まるが、この間判定手段はこれが真の液面の位置か否かを判定し、t3にて誤検知であると判断するとそのときの降下速度を維持して更なる降下動作を継続させる。t4にて再び接触信号を検知しこれが真の液面位置であると判断すると、液面下の潜り込み深さが一定になるように徐々に減速しながらt5で停止させる。このとき判定手段6は、再下降時のパルスレートから停止時間を計算して、駆動手段3ヘ適宜なタイミングで停止信号を出すことによって、プローブ1が試料へ潜り込む深さを一定に制御する。
【0019】
また、泡などにプローブ1が接触した場合には、一旦接触信号が検出されてから次に離脱信号が検出されるまでの時間が極めて短時間である。なおこの時間は減速から停止するであろう時までの停止時間tよりも充分に短い。よって、判定手段6はプローブ1が所望の吸引動作を行う前に、この位置が液面でないと判断できる。そして即座に駆動手段3へ駆動信号を送りこのプローブ1を更に一定速度もしくは再加速して下降させる。その後は再び液面を検知することになり、同様にして真の液面と判断できた場合には、空吸いが起こらない適宜な深さに分注ノズルを潜り込ませ、t4以降、望ましくは停止後のt5以降から、分析のための所望の分注動作等を行うことになる。なお、誤検知の有無に係わらず、プローブが初期の上点位置から下降し分注動作終了までは、一連の分析の1サイクルによって決められた所定時間内に連続的かつ自動的に行うように制御する。
【0020】
(作用効果1)
このように、本第1実施形態例では、容器内の泡や気泡に起因して液面検知回路がプローブがあたかも液面に接触したかのような接触信号を検知した場合にも、このプローブの試料への潜り込み深さを充分にとれ、且つ必要以上に大きくすることを防ぐ。また判定手段は、再下降時のパルスレートから停止時間を計算し、駆動手段ヘ停止信号を出すことによって、プローブ1の試料への潜り込み深さを一定にする。
さらに、接触信号が検出されたと同時に駆動手段3へ停止信号を送るので正しい深さに分注ノズル等の先端を潜り込ませるので、吸引動作での空吸い等が防げる。
【0021】
(変形例1)
なお、本第1実施形態例に例示した液面検知装置の形態は、後述する第2、第3実施形態例同様に種々に変形実施できる。例えばこの液面検知装置10は、ある液体を容器から容器に分注する分注機能または、所定の分析を行うための分析機能等を総合的に有する装置を兼ねるものでもよく、用いる液体の液面検知動作に続いて攪拌、分注、分析、洗浄等を連続して行うことが可能なシステム装置であってもよい。
【0022】
また、液面検知用のセンサの種類は限定せず、例えば配管内圧力変化を感知する圧力センサ、管内に生ずる気流( エアー) を感知するセンサ、静電容量を感知するセンサ等を用いてもよいし、そのセンサの設置場所も適宜な位置に変更可能である。
さらに、プローブや分注ノズルチップは、検体のコンタミネーションをできるだけ防止するためにも使い捨て可能なものを用いてもよい。
【0023】
(第2実施形態例)
前述のように本第2実施形態例の液面検知装置も前述の第1実施形態例の装置とほぼ同じであるのでその構造の説明は省略するが、時間計測のための専用のタイマが設けられている点が構成的に異なる。
図4には、本発明の第2実施形態例に係わる液面検知装置のプローブの降下動作に伴なうパルス信号のパルスレート変化をグラフで示している。
【0024】
本例の下降動作および検知タイミングは、前述の第1実施形態例と異なって設定されている。すなわち本例では判定手段6が基準とする真の液面位置に関する判定条件を次のように定めている。プローブ1が試料と接触し、液面検知回路5が接触信号を検知してから、プローブ1が試料から離れ離脱信号が検出されるまで要した時間をタイマ(不図示)で計時しておき、この計時された時間を分析の一連のシーケンスに影響を与えないような所定時間と比較する。
なお、上記「所定時間」とは、分析の1サイクルによって規定されるプローブ1の上点からの下降開始から吸引動作開始までの時間内に設定される値である。
【0025】
本第2実施形態例に係わるパルスレートの変化を示す図4を参照すると、本例でも誤検知を認識して直ちに真の液面を検知するように動作することが明らかである。また、誤検知直後には下降速度を一旦ゼロにしてプローブを止めるように制御している。詳しくは、上点からt1を経てt2に至る経過は前述の第1実施形態例と同じ動作である。このt2においてプローブが何らかの液体に接触して接触信号(但し誤検知信号)を発すると、判定手段は直ちにプローブの下降動作を急激に停止させるため駆動手段に指令して減速を開始させ、同時に判定手段はこれが真の液面の位置か否かを判定し、t3にて下降速度がゼロになると共に誤検知であるとの判断ができると、直ちに降下速度をゼロから急峻に増加させて更に降下動作を再開させる。t4にて再び接触信号を検知しこれが真の液面位置であると判断すると、液面下の潜り込みが所定の深さになるまで一定な低速を維持した後、減速してt5で停止させる。この際に判定手段6は、再下降時のパルスレートから停止時間を計算して、駆動手段3ヘ適宜なタイミングで停止信号を出すことによって、プローブ1が試料へ潜り込む深さを所定の位置に制御する。 本例ではプローブ1は誤検知の発生により一度完全に停止する。その後、吸引動作を開始する前に再度下降動作を行い真の液面を検知する。
【0026】
(作用効果2)
このように本第2実施形態例によれば、プローブ1が試料と接触し、液面検知回路5が接触信号を検知してから、このプローブ1が試料から離れ離脱信号が検出されるまでに要した時間をタイマ等によって計時しておき、この計時された時間を分析の一連のシーケンスに影響を与えないような所定時間と比較しながら制御する。よってプローブ1は誤検知により一度停止しても、吸引を開始する前に再度下降をし液面を検知することができる。
また、再下降時のパルスレートから停止時間を計算することで、駆動手段3へ適宜なタイミングで停止指令を出せるので、プローブ1を試料の中に一定の深さで潜り込ませることができ、その結果、吸引動作における空吸い等を防げる。
【0027】
(第3実施形態例)
本第3実施形態例の液面検知装置は、前述の実施形態例のセンサ7が発振回路を有し、静電容量が変化したときの信号でもって液面を検出する構成から成る液面検出装置と同等の構成であるので、その説明は省略する。但し、発振回路については、公知の静電式液面検出機構のように、プローブ側ではなく容器側に配設してもよい。
本例の液面検知装置の特徴は、特に容器に発生する静電気を検知した際にも、この検知を液面検知とは誤判定せずに、更にプローブ先端を下降させて真の液面を検知するような一連の液面検知方法を提供するものである。
【0028】
図5は本発明の第3実施形態例に係わる帯電した容器とプローブの位置関係を例示している。詳しくは図5( a) には静電気等の影響で誤検知する際のプローブ先端の位置を示し、図5( b) にはその後に更に液面の検知位置に達した場合を示している。
静電気を帯びた容器4を使ってその中に収容された液体の液面を検知しようとして破線矢印の方向に下降するとき、プローブ1はその容器4の開口部中央付近の上端からわずか下( d1) に下降した際に誤検知信号を発するその直後には瞬間的にその帯電していた静電気が放電して除去されることにより離脱信号が得られる。この間は極めて短い時間であるが、前述した方法により同様にして誤検知を判断する。
【0029】
なお、容器として例えば試験管のような比較的長い形状のものを用いる場合、誤検知位置d1とd2の距離は接近しているが、一方、d2とd3との距離はかなり遠く離れている場合が多い。よって、この間の下降速度は高速に制御されることが望ましい。一方、この高速下降動作を液面d3から急減速または急制動して所定の潜り込み深さに対応する位置d4に停止させるように制御することが望ましい。
【0030】
(作用効果3)
このように、特に外来ノイズや容器4の静電気に起因して、液面検知回路5がこのプローブ1があたかも液面に接触したかのような接触信号を検知した場合においても、プローブ1の試料への潜り込み深さを必要以上に大きくすることを防ぐために、接触信号が検出されたと同時に駆動手段3へ停止信号を送る。そして正しい深さにノズル先端を潜り込ませるので空吸い等が防げる。
またこのような動きを行う本第3実施形態例によれば、運用環境や用いる容器4等に起因して液面の位置を誤検知したこととしても、これを正確に認識して直ちに再試行の動作を行って、真の液面を正確に検知する。
【0031】
なお、外来ノイズによる液面検知回路5等の誤作動は従来のシールド技術等により防げるであろうが、本発明では、この様なノイズにより誤動作として液面を仮に誤検知した場合でも、その後に真の液面を正しく検知するまで一連のシーケンス内で自動的に実行できる。
よって、本例のような液面検知装置は、外来ノイズが発生しやすい環境での使用や、静電気が発生しやすい液体または容器を用いる場合に特に適する。
【0032】
以上の複数の実施形態例によれば次のような運用面での利点も得られる。
(a) プローブが液面を誤検知した場合でも、プローブが上点から下降し分注動作を行う一連の動作を、分析の1サイクルの定められた時間内に行うことができ、効率の向上に寄与する。
(b) プローブを高速動作させても、液面下への突っ込み量を増やさず、且つ泡、静電気、ノイズなどへの防止対策ができる。
(c) この結果、検体のコンタミネーションを最小限に抑えることができる。
(d) また使用する試薬や、特にサンプルを無駄にしない。
【0033】
(その他の変形例)
なお、本発明は前述した各実施形態例の他にも、本発明の要旨を逸脱しない範囲で種々の変形実施が可能である。例えば、例示した液面検知方式に係わる装置の各部位の形状ならびに機能等は、必要に応じて種々の変更が可能であると共に、他との適宜な組合せも可能であり、気泡対策については、電気的検出以外の接触型液面検出方式(例えば、エアー、超音波振動等)にも適用できると共に、絶縁性のディスポーザブル・チップをプローブ先端で交換しながら分注する装置にも適用できる。また、気泡、静電気のいずれに対しても、プローブとは別体の液面検知棒を採用してもよい。
【0034】
また、泡または静電気がプローブとの接触で消失する構成については、さらにプローブを液面検知位置まで戻してから再度接触信号が得られるか否かを判定するようにすれば、泡や静電気等が液面に極めて近い上方に存在しても正確な液面検知ができる点で好ましい。
また、プローブの吐出口からエアーを吐出できる構成を有している場合には、プローブが接触しても消泡しない微小なときを考慮して、検知信号の直後に液面検知高さまで戻してから、エアーを吐出してその微小泡を風圧で押しのけるようにして、真の液面検知信号のみを効率よく得るようにしてもよい。この場合、エアーの吐出圧の変化で液面検知する方式であれば、プローブ先端を液面検知高さまで再上昇させる必要はない。
【0035】
また、本発明における液面検知装置と他分野の技術との組合せや、使用する液体とそれを収容する容器は、例示した試薬と試験管に限らず、種々の液体およびマイクロプレート、キュベット、シャーレ等の所望のものを用いることができる。また本発明は、液体を吸引する場合以外にも、既に試料(又は試薬)等が分注等により収容されている反応容器に対して試薬(又は試料)等を添加するような吐出の場合にも適用できる。
【0036】
本発明について実施形態例および変形例に基づいて説明したが、本明細書中には以下の発明が含まれる。
[1] 所定の液体を収容する収容容器に対して該液体を吸引するか所望の液体を添加する吸引手段と、前記液体移送手段の先端が該液体の表面に接触したことを所定の接触信号により検知し、該液体から離れたことを所定の離脱信号により検知する検知手段と、前記液体移送手段の先端を前記容器内に下降させ、前記接触信号を認識してから、該先端から該液体を液体移送する前に、前記離脱信号が検知されたか否かを判定する判定手段と、を具備し、
前記検知手段が前記接触信号を検知し、所定の駆動手段によって前記液体移送手段が液体移送動作に移行される前に、前記判定手段によって前記離脱信号が検知されたと判定された際には、前記駆動手段によって前記液体移送手段を再下降して真の液面を検知させるように制御することを特徴とする液面検知装置を提供する。
【0037】
[2] 前記液体移送手段が液面を誤検知した場合でも、前記液体移送手段があらかじめ設定された上点から下降して正しい液面を検知後、分注動作までを行う一連の動作を、分析の1サイクル中の定められた時間内に行うように制御することを特徴とする[1]に記載の液面検知装置。
[3] 前記判定手段は、前記検知手段に接触信号が検出されてから離脱信号が検出されるまでの時間が、前記液体移送手段が停止に要する時間よりも短い場合において、この接触信号が検知された位置が真の液面でないと判定することを特徴とする[1]に記載の液面検知装置。
【0038】
この他にも次のような発明も含まれる。
[A] 所定の容器内の試料又は試薬への接触を感知すると共に液体移送又は吐出するサンプリング・プローブと、
前記プローブを駆動して所望の位置まで移動させる駆動手段と、
前記プローブが前記試料又は試薬と接触したことを示す接触信号により検知し、前記試料又は試薬から離れたことを示す離脱信号により検知する液面検知センサと、
前記プローブを前記容器内へ下降させ、前記接触信号を検知してから、前記プローブが前記試料又は試薬を吸引する前に、前記離脱信号が検知されるか否かを判定する判定手段と、
を具備し、
前記液面検知センサが接触信号を検知し、前記駆動手段により前記プローブが停止又は制動中であっても、前記プローブが吸引動作前に、前記液面検知センサにより離脱信号が検知されたことが前記判定手段で判定された際には、前記駆動手段により前記プローブを再駆動し、真の液面を検知させることを特徴とする自動分析装置の液面検知方式。
【0039】
[B] 時間計測のための計時手段を更に具備し、
前記プローブが前記試料又は試薬と接触し、前記液面検知手段が接触信号を検知してから、前記プローブが前記試料又は試薬から離れ離脱信号が検出されるまで要した時間を前記計時手段で計時しておき、この計時された時間を分析の一連のシーケンスに影響を与えないような所定時間と比較することを特徴とする[A]に記載の液面検知方式。
[C] 前記判定手段が基準とする真の液面位置に関する判定条件は、
前記検知手段に接触信号が検出されてから、離脱信号が検出されるまでの時間が、前記プローブが停止に要する時間よりも短い場合においては、この接触信号が検知された位置が真の液面でないと判定することを特徴とする[A]に記載の液面検知方式。
【0040】
[D] 前記プローブが液面を誤検知した場合でも、前記プローブがあらかじめ設定された上点から下降して所望の分注動作を行うまでの一連の分析動作を、この分析の1サイクル中の定められた時間内に行うように制御することを特徴とする[A]に記載の液面検知方式。
[E] 前記判定手段は、再下降時の前記駆動手段が発するパルス信号のレートから前記プローブの停止時間を計算し、前記駆動手段ヘ停止信号を出すことによって、前記プローブが前記試料又は試薬への潜り込み深さを一定にするように制御することを特徴とする[A]に記載の液面検知方式。
【0041】
【発明の効果】
以上、複数の実施形態例および変形例に基づく説明の如く、本発明の液面検知装置によれば,外来ノイズや静電気、泡などにより液面を誤検知した場合でも、その誤の分析手順に影響せずに一連の分注動作を分析の1周期内に行える液面検知方式を提供することができる。
【図面の簡単な説明】
【図1】 図1は、本発明の実施形態例としての液面検知装置の構成を示す概要構成図。
【図2】 図2は本発明の第1実施形態例に係わる液体収容容器とプローブの位置関係を示し、
( a) は、液面上に生じた泡にプローブ先端が接した場合を示す説明図、
( b) は、この泡を通して更に液面の検知位置に達した場合を示す説明図。
【図3】 図3は、本第1実施形態例の液面検知装置のプローブを液面検知に用いた際のセンサが発するパルス信号の変化を示すグラフ。
【図4】 図4は、本発明の第2実施形態例の液面検知装置のプローブを液面検知に用いた際、誤検知するセンサが発するパルス信号の変化を示すグラフ。
【図5】 図5は、本第2実施形態例に係わる液体収容容器とプローブの位置関係を示し、
( a) は、静電気等の影響で誤検知する際のプローブ先端の位置を示す説明図、
( b) は、その後に更に液面の検知位置に達した場合を示す説明図。
【符号の説明】
1…プローブ(分注ノズル等の吸引手段等を兼ねる手段)、
2…アーム、
3…駆動手段、
4…液体収容容器、
5…液面検知回路(液面検知手段)、
6…判定手段、
7…センサ(液面検知手段に含む手段)、
10…液面検知装置(分析装置等を兼ねる装置)、
20…液体(試料、試薬等)、
21…泡、気泡。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for detecting the liquid level of a liquid in a container using a probe or the like. For example, the present invention relates to a liquid level detection method assuming an automatic analyzer that performs a suction process after detecting the liquid level.
[0002]
[Prior art]
In recent years, various analyzers including the medical field have been proposed. In particular, as the processing speed of the analyzer itself increases, the moving speed of the probe (electrode) used for detection is also required to be higher. Therefore, if the detection judgment is delayed for a certain period of time in order to prevent false detection in the descending operation for detecting the liquid level of the sample (sample), sending a stop signal to the sampling probe driving means will be delayed. The depth at which the probe enters the sample increases. In particular, when the amount of the sample is very small, the probe tip may come into contact with the bottom surface of the container. Further, even when the sample is sufficient in the container, the probe is inserted deeper than necessary, and the influence of contamination between different samples also increases.
As described above, the following techniques have also been proposed in the technology related to the stop operation of the probe, the dispensing nozzle, and the like. Generally, in a liquid level detection device that detects a liquid level using an oscillator, an electrode connected to the oscillator, and a probe that receives a signal induced by the electrode, the probe is stopped when the liquid level is detected. There was already a liquid level detection technology to be used.
[0003]
Also, in recent Japanese Patent Application Laid-Open No. 8-210896, after detecting the liquid level by the liquid level detection device and stopping the probe, the liquid level in the probe is detected based on the output of the liquid level detection device during the liquid suction operation. There is also a proposal of an automatic chemical analyzer that monitors the suction state and judges the quality.
Further, JP-A-8-114604 has a determination means for determining whether or not the probe has continued to contact the liquid surface until the probe detects the liquid level and completes the suction. There is also a proposal of an automatic analyzer that notifies the operator of this situation when it is determined that contact is not continuously detected.
[0004]
[Problems to be solved by the invention]
However, each of the above conventional techniques has problems that must be solved. For example, even if bubbles are adhering to the surface of a sample such as blood, or if the liquid level is erroneously detected due to the effects of external noise, etc., the tip of the probe is attached to the sample because the liquid level is detected and the suction operation is performed. The sample is not sufficiently submerged and the sample is sucked. In such a case, when the sample is on the rack, other analysis operations are performed as usual, and the rack moves, so that it takes time to re-dispense the sample. It was.
One reason for this is that the time from when the liquid level detection sensor detects a contact signal due to bubbles, external noise, or static electricity to when the separation signal is detected is much shorter than when the probe touches the liquid level. Since this is a signal, when a signal of a predetermined time or longer is input, it is generally determined that it is a liquid level detection signal and a stop signal is sent to the driving means to stop the descent of the probe.
[0005]
In addition, as a problem of JP-A-8-210896 and JP-A-8-114604, even if it is determined that the suction is empty during the suction, or the probe is separated from the liquid surface during the suction, The sample aspirated partway is wasted, and if the reagent is dispensed first, the reagent is also wasted. And since the dispensing is not performed in the cycle, the analysis is not performed. Subsequent processing methods are either to dispense again in the next cycle or just inform the operator that aspiration has not been performed correctly. Therefore, if such re-dispensing and notification to the operator are repeated, it takes a long time to analyze all samples. In addition, it is conceivable that, after determining the idle suction, it is possible to descend again and perform the suction again. However, in this case, there is a problem that it takes an extra time to reset the suction operation.
[0006]
Therefore, an object of the present invention is to prevent the probe from descending from the upper point without affecting the analysis sequence even when the liquid level detection device erroneously detects the liquid level due to bubbles, external noise or static electricity. It is an object of the present invention to provide a liquid level detection device capable of performing a series of operations for performing injection and the like within a predetermined time in one cycle of the analysis.
[0007]
[Means for Solving the Problems]
To achieve the above object, a first aspect of the present invention Liquid level detection device Includes a liquid transfer means for sucking the liquid or adding a desired liquid to a storage container for containing the predetermined liquid, and a predetermined contact signal indicating that the tip of the liquid transfer means is in contact with the surface of the liquid. And a detection means for detecting separation from the liquid by a predetermined detachment signal, and a tip of the liquid transfer means is lowered into the container, and after the contact signal is detected, the tip is discharged from the tip. Determining means for determining whether or not the separation signal is detected before transferring the liquid. After the contact signal is detected by the detection means, the liquid transfer means is detected by a predetermined driving means. The separation signal is detected before shifting to the liquid transfer operation. In addition, when the time from when the contact signal is detected by the detection unit to when the separation signal is detected is shorter than the time required for the liquid transfer unit to stop, the determination unit detects the contact signal. The determined position is not a true liquid level .
[0008]
The second aspect of the present invention Liquid level detection device Is Of the present invention First aspect Liquid level detection device In this case, even if the liquid transfer means erroneously detects the liquid level, the liquid transfer means descends from a preset upper point to detect the correct liquid level, and then analyzes a series of operations up to the liquid transfer operation. Control is performed within a predetermined time in one cycle.
[0009]
[Action]
In the liquid level detection system according to the aspect of the claims of the present invention, the following actions are produced by the above means. That is, in this liquid level detection method, even if the liquid level detection device misdetects the liquid level due to external noise, static electricity, bubbles, etc., the probe descends from the upper point without affecting the analysis sequence, and the correct liquid level is detected. Is detected. Then, a series of operations for performing subsequent dispensing and the like can be continuously and automatically performed within a predetermined time in one cycle of analysis.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the liquid level detection device of the present invention will be described in detail with reference to a plurality of embodiment examples and modifications thereof.
(First embodiment)
FIG. 1 shows the configuration of a liquid level detection device as a first embodiment of the present invention and a second embodiment described later, and FIGS. 2 (a) and 2 (b) show this liquid level detection device. 2 shows an enlarged positional relationship between the tip position of the probe and the liquid in the container.
[0011]
A liquid level detection apparatus 10 according to an embodiment of the present invention is configured as shown in FIG. That is, a metal probe 1 attached to a dispensing nozzle or the like that can be accessed (inserted / removed) into, for example, a liquid storage container 4 such as a test tube that stores a liquid 20 to be detected, and the probe 1 As shown in the figure, the arm 2 is held in the vertical direction, the driving means 3 for moving the arm 2 in the vertical direction by moving up and down and moving in the horizontal direction (x direction) by rotation, and the electricity obtained through the probe 1. A sensor 7 that detects a change in the state and generates a predetermined signal; a liquid level detection circuit 5 that receives a signal from the sensor 7 to detect the level of the liquid; The liquid level detection device 10 is composed of a determination unit 6 that determines whether the liquid level is true based on the received signal.
[0012]
When the tip of the probe 1 touches some liquid, the sensor 7 sends an analog electric signal to the liquid level detection circuit 5, and this signal is recognized as a “contact signal”. When the tip of the probe 1 moves away from the touched object, an analog signal recognized as a “detachment signal” is sent to the liquid level detection circuit 5. The liquid level detection circuit 5 converts each sent signal into a digital signal and supplies it to the determination means 6. On the other hand, the drive unit 3 connected to the determination unit 6 is driven by a command from the determination unit 6, but the determination unit 6 always recognizes the drive state.
[0013]
In this way, the probe 1 is lowered straight toward the center of the upper opening of the container 4 in which the sample and reagent liquid 20 is accommodated, and further penetrated into the container 4. When the tip of the probe 1 comes into contact, the liquid level detection circuit 5 detects a contact signal, immediately sends a signal to the drive means 3, and lowers the probe 1 into the container 4 to a predetermined depth and stops it. Then, after a predetermined suction operation by a predetermined dispensing means (not shown), the probe 1 is raised by the driving means 3 and when the probe tip is separated from the liquid surface, the detection circuit 5 detects a separation signal.
At this time, since it is necessary to perform the sample dispensing operation more quickly with the recent increase in the speed of the analysis apparatus, the probe 1 is lowered at a high speed into the container 4 containing the liquid 20 by the driving means 3.
[0014]
In order to achieve the above object, in the present invention, the determination means 6 recognizes the contact signal generated by the sensor 7 for detecting the liquid level, and even if the probe 1 is stopped or stopped by the drive means 3. Before the probe 1 performs the next suction operation, it is determined whether or not a separation signal is issued by the sensor 7. When the determination means 6 detects that the separation signal is detected and the probe 1 is not in contact with the liquid level, the driving means 3 re-drives the probe 1 to detect the true liquid level. To control.
[0015]
In general, as shown in FIG. 2 (a), bubbles or bubbles 21 may be formed on the surface of a liquid containing proteins such as blood after processing such as centrifugation, stirring, and dispensing. Even when the liquid level detection circuit 5 detects a contact signal as if the probe 1 is in contact with the liquid level, it is possible to prevent the probe 1 from entering the sample more than necessary. Therefore, it is necessary to send a stop signal to the driving means 3 at the same time when the contact signal is detected.
[0016]
For example, when the probe 1 contacts the bubble 21 and the contact signal is detected by the liquid level detection circuit 5, the detection circuit 5 sends a stop signal to the driving means 3, and the probe 1 starts a stop operation. However, since the probe 1 contacts the bubble 21, the detection circuit 5 detects the contact signal. Immediately thereafter, the detection circuit 5 detects the separation signal immediately after the bubble is broken and disappears. Here, even if the bubbles do not disappear due to high viscosity, the probe 1 similarly detects a separation signal when the bubbles penetrate the bubbles.
At this time, when the time from when the contact signal is detected by the liquid level detection circuit 5 to when the separation signal is detected is shorter than the time t required for the probe 1 to stop, the determination means 6 determines this position. It is determined that the liquid level is not reached.
[0017]
The operation up to this point will be described based on the positional relationship between the tip position of the probe 1 and the container 4 shown in FIG. 2A. For example, several bubbles 21 generated on the surface of blood or the like in the container 4 are It exists at the height of the position d1 by arbitrarily dispersing and overlapping on the liquid level position (d3). When the probe 1 moves downward in the direction of the broken line arrow in FIG. 2A and the probe tip touches the bubble 21 at this position d1, there is a case where this is erroneously detected as a liquid level. In that case, the descent continues further as judged by the judging means, and continues the descent operation after passing through the position d2 to the position d3 on the lower liquid level as shown in FIG. 2 (b). If this position is determined to be the true liquid level, the vehicle descends and stops while decelerating to a position d4 where the illustrated penetration depth is set to the stop position.
[0018]
Here, FIG. 3 is a graph showing changes in the pulse rate of the pulse signal accompanying the descending operation of the probe 1 of the liquid level detection device at that time. This pulse signal is generated by using, for example, a timing belt in a mechanism constituting the driving means. The pulse rate is proportional to the driving speed. It is possible to monitor and control by counting the number of pulses. According to this graph, the probe stopped at the upper point increases the descending speed, reaches a constant descending speed at t1, and thereafter continues to descend toward the liquid surface at a constant speed. The probe contacts a certain liquid at t2 and generates a contact signal (however, a false detection signal). When the determining means immediately instructs the driving means to stop the lowering operation of the nozzle, deceleration starts. During this time, the determining means determines whether or not this is the true liquid level position, and determines that it is a false detection at t3. The descent speed at that time is maintained and further descent operation is continued. When the contact signal is detected again at t4 and it is determined that this is the true liquid level position, the vehicle is stopped at t5 while gradually decelerating so that the depth of penetration below the liquid level becomes constant. At this time, the determination means 6 calculates the stop time from the pulse rate at the time of lowering again and issues a stop signal to the drive means 3 at an appropriate timing, thereby controlling the depth at which the probe 1 enters the sample to be constant.
[0019]
Further, when the probe 1 comes into contact with a bubble or the like, the time from when the contact signal is once detected until the next separation signal is detected is extremely short. This time is sufficiently shorter than the stop time t from when the vehicle will decelerate to when it will stop. Therefore, the determination means 6 can determine that this position is not the liquid level before the probe 1 performs a desired suction operation. Then, a drive signal is immediately sent to the drive means 3, and the probe 1 is further lowered at a constant speed or reaccelerated. After that, the liquid level is detected again, and if the true liquid level can be determined in the same way, the dispensing nozzle is submerged to an appropriate depth at which no empty suction occurs, and preferably stopped after t4. From t5 onward, a desired dispensing operation for analysis is performed. Regardless of whether or not there is a false detection, the probe is continuously and automatically performed within a predetermined time determined by one cycle of a series of analyzes until the probe descends from the initial upper point position and ends the dispensing operation. Control.
[0020]
(Operation effect 1)
As described above, in the first embodiment, even when the liquid level detection circuit detects a contact signal as if the probe is in contact with the liquid level due to bubbles or bubbles in the container, this probe is used. The depth of penetration into the sample can be made sufficiently large, and it is prevented from becoming larger than necessary. The determination means calculates the stop time from the pulse rate at the time of lowering again, and issues a stop signal to the drive means, thereby making the depth of penetration of the probe 1 into the sample constant.
Furthermore, since a stop signal is sent to the driving means 3 at the same time as the contact signal is detected, the tip of the dispensing nozzle or the like is brought into the correct depth, so that it is possible to prevent idle suction or the like in the suction operation.
[0021]
(Modification 1)
The form of the liquid level detection apparatus exemplified in the first embodiment can be variously modified similarly to the second and third embodiments described later. For example, the liquid level detection device 10 may also serve as a device having a dispensing function for dispensing a certain liquid from a container to a container or an analysis function for performing a predetermined analysis. It may be a system device capable of continuously performing stirring, dispensing, analysis, cleaning, and the like following the surface detection operation.
[0022]
The type of sensor for detecting the liquid level is not limited. For example, a pressure sensor that detects a pressure change in a pipe, a sensor that detects an air flow (air) generated in the pipe, a sensor that detects a capacitance, etc. The installation location of the sensor may be changed to an appropriate position.
Further, the probe and the dispensing nozzle tip may be disposable to prevent sample contamination as much as possible.
[0023]
(Second Embodiment)
As described above, the liquid level detection device according to the second embodiment is almost the same as the device according to the first embodiment, so that the description of the structure is omitted. However, a dedicated timer for measuring time is provided. It is structurally different.
FIG. 4 is a graph showing changes in the pulse rate of the pulse signal accompanying the descent operation of the probe of the liquid level detection device according to the second embodiment of the present invention.
[0024]
The descending operation and detection timing in this example are set differently from those in the first embodiment. That is, in this example, the determination condition regarding the true liquid level position which is determined by the determination unit 6 is defined as follows. The time required from when the probe 1 comes into contact with the sample and the liquid level detection circuit 5 detects the contact signal to when the probe 1 is separated from the sample and the separation signal is detected is counted by a timer (not shown). This timed time is compared to a predetermined time that does not affect the sequence of analysis.
The “predetermined time” is a value set within a time period from the start of the descent from the upper point of the probe 1 to the start of the suction operation defined by one cycle of analysis.
[0025]
Referring to FIG. 4 showing the change of the pulse rate according to the second embodiment, it is clear that this example also operates to recognize the false detection and immediately detect the true liquid level. In addition, immediately after the erroneous detection, the descending speed is once set to zero and the probe is stopped. Specifically, the process from t1 through t1 to t2 is the same operation as in the first embodiment described above. When the probe comes into contact with some liquid at t2 and generates a contact signal (however, an erroneous detection signal), the determination means immediately instructs the drive means to stop the advancing operation of the probe so as to suddenly stop, and simultaneously determines the determination. The means determines whether or not this is the true liquid level position. When the descent speed becomes zero and it can be judged that it is a false detection at t3, the descent speed is immediately increased from zero and further lowered. Resume operation. When the contact signal is detected again at t4 and it is determined that this is the true liquid level position, a constant low speed is maintained until the submerged depth reaches a predetermined depth, and then the vehicle is decelerated and stopped at t5. At this time, the determination means 6 calculates the stop time from the pulse rate at the time of lowering again, and issues a stop signal to the drive means 3 at an appropriate timing, thereby setting the depth at which the probe 1 enters the sample to a predetermined position. Control. In this example, the probe 1 is completely stopped once due to the occurrence of erroneous detection. After that, before starting the suction operation, the descending operation is performed again to detect the true liquid level.
[0026]
(Operation effect 2)
As described above, according to the second embodiment, the probe 1 comes into contact with the sample, the liquid level detection circuit 5 detects the contact signal, and the probe 1 leaves the sample until the separation signal is detected. The required time is measured by a timer or the like, and the measured time is controlled by comparing with a predetermined time that does not affect a series of analysis sequences. Therefore, even if the probe 1 is stopped once due to erroneous detection, the probe 1 can be lowered again before the suction is started to detect the liquid level.
Further, by calculating the stop time from the pulse rate at the time of lowering again, a stop command can be issued to the driving means 3 at an appropriate timing, so that the probe 1 can be embedded in the sample at a certain depth, As a result, it is possible to prevent idle suction and the like in the suction operation.
[0027]
(Third embodiment)
The liquid level detection device according to the third embodiment has a configuration in which the sensor 7 according to the above-described embodiment has an oscillation circuit and detects the liquid level with a signal when the capacitance changes. Since the configuration is the same as that of the apparatus, description thereof is omitted. However, the oscillation circuit may be arranged not on the probe side but on the container side as in a known electrostatic liquid level detection mechanism.
The feature of the liquid level detection device of this example is that even when static electricity generated in the container is detected, this detection is not erroneously determined as liquid level detection, and the true liquid level is lowered by further lowering the probe tip. A series of liquid level detection methods to detect are provided.
[0028]
FIG. 5 illustrates the positional relationship between the charged container and the probe according to the third embodiment of the present invention. Specifically, FIG. 5 (a) shows the position of the probe tip when erroneous detection is caused by the influence of static electricity or the like, and FIG. 5 (b) shows the case where the liquid level detection position is reached later.
When the electrostatic charge container 4 is used to detect the liquid level of the liquid contained in the container 4 and descends in the direction of the broken arrow, the probe 1 is slightly below the upper end near the center of the opening of the container 4 (d1 Immediately after the false detection signal is issued when the vehicle descends, the electrostatic charge that has been charged is instantaneously discharged and removed, whereby a separation signal is obtained. Although this time is extremely short, erroneous detection is similarly determined by the method described above.
[0029]
When a relatively long container such as a test tube is used as the container, the distance between the false detection positions d1 and d2 is close, while the distance between d2 and d3 is quite far away. There are many. Therefore, it is desirable that the descending speed during this period be controlled at a high speed. On the other hand, it is desirable to perform control so that the high-speed descending operation is suddenly decelerated or braked from the liquid level d3 and stopped at a position d4 corresponding to a predetermined depth of penetration.
[0030]
(Operation effect 3)
As described above, even when the liquid level detection circuit 5 detects a contact signal as if the probe 1 is in contact with the liquid level due to extraneous noise or static electricity of the container 4, the sample of the probe 1 is used. A stop signal is sent to the driving means 3 at the same time as the contact signal is detected in order to prevent the depth of penetration into the unnecessarily large. And since the tip of the nozzle is submerged to the correct depth, it is possible to prevent empty suction.
Further, according to the third embodiment in which such movement is performed, even if the position of the liquid level is erroneously detected due to the operation environment, the container 4 to be used, etc., this is accurately recognized and immediately retried. To detect the true liquid level accurately.
[0031]
It should be noted that malfunction of the liquid level detection circuit 5 and the like due to external noise may be prevented by the conventional shield technology, etc., but in the present invention, even if the liquid level is erroneously detected as a malfunction due to such noise, It can be automatically executed in a series of sequences until the true liquid level is correctly detected.
Therefore, the liquid level detection device as in this example is particularly suitable for use in an environment where external noise is likely to occur or when a liquid or container where static electricity is likely to be generated is used.
[0032]
According to the plurality of embodiments described above, the following operational advantages can also be obtained.
(A) Even if the probe detects a liquid level incorrectly, a series of operations in which the probe descends from the upper point and performs dispensing operations can be performed within a predetermined time of one cycle of analysis, improving efficiency. Contribute to.
(B) Even if the probe is operated at high speed, the amount of protrusion below the liquid level is not increased, and countermeasures against bubbles, static electricity, noise, etc. can be taken.
(C) As a result, the contamination of the specimen can be minimized.
(D) Moreover, the reagent to be used and especially a sample are not wasted.
[0033]
(Other variations)
In addition to the above-described embodiments, the present invention can be variously modified without departing from the gist of the present invention. For example, the shape and function of each part of the apparatus related to the exemplified liquid level detection method can be variously changed as necessary, and can be appropriately combined with others. It can be applied to contact-type liquid level detection methods (for example, air, ultrasonic vibration, etc.) other than electrical detection, and can also be applied to an apparatus that dispenses while replacing an insulating disposable tip at the probe tip. Also, a liquid level detection rod separate from the probe may be employed for both air bubbles and static electricity.
[0034]
In addition, with regard to the configuration in which bubbles or static electricity disappears by contact with the probe, if the contact signal is obtained again after returning the probe to the liquid level detection position, bubbles, static electricity, etc. It is preferable in that accurate liquid level detection can be performed even when the liquid level is extremely close to the liquid level.
Also, if the probe has a configuration that can discharge air, return to the liquid level detection height immediately after the detection signal, taking into account the minute case that bubbles do not disappear even if the probe contacts. Therefore, it may be possible to efficiently obtain only the true liquid level detection signal by discharging air and pushing the microbubbles away by the wind pressure. In this case, if the liquid level is detected by changing the discharge pressure of air, it is not necessary to raise the probe tip to the liquid level detection height again.
[0035]
Further, the combination of the liquid level detection device according to the present invention and the technology in other fields, the liquid to be used and the container for storing the liquid are not limited to the exemplified reagents and test tubes, but various liquids, microplates, cuvettes, petri dishes. Any desired one can be used. In addition to the case of sucking a liquid, the present invention can be applied to a case where a reagent (or sample) or the like is added to a reaction container in which a sample (or reagent) or the like is already contained by dispensing or the like. Is also applicable.
[0036]
Although the present invention has been described based on the embodiments and modifications, the present invention includes the following inventions.
[1] A predetermined contact signal indicating that a suction means for sucking the liquid or adding a desired liquid to a storage container for storing the predetermined liquid, and that the tip of the liquid transfer means has contacted the surface of the liquid Detecting means for detecting that the liquid is separated from the liquid by a predetermined detachment signal; and lowering the tip of the liquid transfer means into the container and recognizing the contact signal; Determination means for determining whether or not the separation signal is detected before liquid is transferred,
When the detection means detects the contact signal, and when the determination means determines that the separation signal is detected before the liquid transfer means is shifted to a liquid transfer operation by a predetermined drive means, Provided is a liquid level detecting device characterized in that the liquid transfer means is lowered again by a driving means to detect a true liquid level.
[0037]
[2] Even when the liquid transfer means erroneously detects the liquid level, the liquid transfer means descends from a preset upper point, detects a correct liquid level, and then performs a series of operations up to the dispensing operation. The liquid level detection apparatus according to [1], wherein control is performed so that the analysis is performed within a predetermined time in one cycle of analysis.
[3] The determination unit detects the contact signal when the time from when the contact signal is detected by the detection unit to when the separation signal is detected is shorter than the time required for the liquid transfer unit to stop. The liquid level detection device according to [1], wherein the determined position is determined not to be a true liquid level.
[0038]
In addition, the following inventions are also included.
[A] a sampling probe for sensing contact with a sample or reagent in a predetermined container and transferring or discharging liquid;
Driving means for driving the probe to move it to a desired position;
A liquid level detection sensor for detecting by a contact signal indicating that the probe has come into contact with the sample or reagent, and for detecting by a separation signal indicating that the probe has been separated from the sample or reagent;
Determining means for lowering the probe into the container, detecting the contact signal, and determining whether the separation signal is detected before the probe sucks the sample or reagent;
Comprising
Even if the liquid level detection sensor detects a contact signal and the probe is stopped or braked by the driving means, the separation level signal is detected by the liquid level detection sensor before the probe is aspirated. A liquid level detection method for an automatic analyzer, wherein when the determination is made, the probe is re-driven by the drive and the true liquid level is detected.
[0039]
[B] A time measuring means for time measurement is further provided,
The time measured by the time measuring means after the probe is in contact with the sample or the reagent and the liquid level detecting means detects the contact signal until the probe is separated from the sample or the reagent and the separation signal is detected. In addition, the liquid level detection method according to [A], wherein the measured time is compared with a predetermined time that does not affect a series of analysis sequences.
[C] The determination condition regarding the true liquid level position which is used as a reference by the determination unit is as follows:
In the case where the time from when the contact signal is detected by the detection means until the separation signal is detected is shorter than the time required for the probe to stop, the position where the contact signal is detected is the true liquid level. The liquid level detection method according to [A], characterized in that it is not determined.
[0040]
[D] Even if the probe erroneously detects the liquid level, a series of analysis operations until the probe descends from a preset upper point and performs a desired dispensing operation is performed in one cycle of this analysis. The liquid level detection method according to [A], wherein control is performed so as to be performed within a predetermined time.
[E] The determination means calculates the stop time of the probe from the rate of the pulse signal generated by the drive means at the time of lowering again, and issues a stop signal to the drive means, whereby the probe is sent to the sample or reagent. The liquid level detection method according to [A], wherein the depth of penetration is controlled to be constant.
[0041]
【The invention's effect】
As described above, according to the liquid level detection device of the present invention, as described based on a plurality of embodiment examples and modifications, even if the liquid level is erroneously detected due to external noise, static electricity, bubbles, etc., the erroneous analysis procedure is used. It is possible to provide a liquid level detection method in which a series of dispensing operations can be performed within one cycle of analysis without being affected.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram showing a configuration of a liquid level detection device as an embodiment of the present invention.
FIG. 2 shows the positional relationship between the liquid container and the probe according to the first embodiment of the present invention,
(a) is an explanatory view showing the case where the probe tip is in contact with bubbles generated on the liquid surface,
(b) is explanatory drawing which shows the case where it reaches | attains the detection position of a liquid level further through this bubble.
FIG. 3 is a graph showing a change in a pulse signal generated by a sensor when the probe of the liquid level detection device according to the first embodiment is used for liquid level detection.
FIG. 4 is a graph showing a change in a pulse signal generated by a sensor that is erroneously detected when the probe of the liquid level detection device according to the second embodiment of the present invention is used for liquid level detection.
FIG. 5 shows the positional relationship between the liquid container and the probe according to the second embodiment,
(a) is an explanatory view showing the position of the probe tip when erroneously detecting due to the influence of static electricity or the like,
(b) is explanatory drawing which shows the case where it reaches | attains the detection position of a liquid level further after that.
[Explanation of symbols]
1 ... probe (means also serving as a suction means such as a dispensing nozzle),
2 ... arm,
3 ... Driving means,
4 ... Liquid container,
5 ... Liquid level detection circuit (liquid level detection means),
6: Determination means,
7: Sensor (means included in the liquid level detection means),
10 ... Liquid level detection device (device also serving as an analysis device),
20 ... Liquid (sample, reagent, etc.),
21 ... Bubbles, bubbles.

Claims (2)

所定の液体を収容する収容容器に対して該液体を吸引するか所望の液体を添加する液体移送手段と、
前記液体移送手段の先端が該液体の表面に接触したことを所定の接触信号により検知するとともに、該液体から離れたことを所定の離脱信号により検知する検知手段と、
前記液体移送手段の先端を前記容器内に下降させ、前記接触信号が検知された後、該先端から該液体を液体移送する前に前記離脱信号が検知されたか否かを判定する判定手段と、を具備し、
前記検知手段により前記接触信号が検知された後、所定の駆動手段によって前記液体移送手段が液体移送動作に移行させる前に前記離脱信号が検知され、かつ、前記検知手段により接触信号が検知されてから離脱信号が検出されるまでの時間が、前記液体移送手段が停止に要する時間よりも短い場合に、前記判定手段は、前記接触信号が検知された位置は真の液面でないと判定することを特徴とする液面検知装置。
A liquid transfer means for sucking the liquid or adding a desired liquid to a storage container for storing a predetermined liquid;
Detecting means for detecting that the tip of the liquid transfer means is in contact with the surface of the liquid by a predetermined contact signal, and detecting by means of a predetermined separation signal that the tip of the liquid transfer means is separated from the liquid;
Determining means for lowering the tip of the liquid transfer means into the container and determining whether the separation signal is detected before the liquid is transferred from the tip after the contact signal is detected; Comprising
After the contact signal is detected by the detection means, the separation signal is detected by the predetermined drive means before the liquid transfer means shifts to the liquid transfer operation , and the contact signal is detected by the detection means. When the time until the separation signal is detected is shorter than the time required for the liquid transfer means to stop, the determination means determines that the position where the contact signal is detected is not a true liquid level. A liquid level detection device characterized by
前記液体移送手段が液面を誤検知した場合でも、前記液体移送手段があらかじめ設定された上点から下降して正しい液面を検知後、液体移送動作までを行う一連の動作を、分析の1サイクル中の定められた時間内に行うように制御することを特徴とする請求項1に記載の液面検知装置。  Even when the liquid transfer means erroneously detects the liquid level, a series of operations up to the liquid transfer operation after the liquid transfer means descends from the preset upper point and detects the correct liquid level is analyzed. The liquid level detection device according to claim 1, wherein the liquid level detection device is controlled so as to be performed within a predetermined time in the cycle.
JP7450998A 1998-03-23 1998-03-23 Liquid level detector Expired - Lifetime JP3907819B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7450998A JP3907819B2 (en) 1998-03-23 1998-03-23 Liquid level detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7450998A JP3907819B2 (en) 1998-03-23 1998-03-23 Liquid level detector

Publications (2)

Publication Number Publication Date
JPH11271328A JPH11271328A (en) 1999-10-08
JP3907819B2 true JP3907819B2 (en) 2007-04-18

Family

ID=13549377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7450998A Expired - Lifetime JP3907819B2 (en) 1998-03-23 1998-03-23 Liquid level detector

Country Status (1)

Country Link
JP (1) JP3907819B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4677076B2 (en) * 2000-04-19 2011-04-27 アークレイ株式会社 Liquid level detector
JP3674503B2 (en) 2000-11-28 2005-07-20 株式会社日立製作所 Automatic analyzer and liquid level detection method of automatic analyzer
JP3742580B2 (en) * 2001-04-11 2006-02-08 株式会社堀場製作所 Automatic urine storage test device
JP2008070264A (en) * 2006-09-14 2008-03-27 Aloka Co Ltd Dispenser and control method of falling operation of nozzle of dispenser
JP5096238B2 (en) * 2008-06-18 2012-12-12 株式会社堀場製作所 Liquid suction device
JP5111328B2 (en) * 2008-10-17 2013-01-09 株式会社日立ハイテクノロジーズ Automatic analyzer
JP2012173222A (en) * 2011-02-23 2012-09-10 Toshiba Corp Automatic analyzer
JP5941692B2 (en) * 2012-02-13 2016-06-29 株式会社日立ハイテクノロジーズ Automatic analyzer
JP6554301B2 (en) * 2015-03-27 2019-07-31 古野電気株式会社 Dispensing device, automatic analyzer and dispensing method
CN107345828B (en) * 2017-07-31 2019-12-06 迈克医疗电子有限公司 Liquid level detection method, device and system
CN109030807A (en) * 2018-08-09 2018-12-18 苏州长光华医生物医学工程有限公司 The detection system and method for needle are blocked up suitable for cleaning separation function
CN109556484A (en) * 2018-12-30 2019-04-02 深圳华侨城文化旅游科技股份有限公司 A kind of mobile method and system in place of detection object
CN113503937B (en) * 2021-06-30 2023-04-28 湖北金禄科技有限公司 Liquid medicine liquid level monitoring method and liquid medicine quantitative adding and placing device

Also Published As

Publication number Publication date
JPH11271328A (en) 1999-10-08

Similar Documents

Publication Publication Date Title
TWI422801B (en) Method of detecting dispensed quantity and liquid draw monitoring type dispensing device
JP4966913B2 (en) Liquid dispensing device
JP3907819B2 (en) Liquid level detector
JP6280777B2 (en) Analysis device and liquid level detection method in analysis device
JP3674503B2 (en) Automatic analyzer and liquid level detection method of automatic analyzer
US11422143B2 (en) Sample measuring apparatus and sample measuring method
JP3700402B2 (en) Method for detecting clogged suction channel or insufficient suction volume, sample liquid suction device, and dispensing device
JP2004271266A (en) Dispensing device and autoanalyzer using the same
WO2018055929A1 (en) Automatic analysis device
JP5941692B2 (en) Automatic analyzer
JP3868102B2 (en) Dispensing device and analyzer comprising this dispensing device as a component
JP3660148B2 (en) Automatic analyzer
JP4509473B2 (en) Liquid dispensing method and apparatus
JP3120180U (en) Automatic analyzer
JP2010286324A (en) Dispensing system, automatic analysis system, and dispensing method
JP3212130B2 (en) Liquid dispensing method and liquid dispensing device
JPH1048220A (en) Dispenser
JP7339142B2 (en) automatic analyzer
JP3694755B2 (en) Pipetting method, pipetting device, and storage medium
JPH02243960A (en) System for operating dispenser of analysis apparatus
JPH08285661A (en) Liquid level detecting device
JP4337444B2 (en) Detection method of clogging of suction channel, sample liquid suction device, and biological component measurement system
JPH05164764A (en) Sampling system for automatic chemical analysis device
JP2004177308A (en) Method for judging attraction state and automatic chemical analyzer
JPH01216268A (en) Liquid dispenser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term