WO2010150502A1 - Automatic analysis device - Google Patents

Automatic analysis device Download PDF

Info

Publication number
WO2010150502A1
WO2010150502A1 PCT/JP2010/004098 JP2010004098W WO2010150502A1 WO 2010150502 A1 WO2010150502 A1 WO 2010150502A1 JP 2010004098 W JP2010004098 W JP 2010004098W WO 2010150502 A1 WO2010150502 A1 WO 2010150502A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
specimen
dispensing
aspirated
viscosity
Prior art date
Application number
PCT/JP2010/004098
Other languages
French (fr)
Japanese (ja)
Inventor
黒田顕久
Original Assignee
ベックマン コールター, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ベックマン コールター, インコーポレイテッド filed Critical ベックマン コールター, インコーポレイテッド
Publication of WO2010150502A1 publication Critical patent/WO2010150502A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing

Definitions

  • the present invention relates to an automatic analyzer that analyzes a sample by dispensing a sample and a reagent into a container and measuring the absorbance of a reaction solution generated in the container.
  • HbA1c blood glucose and hemoglobin A1c in blood have been used as a diagnostic marker for diabetes.
  • a blood sample collected from a subject is separated into plasma and blood cells by centrifugation, The blood glucose level is measured from the sample containing the component.
  • the HbA1c value is measured from a specimen containing blood cell components.
  • the amount of a sample dispensed by an analysis item for analyzing plasma or serum components is reduced to about 1 ⁇ L. For this reason, in order to dispense a sample with high accuracy, it is necessary to reduce the inner diameter of the tip of the dispensing nozzle to about 0.3 mm.
  • the blood cell components are higher in viscosity than plasma or serum components, so that blood cell components can be aspirated. In some cases, the components become droplets at the tip of the dispensing nozzle and cannot be discharged with high accuracy.
  • the dispensing nozzle with the tip inner diameter thicker than the blood cell components is used depending on each analysis item.
  • various dispensing methods have been proposed.
  • dispensing is preset for each liquid level position and analysis item in the sample container detected by the liquid level detection means.
  • Patent Document 2 plasma or serum components and blood cell components are set in advance for each liquid level position in the sample container detected by the liquid level detection means and each type of sample container using a common dispensing nozzle. Based on the penetration distance of the dispensing nozzle, calculate the descending distance that the dispensing nozzle descends from the liquid level, and lower the dispensing nozzle to the computed descending distance to aspirate the sample containing blood cell components and dispense A method is disclosed.
  • Patent Documents 1 and 2 described above the plasma or serum component and the blood cell component are presented as a method for separating the suction positions of the blood cell component and reliably sucking the blood cell component.
  • the problem that occurs when using a common dispensing nozzle is not solved.
  • a specimen containing blood cell components is discharged into a container, a specimen of a specimen is generated at the tip of the dispensing nozzle, so that a specified amount of specimen cannot be discharged into the container, and the analysis is highly accurate. In some cases, results could not be obtained.
  • Patent Document 3 when dispensing a low-viscosity sample such as serum or plasma component as a specimen, it is intended to prevent droplets from adhering to the tip of the dispensing nozzle by using contact with the liquid surface.
  • a highly viscous material such as a blood cell component and a low viscosity material such as a serum or plasma component are mixed in the same automatic analyzer. Therefore, there is a problem that dispensing according to the characteristics of each sample cannot be performed.
  • the present invention has been made in view of the above, and reliably uses a common dispensing nozzle for each component of plasma, serum, and blood cells, regardless of the components of the sample, so that the sample is reliably contained in a specified amount in the container.
  • An object of the present invention is to provide an automatic analyzer capable of discharging.
  • the sample pump is connected to the sample nozzle through a pipe line, and the sample is drawn from the sample container into the sample nozzle by sucking and discharging the sample pump.
  • automatic dispensing for analyzing the sample by measuring the absorbance of the reaction solution by reacting the sample with the reagent in the container
  • acquisition means for acquiring sample information of the aspirated sample and analysis item information set in advance for the sample, and sample information and / or analysis item information acquired by the acquisition unit are also included.
  • a position control means for controlling a discharge position of the aspirated sample by the dispensing nozzle.
  • the automatic analyzer is the above invention, wherein the pressure detection means for detecting the pressure in the conduit when the sample is aspirated, and the temporal change of the pressure detected by the pressure detection means And calculating whether the viscosity of the aspirated sample calculated by the viscosity calculation unit is a dischargeable viscosity, based on Selection means for selecting, and when the determination means determines that the viscosity of the aspirated sample is a dischargeable viscosity, a selection means for selecting a discharge method for discharging the sample according to the viscosity of the aspirated sample; And the selecting means selects a submerged ejection method for ejecting the specimen in the liquid when the viscosity of the aspirated specimen exceeds a predetermined threshold.
  • the automatic analyzer according to the present invention further comprises liquid level calculation means for calculating the liquid level height of the liquid contained in the container according to the above invention, wherein the position control means is selected by the selection means.
  • the ejection position of the aspirated sample is controlled according to the ejection method performed and the liquid level calculated by the liquid level calculation means.
  • the analysis item is an item for analyzing a sample containing a blood cell component.
  • the present invention is an automatic analyzer for analyzing a sample
  • the automatic analyzer connects a dispensing pump and a dispensing nozzle by a pipe line, and operates the suction and discharge of the dispensing pump.
  • a dispensing means for aspirating the specimen from the specimen container into the dispensing nozzle, discharging the aspirated specimen into the container for dispensing, a reaction means for reacting the aspirated specimen and a reagent, Measurement means for measuring the absorbance of the reaction solution obtained by the reaction means, analysis means for analyzing the sample, sample information of the aspirated sample, and information on analysis items set in advance for the sample are acquired.
  • An acquisition unit and a position control unit that controls a discharge position of the aspirated sample by the dispensing nozzle based on the sample information and / or the analysis item information acquired by the acquisition unit.
  • the automatic analyzer of the present invention includes a pressure detection unit that detects a pressure in the pipe line when the sample is aspirated, and a time of the pressure detected by the pressure detection unit. Based on the change, viscosity calculation means for calculating the viscosity of the aspirated specimen as the specimen information, and whether or not the viscosity of the aspirated specimen calculated by the viscosity calculation means is a dischargeable viscosity.
  • Determining means for determining, and selecting means for selecting a discharge method for discharging the sample according to the viscosity of the aspirated sample when the determining means determines that the viscosity of the aspirated sample is a dischargeable viscosity;
  • the selection means selects a submerged ejection method for ejecting the specimen in liquid when the viscosity of the aspirated specimen exceeds a predetermined threshold.
  • the automatic analyzer of the present invention comprises a liquid level calculation means for calculating the liquid level height of the liquid contained in the container, and the position control means includes the selection means The ejection position of the aspirated sample is controlled in accordance with the selected ejection method and the liquid level calculated by the liquid level calculation means.
  • the analysis item is an item for analyzing a specimen containing a blood cell component.
  • the present invention connects a dispensing pump and a dispensing nozzle by a pipe line, and sucks and sucks a sample from the sample container into the dispensing nozzle by sucking and discharging the dispensing pump.
  • a method for controlling an automatic analyzer that comprises a dispensing device that discharges a dispensed sample into a container, dispenses the sample with the reagent in the container, measures the absorbance of the reaction solution, and analyzes the sample
  • the sample information acquired in the step of acquiring the sample information of the aspirated sample and the information of the analysis item set in advance for the sample, and the step of acquiring the information, and / or And a step of controlling a discharge position of the aspirated specimen by the dispensing nozzle based on the information of the analysis item.
  • the method of the present invention includes a step of detecting the pressure in the conduit when the sample is aspirated, and the time-dependent change in the detected pressure. Calculating the viscosity of the aspirated sample as information, determining whether the calculated viscosity of the aspirated sample is a dischargeable viscosity, and the viscosity of the aspirated sample in the determination Is a step of selecting a discharge method for discharging the sample according to the viscosity of the aspirated sample when the viscosity of the aspirated sample exceeds a predetermined threshold And a step of selecting an in-liquid discharge method for discharging the specimen in the liquid.
  • the step of calculating the liquid level height of the liquid contained in the container and the step of controlling the discharge position include the selected discharge method and the calculation And controlling the ejection position of the aspirated specimen according to the liquid level height.
  • the analysis item is an item for analyzing a specimen containing a blood cell component.
  • the present invention connects a dispensing pump and a dispensing nozzle by a pipe line, and sucks and sucks a sample from the sample container into the dispensing nozzle by sucking and discharging the dispensing pump.
  • a control device used in an automatic analyzer that discharges the dispensed specimen into a container and dispenses the specimen, reacts the specimen with the reagent in the container, measures the absorbance of the reaction solution, and analyzes the specimen
  • the control program is for implementing a method for controlling the automatic analyzer, and the method includes sample information of the aspirated sample and analysis items set in advance for the sample. And aspirating the sample by the dispensing nozzle based on the sample information and / or the analysis item information acquired in the information acquiring step and the information acquiring step.
  • Providing comprises control program and controlling the discharge position.
  • the program of the present invention includes any one or more of the above-described features of the automatic analyzer or the control method of the present invention.
  • the present invention connects a dispensing pump and a dispensing nozzle by a pipe line, and sucks and sucks a sample from the sample container into the dispensing nozzle by sucking and discharging the dispensing pump.
  • a control device used in an automatic analyzer that discharges the dispensed specimen into a container and dispenses the specimen, reacts the specimen with the reagent in the container, measures the absorbance of the reaction solution, and analyzes the specimen
  • a computer-readable recording medium on which a program is recorded wherein the control program is for implementing a method for controlling the automatic analyzer, and the method includes specimen information of the aspirated specimen and the specimen Obtaining the information on the analysis item set in advance for the sample information and / or the information on the analysis item obtained in the step of obtaining the information. DOO to provide encompassing recording medium, and controlling the discharge position of the specimens the suction by the dispensing nozzle.
  • the computer-readable recording medium of the present invention includes any one or more of the features of the automatic analyzer or the control method thereof of the present invention.
  • the automatic analyzer provides a discharge position of the sample sucked by the dispensing nozzle based on the sample information of the sample sucked by the dispensing device and / or the information of the analysis item set in advance for the sample.
  • FIG. 1 is a schematic diagram showing a configuration of an automatic analyzer according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing the configuration of the specimen dispensing mechanism and the position control unit.
  • FIG. 3 is a pressure change diagram when the dispensing nozzle sucks a specimen containing blood cell components.
  • FIG. 4 is an operation diagram showing an outline of the operation of the sample dispensing mechanism.
  • FIG. 5 is a flowchart showing an outline of the sample dispensing process by the position control unit.
  • FIG. 6 is a flowchart showing an outline of special dispensing processing by the position control unit.
  • FIG. 1 is a schematic diagram showing a configuration of an automatic analyzer according to an embodiment of the present invention.
  • the automatic analyzer 1 according to the embodiment of the present invention dispenses a reagent and a sample into a reaction vessel 20, reacts them in the reaction vessel 20, and measures the absorbance of this reaction solution.
  • a measurement mechanism 2 and a control mechanism 3 that controls the entire automatic analyzer 1 including the measurement mechanism 2 and analyzes a measurement result in the measurement mechanism 2 are provided.
  • the automatic analyzer 1 automatically performs analysis of a plurality of samples by cooperation of these two mechanisms.
  • the measurement mechanism 2 includes a sample transport unit 11 that sequentially transports a sample rack 11b holding a plurality of sample containers 11a containing a sample such as blood or urine, in the direction of the arrow in the figure.
  • the sample dispensing mechanism 12 for aspirating the sample from the sample container 11a stopped at the sample aspirating position P1 on the sample transport unit 11 and discharging the sample to the reaction container 20 for dispensing, and the portion in contact with the sample are washed.
  • the reagent dispensing mechanism 15 that sucks the second reagent and discharges the reagent into the reaction container 20 to dispense
  • the stirring unit 16 that stirs the reagent dispensed in the reaction container 20 and the sample
  • the reaction tank 19 which conveys to a predetermined position.
  • a recording medium storing identification information for identifying a sample accommodated therein is affixed to the sample container 11a and the sample rack 11b (not shown). Therefore, the sample transport unit 11 is provided with a sample container reading unit 11c that reads a recording medium attached to the sample container 11a and the sample rack 11b.
  • the control mechanism 3 is realized by a CPU or the like, and is realized by a control unit 31 that controls processing and operation of each unit of the automatic analyzer 1, a keyboard, a mouse, a touch panel having an input / output function, and the like, and is necessary for analysis of a sample.
  • the input unit 32 to which detailed information and the operation information of the automatic analyzer 1 are input, the analysis unit 33 for analyzing the component of the sample based on the measurement result of the absorbance measured by the photometry unit 17, and the aspirated sample are discharged.
  • the position control unit 34 for controlling the discharge position of the aspirated sample in the vertical direction in the reaction container 20 and the operation of the sample dispensing mechanism 12 and a hard disk, a memory, and the like are realized.
  • the storage unit 35 that stores various information including information related to various programs and specimen analysis related to operation, and a display, printer, etc. Is provided with an output unit 36 for outputting information concerning the sample analysis, the.
  • the reagent dispensing mechanism 15 dispenses the first reagent from the reagent container 14a of the reagent container 14 with respect to the plurality of reaction containers 20 that are sequentially transferred on the reaction tank 19.
  • the sample dispensing mechanism 12 dispenses the sample from the sample container 11a stopped at the sample suction position P1.
  • the reagent dispensing mechanism 15 dispenses the second reagent from the reagent container 14 a of the reagent container 14 into the reaction container 20.
  • the photometry unit 17 measures the absorbance of the reaction solution in a state in which the first reagent, the sample, and the second reagent are reacted, and the analysis unit 33 analyzes based on the measurement result to analyze the component of the sample. Is done automatically. Thereafter, the cleaning unit 18 cleans the reaction vessel 20 being conveyed after the measurement by the photometry unit 17 is completed, and reuses the reaction vessel 20. Thereafter, the washed reaction vessel 20 is reused to perform a plurality of analysis processes.
  • FIG. 2 is a schematic diagram showing the configuration of the specimen dispensing mechanism 12 and the position control unit 34.
  • the sample dispensing mechanism 12 has a dispensing nozzle 41, a dispensing pump 46, and a washing water pump 50, as shown in FIG.
  • the dispensing nozzle 41 is made of a rod-like tube made of stainless steel or the like, and is attached to the arm 42.
  • the arm 42 operates by driving the drive unit 43, and can freely move up and down in the vertical direction and rotate around the vertical axis passing through the connection unit 44 via the connection unit 44 that connects the arm 42 and the drive unit 43. Do.
  • the drive unit 43 drives the arm 42 under the control of the position control unit 34 to lower the tip of the dispensing nozzle 41 into the sample container 11 a or the reaction container 20.
  • the dispensing pump 46 is realized by a syringe pump, and is connected to a dispensing nozzle 41, a pressure sensor 48 for detecting the pressure in the piping 45, and an electromagnetic valve 49 for adjusting the flow rate of the washing water Wa via the piping 45.
  • the dispensing pump 46 aspirates the sample into the dispensing nozzle 41 by the reciprocating movement of the plunger 46 a by the plunger driving unit 47, and discharges the sucked sample to the reaction container 20 to perform dispensing.
  • the plunger driver 47 adjusts the amount of sample dispensed by driving the plunger 46 a under the control of the position controller 34.
  • Another pipe 52 is connected to the electromagnetic valve 49, and a washing water pump 50 that supplies the washing water Wa is connected to the other end of the pipe 52. Further, another pipe 53 is connected to the cleaning water pump 50, and the other end of the pipe 53 reaches the cleaning water tank 51 that stores the cleaning water Wa.
  • the pressure sensor 48 detects the pressure of the washing water Wa in the pipe 45 and outputs it as an analog pressure signal to the amplification circuit 48a.
  • the amplification circuit 48a amplifies the analog pressure signal output from the pressure sensor 48, and outputs the amplified pressure signal to the processing unit 48b.
  • the processing unit 48b is realized by an A / D converter, converts the analog pressure signal input from the amplification circuit 48a into a digital signal, processes it, and outputs it to the detection unit 48c.
  • the detection unit 48 c detects the pressure for a predetermined time in the pressure signal converted by the processing unit 48 b, for example, the pressure at the time when the sample has been sucked into the dispensing nozzle 41, and the storage unit 35 via the control unit 31. Output to.
  • the washing water pump 50 sucks up the washing water Wa stored in the washing water tank 51 and supplies the washing water Wa into the pipe 45 through an electromagnetic valve 49 provided between the washing water pump 50 and the pressure sensor 48.
  • the electromagnetic valve 49 is opened when the suctioned wash water Wa is supplied into the pipe 45 under the control of the position control unit 34, and the dispensing nozzle 41 sucks the sample by the dispensing pump 46. In case it is closed.
  • the washing water Wa is an incompressible fluid such as deionized ion exchange water or distilled water.
  • the position control unit 34 includes an acquisition unit 34a, a viscosity calculation unit 34b, a determination unit 34c, a selection unit 34d, a liquid level calculation unit 34e, and a drive control unit 34f.
  • the acquisition unit 34 a stores, via the control unit 31, the sample information of the sample sucked into the dispensing nozzle 41 by the sample dispensing mechanism 12 and the analysis item information set in advance for the sucked sample from the storage unit 35. get. Specifically, when the sample analysis item set based on the sample identification information read by the sample container reading unit 11c is acquired from the storage unit 35 and / or when the sample is aspirated into the dispensing nozzle 41 The specimen information of various specimens generated in the above is acquired from the storage unit 35.
  • the viscosity calculating unit 34b acquires the pressure detected by the pressure sensor 48 when the sample dispensing mechanism 12 sucks the sample into the dispensing nozzle 41 via the control unit 31, and changes in the acquired pressure over time. Calculate the viscosity of the aspirated specimen based on Specifically, the viscosity of the aspirated sample is calculated with reference to a calibration curve indicating the relationship between the change in the output voltage corresponding to the pressure detected by the pressure sensor 48 and the viscosity of the sample. The calibration curve is stored in the storage unit 35.
  • the determination unit 34c determines whether or not the viscosity of the sample sucked into the dispensing nozzle 41 calculated by the viscosity calculation unit 34b is a dischargeable viscosity. When the viscosity of the sample sucked into the dispensing nozzle 41 calculated by the viscosity calculation unit 34b is a viscosity that cannot be discharged, the determination unit 34c determines that the viscosity of the sucked sample is abnormal.
  • the selection unit 34d discharges the sample according to the viscosity of the sample sucked into the dispensing nozzle 41. Select the discharge method.
  • the selection unit 34d selects an in-liquid discharge method for discharging the sample in the liquid when the viscosity of the sample sucked into the dispensing nozzle 41 exceeds a predetermined threshold. Note that the selection unit 34d may select a discharge method for discharging the sample according to the information of the analysis items set in advance for the sample sucked into the dispensing nozzle 41.
  • the liquid level calculating unit 34e calculates the liquid level of the liquid stored in the reaction vessel 20. Specifically, the liquid level calculation unit 34e supplies the liquid amount of the first reagent dispensed into the reaction container 20 corresponding to the analysis item of the sample sucked into the dispensing nozzle 41 via the control unit 31. Is obtained from the storage unit 35, and the liquid level of the liquid stored in the reaction vessel 20 is calculated based on the obtained liquid amount and the shape of the reaction vessel 20.
  • the drive control unit 34f discharges the sample aspirated by the dispensing nozzle 41 based on the sample information of the aspirated sample acquired by the acquisition unit 34a and / or the information of the analysis item set in advance for the aspirated sample. Control the position.
  • the ejection position of the aspirated specimen is determined by the specimen ejection method. Therefore, the drive control unit 34f uses the dispensing nozzle 41 by using at least one of the sample information of the sample acquired by the acquiring unit 34a, the information on the analysis items of the sample, and the ejection method selected by the selecting unit 34d. The ejection position of the aspirated sample is controlled.
  • the drive control unit 34f drives the drive unit 43 to a dispensing nozzle up to a position below the liquid level stored in the reaction vessel 20.
  • the tip of 41 is lowered and the aspirated specimen is discharged.
  • the drive control unit 34f drives the drive unit 43 so that the tip of the dispensing nozzle 41 reaches a position above the liquid level stored in the reaction vessel 20. Is lowered to discharge the aspirated sample.
  • a polygonal line L1 indicates a pressure change of the washing water Wa in the pipe 45 detected by the pressure sensor 48 when a specimen containing at least a blood cell component is sucked into the dispensing nozzle 41.
  • the horizontal axis indicates time
  • the vertical axis indicates the output voltage of the pressure signal detected by the pressure sensor 48.
  • Time t1 indicates the start of sample aspiration
  • time t2 indicates the end of sample aspiration.
  • the pressure value of the washing water Wa in the pipe 45 becomes a negative pressure state.
  • This pressure value changes depending on the viscosity of the aspirated specimen. Specifically, the higher the viscosity of the aspirated specimen, the greater the negative pressure in the pressure in the pipe 45, so the output voltage detected by the pressure sensor 48 is detected lower.
  • a dischargeable viscosity is set based on the relationship between the output voltage detected by the pressure sensor 48 and the viscosity of the sample, and a discharge method for discharging the sample according to the viscosity of the sample is used.
  • FIG. 4 is a diagram showing an outline of the operation of the specimen dispensing mechanism 12.
  • the operation of the sample dispensing mechanism 12 when dispensing a sample containing at least a blood cell component will be described.
  • the sample dispensing mechanism 12 lowers the dispensing nozzle 41 into the sample container 11a containing the sample separated into the plasma layer R1 and the blood cell layer R2 (FIG. 4A).
  • the aspirating position by the dispensing nozzle 41 is stopped at the plasma layer R1, but the aspirating position by the dispensing nozzle 41 is set according to the analysis item, the liquid amount, the type, and the like of the sample.
  • the sample dispensing mechanism 12 sucks the sample into the dispensing nozzle 41 (FIG. 4B).
  • the pressure sensor 48 detects a pressure change in the pipe 45 and outputs it to the storage unit 35 via the control unit 31.
  • the specimen dispensing mechanism 12 raises the dispensing nozzle 41 (FIG. 4C) and transfers the dispensing nozzle 41 onto the reaction vessel 20.
  • the sample dispensing mechanism 12 accommodates the dispensing nozzle 41 in the reaction container 20 when the viscosity of the aspirated sample is within the range of the viscosity of the sample that can be dispensed in the air when the viscosity of the sample is a dischargeable viscosity.
  • the sample is lowered to above the liquid level of the reagent La (FIG. 4D), and the sample sucked into the dispensing nozzle 41 is discharged into the reaction container 20 (FIG. 4E).
  • the sucked sample since the sucked sample has a low viscosity and can be discharged in the air, no droplet is generated at the tip of the dispensing nozzle 41, and the sucked sample can be reliably discharged in a specified amount.
  • this discharge is the same as the discharge method in a normal analysis item. Thereafter, the specimen dispensing mechanism 12 raises the dispensing nozzle 41 from the inside of the reaction container 20 (FIG. 4 (f)), transfers the dispensing nozzle 41 to the cleaning unit 13, and then cleans the dispensing nozzle 41 (FIG. 4). 4 (g)), the sample dispensing process is terminated.
  • the sample dispensing mechanism 12 is within the range of the viscosity of the sample that can be dispensed in the liquid. Is lowered so as to sink into the reagent La accommodated in the reaction container 20 (FIG. 4 (h)), and the aspirated specimen is discharged into the reagent La (FIG. 4 (i)).
  • the droplet S generated at the tip of the dispensing nozzle 41 can be removed by using the adsorption force of the reagent La, and can be reliably discharged into the reaction container 20 even if the viscosity of the specimen is high. it can.
  • this specimen discharge method is a liquid discharge method.
  • the specimen dispensing mechanism 12 raises the dispensing nozzle 41 from the reaction container 20 (FIG. 4 (j)), and after the dispensing nozzle 41 is transferred to the cleaning unit 13, the dispensing nozzle 41 is washed (FIG. 4). 4 (g)), the sample dispensing process is terminated.
  • the sample dispensing mechanism 12 dispenses when the viscosity of the aspirated sample is within the range of the viscosity of the sample that can be dispensed in the air and the reaction container 20 is empty when the viscosity of the aspirated sample is dischargeable.
  • the tip of the nozzle 41 is lowered to the vicinity of the bottom surface in the reaction container 20 (FIG. 4 (k)), and the aspirated specimen is discharged (FIG. 4 (l)).
  • the droplet S generated at the tip of the dispensing nozzle 41 can be removed by adsorbing the droplet S generated at the tip of the dispensing nozzle 41 to the bottom surface in the reaction container 20, and the viscosity of the specimen can be removed.
  • This specimen discharge method is a bottom surface discharge method. Thereafter, the specimen dispensing mechanism 12 raises the dispensing nozzle 41 from the inside of the reaction container 20 (FIG. 4 (m)), transfers the dispensing nozzle 41 to the cleaning unit 13, and then cleans the dispensing nozzle 41 (FIG. 4). 4 (g)), the sample dispensing process is terminated.
  • the sample dispensing mechanism 12 lowers the tip of the dispensing nozzle 41 into the reaction container 20 (FIG. 4 (n)), and removes the aspirated sample.
  • a droplet S is generated by the sample sucked at the tip of the dispensing nozzle 41 (FIG. 4 (o)).
  • the specimen cannot be dispensed in a prescribed amount into the reaction vessel 20 by the droplet S generated at the tip of the dispensing nozzle 41 (FIG. 4 (p)).
  • the sample dispensing mechanism 12 transfers the dispensing nozzle 41 to the cleaning unit 13 and cleans the dispensing nozzle 41 (FIG. 4G). The sample dispensing process is terminated.
  • the position control unit 34 determines whether there is a newly received sample via the control unit 31 (step S ⁇ b> 101). Specifically, when the sample container 11a crosses the sample container reading unit 11c, information obtained by the sample container reading unit 11c reading information pasted on the sample container 11a is stored in the storage unit 35, or an operation is performed. Based on the information input to the input unit 32 by the person, it is determined whether or not there is a newly received sample. When it is determined that there is no newly received sample (step S101: No), the determination process in step S101 is repeated. On the other hand, when there is a newly received sample (step S101: Yes), the acquisition unit 34a, via the control unit 31, sets the type of the newly received sample and the analysis item set for this sample. Information is acquired from the storage unit 35 (step S102).
  • the position control unit 34 determines whether or not the analysis item information set for the sample acquired by the acquisition unit 34a is an analysis item of the sample including a blood cell component, for example, HbA1c (step S103). . If the analysis item is not an analysis item of a sample containing a blood cell component (step S103: No), the position control unit 34 drives the sample dispensing mechanism 12 to execute a normal dispensing process (step S104). On the other hand, when the analysis item is a sample including a blood cell component (step S103: Yes), the position control unit 34 drives the sample dispensing mechanism 12 to execute a special dispensing process described later (step S105).
  • step S106 determines whether or not there is an analysis end instruction from the control unit 31 (step S106). If there is no instruction to end the analysis (step S106: No), the process proceeds to step S101, and the above-described processing is repeated. On the other hand, when there is an instruction to end the analysis (step S106: Yes), this process ends.
  • the drive control unit 34f drives the drive unit 43 and the plunger drive unit 47 to suck the sample stored in the sample container 11a stationary at the sample suction position into the dispensing nozzle 41 (step S201).
  • the viscosity calculating unit 34b acquires the output voltage in the pressure change waveform of the washing water Wa in the pipe 45 detected by the pressure sensor 48 when the sample is sucked into the dispensing nozzle 41 from the storage unit 35 (step S202). ), The viscosity of the aspirated specimen is calculated based on the time change of the output voltage in the acquired pressure change waveform (step S203).
  • the determination unit 34c determines whether the viscosity of the aspirated sample is a dischargeable viscosity (step S204).
  • the suctioned specimen has a dischargeable viscosity (step S204: Yes)
  • the process proceeds to step S206.
  • the position control unit 34 performs an abnormality process (step S205). Specifically, the drive control unit 34f drives the drive unit 43 and the plunger drive unit 47 to discharge the aspirated specimen to the cleaning unit 13 and cleans the dispensing nozzle 41.
  • the position control unit 34 causes the output unit 36 to output information indicating that an abnormality has occurred in the viscosity of the aspirated sample via the control unit 31.
  • the liquid level calculation unit 34e calculates the liquid level of the liquid in the reaction container 20 to be discharged (step S206). Specifically, the amount of the first reagent dispensed into the reaction container 20 and the shape of the reaction container 20 that discharges the aspirated specimen corresponding to the type or analysis item of the specimen acquired by the acquisition unit 34a. Based on this, the liquid level height of the liquid stored in the reaction vessel 20 is calculated.
  • the selection unit 34d determines whether or not the viscosity of the aspirated sample is within the range of viscosity that can be discharged in the air (step S207). When the viscosity of the aspirated specimen is outside the range of viscosity that can be discharged in the air (step S207: No), the position controller 34 determines the reaction container 20 based on the liquid level calculated by the liquid level calculator 34e. It is determined whether or not the reagent is dispensed in the inside (step S208). When the reagent is not dispensed in the reaction container 20 (step S208: No), the selection unit 34d selects the bottom surface discharge method ((k) to (m) shown in FIG. 4), and the drive control unit 34f.
  • step S209 Drives the drive unit 43, lowers the tip of the dispensing nozzle 41 to the bottom surface in the reaction vessel 20 (step S209), and proceeds to step S212.
  • the selection unit 34d selects the submerged discharge method ((h) to (j) shown in FIG. 4) and drives it.
  • the controller 34f drives the drive unit 43 to lower the tip of the dispensing nozzle 41 to a position below the liquid level stored in the reaction container 20 (step S210), and the process proceeds to step S212.
  • step S207 when the viscosity of the aspirated specimen is within the range of the viscosity that can be discharged in the air (step S207: Yes), the selection unit 34d uses the air discharge method ((d) to (f) shown in FIG. )) Is selected, and the drive control unit 34f drives the drive unit 43 to lower the tip of the dispensing nozzle 41 to a position above the liquid level contained in the reaction vessel 20 (step S211). The process proceeds to S212.
  • the drive controller 34f drives the plunger driver 47 to discharge the sample sucked into the dispensing nozzle 41 into the reaction container 20 (step S212). Thereafter, the drive control unit 34f drives the drive unit 43, transfers the dispensing nozzle 41 to the cleaning unit 13, cleans the dispensing nozzle 41 (step S213), and ends the present process.
  • the sample when the sample is discharged into the reaction container 20 based on the information on the sample aspirated by the sample dispensing mechanism 12 and / or the analysis item set in advance for the aspirated sample.
  • the sample By controlling the discharge position of the injection nozzle 41, the sample is reliably discharged into the reaction container in a prescribed amount by using a common dispensing nozzle for each component of plasma, serum and blood cells, regardless of the component of the sample. be able to.
  • the ejection method of the aspirated specimen is selected based on the specimen information of the specimen aspirated into the dispensing nozzle 41.
  • the present invention is not limited to this, and the analysis item of the aspirated specimen is selected.
  • the specimen ejection method may be selected in accordance with the above information, for example, the information on the analysis item of the specimen including the blood cell component.
  • an in-liquid discharge method may be selected as an analysis item for analyzing a sample containing blood cell components.
  • the dispensed nozzle 41 when the aspirated sample is discharged into the reaction container 20, the dispensed nozzle 41 is lowered to the discharge position and the aspirated sample is discharged.
  • the sample may be discharged while the dispensing nozzle 41 is lowered or raised again from the discharge position after the dispensing nozzle 41 has been lowered to the discharge position in accordance with the analysis item and the amount of the aspirated sample.
  • the tip of the dispensing nozzle 41 when the sample sucked by the submerged discharge method is discharged into the reaction container 20, the tip of the dispensing nozzle 41 is lowered to a position below the liquid level in the reaction container 20.
  • a liquid level discharge method of discharging the aspirated specimen by bringing the tip of the dispensing nozzle 41 into contact with the liquid level in the reaction vessel 20 may be used. Thereby, the droplet S generated at the tip of the dispensing nozzle 41 can be removed by utilizing the adsorption force of the liquid stored in the reaction container 20.
  • the specimen containing the blood cell component is ejected.
  • the present invention is not limited to this, and ejection of the specimen that settles due to the difference in time until analysis, for example, red blood cells, white blood cells, or platelets
  • the present invention can also be applied to the discharge of a specimen including
  • the sample dispensing process is performed when the sample contained in the sample container 11a is aspirated and the aspirated sample is discharged into the reaction container 20.
  • the present invention is not limited to this, and the reagent container 14a is used.
  • the reagent dispensing process may be performed in which the reagent stored in the container is aspirated and the aspirated reagent is discharged into the reaction container 20.
  • the water may evaporate with time and the viscosity may increase. For this reason, the conventional automatic analyzer may not be able to dispense the reagent into the reaction container in a specified amount.
  • the dispensing nozzle 41 in the reagent dispensing mechanism 15 By controlling the position of the tip of the reagent, it is possible to reliably dispense the reagent in a specified amount.
  • the sample dispensing process is performed when the sample contained in the sample container 11a is aspirated and the aspirated sample is discharged into the reaction container 20.
  • the present invention is not limited to this, and the aspirated sample is used. Before being discharged into the reaction container 20, it may be once discharged and diluted in another container such as a dilution container, and the diluted specimen may be dispensed into the reaction container 20.
  • a control program for controlling processing executed by the automatic analyzer 1 is installed in the storage unit 35 (also shown in FIG. 2) of the control mechanism 3 shown in FIG.
  • the computer can function as part or all of the control mechanism 3 (FIG. 1, not shown in FIG. 2).
  • Such a control program may be installed in the memory before the computer is shipped, or may be installed in the memory after the computer is shipped.
  • the program may be installed in the computer memory by reading the program recorded in the recording medium, or the program downloaded via a network such as the Internet may be installed in the computer memory.
  • Any type of computer can be used as the computer. 5 and 6 described in detail above are not limited to being implemented by software (for example, a program.
  • the functions of the steps shown in FIGS. 5 and 6 are performed by hardware (for example, , Circuit, board, semiconductor chip) or a combination of software and hardware.
  • the dispensing device, the automatic analyzer, and the control method thereof according to the present invention are useful for an analyzer that analyzes a reaction product of a sample and a reagent, and in particular, in a container regardless of the components of the sample. It is suitable for the field where it is required to discharge the specimen in a specified amount.

Abstract

Provided is an automatic analysis device wherein by means of a shared dispensing nozzle, specified quantities of respective components of blood plasma, blood sera, and blood cells of a specimen can be accurately discharged into a reaction container, irrespective of the components of the specimen. As an embodiment of the above, there is disclosed an automatic analysis device that analyzes a specimen and that is equipped with a dispensing means wherein a dispensing pump and a dispensing nozzle are connected together by a pipeline, and wherein the aforementioned dispensing pump is caused to perform sucking and discharging operations, thereby sucking the aforementioned specimen from inside a specimen container into the above-mentioned dispensing nozzle, and wherein the specimen thus sucked is discharged into a container; a reaction means that reacts the sucked specimen with a reagent; a measuring means that measures the absorbance of the reaction liquid obtained by the aforementioned reaction means; an analysis means that analyzes the specimen; an acquisition device that acquires specimen information regarding the aforementioned sucked specimen and information regarding analysis items preestablished for the specimen; and a position control means whereby the discharging position of the specimen sucked by the aforementioned dispensing nozzle is controlled on the basis of the aforementioned specimen information and/or the aforementioned analysis item information, as obtained by the aforementioned acquisition means.

Description

自動分析装置Automatic analyzer
 本発明は、検体と試薬とを容器に分注し、この容器内で生じる反応液の吸光度を測定することによって検体を分析する自動分析装置に関するものである。 The present invention relates to an automatic analyzer that analyzes a sample by dispensing a sample and a reagent into a container and measuring the absorbance of a reaction solution generated in the container.
 従来から、血液中の血糖やヘモグロビンA1c(HbA1c)は、糖尿病の診断マーカとして使用されており、自動分析装置においては、被験者から採取した血液検体を遠心分離により血漿と血球とに分離し、血漿成分を含む検体から血糖値を測定する。一方、血球成分を含む検体からHbA1c値を測定している。 Conventionally, blood glucose and hemoglobin A1c (HbA1c) in blood have been used as a diagnostic marker for diabetes. In an automatic analyzer, a blood sample collected from a subject is separated into plasma and blood cells by centrifugation, The blood glucose level is measured from the sample containing the component. On the other hand, the HbA1c value is measured from a specimen containing blood cell components.
 ところで、近年、自動分析装置においては、血漿または血清成分を分析する分析項目で分注する検体が1μL程度まで微量化されている。このため、高い精度で検体を分注するには、分注ノズルの先端部の内径を0.3mm程度まで細くする必要がある。しかし、血清または血清成分用の分注ノズルを用いて血球成分を分注する場合、血球成分が血漿または血清成分に比べて粘度が高いため、血球成分の吸引は可能であるが、吐出時に血球成分が分注ノズルの先端部に液滴となり、精度高く吐出することができない場合がある。このため、自動分析装置では、血漿または血清成分を分注する分注ノズルに比べ、血球成分に対して先端部の内径を太くした分注ノズルを用いて、それぞれの分析項目に応じて使い分けるのが一般的であり、装置が複雑かつ大型化するため、種々の分注方法が提案されている。 By the way, in recent years, in an automatic analyzer, the amount of a sample dispensed by an analysis item for analyzing plasma or serum components is reduced to about 1 μL. For this reason, in order to dispense a sample with high accuracy, it is necessary to reduce the inner diameter of the tip of the dispensing nozzle to about 0.3 mm. However, when blood cell components are dispensed using a serum or serum component dispensing nozzle, the blood cell components are higher in viscosity than plasma or serum components, so that blood cell components can be aspirated. In some cases, the components become droplets at the tip of the dispensing nozzle and cannot be discharged with high accuracy. For this reason, in the automatic analyzer, compared to the dispensing nozzle that dispenses plasma or serum components, the dispensing nozzle with the tip inner diameter thicker than the blood cell components is used depending on each analysis item. However, since the apparatus is complicated and large, various dispensing methods have been proposed.
 たとえば、特許文献1では、血漿または血清成分と血球成分とを共通の分注ノズルを用いて、液面検知手段が検知した検体容器内の液面位置と分析項目毎に予め設定された分注ノズルの侵入距離とに基づいて、分注ノズルが液面から下降する下降距離を算出し、この算出した下降距離まで分注ノズルを下降させて血球成分を含む検体を吸引して分注する方法が開示されている。 For example, in Patent Document 1, using a common dispensing nozzle for plasma or serum components and blood cell components, dispensing is preset for each liquid level position and analysis item in the sample container detected by the liquid level detection means. A method of calculating a descending distance at which the dispensing nozzle descends from the liquid surface based on the intrusion distance of the nozzle, and lowering the dispensing nozzle to the computed descending distance to suck and dispense a specimen containing a blood cell component Is disclosed.
 また、特許文献2では、血漿または血清成分と血球成分とを共通の分注ノズルを用いて、液面検知手段が検知した検体容器内の液面位置と検体容器の種類毎に予め設定された分注ノズルの浸入距離とに基づいて、分注ノズルが液面から下降する下降距離を算出し、この算出した下降距離まで分注ノズルを下降させて血球成分を含む検体を吸引して分注する方法が開示されている。 Further, in Patent Document 2, plasma or serum components and blood cell components are set in advance for each liquid level position in the sample container detected by the liquid level detection means and each type of sample container using a common dispensing nozzle. Based on the penetration distance of the dispensing nozzle, calculate the descending distance that the dispensing nozzle descends from the liquid level, and lower the dispensing nozzle to the computed descending distance to aspirate the sample containing blood cell components and dispense A method is disclosed.
 また、特許文献3では、液体を分注ノズルに吸引し、吸引した液体を分注ノズルから容器に吐出後、分注ノズルの先端部を容器内の液面に接触させ、その後この液面から離すように分注ノズルを移動させることにより、検体のキャリーオ-バ-の低減を図りつつ、分注ノズルへの液滴残留または液滴形成分の液体付着による分注精度低下の防止を図る方法が開示されている。 Moreover, in patent document 3, after attracting | sucking a liquid to a dispensing nozzle and discharging the attracted liquid to a container from a dispensing nozzle, the front-end | tip part of a dispensing nozzle is made to contact the liquid level in a container, and after that, from this liquid level A method for preventing a decrease in dispensing accuracy due to liquid droplets remaining on the dispensing nozzle or adhering liquid droplets to the dispensing nozzle while reducing the carry-over of the sample by moving the dispensing nozzle away Is disclosed.
特開2000-46843号公報JP 2000-46843 A 特開平11-316239号公報JP-A-11-316239 特開平7-333230号公報JP 7-333230 A
 しかしながら、上述した特許文献1,2では、血漿または血清成分と血球成分との吸引位置をそれぞれ分け、血球成分を確実に吸引するための方法として提示されているが、血漿または血清成分と血球成分とを共通の分注ノズルで行う場合の問題点が解決されていない。つまり、血球成分を含む検体を容器内に吐出する場合、分注ノズルの先端部に検体の液滴が生じることによって、容器内に規定量の検体を吐出することができず、精度の高い分析結果を得ることができないことがあった。 However, in Patent Documents 1 and 2 described above, the plasma or serum component and the blood cell component are presented as a method for separating the suction positions of the blood cell component and reliably sucking the blood cell component. The problem that occurs when using a common dispensing nozzle is not solved. In other words, when a specimen containing blood cell components is discharged into a container, a specimen of a specimen is generated at the tip of the dispensing nozzle, so that a specified amount of specimen cannot be discharged into the container, and the analysis is highly accurate. In some cases, results could not be obtained.
 また、特許文献3では、検体として血清または血漿成分など粘性の低いものを分注する場合に、液面との接触を利用して分注ノズルの先端部への液滴の付着防止を目的としているが、検体の種類や粘性に関係なく一律に同じ動作を行うため、血球成分のように粘性の高いものと血清または血漿成分のように粘性の低いものを同一の自動分析装置内で混在して測定を行うときに、それぞれの試料の特性に合わせた分注ができないという問題がある。 In Patent Document 3, when dispensing a low-viscosity sample such as serum or plasma component as a specimen, it is intended to prevent droplets from adhering to the tip of the dispensing nozzle by using contact with the liquid surface. However, in order to perform the same operation regardless of the type and viscosity of the specimen, a highly viscous material such as a blood cell component and a low viscosity material such as a serum or plasma component are mixed in the same automatic analyzer. Therefore, there is a problem that dispensing according to the characteristics of each sample cannot be performed.
 本発明は、上記に鑑みてなされたものであって、検体の成分によらず、血漿、血清および血球それぞれの成分を共通の分注ノズルを用いて、容器内に検体を規定量で確実に吐出することができる自動分析装置を提供することを目的とする。 The present invention has been made in view of the above, and reliably uses a common dispensing nozzle for each component of plasma, serum, and blood cells, regardless of the components of the sample, so that the sample is reliably contained in a specified amount in the container. An object of the present invention is to provide an automatic analyzer capable of discharging.
 上述した課題を解決し、目的を達成するために、分注ポンプと分注ノズルとを管路で連結し、前記分注ポンプを吸排動作させることによって前記分注ノズル内に検体容器内から検体を吸引し、吸引した検体を容器に吐出して分注する分注装置を備え、前記容器内で検体と試薬とを反応させ、この反応液の吸光度を測定し、前記検体を分析する自動分析装置において、前記吸引した検体の検体情報と前記検体に対して予め設定された分析項目の情報を取得する取得手段と、前記取得手段が取得した前記検体情報および/または前記分析項目の情報をもとに、前記分注ノズルによる前記吸引した検体の吐出位置を制御する位置制御手段と、を備える。 In order to solve the above-described problems and achieve the object, the sample pump is connected to the sample nozzle through a pipe line, and the sample is drawn from the sample container into the sample nozzle by sucking and discharging the sample pump. And automatic dispensing for analyzing the sample by measuring the absorbance of the reaction solution by reacting the sample with the reagent in the container In the apparatus, acquisition means for acquiring sample information of the aspirated sample and analysis item information set in advance for the sample, and sample information and / or analysis item information acquired by the acquisition unit are also included. And a position control means for controlling a discharge position of the aspirated sample by the dispensing nozzle.
 また、本発明にかかる自動分析装置は、上記の発明において、前記検体を吸引した際に前記管路内の圧力を検出する圧力検出手段と、前記圧力検出手段が検出した圧力の時間的な変化をもとに、前記検体情報としての前記吸引した検体の粘度を算出する粘度算出手段と、前記粘度算出手段が算出した前記吸引した検体の粘度が、吐出可能な粘度であるか否かを判定する判定手段と、前記判定手段が前記吸引した検体の粘度を吐出可能な粘度であると判定した場合に、前記吸引した検体の粘度に応じて検体を吐出する吐出方式を選択する選択手段と、を備え、前記選択手段は、前記吸引した検体の粘度が所定の閾値を超えた場合に、液中で検体を吐出する液中吐出方式を選択する。 Further, the automatic analyzer according to the present invention is the above invention, wherein the pressure detection means for detecting the pressure in the conduit when the sample is aspirated, and the temporal change of the pressure detected by the pressure detection means And calculating whether the viscosity of the aspirated sample calculated by the viscosity calculation unit is a dischargeable viscosity, based on Selection means for selecting, and when the determination means determines that the viscosity of the aspirated sample is a dischargeable viscosity, a selection means for selecting a discharge method for discharging the sample according to the viscosity of the aspirated sample; And the selecting means selects a submerged ejection method for ejecting the specimen in the liquid when the viscosity of the aspirated specimen exceeds a predetermined threshold.
 また、本発明にかかる自動分析装置は、上記の発明において、前記容器内に収容された液体の液面高さを算出する液面算出手段を備え、前記位置制御手段は、前記選択手段が選択した吐出方式と前記液面算出手段が算出した液面高さに応じて、前記吸引した検体の吐出位置を制御する。 The automatic analyzer according to the present invention further comprises liquid level calculation means for calculating the liquid level height of the liquid contained in the container according to the above invention, wherein the position control means is selected by the selection means. The ejection position of the aspirated sample is controlled according to the ejection method performed and the liquid level calculated by the liquid level calculation means.
 また、本発明にかかる自動分析装置は、上記の発明において、前記分析項目は、血球成分を含む検体を分析する項目である。 In the automatic analyzer according to the present invention, the analysis item is an item for analyzing a sample containing a blood cell component.
 別の局面において、本発明は、検体を分析する自動分析装置であって、前記自動分析装置は、分注ポンプと分注ノズルとを管路で連結し、前記分注ポンプを吸排動作させることによって前記分注ノズル内に検体容器内から前記検体を吸引し、吸引した前記検体を容器に吐出して分注する分注手段と、 前記吸引した検体と試薬とを反応させる反応手段と、前記反応手段で得られた反応液の吸光度を測定する測定手段と、前記検体を分析する分析手段と、前記吸引した検体の検体情報および前記検体に対して予め設定された分析項目の情報を取得する取得手段と、前記取得手段が取得した前記検体情報および/または前記分析項目の情報をもとに、前記分注ノズルによる前記吸引した検体の吐出位置を制御する位置制御手段と、を備える、自動分析装置を提供する。 In another aspect, the present invention is an automatic analyzer for analyzing a sample, wherein the automatic analyzer connects a dispensing pump and a dispensing nozzle by a pipe line, and operates the suction and discharge of the dispensing pump. A dispensing means for aspirating the specimen from the specimen container into the dispensing nozzle, discharging the aspirated specimen into the container for dispensing, a reaction means for reacting the aspirated specimen and a reagent, Measurement means for measuring the absorbance of the reaction solution obtained by the reaction means, analysis means for analyzing the sample, sample information of the aspirated sample, and information on analysis items set in advance for the sample are acquired. An acquisition unit; and a position control unit that controls a discharge position of the aspirated sample by the dispensing nozzle based on the sample information and / or the analysis item information acquired by the acquisition unit. To provide an analysis apparatus.
 本発明の一つの実施形態において、本発明の自動分析装置は、前記検体を吸引した際に前記管路内の圧力を検出する圧力検出手段と、前記圧力検出手段が検出した圧力の時間的な変化をもとに、前記検体情報としての前記吸引した検体の粘度を算出する粘度算出手段と、前記粘度算出手段が算出した前記吸引した検体の粘度が、吐出可能な粘度であるか否かを判定する判定手段と、前記判定手段が前記吸引した検体の粘度を吐出可能な粘度であると判定した場合に、前記吸引した検体の粘度に応じて検体を吐出する吐出方式を選択する選択手段と、をさらに備え、前記選択手段は、前記吸引した検体の粘度が所定の閾値を超えた場合に、液中で検体を吐出する液中吐出方式を選択する。 In one embodiment of the present invention, the automatic analyzer of the present invention includes a pressure detection unit that detects a pressure in the pipe line when the sample is aspirated, and a time of the pressure detected by the pressure detection unit. Based on the change, viscosity calculation means for calculating the viscosity of the aspirated specimen as the specimen information, and whether or not the viscosity of the aspirated specimen calculated by the viscosity calculation means is a dischargeable viscosity. Determining means for determining, and selecting means for selecting a discharge method for discharging the sample according to the viscosity of the aspirated sample when the determining means determines that the viscosity of the aspirated sample is a dischargeable viscosity; The selection means selects a submerged ejection method for ejecting the specimen in liquid when the viscosity of the aspirated specimen exceeds a predetermined threshold.
 本発明の別の実施形態において、本発明の自動分析装置は、前記容器内に収容された液体の液面高さを算出する液面算出手段を備え、前記位置制御手段は、前記選択手段が選択した吐出方式と前記液面算出手段が算出した液面高さに応じて、前記吸引した検体の吐出位置を制御する。 In another embodiment of the present invention, the automatic analyzer of the present invention comprises a liquid level calculation means for calculating the liquid level height of the liquid contained in the container, and the position control means includes the selection means The ejection position of the aspirated sample is controlled in accordance with the selected ejection method and the liquid level calculated by the liquid level calculation means.
 本発明の別の実施形態において、本発明の自動分析装置では、前記分析項目は、血球成分を含む検体を分析する項目である。 In another embodiment of the present invention, in the automatic analyzer of the present invention, the analysis item is an item for analyzing a specimen containing a blood cell component.
 1つの局面において、本発明は、分注ポンプと分注ノズルとを管路で連結し、前記分注ポンプを吸排動作させることによって前記分注ノズル内に検体容器内から検体を吸引し、吸引した検体を容器に吐出して分注する分注装置を備え、前記容器内で検体と試薬とを反応させ、この反応液の吸光度を測定し、前記検体を分析する自動分析装置を制御する方法であって、前記方法は、前記吸引した検体の検体情報および該検体に対して予め設定された分析項目の情報を取得するステップと、前記情報を取得するステップにおいて取得した前記検体情報および/または前記分析項目の情報をもとに、前記分注ノズルによる前記吸引した検体の吐出位置を制御するステップと、を包含する方法を提供する。 In one aspect, the present invention connects a dispensing pump and a dispensing nozzle by a pipe line, and sucks and sucks a sample from the sample container into the dispensing nozzle by sucking and discharging the dispensing pump. A method for controlling an automatic analyzer that comprises a dispensing device that discharges a dispensed sample into a container, dispenses the sample with the reagent in the container, measures the absorbance of the reaction solution, and analyzes the sample In the method, the sample information acquired in the step of acquiring the sample information of the aspirated sample and the information of the analysis item set in advance for the sample, and the step of acquiring the information, and / or And a step of controlling a discharge position of the aspirated specimen by the dispensing nozzle based on the information of the analysis item.
 本発明の一つの実施形態において、本発明の方法は、前記検体を吸引した際に前記管路内の圧力を検出するステップと、前記検出した圧力の時間的な変化をもとに、前記検体情報としての前記吸引した検体の粘度を算出するステップと、前記算出した前記吸引した検体の粘度が、吐出可能な粘度であるか否かを判定するステップと、前記判定において前記吸引した検体の粘度を吐出可能な粘度であると判定した場合に、前記吸引した検体の粘度に応じて検体を吐出する吐出方式を選択するステップであって、前記吸引した検体の粘度が所定の閾値を超えた場合に、液中で検体を吐出する液中吐出方式を選択するステップとを包含する。 In one embodiment of the present invention, the method of the present invention includes a step of detecting the pressure in the conduit when the sample is aspirated, and the time-dependent change in the detected pressure. Calculating the viscosity of the aspirated sample as information, determining whether the calculated viscosity of the aspirated sample is a dischargeable viscosity, and the viscosity of the aspirated sample in the determination Is a step of selecting a discharge method for discharging the sample according to the viscosity of the aspirated sample when the viscosity of the aspirated sample exceeds a predetermined threshold And a step of selecting an in-liquid discharge method for discharging the specimen in the liquid.
 本発明の別の実施形態において、本発明の方法は、前記容器内に収容された液体の液面高さを算出するステップと前記吐出位置を制御するステップは、前記選択した吐出方式および前記算出した液面高さに応じて、前記吸引した検体の吐出位置を制御するステップとを包含する。 In another embodiment of the present invention, in the method of the present invention, the step of calculating the liquid level height of the liquid contained in the container and the step of controlling the discharge position include the selected discharge method and the calculation And controlling the ejection position of the aspirated specimen according to the liquid level height.
 本発明の別の実施形態において、本発明の方法では、前記分析項目は、血球成分を含む検体を分析する項目である。 In another embodiment of the present invention, in the method of the present invention, the analysis item is an item for analyzing a specimen containing a blood cell component.
 別の局面において、本発明は、分注ポンプと分注ノズルとを管路で連結し、前記分注ポンプを吸排動作させることによって前記分注ノズル内に検体容器内から検体を吸引し、吸引した検体を容器に吐出して分注する分注装置を備え、前記容器内で検体と試薬とを反応させ、この反応液の吸光度を測定し、前記検体を分析する自動分析装置において用いられる制御プログラムであって、前記制御プログラムは、前記自動分析装置を制御する方法を実装するためのものであり、前記方法は、前記吸引した検体の検体情報および該検体に対して予め設定された分析項目の情報を取得するステップと、前記情報を取得するステップにおいて取得した前記検体情報および/または前記分析項目の情報をもとに、前記分注ノズルによる前記吸引した検体の吐出位置を制御するステップと、を包含する制御プログラムを提供する。 In another aspect, the present invention connects a dispensing pump and a dispensing nozzle by a pipe line, and sucks and sucks a sample from the sample container into the dispensing nozzle by sucking and discharging the dispensing pump. A control device used in an automatic analyzer that discharges the dispensed specimen into a container and dispenses the specimen, reacts the specimen with the reagent in the container, measures the absorbance of the reaction solution, and analyzes the specimen The control program is for implementing a method for controlling the automatic analyzer, and the method includes sample information of the aspirated sample and analysis items set in advance for the sample. And aspirating the sample by the dispensing nozzle based on the sample information and / or the analysis item information acquired in the information acquiring step and the information acquiring step. Providing comprises control program and controlling the discharge position.
 種々の実施形態において、本発明のプログラムは、本発明の自動分析装置またはその制御方法の上記のいずれか一つまたは複数の特徴を含む。 In various embodiments, the program of the present invention includes any one or more of the above-described features of the automatic analyzer or the control method of the present invention.
 別の局面において、本発明は、分注ポンプと分注ノズルとを管路で連結し、前記分注ポンプを吸排動作させることによって前記分注ノズル内に検体容器内から検体を吸引し、吸引した検体を容器に吐出して分注する分注装置を備え、前記容器内で検体と試薬とを反応させ、この反応液の吸光度を測定し、前記検体を分析する自動分析装置において用いられる制御プログラムを記録したコンピュータ読み取り可能な記録媒体であって、前記制御プログラムは、前記自動分析装置を制御する方法を実装するためのものであり、前記方法は、前記吸引した検体の検体情報および該検体に対して予め設定された分析項目の情報を取得するステップと、前記情報を取得するステップにおいて取得した前記検体情報および/または前記分析項目の情報をもとに、前記分注ノズルによる前記吸引した検体の吐出位置を制御するステップと、を包含する記録媒体を提供する。 In another aspect, the present invention connects a dispensing pump and a dispensing nozzle by a pipe line, and sucks and sucks a sample from the sample container into the dispensing nozzle by sucking and discharging the dispensing pump. A control device used in an automatic analyzer that discharges the dispensed specimen into a container and dispenses the specimen, reacts the specimen with the reagent in the container, measures the absorbance of the reaction solution, and analyzes the specimen A computer-readable recording medium on which a program is recorded, wherein the control program is for implementing a method for controlling the automatic analyzer, and the method includes specimen information of the aspirated specimen and the specimen Obtaining the information on the analysis item set in advance for the sample information and / or the information on the analysis item obtained in the step of obtaining the information. DOO to provide encompassing recording medium, and controlling the discharge position of the specimens the suction by the dispensing nozzle.
 種々の実施形態において、本発明のコンピュータ読み取り可能な記録媒体は、本発明の自動分析装置またはその制御方法の上記のいずれか一つまたは複数の特徴を含む。 In various embodiments, the computer-readable recording medium of the present invention includes any one or more of the features of the automatic analyzer or the control method thereof of the present invention.
 本発明にかかる自動分析装置は、分注装置が吸引した検体の検体情報および/またはこの検体に対して予め設定された分析項目の情報をもとに、分注ノズルにより吸引した検体の吐出位置を制御することによって、検体の成分によらず、容器内に検体を規定量で確実に吐出することができるという効果を奏する。 The automatic analyzer according to the present invention provides a discharge position of the sample sucked by the dispensing nozzle based on the sample information of the sample sucked by the dispensing device and / or the information of the analysis item set in advance for the sample. By controlling the above, there is an effect that the specimen can be reliably discharged in a specified amount into the container regardless of the components of the specimen.
図1は、本発明の実施の形態にかかる自動分析装置の構成を示す模式図である。FIG. 1 is a schematic diagram showing a configuration of an automatic analyzer according to an embodiment of the present invention. 図2は、検体分注機構および位置制御部の構成を示す模式図である。FIG. 2 is a schematic diagram showing the configuration of the specimen dispensing mechanism and the position control unit. 図3は、血球成分を含む検体に対して分注ノズルが吸引した際の圧力変化図である。FIG. 3 is a pressure change diagram when the dispensing nozzle sucks a specimen containing blood cell components. 図4は、検体分注機構の動作の概要を示す動作図である。FIG. 4 is an operation diagram showing an outline of the operation of the sample dispensing mechanism. 図5は、位置制御部による検体分注処理の概要を示すフローチャートである。FIG. 5 is a flowchart showing an outline of the sample dispensing process by the position control unit. 図6は、位置制御部による特別分注処理の概要を示すフローチャートである。FIG. 6 is a flowchart showing an outline of special dispensing processing by the position control unit.
 以下、図面を参照して、本発明の自動分析装置にかかる実施の形態について説明する。なお、この実施の形態によりこの発明が限定されるものではない。また、図面の記載において、同一の部分には同一の符号を付している。 Hereinafter, embodiments of the automatic analyzer according to the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments. In the description of the drawings, the same parts are denoted by the same reference numerals.
 図1は、本発明の実施の形態にかかる自動分析装置の構成を示す模式図である。図1に示すように、本発明の実施の形態にかかる自動分析装置1は、試薬と検体とを反応容器20に分注し、反応容器20内で反応させ、この反応液の吸光度を測定する測定機構2と、測定機構2を含む自動分析装置1全体の制御を行うとともに測定機構2における測定結果の分析を行う制御機構3と、を備える。自動分析装置1は、これらの2つの機構が連携することによって複数の検体の分析を自動的に行う。 FIG. 1 is a schematic diagram showing a configuration of an automatic analyzer according to an embodiment of the present invention. As shown in FIG. 1, the automatic analyzer 1 according to the embodiment of the present invention dispenses a reagent and a sample into a reaction vessel 20, reacts them in the reaction vessel 20, and measures the absorbance of this reaction solution. A measurement mechanism 2 and a control mechanism 3 that controls the entire automatic analyzer 1 including the measurement mechanism 2 and analyzes a measurement result in the measurement mechanism 2 are provided. The automatic analyzer 1 automatically performs analysis of a plurality of samples by cooperation of these two mechanisms.
 まず、測定機構2について説明する。図1に示すように、測定機構2は、血液や尿等の液体である検体を収容した複数の検体容器11aを保持する検体ラック11bを図中の矢印方向に順次移送する検体移送部11と、検体移送部11上の検体吸引位置P1で停止した検体容器11aから検体を吸引して反応容器20に検体を吐出して分注する検体分注機構12と、検体と接触した部分を洗浄する洗浄部13と、反応容器20内に分注される試薬が収容された試薬容器14aを複数収納する試薬庫14と、試薬庫14内の試薬吸引位置P2で停止した試薬容器14aから第1試薬または第2試薬を吸引して反応容器20に試薬を吐出して分注する試薬分注機構15と、反応容器20内に分注された試薬と検体とを攪拌する攪拌部16と、反応容器20内に分注された液体の吸光度を測定する測光部17と、測光部17による測定が終了した反応容器20を洗浄する洗浄部18と、反応容器20への検体や試薬の分注、攪拌、測光および洗浄を行うために反応容器20を所定の位置まで搬送する反応槽19と、を備える。 First, the measurement mechanism 2 will be described. As shown in FIG. 1, the measurement mechanism 2 includes a sample transport unit 11 that sequentially transports a sample rack 11b holding a plurality of sample containers 11a containing a sample such as blood or urine, in the direction of the arrow in the figure. The sample dispensing mechanism 12 for aspirating the sample from the sample container 11a stopped at the sample aspirating position P1 on the sample transport unit 11 and discharging the sample to the reaction container 20 for dispensing, and the portion in contact with the sample are washed. The first reagent from the cleaning unit 13, the reagent storage 14 storing a plurality of reagent containers 14 a storing reagents dispensed in the reaction container 20, and the reagent container 14 a stopped at the reagent suction position P <b> 2 in the reagent storage 14 Alternatively, the reagent dispensing mechanism 15 that sucks the second reagent and discharges the reagent into the reaction container 20 to dispense, the stirring unit 16 that stirs the reagent dispensed in the reaction container 20 and the sample, and the reaction container Absorbance of liquid dispensed into 20 The photometric unit 17 to be measured, the cleaning unit 18 to clean the reaction vessel 20 that has been measured by the photometric unit 17, and the reaction vessel 20 to perform dispensing, stirring, photometry, and washing of the specimen and reagents into the reaction vessel 20 The reaction tank 19 which conveys to a predetermined position.
 また、検体容器11aおよび検体ラック11bには、内部に収容する検体を識別する識別情報を記憶した記録媒体がそれぞれ貼付されている(図示せず)。このため、検体移送部11には、検体容器11aおよび検体ラック11bに貼付された記録媒体を読み取る検体容器読取部11cが設けられている。 Further, a recording medium storing identification information for identifying a sample accommodated therein is affixed to the sample container 11a and the sample rack 11b (not shown). Therefore, the sample transport unit 11 is provided with a sample container reading unit 11c that reads a recording medium attached to the sample container 11a and the sample rack 11b.
 つぎに、制御機構3について説明する。制御機構3は、CPU等によって実現され、自動分析装置1の各部の処理および動作を制御する制御部31と、キーボード、マウス、入出力機能を備えたタッチパネル等によって実現され、検体の分析に必要な情報や自動分析装置1の操作情報が入力される入力部32と、測光部17によって測定された吸光度の測定結果に基づいて検体の成分分析を行う分析部33と、吸引した検体を吐出する際に反応容器20内の鉛直方向における吸引した検体の吐出位置および検体分注機構12の動作を制御する位置制御部34と、ハードディスクやメモリ等によって実現され、自動分析装置1の各部の処理および動作にかかる各種プログラムや検体の分析に関する情報を含む各種情報を記憶する記憶部35と、ディスプレイやプリンタ等によって実現され、検体の分析に関する情報等を出力する出力部36と、を備える。 Next, the control mechanism 3 will be described. The control mechanism 3 is realized by a CPU or the like, and is realized by a control unit 31 that controls processing and operation of each unit of the automatic analyzer 1, a keyboard, a mouse, a touch panel having an input / output function, and the like, and is necessary for analysis of a sample. The input unit 32 to which detailed information and the operation information of the automatic analyzer 1 are input, the analysis unit 33 for analyzing the component of the sample based on the measurement result of the absorbance measured by the photometry unit 17, and the aspirated sample are discharged. At this time, the position control unit 34 for controlling the discharge position of the aspirated sample in the vertical direction in the reaction container 20 and the operation of the sample dispensing mechanism 12 and a hard disk, a memory, and the like are realized. Realized by the storage unit 35 that stores various information including information related to various programs and specimen analysis related to operation, and a display, printer, etc. Is provided with an output unit 36 for outputting information concerning the sample analysis, the.
 以上のように構成された自動分析装置1では、反応槽19上で順次移送される複数の反応容器20に対して、試薬分注機構15が試薬庫14の試薬容器14aから第1試薬を分注後、検体分注機構12が検体吸引位置P1で停止した検体容器11aから検体を分注する。その後、試薬分注機構15が試薬庫14の試薬容器14aから第2試薬を反応容器20に分注する。さらに、測光部17が第1試薬、検体および第2試薬を反応させた状態の反応液の吸光度を測定し、この測定結果をもとに分析部33が分析することによって、検体の成分分析等が自動的に行われる。その後、洗浄部18が測光部17による測定が終了した後に搬送される反応容器20を搬送させながら洗浄し、反応容器20を再利用する。その後、洗浄された反応容器20を再利用し、複数の分析処理を行う。 In the automatic analyzer 1 configured as described above, the reagent dispensing mechanism 15 dispenses the first reagent from the reagent container 14a of the reagent container 14 with respect to the plurality of reaction containers 20 that are sequentially transferred on the reaction tank 19. After the injection, the sample dispensing mechanism 12 dispenses the sample from the sample container 11a stopped at the sample suction position P1. Thereafter, the reagent dispensing mechanism 15 dispenses the second reagent from the reagent container 14 a of the reagent container 14 into the reaction container 20. Furthermore, the photometry unit 17 measures the absorbance of the reaction solution in a state in which the first reagent, the sample, and the second reagent are reacted, and the analysis unit 33 analyzes based on the measurement result to analyze the component of the sample. Is done automatically. Thereafter, the cleaning unit 18 cleans the reaction vessel 20 being conveyed after the measurement by the photometry unit 17 is completed, and reuses the reaction vessel 20. Thereafter, the washed reaction vessel 20 is reused to perform a plurality of analysis processes.
 つぎに、図1に示した検体分注機構12および位置制御部34について詳細に説明する。図2は、検体分注機構12および位置制御部34の構成を示す模式図である。検体分注機構12は、図2に示すように、分注ノズル41、分注ポンプ46および洗浄水ポンプ50を有する。 Next, the sample dispensing mechanism 12 and the position controller 34 shown in FIG. 1 will be described in detail. FIG. 2 is a schematic diagram showing the configuration of the specimen dispensing mechanism 12 and the position control unit 34. The sample dispensing mechanism 12 has a dispensing nozzle 41, a dispensing pump 46, and a washing water pump 50, as shown in FIG.
 分注ノズル41は、ステンレス等によって棒管状に形成されたものからなり、アーム42に装着されている。アーム42は、駆動部43の駆動によって動作し、アーム42と駆動部43とを連結する連結部44を介して、鉛直方向の昇降および連結部44を通る鉛直軸を中心とする回転を自在に行う。駆動部43は、位置制御部34による制御のもと、アーム42を駆動させ、分注ノズル41の先端部を検体容器11a内または反応容器20内に下降させる。 The dispensing nozzle 41 is made of a rod-like tube made of stainless steel or the like, and is attached to the arm 42. The arm 42 operates by driving the drive unit 43, and can freely move up and down in the vertical direction and rotate around the vertical axis passing through the connection unit 44 via the connection unit 44 that connects the arm 42 and the drive unit 43. Do. The drive unit 43 drives the arm 42 under the control of the position control unit 34 to lower the tip of the dispensing nozzle 41 into the sample container 11 a or the reaction container 20.
 分注ポンプ46は、シリンジポンプで実現され、配管45を介して分注ノズル41と、配管45内の圧力を検出する圧力センサ48と、洗浄水Waの流量を調整する電磁弁49とに接続されている。分注ポンプ46は、プランジャ駆動部47によるプランジャ46aの往復動によって、分注ノズル41内に検体を吸引し、吸引した検体を反応容器20に吐出して分注を行う。プランジャ駆動部47は、位置制御部34による制御のもと、プランジャ46aを駆動することによって、検体の分注量を調整する。電磁弁49には、別の配管52が接続され、この配管52の他端には、洗浄水Waを供給する洗浄水ポンプ50が接続されている。さらに、洗浄水ポンプ50には、別の配管53が接続され、この配管53の他端は、洗浄水Waを収容する洗浄水タンク51に達している。 The dispensing pump 46 is realized by a syringe pump, and is connected to a dispensing nozzle 41, a pressure sensor 48 for detecting the pressure in the piping 45, and an electromagnetic valve 49 for adjusting the flow rate of the washing water Wa via the piping 45. Has been. The dispensing pump 46 aspirates the sample into the dispensing nozzle 41 by the reciprocating movement of the plunger 46 a by the plunger driving unit 47, and discharges the sucked sample to the reaction container 20 to perform dispensing. The plunger driver 47 adjusts the amount of sample dispensed by driving the plunger 46 a under the control of the position controller 34. Another pipe 52 is connected to the electromagnetic valve 49, and a washing water pump 50 that supplies the washing water Wa is connected to the other end of the pipe 52. Further, another pipe 53 is connected to the cleaning water pump 50, and the other end of the pipe 53 reaches the cleaning water tank 51 that stores the cleaning water Wa.
 圧力センサ48は、配管45内における洗浄水Waの圧力を検出し、アナログ圧力信号として増幅回路48aへ出力する。増幅回路48aは、圧力センサ48から出力されるアナログ圧力信号を増幅し、増幅した圧力信号を処理部48bへ出力する。処理部48bは、A/D変換器によって実現され、増幅回路48aから入力されるアナログ圧力信号をデジタル信号に変換して処理し、検出部48cに出力する。検出部48cは、処理部48bによって変換された圧力信号における所定時間の圧力、たとえば、分注ノズル41内に検体を吸引し終えた時点の圧力を検出し、制御部31を介して記憶部35へ出力する。 The pressure sensor 48 detects the pressure of the washing water Wa in the pipe 45 and outputs it as an analog pressure signal to the amplification circuit 48a. The amplification circuit 48a amplifies the analog pressure signal output from the pressure sensor 48, and outputs the amplified pressure signal to the processing unit 48b. The processing unit 48b is realized by an A / D converter, converts the analog pressure signal input from the amplification circuit 48a into a digital signal, processes it, and outputs it to the detection unit 48c. The detection unit 48 c detects the pressure for a predetermined time in the pressure signal converted by the processing unit 48 b, for example, the pressure at the time when the sample has been sucked into the dispensing nozzle 41, and the storage unit 35 via the control unit 31. Output to.
 洗浄水ポンプ50は、洗浄水タンク51に貯蔵された洗浄水Waを吸い上げ、圧力センサ48との間に設けた電磁弁49を介して配管45内に洗浄水Waを供給する。ここで、電磁弁49は、位置制御部34の制御のもと、吸い上げた洗浄水Waを配管45内に供給する場合には開かれ、分注ポンプ46によって分注ノズル41が検体を吸引する場合には閉じられる。なお、洗浄水Waは、脱気されたイオン交換水または蒸留水等の非圧縮性流体である。 The washing water pump 50 sucks up the washing water Wa stored in the washing water tank 51 and supplies the washing water Wa into the pipe 45 through an electromagnetic valve 49 provided between the washing water pump 50 and the pressure sensor 48. Here, the electromagnetic valve 49 is opened when the suctioned wash water Wa is supplied into the pipe 45 under the control of the position control unit 34, and the dispensing nozzle 41 sucks the sample by the dispensing pump 46. In case it is closed. The washing water Wa is an incompressible fluid such as deionized ion exchange water or distilled water.
 位置制御部34は、取得部34a、粘度算出部34b、判定部34c、選択部34d、液面算出部34eおよび駆動制御部34fを有する。取得部34aは、制御部31を介して、検体分注機構12が分注ノズル41内に吸引した検体の検体情報と吸引した検体に対して予め設定された分析項目の情報を記憶部35から取得する。具体的には、検体容器読取部11cが読み取った検体の識別情報をもとに設定された検体の分析項目を記憶部35から取得する、および/または分注ノズル41内に検体を吸引した際に生じる様々な検体の検体情報を記憶部35から取得する。 The position control unit 34 includes an acquisition unit 34a, a viscosity calculation unit 34b, a determination unit 34c, a selection unit 34d, a liquid level calculation unit 34e, and a drive control unit 34f. The acquisition unit 34 a stores, via the control unit 31, the sample information of the sample sucked into the dispensing nozzle 41 by the sample dispensing mechanism 12 and the analysis item information set in advance for the sucked sample from the storage unit 35. get. Specifically, when the sample analysis item set based on the sample identification information read by the sample container reading unit 11c is acquired from the storage unit 35 and / or when the sample is aspirated into the dispensing nozzle 41 The specimen information of various specimens generated in the above is acquired from the storage unit 35.
 粘度算出部34bは、制御部31を介して、検体分注機構12が分注ノズル41内に検体を吸引した際に圧力センサ48が検出する圧力を取得し、取得した圧力の時間的な変化をもとに吸引した検体の粘度を算出する。具体的には、圧力センサ48が検出する圧力に対応する出力電圧の時間変化と検体の粘度との関係を示す検量線を参照して、吸引した検体の粘度を算出する。なお、検量線は、記憶部35に記憶されている。 The viscosity calculating unit 34b acquires the pressure detected by the pressure sensor 48 when the sample dispensing mechanism 12 sucks the sample into the dispensing nozzle 41 via the control unit 31, and changes in the acquired pressure over time. Calculate the viscosity of the aspirated specimen based on Specifically, the viscosity of the aspirated sample is calculated with reference to a calibration curve indicating the relationship between the change in the output voltage corresponding to the pressure detected by the pressure sensor 48 and the viscosity of the sample. The calibration curve is stored in the storage unit 35.
 判定部34cは、粘度算出部34bが算出した分注ノズル41内に吸引した検体の粘度が、吐出可能な粘度であるか否かを判定する。判定部34cは、粘度算出部34bが算出した分注ノズル41内に吸引した検体の粘度が、吐出不可能な粘度である場合、吸引した検体の粘度が異常であると判定する。 The determination unit 34c determines whether or not the viscosity of the sample sucked into the dispensing nozzle 41 calculated by the viscosity calculation unit 34b is a dischargeable viscosity. When the viscosity of the sample sucked into the dispensing nozzle 41 calculated by the viscosity calculation unit 34b is a viscosity that cannot be discharged, the determination unit 34c determines that the viscosity of the sucked sample is abnormal.
 選択部34dは、判定部34cが分注ノズル41内に吸引した検体の粘度が吐出可能な粘度であると判定した場合に、分注ノズル41内に吸引した検体の粘度に応じて検体を吐出する吐出方式を選択する。選択部34dは、分注ノズル41内に吸引した検体の粘度が所定の閾値を超えた場合に、液中で検体を吐出する液中吐出方式を選択する。なお、選択部34dは、分注ノズル41内に吸引した検体に対して予め設定された分析項目の情報に応じて検体を吐出する吐出方式を選択してもよい。 When the determination unit 34c determines that the viscosity of the sample sucked into the dispensing nozzle 41 is a dischargeable viscosity, the selection unit 34d discharges the sample according to the viscosity of the sample sucked into the dispensing nozzle 41. Select the discharge method. The selection unit 34d selects an in-liquid discharge method for discharging the sample in the liquid when the viscosity of the sample sucked into the dispensing nozzle 41 exceeds a predetermined threshold. Note that the selection unit 34d may select a discharge method for discharging the sample according to the information of the analysis items set in advance for the sample sucked into the dispensing nozzle 41.
 液面算出部34eは、反応容器20内に収容された液体の液面高さを算出する。具体的には、液面算出部34eは、制御部31を介して、分注ノズル41内に吸引した検体の分析項目に対応して反応容器20内に分注される第1試薬の液量を記憶部35から取得し、この取得した液量と反応容器20の形状とに基づいて、反応容器20内に収容された液体の液面高さを算出する。 The liquid level calculating unit 34e calculates the liquid level of the liquid stored in the reaction vessel 20. Specifically, the liquid level calculation unit 34e supplies the liquid amount of the first reagent dispensed into the reaction container 20 corresponding to the analysis item of the sample sucked into the dispensing nozzle 41 via the control unit 31. Is obtained from the storage unit 35, and the liquid level of the liquid stored in the reaction vessel 20 is calculated based on the obtained liquid amount and the shape of the reaction vessel 20.
 駆動制御部34fは、取得部34aが取得した吸引した検体の検体情報および/または吸引した検体に対して予め設定された分析項目の情報をもとに、分注ノズル41により吸引した検体の吐出位置を制御する。吸引した検体の吐出位置は、検体の吐出方式によって決定される。このため、駆動制御部34fは、取得部34aが取得した検体の検体情報、検体の分析項目の情報および選択部34dが選択した吐出方式の少なくともいずれか一つを用いて、分注ノズル41による吸引した検体の吐出位置を制御する。具体的には、駆動制御部34fは、選択部34dが液中吐出方式を選択した場合、駆動部43を駆動させ、反応容器20内に収容された液体液面より下方の位置まで分注ノズル41の先端部を下降させて吸引した検体を吐出する。また、駆動制御部34fは、選択部34dが空中吐出方式を選択した場合、駆動部43を駆動させ、反応容器20内に収容された液体液面より上方の位置まで分注ノズル41の先端部を下降させて吸引した検体を吐出させる。 The drive control unit 34f discharges the sample aspirated by the dispensing nozzle 41 based on the sample information of the aspirated sample acquired by the acquisition unit 34a and / or the information of the analysis item set in advance for the aspirated sample. Control the position. The ejection position of the aspirated specimen is determined by the specimen ejection method. Therefore, the drive control unit 34f uses the dispensing nozzle 41 by using at least one of the sample information of the sample acquired by the acquiring unit 34a, the information on the analysis items of the sample, and the ejection method selected by the selecting unit 34d. The ejection position of the aspirated sample is controlled. Specifically, when the selection unit 34d selects the submerged discharge method, the drive control unit 34f drives the drive unit 43 to a dispensing nozzle up to a position below the liquid level stored in the reaction vessel 20. The tip of 41 is lowered and the aspirated specimen is discharged. In addition, when the selection unit 34d selects the aerial discharge method, the drive control unit 34f drives the drive unit 43 so that the tip of the dispensing nozzle 41 reaches a position above the liquid level stored in the reaction vessel 20. Is lowered to discharge the aspirated sample.
 つぎに、図3を参照して、血球成分を含む検体を分注ノズル41内に吸引させた際に圧力センサ48が検出する配管45内における洗浄水Waの圧力変化について説明する。折れ線L1は、少なくとも血球成分を含む検体を分注ノズル41内に吸引させた際に圧力センサ48が検出する配管45内における洗浄水Waの圧力変化を示す。また、図3において、横軸は、時間を示し、縦軸は、圧力センサ48が検出する圧力信号の出力電圧を示す。時点t1は、検体の吸引開始時を示し、時点t2は、検体の吸引終了時を示す。 Next, with reference to FIG. 3, the pressure change of the washing water Wa in the pipe 45 detected by the pressure sensor 48 when the specimen containing the blood cell component is sucked into the dispensing nozzle 41 will be described. A polygonal line L1 indicates a pressure change of the washing water Wa in the pipe 45 detected by the pressure sensor 48 when a specimen containing at least a blood cell component is sucked into the dispensing nozzle 41. In FIG. 3, the horizontal axis indicates time, and the vertical axis indicates the output voltage of the pressure signal detected by the pressure sensor 48. Time t1 indicates the start of sample aspiration, and time t2 indicates the end of sample aspiration.
 図3に示すように、少なくとも血球成分を含む検体を分注ノズル41内に吸引した際に配管45内における洗浄水Waの圧力値が負圧状態となる。この圧力値は、吸引した検体の粘度によって変化する。具体的には、吸引した検体の粘度が高いほど、配管45内の圧力における負圧が大きくなるため、圧力センサ48が検出する出力電圧が低く検出される。 As shown in FIG. 3, when a specimen containing at least a blood cell component is sucked into the dispensing nozzle 41, the pressure value of the washing water Wa in the pipe 45 becomes a negative pressure state. This pressure value changes depending on the viscosity of the aspirated specimen. Specifically, the higher the viscosity of the aspirated specimen, the greater the negative pressure in the pressure in the pipe 45, so the output voltage detected by the pressure sensor 48 is detected lower.
 そこで、この実施の形態では、圧力センサ48が検出する出力電圧と検体の粘度との関係をもとに、吐出可能な粘度を設定するとともに、検体の粘度に応じて検体の吐出する吐出方式を選択する範囲を設定する。具体的には、V1を検体の吸引前後の出力電圧とする場合に、圧力センサ48が検出する出力電圧をVとしたとき、圧力センサ48が検出する出力電圧の時間的な変化の絶対値をΔV=|V―V1|とする。これにより、圧力センサ48が検出する出力電圧の時間的な変化の絶対値がΔV>|V3-V1|の場合に吐出が不可能な粘度とし、|V2-V1|≦ΔV<|V3―V1|の範囲を液中吐出方式の範囲として、ΔV<|V2―V1|の範囲を空中吐出方式の範囲とする。ここで、V2およびV3は、V1<V2<V3を満たす所定の定数である。なお、図3の範囲は、検体の種類、分析項目および自動分析装置1の能力等によって変更してもよい。 Therefore, in this embodiment, a dischargeable viscosity is set based on the relationship between the output voltage detected by the pressure sensor 48 and the viscosity of the sample, and a discharge method for discharging the sample according to the viscosity of the sample is used. Set the selection range. Specifically, when V1 is the output voltage before and after the sample is aspirated and the output voltage detected by the pressure sensor 48 is V, the absolute value of the temporal change in the output voltage detected by the pressure sensor 48 is Let ΔV = | V−V1 |. As a result, when the absolute value of the temporal change in the output voltage detected by the pressure sensor 48 is ΔV> | V3-V1 |, the viscosity is set so as not to be discharged, and | V2-V1 | ≦ ΔV <| V3-V1 The range of | is defined as the range of the submerged ejection method, and the range of ΔV <| V2-V1 | is defined as the range of the aerial ejection method. Here, V2 and V3 are predetermined constants that satisfy V1 <V2 <V3. The range shown in FIG. 3 may be changed depending on the type of sample, the analysis item, the capability of the automatic analyzer 1, and the like.
 ここで、検体分注機構12の動作について詳細に説明する。図4は、検体分注機構12の動作の概要を示す図である。なお、少なくとも血球成分を含む検体に対して分注する場合の検体分注機構12の動作について説明する。まず、検体分注機構12は、血漿層R1と血球層R2とに層分離した検体を収容した検体容器11a内に分注ノズル41を下降する(図4(a))。この場合、分注ノズル41による吸引位置は、血漿層R1で停止しているが、分注ノズル41による吸引位置は、検体の分析項目、液量や種類等によって設定される。 Here, the operation of the specimen dispensing mechanism 12 will be described in detail. FIG. 4 is a diagram showing an outline of the operation of the specimen dispensing mechanism 12. The operation of the sample dispensing mechanism 12 when dispensing a sample containing at least a blood cell component will be described. First, the sample dispensing mechanism 12 lowers the dispensing nozzle 41 into the sample container 11a containing the sample separated into the plasma layer R1 and the blood cell layer R2 (FIG. 4A). In this case, the aspirating position by the dispensing nozzle 41 is stopped at the plasma layer R1, but the aspirating position by the dispensing nozzle 41 is set according to the analysis item, the liquid amount, the type, and the like of the sample.
 その後、検体分注機構12は、分注ノズル41内に検体を吸引する(図4(b))。この際、圧力センサ48は、配管45内の圧力変化を検出し、制御部31を介して記憶部35に出力する。その後、検体分注機構12は、分注ノズル41を上昇し(図4(c))、反応容器20上に分注ノズル41を移送する。 Thereafter, the sample dispensing mechanism 12 sucks the sample into the dispensing nozzle 41 (FIG. 4B). At this time, the pressure sensor 48 detects a pressure change in the pipe 45 and outputs it to the storage unit 35 via the control unit 31. Thereafter, the specimen dispensing mechanism 12 raises the dispensing nozzle 41 (FIG. 4C) and transfers the dispensing nozzle 41 onto the reaction vessel 20.
 その後、検体分注機構12は、吸引した検体の粘度が吐出可能な粘度の場合において、空中で分注可能な検体の粘度の範囲内であるとき、分注ノズル41を反応容器20内に収容された試薬Laの液面の上方まで下降し(図4(d))、分注ノズル41内に吸引した検体を反応容器20内に吐出する(図4(e))。この場合、吸引した検体の粘度が低く、空中で吐出が可能であるため、分注ノズル41の先端部に液滴が生じず、吸引した検体を規定量で確実に吐出することができる。なお、この吐出は、通常の分析項目における吐出方法と同様である。その後、検体分注機構12は、反応容器20内から分注ノズル41を上昇し(図4(f))、洗浄部13に分注ノズル41を移送後、分注ノズル41を洗浄し(図4(g))、検体の分注処理を終了する。 Thereafter, the sample dispensing mechanism 12 accommodates the dispensing nozzle 41 in the reaction container 20 when the viscosity of the aspirated sample is within the range of the viscosity of the sample that can be dispensed in the air when the viscosity of the sample is a dischargeable viscosity. The sample is lowered to above the liquid level of the reagent La (FIG. 4D), and the sample sucked into the dispensing nozzle 41 is discharged into the reaction container 20 (FIG. 4E). In this case, since the sucked sample has a low viscosity and can be discharged in the air, no droplet is generated at the tip of the dispensing nozzle 41, and the sucked sample can be reliably discharged in a specified amount. In addition, this discharge is the same as the discharge method in a normal analysis item. Thereafter, the specimen dispensing mechanism 12 raises the dispensing nozzle 41 from the inside of the reaction container 20 (FIG. 4 (f)), transfers the dispensing nozzle 41 to the cleaning unit 13, and then cleans the dispensing nozzle 41 (FIG. 4). 4 (g)), the sample dispensing process is terminated.
 これに対して、検体分注機構12は、吸引した検体の粘度が吐出可能な粘度の場合において、液中で分注可能な検体の粘度の範囲内であるとき、分注ノズル41の先端部を反応容器20内に収容された試薬La中に潜り込ませるように下降し(図4(h))、吸引した検体を試薬La中に吐出する(図4(i))。この場合、分注ノズル41の先端部に生じる液滴Sを試薬Laの吸着力を利用することによって除去することができ、検体の粘度が高くても反応容器20内に確実に吐出することができる。なお、この検体の吐出方法を液中吐出方式とする。その後、検体分注機構12は、反応容器20内から分注ノズル41を上昇し(図4(j))、洗浄部13に分注ノズル41を移送後、分注ノズル41を洗浄し(図4(g))、検体の分注処理を終了する。 On the other hand, when the viscosity of the aspirated sample is a dischargeable viscosity, the sample dispensing mechanism 12 is within the range of the viscosity of the sample that can be dispensed in the liquid. Is lowered so as to sink into the reagent La accommodated in the reaction container 20 (FIG. 4 (h)), and the aspirated specimen is discharged into the reagent La (FIG. 4 (i)). In this case, the droplet S generated at the tip of the dispensing nozzle 41 can be removed by using the adsorption force of the reagent La, and can be reliably discharged into the reaction container 20 even if the viscosity of the specimen is high. it can. Note that this specimen discharge method is a liquid discharge method. Thereafter, the specimen dispensing mechanism 12 raises the dispensing nozzle 41 from the reaction container 20 (FIG. 4 (j)), and after the dispensing nozzle 41 is transferred to the cleaning unit 13, the dispensing nozzle 41 is washed (FIG. 4). 4 (g)), the sample dispensing process is terminated.
 また、検体分注機構12は、吸引した検体の粘度が吐出可能な粘度の場合において、空中で分注可能な検体の粘度の範囲内であり、反応容器20内が空であるとき、分注ノズル41の先端部を反応容器20内の底面近傍まで下降し(図4(k))、吸引した検体を吐出する(図4(l))。この場合、分注ノズル41の先端部に生じる液滴Sを反応容器20内の底面に吸着させることによって、分注ノズル41の先端部に生じる液滴Sを除去することができ、検体の粘度が高くても反応容器20内に確実に分注することができる。なお、この検体の吐出方法を底面吐出方式とする。その後、検体分注機構12は、反応容器20内から分注ノズル41を上昇し(図4(m))、洗浄部13に分注ノズル41を移送後、分注ノズル41を洗浄し(図4(g))、検体の分注処理を終了する。 In addition, the sample dispensing mechanism 12 dispenses when the viscosity of the aspirated sample is within the range of the viscosity of the sample that can be dispensed in the air and the reaction container 20 is empty when the viscosity of the aspirated sample is dischargeable. The tip of the nozzle 41 is lowered to the vicinity of the bottom surface in the reaction container 20 (FIG. 4 (k)), and the aspirated specimen is discharged (FIG. 4 (l)). In this case, the droplet S generated at the tip of the dispensing nozzle 41 can be removed by adsorbing the droplet S generated at the tip of the dispensing nozzle 41 to the bottom surface in the reaction container 20, and the viscosity of the specimen can be removed. Even if it is high, it can be surely dispensed into the reaction vessel 20. This specimen discharge method is a bottom surface discharge method. Thereafter, the specimen dispensing mechanism 12 raises the dispensing nozzle 41 from the inside of the reaction container 20 (FIG. 4 (m)), transfers the dispensing nozzle 41 to the cleaning unit 13, and then cleans the dispensing nozzle 41 (FIG. 4). 4 (g)), the sample dispensing process is terminated.
 さらに、検体分注機構12は、吸引した検体の粘度が吐出可能な粘度を超える場合、分注ノズル41の先端部を反応容器20内に下降し(図4(n))、吸引した検体を吐出する際に分注ノズル41の先端部に吸引した検体による液滴Sが生じる(図4(o))。この場合、分注ノズル41の先端部に生じる液滴Sによって反応容器20内に規定量で検体を分注することができない(図4(p))。このため、吸引した検体の粘度が吐出可能な粘度を超える場合、検体分注機構12は、分注ノズル41を洗浄部13に移送し、分注ノズル41を洗浄し(図4(g))、検体の分注処理を終了する。 Further, when the viscosity of the aspirated sample exceeds the dischargeable viscosity, the sample dispensing mechanism 12 lowers the tip of the dispensing nozzle 41 into the reaction container 20 (FIG. 4 (n)), and removes the aspirated sample. When discharging, a droplet S is generated by the sample sucked at the tip of the dispensing nozzle 41 (FIG. 4 (o)). In this case, the specimen cannot be dispensed in a prescribed amount into the reaction vessel 20 by the droplet S generated at the tip of the dispensing nozzle 41 (FIG. 4 (p)). For this reason, when the viscosity of the aspirated sample exceeds the dischargeable viscosity, the sample dispensing mechanism 12 transfers the dispensing nozzle 41 to the cleaning unit 13 and cleans the dispensing nozzle 41 (FIG. 4G). The sample dispensing process is terminated.
 つぎに、図5に示すフローチャートを参照して、位置制御部34による検体分注処理について説明する。図5において、まず、位置制御部34は、制御部31を介して、新たに受付された検体があるか否かを判断する(ステップS101)。具体的には、検体容器11aが検体容器読取部11cを横切った際に、検体容器読取部11cが検体容器11aに貼付された情報を読み込んだ情報が記憶部35に記憶されているか、または操作者によって入力部32に入力された情報に基づいて新たに受付された検体があるか否かを判断する。新たに受付された検体がないと判断した場合(ステップS101:No)、このステップS101の判断処理を繰り返す。一方、新たに受付された検体がある場合(ステップS101:Yes)、取得部34aは、制御部31を介して、新たに受付された検体の種類およびこの検体に対して設定された分析項目の情報を記憶部35から取得する(ステップ
S102)。
Next, the sample dispensing process by the position controller 34 will be described with reference to the flowchart shown in FIG. In FIG. 5, first, the position control unit 34 determines whether there is a newly received sample via the control unit 31 (step S <b> 101). Specifically, when the sample container 11a crosses the sample container reading unit 11c, information obtained by the sample container reading unit 11c reading information pasted on the sample container 11a is stored in the storage unit 35, or an operation is performed. Based on the information input to the input unit 32 by the person, it is determined whether or not there is a newly received sample. When it is determined that there is no newly received sample (step S101: No), the determination process in step S101 is repeated. On the other hand, when there is a newly received sample (step S101: Yes), the acquisition unit 34a, via the control unit 31, sets the type of the newly received sample and the analysis item set for this sample. Information is acquired from the storage unit 35 (step S102).
 その後、位置制御部34は、取得部34aが取得した検体に対して設定された分析項目の情報が血球成分を含む検体の分析項目、たとえば、HbA1cであるか否かを判断する(ステップS103)。血球成分を含む検体の分析項目でない場合(ステップS103:No)、位置制御部34は、検体分注機構12を駆動させ、通常の分注処理を実行する(ステップS104)。一方、血球成分を含む検体の分析項目である場合(ステップS103:Yes)、位置制御部34は、検体分注機構12を駆動させ、後述する特別分注処理を実行する(ステップS105)。 Thereafter, the position control unit 34 determines whether or not the analysis item information set for the sample acquired by the acquisition unit 34a is an analysis item of the sample including a blood cell component, for example, HbA1c (step S103). . If the analysis item is not an analysis item of a sample containing a blood cell component (step S103: No), the position control unit 34 drives the sample dispensing mechanism 12 to execute a normal dispensing process (step S104). On the other hand, when the analysis item is a sample including a blood cell component (step S103: Yes), the position control unit 34 drives the sample dispensing mechanism 12 to execute a special dispensing process described later (step S105).
 その後、位置制御部34は、制御部31から分析終了の指示があるか否かを判断する(ステップS106)。分析終了の指示がない場合(ステップS106:No)、ステップS101に移行し、上述した処理を繰り返す。一方、分析終了の指示がある場合(ステップS106:Yes)、本処理を終了する。 Thereafter, the position control unit 34 determines whether or not there is an analysis end instruction from the control unit 31 (step S106). If there is no instruction to end the analysis (step S106: No), the process proceeds to step S101, and the above-described processing is repeated. On the other hand, when there is an instruction to end the analysis (step S106: Yes), this process ends.
 ここで、図6に示すフローチャートを参照して、位置制御部34による特別分注処理について説明する。図6において、駆動制御部34fは、駆動部43およびプランジャ駆動部47を駆動させ、検体吸引位置で静止している検体容器11a内に収容された検体を分注ノズル41内に吸引させる(ステップS201)。 Here, the special dispensing process by the position control unit 34 will be described with reference to the flowchart shown in FIG. In FIG. 6, the drive control unit 34f drives the drive unit 43 and the plunger drive unit 47 to suck the sample stored in the sample container 11a stationary at the sample suction position into the dispensing nozzle 41 (step S201).
 その後、粘度算出部34bは、分注ノズル41内に検体を吸引する際に圧力センサ48が検出した配管45内における洗浄水Waの圧力変化波形における出力電圧を記憶部35から取得し(ステップS202)、取得した圧力変化波形における出力電圧の時間変化をもとに、吸引した検体の粘度を算出する(ステップS203)。 Thereafter, the viscosity calculating unit 34b acquires the output voltage in the pressure change waveform of the washing water Wa in the pipe 45 detected by the pressure sensor 48 when the sample is sucked into the dispensing nozzle 41 from the storage unit 35 (step S202). ), The viscosity of the aspirated specimen is calculated based on the time change of the output voltage in the acquired pressure change waveform (step S203).
 その後、判定部34cは、吸引した検体の粘度が吐出可能な粘度であるか否かを判定する(ステップS204)。吸引した検体の粘度が吐出可能な粘度である場合(ステップS204:Yes)、ステップS206に移行する。一方、吸引した検体の粘度が吐出不可能な粘度である場合(ステップS204:No)、位置制御部34は、異常処理を行う(ステップS205)。具体的には、駆動制御部34fは、駆動部43およびプランジャ駆動部47を駆動させ、吸引した検体を洗浄部13に吐出させるとともに、分注ノズル41を洗浄する。その後、位置制御部34は、制御部31を介して出力部36に吸引した検体の粘度に異常が生じていることを示す情報を出力させる。 Thereafter, the determination unit 34c determines whether the viscosity of the aspirated sample is a dischargeable viscosity (step S204). When the suctioned specimen has a dischargeable viscosity (step S204: Yes), the process proceeds to step S206. On the other hand, when the viscosity of the aspirated sample is a viscosity that cannot be discharged (step S204: No), the position control unit 34 performs an abnormality process (step S205). Specifically, the drive control unit 34f drives the drive unit 43 and the plunger drive unit 47 to discharge the aspirated specimen to the cleaning unit 13 and cleans the dispensing nozzle 41. After that, the position control unit 34 causes the output unit 36 to output information indicating that an abnormality has occurred in the viscosity of the aspirated sample via the control unit 31.
 その後、液面算出部34eは、吐出対象の反応容器20内の液体の液面高さを算出する(ステップS206)。具体的には、取得部34aが取得した検体の種類または分析項目に対応して反応容器20内に分注される第1試薬の液量と吸引した検体を吐出する反応容器20の形状とに基づいて、反応容器20内に収容された液体の液面高さを算出する。 Thereafter, the liquid level calculation unit 34e calculates the liquid level of the liquid in the reaction container 20 to be discharged (step S206). Specifically, the amount of the first reagent dispensed into the reaction container 20 and the shape of the reaction container 20 that discharges the aspirated specimen corresponding to the type or analysis item of the specimen acquired by the acquisition unit 34a. Based on this, the liquid level height of the liquid stored in the reaction vessel 20 is calculated.
 その後、選択部34dは、吸引した検体の粘度が空中で吐出可能な粘度の範囲内であるか否かを判断する(ステップS207)。吸引した検体の粘度が空中で吐出可能な粘度の範囲外である場合(ステップS207:No)、位置制御部34は、液面算出部34eが算出した液面高さをもとに反応容器20内に試薬が分注されているか否かを判断する(ステップS208)。反応容器20内に試薬が分注されていない場合(ステップS208:No)、選択部34dは、底面吐出方式(図4に示した(k)~(m))を選択し、駆動制御部34fが駆動部43を駆動させ、反応容器20内の底面まで分注ノズル41の先端部を下降させ(ステップS209)、ステップS212に移行する。一方、反応容器20内に試薬が分注されている場合(ステップS208:Yes)、選択部34dは、液中吐出方式(図4に示した(h)~(j))を選択し、駆動制御部34fが駆動部43を駆動させ、反応容器20内に収容された液体液面より下方の位置まで分注ノズル41の先端部を下降させ(ステップS210)、ステップS212に移行する。 Thereafter, the selection unit 34d determines whether or not the viscosity of the aspirated sample is within the range of viscosity that can be discharged in the air (step S207). When the viscosity of the aspirated specimen is outside the range of viscosity that can be discharged in the air (step S207: No), the position controller 34 determines the reaction container 20 based on the liquid level calculated by the liquid level calculator 34e. It is determined whether or not the reagent is dispensed in the inside (step S208). When the reagent is not dispensed in the reaction container 20 (step S208: No), the selection unit 34d selects the bottom surface discharge method ((k) to (m) shown in FIG. 4), and the drive control unit 34f. Drives the drive unit 43, lowers the tip of the dispensing nozzle 41 to the bottom surface in the reaction vessel 20 (step S209), and proceeds to step S212. On the other hand, when the reagent is dispensed in the reaction container 20 (step S208: Yes), the selection unit 34d selects the submerged discharge method ((h) to (j) shown in FIG. 4) and drives it. The controller 34f drives the drive unit 43 to lower the tip of the dispensing nozzle 41 to a position below the liquid level stored in the reaction container 20 (step S210), and the process proceeds to step S212.
 これに対して、吸引した検体の粘度が空中で吐出可能な粘度の範囲内である場合(ステップS207:Yes)、選択部34dは、空中吐出方式(図4に示した(d)~(f))を選択し、駆動制御部34fが駆動部43を駆動させ、反応容器20内に収容された液体液面より上方の位置まで分注ノズル41の先端部を下降させ(ステップS211)、ステップS212に移行する。 On the other hand, when the viscosity of the aspirated specimen is within the range of the viscosity that can be discharged in the air (step S207: Yes), the selection unit 34d uses the air discharge method ((d) to (f) shown in FIG. )) Is selected, and the drive control unit 34f drives the drive unit 43 to lower the tip of the dispensing nozzle 41 to a position above the liquid level contained in the reaction vessel 20 (step S211). The process proceeds to S212.
 その後、駆動制御部34fは、プランジャ駆動部47を駆動させ、分注ノズル41内に吸引した検体を反応容器20内に吐出させる(ステップS212)。その後、駆動制御部34fは、駆動部43を駆動させ、分注ノズル41を洗浄部13に移送し、分注ノズル41を洗浄させ(ステップS213)、本処理を終了する。 Thereafter, the drive controller 34f drives the plunger driver 47 to discharge the sample sucked into the dispensing nozzle 41 into the reaction container 20 (step S212). Thereafter, the drive control unit 34f drives the drive unit 43, transfers the dispensing nozzle 41 to the cleaning unit 13, cleans the dispensing nozzle 41 (step S213), and ends the present process.
 この実施の形態では、検体分注機構12が吸引した検体の情報および/またはこの吸引した検体に対して予め設定された分析項目をもとに、検体を反応容器20内に吐出する際に分注ノズル41の吐出位置を制御することによって、検体の成分によらず、血漿、血清および血球それぞれの成分を共通の分注ノズルを用いて、反応容器内に検体を規定量で確実に吐出することができる。 In this embodiment, when the sample is discharged into the reaction container 20 based on the information on the sample aspirated by the sample dispensing mechanism 12 and / or the analysis item set in advance for the aspirated sample. By controlling the discharge position of the injection nozzle 41, the sample is reliably discharged into the reaction container in a prescribed amount by using a common dispensing nozzle for each component of plasma, serum and blood cells, regardless of the component of the sample. be able to.
 また、上述した実施の形態では、分注ノズル41内に吸引した検体の検体情報をもとに、吸引した検体の吐出方式を選択していたが、これに限らず、吸引した検体の分析項目の情報、たとえば、血球成分を含む検体の分析項目の情報に応じて検体の吐出方式を選択してもよい。この場合、血球成分を含む検体を分析する分析項目では、液中吐出方式を選択するようにしてもよい。 In the above-described embodiment, the ejection method of the aspirated specimen is selected based on the specimen information of the specimen aspirated into the dispensing nozzle 41. However, the present invention is not limited to this, and the analysis item of the aspirated specimen is selected. The specimen ejection method may be selected in accordance with the above information, for example, the information on the analysis item of the specimen including the blood cell component. In this case, an in-liquid discharge method may be selected as an analysis item for analyzing a sample containing blood cell components.
 また、上述した実施の形態では、吸引した検体の粘度が異常の場合、この検体に対応した第2試薬を分注しないため、試薬の無駄を防止することができる。 Further, in the above-described embodiment, when the viscosity of the aspirated specimen is abnormal, the second reagent corresponding to this specimen is not dispensed, so that waste of the reagent can be prevented.
 また、上述した実施の形態では、吸引した検体を反応容器20に吐出する場合、分注ノズル41を吐出位置まで下降させて吸引した検体を吐出していたが、これに限らず、検体の種類、分析項目および吸引した検体の液量に対応させて、分注ノズル41を吐出位置まで下降後、再度、分注ノズル41を吐出位置から下降または上昇させながら検体を吐出してもよい。 In the above-described embodiment, when the aspirated sample is discharged into the reaction container 20, the dispensed nozzle 41 is lowered to the discharge position and the aspirated sample is discharged. The sample may be discharged while the dispensing nozzle 41 is lowered or raised again from the discharge position after the dispensing nozzle 41 has been lowered to the discharge position in accordance with the analysis item and the amount of the aspirated sample.
 また、上述した実施の形態では、液中吐出方式で吸引した検体を反応容器20内で吐出する場合、分注ノズル41の先端部を反応容器20内の液体液面より下方の位置まで下降させて吐出させていたが、たとえば、反応容器20内の液体液面に分注ノズル41の先端部を接触させて吸引した検体を吐出する液面吐出方式でもよい。これによって、分注ノズル41の先端部に生じる液滴Sを反応容器20内に収容された液体の吸着力を利用することによって除去することができる。なお、液面吐出方式を選択する場合、分析項目に応じて選択し、または分析の開始前に操作者が液面吐出方式を選択するように設定してもよい。 Further, in the above-described embodiment, when the sample sucked by the submerged discharge method is discharged into the reaction container 20, the tip of the dispensing nozzle 41 is lowered to a position below the liquid level in the reaction container 20. However, for example, a liquid level discharge method of discharging the aspirated specimen by bringing the tip of the dispensing nozzle 41 into contact with the liquid level in the reaction vessel 20 may be used. Thereby, the droplet S generated at the tip of the dispensing nozzle 41 can be removed by utilizing the adsorption force of the liquid stored in the reaction container 20. In addition, when selecting a liquid level discharge method, you may select according to an analysis item, or you may set so that an operator may select a liquid level discharge method before the start of an analysis.
 また、上述した実施の形態では、血球成分を含む検体の吐出を行っていたが、これに限らず、分析までの時間の相違に起因して沈降する検体の吐出、たとえば、赤血球、白血球また血小板を含む検体の吐出にも適用できる。 In the above-described embodiment, the specimen containing the blood cell component is ejected. However, the present invention is not limited to this, and ejection of the specimen that settles due to the difference in time until analysis, for example, red blood cells, white blood cells, or platelets The present invention can also be applied to the discharge of a specimen including
 また、上述した実施の形態では、検体容器11aに収容された検体を吸引し、吸引した検体を反応容器20に吐出する場合の検体分注処理であったが、これに限らず、試薬容器14aに収容された試薬を吸引し、吸引した試薬を反応容器20に吐出する試薬分注処理であってもよい。試薬容器14a内に収容された試薬は、時間の経過に伴って水分が蒸発し、粘度が高くなる場合がある。このため、従来の自動分析装置は、規定量で試薬を反応容器に分注することができない場合があった。これに対して、試薬分注機構15が試薬容器14a内から反応容器20内に試薬を分注する際に圧力センサ48が検出する圧力値に基づいて、試薬分注機構15における分注ノズル41の先端部の位置を制御することによって、規定量で試薬を確実に分注することが可能となる。 In the above-described embodiment, the sample dispensing process is performed when the sample contained in the sample container 11a is aspirated and the aspirated sample is discharged into the reaction container 20. However, the present invention is not limited to this, and the reagent container 14a is used. The reagent dispensing process may be performed in which the reagent stored in the container is aspirated and the aspirated reagent is discharged into the reaction container 20. In the reagent stored in the reagent container 14a, the water may evaporate with time and the viscosity may increase. For this reason, the conventional automatic analyzer may not be able to dispense the reagent into the reaction container in a specified amount. On the other hand, based on the pressure value detected by the pressure sensor 48 when the reagent dispensing mechanism 15 dispenses the reagent from the reagent container 14 a into the reaction container 20, the dispensing nozzle 41 in the reagent dispensing mechanism 15. By controlling the position of the tip of the reagent, it is possible to reliably dispense the reagent in a specified amount.
 また、上述した実施の形態では、検体容器11aに収容された検体を吸引し、吸引した検体を反応容器20に吐出する場合の検体分注処理であったが、これに限らず、吸引した検体を反応容器20に吐出する前に、一旦、希釈容器等の別の容器に吐出して希釈し、希釈した検体を反応容器20内に分注するようにしてもよい。 In the above-described embodiment, the sample dispensing process is performed when the sample contained in the sample container 11a is aspirated and the aspirated sample is discharged into the reaction container 20. However, the present invention is not limited to this, and the aspirated sample is used. Before being discharged into the reaction container 20, it may be once discharged and diluted in another container such as a dilution container, and the diluted specimen may be dispensed into the reaction container 20.
 また、上述した実施の形態では、検体の分注毎に分注ノズル41の先端部の位置を制御しているため、吐出動作に対応した洗浄処理をすることができ、分注ノズル41を洗浄する洗浄液を削減することができる。 In the above-described embodiment, since the position of the tip of the dispensing nozzle 41 is controlled every time the sample is dispensed, a cleaning process corresponding to the discharge operation can be performed, and the dispensing nozzle 41 is cleaned. It is possible to reduce the amount of cleaning liquid.
 また、上述した実施の形態では、試薬庫および試薬分注機構を1つ備えた場合であったが、試薬庫および試薬分注装置それぞれが2つであってもよい。 Further, in the above-described embodiment, although one reagent storage and one reagent dispensing mechanism are provided, two reagent storages and two reagent dispensing devices may be provided.
 図1に示される制御機構3の記憶部35(図2にも記憶部が示される)には、自動分析装置1によって実行される処理を制御する制御プログラムがインストールされている。一般に、このような制御プログラムをコンピュータのメモリにインストールすることによって、そのコンピュータを制御機構3(図1。なお、図2では図示されていない)の一部または全部として機能させることが可能である。このような制御プログラムは、コンピュータの出荷前にメモリにインストールされてもよいし、コンピュータの出荷後にメモリにインストールされてもよい。記録媒体に記録されたプログラムを読み出すことによってプログラムをコンピュータのメモリにインストールしてもよいし、インターネット等のネットワーク経由でダウンロードされたプログラムをコンピュータのメモリにインストールしてもよい。コンピュータとしては任意のタイプのコンピュータを使用することが可能である。 上記に詳述した図5および図6の全部または一部の機能は、ソフトウェア(例えば、プログラムによって実現されることに限定されない。図5および図6に示される各ステップの機能をハードウェア(例えば、回路、ボード、半導体チップ)によって実現してもよいし、ソフトウェアとハードウェアとの組み合わせによって実現してもよい。 A control program for controlling processing executed by the automatic analyzer 1 is installed in the storage unit 35 (also shown in FIG. 2) of the control mechanism 3 shown in FIG. Generally, by installing such a control program in the memory of a computer, the computer can function as part or all of the control mechanism 3 (FIG. 1, not shown in FIG. 2). . Such a control program may be installed in the memory before the computer is shipped, or may be installed in the memory after the computer is shipped. The program may be installed in the computer memory by reading the program recorded in the recording medium, or the program downloaded via a network such as the Internet may be installed in the computer memory. Any type of computer can be used as the computer. 5 and 6 described in detail above are not limited to being implemented by software (for example, a program. For example, the functions of the steps shown in FIGS. 5 and 6 are performed by hardware (for example, , Circuit, board, semiconductor chip) or a combination of software and hardware.
 以上のように、本発明の好ましい実施形態を用いて本発明を例示してきたが、本発明は、この実施形態に限定して解釈されるべきものではない。本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。当業者は、本発明の具体的な好ましい実施形態の記載から、本発明の記載および技術常識に基づいて等価な範囲を実施することができることが理解される。本明細書において引用した特許、特許出願および文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。 As described above, the present invention has been exemplified using the preferred embodiment of the present invention, but the present invention should not be construed as being limited to this embodiment. It is understood that the scope of the present invention should be construed only by the claims. It is understood that those skilled in the art can implement an equivalent range from the description of specific preferred embodiments of the present invention based on the description of the present invention and common general technical knowledge. Patents, patent applications, and documents cited herein should be incorporated by reference in their entirety, as if the contents themselves were specifically described herein. Understood.
 本出願は、日本国出願特願2009-150034に対して優先権を主張するものであり、その全体の内容は、具体的に本明細書に記載されているのと同様に本明細書の一部を構成するものとして援用されるべきであることが理解される。 This application claims priority to Japanese Patent Application No. 2009-150034, and the entire contents thereof are the same as those described in this specification. It should be understood that it should be incorporated as a component.
 以上のように、本発明の分注装置、自動分析装置およびその制御方法は、検体と試薬との反応物を分析する分析装置に有用であり、特に、検体の成分によらず、容器内に検体を規定量で確実に吐出することが要求される分野に適している。 As described above, the dispensing device, the automatic analyzer, and the control method thereof according to the present invention are useful for an analyzer that analyzes a reaction product of a sample and a reagent, and in particular, in a container regardless of the components of the sample. It is suitable for the field where it is required to discharge the specimen in a specified amount.
 1        自動分析装置
 2        測定機構
 3        制御機構
 11       検体移送部
 11a      検体容器
 11b      検体ラック
 11c      検体容器読取部
 12       検体分注機構
 13,18    洗浄部
 14       試薬庫
 14a      試薬容器
 15       試薬分注機構
 16       攪拌部
 17       測光部
 19       反応槽
 20       反応容器
 31       制御部
 32       入力部
 33       分析部
 34       位置制御部
 34a      取得部
 34b      粘度算出部
 34c      判定部
 34d      選択部
 34e      液面算出部
 34f      駆動制御部
 35       記憶部
 36       出力部
 41       分注ノズル
 42       アーム
 43       駆動部
 44       連結部
 45,52,53 配管
 46       分注ポンプ
 46a      プランジャ
 47       プランジャ駆動部
 48       圧力センサ
 48a      増幅回路
 48b      処理部
 48c      検出部
 49       電磁弁
 50       洗浄水ポンプ
 51       洗浄水タンク
 La       試薬
 R1       血漿層
 R2       血球層
 S        液滴
 Wa       洗浄水
DESCRIPTION OF SYMBOLS 1 Automatic analyzer 2 Measurement mechanism 3 Control mechanism 11 Specimen transfer part 11a Specimen container 11b Specimen rack 11c Specimen container reading part 12 Specimen dispensing mechanism 13, 18 Washing part 14 Reagent storage 14a Reagent container 15 Reagent dispensing mechanism 16 Stirring part 17 Photometry unit 19 Reaction tank 20 Reaction vessel 31 Control unit 32 Input unit 33 Analysis unit 34 Position control unit 34a Acquisition unit 34b Viscosity calculation unit 34c Determination unit 34d Selection unit 34e Liquid level calculation unit 34f Drive control unit 35 Storage unit 36 Output unit 41 Dispensing nozzle 42 Arm 43 Drive part 44 Connection part 45, 52, 53 Piping 46 Dispensing pump 46a Plunger 47 Plunger drive part 48 Pressure Sensor 48a amplifier 48b processor 48c detector 49 solenoid valve 50 the washing water pump 51 the washing water tank La reagent R1 plasma layer R2 blood cell layer S droplet Wa washing water

Claims (10)

  1. 検体を分析する自動分析装置であって、前記自動分析装置は、
     分注ポンプと分注ノズルとを管路で連結し、前記分注ポンプを吸排動作させることによって前記分注ノズル内に検体容器内から前記検体を吸引し、吸引した前記検体を容器に吐出して分注する分注手段と、
     前記吸引した検体と試薬とを反応させる反応手段と、
     前記反応手段で得られた反応液の吸光度を測定する測定手段と、
     前記検体を分析する分析手段と、
     前記吸引した検体の検体情報および前記検体に対して予め設定された分析項目の情報を取得する取得手段と、
     前記取得手段が取得した前記検体情報および/または前記分析項目の情報をもとに、前記分注ノズルによる前記吸引した検体の吐出位置を制御する位置制御手段と、
     を備える、自動分析装置。
    An automatic analyzer for analyzing a sample, wherein the automatic analyzer is
    The dispensing pump and the dispensing nozzle are connected by a pipe line, and the dispensing pump is sucked and discharged to suck the sample from the sample container into the dispensing nozzle and discharge the sucked sample to the container. Dispensing means for dispensing,
    Reaction means for reacting the aspirated specimen and reagent;
    Measuring means for measuring the absorbance of the reaction solution obtained by the reaction means;
    An analysis means for analyzing the specimen;
    Acquisition means for acquiring sample information of the aspirated sample and information of an analysis item set in advance for the sample;
    Position control means for controlling a discharge position of the aspirated specimen by the dispensing nozzle based on the specimen information and / or the analysis item information obtained by the obtaining means;
    An automatic analyzer.
  2.  前記検体を吸引した際に前記管路内の圧力を検出する圧力検出手段と、
     前記圧力検出手段が検出した圧力の時間的な変化をもとに、前記検体情報としての前記吸引した検体の粘度を算出する粘度算出手段と、
     前記粘度算出手段が算出した前記吸引した検体の粘度が、吐出可能な粘度であるか否かを判定する判定手段と、
     前記判定手段が前記吸引した検体の粘度を吐出可能な粘度であると判定した場合に、前記吸引した検体の粘度に応じて検体を吐出する吐出方式を選択する選択手段と、
     をさらに備え、
     前記選択手段は、前記吸引した検体の粘度が所定の閾値を超えた場合に、液中で検体を吐出する液中吐出方式を選択する、請求項1に記載の自動分析装置。
    Pressure detecting means for detecting the pressure in the conduit when the sample is aspirated;
    Viscosity calculating means for calculating the viscosity of the aspirated specimen as the specimen information based on the temporal change in pressure detected by the pressure detecting means;
    Determining means for determining whether or not the viscosity of the aspirated specimen calculated by the viscosity calculating means is a dischargeable viscosity;
    A selection unit that selects a discharge method for discharging a sample according to the viscosity of the aspirated sample when the determination unit determines that the viscosity of the aspirated sample is a dischargeable viscosity;
    Further comprising
    2. The automatic analyzer according to claim 1, wherein the selection unit selects a submerged discharge method that discharges a specimen in a liquid when the viscosity of the aspirated specimen exceeds a predetermined threshold.
  3.  前記容器内に収容された液体の液面高さを算出する液面算出手段を備え、
     前記位置制御手段は、前記選択手段が選択した吐出方式と前記液面算出手段が算出した液面高さに応じて、前記吸引した検体の吐出位置を制御する、請求項2に記載の自動分析装置。
    A liquid level calculating means for calculating the liquid level height of the liquid contained in the container;
    3. The automatic analysis according to claim 2, wherein the position control unit controls the discharge position of the aspirated sample according to the discharge method selected by the selection unit and the liquid level height calculated by the liquid level calculation unit. apparatus.
  4.  前記分析項目は、血球成分を含む検体を分析する項目である、請求項1に記載の自動分析装置。 2. The automatic analyzer according to claim 1, wherein the analysis item is an item for analyzing a sample containing a blood cell component.
  5. 分注ポンプと分注ノズルとを管路で連結し、前記分注ポンプを吸排動作させることによって前記分注ノズル内に検体容器内から検体を吸引し、吸引した検体を容器に吐出して分注する分注装置を備え、前記容器内で検体と試薬とを反応させ、この反応液の吸光度を測定し、前記検体を分析する自動分析装置を制御する方法であって、前記方法は、
     )前記吸引した検体の検体情報および前記検体に対して予め設定された分析項目の情報を取得するステップと、
     )前記情報を取得するステップにおいて取得した前記検体情報および/または前記分析項目の情報をもとに、前記分注ノズルによる前記吸引した検体の吐出位置を制御するステップと、を包含する方法。
    A dispensing pump and a dispensing nozzle are connected by a pipe line, and a sample is sucked into the dispensing nozzle from the sample container by sucking and discharging the dispensing pump, and the sucked sample is discharged into the container for dispensing. A method of controlling an automatic analyzer that comprises a dispensing device for pouring, reacts a sample with a reagent in the container, measures the absorbance of the reaction solution, and analyzes the sample,
    ) Obtaining specimen information of the aspirated specimen and information on analysis items set in advance for the specimen;
    ) Controlling the discharge position of the aspirated sample by the dispensing nozzle based on the sample information and / or the analysis item information acquired in the step of acquiring the information.
  6. 前記検体を吸引した際に前記管路内の圧力を検出するステップと、
    前記検出した圧力の時間的な変化をもとに、前記検体情報としての前記吸引した検体の粘度を算出するステップと、
    前記算出した前記吸引した検体の粘度が、吐出可能な粘度であるか否かを判定するステップと、
    前記判定において前記吸引した検体の粘度を吐出可能な粘度であると判定した場合に、前記吸引した検体の粘度に応じて検体を吐出する吐出方式を選択するステップであって、前記吸引した検体の粘度が所定の閾値を超えた場合に、液中で検体を吐出する液中吐出方式を選択するステップと
    を包含する、請求項5に記載の方法。
    Detecting the pressure in the conduit when the sample is aspirated;
    Calculating the viscosity of the aspirated specimen as the specimen information based on the temporal change in the detected pressure;
    Determining whether or not the calculated viscosity of the aspirated specimen is a dischargeable viscosity;
    A step of selecting a discharge method for discharging a sample according to the viscosity of the aspirated sample when it is determined in the determination that the viscosity of the aspirated sample is a dischargeable viscosity; The method according to claim 5, further comprising a step of selecting a submerged ejection method for ejecting the specimen in the liquid when the viscosity exceeds a predetermined threshold value.
  7. 前記容器内に収容された液体の液面高さを算出するステップと
    前記吐出位置を制御するステップは、前記選択した吐出方式および前記算出した液面高さに応じて、前記吸引した検体の吐出位置を制御するステップと
    を包含する、請求項6に記載の方法。
    The step of calculating the liquid level height of the liquid stored in the container and the step of controlling the discharge position include discharging the aspirated specimen according to the selected discharge method and the calculated liquid level height. And controlling the position.
  8. 前記分析項目は、血球成分を含む検体を分析する項目である請求項5に記載の方法。 The method according to claim 5, wherein the analysis item is an item for analyzing a specimen containing a blood cell component.
  9. 分注ポンプと分注ノズルとを管路で連結し、前記分注ポンプを吸排動作させることによって前記分注ノズル内に検体容器内から検体を吸引し、吸引した検体を容器に吐出して分注する分注装置を備え、前記容器内で検体と試薬とを反応させ、この反応液の吸光度を測定し、前記検体を分析する自動分析装置において用いられる制御プログラムであって、前記制御プログラムは、前記自動分析装置を制御する方法を実装するためのものであり、前記方法は、
     )前記吸引した検体の検体情報および前記検体に対して予め設定された分析項目の情報を取得するステップと、
     )前記情報を取得するステップにおいて取得した前記検体情報および/または前記分析項目の情報をもとに、前記分注ノズルによる前記吸引した検体の吐出位置を制御するステップと、を包含する制御プログラム。
    A dispensing pump and a dispensing nozzle are connected by a pipe line, and a sample is sucked into the dispensing nozzle from the sample container by sucking and discharging the dispensing pump, and the sucked sample is discharged into the container for dispensing. A control program for use in an automatic analyzer that comprises a dispensing device for pouring, reacts a sample with a reagent in the container, measures the absorbance of the reaction solution, and analyzes the sample, , For implementing a method for controlling the automatic analyzer, the method comprising:
    ) Obtaining specimen information of the aspirated specimen and information on analysis items set in advance for the specimen;
    And a step of controlling a discharge position of the aspirated sample by the dispensing nozzle based on the sample information and / or the analysis item information acquired in the step of acquiring the information.
  10. 分注ポンプと分注ノズルとを管路で連結し、前記分注ポンプを吸排動作させることによって前記分注ノズル内に検体容器内から検体を吸引し、吸引した検体を容器に吐出して分注する分注装置を備え、前記容器内で検体と試薬とを反応させ、この反応液の吸光度を測定し、前記検体を分析する自動分析装置において用いられる制御プログラムを記録したコンピュータ読み取り可能な記録媒体であって、前記制御プログラムは、前記自動分析装置を制御する方法を実装するためのものであり、前記方法は、
     )前記吸引した検体の検体情報および前記検体に対して予め設定された分析項目の情報を取得するステップと、
     )前記情報を取得するステップにおいて取得した前記検体情報および/または前記分析項目の情報をもとに、前記分注ノズルによる前記吸引した検体の吐出位置を制御するステップと、を包含する記録媒体。
    A dispensing pump and a dispensing nozzle are connected by a pipe line, and a sample is sucked into the dispensing nozzle from the sample container by sucking and discharging the dispensing pump, and the sucked sample is discharged into the container for dispensing. A computer-readable record provided with a dispensing device for injecting, reacting a sample and a reagent in the container, measuring the absorbance of the reaction solution, and recording a control program used in the automatic analyzer for analyzing the sample The control program is for implementing a method for controlling the automatic analyzer, the method comprising:
    ) Obtaining specimen information of the aspirated specimen and information on analysis items set in advance for the specimen;
    And) controlling a discharge position of the aspirated sample by the dispensing nozzle based on the sample information and / or the analysis item information acquired in the step of acquiring the information.
PCT/JP2010/004098 2009-06-24 2010-06-18 Automatic analysis device WO2010150502A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-150034 2009-06-24
JP2009150034A JP2011007568A (en) 2009-06-24 2009-06-24 Automatic analysis device

Publications (1)

Publication Number Publication Date
WO2010150502A1 true WO2010150502A1 (en) 2010-12-29

Family

ID=43386289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/004098 WO2010150502A1 (en) 2009-06-24 2010-06-18 Automatic analysis device

Country Status (2)

Country Link
JP (1) JP2011007568A (en)
WO (1) WO2010150502A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131682B2 (en) 2016-09-23 2021-09-28 Hitachi High-Tech Corporation Automatic analyzer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6635661B2 (en) * 2015-02-26 2020-01-29 株式会社日立ハイテクノロジーズ Automatic analyzer and sample dilution stirring method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174603A (en) * 1992-12-10 1994-06-24 Olympus Optical Co Ltd Dispensing device for automatic analyzer
JP2002340915A (en) * 2001-05-21 2002-11-27 Aloka Co Ltd Dispenser and dispensing method
JP2003028886A (en) * 2001-07-17 2003-01-29 Aloka Co Ltd Dispensing apparatus
JP2008224385A (en) * 2007-03-12 2008-09-25 Olympus Corp Analyzer and analytical method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06174603A (en) * 1992-12-10 1994-06-24 Olympus Optical Co Ltd Dispensing device for automatic analyzer
JP2002340915A (en) * 2001-05-21 2002-11-27 Aloka Co Ltd Dispenser and dispensing method
JP2003028886A (en) * 2001-07-17 2003-01-29 Aloka Co Ltd Dispensing apparatus
JP2008224385A (en) * 2007-03-12 2008-09-25 Olympus Corp Analyzer and analytical method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131682B2 (en) 2016-09-23 2021-09-28 Hitachi High-Tech Corporation Automatic analyzer

Also Published As

Publication number Publication date
JP2011007568A (en) 2011-01-13

Similar Documents

Publication Publication Date Title
JP5686744B2 (en) Automatic analyzer
US20120003731A1 (en) Analyzer and method for washing dispenser probe
JP4938082B2 (en) Cleaning device, suction nozzle clogging detection method, and automatic analyzer
WO2011043073A1 (en) Dispensing device, analyzing device, and dispensing method
US9052300B2 (en) Methods, systems, and apparatus to determine a clot carryout condition upon probe retraction during sample aspiration and dispensing
US20100284862A1 (en) Cleaning equipment and analyzer
EP2019321A1 (en) Cleaning equipment and automatic analyzer
JP2004271266A (en) Dispensing device and autoanalyzer using the same
JP5583337B2 (en) Automatic analyzer and its dispensing method
JP6368536B2 (en) Automatic analyzer and analysis method
JP5199785B2 (en) Blood sample detection method, blood sample dispensing method, blood sample analysis method, dispensing apparatus, and blood sample type detection method
JP2010071766A (en) Dispensing device, automatic analyzing apparatus, and dispensing failure confirming method
JP5111328B2 (en) Automatic analyzer
JP2008249651A (en) Liquid dispenser, specimen measuring instrument, and liquid dispensing method
WO2010150502A1 (en) Automatic analysis device
JP2010271203A (en) Sampling method of liquid, and automatic analyzer
JP5374092B2 (en) Automatic analyzer and blood sample analysis method
JP3120180U (en) Automatic analyzer
JP2010190588A (en) Automatic analysis apparatus
JP2007322394A (en) Dispensing device and automated analyzer
JP2005017144A (en) Automatic analyzer
WO2007132632A1 (en) Cleaning equipment and automatic analyzer
WO2021079645A1 (en) Automatic analysis device and method for dispensing reagent
JP7269869B2 (en) Automatic analyzer and dispensing method
JP2015031586A (en) Analyzer and liquid suction device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10791825

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10791825

Country of ref document: EP

Kind code of ref document: A1