WO2009157185A1 - 痛み判定装置 - Google Patents
痛み判定装置 Download PDFInfo
- Publication number
- WO2009157185A1 WO2009157185A1 PCT/JP2009/002866 JP2009002866W WO2009157185A1 WO 2009157185 A1 WO2009157185 A1 WO 2009157185A1 JP 2009002866 W JP2009002866 W JP 2009002866W WO 2009157185 A1 WO2009157185 A1 WO 2009157185A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- component
- pain
- interval
- related value
- wave height
- Prior art date
Links
- 238000004458 analytical method Methods 0.000 claims description 35
- 238000005259 measurement Methods 0.000 claims description 20
- 238000000034 method Methods 0.000 claims description 8
- 230000008030 elimination Effects 0.000 claims description 7
- 238000003379 elimination reaction Methods 0.000 claims description 7
- 230000003183 myoelectrical effect Effects 0.000 claims description 6
- 230000000241 respiratory effect Effects 0.000 claims description 4
- 230000000202 analgesic effect Effects 0.000 description 7
- 238000004364 calculation method Methods 0.000 description 7
- 230000008859 change Effects 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 230000002123 temporal effect Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 230000007704 transition Effects 0.000 description 5
- 238000012952 Resampling Methods 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000000306 qrs interval Methods 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 2
- 239000000730 antalgic agent Substances 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 229960005195 morphine hydrochloride Drugs 0.000 description 2
- XELXKCKNPPSFNN-BJWPBXOKSA-N morphine hydrochloride trihydrate Chemical compound O.O.O.Cl.O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O XELXKCKNPPSFNN-BJWPBXOKSA-N 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 229940100688 oral solution Drugs 0.000 description 2
- 206010023825 Laryngeal cancer Diseases 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000007794 irritation Effects 0.000 description 1
- 206010023841 laryngeal neoplasm Diseases 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/48—Other medical applications
- A61B5/4824—Touch or pain perception evaluation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/347—Detecting the frequency distribution of signals
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/24—Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
- A61B5/316—Modalities, i.e. specific diagnostic methods
- A61B5/318—Heart-related electrical modalities, e.g. electrocardiography [ECG]
- A61B5/346—Analysis of electrocardiograms
- A61B5/349—Detecting specific parameters of the electrocardiograph cycle
- A61B5/352—Detecting R peaks, e.g. for synchronising diagnostic apparatus; Estimating R-R interval
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/72—Signal processing specially adapted for physiological signals or for diagnostic purposes
- A61B5/7203—Signal processing specially adapted for physiological signals or for diagnostic purposes for noise prevention, reduction or removal
Definitions
- This invention relates to a technique for making the presence of pain objective.
- Patent Document 1 a method of quantifying pain by passing a scale indicating the degree of pain to a patient, moving the cursor according to the degree of pain of the patient, and reading the cursor is used. It has been.
- the pain measurement in the prior art is based on the self-report of the patient, so that there is a problem that it is difficult to collect objective data.
- An object of the present invention is to provide a technique that can solve the above problems and can objectively judge pain.
- a pain determination device includes an electrocardiogram information acquisition unit that acquires electrocardiogram information measured by a measurement unit, and pain that determines pain based on fluctuations related to a pulse height related value of the electrocardiogram information.
- a determination unit ; and an output unit configured to output a determination result obtained by the pain determination unit.
- the pain determination apparatus is characterized in that the fluctuation relating to the wave height related value is fluctuation of a characteristic value of P wave, Q wave, R wave, S wave, T wave or ST.
- the pain determination device is characterized in that the pain determination means includes noise elimination means for improving the accuracy of pain determination based on fluctuation related to the wave height related value.
- the noise eliminating means eliminates noise using the fluctuation of the interval between the feature points of the electrocardiographic waveform, myoelectric information or skin resistance or skin potential measured by the second measuring unit as an index. It is characterized by making judgments.
- the pain judging means is obtained by a wave height related value frequency analyzing means for frequency analysis of the wave height related value obtained as time series data, and the wave height related value frequency analyzing means.
- a wave height related value LF component calculating means for calculating an LF component based on the frequency component of the wave height related value to obtain the wave height related value LF component, and obtaining the wave height related value LF component as a characteristic of fluctuation of the wave height related value. It is characterized by that.
- the pain determination device is characterized in that the pain determination means determines that there is pain when the wave height related value LF component increases.
- the pain determination means includes an interval frequency analysis means for analyzing the frequency of the waveform feature points of the electrocardiogram information obtained as time series data, and the interval frequency analysis means.
- Interval HF component calculating means for calculating an HF component based on the obtained frequency component of the interval between the waveform feature points to obtain the interval HF component, and obtaining the interval HF component as a feature of interval fluctuation. Yes.
- the accuracy of pain determination can be increased by observing the interval HF component.
- the interval HF component is an index indicating a respiratory fluctuation component obtained from the frequency component of the interval between the waveform feature points obtained by the interval frequency analysis means. Yes.
- the pain determination device is characterized in that the pain determination means determines that there is pain when the interval HF component does not decrease and the wave height related value LF component increases.
- the pain determination means is obtained by a wave height related value frequency analyzing means for frequency analysis of the wave height related value obtained as time series data, and the wave height related value frequency analyzing means.
- a wave height related value HF component calculating means for calculating an HF component based on the frequency component of the wave height related value to obtain a wave height related value HF component, and obtaining the wave height related value HF component as a characteristic of fluctuation of the wave height related value. It is characterized by that.
- the pain determination means determines that there is pain when the interval HF component does not decrease and both the wave height related value LF component and the wave height related value HF component increase. It is characterized by.
- the “electrocardiogram waveform measurement unit” refers to a device having a function of measuring an electrocardiogram waveform to be measured, such as an electrocardiograph.
- the ECG electrode 20 and the amplification amplifier 22 in FIG. 2 correspond to this.
- “pain determination means” corresponds to steps S3 to S7 in FIG. 3 and steps S8 to S14 in FIG.
- interval frequency analysis means corresponds to steps S5 and S6 in FIG.
- interval waveform HF component calculation means corresponds to step S7 in FIG.
- wave height related value frequency analysis means corresponds to steps S8 and S9 in FIG.
- wave height related value LF component calculating means corresponds to step S10 in FIG.
- the “output means” means a device having a function of outputting the determination result in some form, and is a concept including a communication unit for outputting to a display, a printer, another computer, a recording medium, and the like, and transmitting. .
- Electrocardiogram information is a concept that includes not only ECG waveform data but also the values of the characteristic portions of the ECG waveform.
- the wave height related value is a concept including not only the wave height peak value but also values related to the wave shape such as the wave height average value and the waveform area.
- the “electrocardiogram information acquisition unit” is a concept including a circuit that receives a signal from a measurement unit, a drive that reads data from a recording medium, and a reception unit that receives data sent by communication.
- the fluctuation of the characteristic value of P wave, Q wave, R wave, S wave, T wave or ST means fluctuation of the characteristic value (peak value, average value, etc.) characterizing the P wave.
- Program is a concept that includes not only a program that can be directly executed by the CPU but also a source-format program, a compressed program, an encrypted program, and the like.
- FIG. 4 is a diagram showing data for each beat recorded in the hard disk 32. 4 is a diagram showing average data recorded in a hard disk 32 for 5 seconds.
- FIG. It is a figure which shows the spline complementation of RR interval and R wave peak value. It is a figure which shows calculation of LF component and HF component. It is a figure which shows the measurement example data of a pain determination apparatus.
- FIG. 1 shows a functional block diagram of a pain determination device according to an embodiment of the present invention.
- the electrocardiogram information acquisition unit 2 acquires electrocardiogram information of the subject.
- the wave height related value acquisition means 10 acquires a wave height related value (for example, an R wave peak value (R wave peak value)) for each period based on the obtained electrocardiogram.
- the pulse height related value acquisition means 10 may acquire data including a pulse height related value in advance, or may acquire this by calculating a pulse height related value based on electrocardiogram data.
- the wave height related value frequency analysis means 12 performs frequency analysis on the wave height related value obtained as time series data, and obtains the magnitude for each frequency component.
- the wave height related value LF calculating means 14 calculates an LF component (wave height related value LF component) based on the frequency component of the wave height related value.
- the interval acquisition means 4 acquires the interval between the feature points of the electrocardiogram waveform (for example, the time interval between the R wave and the R wave (RR interval)) based on the obtained electrocardiogram.
- the interval acquisition unit 4 may acquire data including the interval between feature points in advance, or may acquire this by calculating the interval between feature points based on electrocardiogram data.
- the interval frequency analysis means 6 performs frequency analysis on the interval between feature points obtained as time series data, and obtains the size of each frequency component.
- the interval HF component calculation unit 8 calculates an HF component (interval HF component) based on the frequency component of the feature point interval obtained by the interval frequency analysis unit 6.
- Analyzing means 16 determines the presence and extent of pain as follows based on changes in the wave height related value LF component and the interval HF component.
- the analysis unit 16 determines pain based on the wave height related value LF component. It is assumed that there is a possibility of pain if the wave height related value LF component is larger than normal. In addition, if the wave height related value LF component is the same as or decreased in normal times, there is no possibility of pain.
- the analysis means 16 is in pain when the pulse height-related value LF component is larger than normal and there is a possibility of pain, but when the interval HF component is smaller than normal. Do not make a judgment.
- the analysis means 16 determines that the pulse height-related value LF component is painful when the LF component is higher than normal and the interval HF component is the same as or higher than normal. At this time, the analysis means 16 determines the magnitude of the peak of the wave height related value LF component as the degree of pain.
- the wave height related value acquisition means 10 the wave height related value frequency analysis means 12, the wave height related value LF component calculation means 14, the interval acquisition means 4, the interval frequency analysis means 6, and the interval HF component calculation means 8 Pain determination means 3 is configured.
- the interval calculating means 4, the interval frequency analyzing means 6, and the interval HF calculating means 8 constitute noise eliminating means.
- the output means 17 outputs the pain determination result analyzed as described above to a display or the like.
- FIG. 2 shows a hardware configuration when the pain determination device according to the embodiment is realized by using the CPU 26.
- An A / D converter 24, a display 28, a memory 30, a hard disk 32, and an operation unit 34 are connected to the CPU 26.
- the ECG electrode 20 is attached to the subject's body in order to acquire the subject's electrocardiogram signal.
- An electrocardiogram signal from the ECG electrode 20 is amplified by an amplification amplifier 22 and converted into an electrocardiographic waveform signal of digital data by an A / D converter 24.
- the A / D converter 24 accumulates the generated digital data in the memory 30.
- the memory 30 is used as a work area for the CPU 26.
- the display 28 displays determination results and the like.
- the operation unit 34 is a button for performing an operation input by the operator.
- the hard disk 32 stores a program for pain determination.
- step S ⁇ b> 1 the CPU 26 takes in the electrocardiographic waveform data accumulated in the memory 30.
- the electrocardiogram waveform is digital data obtained by sampling a change in potential every predetermined time, and is schematically shown in FIG.
- the CPU 26 recognizes one beat of the acquired electrocardiogram waveform (step S2). For example, a wave having a peak point exceeding a predetermined value is recognized and is designated as an R wave. And let the bottom wave just before this R wave be Q wave, and let the start point of Q wave be the start point of one beat. Similarly, one beat is recognized by recognizing the start point of the next beat. Also, the bottom wave immediately after the R wave is taken as the S wave, and the flat part after the end of the S wave is recognized as the ST part.
- step S3 corresponds to the interval acquisition means.
- step S4 corresponds to the wave height related value acquisition means. Therefore, if the processing is continued, as shown in FIG. 6a, the RR interval and the R wave peak value for each beat are recorded on the hard disk 32.
- R indicates the R peak value
- RR indicates the RR interval.
- the absolute time indicates the measurement time
- the relative time indicates the time when the measurement start is 0.
- feature values other than the RR interval and the R wave peak value are also recorded.
- P is P wave peak value
- Q is Q wave peak value
- S is S wave peak value
- ST is ST value
- T is T wave peak value
- PR is P wave and R wave interval
- VAT is Q wave and R wave interval
- QRS Is the interval between the Q wave and the S wave
- QT is the interval between the Q wave and the T wave.
- the CPU 26 calculates a waveform representing the temporal variation of the RR interval (step S5). For example, as shown in FIG. 6b, the temporal variation of the average value of 5 seconds of the RR interval is calculated based on the data of FIG. 6a.
- FIG. 7A the time variation of the average value of the RR intervals in FIG. 6b is plotted as indicated by P on a plane with time on the horizontal axis and RR intervals on the vertical axis. The time interval of the plot with respect to the horizontal axis may correspond to the actual time of one beat. Since the temporal variation of the RR interval is a discrete value for each beat, it is connected with a smooth waveform ⁇ by spline interpolation as shown in FIG. 7A.
- the CPU 26 resamples at a time interval (for example, several tens of milliseconds) smaller than one beat based on the generated RR interval fluctuation waveform ⁇ to obtain time series data of the RR interval.
- the time series data is subjected to frequency analysis (for example, Fourier transform, wavelet transform, etc.), and a value for each frequency component is calculated (step S6).
- the value obtained by this frequency analysis is calculated for each unit time interval of resampling.
- FIG. 8 shows the waveform of the frequency analysis obtained in this way.
- the vertical axis represents power spectral density (unit: square root of msec 2 ⁇ Hz), and the horizontal axis represents frequency (unit: Hz).
- a wave having a peak appearing at a low frequency is called VLF, the next wave is called LF, and the next wave is called HF (representing a respiratory fluctuation component).
- the CPU 26 calculates an average value of HF waves.
- the CPU 26 calculates the average value of HF as follows. First, find a local maximum between 0.15Hz and 0.4Hz (or up to 2Hz). Next, a waveform in a section of 0.15 Hz before and after is extracted from the maximum value, and the area is calculated using the minimum value as a base line (see FIG. 8). By dividing this by the frequency width (0.3 Hz), an average value is calculated and used as the RR interval HF component (unit: msec / (square root of Hz)).
- the CPU 26 calculates an average value for 5 seconds of the RR interval HF component calculated for each unit time of resampling, and records it in the hard disk 32 (step S7).
- FIG. 9 shows a recording example of the RR interval HF component. In the figure, the item indicated by HF Amplitude is the RR interval HF component.
- the CPU 26 calculates a waveform representing the temporal fluctuation of the R wave peak value (step S8).
- a waveform representing the temporal fluctuation of the R wave peak value For example, as shown in FIG. 7B, on a plane with time on the horizontal axis and R wave peak value on the vertical axis, Q shows the temporal variation of the average value of the R wave peak value over 5 seconds based on the data in FIG. Plot as The time interval of the plot with respect to the horizontal axis may correspond to the actual time of one beat. Since the temporal fluctuation of the R wave peak value is a discrete value for each beat, it is connected with a smooth waveform ⁇ by spline interpolation or the like as shown in FIG. 7B.
- the CPU 26 resamples at a time interval (for example, several tens of ms) smaller than one beat based on the generated R wave peak value waveform ⁇ to obtain time series data of the R wave peak value.
- the time series data is subjected to frequency analysis (for example, Fourier transform, wavelet transform, etc.), and a value for each frequency component is calculated (step S9).
- the value obtained by this frequency analysis is calculated for each unit time interval of resampling.
- Fig. 8 shows the waveform of the frequency analysis obtained in this way.
- the CPU 26 calculates the R wave peak value LF component with respect to the frequency analysis waveform of the R wave peak value, which is time series data, by the same calculation method as the above-described RR interval HF component.
- the CPU 26 calculates the average value of the R wave peak value LF as follows. First, a waveform in the section of 0.04 Hz to 0.15 Hz is extracted, and the area is calculated using the minimum value as a base line (see FIG. 8). By dividing this by the frequency width (0.11 Hz), an average value is calculated and used as the R wave peak value LF component (unit: msec / (square root of Hz)).
- the CPU 26 calculates an average value for 5 seconds of the R wave peak value LF component calculated for each unit time of resampling, and records it in the hard disk 32 (step S10).
- FIG. 10 shows a recording example of the R wave peak value LF component.
- the item indicated by LF Amplitude is the R wave peak value LF component.
- the CPU 26 determines whether or not the RR interval HF component to be determined (the above average value for 5 seconds) has decreased from the reference HF component (step S11).
- the reference HF is an RR interval HF component in the normal state of the subject. What is measured in advance may be recorded as a reference HF component, or an average value of RR interval HF components for a predetermined time in the current measurement may be used. The same applies to a reference LF component described later.
- the RR interval HF component is smaller than the reference HF component, it is determined that there is no “pain” in the beat (step S14).
- the CPU 26 determines whether or not the R wave peak value LF component to be determined next has increased from the reference LF component. (Step S12). If the R wave peak value LF component does not increase from the reference LF component, it is determined that there is no “pain” (step S14). If the R wave peak value LF component increases from the reference LF component, it is determined that there is “pain”. As a pain index, the CPU 26 outputs a value obtained by subtracting the reference value LF component from the R wave peak value LF component (for example, displayed on the display 28). For example, the R wave peak value LF component can be 0.04 mV / Hz 1/2 and the R wave peak value HF component can be 0.03 mV / Hz 1/2 .
- step S1 the process returns to step S1 to execute the next process. In this way, the presence or absence of pain is detected in real time.
- FIG. 11 and FIG. 12 show examples of measuring pain as described above.
- FIG. 11A is a graph showing the transition of the R wave peak value LF component (average for 5 seconds).
- the broken lines (1) to (8) indicate that the following events have occurred.
- the R wave peak value LF component increases immediately after the pain stimulation is applied (1) (2) (4) (5) (7) (8). Therefore, it is possible to judge pain by observing the R wave peak value LF component.
- FIG. 12B shows the RR interval HF component.
- (1), (2), (4), (5), (7), and (8) are painful.
- (3) and (6) do not satisfy the above conditions and can be determined not to be painful.
- the measurement was performed by artificially giving pain, but in the following, the effect of administering an analgesic to a patient who constantly has pain due to cancer was measured.
- FIG. 18 is a graph showing the relationship between the R wave peak LF component before and after administration of morphine hydrochloride, which is an analgesic, and pain complaints by laryngeal cancer patients. From the start of measurement (1) to the time point (2) when the patient complains that it is very painful, the R wave peak value LF component is at a high level. There is a nurse call at time (3), and there is a complaint that it is quite painful at time (4). At time (5), an oral solution (morphine hydrochloride) as an analgesic was administered. This oral solution feels pain when swallowed with great irritation to the throat. Therefore, there is pain immediately after taking.
- morphine hydrochloride morphine hydrochloride
- FIG. 19 is a graph of the RR interval HF component in the above experiment. After the time point (5) after administration of the analgesic agent, the RR interval HF component does not increase on average.
- FIG. 20 is a graph of the T wave peak value LF component and the T wave peak value HF component in the above experiment. It can be seen that the same tendency as the R wave peak value LF component and the R wave peak value HF component is shown.
- the average value for a predetermined time of the R wave peak value LF component and the RR interval HF component (the average value of 5 seconds in the embodiment) is used. You may make it judge using it as it is.
- the average value of the R wave peak value LF component and the RR interval HF component for a predetermined time is used as it is, but this may be used for determination by performing high-cut filtering.
- time-series R wave peak value LF component and RR interval HF component are subjected to high-cut filtering using 0.03 Hz as a cutoff frequency.
- the value of the RR interval HF component at that time is shown in high cut HF Amplitude in FIG.
- the value of the R wave peak value LF component is shown in high cut LF Amplitude in FIG.
- FIG. 11C shows the transition of the R wave peak value LF component (average for 5 seconds) after the high cut.
- FIG. 12D shows the transition of the RR interval HF component (average for 5 seconds) after the high cut.
- the pain determination may be performed by combining not only the R wave peak value LF component and the RR interval HF component but also the R wave peak value HF component. That is, when all three increase, it is determined that the pain is present, thereby enabling more accurate determination.
- HF Amplitude in Fig. 10 shows an example of R peak value HF component data. Moreover, the time transition is shown with a graph in FIG. 11B. It can be seen that the R wave peak value HF component increases in the parts (1), (2), (4), (5), (7), and (8). Even in this case, high-cut filtering can be performed.
- 13 and 14 show transitions of the R wave peak value LF component, the RR interval HF component, and the R wave peak value HF component when running without giving pain.
- 13A shows the R wave peak value LF component
- FIG. 14B shows the RR interval HF component
- FIG. 13B shows the R wave peak value HF component.
- 13C, FIG. 14D, and FIG. 13D are waveforms obtained by performing high-cut filtering processing for each.
- FIG. 15A shows the LF component of the T wave peak value
- FIG. 15B shows the HF component of the T wave peak value.
- 15C and 15D are waveforms obtained by performing high-cut filtering on each of FIGS. 15A and 15B.
- FIG. 16A shows the LF component of the ST value
- FIG. 16B shows the HF component of the ST value
- FIGS. 16C and 16D show waveforms obtained by performing high-cut filtering for each of FIGS. 16A and 16B. As with the R wave peak value, it can be seen that it increases according to the events (1), (2), (4), (5), (7), and (8) for pain.
- FIG. 17A shows the LF component of the QRS interval in the same beat
- FIG. 17B shows the HF component of the QRS interval
- FIGS. 17C and 17D show waveforms obtained by performing high-cut filtering for each of FIGS. 17A and 17B.
- the QRS interval HF component does not increase immediately after (3) and (6) when no pain is given.
- noise exclusion may be performed based on changes in skin potential or skin resistance, presence or absence of a myoelectric waveform superimposed on an electrocardiographic waveform, and the like. For example, if the skin resistance is greater than or equal to a predetermined value, it is determined that there is no pain even if the R wave peak value LF component increases. If the skin potential (the skin potential difference between two points, such as SPL (skin potential level) or SPR (skin potential response)) is smaller than a predetermined value, even if the R wave peak value LF component increases, the pain is not Judge that there is no.
- SPL skin potential difference between two points, such as SPL (skin potential level) or SPR (skin potential response)
- the electrocardiogram waveform is applied to a bandpass filter that transmits 10-40 Hz to obtain the myoelectric waveform, and the magnitude of the myoelectric waveform exceeds a predetermined value, the R wave peak value LF component increases. You may make it judge that it is not pain.
- the average value is used in the calculation of the LF component and the HF component in the above embodiment, the maximum value or the area value may be used.
- the range for calculating the LF component is 0.04 Hz to 0.15 Hz
- the range for calculating the HF component is 0.15 Hz to .4 Hz.
- the range may be determined as shown in Table 1 below.
- fluctuation is quantified by calculating the HF component and the LF component.
- fluctuation may be quantified and determined by other methods, for example, peak values of HF waves and LF waves, steepness of HF waves and LF waves, and the like.
- the feature amount such as the R wave peak value and the RR interval is extracted by receiving the electrocardiogram waveform and the pain determination is performed.
- the pain determination may be performed by receiving the feature amount itself from the outside.
- the R wave peak value LF component is the main element for pain determination
- the RR interval HF component and the R wave peak value HF component are secondary determination elements.
- the RR interval HF component or the R peak value HF component may be used as a main element, and the other components may be used as secondary determination elements.
- pain is determined based on fluctuations in the wave height related value and the interval value.
- the pain may be determined directly based on the wave height related value or the interval value.
- each function of FIG. 1 is realized using a computer, but a part or all of the functions may be realized by a hardware logic circuit.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Cardiology (AREA)
- Molecular Biology (AREA)
- Animal Behavior & Ethology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Medical Informatics (AREA)
- Physics & Mathematics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Hospice & Palliative Care (AREA)
- Pain & Pain Management (AREA)
- Psychiatry (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
Abstract
Description
図1に、この発明の一実施形態による痛み判定装置の機能ブロック図を示す。心電情報取得部2は、対象者の心電図情報を取得する。
図2に、一実施形態による痛み判定装置をCPU26を用いて実現した場合のハードウエア構成を示す。CPU26には、A/D変換器24、ディスプレイ28、メモリ30、ハードディスク32、操作部34が接続されている。
ハードディスク32に記録された痛み判定プログラムのフローチャートを図3に示す。CPU26は、ステップS1において、メモリ30に蓄積された心電波形データを取り込む。心電波形は、電位の変化を所定時間ごとにサンプリングしたディジタルデータであり、模式的に示すと図5に示すようになる。
(1)上記実施形態では、R波高値LF成分、RR間隔HF成分の所定時間分の平均値(実施形態では5秒の平均)を用いているが、R波高値LF成分、RR間隔HF成分をそのまま用いて判断するようにしてもよい。
Claims (24)
- 測定部によって測定された心電情報を取得する心電情報取得部と、
前記心電情報の波高関連値に関するゆらぎに基づいて、痛みを判断する痛み判断手段と、
痛み判断手段による判断結果を出力する出力手段と、
を備えた痛み判定装置。 - 請求項1の痛み判定装置において、
前記波高関連値に関するゆらぎが、P波、Q波、R波、S波、T波もしくはSTの特徴値のゆらぎであることを特徴とする痛み判定装置。 - 請求項1または2の痛み判定装置において、
前記痛み判断手段は、前記波高関連値に関するゆらぎに基づく痛み判断の正確性を向上させるためのノイズ排除手段を備えていることを特徴とする痛み判定装置。 - 請求項3の痛み判定装置において、
前記ノイズ排除手段は、前記心電波形の特徴点の間隔のゆらぎ、筋電情報または第2の測定部によって測定した皮膚抵抗または皮膚電位を指標としてノイズ排除の判断をすることを特徴とする痛み判定装置。 - 請求項1~4のいずれかの判定装置において、
前記痛み判断手段は、
時系列データとして得られた前記波高関連値を周波数解析する波高関連値周波数解析手段と、
前記波高関連値周波数解析手段によって得られた波高関連値の周波数成分に基づいてLF成分を算出して波高関連値LF成分とする波高関連値LF成分算出手段とを備え、
前記波高関連値LF成分を波高関連値のゆらぎの特徴として得ることを特徴とする痛み判定装置。 - 請求項5の判定装置において、
前記痛み判断手段は、前記波高関連値LF成分が増大した場合に、痛みがあると判定することを特徴とする痛み判定装置。 - 請求項1~6のいずれかの判定装置において、
前記痛み判断手段は、
時系列データとして得られた前記心電情報の波形特徴点の間隔を周波数解析する間隔周波数解析手段と、
前記間隔周波数解析手段によって得られた波形特徴点の間隔の周波数成分に基づいてHF成分を算出して間隔HF成分とする間隔HF成分算出手段とを備え、
前記間隔HF成分を間隔のゆらぎの特徴として得ることを特徴とする痛み判定装置。 - 請求項1~7のいずれかの判定装置において、
前記間隔HF成分は、前記間隔周波数解析手段によって得られた波形特徴点の間隔の周波数成分から得た呼吸性変動成分を示す指標であることを特徴とする痛み判定装置。 - 請求項8の判定装置において、
前記痛み判断手段は、間隔HF成分が減少せず、波高関連値LF成分が増大した場合に、痛みがあると判定することを特徴とする痛み判定装置。 - 請求項1~9のいずれかの判定装置において、
前記痛み判断手段は、
時系列データとして得られた前記波高関連値を周波数解析する波高関連値周波数解析手段と、
前記波高関連値周波数解析手段によって得られた波高関連値の周波数成分に基づいてHF成分を算出して波高関連値HF成分とする波高関連値HF成分算出手段とを備え、
前記波高関連値HF成分を波高関連値のゆらぎの特徴として得ることを特徴とする痛み判定装置。 - 請求項10の判定装置において、
前記痛み判断手段は、間隔HF成分が減少せず、波高関連値LF成分および波高関連値HF成分がともに増大した場合に、痛みがあると判定することを特徴とする痛み判定装置。 - コンピュータによって痛み判定装置を実現するための痛み判定プログラムであって、
測定部によって測定された心電情報を取得する心電情報取得手段と、
前記心電情報の波高関連値に関するゆらぎに基づいて、痛みを判断する痛み判断手段と、
を備えた痛み判定プログラム。 - 請求項12の痛み判定プログラムにおいて、
前記波高関連値に関するゆらぎが、P波、Q波、R波、S波、T波もしくはSTの特徴値のゆらぎであることを特徴とする痛み判定プログラム。 - 請求項12または13の痛み判定プログラムにおいて、
前記痛み判断手段は、前記波高関連値に関するゆらぎに基づく痛み判断の正確性を向上させるためのノイズ排除手段を備えていることを特徴とする痛み判定プログラム。 - 請求項14の痛み判定プログラムにおいて、
前記ノイズ排除手段は、前記心電波形の特徴点の間隔のゆらぎ、筋電情報または第2の測定部によって測定した皮膚抵抗または皮膚電位を指標としてノイズ排除の判断をすることを特徴とする痛み判定プログラム。 - 請求項12~15のいずれかの判定プログラムにおいて、
前記痛み判断手段は、
時系列データとして得られた前記波高関連値を周波数解析する波高関連値周波数解析手段と、
前記波高関連値周波数解析手段によって得られた波高関連値の周波数成分に基づいてLF成分を算出して波高関連値LF成分とする波高関連値LF成分算出手段とを備え、
前記波高関連値LF成分を波高関連値のゆらぎの特徴として得ることを特徴とする痛み判定プログラム。 - 請求項16の判定プログラムにおいて、
前記痛み判断手段は、前記波高関連値LF成分が増大した場合に、痛みがあると判定することを特徴とする痛み判定プログラム。 - 請求項12~17のいずれかの判定プログラムにおいて、
前記痛み判断手段は、
時系列データとして得られた前記心電情報の波形特徴点の間隔を周波数解析する間隔周波数解析手段と、
前記間隔周波数解析手段によって得られた波形特徴点の間隔の周波数成分に基づいてHF成分を算出して間隔HF成分とする間隔HF成分算出手段とを備え、
前記間隔HF成分を間隔のゆらぎの特徴として得ることを特徴とする痛み判定プログラム。 - 請求項12~18のいずれかの判定プログラムにおいて、
前記間隔HF成分は、前記間隔周波数解析手段によって得られた波形特徴点の間隔の周波数成分から得た呼吸性変動成分を示す指標であることを特徴とする痛み判定プログラム。 - 請求項19の判定プログラムにおいて、
前記痛み判断手段は、間隔HF成分が減少せず、波高関連値LF成分が増大した場合に、痛みがあると判定することを特徴とする痛み判定プログラム。 - 請求項12~20のいずれかの判定プログラムにおいて、
前記痛み判断手段は、
時系列データとして得られた前記波高関連値を周波数解析する波高関連値周波数解析手段と、
前記波高関連値周波数解析手段によって得られた波高関連値の周波数成分に基づいてHF成分を算出して波高関連値HF成分とする波高関連値HF成分算出手段とを備え、
前記波高関連値HF成分を波高関連値のゆらぎの特徴として得ることを特徴とする痛み判定プログラム。 - 請求項21の判定プログラムにおいて、
前記痛み判断手段は、間隔HF成分が減少せず、波高関連値LF成分および波高関連値HF成分がともに増大した場合に、痛みがあると判定することを特徴とする痛み判定プログラム。 - 心電波形を測定し、
前記心電情報の波高関連値に関するゆらぎに基づいて、痛みを判断する痛みを判断すること、
を特徴とする痛み判定方法。 - 測定部によって測定された心電情報を取得する心電情報取得部と、
前記心電情報の波高関連値に基づいて、痛みを判断する痛み判断手段と、
痛み判断手段による判断結果を出力する出力部と、
を備えた痛み判定装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2728647A CA2728647A1 (en) | 2008-06-24 | 2009-06-23 | Pain judging device |
US13/000,925 US9042972B2 (en) | 2008-06-24 | 2009-06-23 | Pain judging device to judge pain based on a frequency component of a peak-relevant value |
JP2010517759A JP5475658B2 (ja) | 2008-06-24 | 2009-06-23 | 痛み判定装置、痛み判定プログラムおよび痛み判定装置の制御方法 |
EP09769895.5A EP2301431A4 (en) | 2008-06-24 | 2009-06-23 | DEVICE FOR ASSESSING PAIN |
CN2009801236324A CN102065756B (zh) | 2008-06-24 | 2009-06-23 | 疼痛判定装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008164466 | 2008-06-24 | ||
JP2008-164466 | 2008-06-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2009157185A1 true WO2009157185A1 (ja) | 2009-12-30 |
Family
ID=41444258
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2009/002866 WO2009157185A1 (ja) | 2008-06-24 | 2009-06-23 | 痛み判定装置 |
Country Status (6)
Country | Link |
---|---|
US (1) | US9042972B2 (ja) |
EP (1) | EP2301431A4 (ja) |
JP (1) | JP5475658B2 (ja) |
CN (1) | CN102065756B (ja) |
CA (1) | CA2728647A1 (ja) |
WO (1) | WO2009157185A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103876708A (zh) * | 2013-11-25 | 2014-06-25 | 北京大学人民医院 | 疼痛应激及主观感受、疼痛治疗的无线移动信息交换方法 |
WO2020184120A1 (ja) * | 2019-03-13 | 2020-09-17 | オムロンヘルスケア株式会社 | 痛み評価装置、痛み評価方法、及び痛み評価プログラム |
Families Citing this family (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106999065B (zh) | 2014-11-27 | 2020-08-04 | 皇家飞利浦有限公司 | 使用加速度测量术的可穿戴疼痛监测器 |
EP3932298A1 (en) | 2016-09-27 | 2022-01-05 | Boston Scientific Neuromodulation Corporation | System for pain management using objective pain measure |
AU2017334841B2 (en) | 2016-09-27 | 2020-03-19 | Boston Scientific Neuromodulation Corporation | Systems and methods for closed-loop pain management |
US10667747B2 (en) | 2016-10-25 | 2020-06-02 | Boston Scientific Neuromodulation Corporation | Method and apparatus for pain control using baroreflex sensitivity during posture change |
US11089997B2 (en) | 2017-01-11 | 2021-08-17 | Boston Scientific Neuromodulation Corporation | Patient-specific calibration of pain quantification |
EP3568069B1 (en) | 2017-01-11 | 2021-04-28 | Boston Scientific Neuromodulation Corporation | Pain management based on brain activity monitoring |
US20180193650A1 (en) * | 2017-01-11 | 2018-07-12 | Boston Scientific Neuromodulation Corporation | Pain management based on cardiovascular parameters |
US10631777B2 (en) | 2017-01-11 | 2020-04-28 | Boston Scientific Neuromodulation Corporation | Pain management based on functional measurements |
WO2018132535A1 (en) | 2017-01-11 | 2018-07-19 | Boston Scientific Neuromodulation Corporation | Pain management based on emotional expression measurements |
US10631776B2 (en) | 2017-01-11 | 2020-04-28 | Boston Scientific Neuromodulation Corporation | Pain management based on respiration-mediated heart rates |
US10960210B2 (en) | 2017-02-10 | 2021-03-30 | Boston Scientific Neuromodulation Corporation | Method and apparatus for pain management with sleep detection |
EP3655091B1 (en) | 2017-07-18 | 2021-08-25 | Boston Scientific Neuromodulation Corporation | Sensor-based pain management systems |
CN107440687B (zh) * | 2017-08-09 | 2020-06-16 | 中国科学院深圳先进技术研究院 | 一种疼痛等级评估方法及采用其的疼痛等级评估装置 |
WO2020133466A1 (zh) * | 2018-12-29 | 2020-07-02 | 深圳迈瑞生物医疗电子股份有限公司 | 监护设备、监护方法及计算机可读存储介质 |
CN114786564A (zh) * | 2019-08-30 | 2022-07-22 | 橙曦科技股份有限公司 | 实时疼痛检测及疼痛管理系统 |
CN111714142B (zh) * | 2020-06-12 | 2023-12-08 | 京东科技控股股份有限公司 | 心理状态测评方法、装置、设备和计算机可读存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09285512A (ja) * | 1996-04-24 | 1997-11-04 | Well Biiing:Kk | 血行促進装置 |
JP2000342690A (ja) * | 1999-06-09 | 2000-12-12 | Nippon Colin Co Ltd | 麻酔深度監視装置 |
US6258042B1 (en) | 1999-09-17 | 2001-07-10 | James S. Factor | Visual analog scale and method of use for the diagnosis and/or treatment of physical pain |
JP2005521505A (ja) * | 2002-04-01 | 2005-07-21 | アスペクト メディカル システムズ,インク. | 麻酔時及び鎮静時の覚醒度、痛感度及びストレス度の評価システム及び方法 |
JP2006130121A (ja) * | 2004-11-08 | 2006-05-25 | Univ Nihon | 生体情報に基づく感情認識方法 |
JP2008513073A (ja) * | 2004-09-20 | 2008-05-01 | サントレ オスピタリエ レジョナル ユニヴェルシテル ドゥ リール | 心調律信号のシリーズ(rr)を処理するための方法、及び心調律の変動性を分析するための、特に生物の痛み又はストレスを評価するためのその使用 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07155303A (ja) * | 1993-12-08 | 1995-06-20 | Fukuda Denshi Co Ltd | 自律神経機能検査装置 |
US6339720B1 (en) * | 1999-09-20 | 2002-01-15 | Fernando Anzellini | Early warning apparatus for acute Myocardial Infarction in the first six hours of pain |
CA2403974A1 (en) * | 2000-03-30 | 2001-10-11 | Lino R. Becerra | Method and apparatus for objectively measuring pain, pain treatment and other related techniques |
AU2003217878A1 (en) * | 2002-03-01 | 2003-09-16 | Christine Ross | Novel utilization of heart rate variability in animals |
CN100558290C (zh) * | 2003-08-08 | 2009-11-11 | 量子技术公司 | 电生理直觉指示器 |
CN100415311C (zh) * | 2005-06-30 | 2008-09-03 | 朱涛 | 智能镇痛镇静系统 |
JP4917373B2 (ja) * | 2006-07-21 | 2012-04-18 | シャープ株式会社 | 生体情報推定装置及びそれを搭載した電子機器 |
US9402558B2 (en) * | 2007-04-05 | 2016-08-02 | New York University | System and method for pain detection and computation of a pain quantification index |
JP2009261779A (ja) * | 2008-04-28 | 2009-11-12 | Univ Of Electro-Communications | 痛み評価方法及び痛み評価装置 |
-
2009
- 2009-06-23 CN CN2009801236324A patent/CN102065756B/zh not_active Expired - Fee Related
- 2009-06-23 WO PCT/JP2009/002866 patent/WO2009157185A1/ja active Application Filing
- 2009-06-23 EP EP09769895.5A patent/EP2301431A4/en not_active Withdrawn
- 2009-06-23 US US13/000,925 patent/US9042972B2/en active Active
- 2009-06-23 JP JP2010517759A patent/JP5475658B2/ja active Active
- 2009-06-23 CA CA2728647A patent/CA2728647A1/en not_active Abandoned
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH09285512A (ja) * | 1996-04-24 | 1997-11-04 | Well Biiing:Kk | 血行促進装置 |
JP2000342690A (ja) * | 1999-06-09 | 2000-12-12 | Nippon Colin Co Ltd | 麻酔深度監視装置 |
US6258042B1 (en) | 1999-09-17 | 2001-07-10 | James S. Factor | Visual analog scale and method of use for the diagnosis and/or treatment of physical pain |
JP2005521505A (ja) * | 2002-04-01 | 2005-07-21 | アスペクト メディカル システムズ,インク. | 麻酔時及び鎮静時の覚醒度、痛感度及びストレス度の評価システム及び方法 |
JP2008513073A (ja) * | 2004-09-20 | 2008-05-01 | サントレ オスピタリエ レジョナル ユニヴェルシテル ドゥ リール | 心調律信号のシリーズ(rr)を処理するための方法、及び心調律の変動性を分析するための、特に生物の痛み又はストレスを評価するためのその使用 |
JP2006130121A (ja) * | 2004-11-08 | 2006-05-25 | Univ Nihon | 生体情報に基づく感情認識方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP2301431A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103876708A (zh) * | 2013-11-25 | 2014-06-25 | 北京大学人民医院 | 疼痛应激及主观感受、疼痛治疗的无线移动信息交换方法 |
WO2020184120A1 (ja) * | 2019-03-13 | 2020-09-17 | オムロンヘルスケア株式会社 | 痛み評価装置、痛み評価方法、及び痛み評価プログラム |
JP2020146213A (ja) * | 2019-03-13 | 2020-09-17 | オムロンヘルスケア株式会社 | 痛み評価装置、痛み評価方法、及び痛み評価プログラム |
JP7156110B2 (ja) | 2019-03-13 | 2022-10-19 | オムロンヘルスケア株式会社 | 痛み評価装置、痛み評価方法、及び痛み評価プログラム |
Also Published As
Publication number | Publication date |
---|---|
US20110112420A1 (en) | 2011-05-12 |
JPWO2009157185A1 (ja) | 2011-12-08 |
JP5475658B2 (ja) | 2014-04-16 |
CN102065756B (zh) | 2013-03-06 |
EP2301431A1 (en) | 2011-03-30 |
EP2301431A4 (en) | 2015-12-23 |
CN102065756A (zh) | 2011-05-18 |
CA2728647A1 (en) | 2009-12-30 |
US9042972B2 (en) | 2015-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5475658B2 (ja) | 痛み判定装置、痛み判定プログラムおよび痛み判定装置の制御方法 | |
US20220296176A1 (en) | Processing biological data | |
US20100249628A1 (en) | Extraction of heart inter beat interval from multichannel measurements | |
TW201019898A (en) | Method and apparatus for presenting heart rate variability by sound and/or light | |
JP6687645B2 (ja) | 生体信号処理方法および生体信号処理装置 | |
JP2008513073A (ja) | 心調律信号のシリーズ(rr)を処理するための方法、及び心調律の変動性を分析するための、特に生物の痛み又はストレスを評価するためのその使用 | |
JP2018011819A (ja) | 生体信号処理方法および装置 | |
JP6522327B2 (ja) | 脈波解析装置 | |
US20030097075A1 (en) | Automated and remote controlled method and system for assessing function of autonomic nervous system | |
Hansson-Sandsten et al. | Multiple window correlation analysis of HRV power and respiratory frequency | |
JP2014176427A (ja) | データ解析装置、及びデータ解析プログラム | |
KR20140114181A (ko) | 심전도 신호에 기반하여 스트레스를 분석하고 추정하는 방법 및 장치 | |
Chatlapalli et al. | Accurate derivation of heart rate variability signal for detection of sleep disordered breathing in children | |
JP3314521B2 (ja) | 心拍変動波形解析方法及び装置 | |
Akbulut et al. | Estimation of Beat-to-Beat Interval from Wearable Photoplethysmography Sensor on Different Measurement Sites During Daily Activities | |
Sierra et al. | Comparison of respiratory rate estimation based on tracheal sounds versus a capnograph | |
US20220361798A1 (en) | Multi sensor and method | |
JP5306017B2 (ja) | リラクセーション判定装置 | |
JP6568022B2 (ja) | 生体信号分析方法および装置 | |
KR101587989B1 (ko) | 생체음향을 이용한 심박규칙도 수치화 방법과 청진 장비 | |
JP2003190109A (ja) | 自律神経系機能評価方法およびそのシステム | |
US20200315470A1 (en) | Method for determining time delay between beat-to-beat blood pressure signal and pulse arrival time | |
JP2023520451A (ja) | 呼吸努力を決定するためのシステム及び方法 | |
RU2503401C1 (ru) | Способ обработки электрокардиосигнала | |
Shrivastava et al. | Heart Rate Variability Monitor IC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 200980123632.4 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 09769895 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2010517759 Country of ref document: JP |
|
ENP | Entry into the national phase |
Ref document number: 2728647 Country of ref document: CA |
|
WWE | Wipo information: entry into national phase |
Ref document number: 13000925 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2009769895 Country of ref document: EP |