WO2009154145A1 - 機能性分子素子及びその製造方法、並びに機能性分子装置 - Google Patents

機能性分子素子及びその製造方法、並びに機能性分子装置 Download PDF

Info

Publication number
WO2009154145A1
WO2009154145A1 PCT/JP2009/060760 JP2009060760W WO2009154145A1 WO 2009154145 A1 WO2009154145 A1 WO 2009154145A1 JP 2009060760 W JP2009060760 W JP 2009060760W WO 2009154145 A1 WO2009154145 A1 WO 2009154145A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
molecule
electron conjugated
skeleton
electrodes
Prior art date
Application number
PCT/JP2009/060760
Other languages
English (en)
French (fr)
Inventor
松居 恵理子
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN2009801228794A priority Critical patent/CN102067350B/zh
Priority to US12/999,161 priority patent/US8698132B2/en
Priority to EP09766593A priority patent/EP2306543A1/en
Publication of WO2009154145A1 publication Critical patent/WO2009154145A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B47/00Porphines; Azaporphines
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/701Organic molecular electronic devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/381Metal complexes comprising a group IIB metal element, e.g. comprising cadmium, mercury or zinc
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/731Liquid crystalline materials

Definitions

  • the present invention relates to a functional molecular element whose conductivity is changed by the action of an electric field, a manufacturing method thereof, and a functional molecular device.
  • a scanning tunneling microscope In the late 1980s, an ultra-high precision microscope called a scanning tunneling microscope was invented, and it became possible to see one atom and one molecule. If a scanning tunneling microscope is used, atoms and molecules can be observed as well as one by one.
  • a semiconductor chip is manufactured by baking a circuit pattern on a silicon wafer by a lithography technique.
  • the resolution must be increased, and in order to increase the resolution, a technology that uses light having a shorter wavelength must be put into practical use.
  • An electronic device consisting of a single molecule (such as a molecular switch), which is manufactured in a bottom-up manner.
  • the width of the conductive molecule is only 0.5 nm.
  • This molecular wire can realize high-density wiring several thousand times larger than the line width of about 100 nm realized by the current integrated circuit technology. Further, for example, when one molecule is used as a storage element, recording of 10,000 times or more of DVD becomes possible.
  • Patent Document 2 a research group at Hewlett-Packard (USA) and the University of California at Los Angeles successfully manufactured an organic electronic device, published it in Science in July 1999, and applied for a patent (patent documents described below). 1 and Patent Document 2). They made a switch using a molecular film consisting of millions of organic molecules, rotaxanes, and connected the molecular switches to create an AND gate, which is a basic logic circuit.
  • Non-Patent Document 2 Although research on molecular devices that function as electronic components is actively conducted, most of the research on molecular devices so far is driven by light, heat, protons, ions, etc. (for example, see Non-Patent Document 2 to be described later), and those driven by an electric field have been limited.
  • Tetrapyrrole a compound group called tetrapyrrole containing four pyrrole rings is an example.
  • Tetrapyrrole has a cyclic structure and an acyclic structure.
  • Examples of cyclic structures include porphyrins having a ring (tetrapyrrole ring) in which four pyrrole rings are bonded with one carbon atom in between, and derivatives thereof, and form stable metal complexes with many metal atoms.
  • This metal complex is known to have a stacking structure in which the surfaces of porphyrin rings are stacked.
  • Those having an acyclic structure are called acyclic tetrapyrrole, ring-opening tetrapyrrole, or linear tetrapyrrole in which four pyrrole rings are connected in series with one carbon atom in between.
  • Patent Document 3 which will be described later, titled “Optical functional molecular device in which a porphyrin multimer immobilized by a covalent bond is laminated on a substrate and a production method thereof”, after attaching a linker porphyrin on a gold substrate, There is a description of immersing a substrate in an imidazole-substituted zinc porphyrin solution and laminating porphyrin multimers by coordination bonds.
  • Patent Document 4 described later entitled “Functional Molecular Device” has the following description.
  • a functional molecular element configured using a system in which the anisotropy of the dielectric constant changes due to a change in the molecular structure induced by an electric field.
  • a functional molecular element has a dielectric anisotropy. It is preferable to use an organometallic complex molecule of a metal ion and a discotic (or nearly discotic) organic molecule having a linear side chain, for example, and having a structure change under the action of an electric field. Has been.
  • a columnar array structure in which organometallic complex molecules having a side chain are arranged in a columnar shape is preferably formed between a pair of counter electrodes.
  • the near organic molecule is a viradienone derivative such as biliverdin viradienone, and the metal ion is preferably a zinc ion, a copper ion, a nickel ion or the like.
  • viradienone derivatives In addition to viradienone derivatives, virine derivatives, florin derivatives, chlorin derivatives and the like can be used, and other typical elements and transition metals can be used as metals.
  • Patent Document 5 which will be described later entitled “Linear Tetrapyrrole Dye”, is characterized in that it is synthesized by oxidizing and cleaving a tetraphenylporphyrin compound having an alkyl group / alkoxy group in the phenyl group.
  • a near tetrapyrrole pigment is characterized in that it is synthesized by oxidizing and cleaving a tetraphenylporphyrin compound having an alkyl group / alkoxy group in the phenyl group.
  • Patent Document 6 described later entitled “Functional Molecular Device, Method for Producing the Same, and Functional Molecular Device” has the following description.
  • a ⁇ -electron conjugated molecule in which a side chain is bonded to a skeleton having a planar or substantially planar structure composed of a ⁇ -electron conjugated system is adsorbed to an electrode in the side chain.
  • the adsorbed molecule is formed such that the planar shape or the substantially planar structure of the skeleton is substantially parallel to the electrode, and at least from the adsorbed molecule and the electrode.
  • the structure is related to a functional molecular element having a function of flowing a current in a direction crossing the planar shape or the substantially planar structure, and a manufacturing method thereof, wherein the concentration of the ⁇ electron conjugated molecule is A step of preparing a solution of the ⁇ -electron conjugated molecule with adjusted pH, a step of bringing the solution into contact with the electrode, evaporating a solvent from the solution, and the ⁇ -electron conjugated system at a molecular stacking number according to the concentration A layer of molecules on the electrode
  • the present invention relates to a method for producing a functional molecular device having a step of forming on a surface.
  • the structure constituting the functional molecular element relates to a functional molecular device in which a counter electrode is formed as the electrode.
  • a molecular device based on any principle of operation including a functional molecular device based on the principle of functioning as a molecular switch that changes the molecular structure by the action of an electric field and turns the current on and off.
  • a contact resistance at the interface is large, the contact resistance affects the operating characteristics of the molecular element.
  • an organic molecular layer for flowing electrons is arranged between the counter electrodes as in a solar cell, it is required to make the contact resistance at the interface between the organic molecule and the electrode as small as possible.
  • metal electrodes have generally been used, but in molecular devices having nanoscale gaps, for example, forming two electrodes made of gold and arranging organic molecules in the electrode gap to form channels,
  • nanoscale molecular devices with electrodes with nanoscale gaps because the generation of gold atom migration from the electrode surface and the formation of filaments can be caused by electric fields. It is difficult to realize.
  • the present invention has been made to solve the above-described problems, and its purpose is to provide a functional molecular element capable of reducing contact resistance at the interface between an organic molecule and an electrode, and a method for producing the same. It is another object of the present invention to provide a functional molecular device.
  • the present invention relates to an electrode (for example, electrodes 5 and 6 in the embodiments described later) and a first skeleton portion having a plane or a substantially plane composed of a ⁇ -electron conjugated system (for example, substantially the same in the embodiments described later).
  • a molecular arrangement structure is formed in which a second ⁇ -electron conjugated molecule (for example, a driving part molecule 1 in the embodiment described later) is stacked, and a current flows in a direction intersecting the surface of the first skeleton part.
  • the present invention relates to a functional molecular device having a function of flowing water.
  • the present invention provides a first skeleton part (for example, a substantially disk-like skeleton part 3 in an embodiment described later) having a plane composed of a ⁇ -electron conjugated system or a side plane part (for example, The first ⁇ -electron conjugated system molecule (for example, the interface modifying molecule 2 in the embodiment described later) having an electrode (for example, implementation described later) A first step of covalently bonding to the electrodes 5 and 6) and arranging the first skeleton portion substantially parallel to the electrode, and a second skeleton having a plane or a substantially plane made of a ⁇ -electron conjugated system A second ⁇ -electron conjugated molecule having a moiety (for example, a drive molecule 1 in an embodiment described later) is stacked on the first skeleton by intermolecular ⁇ - ⁇ stacking.
  • a first skeleton part for example, a substantially disk-like skeleton part 3 in an embodiment described later
  • a side plane part for example, The
  • the second skeleton portion is an intermolecular ⁇ - ⁇ strain.
  • the present invention provides a first skeleton part (for example, a plane or a substantially plane composed of a ⁇ -electron conjugated system) and first and second electrodes (for example, electrodes 5 and 6 in embodiments described later) facing each other.
  • first and second electrodes for example, electrodes 5 and 6 in embodiments described later
  • a substantially disk-shaped skeleton portion 3 in an embodiment described later and a side chain portion (for example, a side chain portion 4 in an embodiment described later), and the first and second electrodes.
  • a first ⁇ -electron conjugated molecule (for example, to be described later) in which each of the first skeleton portions is disposed substantially in parallel and is covalently bonded to the first and second electrodes in the side chain portion.
  • Interface modification molecule 2 in the form and a second ⁇ -electron conjugated molecule (for example, driving part molecule 1 in the embodiments described later) provided with a second skeleton having a plane or a substantially plane composed of a ⁇ -electron conjugated system. ), And the second skeleton portion is divided into the first skeleton portion. Further, the second skeleton is repeatedly stacked in one direction by intermolecular ⁇ - ⁇ stacking, and the first and second electrodes are stacked between the first electrode and the second electrode. And a molecular arrangement structure formed by second ⁇ -electron conjugated molecules, and a functional molecular device having a function of flowing current along the one direction.
  • the first ⁇ -electron conjugated molecule includes the first skeleton portion having a plane or a substantially flat surface composed of a ⁇ -electron conjugated system and the side chain portion bonded thereto.
  • the first skeleton portion is disposed substantially parallel to the electrode, and is bonded to the electrode by a covalent bond in the side chain portion, and the first ⁇ -electron conjugated system molecule and the second ⁇ -electron conjugated system Since the molecular arrangement structure formed by stacking molecules is formed, the first ⁇ electron conjugated molecule has a structure bonded to the electrode, and further, the ⁇ of the first ⁇ electron conjugated molecule The electrical interaction between the electron and the electrode becomes good, the contact resistance at the interface between the first ⁇ -electron conjugated molecule and the electrode can be reduced, and the surface of the first skeleton part A functional molecular device capable of effectively passing a current in a direction crossing Can.
  • the first ⁇ having the first skeleton having a plane or substantially plane made of a ⁇ -electron conjugated system and the side chain bonded to the first skeleton.
  • the first ⁇ -electron conjugated molecule is bound to the electrode Furthermore, the electrical interaction between the ⁇ electrons of the first ⁇ electron conjugated molecule and the first and second electrodes is improved, and the first ⁇ electron conjugated molecule and the first and second electrodes are improved. It is possible to provide a method of manufacturing a functional molecular element that can reduce the contact resistance at the interface with the two electrode
  • the first and second electrodes facing each other facing each other, the first skeleton having a plane or a substantially plane composed of a ⁇ electron conjugated system, and the side bonded to the first skeleton
  • the first skeleton portion is disposed substantially in parallel with each of the first and second electrodes, and is coupled to the first and second electrodes by a covalent bond in the side chain portion.
  • the first skeleton comprising the first ⁇ -electron conjugated molecule and the second ⁇ -electron conjugated molecule comprising the second skeleton having a plane or a substantially plane composed of a ⁇ -electron conjugated system.
  • the second skeleton is stacked on the portion by intermolecular ⁇ - ⁇ stacking, and the second skeleton is repeatedly stacked in the one direction by intermolecular ⁇ - ⁇ stacking, and the first electrode and the By the first and second ⁇ -electron conjugated molecules between the second electrodes
  • the first ⁇ -electron conjugated molecule is bonded to the electrode, and the ⁇ -electron of the first ⁇ -electron conjugated molecule and the first and second
  • the electrical interaction with the electrode of the first electrode becomes favorable, and the contact resistance at the interface between the first ⁇ -electron conjugated molecule and the first and second electrodes can be reduced, along the one direction.
  • the second ⁇ -electron conjugated molecule includes a second skeleton portion having a plane or a substantially flat surface made of a ⁇ -electron conjugated system, and the second skeleton portion includes the second skeleton portion.
  • the skeleton part is stacked by intermolecular ⁇ - ⁇ stacking, and the second skeleton part is repeatedly stacked in one direction by intermolecular ⁇ - ⁇ stacking, and the molecular array structure is formed by the first and second ⁇ It is preferable that the structure is formed of electron conjugated molecules and has a function of flowing current along the one direction.
  • the molecular arrangement structure is formed by intermolecular ⁇ - ⁇ stacking between the first and second ⁇ -electron conjugated molecules and between the second ⁇ -electron conjugated molecules. Since the body is formed, a current can be effectively passed in the one direction by the interaction between ⁇ electrons of the ⁇ electron conjugated molecule.
  • the first ⁇ -electron conjugated molecule is preferably different from the second ⁇ -electron conjugated molecule. According to such a configuration, the first ⁇ -electron conjugated system is bonded to the electrode and further improves the electrical interaction between the ⁇ -electron of the first ⁇ -electron conjugated molecule and the electrode. In order to reduce the contact resistance at the interface between the molecule and the electrode, the intermolecular ⁇ - ⁇ stacking of the first and second ⁇ electron conjugated molecules and the molecule of the second ⁇ electron conjugated molecule The first and second ⁇ -electron conjugated molecules can be selected so that the inter- ⁇ - ⁇ stacking is good.
  • the electrode may be formed of polysilicon (hereinafter abbreviated as pSi) or amorphous silicon (hereinafter abbreviated as aSi). According to such a configuration, an electrode can be formed at low cost, and the electrode includes electrodes facing each other at a nanoscale gap, and the electrode is formed of a metal electrode (for example, a gold electrode).
  • pSi polysilicon
  • aSi amorphous silicon
  • the occurrence of floating atoms and the formation of filaments from the electrode surface may be caused by the electric field between the electrodes, even when the electrodes include electrodes facing each other with a nanoscale gap, Since the electrode formed of pSi or aSi does not cause floating of atoms or formation of filaments, it is possible to realize a nanoscale molecular device having an electrode with a nanoscale gap and operating stably.
  • the electrode includes first and second electrodes facing each other, and the side chain portion of the first ⁇ -electron conjugated molecule is covalently bonded to each of the first electrode and the second electrode.
  • the molecular arrangement structure is formed between the first electrode and the second electrode.
  • the first ⁇ -electron conjugated molecule is bonded to the electrode, and the ⁇ electron of the first ⁇ -electron conjugated molecule is electrically connected to the first and second electrodes.
  • the contact resistance at the interface between the first ⁇ -electron conjugated molecule and the first and second electrodes can be reduced, and the molecular arrangement structure along the one direction. Current can be passed effectively.
  • the electrode has a third electrode, and the current is controlled by the third electrode.
  • the contact resistance between the first and second electrodes and the molecular array structure is small, and the electrical conductivity of the molecular array structure can be increased by changing the electric field applied to the third electrode.
  • a molecular device having a switching action can be realized.
  • the first ⁇ -electron conjugated molecule may be a tetrapyrrole derivative, a phthalocyanine derivative, or an aromatic condensed polycyclic compound having 3 or more rings.
  • the thickness of the conductive path of a conductive polymer in which ⁇ electrons are delocalized in a straight chain typified by polypyrrole or the like largely depends on the ring diameter. That is, the radius is about 0.5 nm.
  • the ⁇ -electron non-localized surface of the tetrapyrrole derivative has a radius of about 1 nm, and the conduction path by the ⁇ - ⁇ stacking is about four times that of the conduction path of the general conductive polymer described above. It becomes the area.
  • the distance between the electrode surface and the first ⁇ -electron conjugated system molecule for example, the ⁇ -electron non-localized surface of a tetrapyrrole derivative, it is possible to control the overlap of the density of electronic states, To the first ⁇ -electron conjugated molecule can be increased.
  • the first electron-conjugated molecule is preferably a porphyrin derivative or a coronene derivative.
  • the first ⁇ -electron conjugated molecule is preferably a tetraphenylporphyrin derivative represented by the following general formula (1) (provided that R 1 , R 2 , R 3 , R 4 are , Which may be the same or different, a hydro group or a chain hydrocarbon group which may have a substituent.
  • general formula (1) a tetraphenylporphyrin derivative represented by the following general formula (1) (provided that R 1 , R 2 , R 3 , R 4 are , which may be the same or different, a hydro group or a chain hydrocarbon group which may have a substituent.
  • the chain hydrocarbon group for example, an alkyl group has 1 to 12 carbon atoms
  • the first ⁇ -electron conjugated molecule has its ⁇ -electron delocalized surface.
  • the chain hydrocarbon group may be an alkenyl group or an alkynyl group in addition to an alkyl group.
  • R 1 , R 2 , R 3 and R 4 may be the same or different, and the terminal hydro group is a hydroxy group (—OH), a vinyl group (—CH ⁇ CH 2 ) or an ethynyl group.
  • the tetraphenylporphyrin derivative represented by the general formula (1) has a planar ⁇ -electron delocalization that is close to the Fermi level and HOMO level of the electrode, for example, a silicon electrode, and therefore has an interface that modifies the surface of the electrode. Suitable as a modifying molecule.
  • the compound represented by General formula (1) is a compound called tetraphenyl porphyrin (tetra-phenyl porphyrin).
  • the side chain part is composed of an aromatic ring to which any one of an alkyl group, an alkoxy group, and an alkyl group silicon analog, or an alkyl group, an alkoxy group, and an alkyl group silicon analog are bonded. It is good to do.
  • the first ⁇ -electron conjugated molecule can be covalently bonded to the electrode in the side chain portion.
  • the silicon analogs of the above alkyl group, alkoxy group, and alkyl group are groups represented by —C n H 2n + 1 , —OC n H 2n + 1 , and —Si n H 2n + 1 , respectively.
  • the hydrogen atom (H) of the silicon analog may be substituted with an alkyl group or an alkoxy group.
  • the second ⁇ -electron conjugated molecule is preferably a porphyrin derivative or linear tetrapyrrole. According to such a configuration, the molecular arrangement structure formed by the first and second ⁇ -electron conjugated molecules has ON / OFF switching characteristics with good conductivity depending on the presence or absence of an electric field applied to the molecular structure. Thus, a transistor or the like can be manufactured.
  • the second ⁇ -electron conjugated molecule may be a complex having a metal at a substantially central portion thereof.
  • the second ⁇ -electron conjugated molecule may be a biradienone derivative represented by the following general formula (2) (provided that R 5 , R 6 , R 7 , and R 8 are the same). Or, it is a different alkyl group and has 3 to 12 carbon atoms.)
  • a dipole moment acts by an external electric field, and the non-localized surface of the ⁇ -conjugated system of the second ⁇ -electron conjugated molecule can be modulated to form a molecular switch engine part.
  • the second ⁇ -electron conjugated molecule preferably has a discotic liquid crystal phase in order to align itself with the first ⁇ -electron conjugated molecule using ⁇ - ⁇ stacking interaction. Even when the liquid crystal phase is not expressed, it is preferable to have a flexible side chain.
  • the first ⁇ -electron conjugated molecule is preferably different from the second ⁇ -electron conjugated molecule.
  • the first and second electrodes are coupled to each other, and an electrical interaction between the ⁇ electrons of the first ⁇ electron conjugated molecule and the first and second electrodes is further achieved.
  • the contact resistance at the interface between the first ⁇ -electron conjugated molecule and the first and second electrodes is preferably reduced, and the first and second ⁇ -electron conjugated molecules are reduced.
  • the first and second ⁇ -electron conjugated molecules can be selected so that intermolecular ⁇ - ⁇ stacking and intermolecular ⁇ - ⁇ stacking of the second ⁇ -electron conjugated molecules are good.
  • a functional molecular device having excellent performance can be produced.
  • the first ⁇ -electron conjugated molecule is different from the second ⁇ -electron conjugated molecule.
  • the first and second electrodes are coupled to each other, and an electrical interaction between the ⁇ electrons of the first ⁇ electron conjugated molecule and the first and second electrodes is further achieved.
  • the contact resistance at the interface between the first ⁇ -electron conjugated molecule and the first and second electrodes is preferably reduced, and the first and second ⁇ -electron conjugated molecules are reduced.
  • the first and second ⁇ -electron conjugated molecules can be selected so that intermolecular ⁇ - ⁇ stacking and intermolecular ⁇ - ⁇ stacking of the second ⁇ -electron conjugated molecules are good. Thus, a functional molecular device having excellent performance can be realized.
  • the first and second electrodes may be formed of polysilicon or amorphous silicon. According to such a configuration, an electrode can be formed at low cost, and the electrode includes electrodes facing each other at a nanoscale gap, and the electrode is formed of a metal electrode (for example, a gold electrode).
  • the occurrence of floating atoms and the formation of filaments from the electrode surface may be caused by the electric field between the electrodes, even when the electrodes include electrodes facing each other with a nanoscale gap, Since the electrodes formed of pSi or aSi do not cause floating of atoms or formation of filaments, it is possible to realize a nanoscale molecular device device having electrodes with nanoscale gaps and operating stably. .
  • a third electrode is provided and the current is controlled by the third electrode.
  • the contact resistance between the first and second electrodes and the molecular array structure is small, and the electrical conductivity of the molecular array structure can be increased by changing the electric field applied to the third electrode.
  • a molecular device having a switching action can be realized.
  • the third electrode is provided along the one direction as a control electrode for controlling the current by applying an electric field to the molecular arrangement structure.
  • the molecular element device can be configured as a field effect transistor.
  • the third electrode is a gate electrode, and a gate insulating layer is provided thereon.
  • the first electrode is formed as a source electrode
  • the second electrode is formed as a drain electrode. It may be configured as an insulated gate field effect transistor. According to such a configuration, a molecular element device can be configured as a field effect transistor having a small contact resistance between the source and drain electrodes and the molecular arrangement structure and having excellent performance.
  • the functional molecular element according to the present invention is composed of two opposing electrodes formed of pSi (polysilicon) or aSi (amorphous silicon) and a molecular arrangement structure.
  • This molecular array structure is composed of an interface modifying molecule that covalently bonds to the surfaces of two electrodes and modifies the surface, and a driver molecule that is repeatedly stacked on the interface modifying molecule by intermolecular ⁇ - ⁇ stacking in one direction. (Functional molecule).
  • the interface modifying molecule has a substantially disk-shaped skeleton part composed of a ⁇ -electron conjugated system and a side chain part, and the surface formed by the skeleton part is arranged substantially parallel to the surfaces of both electrodes. Is covalently bound to
  • the driving part molecule is a functional molecule consisting of a complex having a ⁇ -electron conjugated system, its structure or orientation is changed by application of an electric field, its dielectric constant, that is, its conductivity is changed, and has a metal ion such as Zn at a substantially central part.
  • the interface modifying molecule, the driving part molecule, and the driving part molecules are stacked by intermolecular ⁇ - ⁇ stacking.
  • the direction of the current flowing through the molecular array structure is the direction in which the driving unit molecules are stacked.
  • the functional molecular element of the present invention is not limited to such an active element, and may be, for example, a passive element such as a resistance element or a wiring element used as a resistor or a wiring.
  • FIG. 1 is a schematic diagram for explaining an example of a functional molecular element according to an embodiment of the present invention.
  • FIG. 1 (A) is a perspective view
  • FIG. 1 (B) shows an interface modifying molecule covalently bonded to an electrode.
  • FIG. 1C is a perspective view showing a driving unit molecule stacked on an interface modifying molecule.
  • the electrofunctional molecule 10 includes an opposing electrode (first electrode) 5 and an electrode (second electrode) 6 formed of pSi or aSi, both the electrodes 5, 6 and an interface modification molecule (first ⁇ -electron conjugated molecule) 2 covalently bonded to the surfaces of both electrodes 5 and 6, and a driver molecule (second ⁇ ) stacked in a column shape thereon It is composed of a molecular arrangement structure 7 composed of (electron conjugated molecule) 1.
  • the interface modifying molecule 2 is a modifying molecule that modifies the surfaces of the electrodes 5 and 6.
  • the driving part molecule 1 is a functional molecule whose structure or orientation is changed by application of an electric field and whose dielectric constant, that is, conductivity is changed.
  • the direction 8 of the current flowing through the molecular array structure 7 is the stacking direction of the driving unit molecules 1.
  • the driver molecule 1 and the interface modifying molecule 2 are the same or different ⁇ -electron conjugated molecules.
  • the interface modifying molecule 2 has a substantially disk-shaped skeleton part (first skeleton part) 3 and a side chain part 4 made of a ⁇ -electron conjugated system.
  • the surface is disposed substantially parallel to the surfaces of the electrodes 5 and 6 and is covalently bonded to Si constituting the electrodes 5 and 6 through —O— in the side chain portion 4.
  • the interfacial modification molecule 2 uses the terminal group of the side chain portion 4 as an anchor, and the side chain portion 4 forms a covalent bond with the surfaces of the electrodes 5 and 6 by the reaction between the anchor and the surfaces of the electrodes 5 and 6.
  • the molecule 2 is arranged so that the surface formed by the skeleton 3 is substantially parallel to the surfaces of the electrodes 5 and 6, and the interface modifying molecule 2 modifies the surfaces of the electrodes 5 and 6.
  • the driving part molecule 1 is a complex having Zn (ion) in the substantially central part, and has a substantially planar skeleton part (second skeleton part) composed of a ⁇ electron conjugated system.
  • the skeleton part of the driving part molecule 1 is stacked on the skeleton part 3 in a column shape by intermolecular ⁇ - ⁇ stacking. That is, the driving part molecule 1 is laminated on the interface modifying molecule 1.
  • the skeleton parts of the driving part molecule 1 are repeatedly laminated in a column shape in one direction by intermolecular ⁇ - ⁇ stacking.
  • the driving unit molecule 1 is repeatedly stacked, and the molecular arrangement structure 7 is formed by the interface modifying molecule 2 and the driving unit molecule 1 between the electrodes 5 and 6, and the current flows in the stacking direction of the driving unit molecule 1.
  • the molecular arrangement structure 7 is formed by the interface modifying molecule 2 and the driving unit molecule 1 between the electrodes 5 and 6, and the current flows in the stacking direction of the driving unit molecule 1.
  • the driving part molecule 1 generally has a side chain part, but this side chain part is not shown in FIG. 1C, and the driving part molecule 1 is composed of a belt-like ring with an open skeleton and its approximate center. This is schematically shown by Zn (ion) in the part (the same applies to FIGS. 2 and 3 described later).
  • the interface modifying molecule 2 is covalently bonded to the surfaces of the electrodes 5 and 6, and the skeleton 3 is disposed substantially parallel to the electrodes 5 and 6.
  • the electrical interface between the ⁇ electrons of the interface modifying molecule 2 and the electrodes 5 and 6 is achieved. Interaction can be improved, and the contact resistance at the interface between the interface modifying molecule 2 and the electrodes 5 and 6 can be reduced.
  • the driver molecule 1 is stacked on the interface modification molecule 2 by intermolecular ⁇ - ⁇ stacking, and a plurality of driver molecules 1 are stacked by intermolecular ⁇ - ⁇ stacking. It can be well formed in one direction.
  • the functional molecular element shown in FIG. 1 can also be configured to have a control electrode (third electrode) (not shown) provided along the stacking direction of the drive unit molecules 1.
  • a control electrode third electrode
  • the control electrode can be a gate electrode, a gate insulating layer can be provided thereon, the electrode 5 can be a source electrode, the electrode 6 can be a drain electrode, and the functional molecular element can be configured as an insulated gate field effect transistor.
  • the interface modification molecule 2 that is covalently bonded to the surfaces of the electrodes 5 and 6 to modify the surface thereof may be one in which the driving unit molecule 1 is laminated thereon by intermolecular ⁇ - ⁇ stacking.
  • the interface modifying molecule 2 for example, a ring having four pyrrole rings alternately bonded to four methine groups at the ⁇ position (tetrapyrrole ring, porphyrin ring, etc.) A porphyrin derivative having a) is used.
  • the driving unit molecule 1 is a molecule whose structure or orientation is changed by application of an electric field, and whose dielectric constant, that is, conductivity is changed.
  • the molecule is laminated in one direction by the interaction between molecules. Any layer may be used as long as it is stacked on the interface modifying molecule 2 by intermolecular ⁇ - ⁇ stacking.
  • the drive unit molecule for example, linear tetrapyrrole having a structure in which a methine group-bonded portion between two pyrrole rings of the porphyrin derivative ring (tetrapyrrole ring) is cleaved is used.
  • FIG. 2 is a diagram for explaining a manufacturing process of the functional molecular element in the embodiment of the present invention.
  • the manufacturing process of the functional molecular device includes a step of bonding the interface modifying molecule to the electrode surface by covalent bond and a step of laminating the functional part molecule in one direction on the interface modifying molecule bonded to the electrode surface.
  • the electrodes 5a and 6b (the right side of the uppermost view of FIG. 2 shows the pSi electrode shown in FIG. 5B described later). It has a structure in which a pyrrole ring is included as the skeleton part 3 and a side chain part 4 composed of — (C 6 H 4 ) O (CH 2 ) 5 OH is bonded to each carbon atom of the methine group between the pyrrole rings.
  • An interface modification molecule 2a (left figure in the top diagram of FIG.
  • the above porphyrin derivative having a structure in which a side chain portion 4 composed of — (C 6 H 4 ) O (CH 2 ) 5 OH is bonded to each of carbon atoms of four methine groups, That is, the compound shown in FIG. 4D is represented by Por-OH, and the hydrogen-terminated silicon is represented by Si-H.
  • the electrodes 5 and 6 made of a pSi electrode are previously treated at room temperature in a 5% HF aqueous solution for 2 minutes, washed with pure water and isopropyl alcohol to remove the surface oxide film and to terminate the surface with hydrogen.
  • a hydrogen atom is generated, and the silicon radical and the porphyrin derivative Por-OH are linked by a covalent bond.
  • the generation of radicals is, for example, by heating.
  • the interface modifying molecule 2a has a structure in which a side chain portion composed of a p-alkylphenyl group is bonded to a skeleton portion, and the skeleton portion has a substantially planar structure (porphyrin-like substantially disk shape) rigid by a ⁇ electron conjugated system.
  • the side chain portion forms a flexible chain structure by intramolecular rotation around the CC axis.
  • the C number of the carbon chain portion in the side chain portion composed of the p-alkylphenyl group may be 3 or more and 12 or less.
  • the carbon chain portion of the side chain portion composed of the p-alkylphenyl group is Examples thereof include (CH 2 ) 10 OH to (CH 2 ) 12 OH.
  • the interface modifying molecule 2a is well-oriented and covalently bonded on the electrode without crystallization, and is easily synthesized.
  • the number of carbon atoms is 1 or 2
  • the interface modifying molecule 2a is easily crystallized, and does not exhibit liquid crystal properties and easily causes alignment failure.
  • the number of carbon atoms is 13 or more, the orientation becomes difficult and the synthesis becomes difficult.
  • the electrodes 5 and 6 made of pSi electrodes are previously halogen-terminated, and a silicon radical is generated by extracting a halogen atom from the halogen-terminated silicon, and the silicon radical and the interface modifying molecule 2a are linked by a covalent bond. You can also.
  • a method such as adding a reaction initiator or irradiating light can be used to generate radicals.
  • the electrodes 5 and 6 are not limited to electrodes made of pSi electrodes, and electrodes made of carbon, silicon nitride, germanium, etc. can be used, and these electrodes may be previously hydrogen-terminated or halogen-terminated.
  • the interface modifying molecule can be covalently bonded at the side chain portion in the same manner as the pSi electrode.
  • the driver molecule 1a (the left diagram in the middle diagram of FIG. 2) is self-assembled by intermolecular ⁇ - ⁇ stacking on the interface modifying molecule 2a covalently bonded to the electrodes 5a and 6b. It is laminated in a column shape in an integrated manner.
  • the driving part molecule 1a has a tetrapyrrole ring as a skeleton part, and — (C 6 H 4 ) (CH 2 ) 11 CH 3 is bonded to each carbon atom of the methine group between two pyrrole rings,
  • a ⁇ -electron conjugated molecule (C 12) having a linear structure in which a tetrapyrrole ring of a porphyrin derivative composed of a complex having Zn (ion) at the center is cleaved by a methine group bond between two pyrrole rings.
  • H 25 -biladienone Zn complex (the drive of Molecular 1a Fig 4 (G to be described later) is a compound shown in the following, C 12 H 25 - biladienone zinc complex (C 12 H 25 -biladienone Zn complex ) Call it.)
  • the driving unit molecule 1a has a skeleton in which four pyrrole rings are connected in series by a methine group, and is called acyclic tetrapyrrole, ring-opening or ring-opening tetrapyrrole, or linear tetrapyrrole.
  • the driver molecule 1a is a compound that can be regarded as linear tetrapyrrole obtained by cleaving a tetraphenylporphyrin derivative having a structure in which a hydrogen (H) atom of a phenyl group is substituted by (CH 2 ) 11 CH 3 It is.
  • the skeleton part of the driving part molecule 1a is a linear tetrapyrrole having a basic structure of biradienone (4,9-biradien-1-one) and a structure corresponding to an opened porphyrin ring.
  • the skeleton part of the driving part molecule 1a is stacked on the skeleton part 3 of the interface modifying molecule 2a by intermolecular ⁇ - ⁇ stacking, and the skeleton parts of the driving part molecule 1a are molecules.
  • the molecules are stacked in one direction by ⁇ - ⁇ stacking, and the molecular arrangement structure 7 shown in FIG. 1 is formed between the electrodes 5a and 6b.
  • the structure or orientation of the ⁇ -electron conjugated molecule such as the driving part molecule 2a constituting the molecular arrangement structure 7 is changed by application of an electric field, and this is a complex with a metal ion such as Zn contained substantially in the central part.
  • the structure of the formation region is changed, and the dielectric constant, that is, the conductivity of the driving part molecule (functional molecule) is changed.
  • a ⁇ -electron conjugated molecule such as the driver molecule 2a
  • the molecule is twisted from the plane due to the presence of opposing C ⁇ O groups (carbonyl groups), and a ⁇ - ⁇ stack is formed between a plurality of molecules.
  • a spiral is formed in a structure, and exhibits a spiral structure.
  • the helical structure is formed by optical isomers of an M-form (minus form) in which the spiral advances by left rotation or a P-form (plus form) in which the spiral advances by right rotation.
  • the helical pitch of this helical structure varies depending on the conditions of the electric field acting on the driving part molecules.
  • the zinc ion at the approximate center of the porphyrin-like substantially disk-like structure is not necessarily required, but shows ON / OFF switching characteristics with good conductivity depending on the presence or absence of an electric field applied to the molecular array structure. Therefore, it is useful for the functional molecular device to exhibit switching characteristics.
  • transition elements such as copper ions and nickel ions, and metal ions of typical elements can also be used.
  • the disc or the substantially disc-like skeleton of each molecule is caused by ⁇ - ⁇ electron interaction. It is known that they are stacked so as to face face-to-face parallel to each other, and ⁇ electrons are delocalized between the stacked skeleton parts.
  • the ⁇ -electron conjugated molecules are stacked in a column shape and exhibit high conductivity in the stacking direction.
  • metal ions may be coordinated near the center of a disk or a substantially disk-shaped skeleton (Yo Shimizu, “Photoconductivity of Discotic Liquid Crystals: a Mesogenic Long-Chain Tetraphenylporphyrin and Its Metal Complexes”) , Molecular Crystals and Liquid Crystals, 370 (2001), 83-91, S. T. Trzaska, HF. Hsu and T. M. Swager, “Cooperative Chiralith in Columnar Liquid Crystals: Studies of FluxionmAJ Chem.
  • a pipe that allows the flow of electrons in the stacking direction (channel The function as a chain) can be considered.
  • channel The function as a chain Compared to ordinary conductive chain molecules, the diameter of the current path is large and a large amount of current can flow, and research is actively conducted to use it as an electronic channel of a solar cell.
  • the molecular arrangement structure 7 is arranged in a direction 8 (direction in which the electrode 5 and the electrode 6 are connected) in which a current is to flow. It is necessary to arrange so that the ends of the molecular structure 7 are bonded to the surfaces of the electrodes 5 and 6 so that the stacking directions of the electrodes are aligned and the contact resistance of the electrodes 5 and 6 is reduced. .
  • the distance between the disk surface formed by the skeleton of the ⁇ -electron conjugated molecule at the end of the molecular arrangement structure and the electrode surface is not 0.34 nm to 0.36 nm or less, the ⁇ -electron conjugated molecule and the electrode There is also a problem that delocalization of electrons at the interface cannot be obtained and a small contact resistance at the interface cannot be realized.
  • a ⁇ -electron conjugated molecule having a flexible side chain portion 4 is formed as a monomolecular layer covalently bonded to the surface of the electrode, and is formed on the surface of the electrode. Place interfacial modifying molecules.
  • a driving part molecule composed of a ⁇ -electron conjugated molecule is stacked on the interface modifying molecule by ⁇ - ⁇ stacking to form a molecular arrangement structure.
  • the driving part molecules stacked here there is no particular limitation on the driving part molecules stacked here, except that the molecules can form ⁇ - ⁇ stacking with respect to the interface modification molecules.
  • the driving unit molecule and the interface modifying molecule are different is shown, but the same kind of ⁇ -electron conjugated molecule may be used.
  • the interface modifying molecules forming the first monolayer on both sides of the molecular arrangement structure are covalently bonded to the surface of the electrode at the flexible side chain, and as a result, the skeleton is substantially parallel to the surface of the electrode. It arrange
  • the stacking direction of the second and subsequent molecular layers from both sides of the molecular arrangement structure is based on the substantially disk surface formed by the skeleton of the interfacial modification molecules arranged in parallel to the electrode surface, and the lower layer interfacial modification molecules It is controlled by the ⁇ - ⁇ interaction so that the substantially disk surface formed by the skeleton part of the upper-layer driving part molecule is superposed on the substantially disk surface formed by the skeleton part.
  • the molecular array structure can effectively pass a current in the stacking direction by the interaction between ⁇ electrons.
  • the robustness of the bond at the interface with the electrode is improved, the contact resistance at the interface is very small, the stacking direction of the molecular array structure (the direction of current flow) is controlled, and stable characteristics are achieved. It is possible to obtain a robust functional molecular device.
  • Embodiment 2 ⁇ Configuration of insulated gate field effect transistor>
  • a functional molecular device in which the functional molecular element 10 having the counter electrode described in the first embodiment is configured as an insulated gate field effect transistor will be described.
  • FIG. 3A and 3B are diagrams illustrating an example of an insulated gate field effect transistor according to an embodiment of the present invention.
  • FIG. 3A is a cross-sectional view
  • FIG. 3B is a perspective view
  • FIG. It is a schematic diagram which shows a molecular arrangement structure.
  • the doped silicon substrate 16 also serves as a gate electrode which is a control electrode.
  • a silicon oxide layer is formed as a gate insulating film 12 on the surface of the silicon substrate 16, and a source electrode 14 and a drain electrode 15 made of, for example, pSi or aSi are formed on the surface of the silicon substrate 16 as opposed electrodes.
  • the molecular arrangement structure 7 described in the first embodiment is arranged.
  • a source electrode terminal 17, a drain electrode terminal 18, and a gate electrode terminal 19 are connected to each of the source electrode 14, the drain electrode 15, and the silicon substrate 16 also serving as a gate electrode. A part of the source electrode 14, the drain electrode 15, and the silicon substrate 16 are illustrated.
  • the interface modifying molecule 2 which is the first-layer ⁇ -electron conjugated molecule on both sides constituting the molecular arrangement structure 7 is arranged at a position closest to each of the source electrode 14 and the drain electrode 15.
  • the substantially disk-shaped surface formed by the skeleton 3 of the interface modifying molecule 2 is in close contact with each of the source electrode 14 and the drain electrode 15 so that the interface modifying molecule 2 is connected to the source electrode at the side chain 4.
  • 14 and the drain electrode 15 are covalently coupled and fixed. For this reason, the ⁇ electrons of the skeleton part 4 of the interface modification molecule 2 can be delocalized on each of the source electrode 14 and the drain electrode 15, and the interface modification molecule 2 and the source electrode in the molecular arrangement structure 7. 14 and the contact resistance at the interface with the drain electrode 15 can be kept small.
  • the stacking direction of the driving unit molecules 1 that are ⁇ -electron conjugated molecules after the second layer from both sides of the array structure 4 is arranged in parallel with the respective surfaces of the source electrode 14 and the drain electrode 15.
  • the substantially disk surface of the skeleton part 4 of the modifying molecule 2 overlaps in parallel with the substantially disk surface of the skeleton part 3 of the lower layer interface modifying molecule 2. It is controlled by ⁇ - ⁇ interaction to be stacked. Furthermore, it is controlled by the ⁇ - ⁇ interaction so that the substantially disk surfaces of the skeleton parts of the driving part molecules 1 are stacked in parallel.
  • the contact resistance between the counter electrode composed of the source electrode 14 and the drain electrode 15 at the interface with both electrodes is very small, and the lamination direction (the direction in which the current flows) is controlled and is robust.
  • a molecular arrangement structure 7 is arranged. In the configuration in which the interface modifying molecule 2 is provided, the contact resistance at the interface between both electrodes is about 1/30 of the contact resistance in the configuration in which the interface modifying molecule 2 is not provided.
  • the silicon substrate 16 also serving as a control electrode gate electrode is provided along the stacking direction, which is the conductive direction of the molecular array structure 7, and the conductive direction of the molecular array structure 7 by the voltage applied to the gate electrode.
  • An electric field acts in a direction orthogonal to the direction, and the conductivity of the molecular array structure 7 is controlled.
  • the distance (gap) between the source electrode 14 and the drain electrode 15 corresponding to the gate length is, for example, about 10 nm (about 10 molecular layers).
  • the functional molecular device according to the present embodiment is formed by arranging the molecular arrangement structure 7 between the opposing electrodes, the interface modifying molecule 2, which is a ⁇ -electron conjugated molecule, the source electrode 14, and the drain electrode 15 are used.
  • the contact resistance at the interface can be kept small.
  • a current can be effectively passed in the stacking direction of the molecular array structure 7, the current can be controlled by a voltage applied to the gate electrode, and a nano-sized insulated gate type having excellent electrical characteristics.
  • the field effect transistor 20 can be obtained.
  • FIG. 4 is a diagram showing examples of interface modifying molecules and driving unit molecules in the embodiment of the present invention.
  • the ⁇ -electron conjugated molecule as the interface modifying molecule is a tetrapyrrole derivative, a phthalocyanine derivative, or an aromatic condensed polycyclic compound having 3 or more rings, more preferably a porphyrin derivative or a coronene derivative. More specifically, for example, the tetraphenylporphyrin derivative represented by the general formula (1) described above.
  • the interface-modifying molecule has, in its skeleton, a group that reacts with an element on the electrode surface, for example, a group that reacts with hydrogen or halogen on the electrode surface that is hydrogen-terminated or halogen-terminated (for example, a hydroxy group (—OH ), An aldehyde group (—CHO), a vinyl group (—CHCH 2 ), an ethynyl group (—CCH)) are preferably bonded to the terminal side chain, and the surface modification molecule is covalently bonded to the electrode surface element. As long as it is coupled to the electrode.
  • a typical example of the interface modifying molecule is the aforementioned tetraphenylporphyrin.
  • a typical example of a ⁇ -electron conjugated molecule as a driving part molecule is a complex having a metal ion such as Zn at a substantially central part, and is preferably a porphyrin derivative or linear tetrapyrrole, more specifically.
  • a metal ion such as Zn at a substantially central part
  • FIGS. 4A to 4F are examples of interface modifying molecules.
  • FIG. 4 (A) shows porphyrin (porphyrin, 21H, 23H-porphyrin, C 20 H 14 N 4 ),
  • FIG. 4 (B) shows tetraphenylporphyrin (tetraphenylporphyrin, C 44 H 30 N 4 ), and
  • FIG. 4 (C) shows Phthalocyanine (C 32 H 18 N 8 )
  • FIG. 4D is the interface modifying molecule 2a described in FIG. 2
  • FIG. 4E is the tetraphenylporphyrin derivative represented by the general formula (1) described above
  • FIG. 4 (F) is coronene (C 24 H 12 ).
  • the compounds shown in FIGS. 4 (A), 4 (B), 4 (C), and 4 (F) have a side chain portion (not shown). In this side chain portion, It is bonded to any carbon atom of the methine group between the C 4 N ring (pyrrole ring), the C 6 ring, and the two pyrrole rings, directly or via a divalent group.
  • the divalent group includes an oxy group (—O—), a thio group (—S—), a carbonyl group (—CO—), a sulfinyl group (—SO—), a sulfonyl group (—SO 2 —), an imino group. (—NH—), a phenylene group (phenylene, —C 6 H 4 —) or the like.
  • One end of a divalent group is bonded to any carbon atom of the above C 4 N ring, C 6 ring or methine group, and the other end of the divalent group is a chain alkylene which is at least contained in the side chain portion Bonded to one end of the group.
  • the other end of the alkylene group is bonded to a hydrogen- or halogen-terminated electrode surface hydrogen or halogen-reactive group, for example, —OH or —CHO.
  • the side chain part may contain a phenylene group (—C 6 H 4 —) in addition to the alkylene group.
  • FIGS. 4 (G) and 4 (H) are examples of driving part molecules, and these derivatives can also be used as driving part molecules.
  • FIG. 4 (G) shows the driving part molecule 1a described in FIG. 2, and
  • FIG. 4 (H) shows a biradienone (biladienone, C 19 H 16 N 4 O) derivative represented by the general formula (2).
  • chlorin chlorin (chlorin, 2,3-dihydro-21H, 23H-porphyrin, C 20 H 16 N 4 ) derivatives, phlorin (phlorin, 5,22-dihydro) -21H, 23H-porphyrin, C 20 H 16 N 4) derivatives, biliverdin (biliverdine, C 33 H 36 N 4 O) derivatives, Birirujin (bilirubin, C 33 H 36 N 4 O) derivatives, villin (biline, C 19 Metal ion complexes such as Zn of linear tetrapyrrole such as H 14 N 4 ) derivatives, bilane (bilane, C 19 H 20 N 4 ) derivatives, bilene (bilene, C 19 H 14 N 4 ) derivatives are also used as driving part molecules.
  • the side chain portion may be bonded to the skeleton portion. Note that the compounds shown in FIGS. 4A to 4F and derivatives thereof can also be used as the driving portion molecules
  • the driving element of this molecular switch is composed of supramolecules in which a distorted disk-shaped C 12 H 25 -biradienone zinc complex molecule is repeatedly laminated in one direction by intermolecular ⁇ - ⁇ stacking and self-organized. Since this switch has a permanent dipole moment, the conformation of the molecule is changed by an external electric field.
  • the FES device used a state-of-the-art CMOS process, for example, with a 30 nm gap formed by p-type poly-Si on a 100 nm thick SIO 2 insulating layer formed on a Si substrate that also served as the gate electrode. It consists of a source electrode and a drain electrode.
  • HOMO Highest Occupied Molecular Orbital, the highest occupied orbit: the highest energy orbit among the molecular orbitals occupied by electrons in the frontier orbital theory
  • Si Por-OH having a value close to Fermi energy
  • a distorted disc-shaped biradienone molecule having a dipole moment (C 12 H 25 -biradienone zinc complex) is formed on two opposing pSi electrodes modified with Por-OH.
  • the layers were repeatedly stacked by ⁇ - ⁇ stacking, and introduced between two pSi electrodes.
  • the current ratio when the gate voltage applied to the gate electrode provided along one direction where the driver molecules are repeatedly stacked is turned on and off is about 500, and the switch shows the same characteristics after one month. It was.
  • FIG. 5 is a diagram showing an electrode surface state in an example of the present invention, and is an AFM (atomic force microscope) image.
  • FIG. 5A is an AFM image of pSi (polysilicon, sample # 1) without doping and without annealing treatment, and the standard deviation value of mean roughness (RMS (root mean square) value of dispersion) is 0. It was 791 nm.
  • RMS root mean square
  • FIG. 5B is a sample (# 2) obtained by performing annealing treatment at 900 ° C. for 10 s (seconds) on pSi doped with 1 ⁇ 10 16 / cm 3 B (boron).
  • the standard deviation value of the average roughness was 2.39 nm.
  • FIG. 5C is a sample (# 9) obtained by performing annealing treatment at 900 ° C. for 10 s on aSi (amorphous silicon) doped with 1.2% P (phosphorus). The standard deviation value of the degree was 0.56 nm.
  • the interface modifying molecule ( ⁇ -electron conjugated molecule having a substantially disc-like skeleton) used in the production of the functional molecular element in this example is the tetragonal compound represented by the general formula (1) or FIG.
  • the compound shown in FIG. 4D has a structural formula in which the side chain portions R 1 , R 2 , R 3 , and R 4 are each —O (CH 2 ) 5 OH.
  • This compound can also be regarded as a porphyrin derivative in which — (C 6 H 4 ) O (CH 2 ) 5 OH is bonded to the carbon atom of the methine group of porphyrin shown in FIG. 4 (A). -OH.
  • the pSi sample (# 2) shown in FIG. 5 (B) was hydrogen-terminated, and immediately immersed in a pyridine solution in which the compound (Por-OH) shown in FIG. 4 (D) was dissolved, at 115 ° C. After refluxing for 4 hours, the sample was washed with a pyridine solution and dried to prepare two samples (Por-OH / pSi) surface-modified with Por-OH.
  • this sample is referred to as interfacial modification molecule / pSi (part 1, part 2).
  • the pSi sample (# 2) was used as a reference material, and after the pSi sample (# 2) was hydrogen-terminated, it was immediately immersed in a pyridine solution and refluxed at 115 ° C. for 4 hours. The sample was washed with a pyridine solution and dried to prepare a control sample.
  • this sample is represented as pyridine / pSi.
  • the surface of the electrode is modified by a molecule covalently bonded to the electrode, and a driving unit molecule is laminated on the modified surface, and the molecule covalently bonded to the electrode surface modifies the interface between the electrode and the driving unit molecule. It is an interface modifying molecule.
  • the bonding state of Por-OH and Si in pSi (Por-OH / pSi) surface-modified with Por-OH was analyzed by XPS (X-ray Photoelectron Spectroscopy).
  • FIG. 6 is a diagram illustrating the generation of a covalent bond between an electrode surface and an interface modifying molecule in an example of the present invention, and is a diagram illustrating a measurement result by XPS (X-ray photoelectron spectroscopy) of the electrode surface.
  • XPS X-ray photoelectron spectroscopy
  • the horizontal axis represents the binding energy (eV), and the vertical axis represents the intensity expressed in arbitrary units.
  • FIG. 6 (A) and 6 (B) show the measurement results for the control sample
  • FIG. 6 (A) shows the measurement results for the hydrogen-terminated pSi sample (# 2)
  • FIG. 6 (B) shows the pSi It is the measurement result regarding the sample which treated the surface with pyridine, and pyridine / pSi.
  • 6 (C) and 6 (D) show the measurement results for the sample subjected to the process of covalently bonding the interface modifying molecule to pSi, and the interface modifying molecule / pSi (part 1 and part 2).
  • FIG. 7 is a diagram for explaining the generation of a covalent bond between the electrode surface and the interface modifying molecule in the example of the present invention, and is a diagram in which the measurement results shown in FIG. 6 are normalized and arranged.
  • the normalization conditions were such that the C1s trajectory level due to contamination was at the same position.
  • the intensity shown in (A) indicates the contamination level of the measurement result shown in (B), and the intensity shown in (B) indicates the contamination level of the measurement result shown in (C). Conceivable.
  • Level 1 is considered to be derived from contamination during XPS measurement, and (b) is level 2 considered to be derived from Si—O—C and C—O.
  • the strength shown in (B) of FIG. 7 is the contamination level when pSi is immersed in the pyridine solution and also during XPS measurement, which is also included in the surface modification of pSi with Por-OH. Contamination level at the time of measurement, and levels due to C—C, C—H, C ⁇ C of the pyridine ring, (b) is a level considered to be derived from Si—O—C, C—O is there.
  • (B) shown in (B) in FIG. 7 shows substantially the same strength as (b) shown in (A), but the strength of (a) shown in (B) is shown in (A) ( It is larger than the intensity of a), indicating that pyridine is adsorbed on the surface of pSi. Therefore, the strength shown in (B) can be a contamination level generated during surface modification of pSi with Por-OH and during XPS measurement.
  • (A) and (b) shown in (C) in FIG. 7 each include the levels in (a) and (b) shown in (B) as contamination, and (c) shown in (C) shows contamination.
  • a C1s signal derived from C-OH of Por-OH Assuming that all OH groups of Por-OH are not bonded to Si, there is no bonded Si-O-C, and Por-OH is not covalently bonded to Si, and (C) shown in (b) The intensity is considered to be a C1s signal due to C—O (C—O—C in — (C 6 H 4 ) O (CH 2 ) 5 OH of Por-OH).
  • (b) is a value significantly larger than the strength of (c), and the difference in strength between (b) and (c) is Si—O—C.
  • This is considered to be the resulting C1s signal, indicating the presence of an OH group bonded to Si.
  • At least one OH group of Por-OH produces a bond C—O—Si by reaction with hydrogen-terminated silicon (Si—H) ⁇ Por—OH + Si—H ⁇ Por—O—Si + H 2 ⁇
  • PYS Photoelectron yield spectroscopy
  • a sample for PYS measurement was prepared as follows.
  • the pSi sample (# 2) shown in FIG. 5 (B) is hydrogen-terminated, and then immersed in a pyridine solution in which the compound (Por-OH) shown in FIG. 4 (D) is dissolved, at 110 ° C. for 2 hours.
  • two samples (Por-OH / pSi) surface-modified with Por-OH were prepared by washing with pyridine solution and drying.
  • this sample is represented as interfacial modification molecule / pSi.
  • the pSi sample (# 2) was hydrogen-terminated, it was immediately immersed in a pyridine solution, refluxed at 110 ° C. for 2 hours, washed with the pyridine solution and dried, and the control sample and did.
  • this sample is represented as pyridine / pSi.
  • FIG. 8 is a diagram for explaining the structure of the electrode interface by photoelectron yield spectroscopy in the example of the present invention, and shows the measurement result by PYS (photoelectron yield spectroscopy) of the electrode surface.
  • FIG. 8 (A) shows the measurement results for a control sample (pyridine / pSi) prepared by pyridine treatment on the pSi electrode surface
  • FIG. 8 (B) shows a case where a treatment for covalently bonding an interface modifying molecule to pSi was performed. It is a measurement result regarding one sample (Por-OH / pSi).
  • the horizontal axis is binding energy (eV)
  • the vertical axis is an arbitrary unit (emission yield) 1/2
  • the measurement is PCR-102 ionization potential measurement made by Sumitomo Heavy Industries Advanced Machinery Co., Ltd.
  • An apparatus Source: deuterium light source
  • the analysis was based on the literature, H Ishii, et. Al., “Energy Level Alignment and Interfacial Electronic Structures at Organic / Metaland Organic / Organic Interfaces”, Advanced Materials, 1999, 11, No. 8, 605-625.
  • the HOMO level (IP) of the Por-OH alone is 5.6 eV
  • the HOMO level (IP) of the Por-OH in Por-OH / pSi is 5.9 eV. Yes, it shifted to the high energy side.
  • the binding energy 4.95 eV shown in FIG. 8 (A) probably corresponds to adsorbed water, and the binding energies 6.35 eV and 6.95 eV shown in FIG. 8 (B) are in different orbits of the molecular bulk layer. Presumed to be compatible.
  • FIG. 9 is a diagram for explaining the interaction between the electrode (pSi) and the interface modifying molecule (Por-OH) in the example of the present invention, and is a diagram in which the results shown in FIG. 8 are arranged as an energy band diagram at the electrode interface. It is.
  • FIG. 9A shows an energy band diagram at the interface when the electrode (pSi) and the molecule (Por-OH) are separated so as not to affect each other
  • FIG. 9B shows the electrode (pSi) and the molecule ( It is an energy band diagram at the interface when Por-OH) is approaching so as to affect each other.
  • HOMO and LOMO respectively indicate the energy levels of the highest occupied orbit and the lowest occupied orbit according to the frontier orbit theory, and EF indicates the Fermi level.
  • VL indicates a vacuum level
  • indicates a position at an infinite distance from the interface
  • s 1 indicates a position of the interface 1
  • s 2 indicates a position of the interface 2
  • s 3 indicates a position of the interface 3
  • s 4 Indicates the position of the interface 4
  • s 5 indicates the position of the interface 5.
  • the ⁇ -electron conjugated molecule (driving part molecule) having a substantially disk-shaped skeleton used for the production of the functional molecular element in this example is Or a compound having a structural formula in which the side chain portions R 5 , R 6 , R 7 , and R 8 are (CH 2 ) 11 CH 3 in the ⁇ -electron conjugated molecule shown in FIG. a biladienone zinc complex (C 12 H 25 -biladienone Zn complex ) - C 12 H 25 having a dodecyl group -C 12 H 25 attached at the para position of the phenyl group.
  • a biladienone zinc complex C 12 H 25 -biladienone Zn complex
  • the surface-modified pSi is immersed in a pyridine solution in which a C 12 H 25 -biradienone zinc complex is dissolved, subjected to reflux treatment at 110 ° C. to 160 ° C. for 4 hours, washed with the pyridine solution and dried.
  • C 12 H 25 -viradienone zinc complex molecule was used as a driving part molecule, and was self-assembled on a molecule that modifies pSi.
  • FIG. 10 is a diagram showing the vicinity of an electrode gap for explaining an example of an insulated gate field effect transistor according to an embodiment of the present invention.
  • FIG. 10 (A) is a surface SEM image, and FIG. It is A sectional drawing.
  • the insulated gate field effect transistor 20a is configured as a bottom gate transistor.
  • a SiO 2 layer having a thickness of 100 nm is formed as a gate insulating layer 12 on a silicon substrate 16 having a thickness of about 0.2 mm which also serves as a gate electrode, and is formed on this layer by using a state-of-the-art CMOS process.
  • a source electrode 14 and a drain electrode 15 having a thickness of 50 nm are formed of pSi with an electrode gap 13 having a thickness of 50 nm. In the example shown in FIG. 10, the electrode gap 13 is about 30 nm.
  • Por-OH is covalently bonded as the interface modifying molecule 2 to form a single modifying molecular layer.
  • the driving molecule 1 is formed on the modifying molecular layer.
  • C 12 H 25 -viradienone zinc complex is laminated in a self-assembled manner by intermolecular ⁇ - ⁇ stacking, so that a molecular arrangement structure composed of the interface modifying molecule 2 and the driving unit molecule 1 is formed in the electrode gap 13. It is formed as schematically shown in FIG.
  • the number of molecular layers stacked in the electrode gap 13 of about 30 nm is estimated to be about 30 layers.
  • the C 12 H 25 -viradienone zinc complex molecule is laminated in a self-organized manner substantially parallel to the skeleton of the Por-OH molecule covalently bonded to the surfaces of both electrodes 14 and 15, A molecular arrangement structure is stably formed in the nearest gap 13, and it is difficult to form a substantially parallel stack of C 12 H 25 -biradienone zinc complex molecules between the electrodes far from the gap 13.
  • the formation of the molecular arrangement structure is limited to the vicinity of the electrode gap 13, and in other parts, the C 12 H 25 -biladienone zinc complex molecule is unstablely stacked and removed together with unassembled molecules by washing.
  • I d represents a drain current
  • V d represents a drain voltage
  • V g represents a gate voltage
  • FIG. 11A shows an (I d ⁇ V d ) curve in a transistor in which the driving molecule 1 is not stacked
  • FIG. 11B shows that the driving molecule 1 is stacked and the molecular arrangement structure is an electrode gap
  • 13 is a diagram showing an (I d ⁇ V d ) curve in the transistor formed in FIG.
  • transistor characteristics are not exhibited in a state where the driving molecule 1 is not laminated, and as shown in FIG. 11B, the driving molecule is laminated in the gap between the gate electrode and the drain electrode.
  • V g curves, and both (I d -V g ) curves show hysteresis.
  • FIG. 13 shows measurement results for transistors different from those shown in FIGS. 11 and 12.
  • the transistors related to FIGS. 11 and 12 and the transistor related to FIG. Are not exactly the same.
  • the results shown in FIG. 13 superimpose the characteristics immediately after the manufacture of the transistor and the characteristics after the transistor is left in the atmosphere at room temperature for one month, and show the same transistor characteristics.
  • the current ratio when the gate voltage applied to the gate electrode was turned on and off was about 500.
  • the (I d ⁇ V g ) curve was repeatedly measured 10 8 times, the same transistor characteristics were exhibited and no change was observed.
  • the manufactured transistor shows stable and good reproducibility even when left in the atmosphere for a long time, and has high reliability.
  • the side chain portion of the disc-like or substantially disc-like ⁇ -electron conjugated molecule is covalently bonded to the atoms constituting the electrode, so that it is simply attached to the electrode surface.
  • the driving molecule which is a functional molecule
  • the driving molecule is stacked in a column shape in a self-assembled manner on this modified molecular layer to form a molecular arrangement structure together with the modified molecular layer. It is possible to provide a functional molecular device and a functional molecular device in which the contact resistance at the interface of the molecular arrangement structure is reduced.
  • each part constituting the transistor can be arbitrarily set as necessary so as to satisfy the performance so as to match the intended use.
  • functional molecular devices are not configured as transistors, but can be fabricated from the same materials and principles from macro-sized to nano-sized devices, and can also be configured as memories, logic circuits, etc. Needless to say.
  • SYMBOLS 1 Drive part molecule
  • numerator, 2 Interface modification molecule
  • numerator, 3 Substantially disk-shaped frame
  • sequence structure, 8 Current flow direction DESCRIPTION OF SYMBOLS 10 ... Functional molecular element, 12 ... Gate insulating layer, 13 ... Electrode gap, 14 ... Source electrode, 15 ... Drain electrode, 16 ... Silicon substrate (also serving as a gate electrode), 17 ... Source electrode terminal, 18 ... Drain Electrode terminal, 19 ... Gate electrode terminal, 20, 20a ... Insulated gate field effect transistor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

 電機能性分子(10)は、pSi(ポリシリコン)からなり対向する電極(5、6)と、分子配列構造体(7)から構成され、分子配列構造体は電極(5、6)の表面に共有結合し表面修飾する界面修飾分子(2)とこれに一方向に繰り返し積層された駆動部分子(1)からなる。界面修飾分子はπ電子共役系からなる略円盤状の骨格部と側鎖部を有し、骨格部のなす面が両電極の面に略平行に配置され、側鎖部において両電極のSiに共有結合されている。駆動部分子はπ電子共役系からなり電界印加によってその構造又は配向が変化し誘電率即ち導電性が変化し、略中心部にZnイオンを有する錯体からなる機能性分子である。界面修飾分子と駆動部分子、駆動部分子同士は分子間π-πスタッキングによって積層されている。

Description

機能性分子素子及びその製造方法、並びに機能性分子装置
 本発明は、電界の作用で導電性が変化する機能性分子素子及びその製造方法、並びに機能性分子装置に関する。
 ナノテクノロジーは、大きさが1億分の1メートル(10-8m=10nm)程度の微細構造を観察・作製・利用する技術である。
 1980年代後半に、走査型トンネル顕微鏡と呼ばれる超高精度の顕微鏡が発明され、原子1個、分子1個を見ることができるようになった。走査型トンネル顕微鏡を用いれば、原子や分子を観察できるばかりでなく、1個ずつ操作することができる。
 例えば、結晶の表面に原子を並べて、文字を書いた例等が報告されている。しかし、原子や分子を操作できると言っても、莫大な個数の原子や分子を1個ずつ操作して、新材料やデバイスを組み立てるのは実際的ではない。
 原子や分子やその集団を操作して、ナノメートルサイズの構造体を形成するには、それを可能にする新しい超精密加工技術が必要である。そのようなナノメートル精度の微細加工技術として、大きく分けて2つの方式が知られている。
 1つは、従来から様々な半導体デバイスの製造に用いられてきた方法であり、例えば、大きなシリコンウエハを限界まで小さく精密に削り込んで行き、集積回路を作り込むような、所謂トップダウン型の方法である。他の1つは、極微の単位である原子や分子を部品として、小さな部品を組み上げて目的のナノ構造体を作製する、所謂ボトムアップ型の方法である。
 トップダウン方式によって、どの位小さな構造体を作製できるかという限界に関しては、インテルの共同創設者であるゴードン・ムーアが1965年に提示した有名なムーアの法則がある。これは、「トランジスタの集積度は18ヶ月で2倍になる。」という内容である。1965年以後、半導体産業界は、30年以上にわたって、ムーアの法則どおりにトランジスタの集積度を高めてきた。
 米半導体工業会(SIA)から発表されている今後15年間の半導体産業のロードマップITRS(International Technology Roadmap for Semiconductor)は、ムーアの法則は引き続き有効であるという見解を示している。
 半導体チップは、微細化するほど高速化し、同時に電力消費を抑えられる。更に、1枚のウエハから得られる製品数が多くなり、生産コストを下げることもできる。マイクロプロセッサのメーカーが、新製品のプロセスルールとトランジスタ集積度を競うのもそのためである。
 しかし、「ムーアの法則」も、いずれは自然法則に基づく限界にぶつかるとも指摘されている。
 例えば、現在主流になっている半導体技術では、シリコンウエハ上にリソグラフィ技術で回路パターンを焼き付けて、半導体チップを製造する。より微細化するためには解像度を上げねばならず、解像度を上げるためには、より波長の短い光を利用する技術を実用化しなければならない。
 また、集積度の増大によって半導体チップ当たりの発熱量が大きくなりすぎ、高温になった半導体チップが誤動作したり、熱的に破壊されてしまったりする心配もある。
 更に、専門家の予測によると、半導体業界がこのままチップを小さくしつづければ、設備コストやプロセスコストが膨らみ、歩留まりの悪化もあって、2015年あたりで経済的に成り立たなくなるとも考えられている。
 最近、更に大きな問題点として、パターンエッジの微細な凹凸、すなわち、ラインエッジラフネスの問題が指摘されている。レジストマスク表面の凹凸については、パターンの微細化と共に、レジストを構成している分子の大きさや、化学増幅型フォトレジストにおける酸の拡散距離等が問題になると言われている。パターンエッジの凹凸の周期の大きさとデバイス特性との関係も評価されており、重要な課題となっている。
 上記のようなトップダウン方式の技術的な壁を打開する新たな技術として、個々の分子に電子部品としての機能を持たせようとする研究が注目を集めている。単一分子からなる電子デバイス(分子スイッチ等)であり、ボトムアップ方式で作製する。
 金属やセラミックス、半導体についても、ボトムアップ方式でナノメートルサイズの構造体を作る研究が行われている。しかし、もともと1個1個が独立していて、形の違い、機能の違いなど数100万種類に及ぶ多様性のある分子こそ、それを生かせば、従来とはまったく異なる特徴を持つデバイス(分子デバイス)をボトムアップ方式で設計し、作製することができる。
 例えば、導電性分子の幅はわずか0.5nmである。この分子の線材は、現在の集積回路技術で実現されている100nm程度の線幅に比べて、数千倍の高密度の配線を実現できる。また、例えば、1個の分子を記憶素子として使うと、DVDの1万倍以上の記録が可能となる。
 分子デバイスは、従来の半導体シリコンとは異なり、化学的工程で合成する。1986年、三菱電機社の肥塚裕至は、ポリチオフェン(高分子)からなる世界初の有機トランジスタを開発した。
 更に、米国ヒューレット・パッカード(HP)社とカリフォルニア大学ロサンゼルス校の研究グループは、有機電子デバイスの製造に成功し、1999年7月にScience誌に発表すると共に、特許も出願した(後記する特許文献1及び特許文献2を参照。)。彼らは、有機分子であるロタキサン数百万個からなる分子膜を使ってスイッチをつくり、この分子スイッチをつなぎ合わせて、基本的な論理回路であるANDゲートを作製した。
 また、米ライス大学とエール大学の共同研究グループは、電界印加下での電子注入によって分子構造が変化してスイッチング動作を行う分子スイッチを作ることに成功し、1999年11月にScience誌に発表した(後記する非特許文献1を参照。)。繰り返しオン、オフできる機能は、HP社とカリフォルニア大学ロサンゼルス校のグループでは実現されていなかった機能である。大きさは通常のトランジスタの100万分の1で、小さく高性能のコンピュータを作る基礎となる。
 合成に成功した J. Tour教授(ライス大学・化学)は、分子スイッチの生産コストは、通常半導体製造に使われる高価なクリーンルームが不要のため、従来の数千分の1にできるとしている。5年~10年以内に分子とシリコンのハイブリッド型コンピュータを作る予定だとしている。
 電子部品としての機能を持つ分子デバイスの研究が盛んに行われているといっても、これまでの分子デバイスに関する研究は、ほとんどが、光・熱・プロトン・イオン等で駆動するものであり(例えば、後記する非特許文献2を参照。)、電界によって駆動するものは限られていた。
 前述したラインエッジラフネスの問題に関しては、これらの分子デバイスであっても大きな問題であることは同様であり、パターンの微細化と共に顕在化してくると思われる。分子デバイスでは、その回避方法として、分子の末端にチオール基を導入し、金電極と直接結合させる方法が一般的である(例えば、後記する非特許文献3を参照。)。分子自体は最小単位がラフネスの問題よりも小さく、再現性がよいのが無機材料と比較して優位である。
 しかし、チオール基と金電極との結合による電気的接続の問題点は、分子自体がどのように電気特性のよいものであっても、そのチオール基末端と電極との接続部分が大きな電気抵抗をもち、これが分子デバイスの特性の向上を制限してしまうことである(後記する非特許文献4を参照。)。
 分子デバイスの開発においては各種の有機分子の使用が検討されている。例えば、4個のピロール環を含むテトラピロールと呼ばれている化合物群はその一例である。テトラピロールには、環状構造のもの、非環状構造のものがある。環状構造のものには、例えば、4個のピロール環が炭素原子1個を挟んで結合した環(テトラピロール環)を有するポルフィリン及びその誘導体があり、多くの金属原子と安定な金属錯体を形成し、この金属錯体はポルフィリンの環のなす面が積み上げられたスタッッキング構造をとることが知られている。非環状構造のものは、4個のピロール環が炭素原子1個を挟んで直列に結合した非環状テトラピロール、開環テトラピロール、又は、リニアテトラピロールと呼ばれている。
 以下、テトラピロールを含む分子デバイスに関する報告の例について説明する。
 先ず、「共有結合により固定化されたポルフィリン多量体を基板上に積層させた光機能分子素子及びその製造方法」と題する後記する特許文献3には、金基板上にリンカーポルフィリンをつけた後、イミダゾール置換亜鉛ポルフィリン溶液に基板を浸漬し、配位結合によってポルフィリン多量体を積層することの記載がある。
 また、「機能性分子素子」と題する後記する特許文献4には次の記載がある。
 電界で誘起される分子構造の変化によって誘電率の異方性が変化する系を用いて構成される機能性分子素子に関する記載があり、このような機能性分子素子は、誘電率異方性を有し且つ電界の作用下で構造変化する、例えば、直鎖状の側鎖を有する望ましくは円盤状(又は円盤に近い)有機分子と、金属イオンとの有機金属錯体分子を用いるのがよいとされている。
 また、一対の対向電極間に、側鎖を有する円盤状に近い有機金属錯体分子がカラム状に配列したカラム状配列構造体を形成しているのがよいとされ、側鎖を有する円盤状に近い有機分子がビリベルディン・ビラディエノン等のビラディエノン誘導体であり、金属イオンが亜鉛イオン、銅イオン又はニッケルイオン等であるのがよいとされている。
 また、ビラディエノン誘導体以外に、ビリン誘導体、フロリン誘導体、クロリン誘導体等が使用可能であり、金属も、他の典型元素や遷移金属が使用可能であるとされている。
 また、「リニアテトラピロール系色素」と題する後記する特許文献5には、フェニル基にアルキル基・アルコキシ基を有するテトラフェニルポルフィリン化合物を酸化・開裂して合成するものであることを主要な特徴とするニアテトラピロール系色素の記載がある。
 更に、「機能性分子素子及びその製造方法、並びに機能性分子装置」と題する後記する特許文献6には、次の記載がある。
 特許文献6の発明は、π電子共役系からなる平面形又は略平面形構造を有する骨格部に側鎖部が結合してなるπ電子共役系分子が、前記側鎖部において電極に吸着されることによって、前記骨格部の前記平面形又は前記略平面形構造が前記電極に対してほぼ平行になるように配置された被吸着分子を形成しており、少なくとも前記被吸着分子と前記電極とからなる構造体が、前記平面形又は前記略平面形構造に交差する方向に電流を流す機能を有する、機能性分子素子に係わり、また、その製造方法であって、前記π電子共役系分子の濃度を調節した前記π電子共役系分子の溶液を調製する工程と、前記溶液を前記電極に接触させる工程と、前記溶液から溶媒を蒸発させ、前記濃度に応じた分子積層数で前記π電子共役系分子の層を前記電極の表面上に形成する工程とを有する、機能性分子素子の製造方法に係わるものである。
 また、前記機能性分子素子を構成する前記構造体が、対向電極を前記電極として形成されている、機能性分子装置に係わるものである。
米国特許第6256767号明細書(ABSTRACT) 米国特許第6128214号明細書 特開2004-266100号公報(段落0008、段落0159~0173) 特開2005-228773号公報(段落0031~0043) 特開2006-283014号公報(段落0006~0024) 特開2006-351623号公報(段落0037~0038)
J. Chen,M. A .Reed,A. M. Rawlett and J. M. Tour,"Large on-off ratios and negative differential resistance in a molecular electronic device",Science,1999,Vol. 286,1552 1551 Ben L. Feringa 編,"Molecular Switches", WILEY - VCH,Weinheim,2001 M. A Reed,C. Zhou,C. J. Muller,T. P. Burgin and J. M. Tour,"Conductance of a molecular junction",Science,1997,Vol. 278,252 254 J. M. Wessels,H. G. Nothofer,W. E. Ford,F. von Wrochem,F. Scholz,T. Vossmeyer,A. Schroedter,H. Weller and A. Yasuda,"Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies",Journal of the American Chemical Society, 126(10),3349 - 3356,Mar,17,2004
 電界によって駆動される従来の分子素子は、電界の作用を受けた分子がその電子状態を変化させることによって、2つ(又はそれ以上)の電極間における導電性を変化させるものが多い。例えば、有機電界効果トランジスタ(有機FET)では、チャネル領域の有機分子に作用する電界の変化によって、有機分子中のキャリア移動が変調される。この場合、有機分子と電極との界面での接触抵抗が非常に大きく、その接触抵抗が分子素子の動作特性に強く影響する。
 電界の作用によって分子構造を変化させ、電流をON、OFFする分子スイッチとして機能する原理に基づく機能性分子素子を含め、どのような動作原理からなる分子素子であっても、分子と電極との界面での接触抵抗が大きい場合には、その接触抵抗が分子素子の動作特性に影響を与えることは言うまでもない。太陽電池のように、電子を流すための有機分子層が対向電極間に配置されている場合でも、有機分子と電極との界面での接触抵抗をできるだけ小さくすることが求められる。
 分子素子では一般に金属電極が用いられてきているが、ナノスケールのギャップをもつ、例えば、金からなる2つの電極を形成して電極ギャップに有機分子を配置してチャネルを形成した分子素子では、電極表面からの金原子の浮遊(migration)の発生や、フィラメント(filament)の形成が、電界によって生じることがあるため、ナノスケールのギャップをもつ電極を有する安定して動作するナノスケールの分子素子の実現を困難としている。
 本発明は、上述したような課題を解決するためになされたものであって、その目的は、有機分子と電極との界面における接触抵抗を低減することができる機能性分子素子及びその製造方法、並びに機能性分子装置を提供することにある。
 即ち、本発明は、電極(例えば、後述の実施の形態における電極5、6)と、π電子共役系からなる平面又は略平面を有する第1の骨格部(例えば、後述の実施の形態における略円盤状の骨格部3)とこれに結合する側鎖部(例えば、後述の実施の形態における側鎖部4)を有し、前記第1の骨格部が前記電極に略平行に配置され、前記側鎖部において前記電極に共有結合によって結合された第1のπ電子共役系分子(例えば、後述の実施の形態における界面修飾分子2)とを有し、前記第1のπ電子共役系分子と第2のπ電子共役系分子(例えば、後述の実施の形態における駆動部分子1)とが積層されてなる分子配列構造体が形成され、前記第1の骨格部の面と交差する方向に電流を流す機能を有する機能性分子素子に係るものである。
 また、本発明は、π電子共役系からなる平面又は略平面を有する第1の骨格部(例えば、後述の実施の形態における略円盤状の骨格部3)とこれに結合する側鎖部(例えば、後述の実施の形態における側鎖部4)を有する第1のπ電子共役系分子(例えば、後述の実施の形態における界面修飾分子2)を、前記側鎖部において電極(例えば、後述の実施の形態における電極5、6)に共有結合させ、前記第1の骨格部を前記電極に略平行に配置させる第1の工程と、π電子共役系からなる平面又は略平面を有する第2の骨格部を有する第2のπ電子共役系分子(例えば、後述の実施の形態における駆動部分子1)を、前記第1の骨格部に前記第2の骨格部を分子間π-πスタッキングによって積層させ、更に、前記第2の骨格部が分子間π-πスタッキングによって一方向に繰り返し積層させて、前記第1及び第2のπ電子共役系分子を含む分子配列構造体を形成する第2の工程とを有する機能性分子素子の製造方法に係るものである。
 また、本発明は、対向する第1及び第2の電極(例えば、後述の実施の形態における電極5、6)と、π電子共役系からなる平面又は略平面を有する第1の骨格部(例えば、後述の実施の形態における略円盤状の骨格部3)とこれに結合する側鎖部(例えば、後述の実施の形態における側鎖部4)を有し、前記第1及び第2の電極のそれぞれに前記第1の骨格部が略平行に配置され、前記側鎖部において前記第1及び第2の電極に共有結合によって結合された第1のπ電子共役系分子(例えば、後述の実施の形態における界面修飾分子2)と、π電子共役系からなる平面又は略平面を有する第2の骨格部を備えた第2のπ電子共役系分子(例えば、後述の実施の形態における駆動部分子1)を有し、前記第1の骨格部に前記第2の骨格部が分子間π-πスタッキングによって積層され、更に、前記第2の骨格部が分子間π-πスタッキングによって一方向に繰り返し積層され、前記第1の電極と前記第2の電極の間に前記第1及び第2のπ電子共役系分子によって形成された分子配列構造体とを有し、前記一方向に沿って電流を流す機能を有する機能性分子装置に係るものである。
 本発明の機能性分子素子によれば、前記第1のπ電子共役系分子は、π電子共役系からなる平面又は略平面を有する前記第1の骨格部とこれに結合する前記側鎖部を有し、前記第1の骨格部が前記電極に略平行に配置され、前記側鎖部において前記電極に共有結合によって結合され、前記第1のπ電子共役系分子と第2のπ電子共役系分子とが積層されてなる前記分子配列構造体が形成されているので、前記第1のπ電子共役系分子は前記電極に結合した構造をとり、更に、前記第1のπ電子共役分子のπ電子と前記電極との電気的な相互作用が良好になり、前記第1のπ電子共役系分子と前記電極との界面での接触抵抗を小さくすることができ、前記第1の骨格部の面と交差する方向に効果的に電流を流すことができる機能性分子素子を提供することができる。
 また、本発明の機能性分子素子の製造方法によれば、π電子共役系からなる平面又は略平面を有する前記第1の骨格部とこれに結合する前記側鎖部を有する前記第1のπ電子共役系分子を、前記側鎖部において電極に共有結合させ、前記第1の骨格部を前記電極に略平行に配置させる前記第1の工程と、π電子共役系からなる平面又は略平面を有する前記第2の骨格部を有する前記第2のπ電子共役系分子を、前記第1の骨格部に前記第2の骨格部を分子間π-πスタッキングによって積層させ、更に、前記第2の骨格部が分子間π-πスタッキングによって一方向に繰り返し積層させて、前記第1及び第2のπ電子共役系分子を含む前記分子配列構造体を形成する前記第2の工程とを有するので、前記第1のπ電子共役系分子は前記電極に結合し、更に、前記第1のπ電子共役分子のπ電子と前記第1及び第2の電極との電気的な相互作用が良好になり、前記第1のπ電子共役系分子と前記第1及び第2電極との界面での接触抵抗を小さくすることができ、前記分子配列構造体に効果的に電流を流すことができる機能性分子素子の製造方法を提供することができる。
 また、本発明の機能性分子装置によれば、対向する前記第1及び第2の電極と、π電子共役系からなる平面又は略平面を有する前記第1の骨格部とこれに結合する前記側鎖部を有し、前記第1及び第2の電極のそれぞれに前記第1の骨格部が略平行に配置され、前記側鎖部において前記第1及び第2の電極に共有結合によって結合された前記第1のπ電子共役系分子と、π電子共役系からなる平面又は略平面を有する前記第2の骨格部を備えた前記第2のπ電子共役系分子を有し、前記第1の骨格部に前記第2の骨格部が分子間π-πスタッキングによって積層され、更に、前記第2の骨格部が分子間π-πスタッキングによって前記一方向に繰り返し積層され、前記第1の電極と前記第2の電極の間に前記第1及び第2のπ電子共役系分子によって形成された前記分子配列構造体とを有するので、前記第1のπ電子共役系分子は前記電極に結合し、更に、前記第1のπ電子共役分子のπ電子と前記第1及び第2の電極との電気的な相互作用が良好になり、前記第1のπ電子共役系分子と前記第1及び第2電極との界面での接触抵抗を小さくすることができ、前記一方向に沿って前記分子配列構造体に効果的に電流を流すことができる機能性分子装置を提供することができる。
本発明の実施の形態における機能性分子素子の例を説明する図である。 同上、機能性分子素子の製造工程を説明する図である。 同上、絶縁ゲート型電界効果トランジスタの例を説明する図である。 同上、界面修飾分子及び駆動部分子の例を示す図である。 本発明の実施例における電極の表面状態を示す図である。 同上、電極表面と界面修飾分子の間の共有結合の生成を説明する図である。 同上、電極表面と界面修飾分子の間の共有結合の生成を説明する図である。 同上、光電子収量分光による電極界面の構造を説明する図である。 同上、電極と界面修飾分子の相互作用を説明する図である。 同上、絶縁ゲート型電界効果トランジスタの例を説明する図である。 同上、絶縁ゲート型電界効果トランジスタの特性を示す図である。 同上、絶縁ゲート型電界効果トランジスタの特性を示す図である。 同上、絶縁ゲート型電界効果トランジスタの繰り返し特性を示す図である。
 本発明の機能性分子素子では、前記第2のπ電子共役系分子はπ電子共役系からなる平面又は略平面を有する第2の骨格部を備え、前記第1の骨格部に前記第2の骨格部が分子間π-πスタッキングによって積層され、更に、前記第2の骨格部が分子間π-πスタッキングによって一方向に繰り返し積層され、前記分子配列構造体が前記第1及び第2のπ電子共役系分子によって形成され、前記一方向に沿って電流を流す機能を有する構成とするのがよい。このような構成によれば、前記第1及び第2のπ電子共役系分子の間、第2のπ電子共役系分子の間がそれぞれ、分子間π-πスタッキングされることによって前記分子配列構造体が形成されているので、π電子共役系分子のπ電子間の相互作用によって効果的に前記一方向に電流を流すことができる。
 また、前記第1のπ電子共役系分子が前記第2のπ電子共役系分子と異なる構成とするのがよい。このような構成によれば、前記電極に結合し、更に、前記第1のπ電子共役分子のπ電子と前記電極との電気的な相互作用を良好にして、前記第1のπ電子共役系分子と前記電極との界面での接触抵抗を小さくなるように、また、前記第1及び第2のπ電子共役系分子の分子間π-πスタッキング及び前記第2のπ電子共役系分子の分子間π-πスタッキングが良好なものとなるように、前記第1及び第2のπ電子共役系分子を選択することができる。
 また、前記電極がポリシリコン(以下、pSiと略記。)又はアモルファスシリコン(以下、aSiと略記する。)から形成された構成とするのがよい。このような構成によれば、低コストで電極を形成することができ、また、前記電極が、ナノスケールのギャップで対向する電極を含み、電極が金属電極(例えば、金電極)で形成される場合、電極表面からの電極を形成する原子の浮遊の発生や、フィラメントの形成が、電極間における電界によって生じることがあるが、前記電極が、ナノスケールのギャップで対向する電極を含む場合でも、pSi又はaSiによって形成された前記電極では原子の浮遊やフィラメントの形成を生じることがないので、ナノスケールのギャップで電極を有し安定して動作するナノスケールの分子素子を実現することができる。
 また、前記電極として対向する第1及び第2の電極を有し、前記第1の電極と前記第2の電極にそれぞれ、前記第1のπ電子共役系分子の前記側鎖部が共有結合によって結合され、前記第1の電極と前記第2の電極の間に前記分子配列構造体が形成された構成とするのがよい。このような構成によれば、前記第1のπ電子共役系分子は前記電極に結合し、更に、前記第1のπ電子共役分子のπ電子と前記第1及び第2の電極との電気的な相互作用が良好になり、前記第1のπ電子共役系分子と前記第1及び第2電極との界面での接触抵抗を小さくすることができ、前記一方向に沿って前記分子配列構造体に効果的に電流を流すことができる。
 また、前記電極として第3の電極を有し、この第3の電極によって前記電流が制御される構成とするのがよい。このような構成によれば、前記第1及び第2の電極と前記分子配列構造体との接触抵抗が小さく、前記第3の電極に作用させる電界の変化によって前記分子配列構造体の導電性を制御することによって、スイッチング作用を有する分子素子を実現することができる。
 また、前記第1のπ電子共役系分子が、テトラピロール誘導体、フタロシアニン誘導体、又は、環数が3以上の芳香族縮合多環化合物である構成とするのがよい。ポリピロール等に代表される直鎖にπ電子が非局在している導電性高分子の伝導パスの太さは概ねその環径による。つまり半径0.5nm程度である。一方、テトラピロール誘導体のπ電子の非局在面は半径1nm程度であり、そのπ-πスタッキングによる伝導パスは前述の一般的な導電性高分子の伝導パスと比較して、約4倍の面積となる。また、前記電極面と前記第1のπ電子共役系分子、例えば、テトラピロール誘導体のπ電子の非局在面の距離を精確に制御することにより、電子状態密度の重なりを制御でき、前記電極から前記第1のπ電子共役系分子への電子透過率を増大させることができる。
 また、前記第1の電子共役系分子が、ポルフィリン誘導体、又は、コロネン誘導体である構成とするのがよい。
 また、前記第1のπ電子共役系分子が、下記一般式(1)で表されるテトラフェニルポルフィリン誘導体である構成とするのがよい(但し、R1、R2、R3、R4は、同一又は異なってもよく、ヒドロ基、又は、置換基を有してもよい鎖状炭化水素基である。)。
一般式(1):
Figure JPOXMLDOC01-appb-C000003
 このような構成によれば、前記鎖状炭化水素基、例えば、アルキル基の炭素数が1以上、12以下であれば、前記第1のπ電子共役系分子は、そのπ電子非局在面を歪ませることなく前記電極上に良好に配向し、前記側鎖部において前記電極と共有結合することができ、また、合成も容易である。前記鎖状炭化水素基は、アルキル基の他に、アルケニル基、アルキニル基であってもよい。好ましくは、R1、R2、R3、R4は、同一又は異なってもよく、それらの末端のヒドロ基が、ヒドロキシ基(-OH)又はビニル基(-CH=CH2)又はエチニル基(-C三CH)によって置換された鎖状炭化水素基であり、前記電極、例えば、シリコン電極(シリコン自然酸化膜電極でもよい。)と共有結合を形成し得るようなものであるのが、前記電極に前記第1のπ電子共役系分子を結合させるために望ましい。一般式(1)で表されるテトラフェニルポルフィリン誘導体は、前記電極、例えば、シリコン電極のフェルミレベルとHOMOレベルが近い、平面π電子非局在性を有するので、前記電極の表面を修飾する界面修飾分子として好適である。なお、一般式(1)で表される化合物は、テトラフェニルポルフィリン(tetra-phenyl porphyrin)と呼ばれる化合物である。
 また、前記側鎖部が、アルキル基、アルコキシ基、アルキル基のケイ素類似体の何れか、或いは、アルキル基、アルコキシ基、アルキル基のケイ素類似体の何れかが結合した芳香族環からなる構成とするのがよい。このような構成によれば、前記側鎖部が何れの場合にも、前記第1のπ電子共役系分子は前記側鎖部において前記電極に共有結合によって結合することができる。なお、上記のアルキル基、アルコキシ基、アルキル基のケイ素類似体はそれぞれ、-Cn2n+1、-OCn2n+1、-Sin2n+1によって示される基である。上記ケイ素類似体の水素原子(H)はアルキル基又アルコキシ基で置換されていてもよい。
 また、前記第2のπ電子共役系分子は、ポルフィリン誘導体、又は、リニアテトラピロールである構成とするのがよい。このような構成によれば、前記第1及び第2のπ電子共役系分子によって形成される前記分子配列構造体はこれに作用される電界の有無によって電導性が良好なONとOFFのスイッチング特性を示すのでトランジスタ等を作製することができる。前記第2のπ電子共役系分子はその略中心部に金属を有する錯体であってもよい。
 また、前記第2のπ電子共役系分子が、下記一般式(2)で表されるビラジエノン誘導体である構成とするのがよい(但し、R5、R6、R7、R8は、同一又は異なるアルキル基であり、炭素数が3以上、12以下である。)。
一般式(2):
Figure JPOXMLDOC01-appb-C000004
 このような構成によれば、外部電場により双極子モーメントが作用し、前記第2のπ電子共役分子のπ共役系の非局在面を変調し、分子スイッチ機関部とすることができる。前記第2のπ電子共役分子は、前記第1のπ電子共役分子とπ-πスタッキング相互作用を利用して自己組織的に配向させるため、ディスコティック液晶相を有することが望ましい。液晶相を発現しない場合でも、フレキシブル側鎖を有することが好ましい。
 本発明の機能性分子素子の製造方法では、前記第1のπ電子共役系分子が前記第2のπ電子共役系分子と異なる構成とするのがよい。このような構成によれば、前記第1及び第2の電極に結合し、更に、前記第1のπ電子共役分子のπ電子と前記第1及び第2の電極との電気的な相互作用を良好にして、前記第1のπ電子共役系分子と前記第1及び第2の電極との界面での接触抵抗を小さくなるように、また、前記第1及び第2のπ電子共役系分子の分子間π-πスタッキング及び前記第2のπ電子共役系分子の分子間π-πスタッキングが良好なものとなるように、前記第1及び第2のπ電子共役系分子を選択することができ、優れた性能を有する機能性分子素子を製造することができる。
 本発明の機能性分子装置では、前記第1のπ電子共役系分子が前記第2のπ電子共役系分子と異なる構成とするのがよい。このような構成によれば、前記第1及び第2の電極に結合し、更に、前記第1のπ電子共役分子のπ電子と前記第1及び第2の電極との電気的な相互作用を良好にして、前記第1のπ電子共役系分子と前記第1及び第2の電極との界面での接触抵抗を小さくなるように、また、前記第1及び第2のπ電子共役系分子の分子間π-πスタッキング及び前記第2のπ電子共役系分子の分子間π-πスタッキングが良好なものとなるように、前記第1及び第2のπ電子共役系分子を選択することができ、優れた性能を有する機能性分子装置を実現することができる。
 また、前記第1及び第2の電極がポリシリコン又はアモルファスシリコンから形成された構成とするのがよい。このような構成によれば、低コストで電極を形成することができ、また、前記電極が、ナノスケールのギャップで対向する電極を含み、電極が金属電極(例えば、金電極)で形成される場合、電極表面からの電極を形成する原子の浮遊の発生や、フィラメントの形成が、電極間における電界によって生じることがあるが、前記電極が、ナノスケールのギャップで対向する電極を含む場合でも、pSi又はaSiによって形成された前記電極では原子の浮遊やフィラメントの形成を生じることがないので、ナノスケールのギャップで電極を有し安定して動作するナノスケールの分子素子装置を実現することができる。
 また、第3の電極を有し、この第3の電極によって前記電流が制御される構成とするのがよい。このような構成によれば、前記第1及び第2の電極と前記分子配列構造体との接触抵抗が小さく、前記第3の電極に作用させる電界の変化によって前記分子配列構造体の導電性を制御することによって、スイッチング作用を有する分子素子装置を実現することができる。
 また、前記第3の電極が、前記分子配列構造体に電界を作用させて前記電流を制御するための制御用電極として、前記一方向に沿って設けられている構成とするのがよい。このような構成によれば、分子素子装置を電界効果トランジスタとして構成することができる。
 また、前記第3の電極がゲート電極でありこの上にゲート絶縁層が設けられ、このゲート絶縁層上に、前記第1の電極がソース電極として、前記第2の電極がドレイン電極として形成され、絶縁ゲート型電界効果トランジスタとして構成されるのがよい。このような構成によれば、前記ソース電極及びドレイン電極と前記分子配列構造体との接触抵抗が小さく、優れた性能を有する電界効果トランジスタとして分子素子装置を構成することができる。
 本発明による機能性分子素子は、pSi(ポリシリコン)又はaSi(アモルファスシリコン)から形成された対向する2つの電極と分子配列構造体から構成されている。この分子配列構造体は、2つの両電極の表面に共有結合し表面を修飾する界面修飾分子と、この界面修飾分子の上に一方向に分子間π-πスタッキングによって繰り返し積層された駆動部分子(機能性分子)とからなる。界面修飾分子は、π電子共役系からなる略円盤状の骨格部と側鎖部を有し、骨格部のなす面が両電極の面に略平行に配置され、側鎖部において両電極のSiに共有結合されている。
 駆動部分子はπ電子共役系からなり、電界印加によってその構造又は配向が変化し誘電率即ち導電性が変化し、略中心部にZn等の金属イオンを有する錯体からなる機能性分子である。界面修飾分子と駆動部分子、及び、駆動部分子同士は分子間π-πスタッキングによって積層されている。分子配列構造体に流れる電流の方向は駆動部分子が積層される方向である。駆動部分子と両電極の間に界面修飾分子を設け、界面修飾分子の上に駆動部分子を繰り返し積層することによって、界面修飾分子と両電極の界面における電子輸送を効率よくすることができ、界面修飾分子と両電極との界面における接触抵抗を低減することができる。この結果、駆動部分子の積層方向に効果的に電流を流すことができ、また、分子配列構造体7を再現性良く形成することができる。
 上記の両電極に加え、更に、駆動部分子の積層方向に沿って制御用の電極を有した構成とすることもでき、この制御用の電極によって分子配列構造体に流れる電流の方向、大きさを制御することができ、スイッチ素子として構成することもできる。但し、本発明の機能性分子素子はこのような能動素子に限られるものではなく、例えば、抵抗や配線として用いられる抵抗素子や配線素子等の受動素子であってもよい。
 以下、図面を参照しながら本発明の実施の形態について詳細に説明する。
 実施の形態1
<機能性分子素子の構成>
 図1は、本発明の実施の形態における機能性分子素子の例を説明する模式図であり、図1(A)は斜視図、図1(B)は電極に共有結合した界面修飾分子を示す斜視図、図1(C)は界面修飾分子にスタックした駆動部分子を示す斜視図である。
 図1(A)に示すように、電機能性分子10は、pSi又はaSiによって形成された対向する電極(第1の電極)5と電極(第2の電極)6と、これら両電極5、6の間に配置され、両電極5、6の表面に共有結合した界面修飾分子(第1のπ電子共役系分子)2と、これにカラム状に積層された駆動部分子(第2のπ電子共役系分子)1から構成された分子配列構造体7から構成されている。
 界面修飾分子2は電極5、6の表面を修飾する修飾分子である。駆動部分子1は、電界の印加によってその構造又は配向が変化し、誘電率即ち導電性が変化する機能性分子である。分子配列構造体7に流れる電流の方向8は、駆動部分子1の積層方向である。駆動部分子1と界面修飾分子2は、同一又は異なるπ電子共役系分子である。
 図1(B)に示すように、界面修飾分子2は、π電子共役系からなる略円盤状の骨格部(第1の骨格部)3と側鎖部4を有し、骨格部3のなす面が電極5、6の面に略平行に配置され、側鎖部4において-O-を介して電極5、6を構成するSiに共有結合されている。界面修飾分子2はその側鎖部4の末端基をアンカーとし、このアンカーと電極5、6の表面との反応によって側鎖部4が電極5、6の表面と共有結合を形成し、界面修飾分子2がその骨格部3のなす面が電極5、6の表面と略平行となるように配置され、界面修飾分子2は電極5、6の表面を修飾する。
 図1(C)に示すように、駆動部分子1は略中心部にZn(イオン)を有する錯体であり、π電子共役系からなる略平面状の骨格部(第2の骨格部)を有しており、駆動部分子1の骨格部が骨格部3に分子間π-πスタッキングによってカラム状に積層されている。即ち、駆動部分子1が界面修飾分子1に積層されている。更に、界面修飾分子2に積層された駆動部分子1には、駆動部分子1の骨格部同士が分子間π-πスタッキングによって一方向に繰り返しカラム状に積層されている。即ち、駆動部分子1が繰り返し積層され、電極5、6の間に界面修飾分子2及び駆動部分子1によって分子配列構造体7が形成され、駆動部分子1の積層方向に電流を流す機能を有する。
 なお、駆動部分子1は一般に側鎖部を有するが、図1(C)ではこの側鎖部を図示せず、駆動部分子1を、骨格部を開環した帯状の円環とその略中心部にあるZn(イオン)によって模式的に示している(後述する図2、図3においても同様である。)。界面修飾分子2は、電極5、6の表面に共有結合し、骨格部3が電極5、6に略平行に配置されており、界面修飾分子2のπ電子と電極5、6との電気的な相互作用が良好になり、界面修飾分子2と電極5、6との界面での接触抵抗を小さくすることができる。
 界面修飾分子2に分子間π-πスタッキングによって駆動部分子1が積層され、更に、分子間π-πスタッキングによって複数個の駆動部分子1が積層されるので、分子配列構造体7を再現性良く一方向に形成することができる。駆動部分子1と電極5、6の間に界面修飾分子2を設けることによって、分子配列構造体7と電極5、6の界面における電子輸送を効率よくすることができ、積層方向に効果的に電流を流すことができる。
 図1に示す機能性分子素子は、駆動部分子1の積層方向に沿って設けられた図示しない制御用の電極(第3の電極)を有した構成とすることもでき、この制御用の電極によって分子配列構造体7に流れる電流の方向、大きさを制御することができる。制御用の電極をゲート電極とし、この上にゲート絶縁層を設け、電極5をソース電極、電極6をドレイン電極として、機能性分子素子を絶縁ゲート型電界効果トランジスタとして構成することができる。
 電極5、6の表面に共有結合して表面修飾する界面修飾分子2は、その上に分子間π-πスタッキングによって駆動部分子1積層されるものであれよい。界面修飾分子2として、例えば、4個のピロール環がα位置で4個のメチン(methine)基と交互に結合した環(テトラピロール(tetrapyrrole)環、ポルフィリン環等と呼ばれる閉じた構造の環である。)を有するポルフィリン誘導体が用いられる。例えば、4個のメチン基の炭素(C)原子に結合されたフェニル基を有るテトラフェニルポルフィリンの誘導体であり、これらフェニル基の水素(H)原子が長鎖の置換基によって置換された構造を有する化合物が用いられる。
 駆動部分子1は、電界の印加によってその構造又は配向が変化し、誘電率即ち導電性が変化する分子であり、分子間の相互作用によって分子が一方向に積層されるものであり、また、界面修飾分子2に分子間π-πスタッキングによって積層されるものであればよい。駆動部分子1として、例えば、上記のポルフィリン誘導体の環(テトラピロール環)の2個のピロール環の間のメチン基による結合部分が開裂された構造を有するリニアテトラピロールが用いられる。
<機能性分子素子の製造工程>
 図2は、本発明の実施の形態における機能性分子素子の製造工程を説明する図である。
 機能性分子素子の製造工程は、電極の面に共有結合によって界面修飾分子を結合させる工程と、電極面に結合された界面修飾分子に機能部分子を一方向に積層する工程を含んでいる。
 先ず、図2の最上段図に示す例のように、電極5a、6b(図2の最上段図の右図では後述する図5(B)に示すpSi電極を示している。)に、テトラピロール環を骨格部3として有し、ピロール環の間のメチン基の炭素原子のそれぞれに-(C64)O(CH25OHからなる側鎖部4が結合された構造を有するポルフィリン誘導体(テトラフェニルポルフィリンの誘導体)からなるπ電子共役系分子である界面修飾分子2a(図2の最上段図の左図)を共有結合させる(この界面修飾分子2aは前述したテトラフェニルポルフィリン誘導体の一例であり、後述する図4(D)に示す化合物である。)。この時、テトラピロール環からなる骨格部3は電極5、6に略平行となる。
 なお、以下の説明では、4個のメチン基の炭素原子のそれぞれに-(C64)O(CH25OHからなる側鎖部4が結合された構造を有する上記のポルフィリン誘導体、即ち、図4(D)に示す化合物をPor-OH、水素終端化シリコンをSi-Hの略号によってそれぞれ表わす。
 pSi電極からなる電極5、6は予め、室温、5%HF水溶液中で2分間処理し、純水洗浄、イソプロピルアルコール洗浄を行い表面酸化膜の除去と表面の水素終端化がなされている。この水素終端化シリコンから水素原子を引き抜くことでシリコンラジカルを生成し、このシリコンラジカルとポルフィリン誘導体Por-OHを共有結合で連結する。ラジカルの生成は、例えば、加熱による。
 上記のポルフィリン誘導体(Por-OH)と水素終端化シリコン(Si-H)の反応{Por-OH+Si-H→Por-O-Si+H2}によって、界面修飾分子2aは電極5a、6bに共有結合する。この結果Por-OHによって表面修飾された電極、Por-OH/Siが形成される(図2の中段の右図)。
 界面修飾分子2aは、骨格部にp-アルキルフェニル基からなる側鎖部が結合された構造を有し、その骨格部は、π電子共役系によってリジッドな略平面形構造(ポルフィリン様の略円盤状構造)を形成し、側鎖部はC-C軸回りの分子内回転によってフレキシブルな鎖状構造を形成している。
 なお、p-アルキルフェニル基からなる側鎖部における炭素鎖状部のC数は、3以上、12以下であればよく、例えば、p-アルキルフェニル基からなる側鎖部の炭素鎖状部は、例えば、(CH210OH~(CH212OHが挙げられる。このような炭素数の炭素鎖状部であれば、界面修飾分子2aが結晶化することなしに電極上に良好に配向して共有結合されると共に、合成も容易である。一方、炭素数が1又は2であると、界面修飾分子2aが結晶化しやすくなり、液晶的な物性を示さなくなって配向不良を生じ易くなる。また、炭素数が13以上になると、かえって配向し難くなり、合成も困難となる。
 なお、pSi電極からなる電極5、6が予めハロゲン終端化されており、ハロゲン終端化シリコンからハロゲン原子を引き抜くことでシリコンラジカルを生成し、このシリコンラジカルと界面修飾分子2aを共有結合で連結することもできる。また、ラジカルの生成には、加熱の方法の他に、反応開始剤の投入、光照射等の方法を用いることができる。
 また、電極5、6はpSi電極からなる電極に限定されることなく、炭素、窒化珪素、ゲルマニウム等かなる電極を用いることができ、これらの電極が予め水素終端化又はハロゲン終端化されていれば、界面修飾分子をその側鎖部において、pSi電極と同様にして、共有結合させることができる。
 次に、図2の中段図に示すように、電極5a、6bに共有結合した界面修飾分子2aに、駆動部分子1a(図2の中段図の左図)を分子間π-πスタッキングによって自己集積化的にカラム状に積層させる。駆動部分子1aは、テトラピロール環を骨格部として有し2個のピロール環の間のメチン基のそれぞれの炭素原子に-(C64)(CH211CH3が結合され、略中心部にZn(イオン)を有する錯体からなるポルフィリン誘導体のテトラピロール環が、2個のピロール環の間のメチン基による結合部分が開裂されてなるリニア構造を有するπ電子共役系分子(C12H25-biladienone Zn complex)である(この駆動部分子1aは後述する図4(G)に示す化合物であり、以下、C1225-ビラジエノン亜鉛錯体(C12H25-biladienone Zn complex)と呼ぶ。)。
 即ち、駆動部分子1aは、4個のピロール環がメチン基によって直列に結合された骨格を有し、非環状テトラピロール、開環又は開環状テトラピロール、或いは、リニアテトラピロールと呼ばれるものである。また、駆動部分子1aは、フェニル基の水素(H)原子が)(CH211CH3によって置換された構造を有するテトラフェニルポルフィリン誘導体が開裂されてなるリニアテトラピロールと見なすことができる化合物である。
 駆動部分子1aの骨格部は、ビラジエノン(4,9-ビラジエン-1-オン)を基本構造とし、開環したポルフィリン環に相当する構造を有するリニアテトラピロールの1種をなしている。
 図2の最下段図に示すように、界面修飾分子2aの骨格部3に駆動部分子1aの骨格部が分子間π-πスタッキングによって積層され、更に、駆動部分子1aの骨格部同士が分子間π-πスタッキングによって一方向に積層され、電極5a、6bの間に図1に示す分子配列構造体7が形成される。
 分子配列構造体7を構成する駆動部分子2aのようなπ電子共役系分子は、電界の印加によってその構造又は配向が変化し、これが略中心部に含まれるZnのような金属イオンとの錯体形成領域部分の構造変化を生じさせ、駆動部分子(機能性分子)の誘電率即ち導電性を変化させる。
 駆動部分子2aのようなπ電子共役系分子では、対向し合う末端のC=O基(カルボニル基)の存在によって分子が平面からねじれた構造を呈し、且つ複数の分子間がπ-πスタック構造をなして螺旋を巻くようになり、螺旋構造を呈する。螺旋構造は、螺旋が左回転で進むM-体(minus体)又は螺旋が右回転で進むP-体(plus体)の光学異性体によって形成される。この螺旋構造の螺旋のピッチは、駆動部分子に作用する電界の条件によって変化する。
 なお、ポルフィリン様の略円盤状構造の略中心部の亜鉛イオンは必ず必要というわけではないが、分子配列構造体に作用される電界の有無によって電導性が良好なONとOFFのスイッチング特性を示すので、機能性分子素子がスイッチング特性を示すためには有用である。亜鉛イオン以外に銅イオンやニッケルイオン等の遷移元素や典型元素の金属イオンを用いることもできる。
 従来から、リジッドな円盤又は略円盤状の骨格部を有するπ電子共役系分子を用いて分子配列構造体を形成すると、各分子の円盤又は略円盤状の骨格部はπ-π電子相互作用によって互いに平行にface-to-faceに対向するようにスタックし、π電子はスタックした骨格部の間に非局在化することが知られている。特に、長鎖(炭素数6以上)のアルキル基側鎖を有する分子(ディスコティック液晶等)の場合には、π電子共役系分子はカラム状に積層され、積層方向に高い導電性を示すことができる(Yo Shimizu,T. Higashiyama and T. Fuchita,“Photoconduction of a mesogenic long-chain tetraphenyl porphyrin in a symmetrical sandwich-type cell”,Thin Solid Films,331(1998),279-284参照。)。
 また、円盤又は略円盤状の骨格部の中心付近に金属イオンを配位させていてもよいとされている(Yo Shimizu,“Photoconductivity of Discotic Liquid Crystals: a Mesogenic Long-Chain Tetraphenylporphyrin and Its Metal Complexes”, Molecular Crystals and Liquid Crystals,370(2001),83-91、S. T. Trzaska,H-F. Hsu and T. M. Swager,“Cooperative Chiralith in Columnar Liquid Crystals : Studies of Fluxional Octahedral Metallomesogens”,J. Am. Chem. Soc.,121(1999),4518-4519、及び、清水洋,“カラムナー液晶その多様な分子構造と分子間相互作用”,液晶,6(2002),147-159参照。)。
 上記のように、ポルフィリン等の円盤又は略円盤状のπ電子共役系分子がπ-πスタッキングして形成された分子配列構造体の機能の一例として、積層方向に電子の流れを通すパイプ(channel chain)としての機能が考えられる。通常の導電性鎖状分子に比べて、電流通路の径が大きく、電流を多く流すことが可能であり、太陽電池の電子チャンネルとして利用するような研究が活発である。
 但し、上記の分子配列構造体を導電体として用いる場合、図1(A)に示すように、電流を流そうとする方向8(電極5と電極6とを結ぶ方向)に分子配列構造体7の積層方向を一致させ、且つ、電極5、6における接触抵抗が小さくなるように、分子配列構造体7の端部が電極5、6の表面に結合されるように配置することが必要である。
 しかし、界面修飾分子を構成するπ電子共役系分子として側鎖のない分子を用いると、電極表面上での状態を制御して、骨格部のなす円盤面を選択的に電極表面に平行に配向させる作用を有する基が存在しないため、電極表面に対するπ電子共役系分子の配向や分子の積層方向を制御することができない。このため、電流を流そうとする方向に分子配列構造体の導電方向を制御できないか、又は保持し続けることが困難であり、分子配列構造体自体が高い導電性をもっていても、それを活用することができないという問題が生じる。また、分子配列構造体の端部のπ電子共役系分子の骨格部のなす円盤面と電極面との距離が、0.34nm~0.36nm以下でないと、π電子共役系分子と電極との界面における電子の非局在性が得られず、界面における小さな接触抵抗を実現できないという問題もある。
 上記の問題を解決するために、本実施の形態では、先ず、フレキシブルな側鎖部4を有するπ電子共役系分子を電極の表面に共有結合させた単分子層として形成し、電極の表面に界面修飾分子を配置する。次に、界面修飾分子の上に、π-πスタッキングによってπ電子共役系分子からなる駆動部分子を積み重ね、分子配列構造体を形成する。
 ここで積層する駆動部分子は、界面修飾分子に対してπ-πスタッキングを形成できる分子であること以外に特に制限はない。本実施の形態では駆動部分子と界面修飾分子が異なる場合の例を示したが、同種のπ電子共役系分子であってもよい。
 分子配列構造体の両側の第1層目の単分子層を形成する界面修飾分子は、フレキシブルな側鎖部において電極の表面に共有結合され、この結果、骨格部が電極の表面に略平行に密着するように配置される。このため、骨格部のπ電子が電極上に非局在化することができ、分子配列構造体と電極との界面での接触抵抗が小さく抑えられる。
 また、分子配列構造体の両側から第2層以後の分子層の積層方向は、電極面に平行に配置された界面修飾分子の骨格部のなす略円盤面を基準として、下層の界面修飾分子の骨格部のなす略円盤面の上に、上層の駆動部分子の骨格部のなす略円盤面が略平行に重なるように、π-π相互作用によって制御される。分子配列構造体は、π電子間の相互作用によって効果的に積層方向に電流を流すことができる。
 以上のようにして、電極との界面での結合のロバスト性が向上され、界面における接触抵抗が非常に小さく、分子配列構造体の積層方向(電流を流す方向)が制御され、安定した特性を得ることができ、堅牢な機能性分子素子を得ることができる。
 実施の形態2
 <絶縁ゲート型電界効果トランジスタの構成>
 実施の形態2では、実施の形態1で説明した対向電極を有する機能性分子素子10が、絶縁ゲート型電界効果トランジスタとして構成された機能性分子装置について説明する。
 図3は、本発明の実施の形態における絶縁ゲート型電界効果トランジスタの例を説明する図であり、図3(A)は断面図、図3(B)は斜視図、図3(C)は分子配列構造体を示す模式図である。
 図3に示すように、絶縁ゲート型電界効果トランジスタ20では、ドープされたシリコン基板16が制御用電極であるゲート電極を兼ねている。シリコン基板16の表面にはゲート絶縁膜12として酸化シリコン層が形成され、その上に、例えば、pSi又はaSiからなるソース電極14及びドレイン電極15が対向する電極として形成され、これらの電極間に、実施の形態1で説明した分子配列構造体7が配置されている。
 ソース電極14、ドレイン電極15、ゲート電極を兼ねているシリコン基板16のそれぞれに対応して、ソース電極端子17、ドレイン電極端子18、ゲート電極端子19が接続されている。なお、ソース電極14、ドレイン電極15、シリコン基板16はそれらの一部を図示している。
 分子配列構造体7を構成する両側の第1層目のπ電子共役系分子である界面修飾分子2は、ソース電極14及びドレイン電極15のそれぞれに最も近い位置に配置されている。界面修飾分子2の骨格部3のなす略円盤状の面が、ソース電極14及びドレイン電極15のそれぞれに略平行となるように密着して、界面修飾分子2がその側鎖部4においてソース電極14及びドレイン電極15のそれぞれに共有結合され固定されている。このため、界面修飾分子2の骨格部4のπ電子が、ソース電極14及びドレイン電極15のそれぞれの上に非局在化することができ、分子配列構造体7における界面修飾分子2とソース電極14及びドレイン電極15のそれぞれとの界面での接触抵抗が小さく抑えられる。
 また、配列構造体4の両側から第2層目以後のπ電子共役系分子である駆動部分子1の積層方向は、ソース電極14及びドレイン電極15のそれぞれの面に平行に配置された、界面修飾分子2の骨格部4の略円盤面を基準として、下層の界面修飾分子2の骨格部3の略円盤面の上に、上層の駆動部分子1の骨格部の略円盤面が平行に重なり積層されるように、π-π相互作用によって制御される。更に、駆動部分子1同士の骨格部の略円盤面が平行に重なり積層されるように、π-π相互作用によって制御される。
 以上のようにして、ソース電極14及びドレイン電極15からなる対向電極の間に、両電極との界面での接触抵抗が非常に小さく、積層方向(電流を流す方向)が制御された、堅牢な分子配列構造体7が配置される。界面修飾分子2を設けた構成では、両電極における界面での接触抵抗は、界面修飾分子2を設けない構成の接触抵抗の約1/30であった。
 制御用電極であるゲート電極をかねるシリコン基板16は、分子配列構造体7の導電方向である積層方向に沿って設けられており、ゲート電極に印加される電圧によって分子配列構造体7の導電方向に直交する方向に電界が作用し、分子配列構造体7の導電性が制御される。
 ゲ-ト長に相当するソース電極14とドレイン電極15との間の間隔(ギャップ)は、例えば、約10nm(分子層数にして10層程度)である。
 本実施の形態による機能性分子装置は、分子配列構造体7が対向する電極間に配置されて形成されているので、π電子共役系分子である界面修飾分子2とソース電極14及びドレイン電極15との界面での接触抵抗が小さく抑えることができる。更に、分子配列構造体7の積層方向に効果的に電流を流すことができ、その電流をゲート電極に印加される電圧によって制御することができ、電気的特性の優れたナノサイズの絶縁ゲート型電界効果トランジスタ20を得ることができる。
 <界面修飾分子及び駆動部分子の例>
 図4は、本発明の実施の形態における界面修飾分子及び駆動部分子の例を示す図である。
 界面修飾分子としてのπ電子共役系分子は、テトラピロール誘導体、フタロシアニン誘導体、又は、環数が3以上の芳香族縮合多環化合物であり、より望ましくは、ポルフィリン誘導体、又は、コロネン誘導体であり、より具体的には、例えば、先述した一般式(1)で表されるテトラフェニルポルフィリン誘導体である。
 界面修飾分子はその骨格部に、電極表面の元素と反応する基、例えば、表面が水素終端化又はハロゲン終端化されている電極表面の水素又はハロゲンと反応する基(例えば、ヒドロキシ基(-OH)、アルデヒド基(-CHO)、ビニル基(-CHCH2)、エチニル基(-CCH))を好ましくは末端に有する側鎖部が結合されており、界面修飾分子が電極表面の元素と共有結合によって、電極に結合されるものであればよい。界面修飾分子の代表的な例は、前述のテトラフェニルポルフィリンである。
 駆動部分子としてのπ電子共役系分子の代表的な例は、略中心部にZn等の金属イオンを有する錯体であり、ポルフィリン誘導体、又は、リニアテトラピロールであるのがよく、より具体的には、例えば、先述した一般式(2)で表されるビラジエノン誘導体であるのがよい。これらの誘導体はその骨格部に、側鎖部が結合されていてもよい。
 図4(A)~図4(F)に示す化合物は界面修飾分子の例である。図4(A)はポルフィリン(porphyrin、21H,23H-porphyrin、C20144)、図4(B)はテトラフェニルポルフィリン(tetraphenylporphyrin、C44304)、図4(C)はフタロシアニン(phtalocyanine、C32188)図4(D)は図2で説明した界面修飾分子2a、図4(E)は先述した一般式(1)で表されるテトラフェニルポルフィリン誘導体、図4(F)はコロネン(coronene、C2412)である。
 なお、図4(A)、図4(B)、図4(C)、図4(F)に示す化合物には、図示していない側鎖部を有しており、この側鎖部において、直接又は2価を介して、C4N環(ピロール環)、C6環、2個のピロール環の間のメチン基の何れかの炭素原子に結合されている。この2価の基は、オキシ基(-O-)、チオ基(-S-)、カルボニィル基(-CO-)、スルフィニル基(-SO-)、スルフォニル基(-SO2-)、イミノ基(-NH-)、フェニレン基(phenylene、-C64-)等の何れかである。
 2価の基の一端が上記のC4N環、C6環、メチン基の何れかの炭素原子に結合され、2価の基の他端が、側鎖部に少なくとも含まれる鎖状のアルキレン基の一端に結合されている。このアルキレン基の他端には、水素終端化又はハロゲン終端化されている電極表面の水素又はハロゲンと反応する基、例えば、-OH、-CHOが結合されている。側鎖部は、アルキレン基に加えてフェニレン基(-C64-)を含んでいてもよい。
 図4(G)、図4(H)に示す化合物は駆動部分子の例であり、更に、これらの誘導体も駆動部分子として使用することができる。図4(G)は図2で説明した駆動部分子1a、図4(H)は先述した一般式(2)で表されるビラジエノン(biladienone、C19164O)誘導体である。図4(G)及び図4(H)以外の化合物として、クロリン(chlorin、2,3-dihydro-21H,23H-porphyrin、C20164)誘導体、フロリン(phlorin、5,22-dihydro-21H,23H-porphyrin、C20164)誘導体、ビリベルジン(biliverdine、C33364O)誘導体、ビリルジン(bilirubin、C33364O)誘導体、ビリン(biline、C19144)誘導体、ビラン(bilane、C19204)誘導体、ビレン(bilene、C19144)誘導体等のリニアテトラピロールのZn等の金属イオン錯体も駆動部分子として使用することができ、骨格部に側鎖部が結合されていてもよい。なお、図4(A)~図4(F)に示す化合物及びその誘導体を、駆動部分子として使用することもできる。
 実施例
次に、本発明を実施例について詳細に説明する。本実施例では、ポルフィリン誘導体Por-OHを表面に共有結合させて表面修飾して機能化させた対向する2個のポリSi電極の間に、C1225-ビラジエノン亜鉛錯体を積層して構成された分子場効果スイッチ(PES)を中心にして説明する。
 この分子スイッチの駆動要素は、歪んだディスク形のC1225-ビラジエノン亜鉛錯体分子が一方向に繰り返し分子間π-πスタッキングによって積層され自己組織化された超分子から構成されている。このスイッチは永久ダイポールモーメントを有しているので、その分子の立体配座は外部電場によって変化する。
 FESデバイスは、最新技術のCMOSプロセスを使用して、例えば、ゲート電極を兼ねるSi基板上に形成された100nm厚さのSIO2絶縁層上にp型ポリSiによって形成された30nmのギャップもったソース電極とドレイン電極から構成されている。
 4個のハイドロオキシルアルキル鎖を有しπ軌道のHOMO(Highest Occupied Molecular Orbital、最高被占軌道:フロンティア軌道理論で、電子によって占有されている分子軌道のうち最もエネルギーの高い軌道)エネルギーがSiのフェルミエネルギーに近い値を持つPor-OHを、対向する2個のpSi電極の表面を修飾する界面修飾分子として使用し、この界面修飾分子を、水素終端化させたSi電極に共有結合により結合させて、pSi電極と界面修飾分子の間の効率的な電子移動を効果的、容易なものとした。
 スイッチング要素を構成する駆動部分子として、ダイポールモーメントを有する歪んだディスク形ビラジエノン分子(C1225-ビラジエノン亜鉛錯体)が、Por-OHによって修飾された対向する2個のpSi電極上に、分子間π-πスタッキングによって繰り返し積層され、2個のpSi電極間に導入された。駆動部分子が繰り返し積層された一方向に沿って設けられたゲート電極に印加されるゲート電圧をオン、オフさせた時の電流比は約500であり、スイッチは1月後も同じ特性を示した。
 以下、実施例における電極の表面状態、電極表面の修飾、電極界面の構造、及び、絶縁ゲート型電界効果トランジスタとその特性について、説明する。
 <電極>
 図5は、本発明の実施例における電極の表面状態を示す図であり、AFM(原子間力顕微鏡)像である。
 図5(A)は、ドーピングなし、アニーリング処理なしのpSi(ポリシリコン、試料#1)のAFM像であり、平均粗度の標準偏差値(分散のRMS(root mean square)値)は0.791nmであった。
 図5(B)は、1×1016/cm3のB(ボロン)がドーピングされたpSiに対して、900℃、10s(秒)間のアニーリング処理を行った試料(#2)であり、平均粗度の標準偏差値は2.39nmであった。
 図5(C)は、1.2%のP(リン)がドーピングされたaSi(アモルファスシリコン)に対して、900℃、10s間のアニーリング処理を行った試料(#9)であり、平均粗度の標準偏差値は0.56nmであった。
 図5(C)に示す試料(#9)の抵抗は大きな値を示したので、以下に説明する電極では、図5(B)に示す試料(#2)を水素終端化処理したものを使用した。
 <電極表面の修飾>
 本実施例における機能性分子素子の作製に用いた界面修飾分子(略円盤状の骨格部を有するπ電子共役系分子)は、先述の一般式(1)又は図4(E)で示されるテトラフェニルポルフィン誘導体において、側鎖部R1、R2、R3、R4をそれぞれ-O(CH25OHとした構造式を有する、図4(D)に示す化合物である。この化合物は、図4(A)に示すポルフィリンのメチン基の炭素原子に-(C64)O(CH25OHが結合されたポルフィリン誘導体であると見なすこともでき、先述のPor-OHである。
 図5(B)に示すpSi試料(#2)を水素終端化処理した後、直ちに、図4(D)に示す化合物(Por-OH)を溶解させたピリジン溶液に浸漬させて、115℃で4時間の還流処理を行った後、ピリジン溶液で洗浄し乾燥させて、Por-OHで表面修飾した試料(Por-OH/pSi)を2個作成した。以下、この試料を界面修飾分子/pSi(その1、その2)と表わす。
 また、pSi試料(#2)を対照資料とすると共に、pSi試料(#2)を水素終端化処理した後、直ちに、ピリジン溶液に浸漬させて、115℃で4時間の還流処理を行った後、ピリジン溶液で洗浄し乾燥させて、対照試料とした。以下、この試料をピリジン/pSiと表わす。
 <電極表面の修飾面のXPSによる解析>
 本発明では、電極の表面はこれに共有結合された分子によって修飾されており、この修飾面に駆動部分子が積層され、電極表面に共有結合された分子は電極と駆動部分子の界面を修飾する界面修飾分子である。Por-OHで表面修飾したpSi(Por-OH/pSi)におけるPor-OHとSiの結合状態をXPS(X-ray Photoelectron Spectroscopy)によって解析した。
 図6は、本発明の実施例における、電極表面と界面修飾分子の間の共有結合の生成を説明する図であり、電極表面のXPS(X線光電子分光)による測定結果を示す図である。
 図6において、横軸は結合エネルギー(eV)、縦軸は任意単位で示す強度であり、測定は、日本分光(株)製のJPS-9010MX PHOTOELECTRON SPECTROMETER(MgKα Source)を用いて行った。
 図6(A)、図6(B)は対照試料に関する測定結果を示し、図6(A)は水素終端化処理したpSi試料(#2)に関する測定結果であり、図6(B)はpSi表面をピリジン処理した試料、ピリジン/pSiに関する測定結果である。
 図6(C)、図6(D)は、pSiに界面修飾分子を共有結合させる処理を行った試料、界面修飾分子/pSi(その1、その2)に関する測定結果である。
 図7は、本発明の実施例における、電極表面と界面修飾分子の間の共有結合の生成を説明する図であり、図6に示す測定結果を規格化して整理した図である。なお、規格化の条件はコンタミによるC1s軌道レベルを同位置となるように行った。
 図7中の(A)、(B)、(C)はそれぞれ、pSi、ピリジン/pSi、界面修飾分子/pSiに関する測定結果であり、(a)は、C-C、C-H、C=C、XPS測定時におけるコンタミネーションに由来すると考えられるC1s信号の面積強度(cps×eV)、(b)はSi-O-C、C-Oに由来すると考えられるC1s信号の面積強度(cps×eV)、(c)はC-OHに由来すると考えられるC1s信号の面積強度(cps×eV)を示す。
 図7中の(A)に示す強度は、(B)に示す測定結果のコンタミネーションレベル、また、(B)に示す強度は、(C)に示す測定結果のコンタミネーションレベルをそれぞれ示すものと考えられる。
 図7中の(A)に示す強度は、pSiの水素終端化時、及び、XPS測定時におけるコンタミネーションレベルであり、(a)はC-C、C-H、C=Cに起因し、XPS測定時におけるコンタミネーションに由来すると考えられるレベル1であり、(b)はSi-O-C、C-Oに由来すると考えられるレベル2である。
 図7中の(B)に示すに示す強度は、pSiのPor-OHによる表面修飾時にも含まれるpSiのピリジン溶液浸漬時、及び、XPS測定時におけるコンタミネーションレベルであり、(a)はXPS測定時におけるコンタミネーションレベル、及び、ピリジン環のC-C、C-H、C=Cに起因するレベルを含み、(b)はSi-O-C、C-Oに由来すると考えられるレベルである。
 図7中の(B)に示す(b)は、(A)に示す(b)と略同じ強度を示しているが、(B)に示す(a)の強度は、(A)に示す(a)の強度より大きく、ピリジンがpSiの表面に吸着していることを示している。従って、(B)に示すに示す強度は、pSiのPor-OHによる表面修飾時、及び、XPS測定時に生成するコンタミネーションレベルとなり得る。
 図7中の(C)に示す(a)、(b)はそれぞれ、(B)に示す(a)、(b)におけるレベルをコンタミネーションとして含み、(C)に示す(c)は、コンタミネーションを含み、Por-OHのC-OHに由来するC1s信号であると考えられる。Por-OHの全部のOH基がSiと結合していないものと仮定すると、結合Si-O-CはなくPor-OHはSiと共有結合しておらず、(C)に示す(b)の強度はC-O(Por-OHの-(C64)O(CH25OHにおけるC-O-C)に起因するC1s信号であると考えられる。
 しかし、図7中の(C)に示すように、(b)は(c)の強度よりも有意に大きな値であり、(b)と(c)の強度差は、Si-O-Cに起因するC1s信号であると考えられ、Siと結合するOH基の存在を示している。Por-OHの少なくとも1個のOH基は、水素終端化シリコン(Si-H)との反応{Por-OH+Si-H→Por-O-Si+H2}によって、結合C-O-Siを生じ、Siと共有結合していると考えられる。即ち、電極を構成するSiの表面はSiに共有結合されたPor-OHによって修飾されていると考えられる。Siの表面のみが水素終端化され単層のSi-H層が形成されるので、Por-OHとSiの共有結合によって単層の表面修飾層が形成されているものと考えられる。
 <電極表面の修飾面のPYSによる解析>
 紫外線を照射し、試料から放出される光電子の全電子収量を入射光のエネルギー(hν)の関数として測定する光電子収量分光(PYS:Photoelectron Yield Spectroscopy)を、有機層が基板表面に形成された試料(有機層/基板)に適用すると、有機層が薄い場合いは、基板由来のスペクトルと有機層由来のスペクトルが重畳されて測定され、得られたスペクトルの解析から、基板の仕事関数、有機層のイオン化ポテンシャルを決定することができ、界面における正孔注入障壁を測定することができる。
 PYS測定用の試料は次のようにして作成した。図5(B)に示すpSi試料(#2)を水素終端化処理した後、図4(D)に示す化合物(Por-OH)を溶解させたピリジン溶液に浸漬させて、110℃で2時間の還流処理を行った後、直ちに、ピリジン溶液で洗浄し乾燥させて、Por-OHで表面修飾した試料(Por-OH/pSi)を2個作成した。以下、この試料を界面修飾分子/pSiと表わす。また、pSi試料(#2)を水素終端化処理した後、直ちに、ピリジン溶液に浸漬させて、110℃で2時間の還流処理を行った後、ピリジン溶液で洗浄し乾燥させて、対照試料とした。以下、この試料をピリジン/pSiと表わす。
 図8は、本発明の実施例における、光電子収量分光による電極界面の構造を説明する図であり、電極表面のPYS(光電子収量分光)による測定結果を示す図である。
 図8(A)は、pSi電極表面をピリジン処理して作成された対照試料(ピリジン/pSi)に関する測定結果、図8(B)は、pSiに界面修飾分子を共有結合させる処理を行った2個の試料(Por-OH/pSi)に関する測定結果である。
 図8において、横軸は結合エネルギー(eV)、縦軸は任意単位で示す(エミッションイールド)1/2であり、測定は、住友重機械アドバストマシナリー(株)製のPCR-102 イオン化ポテンシャル測定装置(Source:重水素光源)を用いて行った。解析は、文献、H Ishii, et. al.,“Energy Level Alignment and Interfacial Electronic Structures at Organic/Metaland Organic/Organic Interfaces”, Advanced Materials, 1999, 11, No. 8, 605-625を参考にした。
 図8(B)に示すように、2個の試料(Por-OH/pSi)に関する測定結果は殆んど重なっており、安定して再現性のよいPYS測定結果が得られており、同質の界面を有する試料(Por-OH/pSi)が製作されていることを示している。
 HF処理によって水素終端化処理したpSiの仕事関数は、図示しないが、5.3eVであったが、水素終端化処理したpSiを直ちにピリジンで処理した対照試料では、図8(A)に示すように、pSiの仕事関数は5.4eVであった。また、水素終端化処理したpSiを直ちにPor-OHのピリジン溶液と反応させた後の試料(Por-OH/pSi)では、図8(B)に示すように、pSiの仕事関数は5.5eVであった。このように、ピリジン/pSi、Por-OH/pSiにおけるpSiの仕事関数は、水素終端化処理したpSiの仕事関数よりも、高エネルギー側にシフトした。
 また、図8(A)に示すように、ピリジン/pSiにおけるピリジンのHOMO(フロンティア軌道理論による最高被占軌道)レベル(IP(イオン化ポテンシャル))に対応する。)は5.7eVであった。
 更に、Por-OH単体のHOMOレベル(IP)は5.6eVであるが、図8(B)に示すように、Por-OH/pSiにおけるPor-OHのHOMOレベル(IP)は5.9eVであり、高エネルギー側にシフトした。
 Por-OH分子とpSi電極の界面の真空準位が0.2eVだけ高エネルギー側へシフトし、界面における分極の影響によってバンドベンディングを生じていることから、分子と電極が界面で相互作用していることを示している。
 即ち、pSiの仕事関数、Por-OHのHOMOレベル(伝導を担うπ電子)が影響を及ぼしあうほど近づいており、分子と電極は電荷の授受を行えるほど近づいていることを示している。
 なお、図8(A)に示す結合エネルギー4.95eVはおそらく吸着水に対応しており、図8(B)に示す結合エネルギー6.35eV、6.95eVは分子のバルク層の別の軌道に対応していると推測される。
 以上説明した測定結果を整理すると、次に説明する図9のようになる。
 図9は、本発明の実施例における、電極(pSi)と界面修飾分子(Por-OH)の相互作用を説明する図であり、図8に示す結果を電極界面におけるエネルギーバンド図として整理した図である。
 図9(A)は、電極(pSi)と分子(Por-OH)が影響を及ぼしあわないほど離れている場合の界面におけるエネルギーバンド図、図9(B)は、電極(pSi)と分子(Por-OH)が影響を及ぼしあうほど近づいている場合の界面におけるエネルギーバンド図である。
 図9において、HOMO、LOMOはそれぞれ、フロンティア軌道理論による最高被占軌道、最低被占軌道のエネルギーレベルを示し、EFはフェルミ準位を示す。VLは真空準位を示し、∞は界面から無限距離離れた位置、s1は界面1の位置を示し、s2は界面2の位置を示し、s3は界面3の位置を示し、s4は界面4の位置を示し、s5は界面5の位置を示す。
 図9(A)に示すように、pSiとPor-OH分子が影響を及ぼしあわないほど離れている場合には、pSiの仕事関数と、Por-OH分子のイオン化ポテンシャルは単体の値と同じであり、変化を生じない。
 図9(B)に示すように、pSiとPor-OH分子が影響を及ぼしあうほど近づいている場合には、pSiの仕事関数と、Por-OH分子のイオン化ポテンシャルは単体の値よりも高エネルギー側にシフトしている。このシフトの大きさを考慮すると、pSiとPor-OH分子の相互作用は、双極子-双極子相互作用よりも強い別のものであり、分子と電極界面の物理吸着によるものではなく、分子の側鎖を電極界面に共有結合させることにより、無理やり分子のπ電子面と電極を近づけたため、反発しあってエネルギーが高くなっていると予想される。先述したように、Por-OHのOH基は、水素終端化シリコン(Si-H)との反応によって、結合C-O-Siを生じ、Siと共有結合していると考えられる。
 <絶縁ゲート型電界効果トランジスタの製作>
 対向する2個のpSi電極を水素終端化処理した後、直ちに、Por-OHを溶解させたピリジン溶液に浸漬させて、115℃で4時間の還流処理を行った後、ピリジン溶液で洗浄し乾燥させて、pSiにPor-OHを共有結合させてPor-OHで表面修飾した。
 本実施例における機能性分子素子の作製に用いた、略円盤状の骨格部を有するπ電子共役系分子(駆動部分子)は、先述の一般式(2)で表されるテトラフェニルポルフィリン誘導体において、或いは、図4(G)に示すπ電子共役系分子において、側鎖部R5、R6、R7、R8をそれぞれ(CH211CH3とした構造式を有する化合物であり、フェニル基のパラ位に結合したドデシル基-C1225を有するC1225-ビラジエノン亜鉛錯体(C1225-biladienone Zn complex)である。
 表面修飾されたpSiを、C1225-ビラジエノン亜鉛錯体を溶解させたピリジン溶液に浸漬させて、110℃~160℃で4時間、還流処理を行った後、ピリジン溶液で洗浄し乾燥させて、C1225-ビラジエノン亜鉛錯体分子を駆動部分子として、pSiを修飾する分子の上に自己組織化的に積層させた。
 図10は、本発明の実施例における、絶縁ゲート型電界効果トランジスタの例を説明する電極ギャップの近傍を示す図であり、図10(A)は表面SEM像、図10(B)はA-A断面図である。
 図10に示すように、絶縁ゲート型電界効果トランジスタ20aは、ボトムゲート型トランジスタとして構成されている。ゲート電極を兼ねる厚さ約0.2mmのシリコン基板16上に、ゲート絶縁層12として厚さ100nmのSiO2層が形成され、この層の上に最新技術のCMOSプロセスを使用して、10nm~50nmの電極ギャップ13をおいて、厚さ50nmのソース電極14及びドレイン電極15がpSiによって形成されている。図10に示す例では、電極ギャップ13は約30nmである。
 ソース電極14及びドレイン電極15の表面には、界面修飾分子2としてPor-OHが共有結合され単層の修飾分子層が形成されており、この修飾分子層の上には、駆動部分子1として、C1225-ビラジエノン亜鉛錯体を、分子間π-πスタッキングによって自己組織化的に積層させることによって、電極ギャップ13に、界面修飾分子2と駆動部分子1からなる分子配列構造体が、図10(B)に模式的に示すように、形成されている。約30nmの電極ギャップ13に積層されている分子層の数は概ね約30層程度であると予測される。
 C1225-ビラジエノン亜鉛錯体分子は、両電極14、15の表面に共有結合されたPor-OH分子の骨格部に略平行に自己組織化的に積層されるので、両電極14、15の最も近接するギャップ13において、安定して分子配列構造体が形成され、ギャップ13から離れた位置における電極間ほど、C1225-ビラジエノン亜鉛錯体分子の略平行な積層ができにくいので、安定した分子配列構造体の形成は電極ギャップ13の近傍に限定され、その他の部分ではC1225-ビラジエノン亜鉛錯体分子は不安定に積層され、未集積の分子と共に、洗浄によって除去される。
 <絶縁ゲート型電界効果トランジスタの特性>
 上述のようにして製作された絶縁ゲート型電界効果トランジスタの特性について説明する。なお、Idはドレイン電流、Vdはドレイン電圧、Vgはゲート電圧を表わす。
 図11は、本発明の実施例における絶縁ゲート型電界効果トランジスタの特性を示す図であり、ドレイン電流-ドレイン電圧特性((Id-Vd)曲線(Vg=0、ゲートオフ))を示す。
 図11(A)は、駆動分子1が積層されていない状態のトランジスタにおける(Id-Vd)曲線を示し、図11(B)は、駆動分子1が積層され分子配列構造体が電極ギャップ13に形成されたトランジスタにおける(Id-Vd)曲線を示す図である。
 図11(A)に示すように、駆動分子1が積層されていない状態ではトランジスタ特性を示さず、図11(B)に示すように、ゲート電極とドレイン電極のギャップに駆動分子が積層され、pSi/界面修飾分子/駆動部分子/界面修飾分子/pSi=pSi/分子配列構造体/pSiの構成を有するトランジスタの構成によって、トランジスタ特性を示す。
 図12は、本発明の実施例における、絶縁ゲート型電界効果トランジスタの特性を示す図であり、ゲート電極とドレイン電極のギャップに駆動分子が積層され、pSi/界面修飾分子/駆動部分子/界面修飾分子/pSi=pSi/分子配列構造体/pSiの構成を有するトランジスタにおけるドレイン電流-ゲート電圧特性((Id-Vg)曲線)を示す。
 図12(A)は、Vd=-2.5Vとした場合における(Id-Vg)曲線を示し、図12(B)は、Vd=+2.5Vとした場合における(Id-Vg)曲線を示しており、両(Id-Vg)曲線はヒステレシスを示している。
 図13は、本発明の実施例における、絶縁ゲート型電界効果トランジスタの繰り返し特性を示す図であり、Vd=-2.5Vとした場合における(Id-Vg)曲線を示す。
 図13は、図11、図12とは異なるトランジスタに関する測定結果であり、図11及び図12に関するトランジスタと、図13に関するトランジスタは、ソース電極とドレイン電極のギャップ、両電極の先端凸部の構造が異なっているため、厳密に同じ特性を示していない。
 図13に示す結果は、トランジスタの製作直後の特性と、このトランジスタを室温、大気中に1ヶ月放置した後の特性を重畳して示しており、同一のトランジスタ特性を示している。また、ゲート電極に印加されるゲート電圧をオン、オフさせた時の電流比は約500であった。更に、(Id-Vg)曲線を108回、繰り返し測定した場合にも、同一のトランジスタ特性を示し全く変化を示さなかった。
 このように、製作したトランジスタは大気中に長時間放置された状態でも安定して再現性の良い特性を示し、信頼性の高いものである。
 以上に述べた本発明の実施の形態及び実施例によれば、円盤状又は略円盤状のπ電子共役系分子の側鎖部を、電極を構成する原子と共有結合させて、電極表面に単層の修飾分子層を形成し、この修飾分子層上に、機能性分子である駆動部分子が自己集積化的にカラム状に積層され、修飾分子層と共に分子配列構造体を形成するので、電極と分子配列構造体の界面の接触抵抗を低下させた機能性分子素子及び機能性分子装置を提供することができる。
 以上、本発明を実施の形態について説明したが、本発明は上述の実施の形態に限定されるものではなく、本発明の技術的思想に基づいて各種の変形が可能である。例えば、トランジスタを構成する各部の厚さ、大きさ等は、使用用途に合致するように、その性能を満たすように必要に応じて任意に適切に設定することができる。また、機能性分子素子は、トランジスタとして構成されるものではなく、マクロサイズからナノサイズの素子まで、同一の材料と原理によって作製可能であり、メモリ、ロジック回路等としても構成することができることは言うまでもない。
 以上説明したように、本発明によれば、電極と接触抵抗が小さい機能性分子素子及びその製造方法、並びに機能性分子装置を提供することができ、これらは各種の電子デバイス分野に適用することができる。
1…駆動部分子、2…界面修飾分子、3…略円盤状の骨格部、4…側鎖部、5、6、5a、5b…電極、7…分子配列構造体、8…電流が流れる方向、10…機能性分子素子、12…ゲート絶縁層、13…電極ギャップ、14…ソース電極、15…ドレイン電極、16…シリコン基板(ゲート電極を兼ねる。)、17…ソース電極端子、18…ドレイン電極端子、19…ゲート電極端子、20、20a…絶縁ゲート型電界効果トランジスタ

Claims (20)

  1.   電極と、
      π電子共役系からなる平面又は略平面を有する第1の骨格部とこれに結合する側鎖部
     を有し、前記第1の骨格部が前記電極に略平行に配置され、前記側鎖部において前記電極に共有結合によって結合された第1のπ電子共役系分子と
    を有し、前記第1のπ電子共役系分子と第2のπ電子共役系分子とが積層されてなる分子構造配列体が形成され、前記第1の骨格部の面と交差する方向に電流を流す機能を有する、機能性分子素子。
  2.  前記第2のπ電子共役系分子はπ電子共役系からなる平面又は略平面を有する第2の骨格部を備え、前記第1の骨格部に前記第2の骨格部が分子間π-πスタッキングによって積層され、更に、前記第2の骨格部が分子間π-πスタッキングによって一方向に繰り返し積層され、前記分子配列構造体が前記第1及び第2のπ電子共役系分子によって形成され、前記一方向に沿って電流を流す機能を有する、請求項1に記載の機能性分子素子。
  3.  前記第1のπ電子共役系分子が前記第2のπ電子共役系分子と異なる、請求項2に記載の機能性分子素子。
  4.  前記電極がポリシリコン又はアモルファスシリコンから形成された、請求項1に記載の機能性分子素子。
  5.  前記電極として対向する第1及び第2の電極を有し、前記第1の電極と前記第2の電極にそれぞれ、前記第1のπ電子共役系分子の前記側鎖部が共有結合によって結合され、前記第1の電極と前記第2の電極の間に前記分子配列構造体が形成された、請求項2に記載の機能性分子素子。
  6.  前記電極として第3の電極を有し、この第3の電極によって前記電流が制御される、請求項5に記載の機能性分子素子。
  7.  前記第1のπ電子共役系分子が、テトラピロール誘導体、フタロシアニン誘導体、又は、環数が3以上の芳香族縮合多環化合物である、請求項1に記載の機能性分子素子。
  8.  前記第1の電子共役系分子が、ポルフィリン誘導体、又は、コロネン誘導体である、請求項7に記載の機能性分子素子。
  9.  前記第1のπ電子共役系分子が、下記一般式(1)で表されるテトラフェニルポルフィリン誘導体である、請求項8に記載の機能性分子素子。
    一般式(1):
    Figure JPOXMLDOC01-appb-C000001
    (但し、R1、R2、R3、R4は、同一又は異なってもよく、ヒドロ基、又は、置換基を有してもよい鎖状炭化水素基である。)
  10.  前記側鎖部が、アルキル基、アルコキシ基、アルキル基のケイ素類似体の何れか、或いは、アルキル基、アルコキシ基、アルキル基のケイ素類似体の何れかが結合した芳香族環からなる、請求項1に記載の機能性分子素子。
  11.  前記第2のπ電子共役系分子は、ポルフィリン誘導体、又は、リニアテトラピロールである、請求項2に記載の機能性分子素子。
  12.  前記第2のπ電子共役系分子が、下記一般式(2)で表されるビラジエノン誘導体である、請求項11に記載の機能性分子素子。
    一般式(2):
    Figure JPOXMLDOC01-appb-C000002
    (但し、R5、R6、R7、R8は同一又は異なるアルキル基であり、炭素数が3以上、12以下である。)
  13.   π電子共役系からなる平面又は略平面を有する第1の骨格部とこれに結合する側鎖部
     を有する第1のπ電子共役系分子を、前記側鎖部において電極に共有結合させ、前記第
     1の骨格部を前記電極に略平行に配置させる第1の工程と、
      π電子共役系からなる平面又は略平面を有する第2の骨格部を有する第2のπ電子共役系分子を、前記第1の骨格部に前記第2の骨格部を分子間π-πスタッキングによって積層させ、更に、前記第2の骨格部が分子間π-πスタッキングによって一方向に繰り返し積層させて、前記第1及び第2のπ電子共役系分子を含む分子配列構造体を形成する第2の工程と
    を有する機能性分子素子の製造方法。
  14.  前記第1のπ電子共役系分子が前記第2のπ電子共役系分子と異なる、請求項13に記載の機能性分子素子の製造方法。
  15.   対向する第1及び第2の電極と、
      π電子共役系からなる平面又は略平面を有する第1の骨格部とこれに結合する側鎖部を有し、前記第1及び第2の電極のそれぞれに前記第1の骨格部が略平行に配置され、前記側鎖部において前記第1及び第2の電極に共有結合によって結合された第1のπ電子共役系分子と、
      π電子共役系からなる平面又は略平面を有する第2の骨格部を備えた第2のπ電子共 役系分子を有し、前記第1の骨格部に前記第2の骨格部が分子間π-πスタッキングに よって積層され、更に、前記第2の骨格部が分子間π-πスタッキングによって一方向に繰り返し積層され、前記第1の電極と前記第2の電極の間に前記第1及び第2のπ電子共役系分子によって形成された分子配列構造体と
    を有し、前記一方向に沿って電流を流す機能を有する機能性分子装置。
  16.  前記第1のπ電子共役系分子が前記第2のπ電子共役系分子と異なる、請求項15に記載の機能性分子装置。
  17.  前記第1及び第2の電極がポリシリコン又はアモルファスシリコンから形成された、請求項15に記載の機能性分子装置。
  18.  第3の電極を有し、この第3の電極によって前記電流が制御される、請求項15に記載の機能性分子装置。
  19.  前記第3の電極が、前記分子配列構造体に電界を作用させて前記電流を制御するための制御用電極として、前記一方向に沿って設けられている、請求項18に記載の機能性分子装置。
  20.  前記第3の電極がゲート電極でありこの上にゲート絶縁層が設けられ、このゲート絶縁層上に、前記第1の電極がソース電極として、前記第2の電極がドレイン電極として形成され、絶縁ゲート型電界効果トランジスタとして構成された、請求項19に記載の機能性分子装置。
PCT/JP2009/060760 2008-06-19 2009-06-12 機能性分子素子及びその製造方法、並びに機能性分子装置 WO2009154145A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN2009801228794A CN102067350B (zh) 2008-06-19 2009-06-12 功能性分子元件、其制造方法以及功能性分子装置
US12/999,161 US8698132B2 (en) 2008-06-19 2009-06-12 Functional molecular element, manufacturing method thereof, and functional molecular device
EP09766593A EP2306543A1 (en) 2008-06-19 2009-06-12 Functionalized molecular element, manufacturing method thereof, and functionalized molecular device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-160815 2008-06-19
JP2008160815A JP5304050B2 (ja) 2008-06-19 2008-06-19 機能性分子素子及びその製造方法、並びに機能性分子装置

Publications (1)

Publication Number Publication Date
WO2009154145A1 true WO2009154145A1 (ja) 2009-12-23

Family

ID=41434060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060760 WO2009154145A1 (ja) 2008-06-19 2009-06-12 機能性分子素子及びその製造方法、並びに機能性分子装置

Country Status (5)

Country Link
US (1) US8698132B2 (ja)
EP (1) EP2306543A1 (ja)
JP (1) JP5304050B2 (ja)
CN (1) CN102067350B (ja)
WO (1) WO2009154145A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5549971B2 (ja) * 2009-07-21 2014-07-16 独立行政法人物質・材料研究機構 分子電子デバイス及びその製造方法
US9028722B2 (en) 2010-10-29 2015-05-12 Centre National De La Recherche Scientifique (C.N.R.S.) Electric conduction through supramolecular assemblies of triarylamines
FR2967005B1 (fr) * 2010-10-29 2012-12-21 Centre Nat Rech Scient Conduction electrique par des assemblages supramoleculaires de triarylamines
US9276216B2 (en) * 2013-09-10 2016-03-01 Kabushiki Kaisha Toshiba Organic molecular device
JP2023081627A (ja) * 2021-12-01 2023-06-13 キオクシア株式会社 有機分子メモリ

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128214A (en) 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6256767B1 (en) 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)
JP2004266100A (ja) 2003-02-28 2004-09-24 Nara Institute Of Science & Technology 共有結合により固定化されたポルフィリン多量体を基板上に積層させた光機能分子素子及びその製造方法
JP2005228773A (ja) 2004-02-10 2005-08-25 Sony Corp 機能性分子素子
JP2006100618A (ja) * 2004-09-30 2006-04-13 Sony Corp 半導体装置及びその製造方法
JP2006283014A (ja) 2005-03-09 2006-10-19 Doshisha リニアテトラピロール系色素
JP2006351623A (ja) 2005-06-13 2006-12-28 Sony Corp 機能性分子素子及びその製造方法、並びに機能性分子装置
WO2007135861A1 (ja) * 2006-05-18 2007-11-29 Panasonic Corporation 電極界面を改善した有機fet及びその製造方法
JP2008124360A (ja) * 2006-11-15 2008-05-29 Sony Corp 機能性分子素子及びその製造方法、並びに機能性分子装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6284562B1 (en) * 1999-11-17 2001-09-04 Agere Systems Guardian Corp. Thin film transistors

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6128214A (en) 1999-03-29 2000-10-03 Hewlett-Packard Molecular wire crossbar memory
US6256767B1 (en) 1999-03-29 2001-07-03 Hewlett-Packard Company Demultiplexer for a molecular wire crossbar network (MWCN DEMUX)
JP2004266100A (ja) 2003-02-28 2004-09-24 Nara Institute Of Science & Technology 共有結合により固定化されたポルフィリン多量体を基板上に積層させた光機能分子素子及びその製造方法
JP2005228773A (ja) 2004-02-10 2005-08-25 Sony Corp 機能性分子素子
JP2006100618A (ja) * 2004-09-30 2006-04-13 Sony Corp 半導体装置及びその製造方法
JP2006283014A (ja) 2005-03-09 2006-10-19 Doshisha リニアテトラピロール系色素
JP2006351623A (ja) 2005-06-13 2006-12-28 Sony Corp 機能性分子素子及びその製造方法、並びに機能性分子装置
WO2007135861A1 (ja) * 2006-05-18 2007-11-29 Panasonic Corporation 電極界面を改善した有機fet及びその製造方法
JP2008124360A (ja) * 2006-11-15 2008-05-29 Sony Corp 機能性分子素子及びその製造方法、並びに機能性分子装置

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BEN L. FERINGA: "Molecular Switches", 2001, WILEY-VCH
H ISHII ET AL.: "Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal Organic/Organic Interfaces", ADVANCED MATERIALS, vol. 11, no. 8, 1998, pages 605 - 625
J. CHEN, M. A. REED, A. M. RAWLETT, J. M. TOUR: "Large on-off ratios and negative differential resistance in a molecular electronic device", SCIENCE, vol. 286, 1999, pages 1550 - 1552
J. M. WESSELS, H. G. NOTHOFER, W. E. FORD, F. VON WROCHEM, F. SCHOLZ, T. VOSSMEYER, A. SCHROEDTER, H. WELLER, A. YASUDA: "Optical and electrical properties of three-dimensional interlinked gold nanoparticle assemblies", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 126, no. 10, 2004, pages 3349 - 3356
M. A. REED, C. ZHOU, C. J. MULLER, T. P. BURGIN, J. M. TOUR: "Conductance of a molecular junction", SCIENCE, vol. 278, 1997, pages 252 - 254
S. T. TRZASKA, H-F. HSU, T. M. SWAGER: "Cooperative Chiralith in Columnar Liquid Crystals: Studies of Fluxional Octahedral Metallomesogens", J. AM. CHEM. SOC., vol. 121, 1998, pages 4518 - 4519
YO SHIMIZU, T. HIGASHIYAMA, T. FUCHITA: "Photoconduction of a mesogenic long-chain tetraphenylporphyrin in a symmetrical sandwich-type cell", THIN SOLID FILMS, vol. 331, 1998, pages 279 - 284
YO SHIMIZU: "Columnar Liquid Crystals and Their Diverse Molecular Structures and Intramolecular Action", LIQUID CRYSTALS, vol. 6, 2002, pages 147 - 159
YO SHIMIZU: "Photoconductivity of Discotic Liquid Crystals: a Mesogenic Long-Chain Tetraphenylporphyrin and Its Metal Complexes", MOLECULAR CRYSTALS AND LIQUID CRYSTALS, vol. 370, 2001, pages 83 - 91

Also Published As

Publication number Publication date
US20110101324A1 (en) 2011-05-05
US8698132B2 (en) 2014-04-15
CN102067350A (zh) 2011-05-18
JP2010003830A (ja) 2010-01-07
CN102067350B (zh) 2013-03-27
EP2306543A1 (en) 2011-04-06
JP5304050B2 (ja) 2013-10-02

Similar Documents

Publication Publication Date Title
JP4910314B2 (ja) 機能性分子素子及び機能性分子装置
US9356247B2 (en) Semiconductor device and method for manufacturing the same
Cao et al. Current trends in shrinking the channel length of organic transistors down to the nanoscale
Chen et al. Measurement of single-molecule conductance
Rigaut Metal complexes in molecular junctions
Grill Functionalized molecules studied by STM: motion, switching and reactivity
JP5304050B2 (ja) 機能性分子素子及びその製造方法、並びに機能性分子装置
Gupta et al. Covalent assembly of gold nanoparticles: an application toward transistor memory
WO2005076379A1 (ja) 機能性分子素子
JP4901137B2 (ja) 機能性分子素子及び機能性分子装置
WO2011148699A1 (ja) 有機半導体装置およびその製造方法
JP2008124360A (ja) 機能性分子素子及びその製造方法、並びに機能性分子装置
WO2004059756A1 (ja) 機能性分子素子及び機能性分子装置
JP2008153257A (ja) 半導体装置及びその製造方法
KR20070034507A (ko) 기능성 분자 장치
KR101193581B1 (ko) 기능성 분자 소자 및 기능성 분자 장치
JP4347095B2 (ja) 面積変調素子
JP2009032897A (ja) 機能性分子素子の製造方法及び機能性分子装置の製造方法、並びに集積素子の製造方法
JP2004221553A (ja) 機能性分子素子及び機能性分子装置
Joo New functionalized polyoxometalates (POMS) for molecular memory devices compatible with a CMOS processing

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122879.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09766593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12999161

Country of ref document: US

Ref document number: 2009766593

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE