WO2009153840A1 - 光送信器及び光送信器の制御方法 - Google Patents

光送信器及び光送信器の制御方法 Download PDF

Info

Publication number
WO2009153840A1
WO2009153840A1 PCT/JP2008/001600 JP2008001600W WO2009153840A1 WO 2009153840 A1 WO2009153840 A1 WO 2009153840A1 JP 2008001600 W JP2008001600 W JP 2008001600W WO 2009153840 A1 WO2009153840 A1 WO 2009153840A1
Authority
WO
WIPO (PCT)
Prior art keywords
gain
output
optical transmitter
frequency signal
modulator
Prior art date
Application number
PCT/JP2008/001600
Other languages
English (en)
French (fr)
Inventor
葛上寛
石川智久
田中智登
Original Assignee
富士通株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士通株式会社 filed Critical 富士通株式会社
Priority to PCT/JP2008/001600 priority Critical patent/WO2009153840A1/ja
Priority to JP2010517556A priority patent/JP5273145B2/ja
Publication of WO2009153840A1 publication Critical patent/WO2009153840A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/501Structural aspects
    • H04B10/503Laser transmitters
    • H04B10/505Laser transmitters using external modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/58Compensation for non-linear transmitter output
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/21Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  by interference
    • G02F1/212Mach-Zehnder type
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/20Intrinsic phase difference, i.e. optical bias, of an optical modulator; Methods for the pre-set thereof

Definitions

  • the present invention relates to an optical transmitter used in an optical communication system.
  • an optical transmitter modulates light from a laser with an external modulator.
  • an interferometer type modulator As the external modulator, an interferometer type modulator is known.
  • the interferometer-type modulator changes the bias voltage in a non-modulation state, the output light of the interferometer-type modulator exhibits a periodic attenuation characteristic. Therefore, in order to increase the degree of modulation, the interferometer type modulator needs to perform modulation between the peak and bottom values of the attenuation characteristic of the interferometer type modulator or between the values. For this reason, when optical modulation is performed by the interferometer type modulator, the optical transmitter needs to control the amplitude voltage of the modulation signal and its bias voltage so as to fall between the peak and bottom values of the attenuation characteristic.
  • An automatic bias control circuit is known as a circuit for controlling a bias voltage of an interferometric modulator.
  • the ABC circuit superimposes the low frequency signal on the modulation signal, extracts the low frequency signal component from the output light component of the modulator, compares the superimposed low frequency signal with the low frequency signal component extracted from the output light, and controls the bias voltage To do.
  • Such an optical transmitter including an ABC circuit is described in Patent Document 1. JP 2004-20839 A
  • a laser diode is used as a light source for transmitting light input to the interferometric modulator of the optical transmitter.
  • the laser diode power increases nonlinearly up to the target optical power. For this reason, even if the light source is turned on, it does not emit light immediately.
  • the target optical power is about 13 dBm (about 20 mW) and the response time constant of the ABC circuit of the optical modulator is designed to be about 200 msec.
  • the response time constant of the ABC circuit is 200 sec.
  • the optical transmitter when the optical transmitter is started, it takes time to lock the bias voltage depending on the rising of the light source that transmits the light input to the interferometric modulator.
  • An object of the present invention is to provide an optical transmitter including an interferometer type modulator that has a short bias voltage lock time.
  • a light source an optical modulator that modulates light from the light source with an interferometer using a modulation signal, and an ABC circuit that controls a bias voltage applied to the optical modulator.
  • the transmitter is controlled so that the loop gain of the ABC circuit becomes a constant value even if the output power of the light source changes.
  • the response time constant of the bias voltage of the modulation signal is set. Can be shortened.
  • Diagram showing the configuration of the optical transmitter Diagram showing the relationship between loop gain and response time constant The figure which shows the concrete structure of each part of FIG. The figure which shows the waveform of each part of FIG.
  • the figure which shows the time chart of the characteristic of each part of the optical modulator of the structure of FIG. The figure which shows the concrete structure of each part of FIG. Time chart of characteristics of each part of optical modulator configured as shown in FIG.
  • the figure which shows the concrete structure of each part of FIG. The figure which shows the waveform of each part of FIG.
  • the figure which shows the concrete structure of each part of FIG. The figure which shows the waveform of each part of FIG.
  • the figure which shows the waveform of each part of FIG. The figure which shows the example comprised with the processing apparatus 6
  • the figure which shows the example comprised with the processing apparatus 6 The figure which shows the structure of the processing apparatus 6
  • Optical Transmitter 2 Light Source 21 LD Module 210 Laser 211 PD for Monitor 24 Current-voltage conversion circuit 25 Low-pass filter 26 Reference voltage 23 Comparator 22 LD driver 3 Optical modulator 31 Mach-Zehnder type modulator 310 Electrode 32 Output waveguide 33 Monitor waveguide 34 Monitor PD 4 Automatic bias control circuit (ABC circuit) 41 Modulation driver 42 Low-frequency signal source 43 Phase comparator 44 Low-pass filter 45A, 45B Variable gain amplifier 46 Band-pass filter 47 Current-voltage converter 48 Bias supply 5A, 5B Gain controller 51 Optical output comparator 51 52 Reference value holding unit 53 Switching unit 54 Timer
  • FIG. 1 is a diagram showing a configuration of the optical transmitter 1.
  • the optical transmitter 1 includes a light source 2, an optical modulator 3, an automatic bias control circuit (ABC circuit) 4, and a gain control unit 5.
  • the light source 2 generates light.
  • the generated light is input to the optical modulator 3.
  • the optical modulator 3 inputs the light from the light source 2 to a modulator configured with a Mach-Zehnder interferometer. Further, the optical modulator 3 modulates light from the light source 2 by adding a modulation signal to the electrode of the modulator.
  • the ABC circuit 4 superimposes a low frequency signal on the modulation signal applied to the optical modulator 3.
  • the ABC circuit 4 extracts a low frequency signal component from the output light component of the modulator, compares the low frequency signal superimposed on the modulation signal with the low frequency signal component extracted from the output light, and applies the bias voltage to the optical modulator 3.
  • the ABC circuit 4 includes a gain variable unit that varies the loop gain of bias voltage control.
  • the gain control unit 5 controls the loop gain of the ABC circuit to be a constant value even when the output power of the light source 2 changes.
  • FIG. 2 is a diagram showing the relationship between loop gain and response time constant. Characteristic A shows when the optical output power is normal (about 13 dBm), and characteristic B shows a state where the optical output power is 30 dB smaller than normal. 2 that the loop gain of the ABC circuit 4 is small when the output of the light source 2 is small, and the loop gain of the ABC circuit 4 is large when the output of the light source 2 is small. Further, FIG. 2 shows that the response time constant ⁇ is long when the optical output power is small, and the response time constant ⁇ is short when the optical output power is large.
  • the gain control unit 5 increases the loop gain so as to be the normal loop gain of the ABC circuit 4.
  • the optical transmitter 1 can shorten the response time constant until the bias voltage is set by increasing the loop gain so as to be the normal loop gain.
  • the loop gain also becomes larger than the preset loop loop gain. In this case, it reacts too sensitively to the rise of the light source 2. If it reacts too sensitively, the bias control voltage causes chattering. Therefore, in this case, the bias control voltage may not be stabilized. In the embodiment of FIG. 1, the normal loop gain is maintained corresponding to the change in the output power of the light source 2.
  • the light source 2 includes a laser diode (LD) module 21, an LD driver 22, a comparator 23, a current-voltage conversion circuit 24, a low-pass filter 25, and a reference voltage 26.
  • the LD module 21 includes a laser 210 and a monitoring photodiode (monitoring PD) 211.
  • the LD driver 22 supplies current to the LD module 21, the LD module 21 outputs laser light.
  • the monitor PD 211 monitors the rear output of the LD module 21.
  • the current-voltage conversion circuit 24 converts the output current of the monitoring PD 211 into a voltage.
  • the low-pass filter 25 converts the voltage component converted by the current-voltage conversion circuit 24 into a DC component.
  • the comparator 23 compares the reference voltage 26 with the output voltage of the low pass filter 25.
  • the comparison result of the comparator 23 is supplied to the LD driver 22.
  • the LD driver 22 keeps the output power of the LD 210 constant based on the comparison result of the comparator 23.
  • the optical modulator 3 includes a Mach-Zehnder type modulator 31, an electrode 310, an output waveguide 32, a monitor waveguide 33, and a monitor PD 34.
  • Light from the light source 2 is input to the Mach-Zehnder type modulator 31.
  • the Mach-Zehnder modulator 31 splits the input light into two optical paths, and then couples the light in the two optical paths to cause optical interference.
  • An electrode 310 is formed on one of the branched optical paths of the Mach-Zehnder type modulator 31.
  • a modulation signal and a bias voltage are supplied from the ABC circuit 4 to the electrode 310.
  • the output waveguide 32 and the monitor waveguide 33 receive the output light from the Mach-Zehnder modulator 31.
  • the output waveguide 32 outputs light to the transmission line.
  • the monitor PD 34 is provided at the end of the monitor waveguide 33. The monitor PD 34 converts the output light of the Mach-Zehnder modulator 31 into a current.
  • the ABC circuit 4 includes a modulation driver unit 41, a low-frequency signal source unit 42, a phase comparison unit 43, a low-pass filter unit 44, a variable gain amplification unit 45A, a band-pass filter unit 46, a current-voltage conversion circuit 47, and a bias supply unit 48. ing.
  • the modulation driver unit 41 superimposes the low frequency signal from the low frequency signal source unit 42 on the modulation signal (input signal), and supplies the modulation signal on which the low frequency signal is superimposed on the electrode 310 of the Mach-Zehnder type modulator 31.
  • FIG. 4A and FIG. 4B show the modulation signal on which the signal is superimposed.
  • the current-voltage conversion circuit 47 converts the monitor current from the monitor PD 34 into a voltage.
  • the monitor current from the monitor PD 34 is in the state of e in FIG.
  • the band-pass filter unit 46 extracts a low frequency component from the voltage converted by the current / voltage conversion circuit 47.
  • the extracted low frequency component is d in FIG.
  • the output of the band pass filter unit 46 is input to the variable gain amplification unit 45A.
  • the variable gain amplifying unit 45 A gives a predetermined gain to the voltage from the current-voltage conversion circuit 47 and outputs it to the phase comparison unit 43.
  • the signal gained by the variable gain amplifying unit 45A is c in FIG.
  • the phase comparison unit 43 compares the low frequency signal from the low frequency signal source unit 42 with the signal from the variable gain amplification unit 45 ⁇ / b> A and outputs the comparison result to the low pass filter unit 44.
  • the low-pass filter unit 44 converts the output from the phase comparison unit 43 into a direct current component and outputs it to the bias supply unit 48.
  • the bias supply unit 48 changes the bias voltage based on the output of the low-pass filter unit 44 and supplies the bias voltage to the electrode 310 of the Mach-Zehnder modulator 31.
  • the gain control unit 5A is a specific example of the gain control unit 5 of FIG.
  • the gain control unit 5A includes an optical output comparison unit 51 and a reference value holding unit 52.
  • the light output comparison unit 51 compares the output of the current-voltage conversion circuit 24 of the light source 2 with the reference value of the reference value holding unit 52, and the loop gain of the ABC control circuit 4 is constant even if the output power of the light source 2 changes.
  • a signal for controlling the gain of the variable gain amplifying unit 45A in the ABC control circuit 4 is output so as to be a value.
  • FIG. 5 shows a time chart of characteristics of each part of the optical modulator configured as shown in FIG.
  • FIG. 5A shows the laser current.
  • FIG. 5B shows the laser power.
  • FIG. 5C shows the bias voltage.
  • FIG. 5D shows the loop gain.
  • FIG. 5E shows the gain of the variable gain amplifier.
  • FIG. 5F shows the optical transmitter output.
  • the LD current injection starts at t0, but the current of the LD 210 in FIG.
  • the LD current in FIG. 5A rises and the LD current exceeds the threshold at t1, the LD 210 starts to emit light.
  • the LD 210 is extinguished or has extremely low output power. Even if the gain variable amplification section 45A increases the gain in the period between t0 and t1, it is difficult to obtain a steady-state loop gain. Further, even if a sufficient loop gain is obtained by the variable gain amplifying unit 45A, oscillation or the like occurs with a slight fluctuation in light output. Accordingly, the gain control of the variable gain amplifying unit 45A is not performed during the period between t0 and t1.
  • the optical output comparison unit 51 in the gain control unit 5A performs gain variable amplification.
  • the gain of the unit 45A is increased to the value of a1.
  • the loop gain of the ABC circuit 4 becomes the same value as in the steady state.
  • the LD output P1 in FIG. 5B which is the control start timing, is preferably set to ⁇ 10 dB to ⁇ 20 dB of the target optical output power from the general dynamic range of the variable gain amplifier.
  • the gain of the variable gain amplifying unit 45A is calculated by the following equation.
  • ampG setLG ⁇ setMONITOR / currentMONITOR (1)
  • ampG is the gain of the variable gain amplification unit
  • setLG is the steady-state loop gain
  • setMONITOR is the value of the monitor PD 211 in the steady state
  • currentMONITOR is the current value of the monitor PD 211.
  • the gain of the variable gain amplifying unit 45A is gradually decreased in inverse proportion to the light output that increases with time so as not to exceed the steady-state loop gain. This is because ringing may occur if the loop gain at steady state is exceeded.
  • the bias voltage of the Mach-Zehnder type external modulator converges to the optimum value, and the optical waveform is stabilized.
  • the gain of the variable gain amplifying unit 45A is gradually reduced according to the equation (1).
  • FIG. 6 is different from FIG. 3 in the configuration of the gain controller 5A.
  • 6 includes a light output comparison unit 51, a reference value holding unit 52, a switching unit 53, and a timer 54.
  • the light output comparison unit 51 compares the output of the current-voltage conversion circuit 24 of the light source 2 with the reference value of the reference value holding unit 52, and the loop gain of the ABC control circuit 4 is constant even if the output power of the light source 2 changes.
  • a signal for controlling the gain of the variable gain amplifying unit 45A in the ABC control circuit 4 is output so as to be a value.
  • the output signal of the optical output comparison unit 51 is input to the switching unit 53.
  • the timer 54 is activated when the optical output comparison unit 51 starts control, and when a predetermined time has elapsed from the activation, the timer 54 controls the switching unit 53 and outputs a control signal output from the optical output comparison unit 51 to the variable gain amplification unit 45A. Shut off.
  • the gain control unit 5 ⁇ / b> A sets the gain of the variable gain amplification unit 45 ⁇ / b> A of the ABC circuit for a predetermined time from when the output from the monitoring PD 211 provided in the light source 2 reaches a predetermined value. Change.
  • FIG. 7 shows a time chart of the characteristics of each part of the optical modulator configured as shown in FIG.
  • FIG. 7A shows the laser current.
  • FIG. 7B shows the laser power.
  • FIG. 7C shows the bias voltage.
  • FIG. 7D shows the loop gain.
  • FIG. 7E shows the gain of the variable gain amplifier.
  • FIG. 7F shows the optical transmitter output.
  • LD current injection is started as shown in FIG. 7A.
  • the LD current exceeds the threshold current, and the LD 210 starts to emit light as shown in FIG. 7B.
  • the gain control unit 5A increases the gain of the variable gain amplification unit 45A according to the LD output light as shown in FIG. 7E.
  • the bias voltage of the Mach-Zehnder type external modulator converges to the optimum value, and the optical waveform is stabilized, so that the bias voltage of the optical modulator 1 is stabilized at the optimum point.
  • the gain of the variable gain amplifying unit 45A is restored. The time from t2 to t3 is set in the timer 54 after calculation or experiment.
  • the loop gain 7 is operated when the gain of the variable gain amplifying unit 45A is gradually reduced, the loop gain temporarily exceeds a steady value due to a control delay of the variable gain amplifying unit 45A, and the ringing is performed. This is to prevent the occurrence of the above.
  • the bias voltage After the bias voltage has converged to the optimum point, there is no problem even if the loop gain and response time constant are reduced. If the time from t2 to t3 is 400 msec, which is about twice the response time constant, the bias voltage of the Mach-Zehnder modulator 31 converges to the optimum point.
  • variable gain amplification unit 45A of the ABC circuit 4 of FIG. 6 is a variable gain amplification unit 45B.
  • variable gain amplification section 45B is provided between the modulation driver section 41 and the low frequency signal source section 42 and amplifies the low frequency signal that is the output of the low frequency signal source section 42. Further, in FIG. 8, the output of the bandpass filter unit 46 is directly input to the phase comparison unit 43. That is, the gain control unit 5A controls the gain of the low frequency signal component by the gain variable amplification unit 45B of the ABC circuit.
  • the operation of the optical modulator 1 in FIG. 8 is the same as the time chart in FIG. In FIG. 8, since the variable gain amplification unit 45B amplifies the low frequency signal, the superimposed low frequency signal becomes larger than that in FIG. 4 during the period from t2 to t3 in FIG. 7, as shown in FIG. Yes. Even if the low-frequency signal is varied as shown in FIG. 8, the loop gain of the ABC circuit can be controlled.
  • t2 in FIG. 7, that is, the LD output P1 at the control start timing is the target optical output power from the general dynamic range of the gain variable amplifying unit 45B and the superposition rate limit of the low frequency signal. It is better to set to about -10 dB.
  • FIG. 10 A specific configuration of each part in FIG. 1 will be described with reference to FIG. 10, the same parts as those in FIGS. 1 and 6 are denoted by the same reference numerals. The description of the same part as in FIG. 6 is omitted.
  • the gain controller 5A of FIG. 6 is a gain controller 5B.
  • the gain control unit 5B uses the voltage output of the current-voltage conversion circuit 47 of the ABC circuit 4 as an input of the light output comparison unit 51 instead of the monitor of the light source 2.
  • the gain control unit 5B is otherwise the same as the gain control unit 5A in FIG. Therefore, the operation time chart is the same as FIG.
  • FIG. 11 differs from FIG. 10 in the configuration of the gain control unit 5B.
  • the switching unit 54 cuts off the control signal output from the optical output comparison unit 51 to the variable gain amplification unit 45A.
  • FIG. 12 shows an example in which a part of the functions of the ABC circuit 4 and the light source 2 of FIG. 1 and the gain control unit 5 are configured by a processing device 6 such as a central processing unit CPU or a microprocessor unit (MPU). 12, the same members as those in FIGS. 1 and 3 are denoted by the same reference numerals, and the description thereof is omitted.
  • a processing device 6 such as a central processing unit CPU or a microprocessor unit (MPU). 12
  • CPU central processing unit
  • MPU microprocessor unit
  • the amplifier 461 amplifies the output from the bandpass filter unit 46 to a level that the analog-digital converter 462 can receive.
  • the analog-digital converter 462 converts the output from the amplifier 461 into a digital signal.
  • the digital information digitally converted by the analog-digital converter 462 is input to the input interface 62 of the processing device 6.
  • the rectangular wave signal from the low frequency signal source 42 is fed to the input interface 64 of the processing unit 6.
  • the processing device 6 performs a phase comparison process 43 ⁇ / b> C using information from the input interface 64 and digital information input to the input interface 62.
  • the phase comparison process result is subjected to a variable gain amplification process 45C for varying the gain according to the light emission amount of the LD 210.
  • the result of the variable gain amplification process is smoothed by the low pass filter process 44C.
  • the smoothed value is supplied to the bias supply unit 48C via the output interface 63.
  • the bias supply unit 48C includes a digital-analog converter 482 and an amplifier 481.
  • the digital / analog converter 482 outputs an analog signal based on the digital information from the output interface 63.
  • the output of the digital-analog converter 482 is amplified by the amplifier 481 and supplied to the electrode 310 as a bias voltage.
  • the digital-analog converter 482 converts the low-frequency signal information subjected to the low-pass filter processing 421 into an analog value.
  • the analog-converted low frequency signal is amplified by the amplifier 423 via the capacitor 424.
  • the low frequency signal amplified by the amplifier 423 is input to the modulation driver 41.
  • the modulation driver 41 superimposes the low frequency signal on the modulation signal and supplies the modulation signal to the electrode 310.
  • the current from the monitor PD 211 is converted into a digital value by the analog-digital converter 24C.
  • the current value digitally converted by the analog-digital converter 24C is input to the input interface 66 of the processing device 6.
  • the digitally converted current value is compared with a reference value by the comparison process 23C, and is input to the digital / analog converter 22C via the output interface 67.
  • the digital-analog converter 22C converts the result of the comparison process into an analog value and supplies it to the laser 210.
  • the current value digitally converted by the analog-digital converter 24C is made to correspond to the output of the laser 210 in the gain control process 5c, and the value of the gain performed in the variable gain amplification process 45C is determined.
  • the gain determined in the gain control process 5c is performed at a timing corresponding to the laser power in FIG. 5E or 7E.
  • the control process is performed from the input interface 66 based on the value of the monitor PD 211, but the gain control process 5c determines the gain value to be performed in the variable gain amplification process 45C based on the information from the input interface 62. Also good. Further, the variable gain amplification processing 45C may perform processing based on information from the input interface 62 before the phase comparison processing 43C. Further, the variable gain amplification processing 45C may perform processing based on information from the filter processing 44C.
  • FIG. 13 is a modification of FIG. 12, and the same members as those in FIG.
  • variable gain amplification process 45C performs an operation so that the output of the filter process 421 is amplified.
  • the control process is performed from the input interface 66 based on the value of the monitor PD 211, but the gain control process 5c determines the gain value to be performed in the variable gain amplification process 45C based on the information from the input interface 62. Also good.
  • FIG. 14 is a diagram showing a configuration of the processing device 6 of FIGS. 12 and 13.
  • the processing device 6 includes a calculation unit 61, input interfaces 62, 64, 66, output interfaces 63, 65, 67, and a processing program storage unit 68.
  • the processing program storage unit 68 stores processing programs for phase comparison processing 43C, low-pass filter processing 44C, variable gain amplification processing 45C, low-pass filter processing 421, comparison processing 23C, and gain control processing 5c.
  • the calculation unit 61 calculates information from each input interface from the processing program storage unit 68 in a predetermined order, and outputs information from each output interface.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Optical Communication System (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 光送信器は光を発生する光源と、変調信号を用いて干渉計で光源からの光を変調する光変調器と、変調信号に低周波信号を重畳し、変調器の出力光成分から低周波信号成分を取り出し、変調信号に重畳した低周波信号と出力光から取り出した低周波信号成分を比較して光変調器に与えるバイアス電圧を制御し、制御のループ利得を可変する利得可変増幅部を備えた自動バイアス制御回路と、光源の出力パワーが変化しても自動バイアス制御回路のループ利得が一定の値になるように自動バイアス制御回路の利得可変増幅部を制御する利得制御部とを備える。

Description

光送信器及び光送信器の制御方法
 本発明は光通信システムに用いられる光送信器に関する。
 近年、高速に信号を変調するため、光送信器はレーザからの光を外部変調器で変調している。外部変調器は干渉計型の変調器が知られている。干渉計型変調器は無変調状態でバイアス電圧を変化させた場合に、干渉計型変調器の出力光は周期的な減衰特性を示す。従って、干渉計型変調器は変調度を高くするために、干渉計型変調器の減衰特性のピークとボトムの値またはその間で変調を行う必要がある。このため、干渉計型変調器で光変調を行う場合、減衰特性のピークとボトムの値またはその間に入るように、光送信器は変調信号の振幅電圧とそのバイアス電圧を制御する必要がある。
 自動バイアス制御回路(ABC回路)は干渉計型変調器のバイアス電圧を制御する回路として知られている。ABC回路は変調信号に低周波信号を重畳し、変調器の出力光成分から低周波信号成分を取り出し、重畳した低周波信号と出力光から取り出した低周波信号成分を比較してバイアス電圧を制御する。このような、ABC回路を備えた光送信器は特許文献1に記載されている。
特開2004-20839号公報
 ABC回路を備えた光送信器は干渉計型変調器に入力される光パワーが小さいと光変調器の出力光成分が小さくなる。干渉計型変調器に入力される光パワーが小さい場合、ABC回路が干渉計型変調器の出力光から取り出した低周波成分の振幅も小さくなる。
 一方、光送信器の干渉計型変調器に入力される光を送る光源はレーザダイオードを用いる。レーザダイオードは目的とする光パワーまでは非線形にパワーが上昇する。このため、光源のパワーをオンしてもすぐに発光しない。
 例えば、目的とする光パワーが約13dBm(約20mW)で、光変調器のABC回路の応答時定数が200msec程度に設計されているとする。光変調器の光源の立ち上がり時は出力パワーが30dB低い場合が想定される。この場合は、ABC回路の応答時定数は200secになる。
 従って、光送信器の立ち上げ時は、干渉計型変調器に入力される光を送る光源の立ち上がりに依存して、バイアス電圧をロックするのに時間がかかる。
 本発明の目的は、バイアス電圧のロック時間が短い干渉計型変調器を備えた光送信器を提供することである。
 上記の目的を達成するため、光源と、変調信号を用いて干渉計で該光源からの光を変調する光変調器と、該光変調器に与えるバイアス電圧を制御するABC回路とを備えた光送信器において、該光源の出力パワーが変化しても該ABC回路のループ利得が一定の値になるように制御する。
 実施形態によれば、ABC回路のループ利得をレーザの出力パワーの変化に対応させて制御することで、干渉計型変調器を備えた光送信器において、変調信号のバイアス電圧の応答時定数を短くすることができる。
光送信器の構成を示す図 ループ利得と応答時定数の関係を示す図 図1の各部の具体的な構成を示す図 図1の各部の波形を示す図 図3の構成の光変調器各部の特性のタイムチャートを示す図 図1の各部の具体的な構成を示す図 図6の構成の光変調器各部の特性のタイムチャート 図1の各部の具体的な構成を示す図 図8の各部の波形を示す図 図1の各部の具体的な構成を示す図 図1の各部の波形を示す図 処理装置6で構成した例を示す図 処理装置6で構成した例を示す図 処理装置6の構成を示す図
符号の説明
1 光送信器
2 光源
21 LDモジュール
210 レーザ
211 モニタ用PD
24 電流電圧変換回路
25 ローパスフィルタ
26 参照電圧
23 比較器
22 LDドライバ
3 光変調器
31 マッハツェンダ型変調器
310 電極
32 出力導波路
33 モニタ用導波路
34 モニタ用PD
4 自動バイアス制御回路(ABC回路)
41 変調ドライバ部
42 低周波信号源部
43 位相比較部
44 ローパスフィルタ部
45A、45B 利得可変増幅部
46 バンドパスフィルタ部
47 電流電圧変換回路
48 バイアス供給部
5A、5B 利得制御部
51 光出力比較部
52 参照値保持部
53 切替部
54 タイマー
 以下、図面を参照して本発明の実施形態について説明する。
 図1は光送信器1の構成を示す図である。光送信器1は光源2、光変調器3、自動バイアス制御回路(ABC回路)4と利得制御部5を有している。光源2は光を発生する。発生した光は光変調器3に入力される。光変調器3は光源2からの光をマッハツェンダ型干渉計で構成した変調器に入力する。さらに、光変調器3は変調信号を変調器の電極に加え光源2からの光を変調する。ABC回路4は光変調器3に加えられる変調信号に低周波信号を重畳している。さらに、ABC回路4は変調器の出力光成分から低周波信号成分を取り出し、変調信号に重畳した低周波信号と出力光から取り出した低周波信号成分を比較して光変調器3に与えるバイアス電圧を制御する。ABC回路4はバイアス電圧制御のループ利得を可変する利得可変部を備えている。利得制御部5は光源2の出力パワーが変化してもABC回路のループ利得が一定の値になるように制御する。
 図2はループ利得と応答時定数の関係を示す図である。特性Aは光出力電力が通常時(約13dBm)の時を示し、特性Bは通常時より光出力電力が30dB小さい状態を示している。図2からは光源2の出力が小さい場合はABC回路4のループ利得が小さく、光源2の出力が小さい場合はABC回路4のループ利得が大きいことが分かる。さらに、図2からは光出力電力が小さい時は応答時定数τが長く、光出力電力が大きい時は応答時定数τが短いことが判る。
 従って、光送信器1の光源2の立ち上がり時の通常ループ利得よりループ利得が小さい時においては、利得制御部5がABC回路4の通常ループ利得となるようにループ利得を上げる。光源2の光パワーが小さく、ループ利得が小さい時に、通常ループ利得となるようにループ利得を上げることで、光送信器1はバイアス電圧を設定するまでの応答時定数を短くすることができる。
 一方、上記の状態で、光原2の光パワーが大きくなるとループ利得も予め設定したつ状ループ利得より大きくなる。この場合は光源2の立ち上がりに敏感に反応しすぎる。敏感に反応しすぎた場合、バイアス制御電圧がチャッタリングを起こす。従って、この場合はバイアス制御電圧が逆に安定しなくなる恐れがある。図1の実施例では光源2の出力パワーの変化に対応させて、通常ループ利得を維持するようにする。
 図3を用いて図1の各部の具体的な構成の説明を行う。図3において、図1と同一部は同一番号で示している。
 光源2はレーザダイオード(LD)モジュール21、LDドライバ22、比較器23、電流電圧変換回路24、ローパスフィルタ25、参照電圧26を備えている。さらに、LDモジュール21はレーザ210とモニタ用フォトダイオード(モニタ用PD)211を備えている。LDドライバ22がLDモジュール21に電流を供給することで、LDモジュール21はレーザ光を出力する。モニタ用PD211はLDモジュール21の後方出力をモニタする。電流電圧変換回路24はモニタ用PD211の出力電流を電圧に変換する。ローパスフィルタ25は電流電圧変換回路24で変換された電圧成分を直流成分に変換する。比較器23は参照電圧26とローパスフィルタ25の出力電圧を比較する。比較器23の比較結果はLDドライバ22供給される。LDドライバ22は比較器23の比較結果を基にLD210の出力パワーを一定に保つ。
 光変調器3はマッハツェンダ型変調器31、電極310、出力導波路32、モニタ用導波路33とモニタ用PD34を備えている。光源2からの光はマッハツェンダ型変調器31に入力される。マッハツェンダ型変調器31は入力した光を2つの光路に分岐させた後に、2つの光路の光を結合することで光干渉させる。マッハツェンダ型変調器31の分岐した光路の一方には電極310が構成されている。電極310には変調信号とバイアス電圧がABC回路4から供給される。出力導波路32とモニタ用導波路33はマッハツェンダ型変調器31の出力光を入力する。出力導波路32は光を伝送路に出力する。モニタ用PD34はモニタ用導波路33の端部に設けられている。モニタ用PD34はマッハツェンダ型変調器31の出力光を電流に変換する。
 ABC回路4は変調ドライバ部41、低周波信号源部42、位相比較部43、ローパスフィルタ部44、利得可変増幅部45A、バンドパスフィルタ部46、電流電圧変換回路47とバイアス供給部48を備えている。変調ドライバ部41は変調信号(入力信号)に低周波信号源部42からの低周波信号を重畳し、マッハツェンダ型変調器31の電極310に低周波信号が重畳された変調信号を供給する。図4のaおよび図4のbが重畳された変調信号を示している。電流電圧変換回路47はモニタ用PD34からのモニタ電流を電圧に変換する。モニタ用PD34からのモニタ電流は図4のeの状態である。電流電圧変換回路47で変換された電圧はバンドパスフィルタ部46で低周波成分が取り出される。取り出した低周波成分は図4のdである。バンドパスフィルタ部46の出力は利得可変増幅部45Aに入力される。利得可変増幅部45Aは電流電圧変換回路47からの電圧に所定の利得を与え、位相比較部43に出力する。利得可変増幅部45Aにより利得を得た信号は図4のcである。位相比較部43は低周波信号源部42からの低周波信号と利得可変増幅部45Aからの信号を比較し、比較結果をローパスフィルタ部44に出力する。ローパスフィルタ部44は位相比較部43からの出力を直流成分にし、バイアス供給部48に出力する。バイアス供給部48はローパスフィルタ部44の出力に基づきバイアス電圧を変化させ、マッハツェンダ型変調器31の電極310にバイアス電圧を供給する。
 利得制御部5Aは図1の利得制御部5の具体例である。利得制御部5Aは光出力比較部51と参照値保持部52を備えている。光出力比較部51は光源2の電流電圧変換回路24の出力と参照値保持部52の参照値とを比較し、光源2の出力パワーが変化してもABC制御回路4のループ利得が一定の値になるように、ABC制御回路4内の利得可変増幅部45Aの利得を制御する信号を出力する。
 図5は図3の構成の光変調器各部の特性のタイムチャートを示している。図5Aはレーザ電流を示している。図5Bはレーザパワーを示している。図5Cはバイアス電圧を示している。図5Dはループ利得を示している。図5Eは利得可変増幅器の利得を示している。図5Fは光送信器出力を示している。
 光源2の起動において、t0でLD電流の注入を開始するが、図3のLD210の電流は閾値以下のため発光しない。図5AのLD電流が上昇し、t1でLD電流が閾値を超えたときLD210は発光を開始する。
 t0からt1の間の期間は、図5Bに示したように、LD210は消光または極低い出力電力である。t0からt1の間の期間において、利得可変増幅部45Aが利得を大きくしたとしても、定常値のループ利得を得ることが難しい。また、仮に、利得可変増幅部45Aにより、十分なループ利得が得られたとしても僅かな光出力変動で発振などが発生する。従ってt0からt1の間の期間は利得可変増幅部45Aの利得制御は行わない。
 t2において、図5AのLD電流の増加に伴い、図5BのLD出力電力をモニタするモニタ用PD211がLD210の出力P1を検出した時、利得制御部5A内の光出力比較部51が利得可変増幅部45Aの利得をa1の値まで上げる。図5Dに示すように、利得可変増幅部45Aの利得の上昇で、ABC回路4のループ利得は定常時と同値となる。
 これにより、定常時と同じ応答時定数の200msec程度を得ことができる。このとき制御開始タイミングである図5BのLD出力P1は、利得可変アンプの一般的なダイナミックレンジから、目標光出力電力の-10dB~-20dBに設定すると良い。
 また、利得可変増幅部45Aの利得は以下の式で算出する。
ampG=setLG×setMONITOR/currentMONITOR ・・・ 式(1)
ampGは利得可変増幅部の利得、setLGは定常時ループ利得、setMONITORは定常時のモニタ用PD211の値、currentMONITORは現在のモニタ用PD211の値をそれぞれ示している。
 図5および式(1)で示されるように、利得可変増幅部45Aの利得は、定常時ループ利得を超えないよう、時間とともに増加する光出力に反比例して漸減させる。これは、定常時ループ利得を超えてしまうとリンギングが発生する場合があるからである。
 図5cのt3において、光出力の上昇に伴い、マッハツェンダ型外部変調器のバイアス電圧は最適値に収束し、光波形は安定する。利得可変増幅部45Aの利得は式(1)に従って漸減される。
 図6を用いて図1の各部の具体的な構成の説明を行う。図6において、図1及び図3と同一部は同一番号で示している。図3と同一の部分はその説明を省略する。図6は利得制御部5Aの構成が図3とは異なっている。
 図6の利得制御部5Aは光出力比較部51、参照値保持部52、切替部53とタイマー54を備えている。
 光出力比較部51は光源2の電流電圧変換回路24の出力と参照値保持部52の参照値とを比較し、光源2の出力パワーが変化してもABC制御回路4のループ利得が一定の値になるように、ABC制御回路4内の利得可変増幅部45Aの利得を制御する信号を出力する。光出力比較部51の出力信号は切替部53に入力される。タイマー54は光出力比較部51が制御を開始すると起動し、起動から所定の時間が経過すると、切替部53を制御し、光出力比較部51から利得可変増幅部45Aに出力している制御信号を遮断する。
 すなわち、光送信器1において、利得制御部5Aは光源2に設けられたモニタ用PD211からの出力が所定の値なった時点から所定の時間の間、ABC回路の利得可変増幅部45Aの利得を変化させる。
 図7は図6の構成の光変調器各部の特性のタイムチャートを示している。図7Aはレーザ電流を示している。図7Bはレーザパワーを示している。図7Cはバイアス電圧を示している。図7Dはループ利得を示している。図7Eは利得可変増幅器の利得を示している。図7Fは光送信器出力を示している。
 t0では図7AのようにLD電流の注入を開始する。t1ではLD電流が閾値電流を超え、図7BのようにLD210の発光が始まる。t2ではモニタ用PD211にて図7BのようにLD210の発光が始まったことを検出すると、図7Eのように、利得制御部5Aが、LD出力光に応じて、利得可変増幅部45Aの利得を可変する。t3では図7Cに示すように、マッハツェンダ型外部変調器のバイアス電圧は最適値に収束し、光波形が安定することで、光変調器1のバイアス電圧が最適点に安定する。さらに、t3では図7Eに示すように利得可変増幅部45Aの利得を元に戻す。t2からt3までの時間は計算または実験等を行いタイマー54にセットしておく。
 図7のように動作させるのは利得可変増幅部45Aの利得を漸減させていった場合において、利得可変増幅部45Aの制御遅れなどから、ループ利得が一時的に定常値を超えてしまい、リンギングが発生するのを防止するためである。バイアス電圧が最適点に収束した後はループ利得、応答時定数を落としても問題ない。t2~t3 の時間は、応答時定数の2倍程度の400msecを確保すれば、マッハツェンダ型変調器31のバイアス電圧は最適点に収束している。
 図8を用いて図1の各部の具体的な構成の説明を行う。図8において、図1及び図6と同一部は同一番号で示している。図6と同一の部分はその説明を省略する。図8は図6のABC回路4の利得可変増幅部45Aが利得可変増幅部45Bとなっている。
 利得可変増幅部45Bは変調ドライバ部41と低周波信号源部42の間に設けられ、低周波信号源部42の出力である低周波信号を増幅している。さらに、図8はバンドパスフィルタ部46の出力が位相比較部43に直接入力している。 すなわち、利得制御部5AはABC回路の利得可変増幅部45Bで低周波信号成分の利得を制御している。
 図8の光変調器1の動作は図7のタイムチャートと同様の動作を行っている。図8では利得可変増幅部45Bが低周波信号を増幅しているので、図7のt2からt3の時間は図9にa示すように、重畳された低周波信号が図4よりも大きくなっている。図8のように低周波信号を可変してもABC回路のループ利得は制御することができる。
 図8の光変調器1において、図7のt2、すなわち、制御開始タイミングのLD出力P1は、利得可変増幅部45B一般的なダイナミックレンジ、および低周波信号の重畳率限界から、目標光出力電力の-10dB程度に設定すると良い。
 図10を用いて図1の各部の具体的な構成の説明を行う。図10において、図1及び図6と同一部は同一番号で示している。図6と同一の部分はその説明を省略する。図10は図6の利得制御部5Aが利得制御部5Bとなっている。
 利得制御部5BはABC回路4の電流電圧変換回路47の電圧出力を光源2のモニタの代わりとして、光出力比較部51の入力としている。利得制御部5Bはその他については図6の利得制御部5Aと同じである。従って、動作タイムチャートは図7と同じになる。
 図11を用いて図1の各部の具体的な構成の説明を行う。図11において、図1及び図10と同一部は同一番号で示している。図10と同一の部分はその説明を省略する。図11は図10と利得制御部5Bの構成が異なっている。
 図11の利得制御部5BはABC回路4のバンドパスフィルタ部46の出力をタイマー54の代わりとして用いている。マッハツェンダ型変調器31のバイアス電圧が最適点に収束すると、バンドパスフィルタ部46からの低周波信号は消失する。この低周波信号の消失をタイマー54のトリガの代わりとして用いている。従って、切替部54は低周波信号は消失したことを受けて、光出力比較部51から利得可変増幅部45Aに出力している制御信号を遮断する。
 図12は図1のABC回路4と光源2の一部の機能と利得制御部5を中央処理装置CPUまたはマイクロプロセッサユニット(MPU)などの処理装置6で構成した例を示している。図12において図1及び図3と同一部材は同一番号を付し、その説明は省略する。
 増幅器461はバンドパスフィルタ部46からの出力をアナログデジタル変換器462が受信可能なレベルに増幅する。アナログデジタル変換器462は増幅器461からの出力をデジタル信号に変換する。アナログデジタル変換器462でデジタル変換されたデジタル情報は処理装置6の入力インターフェース62に入力される。低周波信号源42からの矩形波信号は処理部6の入力インターフェース64に有力される。処理装置6は入力インターフェース64からの情報と入力インターフェース62に入力されたデジタル情報で位相比較処理43Cを行う。位相比較処理結果は利得可変増幅処理45CによりLD210の発光量に応じて利得を可変する処理を行われる。利得可変増幅処理の結果はローパスフィルタ処理44Cにより平滑化される。平滑化された値は出力インターフェース63を介して、バイアス供給部48Cに供給される。バイアス供給部48Cはデジタルアナログ変換器482と増幅器481を備えている。デジタルアナログ変換器482は出力インターフェース63からのデジタル情報に基づきアナログ信号を出力する。デジタルアナログ変換器482の出力は増幅器481で増幅され電極310にバイアス電圧として供給される。
 インターフェース64からの矩形波信号の情報はローパスフィルタ処理421が行われ、デジタルアナログ変換器482に出力される。デジタルアナログ変換器482はローパスフィルタ処理421された低周波信号の情報をアナログ値に変換する。アナログ変換された低周波信号はコンデンサ424を介して、増幅器423で増幅される。増幅器423で増幅された低周波信号は変調ドライバ41に入力される。変調ドライバ41は低周波信号を変調信号に重畳し、電極310に変調信号を供給する。
 モニタ用PD211からの電流はアナログデジタル変換器24Cでデジタル値に変換される。アナログデジタル変換器24Cでデジタル変換された電流値は処理装置6の入力インターフェース66に入力される。デジタル変換された電流値は比較処理23Cにより基準の値と比較され、出力インターフェース67を介して、デジタルアナログ変換器22Cに入力される。デジタルアナログ変換器22Cは比較処理の結果をアナログ値に変換して、レーザ210に供給する。
 また、アナログデジタル変換器24Cでデジタル変換された電流値は利得制御処理5cにてレーザ210の出力に対応させて、利得可変増幅処理45Cで行われる利得の値を決める。利得制御処理5cで決める利得は図5Eまたは図7Eのレーザパワーに対応したタイミングで行われる。
 図12では入力インターフェース66からモニタ用PD211の値を基に制御処理を行ったが、利得制御処理5cは入力インターフェース62からの情報を基に利得可変増幅処理45Cで行われる利得の値を決めてもよい。さらに、利得可変増幅処理45Cは位相比較処理43Cの前に入力インターフェース62からの情報に基づいて処理を行っても良い。また、利得可変増幅処理45Cはフィルタ処理44Cからの情報に基づいて処理を行っても良い。
 図13は図12の変形例で、図12と同一部材は同一番号を付し、その説明を省略する。
 図13は利得可変増幅処理45Cがフィルタ処理421の出力を増幅するよう演算を行っている。図13では入力インターフェース66からモニタ用PD211の値を基に制御処理を行ったが、利得制御処理5cは入力インターフェース62からの情報を基に利得可変増幅処理45Cで行われる利得の値を決めてもよい。
 図14は図12及び図13の処理装置6の構成を示す図である。処理装置6は演算部61、入力インターフェース62、64、66、出力インターフェース63、65、67と処理プログラム格納部68を備えている。処理プログラム格納部68は位相比較処理43C、ローパスフィルタ処理44C、利得可変増幅処理45C、ローパスフィルタ処理421、比較処理23Cと利得制御処理5cの処理プログラムが記憶されている。
 演算部61は処理プログラム格納部68から所定の順番で各入力インターフェースからの情報を演算し、各出力インターフェースから情報の出力を行う。

Claims (7)

  1.  光を発生する光源と、
     変調信号を用いて干渉計で該光源からの光を変調する光変調器と、
     該変調信号に低周波信号を重畳し、該変調器の出力光成分から低周波信号成分を取り出し、該変調信号に重畳した該低周波信号と出力光から取り出した該低周波信号成分を比較して該光変調器に与えるバイアス電圧を制御し、該制御のループ利得を可変する利得可変増幅部を備えた自動バイアス制御回路と、
     該光源の出力パワーが変化しても該自動バイアス制御回路のループ利得が一定の値になるように該自動バイアス制御回路の利得可変増幅部を制御する利得制御部と
    を備えたことを特徴とする光送信器。
  2.  請求項1記載の光送信器において、該利得制御部は該光源に設けられたモニタからの出力に基づいて、該自動バイアス制御回路の該利得可変増幅部の利得を変化させることを特徴とする光送信器。
  3.  請求項1記載の光送信器において、該利得制御部は該光源に設けられたモニタからの出力が所定の値なった時点から所定の時間の間、該自動バイアス制御回路の該利得可変増幅部の利得を変化させることを特徴とする光送信器。
  4.  請求項1記載の光送信器において、該利得制御部は該自動バイアス制御回路で受信した該変調器の出力光成分の値に基づいて該自動バイアス制御回路の該利得可変増幅部の利得を変化させることを特徴とする光送信器。
  5.  請求項1記載の光送信器において、該利得制御部は該自動バイアス制御回路で受信した該変調器の出力光成分の値が所定の値なった時点から所定の時間の間、該自動バイアス制御回路の該利得可変増幅部の利得を変化させることを特徴とする光送信器。
  6.  請求項1記載の光送信器において、該利得制御部は該自動バイアス制御回路の該利得可変増幅部で該低周波信号成分の利得を制御することを特徴とする光送信器。
  7.  光を発生する光源と、変調信号を用いて干渉計で該光源からの光を変調する光変調器と、該変調信号に低周波信号を重畳し、該変調器の出力光成分から低周波信号成分を取り出し、重畳した該低周波信号と出力光から取り出した該低周波信号成分を比較して該光変調器に与えるバイアス電圧を制御する自動バイアス制御回路とを備えた光送信器において、
     該光源の出力パワーが変化しても該自動バイアス制御回路のループ利得が一定の値になるように制御することを特徴とする光送信器の制御方法。
PCT/JP2008/001600 2008-06-20 2008-06-20 光送信器及び光送信器の制御方法 WO2009153840A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2008/001600 WO2009153840A1 (ja) 2008-06-20 2008-06-20 光送信器及び光送信器の制御方法
JP2010517556A JP5273145B2 (ja) 2008-06-20 2008-06-20 光送信器及び光送信器の制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/001600 WO2009153840A1 (ja) 2008-06-20 2008-06-20 光送信器及び光送信器の制御方法

Publications (1)

Publication Number Publication Date
WO2009153840A1 true WO2009153840A1 (ja) 2009-12-23

Family

ID=41433771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/001600 WO2009153840A1 (ja) 2008-06-20 2008-06-20 光送信器及び光送信器の制御方法

Country Status (2)

Country Link
JP (1) JP5273145B2 (ja)
WO (1) WO2009153840A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417475A (zh) * 2019-07-03 2019-11-05 北京迈微时代科技有限公司 一种电-光转换模块偏置点的无杂散锁定系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142504A (ja) * 1991-11-19 1993-06-11 Fujitsu Ltd 光送信機
JP2000089178A (ja) * 1998-07-15 2000-03-31 Furukawa Electric Co Ltd:The 光送信方法及びその装置
JP2004118060A (ja) * 2002-09-27 2004-04-15 Oki Electric Ind Co Ltd 駆動装置
JP2008039929A (ja) * 2006-08-02 2008-02-21 Nec Corp 光送信システム及び光送信器,光送信方法、光送信用プログラム

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009072577A1 (ja) * 2007-12-04 2009-06-11 Fujikura Ltd. 外部変調器の制御装置及び方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05142504A (ja) * 1991-11-19 1993-06-11 Fujitsu Ltd 光送信機
JP2000089178A (ja) * 1998-07-15 2000-03-31 Furukawa Electric Co Ltd:The 光送信方法及びその装置
JP2004118060A (ja) * 2002-09-27 2004-04-15 Oki Electric Ind Co Ltd 駆動装置
JP2008039929A (ja) * 2006-08-02 2008-02-21 Nec Corp 光送信システム及び光送信器,光送信方法、光送信用プログラム

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110417475A (zh) * 2019-07-03 2019-11-05 北京迈微时代科技有限公司 一种电-光转换模块偏置点的无杂散锁定系统及方法
CN110417475B (zh) * 2019-07-03 2021-04-27 北京迈微时代科技有限公司 一种电-光转换模块偏置点的无杂散锁定系统及方法

Also Published As

Publication number Publication date
JP5273145B2 (ja) 2013-08-28
JPWO2009153840A1 (ja) 2011-11-17

Similar Documents

Publication Publication Date Title
US5579328A (en) Digital control of laser diode power levels
US20080219678A1 (en) Control system and control method for controlling optical modulator
JP3405046B2 (ja) レーザ光発生装置
US5570227A (en) Method and apparatus for preventing occurrence of surge light in optical amplifier/transmitter apparatus
JP5180250B2 (ja) レーザシステム
US11276984B2 (en) Method of controlling optical transmitter, and optical transmitter
JP5891768B2 (ja) 光変調装置及び光変調方法
JP2015046597A (ja) 閉ループ光変調振幅制御
JP5273145B2 (ja) 光送信器及び光送信器の制御方法
AU2985901A (en) Optical attenuator including dual control loops
US5479423A (en) Method of modulating feedback signal in optical amplifier to compensate for pump laser saturation
US6721089B1 (en) Method and apparatus for expanding the dynamic range of optical amplifiers
US10623107B2 (en) Optical transmission device and method for controlling optical transmission device
US20220294534A1 (en) Optical transmitter and control method of tunable optical filter
JP2011151210A (ja) 光出力装置
US20090123162A1 (en) Controller for optical transmission device
JPH0560695B2 (ja)
JP2010011098A (ja) 光伝送装置
JPWO2009078435A1 (ja) 外部変調器の制御装置及び制御方法
JPH09246646A (ja) 半導体レーザ制御装置
JP2009118471A (ja) 光送信装置の制御装置
JP6862106B2 (ja) 電流制御装置及びレーザ装置
JP2011258653A (ja) 光送信装置、及び光信号の制御方法
JP2012043994A (ja) レーザシステム
JP2014066968A (ja) 光モジュール、光システム、及び制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08764183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010517556

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08764183

Country of ref document: EP

Kind code of ref document: A1