WO2009152654A1 - 一种墙式布置的水平浓淡直流煤粉燃烧装置 - Google Patents

一种墙式布置的水平浓淡直流煤粉燃烧装置 Download PDF

Info

Publication number
WO2009152654A1
WO2009152654A1 PCT/CN2008/001800 CN2008001800W WO2009152654A1 WO 2009152654 A1 WO2009152654 A1 WO 2009152654A1 CN 2008001800 W CN2008001800 W CN 2008001800W WO 2009152654 A1 WO2009152654 A1 WO 2009152654A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
primary air
water
center line
furnace
Prior art date
Application number
PCT/CN2008/001800
Other languages
English (en)
French (fr)
Inventor
吴少华
孙绍增
刘辉
秦明
秦裕琨
Original Assignee
哈尔滨工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨工业大学 filed Critical 哈尔滨工业大学
Priority to BRPI0822881-7A priority Critical patent/BRPI0822881A2/pt
Priority to RS20100550A priority patent/RS53219B/en
Priority to EA201170032A priority patent/EA019175B1/ru
Publication of WO2009152654A1 publication Critical patent/WO2009152654A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/10Disposition of burners to obtain a flame ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C5/00Disposition of burners with respect to the combustion chamber or to one another; Mounting of burners in combustion apparatus
    • F23C5/08Disposition of burners
    • F23C5/32Disposition of burners to obtain rotating flames, i.e. flames moving helically or spirally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/02Disposition of air supply not passing through burner

Definitions

  • the present invention relates to a horizontal-dense DC pulverized coal combustion apparatus, and more particularly to the technical field of coal-fired boilers.
  • a four-corner tangential arrangement of a direct current pulverized coal burner and a front wall or a hedging arrangement of a swirl burner are one of the two most widely used pulverized coal combustion methods in the world.
  • the burning method of the four-corner circular arrangement is to spray the pulverized coal (primary wind) and the secondary air into the furnace in a manner that the tangential circle of the furnace is tangent to the center of the furnace to realize the tangential combustion of the coal powder.
  • the four-corner flame formed by the four-corner circular DC pulverized coal combustion technology can support each other, and the flue gas generated by the combustion rises and rises in the furnace, and has the characteristics of long flame stroke, good mixing in the furnace, high combustion economy, and wide adaptability of coal type. It is easy to achieve air grading and air supply, fuel staged combustion, and reduce NOx emissions. Therefore, the four-corner tangential arrangement of DC pulverized coal burners is widely used in large-scale thermal power generating units.
  • the four-corner tangential arrangement of the DC pulverized coal burner also exposes some problems affecting safe operation during operation, such as large deviation of the flue gas temperature at the exit of the furnace, slagging on the water wall, and high temperature corrosion when burning high-sulfur coal. It is related to the arrangement of the four corners of the DC pulverized coal burner.
  • the direct current pulverized coal burner is arranged at the corner of the furnace. Since the jet direction is tangent to the imaginary tangential circle of the center of the furnace, the direction of the jet of the burner is different from the angle between the two adjacent water walls.
  • the flue gas on both sides is continuously sucked, the corner area of the furnace is small, the jet direction is different from the adjacent water wall, and the small angle side (the jet back side) is larger than the angle.
  • One side (the jet to the fire side) has poor gas supply conditions, and the pressure difference between the two sides of the jet is caused by the entrainment of the jet, so that the jet is biased to the side of the small angle (the back side of the jet), so that the unburned pulverized coal particles wash the pulverized coal.
  • the water-cooled wall of the jet backfire is prone to slagging and high temperature corrosion.
  • the corners are at a large distance from the center of the furnace. In order to ensure sufficient jet depth, a relatively high jet velocity is required, which also exacerbates the temperature deviation of the furnace exit due to the rotation of the jet.
  • the patent publication No. CN 1069560A discloses a "concentrated pulverized coal burner" in the invention patent dated March 3, 1993, which has a good effect in alleviating the above problems.
  • the horizontal shading combustion technology divides the primary air into two concentrated air streams by a special concentrating device. The concentrated and light primary air currents are respectively tangentially injected into the furnace at a certain angle on the same horizontal surface to form different tangential circles.
  • a concentrated primary air flow is arranged on the fire side, and a light primary air flow is arranged on the back fire side.
  • Concentrated primary wind is easy to catch fire, which is beneficial to steady combustion and low load. It is effective to reduce NOx by primary air concentration and separation.
  • the structure of primary air can be reduced by high temperature rot. Etching and slagging. This technology addresses both high efficiency, stable combustion, low load, and low NOx emissions.
  • the burners of the horizontal concentrated combustion technology are arranged in the four corners of the furnace, and the pulverized coal gas flow is easily deflected, which limits the effect of the horizontal rich and light combustion technology to a certain extent. Summary of the invention
  • the object of the present invention is to provide a horizontally-concentrated DC pulverized coal combustion device arranged in a wall arrangement to solve the four-corner tangential arrangement of the direct-flow pulverized coal burner, and the qi-filling conditions on both sides of the pulverized coal gas flow are different, and the slag is easily caused to cause slagging. And high temperature corrosion problems. At the same time, it can meet the requirements of high efficiency, stable combustion, low load and low NOx emissions of pulverized coal boilers.
  • the technical solution adopted by the present invention to solve the above technical problems is:
  • the combustion device of the present invention is burned by the furnace 5, a plurality of concentrated primary air nozzles 1, a plurality of light primary air nozzles 2, a plurality of secondary air nozzles 3, and four groups.
  • the air nozzle 4 is composed of a four-sided water-cooling wall 6; the four-side water-cooling wall 6 of the furnace 5 is provided with a plurality of concentrated primary air nozzles 1, a plurality of light primary air nozzles 2 and a plurality of secondary The wind vent 3, the plurality of concentrated primary air nozzles 1, the plurality of light primary air nozzles 2 and the plurality of secondary air nozzles 3 disposed on each of the water-cooling walls 6 are combined to form a group of burners 7, the four groups of combustion
  • the heaters 7 are respectively disposed on the same horizontal surface, and the secondary air nozzles 3 in each group of burners 7 are alternately arranged up and down with the concentrated primary air nozzles 1 and the light primary air nozzles 2, and the adjacent ones of the burners 7 are concentrated once.
  • the air vent 1 and the light primary air vent 2 are disposed in the same horizontal plane, and the angle between the center line 31 of the secondary air vent 3 and the water wall 6 to which the fire side is located is a light primary air vent
  • the angle between the centerline 21 of 2 and the water-cooled wall 6 in the direction of the fire side ct 2, concentrated primary air nozzle 1 to the center line 11 and the primary air nozzle light of the angle between the center line 21 2 is ⁇ 3
  • each side of the hearth or water-cooled wall 6 is provided with a set of edges and corners of each 5 Burning the air spout 4, and the burnout air spout 4 is disposed above the burner 7, the center line 41 of the burnout air spout 4 disposed at each corner of the furnace 5 and the water wall 6 adjacent thereto
  • the angle between the angles is ⁇ 4
  • the center line 41 of the burnout air nozzle 4 disposed on each of the water-cooling walls 6 is at an angle ⁇ 5 to the water-cooling wall 6 in the direction of the
  • the invention has the beneficial effects that the present invention arranges the DC pulverized coal burners conventionally arranged at the four corners of the furnace on the four walls of the furnace, and the space near the furnace wall is greatly improved compared with the air supply condition of the corner space, especially the complement on both sides of the jet.
  • the gas conditions are similar, which can greatly reduce the airflow deflection caused by the different air supply conditions on both sides of the jet, and alleviate the resulting water wall slagging and high temperature corrosion.
  • the jet distance required to form the tangential circle on the four sides of the burner is smaller than the jet distance required to form the tangential jet by the angular arrangement.
  • the burner can adopt a smaller primary and secondary wind speed, thereby reducing the vortex intensity formed by the jet.
  • the DC pulverized coal burner used in the present invention is a horizontal concentrating burner, it is favorable for stable combustion, low load and low NOx emission of the boiler, and the horizontal concentrating burner is arranged on the wall of the furnace, the heat flux density near the burner. It is larger than the heat flux density disposed at the corner of the furnace, which is beneficial to the ignition of coal powder and facilitates the implementation of staged combustion. It can further enhance the advantages of horizontal and light combustion, stable combustion, low load and lightening, high temperature corrosion and low NOx emissions. it is good.
  • the imaginary tangential circle formed by the center line of the primary air vent and the center line of the secondary air vent in the furnace is generally larger than the imaginary tangential circle of the angular arrangement, and the requirements for the angle between the nozzles and the water wall of the burner are required. It is lower than the angular arrangement and is easy to install and position.
  • FIG. 1 is a front view of the overall structure of the present invention
  • FIG. 2 is a front cross-sectional view showing a combination of a concentrated primary air nozzle 1, a light primary air nozzle 2, and a secondary air nozzle 3
  • FIG. 3 is a cross-sectional view taken along line A-A of FIG.
  • Figure 4 is a plan view of the center line of the concentrated primary air nozzle 1, the light primary air nozzle 2 and the secondary air nozzle 3 mounted on the four-sided water-cooling wall 6 of the furnace 5 (the center of the light primary air nozzle 2 and the secondary air nozzle 3)
  • the angle between the line and the water-cooling wall 6 in the direction of the fire side is greater than 54° and less than or equal to 90°
  • FIG. 1 is a front view of the overall structure of the present invention
  • FIG. 2 is a front cross-sectional view showing a combination of a concentrated primary air nozzle 1, a light primary air nozzle 2, and a secondary air nozzle 3
  • FIG. 3 is
  • FIG. 5 is the center line 41 of the burnout air nozzle 4 disposed on each corner of the furnace 5 and A plan view of the angle between the adjacent side water-cooling walls 6, and FIG. 6 is a plan view of the center line 41 of the burn-out air nozzle 4 mounted on the four-sided water-cooling wall 6 of the furnace 5 (burning the center line of the wind nozzle 4) 41 is at an angle of more than 54° to 90° between the direction of the fire side and the water wall 6 to which it is located, and FIG. 7 is a center line 41 of the burnout air nozzle 4 mounted on the four sides of the wall 5 of the furnace 5.
  • FIG. 8 is a concentrated primary air nozzle 1, a light primary air nozzle 2 and a secondary air nozzle mounted on the four sides of the furnace wall 5.
  • the top view of the center line of 3 (the center line of the light primary air vent 2 and the secondary air vent 3 is respectively formed at an angle of 90 ° or less to 127 ° with respect to the water-cooling wall 6 in the direction of the fire side).
  • This embodiment is composed of a furnace 5, a plurality of concentrated primary air nozzles 1, a plurality of light primary air nozzles 2, a plurality of secondary air nozzles 3, and four groups of burners.
  • the air vents 4 are formed by the four-sided water-cooling wall 6.
  • the four-side water-cooling wall 6 of the furnace 5 is respectively provided with a plurality of concentrated primary air nozzles 1, a plurality of light primary air nozzles 2 and a plurality of two a plurality of concentrated primary air nozzles 1, a plurality of light primary air nozzles 2 and a plurality of secondary air nozzles 3, each of which is disposed on each of the water-cooling walls 6, constitutes a group of burners 7, the four groups
  • the burners 7 are respectively disposed on the same horizontal surface, and the secondary air nozzles 3 in each group of burners 7 are alternately arranged with the concentrated primary air nozzles 1 and the light primary air nozzles 2, and the adjacent ones of the burners 1 are densely arranged.
  • the primary air vent 1 and the light primary air vent 2 are disposed in the same horizontal plane, and the angle between the center line 31 of the secondary air vent 3 and the water-cooled wall 6 in the direction of the fire side is a The angle between the center line 21 of the spout 2 and the water-cooling wall 6 in the direction of the fire side is ci 2 The angle between the center line 11 of the concentrated primary air vent 1 and the center line 21 of the light primary air vent 2 is ⁇ .
  • Each of the water-cooling walls 6 or each corner of the furnace 5 is provided with a set of burnout air vents. 4, and the burnout air spout 4 is disposed above the burner 7, which is disposed on each of the corners of the furnace 5.
  • the angle between the center line 41 of the burnout air spout 4 and its adjacent side water wall 6 is ⁇ 4
  • the center line 41 of the burnout air spout 4 provided on each water wall 6 is on the fire side
  • the angle between the direction and the water wall 6 to which it is located is ⁇ 5 .
  • the position where the burners 7 of the respective groups are arranged on the four-sided water-cooling wall 6 and the center line of each of the nozzles are at the same angle with respect to the water-cooling wall 6 in the direction of the fire side.
  • the concentrated primary air vent 1 and the light primary air vent 2 respectively pass a pulverized coal gas flow having a large difference in pulverized coal concentration, and the center line 41 of the burnout air vent 4 is vertically spaced from the uppermost primary wind center line to ensure the flue gas residence time. 0. 3-1. 2s.
  • the number of the concentrated primary air nozzles 1 is two to ten
  • the number of the light primary air nozzles 2 is two to ten
  • the number of the secondary air nozzles 3 is three or eleven.
  • the number of the burnout air nozzles 4 is one to six.
  • the present embodiment will be described with reference to Figs. 1, 4 and 8.
  • the intersection of the center line 31 of the secondary air nozzle 3 provided on each water-cooling wall 6 with the water-cooling wall 6 on which it is located is provided.
  • the distance from the corner of the nearest furnace 5 is 1/5 Lk ⁇ L ⁇ l/2 Lk; or 1/5 Ls, the Lk is the furnace width, and the Ls is the furnace depth.
  • the center line 31 of the secondary air nozzle 3 of the present embodiment has an angle of 54° ⁇ ⁇ ⁇ 127° with respect to the water-cooling wall 6 in the direction of the fire side, and the center line 21 of the light primary air nozzle 2 is in the fire.
  • the angle between the side direction and the water wall 6 to which it is located is 54° ⁇ 2 127 °
  • the angle between the center line 11 of the concentrated primary air nozzle 1 and the center line 21 of the light primary air nozzle 2 is 0° ⁇ 3 15 °
  • the concentrated primary air jet is arranged on the fire side
  • the light primary air jet is arranged on the backfire side
  • the burnout wind share accounts for 10% ⁇ 40% of the total air volume.
  • the distance between the center line 41 of the burnout air nozzle 4 on the water-cooling wall 6 and the water-cooling wall 6 on the water-cooling wall 6 of the present embodiment is the distance from the edge of the nearest hearth 5, L 2 , 1/5 Lk ⁇ L 2 ⁇ l/2 Lk; or 1/5 Ls ⁇ L 2 ⁇ l/2 Ls , the Lk is the furnace width, and the Ls is the furnace depth.
  • the center line 41 of the burnout air vent 4 on each of the water-cooling walls 6 is at an angle of 54° ⁇ 5 127° with respect to the water-cooling wall 6 in the direction of the fire side.
  • the center line 41 of the burnout air vent 4 is disposed at the same angle as the water-cooling wall 6 with which it is located, and the center line 31 of the secondary air vent 3 is disposed at the same angle as the water-cooling wall 6 therewith.
  • This arrangement can reduce the occurrence of slagging and high temperature corrosion, and meet the requirements of high efficiency, stable combustion, low load and low enthalpy discharge of pulverized coal boilers.
  • Other compositions and connection relationships are the same as in the first embodiment.
  • the present embodiment is described with reference to FIG. 5.
  • the burn-out air spout 4 of the present embodiment is disposed on each corner of the furnace 5, and the center line 41 of the burn-out air spout 4 and the adjacent side water-cooling wall 6 are The angle between the two is 20. ⁇ 4 70 .
  • the exhausted air arrangement is easy to implement, and the combustion flow is well filled.
  • Other compositions and connection relationships are the same as in the second embodiment.
  • the angle between the center line 31 of each secondary air vent 3 in the direction of the fire side and the water wall 6 to which it is located ⁇ [ 90°, that is, the center line 31 of each secondary air vent 3 is perpendicular to the wall surface of the water wall, and the center line 21 of the light primary air vent 2 is at an angle a 2 to the direction of the fire side and the water wall 6 to which it is located.
  • each light primary air vent 2 is perpendicular to the water wall
  • the center line 11 of each concentrated air vent 1 is vertically disposed in the direction of the water wall 6, the concentrated wind in this embodiment
  • the light primary air and the secondary air jet are perpendicular to the four sides of the water wall 6, and the air supply conditions on both sides of the jet are similar, which can effectively prevent the airflow deflection caused by the different air supply conditions on both sides of the jet, thereby reducing the high temperature corrosion of the furnace 5. And slagging. And the flue gas flow is full, which is good for the pulverized coal burnout rate.
  • the imaginary tangential circle of the secondary air in the furnace 5 is larger than the imaginary tangential circle of the concentrated primary wind and the light primary wind in the furnace 5, forming a "wind-packed powder" airflow structure, which can effectively prevent high temperature corrosion and water-cooling wall knots.
  • the slag, the horizontal direction of the secondary air is delayed into the combustion gas stream, which can reduce the formation of strontium, and the strontium emission can be reduced by 2% to 5% on the basis of the fourth embodiment.
  • the present embodiment will be described with reference to Figs. 1, 4 and 8.
  • the difference between this embodiment and the fourth embodiment is that the center line 21 of the light primary air nozzle 2 of the present embodiment is in the direction of the fire side.
  • the imaginary tangential circle of the concentrated primary wind and the light primary wind in the furnace 5 is smaller than the specific embodiment five, and the horizontal direction of the secondary air is delayed to be mixed into the combustion airflow, which can further reduce the generation of strontium, and the strontium emission can be specifically Based on the fifth embodiment, the reduction is 2% to 3%.
  • the secondary air, light primary air and concentrated primary air jet flow angles are delayed in the horizontal direction, and the air is mixed into the combustion airflow, which can be reduced.
  • the generation of plutonium, the emission of plutonium can be reduced by 2% to 3% based on the sixth embodiment.
  • the present embodiment will be described with reference to FIG. 1, FIG. 4 and FIG. 8.
  • the difference between this embodiment and the second embodiment is: the secondary air nozzle 3 provided on each water-cooling wall 6 of the present embodiment Center line 31
  • the intersection point on the water wall 6 with which it is located is the distance from the edge of the nearest furnace 5 to the furnace width Lk or the furnace depth Ls. It is arranged such that the secondary air nozzle 3 is arranged on the center line of the water wall 6.
  • the heat load near the water wall 6 is the largest, which is conducive to the stable combustion of coal powder. It is suitable for non-combustible coal.
  • the minimum steady-burning load of this embodiment is lower than the minimum steady-state load of the burner angle arrangement of 10% ⁇ 20%.

Description

一种墙式布置的水平浓淡直流煤粉燃烧装置
技术领域 本发明涉及一种水平浓淡直流煤粉燃烧装置, 具体涉及燃煤锅炉技术领域。 背景技术 直流煤粉燃烧器四角切圆布置与旋流燃烧器前墙或对冲布置是世界范围内应用最 为广泛的两大煤粉燃烧方式之一。 四角切圆布置的燃烧方式是将煤粉(一次风)和二次 风在炉膛四角与炉膛中心一假想切圆相切的方式喷入炉膛, 实现煤粉的切圆燃烧。 四角 切圆直流煤粉燃烧技术形成的四角火焰可以相互支持, 燃烧产生的烟气在炉内旋转上 升, 具有火焰行程长、 炉内混合好、 燃烧经济性高、 煤种适应性广等特点, 并易于实现 空气分级供风、燃料分级燃烧, 降低 NOx排放, 因此直流煤粉燃烧器四角切圆布置在大 型火力发电机组中被广泛采用。
直流煤粉燃烧器四角切圆布置锅炉在运行中也暴露出一些影响安全运行的问题, 比 如炉膛出口烟温偏差较大, 水冷壁结渣, 燃烧高硫煤时容易发生高温腐蚀等, 这些问题 和直流煤粉燃烧器四角布置方式有关。直流煤粉燃烧器布置在炉膛角部, 因射流方向与 炉膛中心一假想切圆相切, 燃烧器射流方向与两相邻水冷壁夹角不同。燃烧器射流离开 燃烧器喷口后不断卷吸两侧的烟气, 炉膛角部区域空间较小, 射流方向与相邻水冷壁夹 角又不同, 小角度一侧(射流背火侧) 比大角度一侧(射流向火侧)补气条件差, 因射 流卷吸造成射流两侧的压力差, 使射流偏向小角度一侧 (射流背火侧), 这样未燃尽的 煤粉颗粒冲刷煤粉射流背火恻的水冷壁, 容易发生结渣和高温腐蚀.。 对于大容量锅炉, 角部距炉膛中心距离较大, 为保证足够的射流深度, 要求较髙的射流速度, 这也加剧了 因射流旋转形成的炉膛出口烟温偏差。
近年来我国动力用煤品质有所下降, 火力发电厂的煤质多变, 使得稳燃问题比较突 出, 同时适应电网负荷和环保需求对锅炉的低负荷能力和低 NOx排放性能的要求不断提 高。专利公开号为 CN 1069560A, 公开日为 1993年 3月 3日的发明专利公开了《一种浓 缩煤粉燃烧器》, 此燃烧器对缓解上述问题起到了很好的作用。 水平浓淡燃烧技术是通 过专门的浓縮装置将一次风分为浓、 淡两股气流, 浓、 淡两股一次风气流分别在同一水 平面上成一定角度四角切向射入炉膛, 形成不同切圆, 在向火侧布置浓一次风气流, 而 在背火侧布置淡一次风气流。浓一次风易于着火, 对稳燃和低负荷是有利的, 一次风浓 淡分离实现分级燃烧对降低 NOx是有效的,一次风 "内浓外淡"的结构可以减轻高温腐 蚀和结渣。 该技术可同时解决高效、 稳燃、 低负荷、 低 NOx排放的要求。 目前水平浓淡 燃烧技术的燃烧器都是采用炉膛四角布置, 煤粉气流容易发生偏斜, 在一定程度上限制 了水平浓淡燃烧技术的效果。 发明内容
本发明的目的是提供一种墙式布置的水平浓淡直流煤粉燃烧装置, 以解决直流煤粉 燃烧器四角切圆布置, 煤粉气流两侧补气条件不同, 易发生偏斜而引发结渣和高温腐蚀 问题。 同时还能满足煤粉锅炉高效、 稳燃、 低负荷、 低 NOx排放的要求。
本发明为解决上述技术问题采取的技术方案是: 本发明的燃烧装置由炉膛 5、 多个 浓一次风喷口 1、 多个淡一次风喷口 2、 多个二次风喷口 3和四组燃尽风喷口 4组成, 所述炉膛 5由四面水冷壁 6围成;所述炉膛 5的四面水冷壁 6上分别设置有多个浓一次 风喷口 1、 多个淡一次风喷口 2和多个二次风喷口 3, 所述每个水冷壁 6上设置的多个 浓一次风喷口 1、 多个淡一次风喷口 2和多个二次风喷口 3组合构成一组燃烧器 7, 所 述四组燃烧器 7分别设置在同一水平面上,所述每组燃烧器 7中的二次风喷口 3与浓一 次风喷口 1和淡一次风喷口 2上下交替设置,每组燃烧器 7中相邻的浓一次风喷口 1和 淡一次风喷口 2设置在同一水平面内, 所述二次风喷口 3的中心线 31在向火侧方向与 其所在的水冷壁 6之间的夹角为 a 所述淡一次风喷口 2的中心线 21在向火侧方向与 其所在的水冷壁 6之间的夹角为 ct 2,浓一次风喷口 1的中心线 11与淡一次风喷口 2的 中心线 21之间的夹角为 α 3,所述每面水冷壁 6上或者炉膛 5的每个棱角处设置有一组 燃尽风喷口 4, 且燃尽风喷口 4设置在燃烧器 7的上方, 所述设置在炉膛 5的每个棱角 上的燃尽风喷口 4的中心线 41与其相邻一侧水冷壁 6之间的夹角为 α 4,所述设置在每 个水冷壁 6上的燃尽风喷口 4的中心线 41在向火侧方向与其所在水冷壁 6的夹角为 α 5
本发明的有益效果是:本发明将传统布置在炉膛四角的直流煤粉燃烧器布置在炉膛 四面墙壁上, 炉膛墙壁附近空间比角部空间的补气条件大大改善, 尤其是射流两侧的补 气条件相近, 这样可以大大减小因射流两侧补气条件不同造成的气流偏斜, 减轻因此而 产生的水冷壁结渣和高温腐蚀。燃烧器四面墙壁上布置形成切圆所需要的射流距离小于 角式布置射流形成切圆所需要的射流距离, 燃烧器可以采用较小的一、 二次风速, 从而 减小了射流形成的漩涡强度和因旋流产生的炉膛出口的烟温偏差。此外, 由于本发明采 用的直流煤粉燃烧器为水平浓淡燃烧器, 利于对锅炉的稳燃、 低负荷及低 NOx排放, 同 时水平浓淡燃烧器布置在炉膛四面墙壁上,燃烧器附近的热流密度大于布置在炉膛角部 的热流密度,有利于煤粉着火,便于实施分级燃烧,可以进一步强化水平浓淡燃烧稳燃、 低负荷以及减轻结澄、 高温腐蚀和低 NOx排放的优势, 水平浓淡燃烧效果好。直流煤粉 燃烧器墙式布置, 一次风喷口中心线、二次风喷口中心线在炉膛内形成的假想切圆一般 比角式布置的假想切圆大, 对燃烧器各喷口和水冷壁夹角的要求要比角式布置低, 便于 安装定位。
附图说明
图 1 是本发明的整体结构主视图, 图 2是浓一次风喷口 1、淡一次风喷口 2和二次 风喷口 3组合在一起的主剖视图, 图 3是图 2的 A- A剖面图, 图 4是装在炉膛 5的四面 水冷壁 6上的浓一次风喷口 1、 淡一次风喷口 2和二次风喷口 3的中心线的俯视图 (淡 一次风喷口 2和二次风喷口 3的中心线在向火侧方向分别与其所在的水冷壁 6所成的夹 角大于 54° 小于等于 90 ° ), 图 5是设置在炉膛 5的每个棱角上的燃尽风喷口 4的中心 线 41与其相邻一侧水冷壁 6之间所成夹角的俯视图,图 6是装在炉膛 5的四面水冷壁 6 上的燃尽风喷口 4的中心线 41的俯视图(燃尽风喷口 4的中心线 41在向火侧方向与其 所在水冷壁 6之间所成的夹角大于 54° 小于等于 90 ° ), 图 7是装在炉膛 5的四面水冷 壁 6上的燃尽风喷口 4的中心线 41的俯视图(燃尽风喷口 4的中心线 41在向火侧方向 与其所在水冷壁 6之间所成的夹角大于等于 90 ° 小于 127 ° ), 图 8是装在炉膛 5的四 面水冷壁 6上的浓一次风喷口 1、淡一次风喷口 2和二次风喷口 3的中心线的俯视图(淡 一次风喷口 2和二次风喷口 3的中心线在向火侧方向分别与其所在的水冷壁 6所成的夹 角大于等于 90 ° 小于 127 ° )。 具体实施方式
具体实施方式一: 结合图 1〜图 8说明本实施方式, 本实施方式由炉膛 5、 多个浓一 次风喷口 1、 多个淡一次风喷口 2、 多个二次风喷口 3和四组燃尽风喷口 4组成, 所述 炉膛 5由四面水冷壁 6围成,所述炉膛 5的四面水冷壁 6上分别设置有多个浓一次风喷 口 1、 多个淡一次风喷口 2和多个二次风喷口 3, 所述每个水冷壁 6上设置的多个浓一 次风喷口 1、 多个淡一次风喷口 2和多个二次风喷口 3组合构成一组燃烧器 7, 所述四 组燃烧器 7分别设置在同一水平面上,所述每组燃烧器 7中的二次风喷口 3与浓一次风 喷口 1和淡一次风喷口 2上下交替设置,每组燃烧器 1中相邻的浓一次风喷口 1和淡一 次风喷口 2设置在同一水平面内, 所述二次风喷口 3的中心线 31在向火侧方向与其所 在的水冷壁 6之间的夹角为 a 所述淡一次风喷口 2的中心线 21在向火侧方向与其所 在的水冷壁 6之间的夹角为 ci 2,浓一次风喷口 1的中心线 11与淡一次风喷口 2的中心 线 21之间的夹角为 α 所述每面水冷壁 6上或者炉膛 5的每个棱角处设置有一组燃尽 风喷口 4, 且燃尽风喷口 4设置在燃烧器 7的上方, 所述设置在炉膛 5的每个棱角上的 燃尽风喷口 4的中心线 41与其相邻一侧水冷壁 6之间的夹角为 α 4,所述设置在每个水 冷壁 6上的燃尽风喷口 4的中心线 41在向火侧方向与其所在水冷壁 6的夹角为 α 5
本实施方式中,各组燃烧器 7布置在四面水冷壁 6上的位置和各喷口中心线在向火 侧方向与其所在水冷壁 6的夹角相同。浓一次风喷口 1和淡一次风喷口 2分别通过煤粉 浓度差别较大的煤粉气流, 燃尽风喷口 4的中心线 41在垂直方向上距最上层一次风中 心线距离保证烟气停留时间为 0. 3-1. 2s。
本实施方式中,所述浓一次风喷口 1的数量为二〜十个,所述淡一次风喷口 2的数量 为二〜十个, 所述二次风喷口 3的数量为三、十一个, 所述每组燃尽风喷口 4的数量为一 至六个。
具体实施方式二: 结合图 1、 图 4和图 8说明本实施方式, 本实施方式设置在每个 水冷壁 6上的二次风喷口 3的中心线 31与其所在的水冷壁 6上的相交点距最近的炉膛 5 的棱角处的距离为 , 1/5 Lk^L^l/2 Lk; 或者 1/5 Ls, 所述 Lk为炉膛 宽度, 所述 Ls为炉膛深度。本实施方式的二次风喷口 3的中心线 31在向火侧方向与其 所在的水冷壁 6的夹角为 54° < α ^ 127° , 所述淡一次风喷口 2的中心线 21在向火 侧方向与其所在的水冷壁 6的夹角为 54° α 2 127 ° ,所述浓一次风喷口 1的中心线 11与淡一次风喷口 2的中心线 21之间的夹角 0 ° α 3 15° ,浓一次风射流布置在向 火侧, 淡一次风射流布置在背火侧, 燃尽风份额占总风量的 10%~40%。 本实施方式的设 置在每个水冷壁 6上的燃尽风喷口 4的中心线 41与其所在的水冷壁 6上的相交点距最 近的炉膛 5的棱角处的距离为 L2, 1/5 Lk^L2< l/2 Lk; 或者 1/5 Ls^L2^ l/2 Ls , 所 述 Lk为炉膛宽度,所述 Ls为炉膛深度。在每个水冷壁 6上的燃尽风喷口 4的中心线 41 在向火侧方向与其所在水冷壁 6的夹角为 54° α 5 127° 。燃尽风喷口 4的中心线 41 布置位置和与其所在水冷壁 6的夹角与二次风喷口 3的中心线 31布置位置和与其所在 水冷壁 6的夹角相同。 如此设置, 可减少结渣和高温腐蚀的发生, 满足煤粉锅炉高效、 稳燃、 低负荷、 低 ΝΟχ排放的要求。 其它组成及连接关系与具体实施方式一相同。
具体实施方式三: 结合图 5说明本实施方式, 本实施方式的燃尽风喷口 4设置在炉 膛 5的每个棱角上, 燃尽风喷口 4的中心线 41与其相邻一侧水冷壁 6之间的夹角为 20。 α 4 70 。如此设置, 燃尽风布置便于实现, 燃烧气流的炉膛充满度较好。其它 组成及连接关系与具体实施方式二相同。
具体实施方式四: 结合图 1、 图 4和图 8说明本实施方式, 本实施方式与具体实施 方式二的不同点是: 本实施方式的设置在每个水冷壁 6上的二次风喷口 3的中心线 31 与其所在的水冷壁 6上的相交点距最近的炉膛 5的棱角处的距离 =l/4炉腾宽度 Lk或 炉膛深度 Ls。 每条二次风喷口 3的中心线 31在向火侧方向与其所在的水冷壁 6的夹角 α【=90° , 即每条二次风喷口 3的中心线 31垂直于所在水冷壁壁面, 淡一次风喷口 2 的中心线 21在向火侧方向与其所在的水冷壁 6的夹角 a 2=90Q ,即每条淡一次风喷口 2 的中心线 21垂直于所在水冷壁,每条浓一次风喷口 1的中心线 11垂直所在水冷壁 6的 方向设置, 本实施例中的浓一次风、 淡一次风和二次风射流均垂直于四面水冷壁 6, 射 流两侧的补气条件相近, 可以有效防止由于射流两侧补气条件不同引起的气流偏斜, 从 而减轻炉膛 5发生高温腐蚀和结渣。 并且烟气气流充满度好, 利于煤粉燃尽率。
具体实施方式五: 结合图 1、 图 4和图 8说明本实施方式, 本实施方式与具体实施 方式四的不同点是: 本实施方式的淡一次风啧口 2的中心线 21在向火侧方向与其所在 的水冷壁 6的夹角为 α 2=85° , 浓一次风喷口 1的中心线 11与淡一次风喷口 2的中心 线 21之间的夹角 为 α 3=0° 。 如此设置, 二次风在炉膛 5内的假想切圆大于浓一次风 和淡一次风在炉膛 5内的假想切圆, 形成 "风包粉"的气流结构, 可以有效防止高温腐 蚀和水冷壁结渣, 二次风的水平方向推迟混入燃烧气流, 可以减小 ΝΟχ的生成, ΝΟχ排 放可以在具体实施方式四的基础上降低 2%~5%。
具体实施方式六: 结合图 1、 图 4和图 8说明本实施方式, 本实施方式与具体实施 方式四的不同点是: 本实施方式的淡一次风喷口 2的中心线 21在向火侧方向与其所在 的水冷壁 6的夹角为 α 2=82° 。如此设置, 浓一次风和淡一次风在炉膛 5内的假想切圆 较具体实施方式五小, 二次风的水平方向推迟混入燃烧气流, 可以进一步减小 ΝΟχ的生 成, ΝΟχ的排放可以在具体实施方式五的基础上降低 2%~3%。
具体实施方式七: 结合图 1、 图 4和图 8说明本实施方式, 本实施方式与具体实施 方式四的不同点是: 本实施方式的淡一次风喷口 2的中心线 21在向火侧方向与其所在 的水冷壁 6的夹角为 α 2=78° 。 如此设置, 浓一次风和淡一次风在炉膛 5内的假想切圆 较具体实施方式五小, 二次风的水平方向推迟混入燃烧气流, 可以进一步减小 N(k的生 成, NOx的排放可以在具体实施方式六的基础上降低 2%~3%。
具体实施方式八: 结合图 1、 图 4和图 8说明本实施方式, 本实施方式与具体实施 方式六的不同点是: 本实施方式的浓一次风喷口 1的中心线 11与淡一次风喷口 2的中 心线 21之间的夹角 α 3=5° 。 如此设置, 二次风、淡一次风和浓一次风在炉膛 5内分别 形成直径大小不同的假想切圆, 二次风的假想切圆最大、淡一次风次之, 浓一次风的假 想切圆最小, 形成 "风包粉"的气流结构, 可以有效防止高温腐蚀和水冷壁结渣, 二次 风、淡一次风和浓一次风射流角度不同在水平方向推迟了空气混入燃烧气流, 可以减小 ΝΟχ的生成, ΝΟχ的排放可以在具体实施方式六的基础上降低 2%~3%。
具体实施方式九: 结合图 1、 图 4和图 8说明本实施方式, 本实施方式与具体实施 方式二的不同点是: 本实施方式的设置在每个水冷壁 6上的二次风喷口 3的中心线 31 与其所在的水冷壁 6上的相交点距最近的炉膛 5的棱角处的距离 炉膛宽度 Lk或 炉膛深度 Ls。如此设置, 即二次风喷口 3布置在水冷壁 6的中心线上。水冷壁 6附近的 热负荷最大, 有利于煤粉的稳燃, 适用于难燃煤种, 相同条件下本实施方式的最低稳燃 负荷低于燃烧器角式布置的最低稳燃负荷 10%~20%。

Claims

权 利 要 求 书
1、一种墙式布置的水平浓淡直流煤粉燃烧装置,所述燃烧装置由炉膛 5、多个浓一 次风喷口 1、 多个淡一次风喷口 2、 多个二次风喷口 3和四组燃尽风喷口 4组成, 所述 炉膛 5由四面水冷壁 6围成;其特征在于所述炉膛 5的四面水冷壁 6上分别设置有多个 浓一次风喷口 1、 多个淡一次风喷口 2和多个二次风喷口 3, 所述每面水冷壁 6上设置 的多个浓一次风喷口 1、 多个淡一次风喷口 2和多个二次风喷口 3组合构成一组燃烧器 7, 所述四组燃烧器 7分别设置在同一水平面上, 所述每组燃烧器 7中的二次风喷口 3 与浓一次风喷口 1和淡一次风喷口 2上下交替设置,每组燃烧器 7中相邻的浓一次风喷 口 1和淡一次风喷口 2设置在同一水平面内, 所述二次风喷口 3的中心线 31在向火侧 方向与其所在的水冷壁 6之间的夹角为 α 1 (所述淡一次风喷口 2的中心线 21在向火侧 方向与其所在的水冷壁 6之间的夹角为 a 2,浓一次风喷口 1的中心线 11与淡一次风喷 口 2的中心线 21之间的夹角为 α 3,所述每面水冷壁 6上或者炉膛 5的每个棱角处设置 有一组燃尽风喷口 4, 且燃尽风喷口 4设置在燃烧器 7的上方, 所述设置在炉膛 5的每 个棱角上的燃尽风喷口 4的中心线 41与其相邻一侧水冷壁 6之间的夹角为 α 4,所述设 置在每面水冷壁 6上的燃尽风喷口 4的中心线 41在向火侧方向与其所在氷冷壁 6的夹 角为 a s。
2、 根据权利要求 1所述的一种墙式布置的水平浓淡直流煤粉燃烧装置, 其特征在 于所述设置在每个面水冷壁 6上的二次风喷口 3的中心线 31与其所在的水冷壁 6上的 相交点距最近的炉膛 5的棱角处的距离为 1/5 Lk,或者 1/5
Ls, 所述 Lk为炉膛宽度, 所述 Ls为炉膛深度。
3、 根据权利要求 1所述的一种墙式布置的水平浓淡直流煤粉燃烧装置, 其特征在 于所述二次风喷口 3 的中心线 31 在向火侧方向与其所在的水冷壁 6 的夹角为 54° a ^ 127 ° ,所述淡一次风喷口 2的中心线 21在向火侧方向与其所在的水冷壁 6 的夹角为 54° α 2 127° , 所述浓一次风喷口 1的中心线 11与淡一次风喷口 2的中 心线 21之间的夹角 (Γ α 3 15 ° , 浓一次风射流布置在向火侧, 淡一次风射流布置 在背火侧。
4、 根据权利要求 1所述的一种墙式布置的水平浓淡直流煤粉燃烧装置, 其特征在 于所述设置在炉膛 5的每个棱角上的燃尽风喷口 4的中心线 41与其相邻一侧水冷壁 6 之间的夹角为 20 ° α 4 70 ° 。
5、 根据权利要求 1所述的一种墙式布置的水平浓淡直流煤粉燃烧装置, 其特征在 于所述设置在每个水冷壁 6上的燃尽风喷口 4的中心线 41与其所在的水冷壁 6上的相 交点距最近的炉膛 5的棱角处的距离为 L2, 1/5 Lk^L3sSl/2 Lk; 或者 1/5 Ls^L2<l/2 Ls, 所述 Lk为炉膛宽度, 所述 Ls为炉膛深度。
6、 根据权利要求 1所述的一种墙式布置的水平浓淡直流煤粉燃烧装置, 其特征在 于所述设置在每个水冷壁 6上的燃尽风喷口 4的中心线 41在向火侧方向与其所在水冷 壁 6的夹角为 54° ^127° 。
PCT/CN2008/001800 2008-06-17 2008-10-24 一种墙式布置的水平浓淡直流煤粉燃烧装置 WO2009152654A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BRPI0822881-7A BRPI0822881A2 (pt) 2008-06-17 2008-10-24 Horizontal pesado e fino de corrente contínua pulverizada de carvão arranjados por tipo de parede
RS20100550A RS53219B (en) 2008-06-17 2008-10-24 COAL COAL COMBUSTION APPLIANCE WITH WALL HORIZONTAL IGNITION
EA201170032A EA019175B1 (ru) 2008-06-17 2008-10-24 Топочное оборудование со смещенной горизонтальной подачей из стенки для пылевидного угля

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2008100647482A CN101315184B (zh) 2008-06-17 2008-06-17 一种墙式布置的水平浓淡直流燃烧装置
CN200810064748.2 2008-06-17

Publications (1)

Publication Number Publication Date
WO2009152654A1 true WO2009152654A1 (zh) 2009-12-23

Family

ID=40106279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001800 WO2009152654A1 (zh) 2008-06-17 2008-10-24 一种墙式布置的水平浓淡直流煤粉燃烧装置

Country Status (6)

Country Link
CN (1) CN101315184B (zh)
BR (1) BRPI0822881A2 (zh)
EA (1) EA019175B1 (zh)
RS (1) RS53219B (zh)
TR (1) TR201010283T1 (zh)
WO (1) WO2009152654A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781833A4 (en) * 2011-11-14 2015-07-08 Shanghai Boiler Works Co Ltd SEPARATOR STRUCTURE IN AN OCTAGONAL INDIVIDUAL FIREBALL DIRECT FLOW BURNER FOR COMPRESSING / DILUTING POWDERY COAL
CN107940446A (zh) * 2017-12-08 2018-04-20 东方电气集团东方锅炉股份有限公司 一种大卷吸射流燃尽风系统及喷射方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101598333B (zh) * 2009-06-30 2012-09-26 上海锅炉厂有限公司 一种低氮氧化物排放煤粉切向燃烧装置
CN101852429A (zh) * 2010-06-29 2010-10-06 哈尔滨工业大学 一种墙式布置带侧二次风的直流煤粉燃烧装置
CN102012020B (zh) * 2010-12-18 2013-05-08 华北电力大学(保定) 一种水平摆动墙式切圆燃烧法及燃烧装置
CN102338374B (zh) * 2011-09-28 2013-09-04 南京创能电力科技开发有限公司 低温等离子体旋流煤粉炉炉内深度分级低NOx燃烧系统
CN103090406B (zh) * 2011-11-01 2015-05-20 嘉兴市特种设备检测院 一种生物质锅炉
CN102494333B (zh) * 2011-11-14 2014-09-03 上海锅炉厂有限公司 一种燃用无烟煤的单火球四角直流燃烧器
CN103225805B (zh) * 2013-04-24 2015-03-18 广东电网公司电力科学研究院 防止水冷壁高温腐蚀的锅炉装置和方法
CN104622271B (zh) * 2013-11-15 2017-06-16 广东美的厨房电器制造有限公司 蒸汽烹饪器具
CN103712204B (zh) * 2013-12-13 2016-05-11 山西蓝天环保设备有限公司 一种用于煤粉工业锅炉的墙式布置直流煤粉燃烧装置
CN106152502A (zh) * 2015-04-16 2016-11-23 上海工业锅炉有限公司 一种高效直燃热风锅炉
CN106989411B (zh) * 2017-04-12 2024-01-19 西安热工研究院有限公司 一种锅炉水冷壁气膜保护装置
CN109812803B (zh) * 2019-01-17 2020-04-07 上海理工大学 一种低负荷稳定燃烧的锅炉燃烧器及其燃烧方法与应用
CN113669721A (zh) * 2021-08-02 2021-11-19 哈尔滨锅炉厂有限责任公司 一种锅炉燃烧器布置方法、褐煤锅炉及其燃烧风控制方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077939A (zh) * 1973-11-15 1975-06-25
JPS63282402A (ja) * 1987-05-14 1988-11-18 Mitsubishi Heavy Ind Ltd 石炭燃焼装置
JPH08178210A (ja) * 1994-12-26 1996-07-12 Mitsubishi Heavy Ind Ltd 旋回燃焼火炉用バーナ装置
CN1807977A (zh) * 2006-02-21 2006-07-26 西安热工研究院有限公司 墙式燃烧锅炉新三区二级燃尽风布置方式

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0577939A (ja) * 1991-09-20 1993-03-30 Nec Corp 用紙幅検出装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5077939A (zh) * 1973-11-15 1975-06-25
JPS63282402A (ja) * 1987-05-14 1988-11-18 Mitsubishi Heavy Ind Ltd 石炭燃焼装置
JPH08178210A (ja) * 1994-12-26 1996-07-12 Mitsubishi Heavy Ind Ltd 旋回燃焼火炉用バーナ装置
CN1807977A (zh) * 2006-02-21 2006-07-26 西安热工研究院有限公司 墙式燃烧锅炉新三区二级燃尽风布置方式

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2781833A4 (en) * 2011-11-14 2015-07-08 Shanghai Boiler Works Co Ltd SEPARATOR STRUCTURE IN AN OCTAGONAL INDIVIDUAL FIREBALL DIRECT FLOW BURNER FOR COMPRESSING / DILUTING POWDERY COAL
CN107940446A (zh) * 2017-12-08 2018-04-20 东方电气集团东方锅炉股份有限公司 一种大卷吸射流燃尽风系统及喷射方法
CN107940446B (zh) * 2017-12-08 2024-01-16 东方电气集团东方锅炉股份有限公司 一种大卷吸射流燃尽风系统及喷射方法

Also Published As

Publication number Publication date
CN101315184B (zh) 2010-06-09
CN101315184A (zh) 2008-12-03
TR201010283T1 (tr) 2011-03-21
BRPI0822881A2 (pt) 2015-07-07
EA019175B1 (ru) 2014-01-30
RS53219B (en) 2014-08-29
RS20100550A (en) 2011-08-31
EA201170032A1 (ru) 2011-06-30

Similar Documents

Publication Publication Date Title
WO2009152654A1 (zh) 一种墙式布置的水平浓淡直流煤粉燃烧装置
WO2014008758A1 (zh) 具有附壁二次风和网格燃尽风的煤粉锅炉
CN1333199C (zh) 一种带浓淡煤粉燃烧装置的w形火焰炉
CN100451447C (zh) 无烟煤燃烧方法
WO2011000136A1 (zh) 一种低氮氧化物排放煤粉切向燃烧装置
CN101995015A (zh) 直流燃烧器的四角切圆低Nox燃烧技术
CN104033888A (zh) 四角切圆锅炉及其炉膛
CN104654292B (zh) 空间浓淡型直流煤粉燃烧器
CN201897223U (zh) 一种用于燃烧低热值气体的燃烧器
CN113339789A (zh) 一种带有马蹄形扰流齿的防结焦煤粉燃烧器
CN208886755U (zh) 一种可调节接力式贴壁风装置
CN103307596B (zh) 一种用于w型火焰锅炉的拱上燃烧器
CN214370141U (zh) 一种应用于墙式切圆锅炉的燃尽风布置结构
CN201212676Y (zh) 一种墙式布置的水平浓淡直流燃烧装置
CN112228864A (zh) 可有效减缓纯燃准东煤锅炉炉膛及水平烟道区域结渣的方法及锅炉装置
CN106765075A (zh) 一种多煤种适应性的旋流煤粉燃烧器
CN203656910U (zh) 一种w火焰锅炉的燃烧装置及w 火焰锅炉
CN200989583Y (zh) 切圆燃烧煤粉锅炉燃烧装置
CN202074562U (zh) 一种适用于浓淡燃烧器的煤粉浓淡比调节装置
CN203131804U (zh) 四角切圆燃烧煤粉锅炉
CN203642167U (zh) 一种具有多组燃尽风喷口的w火焰锅炉
CN101852429A (zh) 一种墙式布置带侧二次风的直流煤粉燃烧装置
CN112377894A (zh) 一种风切圆煤粉燃烧锅炉
CN2793551Y (zh) 一种带浓淡煤粉燃烧装置的w形火焰炉
CN214745703U (zh) 塔式锅炉新型sofa燃烧器的布置结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08874667

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 8067/DELNP/2010

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2010/10283

Country of ref document: TR

WWE Wipo information: entry into national phase

Ref document number: P-2010/0550

Country of ref document: RS

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 201170032

Country of ref document: EA

122 Ep: pct application non-entry in european phase

Ref document number: 08874667

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: PI0822881

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20101209