WO2009151080A1 - 多気筒内燃機関における排気ガス還流装置 - Google Patents

多気筒内燃機関における排気ガス還流装置 Download PDF

Info

Publication number
WO2009151080A1
WO2009151080A1 PCT/JP2009/060627 JP2009060627W WO2009151080A1 WO 2009151080 A1 WO2009151080 A1 WO 2009151080A1 JP 2009060627 W JP2009060627 W JP 2009060627W WO 2009151080 A1 WO2009151080 A1 WO 2009151080A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust
exhaust gas
cylinder
gas recirculation
internal combustion
Prior art date
Application number
PCT/JP2009/060627
Other languages
English (en)
French (fr)
Inventor
佐伯 隆志
均 稲葉
Original Assignee
ヤンマー株式会社
社団法人 日本舶用工業会
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤンマー株式会社, 社団法人 日本舶用工業会 filed Critical ヤンマー株式会社
Publication of WO2009151080A1 publication Critical patent/WO2009151080A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor

Definitions

  • the present invention relates to a multi-cylinder internal combustion engine provided with a supercharger such as an exhaust turbocharger in an intake path, and a part of the exhaust gas in the exhaust path is disposed downstream of the supercharger in the intake path.
  • the present invention relates to an apparatus for refluxing.
  • the intake pressure downstream of the turbocharger in the intake path may be higher than the exhaust pressure.
  • the exhaust gas cannot be recirculated using the pressure difference.
  • Patent Document 1 discloses that exhaust gas recirculation is performed by utilizing the existence of pulsation in the exhaust pressure in the exhaust path due to the exhaust gas being ejected from each cylinder. is suggesting.
  • the intake pressure is substantially constant with respect to the crank angle, but the exhaust pressure in the exhaust path is the crank angle at which the exhaust gas from each cylinder is ejected according to the stroke sequence in the cylinder. It fluctuates greatly so that the peak pressure of the mountain is at the phase of.
  • the exhaust pressure is determined from the exhaust manifold for the first to third cylinders and the fourth cylinder in the in-line 6-cylinder diesel engine, as will be described in detail in the embodiments described later.
  • the peak-shaped peak pressure of the exhaust pressure changes the intake pressure. There may be cases where the angle ⁇ is exceeded.
  • Patent Document 1 provides a reed valve that opens only in the direction toward the intake path from the exhaust path to the exhaust gas recirculation path downstream of the supercharger in the intake path. The exhaust gas is recirculated downstream from the supercharger in the intake path.
  • JP-A-5-86990 JP-A-5-86990
  • the present invention has a technical problem to solve this problem without causing a significant deterioration in fuel consumption in an internal combustion engine.
  • claim 1 of the present invention provides: “In a multi-cylinder internal combustion engine comprising a plurality of cylinders, a supercharger in the intake path to each cylinder, and an exhaust path from each cylinder, An exhaust gas recirculation passage extending from the exhaust passage to the downstream side of the supercharger in the intake passage, and a reed valve provided with respect to the exhaust gas recirculation passage and opened only in the direction toward the intake passage;
  • the exhaust pressure in some cylinders of the cylinders is made higher than the exhaust pressure in the remaining other cylinders at the downstream side of the exhaust path where the exhaust gas recirculation passage is connected.
  • Exhaust pressure raising means is provided. " It is characterized by that.
  • Claim 2 of the present invention includes: “In the first aspect of the present invention, the exhaust pressure increasing means is provided in a portion of the exhaust path through which exhaust gas from one cylinder flows.” It is characterized by that.
  • Claim 3 of the present invention provides: “In the first aspect of the present invention, the exhaust pressure increasing means is provided in a portion of the exhaust path where exhaust gases from a plurality of cylinders merge and flow.” It is characterized by that.
  • Claim 4 of the present invention provides: “In any one of claims 1 to 3, the exhaust pressure increasing means has a configuration of a throttle orifice that reduces the passage area of the exhaust passage.” It is characterized by that.
  • Claim 5 of the present invention provides: “In any one of claims 1 to 3, the exhaust pressure increasing means is a configuration of an on-off valve that increases or decreases the passage area of the exhaust path.” It is characterized by that.
  • Claim 6 of the present invention provides: “In the fifth aspect of the present invention, the opening / closing valve is controlled to be opened / closed in accordance with a load or a rotational speed of the internal combustion engine.” It is characterized by that.
  • claim 7 of the present invention is: “In the description of claim 6, the on-off valve is configured to double the exhaust gas recirculation passage.” It is characterized by that.
  • the exhaust pressure in some of the cylinders in the multi-cylinder internal combustion engine is made higher than the exhaust pressure in the other remaining cylinders by the exhaust pressure increasing means.
  • the peak pressure of the exhaust pressure in the some cylinders is higher than the peak pressure of the exhaust pressure in the other cylinders, and the section of the crank angle ⁇ in which the peak pressure exceeds the intake pressure can be increased.
  • the section of the crank angle ⁇ in which the reed valve is open can be expanded, the amount of exhaust gas recirculated to the intake passage can be increased.
  • the exhaust pressure is increased only when the exhaust gas is recirculated only in the above-mentioned part of the cylinders in the multi-cylinder internal combustion engine. Can do.
  • the exhaust gas recirculation rate to the intake passage is reliably improved with the amount of exhaust gas recirculation necessary for exhaust gas cleaning being suppressed in a state where deterioration of fuel consumption is suppressed. be able to.
  • the load operation range or the rotational operation range in which the predetermined exhaust gas can be cleaned is It can be changed arbitrarily.
  • the recirculation rate of the exhaust gas to the intake passage is lowered in the low load operation region or the low rotation operation region in the internal combustion engine, thereby deteriorating the fuel consumption.
  • the exhaust gas recirculation rate to the intake path can be increased to automatically control exhaust gas to be actively cleaned.
  • FIG. 2 shows the first embodiment
  • reference numeral 1 denotes an in-line six-cylinder diesel engine having six cylinders (first cylinder A, second cylinder B, third cylinder C, fourth cylinder D, fifth cylinder E and sixth cylinder F). Indicates an institution.
  • An intake manifold 2 for each of the cylinders A to F is joined to one longitudinal side 1a of the diesel engine 1, and a first cylinder of the cylinders A to F is joined to the other longitudinal side 1b.
  • An exhaust manifold 3 for A to third cylinder C and a second exhaust manifold 4 for the fourth cylinder D to sixth cylinder F are joined.
  • the exhaust manifold 3 for the first cylinder A to the third cylinder C includes exhaust branch pipes 5, 6, and 7 from the first cylinder A to the third cylinder C, and these exhaust branch pipes 5, 6, and 7, respectively. Are connected to one exhaust main pipe 8.
  • the exhaust manifold 4 for the fourth cylinder D to the sixth cylinder F includes exhaust branch pipes 9, 10, 11 from the fourth cylinder D to the sixth cylinder F, and these exhaust branch pipes. It is comprised by one exhaust main pipe 12 to which 9, 10, and 11 are connected.
  • Reference numeral 13 denotes an exhaust turbocharger in which the exhaust turbine 13a and the blower compressor 13b are directly connected
  • reference numeral 14 denotes an air-cooled or water-cooled intercooler.
  • the exhaust turbine 13a of the exhaust turbocharger 13 is connected to the exhaust main pipes 8 and 12 of the exhaust manifolds 3 and 4 at the inlet and to the exhaust gas discharge pipe 15 to the atmosphere at the outlet. Yes.
  • the blower compressor 13b in the exhaust turbocharger 13 is connected to an intake pipe 16 from an air cleaner on its suction side, and a supercharge line 17 to an inlet chamber 14a in the intercooler 14 is connected to its outlet.
  • the intake manifold 4 is connected to an outlet chamber 14b of the intercooler 14.
  • the exhaust gas from the cylinders A to F of the diesel engine 1 is sent to the exhaust turbine 13a in the exhaust turbocharger 13 via the exhaust manifolds 3 and 4 to rotationally drive the blower compressor 13b. .
  • An exhaust gas take-out port 18 is provided at the end of the exhaust main pipe 8 in the exhaust manifold 3 for the first cylinder A to the third cylinder C on the first cylinder A side, and the exhaust gas take-out port 18 is connected to the exhaust gas take-out port 18.
  • a recirculation passage 19 is connected, and an air-cooled or water-cooled cooler 20 for the recirculated exhaust gas is provided in the middle of the exhaust gas recirculation passage 19, and rapid acceleration / deceleration and / or idling in the diesel engine 1 is performed.
  • a recirculation cut valve 21 is provided to block the exhaust gas recirculation passage 19 during operation and the like.
  • the outlet chamber 14b of the intercooler 14 is provided with a valve box 23 containing a reed valve 22, to which the exhaust gas recirculation passage 19 is connected. Only when there is a pressure difference between the exhaust gas recirculation passage 19 and the outlet chamber 14b such that the pressure in the outlet chamber 14b is lower than the pressure in the exhaust gas recirculation passage 19, the direction in the outlet chamber 14b is increased. It is configured to open.
  • a portion of the exhaust main pipe 8 in the exhaust manifold 3 corresponding to the first cylinder A to the third cylinder C between the first cylinder A and the second cylinder B is located downstream of the exhaust gas take-out port 18. Further, by providing a throttle orifice 24 which is an example of the “exhaust pressure increasing means” in the present invention, the throttle orifice 24 reduces the passage area of the exhaust main pipe 8. .
  • the exhaust gas take-out port 18 and the throttle orifice 24 are provided in the exhaust branch pipe 5 for the first cylinder A among the exhaust branch pipes 5, 6, and 7 in the exhaust manifold 3, or the exhaust for the second cylinder B. It can be provided in the branch pipe 6 or in the exhaust branch pipe 7 for the third cylinder C.
  • the exhaust gas take-out port 18 and the throttle orifice 24 are provided in the exhaust manifold 3 for the first cylinder A to the third cylinder C of the two exhaust manifolds 3 and 4, but these are connected to the fourth cylinder D.
  • the exhaust manifold 3 for the sixth cylinder F can be provided with the same configuration.
  • exhaust gas discharged from the first cylinder A among the six cylinders A to F in the diesel engine 1 passes through the throttle orifice 24 provided in the exhaust main pipe 8 of the exhaust manifold 3. Since the resistance by the orifice 24 is received, the exhaust pressure of the first cylinder A is greater than the exhaust pressure of the remaining cylinders B to F other than the first cylinder A among the six cylinders A to F. The resistance increases by 24.
  • the peak pressure of the exhaust pressure in the first cylinder A becomes higher than the peak pressure of the exhaust pressure in the remaining cylinders B to F, and the peak pressure exceeds the intake pressure in the intake manifold 2.
  • the section of the crank angle ⁇ can be increased, and the section of the crank angle where the reed valve 22 is open can be expanded, so that the recirculation amount of the exhaust gas to the intake manifold 2 can be reliably increased.
  • the throttle orifice 24 is provided, for example, in a portion of the exhaust main pipe 8 in the exhaust manifold 3 between the first cylinder A and the second cylinder B, or a plurality of exhausts.
  • the exhaust manifold 3 is provided in a portion where only exhaust gas from one cylinder flows, such as being provided in one exhaust branch pipe of the branch pipes 5, 6, 7, and an exhaust gas recirculation passage 19 is provided upstream thereof. Are connected.
  • valve box 23 having a built-in reed valve 22 for the exhaust gas recirculation passage 19 is connected to the outlet chamber 14b in the intercooler 14, and the second embodiment shown in FIG. As in the embodiment, it can be configured to connect to the intake manifold 2 (the same applies to other embodiments described below).
  • FIG. 4 shows a third embodiment.
  • the exhaust main pipe 8 is disposed at a portion between the second cylinder B and the third cylinder C.
  • the throttle orifice 24 'for reducing the passage area is provided, and the exhaust gas recirculation passage 19 to the intake manifold 2 is connected to a portion upstream of the throttle orifice 24'.
  • the structure is the same as that of the first embodiment and the second embodiment.
  • the peak pressure of the exhaust pressure in the two cylinders, the first cylinder A and the second cylinder B becomes the peak pressure of the exhaust pressure in the remaining cylinders C to F due to the presence of the throttle orifice 24 '. Therefore, the amount of exhaust gas recirculation through one exhaust gas recirculation passage 19 can be increased to two cylinders.
  • the passage area is reduced to a portion of the exhaust main pipe 8 in the exhaust manifold 3 downstream of the third cylinder C.
  • the throttle orifice 24 ′′ By providing the throttle orifice 24 ′′, the peak pressure of the exhaust pressure in the three cylinders of the first cylinder A, the second cylinder B, and the third cylinder C remains due to the presence of the throttle orifice 24 ′′. Since it becomes higher than the peak pressure of the exhaust pressure in the other cylinders D to F, the recirculation amount of the exhaust gas through one exhaust gas recirculation passage 19 can be greatly increased to three cylinders.
  • the inner diameters of the throttle orifices 24, 24 ′, 24 ′′ in each of the above embodiments are determined in a specific load operation region or rotation operation region in the diesel engine 1, for example, a load operation region or rotation operation region that is frequently used.
  • the dimension is set so as to ensure an exhaust gas recirculation amount sufficient to achieve a predetermined exhaust gas cleanness.
  • the throttle orifice 24 ′ is used for the exhaust gas from the first cylinder A and the exhaust gas from the second cylinder B in the exhaust manifold 3.
  • the fourth embodiment shown in FIG. 5 has its throttle orifice 24 ′′ as the exhaust gas from the first cylinder A, the second of the exhaust manifold 3 in the fourth embodiment shown in FIG. This is a case where the exhaust gas from the cylinder B and the exhaust gas from the third cylinder C are provided at a portion where they merge and flow.
  • FIG. 6 shows a fifth embodiment.
  • the "throttle orifice 24" in the first embodiment is changed to an on-off valve 25 that can increase or decrease the passage area of the exhaust main pipe or the exhaust branch pipe.
  • the “exhaust pressure increasing means” in the present invention is configured, and other configurations are the same as those in the first embodiment.
  • the recirculation amount of the exhaust gas to the intake passage can be arbitrarily changed arbitrarily by adjusting the passage area of the exhaust main pipe or the exhaust branch pipe by the opening / closing valve 25. It is possible to arbitrarily change the load operation range or the rotation operation range where the cleanliness can be achieved.
  • the above-described exhaust pressure increasing means is configured as the on-off valve 25 capable of adjusting the passage area of the exhaust main pipe or the exhaust branch pipe to increase or decrease the throttle orifice 24 'in the third embodiment or the second embodiment.
  • the present invention can also be applied to the case where the throttle orifice 24 ′′ in the fourth embodiment is configured as an on-off valve.
  • FIG. 7 shows a sixth embodiment.
  • the on-off valve 25 in the fifth embodiment shown in FIG. 6 is provided with an actuator 26 that opens and closes the on-off valve 25.
  • the on-off valve 25 is configured to be controlled to open and close according to the load or the rotational speed in the diesel engine 1.
  • the controller 27 receives as input the intake pressure measured by the pressure sensor 28 provided in the supercharge line 17 or the intake manifold 2 downstream of the blower compressor 13b in the exhaust turbocharger 13.
  • the on-off valve 25 is operated to expand the passage area of the exhaust main pipe or the exhaust branch pipe, and the diesel engine 1 is in a high load operation region.
  • the on-off valve 25 is configured to operate so as to reduce the passage area of the exhaust main pipe or the exhaust branch pipe when the high speed operation region is reached.
  • the exhaust gas recirculation rate can be lowered by expanding the passage area of the exhaust main pipe or the exhaust branch pipe and lowering the exhaust pressure in the low load operation region or the low rotation operation region in the diesel engine 1.
  • the exhaust gas recirculation rate can be reduced by reducing the passage area of the exhaust main pipe or the exhaust branch pipe and increasing the exhaust pressure. And can be automatically controlled to actively clean exhaust gas.
  • the opening / closing control of the opening / closing valve 25 in accordance with the operating range of the diesel engine 1 is the same as that of the throttle orifice 24 'in the third embodiment or the fourth.
  • the present invention can also be applied to the case where the throttle orifice 24 ′′ in the embodiment is configured as an on-off valve.
  • FIG. 8 shows the relationship between the fuel consumption and the exhaust gas recirculation rate in the in-line 6-cylinder diesel engine 1.
  • a curve X indicated by a one-dot chain line is provided with an intake control valve on the suction side of the blower compressor 13 b in the exhaust turbocharger 13, and this intake control valve is increased as the load or the rotational speed in the diesel engine 1 increases.
  • This is a case where the recirculation of the exhaust gas to the intake manifold 2 is achieved by closing and lowering the intake pressure in the intake manifold 2 in the high load operation region or the high rotation operation region.
  • a curve Y indicated by a two-dot chain line is provided with an exhaust control valve at the outlet of the exhaust turbine 13a in the exhaust turbocharger 13, and the exhaust control valve is closed and operated as the load or the rotational speed of the diesel engine 1 increases.
  • the exhaust gas recirculation to the intake manifold 2 is achieved by increasing the exhaust pressure in the exhaust manifolds 3 and 4 in the high load operation region or the high rotation operation region.
  • the curve Z shown by the solid line in FIG. 8 shows the opening / closing valve 25 provided for the first cylinder A among the cylinders A to F as in the sixth embodiment shown in FIG. In this case, control is performed according to the load or the rotational speed of the diesel engine 1.
  • the fuel consumption does not significantly deteriorate as in the case of the curve X indicated by the one-dot chain line or the curve Y indicated by the two-dot chain line.
  • curve Z the exhaust gas recirculation rate can be reliably improved in a state where the deterioration of fuel consumption is reduced.
  • the exhaust gas recirculation passage 19 is closed in the exhaust gas recirculation passage 19 during sudden acceleration / deceleration or idle operation in the diesel engine 1.
  • the above-described reflux cut valve 21 is provided.
  • the on-off valve in the sixth embodiment is also used as the above-described reflux cut valve.
  • the opening / closing valve 25 ' is expanded by the controller 27 having the intake air pressure as an input to expand the passage area of the exhaust branch pipe 5 when the diesel engine 1 enters the low load operation region or the low rotation operation region.
  • the diesel engine 1 is subjected to rapid acceleration / deceleration or idle operation, etc.
  • the on-off valve 25 ' closes the exhaust gas take-out port 18, and consequently the exhaust gas recirculation passage 19.
  • the above-described automatic control can be performed, and the above-described reflux cut valve 21 can be omitted.
  • the present invention can be applied not only to the above-described 6-cylinder diesel engine 1 but also to a spark ignition type multi-cylinder internal combustion engine. Further, as the supercharger, the above-described exhaust turbocharger is applicable. Needless to say, a mechanical supercharger that is rotationally driven by an internal combustion engine can be used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)

Abstract

 複数個の気筒A~Fを備え,この各気筒への吸気経路2に過給機13を備え,更に,前記各気筒からの排気経路3,4を備えて成る多気筒内燃機関1において,その排気ガスの吸気経路への還流を,リード弁22を備えた排気ガス還流通路19にて行う場合に,排気ガスの還流を,燃費の悪化を招来することなく,確実に達成できるようにする。前記排気経路3,4のうち前記排気ガス還流通路19が接続される部分よりも下流側の部位に,前記各気筒のうち一部の気筒Aにおける排気圧力を残りの他の気筒B~Fにおける排気圧力より高くするようにした排気圧力上昇手段(絞りオリフィス24)を設ける。

Description

多気筒内燃機関における排気ガス還流装置
 本発明は,吸気経路に排気ターボ過給機等の過給機を備えた多気筒内燃機関において,その排気経路における排気ガスの一部を,前記吸気経路のうち前記過給機より下流側に還流するための装置に関するものである。
 内燃機関において,その排気ガスのクリーン化を図るために,排気経路における排気ガスの一部を吸気経路に還流するようにしており,この排気ガスの還流は,一般的には,排気経路における排気ガスの圧力,つまり排気圧力が,吸気経路における圧力,つまり吸気圧力よりも高いことに基づいて,その圧力差を利用して行われる。
 しかし,吸気経路に排気ターボ過給機等の過給機を備えている内燃機関の場合,前記吸気経路のうち過給機より下流における吸気圧力は,排気圧力よりも高くなる場合があるから,この場合には,前記圧力差を利用した排気ガスの還流を行うことができない。
 そこで,先行技術としての特許文献1は,排気経路における排気圧力には,各気筒から排気ガスが噴出することに起因して脈動が存在することを利用して,排気ガスの還流を行うことを提案している。
 すなわち,図1に示すように,前記吸気圧力は,クランク角度に対して略一定であるが,前記排気経路における排気圧力は,各気筒からの排気ガスが当該気筒における行程順序に従って噴出するクランク角度の位相で山形のピーク圧になるというように,大きく変動する。
 但し,前記した図1において排気圧力は,後述する実施形態において詳しく説明するように,直列6気筒ディーゼル機関において,その排気マニホールドを,第1気筒から第3気筒に対する排気マニホールドと,第4気筒から第6気筒に対する排気マニホールドとに構成して,その一方の排気マニホールドにおいて測定した場合である。
 このために,前記排気経路における排気圧力の平均値が,吸気経路における吸気圧力と等しいか,この吸気圧力を越えない場合においても,前記排気圧力のうち山形のピーク圧が前記吸気圧力を,クランク角度Δθの区間だけ越える場合がある。
 そこで,前記特許文献1は,前記排気経路から吸気経路のうち過給機よりも下流側への排気ガス還流通路に対して,前記吸気経路への方向のみ開くようにしたリード弁を設けることにより,前記吸気経路のうち過給機より下流側への排気ガスの還流を実行するように構成している。
特開平5-86990号公報
 しかし,この特許文献1によると,排気ガスの還流が行われるのは,排気圧力における脈動のピーク圧が吸気圧力を越えることで前記リード弁が開いているクランク角度Δθの区間内に限られるから,吸気経路への排気ガスの還流率が低くて,排気ガスのクリーン化を効果的に達成することができないという問題があった。
 本発明は,この問題を,内燃機関における燃費の大幅な悪化を招来することなく,解消することを技術的課題とする。
 この技術的課題を達成するため,本発明の請求項1は,
「複数個の気筒を備え,この各気筒への吸気経路に過給機を備え,更に,前記各気筒からの排気経路を備えて成る多気筒内燃機関において,
 前記排気経路から前記吸気経路のうち過給機の下流側に至る排気ガス還流通路と,この排気ガス還流通路に対して設けられ前記吸気経路への方向にのみ開くようにしたリード弁を備え,
 前記排気経路のうち前記排気ガス還流通路が接続される部分よりも下流側の部位に,前記各気筒のうち一部の気筒における排気圧力を残りの他の気筒における排気圧力より高くするようにした排気圧力上昇手段が設けられている。」
ことを特徴としている。
 本発明の請求項2は,
「前記請求項1の記載において,前記排気圧力上昇手段は,前記排気経路のうち一つの気筒からの排気ガスが流れる部分に設けられている。」
ことを特徴としている。
 本発明の請求項3は,
「前記請求項1の記載において,前記排気圧力上昇手段は,前記排気経路のうち複数の気筒からの排気ガスが合流して流れる部分に設けられている。」
ことを特徴としている。
 本発明の請求項4は,
「前記請求項1~3のいずれかの記載において,前記排気圧力上昇手段が,排気経路の通路面積を縮小する絞りオリフィスの構成である。」
ことを特徴としている。
 本発明の請求項5は,
「前記請求項1~3のいずれかの記載において,前記排気圧力上昇手段が,排気経路の通路面積を増減する開閉弁の構成である。」
ことを特徴としている。
 本発明の請求項6は,
「前記請求項5の記載において,前記開閉弁が,前記内燃機関における負荷又は回転数に応じて開閉制御される構成である。」
ことを特徴としている。
 そして,本発明の請求項7は,
「前記請求項6の記載において,前記開閉弁が,前記排気ガス還流通路の閉塞を兼ねる構成である。」
ことを特徴としている。
 請求項1の記載において,多気筒内燃機関における各気筒のうち一部の気筒における排気圧力が,排気圧力上昇手段により,残りの他の気筒における排気圧力よりも高められることになる。
 これにより,前記一部の気筒における排気圧力のピーク圧は,他の気筒における排気圧力のピーク圧よりも高くなって,当該ピーク圧が吸気圧力を越えているクランク角度Δθの区間を増大でき,ひいては,リード弁が開いているクランク角度Δθの区間を拡大することができるから,吸気経路に対する排気ガスの還流量を増量することができる。
 一方,前記した排気ガスの還流に際して排気圧力を高めるのは,多気筒内燃機関における各気筒のうち前記した一部の気筒に限れるから,排気圧力を高めることによる燃費の悪化を僅少にとどめることができる。
 つまり,本発明によると,吸気経路への排気ガス還流率を,排気ガスのクリーン化に対して必要な量の排気ガス還流を,燃費の悪化を抑制した状態のもとで,確実に向上することができる。
 この場合,請求項2によると,吸気経路への排気ガス還流を,各気筒のうち一つの気筒から行うことを確実に達成でき,また,請求項3によると,吸気経路への排気ガスの還流を,各気筒のうち一部の複数個の気筒より行うことができるから,その排気ガス還流量を,前記排気ガス還流通路を複数本にすることなく,確実に増大できる。
 請求項4によると,前記した請求項1による効果を,絞りオリフィスという至極簡単な構造で,低コストで達成できる利点がある。
 請求項5によると,吸気経路への排気ガスの還流率を,開閉弁にて適宜任意に調節できるから,所定の排気ガスのクリーン化を達成することができる負荷運転域又は回転運転域を,任意に変更することができる。
 そして,この請求項5においては,請求項6の構成にすることにより,内燃機関における低負荷運転域又は低回転運転域では,吸気経路への排気ガスの還流率を低くして,燃費の悪化を抑制する一方,高負荷運転域又は高回転運転域では,吸気経路への排気ガスの還流率を高くして,排気ガスの積極的なクリーン化を図るように自動制御することができる。
 更に,請求項7によると,内燃機関の急加減速又はアイドル運転等において排気ガスの還流をカットするために設けている還流カット弁を廃止できるから,構造の簡単化及び低コスト化を図るごとができる。
クランク角度に対する吸気圧力及び排気圧力を示す図である。 第1の実施の形態を示す図である。 第2の実施の形態を示す図である。 第3の実施の形態を示す図である。 第4の実施の形態を示す図である。 第5の実施の形態を示す図である。 第6の実施の形態を示す図である。 6気筒ディーゼル機関においてその燃費と排気ガス還流率との関係を示す図である。 第7の実施の形態を示す図である。
  1        ディーゼル機関
  A~F      気筒
  2        吸気マニホールド
  3,4      排気マニホールド
  5,6,7    排気枝管
  8        排気主管
  13       排気ターボ過給機
  13a      排気タービン
  13b      ブロワー圧縮機
  14       インタークーラ
  19       排気ガス還流通路
  21       カット弁
  22       リード弁
  24,24′,24″  絞りオリフィス
  25,25′      開閉弁
  26          アクチェータ
  27          コントローラ
  28          圧力センサー
 以下,本発明における実施の形態を,図面について説明する。
 図2は,第1の実施の形態を示す。
 この図において,符号1は,6つの気筒(第1気筒A,第2気筒B,第3気筒C,第4気筒D,第5気筒E及び第6気筒F)を備えた直列6気筒のディーゼル機関を示している。
 このディーゼル機関1における一方の長手側面1aには,前記各気筒A~Fに対する吸気マニホールド2が接合されており,また,他方の長手側面1bには,前記各気筒A~Fのうち第1気筒A~第3気筒Cに対する排気マニホールド3と,前記第4気筒D~第6気筒Fに対する第2排気マニホールド4とが接合されている。
 前記第1気筒A~第3気筒Cに対する排気マニホールド3は,前記第1気筒A~第3気筒Cの各々からの排気枝管5,6,7と,これらの排気枝管5,6,7が接続される一方の排気主管8とによって構成されている。また,前記第4気筒D~第6気筒Fに対する排気マニホールド4は,同様に,前記第4気筒D~第6気筒Fの各々からの排気枝管9,10,11と,これらの排気枝管9,10,11が接続される一方の排気主管12とによって構成されている。
 前記符号13は,排気タービン13aとブロワー圧縮機13bとを直結して成る排気ターボ過給機を,符号14は,空冷又は水冷式のインタークーラを各々示す。
 前記排気ターボ過給機13における排気タービン13aには,その入口に,前記両排気マニホールド3,4における排気主管8,12が,その出口に,大気への排気ガス放出管15が各々接続されている。
 前記排気ターボ過給機13におけるブロワー圧縮機13bには,その吸い込み側にエアクリーナからの吸気管路16が,その出口に,前記インタークーラ14における入口チャンバー14aへの過給管路17が各々接続されており,また,前記インタークーラ14における出口チャンバー14bに,前記吸気マニホールド4が接続されている。
 これにより,前記ディーゼル機関1の各気筒A~Fからの排気ガスは,排気マニホールド3,4を介して排気ターボ過給機13における排気タービン13aに送られて,ブロワー圧縮機13bを回転駆動する。
 このブロワー圧縮機13bの回転駆動により,エアクリーナからの新規空気は当該ブロワー圧縮機13bにて圧縮され,インタークーラ14に送られ,ここで冷却されたのち,吸気マニホールド2から前記各気筒A~Fに吸気されるという過給を行う。
 前記第1気筒A~第3気筒Cに対する排気マニホールド3における排気主管8のうち第1気筒A側の端部には,排気ガス取出しポート18が設けられ,この排気ガス取出しポート18に,排気ガス還流通路19が接続されており,この排気ガス還流通路19の途中には,還流排気ガスに対する空冷又は水冷式のクーラ20が設けられているほか,前記ディーゼル機関1における急加減速及び/又はアイドル運転等において前記排気ガス還流通路19を閉塞するようにした還流カット弁21が設けられている。
 一方,前記インタークーラ14における出口チャンバー14bには,リード弁22を内蔵した弁箱23が設けられ,この弁箱23には,前記排気ガス還流通路19が接続されており,前記リード弁22は,前記排気ガス還流通路19と出口チャンバー14bとの間に出口チャンバー14b内における圧力が排気ガス還流通路19内における圧力よりも低くという圧力差ができたときにおいてのみ,出口チャンバー14b内の方向に開くという構成になっている。
 そして,前記第1気筒A~第3気筒Cに対する排気マニホールド3における排気主管8のうち第1気筒Aと第2気筒Bとの間の部分には,前記排気ガス取出しポート18より下流側の部位に,本発明における「排気圧力上昇手段」としての一つの例であるところの絞りオリフィス24を設けることにより,この絞りオリフィス24にて,前記排気主管8の通路面積を縮小するという構成にしている。
 なお,前記排気ガス取出しポート18及び前記絞りオリフィス24は,前記排気マニホールド3における各排気枝管5,6,7のうち第1気筒Aに対する排気枝管5に設けたり,第2気筒Bに対する排気枝管6に設けたり,或いは,第3気筒Cに対する排気枝管7に設けたりすることができる。
 つまり,前記排気ガス取出しポート18及び前記絞りオリフィス24は,両排気マニホールド3,4のうち第1気筒A~第3気筒Cに対する排気マニホールド3に設けられているが,これらを,第4気筒D~第6気筒Fに対する排気マニホールド3に,同じ構成にして設けることができる。
 この構成において,前記ディーゼル機関1における6つの気筒A~Fのうち第1気筒Aから排出される排気ガスは,排気マニホールド3の排気主管8に設けた絞りオリフィス24を通過するときに,この絞りオリフィス24による抵抗を受けるから,この第1気筒Aの排気圧力は,前記6つの気筒A~Fのうち第1気筒Aを除く残りの他の気筒B~Fにおける排気圧力よりも,前記絞りオリフィス24による抵抗の分だけ高くなる。
 これにより,前記第1気筒Aにおける排気圧力のピーク圧は,残りの他の気筒B~Fにおける排気圧力のピーク圧よりも高くなって,当該ピーク圧が,前記吸気マニホールド2における吸気圧力を越えているクランク角度Δθの区間を増大でき,ひいては,リード弁22が開いているクランク角度の区間を拡張することができるから,吸気マニホールド2に対する排気ガスの還流量を確実に増加できる。
 なお,この第1の実施の形態においては,前記絞りオリフィス24を,例えば,排気マニホールド3における排気主管8のうち第1気筒Aと第2気筒Bとの間の部位に設けるか,複数の排気枝管5,6,7のうち一つの排気枝管に設けるというように,前記排気マニホールド3のうち一つの気筒からの排気ガスのみが流れる部分に設け,その上流側に,排気ガス還流通路19を接続するという構成にしている。
 また,排気ガス還流通路19に対するリード弁22を内蔵した弁箱23は,図2に示すように,インタークーラ14における出口チャンバー14bに接続することに代えて,図3に示す第2の実施の形態のように,前記吸気マニホールド2に接続するという構成にすることができる(以下に説明する他の実施の形態においても同様)。
 図4は,第3の実施の形態を示す。
 この第3の実施の形態は,前記第1気筒A~第3気筒Cに対する排気マニホールド3における排気主管8のうち,第2気筒Bと第3気筒Cとの間の部位に,前記排気主管8の通路面積を縮小する絞りオリフィス24′を設ける一方,この絞りオリフィス24′よりも上流側の部分に,吸気マニホールド2への排気ガス還流通路19を接続するという構成にした場合であり,その他の構造は,前記第1の実施の形態及び第2の実施の形態と同様である。
 この構成によると,第1気筒Aと第2気筒Bとの二つの気筒における排気圧力のピーク圧が,その絞りオリフィス24′の存在により,残りの他の気筒C~Fにおける排気圧力のピーク圧より高くなるから,一本の排気ガス還流通路19を介しての排気ガスの還流量を2つの気筒に増加できる。
 この第3の実施の形態においては,図5に示す第4の実施の形態のように,前記排気マニホールド3における排気主管8のうち第3気筒Cよりも下流側の部位に,通路面積を縮小する絞りオリフィス24″を設けるという構成にすることにより,第1気筒A,第2気筒B及び第3気筒Cの3つの気筒における排気圧力のピーク圧が,その絞りオリフィス24″の存在により,残りの他の気筒D~Fにおける排気圧力のピーク圧より高くなるから,一本の排気ガス還流通路19を介しての排気ガスの還流量を3つの気筒の分に大幅に増加できる。
 なお,前記各実施の形態における絞りオリフィス24,24′,24″の内径は,前記ディーゼル機関1における特定の負荷運転域又は回転運転域,例えば使用頻度の高い負荷運転域又は回転運転域において,所定の排気ガスのクリーン化を達成することができる量の排気ガス還流を確保する寸法に設定している。
 また,前記図4に示す第3の実施の形態は,その絞りオリフィス24′を,前記排気マニホールド3のうち,第1気筒Aからの排気ガスと第2気筒Bからの排気ガスとの二者が合流して流れる部分に設ける場合であり,前記図5に示す第4の実施の形態は,その絞りオリフィス24″を,前記排気マニホールド3のうち,第1気筒Aからの排気ガス,第2気筒Bからの排気ガス及び第3気筒Cからの排気ガスの三者が合流して流れる部分に設ける場合である。
 図6は,第5の実施の形態を示す。
 この第5の実施の形態は,前記第1の実施の形態における「絞りオリフィス24」を,排気主管又は排気枝管の通路面積を増減調節できる開閉弁25にして,この開閉弁25を,本発明における「排気圧力上昇手段」に構成したものであり,その他の構成は第1の実施の形態と同様である。
 この構成によると,前記開閉弁25にて,排気主管又は排気枝管の通路面積を増減調節することにより,吸気経路への排気ガスの還流量を,適宜任意に変更できるから,所定の排気ガスのクリーン化を達成することができる負荷運転域又は回転運転域を任意に変更することができる。
 なお,このように,前記排気圧力上昇手段を,排気主管又は排気枝管の通路面積を増減調節できる開閉弁25に構成することは,前記第3の実施の形態における絞りオリフィス24′,又は第4の実施の形態における絞りオリフィス24″を開閉弁に構成する場合にも適用できることはいうまでもない。
 次に,図7は,第6の実施の形態を示す。
 この第6の実施の形態は,前記図6に示す第5の実施の形態における開閉弁25に,これを開閉作動するアクチェータ26を設け,このアクチェータ26をコントローラ27にて作動することにより,前記開閉弁25を,前記ディーゼル機関1における負荷又は回転数に応じて開閉制御するように構成したものである。
 すなわち,前記コントローラ27は,前記排気ターボ過給機13におけるブロワー圧縮機13bより下流側の過給管路17又は吸気マニホールド2に設けた圧力センサー28にて測定した吸気圧力を入力として,前記ディーゼル機関1が低負荷運転域又は低回転運転域になったときに,前記開閉弁25を,排気主管又は排気枝管の通路面積を拡張するように作動し,前記ディーゼル機関1が高負荷運転域又は高回転運転域になったときに,前記開閉弁25を,排気主管又は排気枝管の通路面積を縮小するように作動するという構成にしている。
 この構成によると,ディーゼル機関1における低負荷運転域又は低回転運転域では,排気主管又は排気枝管の通路面積を拡張して,排気圧力を下げることにより,排気ガスの還流率を低くできて,燃費の悪化及びスモークの発生を抑制できる一方,高負荷運転域又は高回転運転域では,排気主管又は排気枝管の通路面積を縮小して,排気圧力を上げることにより,排気ガスの還流率を高くできて,排気ガスの積極的なクリーン化を図るように自動制御することができる。
 なお,この第6の実施の形態のように,その開閉弁25を,ディーゼル機関1における運転域に合わせて開閉制御することは,前記第3の実施の形態における絞りオリフィス24′,又は第4の実施の形態における絞りオリフィス24″を開閉弁に構成した場合にも適用できることは勿論である。
 図8は,前記直列6気筒のディーゼル機関1において,その燃費と,排気ガス還流率との関係を示している。
 この図8において,一点鎖線で示す曲線Xは,排気ターボ過給機13におけるブロワー圧縮機13bの吸い込み側に吸気制御弁を設け,この吸気制御弁をディーゼル機関1における負荷又は回転数の増加につれて閉じ作動して,吸気マニホールド2における吸気圧力を高負荷運転域又は高回転運転域において低くすることにより,吸気マニホールド2への排気ガスの還流を達成する構成にした場合である。
 また,二点鎖線で示す曲線Yは,排気ターボ過給機13における排気タービン13aの出口に排気制御弁を設け,この排気制御弁をディーゼル機関1における負荷又は回転数の増加につれて閉じ作動して,両排気マニホールド3,4における排気圧力を高負荷運転域又は高回転運転域において高くすることにより,吸気マニホールド2への排気ガスの還流を達成する構成にした場合である。
 これに対して,図8に実線で示す曲線Zは,前記図7に示す第6の実施の形態のように,各気筒A~Fのうち第1気筒Aに対して設けた開閉弁25を,ディーゼル機関1における負荷又は回転数に応じて制御した場合である。
 この図8から明らかにように,本発明における前記第6の実施の形態によると,一点鎖線で示す曲線X又は二点鎖線で示す曲線Yのように,大幅な燃費の悪化を招来することなく,曲線Zのように,燃費の悪化を低減した状態で,排気ガスの還流率を,確実に向上できるのであった。
 ところで,前記した第1~第6の実施の形態においては,その排気ガス還流通路19には,前記ディーゼル機関1における急加減速又はアイドル運転等のときに,前記排気ガス還流通路19を閉塞するようにした還流カット弁21を設けるという構成にしていた。
 図9に示す第7の実施の形態は,前記第6の実施の形態における開閉弁を,前記した還流カット弁に兼用させるものである。
 すなわち,排気マニホールド3における各排気枝管5,6,7のうち一つの排気枝管,例えば,第1気筒Aの排気枝管5に,前記排気ガス還流通路19が接続される排気ガス取出しポート18を設けるとともに,アクチェータ26にて開閉作動される開閉弁25′を設ける。
 そして,前記開閉弁25′を,吸気圧力を入力とするコントローラ27により,前記ディーゼル機関1が低負荷運転域又は低回転運転域になったときに排気枝管5の通路面積を拡張し,前記ディーゼル機関1が高負荷運転域又は高回転運転域になったときに排気枝管5の通路面積を縮小するように作動することに加えて,前記ディーゼル機関1が急加減速又はアイドル運転等になったときに,前記開閉弁25′にて前記排気ガス取出しポート18,ひいては,排気ガス還流通路19を閉塞するという構成にしている。
 この構成によると,前記した自動制御ができるとともに,前記した還流カット弁21を省略することができる。
 なお,本発明は,前記した6気筒のディーゼル機関1に限らず,火花点火式の多気筒内燃機関に対しても適用できるのであり,また,過給機としては,前記した排気ターボ過給機に限らず,内燃機関にて回転駆動される機械式の過給機を使用できることはいうまでもない。

Claims (7)

  1.  複数個の気筒を備え,この各気筒への吸気経路に過給機を備え,更に,前記各気筒からの排気経路を備えて成る多気筒内燃機関において,
     前記排気経路から前記吸気経路のうち過給機の下流側に至る排気ガス還流通路と,この排気ガス還流通路に対して設けられ前記吸気経路への方向にのみ開くようにしたリード弁を備え,
     前記排気経路のうち前記排気ガス還流通路が接続される部分よりも下流側の部位に,前記各気筒のうち一部の気筒における排気圧力を残りの他の気筒における排気圧力より高くするようにした排気圧力上昇手段が設けられていることを特徴とする多気筒内燃機関における排気ガス還流装置。
  2.  前記請求項1の記載において,前記排気圧力上昇手段は,前記排気経路のうち一つの気筒からの排気ガスが流れる部分に設けられていることを特徴とする多気筒内燃機関における排気ガス還流装置。
  3.  前記請求項1の記載において,前記排気圧力上昇手段は,前記排気経路のうち複数の気筒からの排気ガスが合流して流れる部分に設けられていることを特徴とする多気筒内燃機関における排気ガス還流装置。
  4.  前記請求項1~3のいずれかの記載において,前記排気圧力上昇手段が,排気経路の通路面積を縮小する絞りオリフィスの構成であることを特徴とする多気筒内燃機関における排気ガス還流装置。
  5.  前記請求項1~3のいずれかの記載において,前記排気圧力上昇手段が,排気経路の通路面積を増減する開閉弁の構成であることを特徴とする多気筒内燃機関における排気ガス還流装置。
  6.  前記請求項5の記載において,前記開閉弁が,前記内燃機関における負荷又は回転数に応じて開閉制御される構成であることを特徴とする多気筒内燃機関における排気ガス還流装置。
  7.  前記請求項6の記載において,前記開閉弁が,前記排気ガス還流通路の閉塞を兼ねる構成であることを特徴とする多気筒内燃機関における排気ガス還流装置。
PCT/JP2009/060627 2008-06-11 2009-06-10 多気筒内燃機関における排気ガス還流装置 WO2009151080A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008153429A JP5280113B2 (ja) 2008-06-11 2008-06-11 多気筒内燃機関における排気ガス還流装置
JP2008-153429 2008-06-11

Publications (1)

Publication Number Publication Date
WO2009151080A1 true WO2009151080A1 (ja) 2009-12-17

Family

ID=41416786

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060627 WO2009151080A1 (ja) 2008-06-11 2009-06-10 多気筒内燃機関における排気ガス還流装置

Country Status (2)

Country Link
JP (1) JP5280113B2 (ja)
WO (1) WO2009151080A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006540A1 (en) * 2011-07-06 2013-01-10 Caterpillar Inc. Control system for engine with exhaust gas recirculation
AT511604B1 (de) * 2011-10-06 2013-01-15 Avl List Gmbh Brennkraftmaschine mit einem einlassstrang

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6235378B2 (ja) * 2014-02-28 2017-11-22 三菱重工業株式会社 過給式内燃機関

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364123A (en) * 1976-11-19 1978-06-08 Nissan Motor Co Ltd Exhaust reflux controller for internal combustion engines
JP2001303936A (ja) * 2000-04-19 2001-10-31 Hino Motors Ltd 排気浄化装置
JP2002089377A (ja) * 2000-09-11 2002-03-27 Mitsubishi Motors Corp Egr装置
JP2004278433A (ja) * 2003-03-17 2004-10-07 Nissan Diesel Motor Co Ltd 過給機付きエンジン
JP2005147052A (ja) * 2003-11-18 2005-06-09 Nissan Diesel Motor Co Ltd 過給機付エンジンの排気還流装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000249004A (ja) * 1999-03-02 2000-09-12 Isuzu Motors Ltd リード弁を備えたegr装置
FR2856747B1 (fr) * 2003-06-25 2005-09-23 Valeo Thermique Moteur Sa Module de refroidissement de l'air de suralimentation et des gaz d'echappement recircules d'un moteur a combustion interne de vehicule automobile.
US8739520B2 (en) * 2004-10-07 2014-06-03 Behr Gmbh & Co. Kg Air-cooled exhaust gas heat exchanger, in particular exhaust gas cooler for motor vehicles
SE528270C2 (sv) * 2005-02-02 2006-10-10 Scania Cv Ab Arrangemang för återcirkulation av avgaser hos en överladdad förbränningsmotor i ett fordon
SE530325C2 (sv) * 2006-09-29 2008-05-06 Scania Cv Ab Kylararrangemang

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364123A (en) * 1976-11-19 1978-06-08 Nissan Motor Co Ltd Exhaust reflux controller for internal combustion engines
JP2001303936A (ja) * 2000-04-19 2001-10-31 Hino Motors Ltd 排気浄化装置
JP2002089377A (ja) * 2000-09-11 2002-03-27 Mitsubishi Motors Corp Egr装置
JP2004278433A (ja) * 2003-03-17 2004-10-07 Nissan Diesel Motor Co Ltd 過給機付きエンジン
JP2005147052A (ja) * 2003-11-18 2005-06-09 Nissan Diesel Motor Co Ltd 過給機付エンジンの排気還流装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013006540A1 (en) * 2011-07-06 2013-01-10 Caterpillar Inc. Control system for engine with exhaust gas recirculation
AT511604B1 (de) * 2011-10-06 2013-01-15 Avl List Gmbh Brennkraftmaschine mit einem einlassstrang
AT511604A4 (de) * 2011-10-06 2013-01-15 Avl List Gmbh Brennkraftmaschine mit einem einlassstrang

Also Published As

Publication number Publication date
JP2009299540A (ja) 2009-12-24
JP5280113B2 (ja) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5527486B2 (ja) 内燃機関の換気制御装置
JP4648941B2 (ja) 2つの排気ガスターボチャージャを有する内燃機関
US7080635B2 (en) Intake and exhaust device for multi-cylinder engine
US7584748B2 (en) Exhaust gas recirculation system for an internal combustion engine
US7448368B2 (en) Exhaust gas recirculation system for an internal combustion engine
WO2007066833A1 (ja) 内燃機関の排気浄化システム
US9835116B2 (en) Internal combustion engine for a motor vehicle, and method for operating such an internal combustion engine
JP2011069305A (ja) 内燃機関及びその制御方法
JP2013108479A (ja) ディーゼルエンジン
WO2009151080A1 (ja) 多気筒内燃機関における排気ガス還流装置
JPH08100661A (ja) 吸気通路内蓄積オイルの排出構造
JP2007127070A (ja) 過給機付内燃機関
JP2008261294A (ja) 過給機付き内燃機関の制御装置
JP6675781B2 (ja) 過給エンジン
JP5168268B2 (ja) 内燃機関の排気還流装置
JP2006249949A (ja) 内燃機関の排気還流装置
US20210310445A1 (en) Evaporated fuel treatment device for engine
JP2005054620A (ja) 過給機付内燃機関
JP2018184870A (ja) エンジンの制御装置
JP5670170B2 (ja) 過給式多気筒エンジン
JP4499961B2 (ja) 多気筒過給機関
JP2018184873A (ja) エンジンの制御装置
JP5488124B2 (ja) 内燃機関の制御装置
JP2010151101A (ja) 過給機付内燃機関
JP6332210B2 (ja) エンジンの過給装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762510

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09762510

Country of ref document: EP

Kind code of ref document: A1