WO2009150988A1 - 内燃機関の排気浄化装置 - Google Patents

内燃機関の排気浄化装置 Download PDF

Info

Publication number
WO2009150988A1
WO2009150988A1 PCT/JP2009/060226 JP2009060226W WO2009150988A1 WO 2009150988 A1 WO2009150988 A1 WO 2009150988A1 JP 2009060226 W JP2009060226 W JP 2009060226W WO 2009150988 A1 WO2009150988 A1 WO 2009150988A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust
temperature
internal combustion
combustion engine
Prior art date
Application number
PCT/JP2009/060226
Other languages
English (en)
French (fr)
Inventor
広田 信也
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to EP09762418A priority Critical patent/EP2314836A4/en
Priority to CN2009801221066A priority patent/CN102066707A/zh
Priority to US12/997,280 priority patent/US20110113763A1/en
Publication of WO2009150988A1 publication Critical patent/WO2009150988A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2006Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating
    • F01N3/2033Periodically heating or cooling catalytic reactors, e.g. at cold starting or overheating using a fuel burner or introducing fuel into exhaust duct
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9459Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
    • B01D53/9477Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/944Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/16Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being an electric heater, i.e. a resistance heater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/02Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/03Adding substances to exhaust gases the substance being hydrocarbons, e.g. engine fuel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an exhaust purification device for an internal combustion engine.
  • the reducing agent hardly reacts because the temperature of the oxidation catalyst is low. Therefore, the oxidation catalyst is heated with a heater or the like. However, since the exhaust gas passes through the oxidation catalyst, the heat generated by the heater or the like is taken away by the exhaust gas, so that the temperature increase of the oxidation catalyst becomes slow. On the other hand, in order to generate more heat than the heat taken away by the exhaust, it is necessary to increase the size of the oxidation catalyst or increase the power consumption of the heater or the like.
  • the present invention has been made in view of the above problems, and in an exhaust gas purification apparatus for an internal combustion engine, the temperature of the catalyst provided on the downstream side is increased by rapidly increasing the temperature of the catalyst provided on the upstream side. It aims at providing the technique which can raise rapidly.
  • an exhaust gas purification apparatus for an internal combustion engine according to the present invention employs the following means. That is, the exhaust gas purification apparatus for an internal combustion engine according to the present invention is An exhaust purification catalyst provided in an exhaust passage of the internal combustion engine for purifying exhaust; A plurality of catalysts provided on the upstream side of the exhaust purification catalyst and having oxidation ability; A fuel supply device that supplies fuel to one of the most upstream catalysts among the plurality of catalysts having oxidation ability; A heating device for heating the one catalyst; With The plurality of catalysts having oxidation ability are provided in series in the exhaust flow direction in the exhaust passage, and the cross-sectional area of the cut surface perpendicular to the central axis of the exhaust passage is made smaller in the upstream side catalyst.
  • the catalyst on the downstream side includes the gas passing through the inside of the catalyst provided on the upstream side and the catalyst provided on the upstream side. Gas that passes outside flows in.
  • the gas that has passed through the inside of the catalyst provided on the upstream side has a high temperature due to the reaction of fuel with the catalyst. Further, this gas contains fuel that has not yet reacted.
  • oxygen is consumed inside the catalyst provided on the upstream side, the oxygen concentration of the gas flowing out from the catalyst is lowered. Therefore, in the gas that has passed through the inside of the upstream catalyst, the amount of fuel that can be reacted with the downstream catalyst is reduced.
  • the gas that has passed through the outside of the catalyst provided on the upstream side contains a large amount of oxygen.
  • the temperature of the one catalyst since the volume of the one catalyst is small, the temperature rises quickly by the heating device. And if the temperature of one catalyst is raised with a heating apparatus, a fuel can be made to react with this one catalyst. As a result, the temperature of the exhaust gas flowing out from the one catalyst rises, so that the temperature of the catalyst provided on the downstream side of the one catalyst also rises. That is, in the downstream catalyst, the temperature rapidly rises due to heat given from the upstream catalyst and heat generated in the downstream catalyst. In this way, it is possible to raise the temperature of the downstream catalyst by sequentially increasing the temperature of the plurality of catalysts. And since many heat
  • the exhaust purification catalyst includes a selective reduction type NOx catalyst that uses urea or ammonia as a reducing agent, An injection device that injects the reducing agent toward the exhaust gas flowing out from the other catalyst provided in the most downstream among the plurality of catalysts having the oxidation ability can be provided.
  • the temperature of the other catalyst provided in the most downstream can be quickly raised, and the other catalyst becomes high temperature.
  • the temperature of the exhaust gas flowing out from the other catalyst also becomes high, evaporation of the reducing agent can be promoted by injecting the reducing agent toward the exhaust gas flowing out from the other catalyst.
  • the reducing agent can be dispersed over a wide range in the exhaust.
  • Other catalysts may have a smaller cross-sectional area than the exhaust passage.
  • the predetermined value can be a temperature at which the reducing agent can be evaporated or a temperature at which the reducing agent can be effectively dispersed. That is, even if the reducing agent is injected when the temperature of the exhaust gas flowing out from the other catalyst is low, not only evaporation or dispersion of the reducing agent can be expected, but there is also a possibility that the reducing agent adheres to the exhaust purification catalyst. Therefore, the reducing agent is injected when the temperature of the exhaust gas flowing out from the other catalyst is equal to or higher than a predetermined value.
  • fuel before starting the internal combustion engine, fuel can be supplied from the fuel supply device to the one catalyst and the one catalyst can be heated by the heating device.
  • the temperature of one catalyst is raised before the internal combustion engine is started.
  • the internal combustion engine may be started after raising the temperature of one catalyst to a specified temperature.
  • the temperature of the catalyst downstream of the one catalyst can be quickly raised after the start of the internal combustion engine.
  • the fuel supply amount from the fuel supply device can be increased according to the elapsed time.
  • the amount of oxidizable fuel in the plurality of catalysts having the oxidation ability increases. If the fuel supply amount is increased accordingly, the amount of heat generated by the plurality of catalysts having oxidation ability can be increased, so that the temperature of the exhaust purification catalyst can be quickly raised. Further, the reducing agent can be supplied to the exhaust purification catalyst at an early stage.
  • means for measuring or estimating the temperature of the exhaust purification catalyst is provided, and when the temperature of the exhaust purification catalyst rises to a specified temperature, the supply of fuel from the fuel supply device to the one catalyst And heating of the one catalyst by the heating device can be stopped.
  • the reducing agent can be reacted with the exhaust purification catalyst, it is not necessary to raise the temperature of the catalyst having oxidation ability. If the fuel supply or heating by the heating device is stopped, the fuel consumption can be improved. Moreover, overheating of the catalyst can be suppressed.
  • the amount of fuel supplied from the fuel supply device can be limited when the amount of exhaust gas exceeds a specified amount when fuel is supplied from the fuel supply device.
  • the prescribed amount may be an amount that may cause the fuel supplied by the fuel supply device to adhere to the exhaust purification catalyst. That is, when the amount of exhaust gas increases, the time for the fuel to pass through a plurality of catalysts having oxidation ability is shortened, so that the fuel is hardly oxidized by the catalyst. In other words, the amount of fuel that is not oxidized by the plurality of catalysts having oxidation ability is increased. Thus, if the fuel that has passed through the catalyst having oxidation ability adheres to the exhaust purification catalyst, the purification ability of the exhaust purification catalyst may be reduced. On the other hand, it is possible to suppress the fuel from adhering to the exhaust purification catalyst by limiting the fuel supply amount.
  • the amount of fuel supply may be reduced in accordance with the amount of exhaust.
  • the fuel supply amount may be continuously decreased according to the amount of exhaust, or may be decreased stepwise. Further, the supply of fuel from the fuel supply device may be stopped when the amount of exhaust gas exceeds a specified amount.
  • the temperature of the catalyst provided on the downstream side can be quickly increased by rapidly increasing the temperature of the catalyst provided on the upstream side.
  • FIG. 1 It is a figure which shows schematic structure of the internal combustion engine which applies the exhaust gas purification apparatus of the internal combustion engine which concerns on an Example, and its exhaust system. It is a block diagram of a temperature rising apparatus. It is the flowchart which showed the flow of temperature rising control of the NOx catalyst at the time of engine starting which relates to the execution example. It is the flowchart which showed the flow of temperature increase control of the NOx catalyst after the engine start which relates to the execution example.
  • FIG. 1 is a diagram showing a schematic configuration of an internal combustion engine to which the exhaust gas purification apparatus for an internal combustion engine according to this embodiment is applied and its exhaust system.
  • the internal combustion engine 1 shown in FIG. 1 is a water-cooled four-cycle diesel engine.
  • the exhaust passage 2 is connected to the internal combustion engine 1.
  • a temperature raising device 3 and a selective reduction type NOx catalyst 4 (hereinafter referred to as NOx catalyst 4) are provided in order from the upstream side.
  • the NOx catalyst 4 selectively reduces NOx in the exhaust by supplying urea or ammonia as a reducing agent.
  • the NOx catalyst 4 corresponds to the exhaust purification catalyst in the present invention.
  • FIG. 2 is a configuration diagram of the temperature raising device 3.
  • the temperature raising device 3 is provided with four oxidation catalysts of a first catalyst 31, a second catalyst 32, a third catalyst 33, and a fourth catalyst 34 at a distance from each other in order from the upstream side.
  • at least two oxidation catalysts may be provided. Further, these catalysts only have to have an oxidizing ability, and may be a three-way catalyst or an occlusion reduction type NOx catalyst.
  • These four oxidation catalysts each have a cylindrical shape, and the central axis of each catalyst is located on the central axis of the exhaust passage 2. The cross-sectional area when cut along a plane orthogonal to the central axis of the exhaust passage 2 is smaller as the upstream catalyst is smaller.
  • the cross-sectional area of the first catalyst 31 is the smallest, and the cross-sectional area of the fourth catalyst 34 is the largest.
  • the cross-sectional area of the fourth catalyst 34 is smaller than the cross-sectional area of the exhaust passage 2.
  • the downstream oxidation catalyst has a larger volume.
  • the second catalyst 32, the third catalyst 33, and the fourth catalyst 34 are formed with cylindrical guides 321, 331, and 341 that extend upstream from the outer periphery of each catalyst.
  • the guides 321, 331, and 341 extend to the upstream side from the downstream end of the catalyst provided immediately upstream of each catalyst.
  • the first catalyst 31, the second catalyst 32, the third catalyst 33, and the fourth catalyst 34 correspond to a plurality of catalysts having oxidation ability in the present invention.
  • a first injection valve 35 for injecting fuel is provided on the upstream side of the first catalyst 31.
  • the injection hole of the first injection valve 35 is directed to the center of the upstream end face of the first catalyst 31.
  • the first catalyst 31 is provided with a heater 36 for heating the first catalyst 31.
  • the heater 36 generates heat when power is supplied. That is, the first injection valve 35 is provided further upstream than the most upstream oxidation catalyst, and the heater 36 is attached to the most upstream oxidation catalyst.
  • the nozzle hole of the first injection valve 35 may be directed to a location heated by the heater 36.
  • the first catalyst 31 corresponds to one catalyst in the present invention.
  • the first injection valve 35 corresponds to the fuel supply device according to the present invention.
  • the heater 36 corresponds to the heating device in the present invention.
  • the exhaust passage 2 near the fourth catalyst 34 is provided with a second injection valve 37 for injecting a liquid containing urea or ammonia.
  • the liquid containing urea or ammonia works as a reducing agent in the NOx catalyst 4.
  • the injection hole of the second injection valve 37 is directed to the exhaust gas flowing out from the fourth catalyst 34.
  • the fourth catalyst 34 corresponds to another catalyst in the present invention.
  • the second injection valve 37 corresponds to the injection device in the present invention.
  • a first temperature sensor 38 for measuring the temperature of the exhaust is provided downstream of the fourth catalyst 34.
  • the temperature of the fourth catalyst 34 or the temperature of the exhaust gas flowing out from the fourth catalyst 34 is measured by the first temperature sensor 38.
  • the first temperature sensor 38 can also measure the temperature of the temperature raising device 3 or the temperature of the exhaust gas flowing into the NOx catalyst 4.
  • a second temperature sensor 13 that measures the temperature of the exhaust is provided in the exhaust passage 2 downstream of the NOx catalyst 4. This second temperature sensor 13 can also measure the temperature of the NOx catalyst 4.
  • the first temperature sensor 38 corresponds to a means for measuring or estimating the temperature of another catalyst in the present invention.
  • the second temperature sensor 13 corresponds to a means for measuring or estimating the temperature of the exhaust purification catalyst in the present invention.
  • crank angle sensor 11 for measuring the rotational speed of the internal combustion engine 1 is attached to the internal combustion engine 1.
  • the internal combustion engine 1 configured as described above is provided with an ECU 5 that is an electronic control unit for controlling the internal combustion engine 1.
  • the ECU 5 is a unit that controls the operation state of the internal combustion engine 1 in accordance with the operation conditions of the internal combustion engine 1 and the request of the driver.
  • the ECU 5 outputs an electric signal corresponding to the amount of depression of the accelerator pedal 14 by the driver to detect the engine load, and a switch 12 for starting the internal combustion engine 1. Are connected via electric wiring, and the output signals of these various sensors are input to the ECU 5. When the driver operates the switch 12, the ECU 5 starts the internal combustion engine 1.
  • a first injection valve 35 and a second injection valve 37 are connected to the ECU 5 through electric wiring, and these devices are controlled by the ECU 5.
  • the four oxidation catalysts 31, 32, 33, and 34 as in the present embodiment, most of the exhaust gas that has passed through the upstream oxidation catalyst flows into the downstream oxidation catalyst. That is, the gas flowing out from each oxidation catalyst flows inside the guide formed in the downstream oxidation catalyst and flows into the downstream oxidation catalyst. On the other hand, since there is a gap between the upstream oxidation catalyst and the downstream oxidation catalyst guide, a part of the exhaust gas that has passed outside the upstream oxidation catalyst flows into the downstream oxidation catalyst. .
  • the heater 36 when the heater 36 is energized and fuel is injected from the first injection valve 35, heat is generated by the reaction of the fuel in the first catalyst 31. Thereby, the temperature of exhaust gas rises.
  • the temperature of the second catalyst 32 rises.
  • the fuel that does not react with the first catalyst 31 or that has not been sufficiently reacted also flows.
  • oxygen reacts with the fuel in the first catalyst 31, so that there is little oxygen in the exhaust gas flowing out from the first catalyst.
  • part of the exhaust gas that has passed outside the first catalyst 31 also flows into the second catalyst 32.
  • the exhaust gas that has passed outside the first catalyst 31 contains a large amount of oxygen.
  • the fuel that flows out from the first catalyst 31 and the exhaust gas that contains a large amount of oxygen because it has passed outside the first catalyst 31 flow into the second catalyst 32. Therefore, also in the second catalyst 32, the fuel and oxygen react to generate heat. Thereby, the temperature of the exhaust gas further increases. Such a situation also occurs in the third catalyst 33 and the fourth catalyst 34.
  • the temperature of the exhaust gas rises with each oxidation catalyst.
  • the temperature of the downstream oxidation catalyst can be further increased.
  • the temperature of the exhaust gas reaching the NOx catalyst 4 is made higher than when one oxidation catalyst having the same volume as the combined volume of the four oxidation catalysts is provided and the same amount of fuel is supplied. Can do. That is, according to this embodiment, the temperature of the NOx catalyst 4 can be quickly raised with a small amount of fuel.
  • the reducing agent injected from the second injection valve 37 is injected toward the exhaust gas flowing out from the fourth catalyst 34, thereby promoting evaporation of the reducing agent or dispersing the reducing agent over a wide range. Or let me.
  • the temperature of the fourth catalyst 34 is increased by the heat generated by the three catalysts provided on the upstream side and the heat generated by the fourth catalyst 34. Therefore, the reducing agent can be quickly evaporated and dispersed by injecting the reducing agent toward the exhaust gas flowing out from the fourth catalyst 34.
  • the reducing agent may be injected from the second injection valve 37 only when the reducing agent is sufficiently evaporated and dispersed.
  • the reducing agent when the temperature of the exhaust gas flowing out from the fourth catalyst 34 is equal to or higher than the threshold value, the reducing agent may be injected assuming that the reducing agent is sufficiently evaporated and dispersed.
  • This threshold value is obtained in advance by experiments or the like.
  • the temperature of the NOx catalyst 4 when the temperature of the NOx catalyst 4 is lower than the lower limit value of the activation temperature, for example, when the internal combustion engine 1 is cold-started, the temperature of the NOx catalyst 4 is quickly increased. The following control is performed.
  • FIG. 3 is a flowchart showing a flow of temperature increase control of the NOx catalyst 4 at the time of engine start according to the present embodiment. This routine is executed when the internal combustion engine 1 is started. In this embodiment, even if the driver operates the switch 12 to start the internal combustion engine 1, the temperature of the first catalyst 31 is first increased without immediately starting the internal combustion engine 1.
  • step S101 the ECU 5 determines whether or not the temperature of the NOx catalyst 4 is lower than a lower limit value (for example, 150 ° C.) of the activation temperature. That is, it is determined whether or not the NOx catalyst 4 cannot reduce NOx. For example, when the temperature obtained by the second temperature sensor 13 is lower than a threshold value, the temperature of the NOx catalyst 4 is assumed to be lower than the lower limit value of the activation temperature.
  • a lower limit value for example, 150 ° C.
  • step S101 If an affirmative determination is made in step S101, the process proceeds to step S102, whereas if a negative determination is made, this routine is terminated.
  • this routine is ended, the internal combustion engine 1 is immediately started. Then, the NOx is purified by injecting the reducing agent from the second injection valve 37 without raising the temperature of the exhaust gas by the temperature raising device 3.
  • step S102 the ECU 5 starts energization of the heater 36 and fuel injection from the first injection valve 35. At this time, since the internal combustion engine 1 is not operating, there is no flow of exhaust gas. For this reason, since the heat generated in the first catalyst 31 is suppressed from being taken away by the exhaust, the temperature of the first catalyst 31 rises quickly.
  • step S103 the ECU 5 starts the internal combustion engine 1. That is, fuel is supplied into the combustion chamber of the internal combustion engine 1.
  • Step S102 may be executed to start the internal combustion engine 1 when the temperature of the first catalyst 31 reaches a specified temperature. Further, the internal combustion engine 1 may be started when a predetermined time has elapsed since the execution of step S101.
  • step S104 the ECU 5 executes energization control to the heater 36 and injection control of the first injection valve 35.
  • the heater 36 and the first injection valve 35 are controlled according to the engine speed, the engine load, and the elapsed time from the start of execution of this step. That is, the energization to the heater 36 is performed, the energization to the heater 36 is stopped, or the injection amount from the first injection valve 35 is adjusted.
  • the calorific value and temperature of each catalyst change according to the engine speed, the engine load, and the elapsed time from the start of this step, the calorific value is adjusted accordingly.
  • fuel injection from the first injection valve 35 is performed intermittently.
  • the fuel injection amount from the first injection valve 35 is increased by at least one of increasing the injection time or decreasing the injection interval.
  • the heater 36 is energized in accordance with the fuel injection from the first injection valve 35.
  • the energization time to the heater 36 may be lengthened as the fuel injection amount increases.
  • step S105 the ECU 5 determines whether or not the temperature of the NOx catalyst 4 is equal to or higher than the lower limit value of the activation temperature. That is, it is determined whether heating by the temperature raising device 3 is no longer necessary. If an affirmative determination is made in step S105, the process proceeds to step S106, whereas if a negative determination is made, the process returns to step S104.
  • step S106 the ECU 5 stops energization of the heater 36 and stops fuel injection from the first injection valve 35. That is, the rise of the exhaust temperature by the temperature raising device 3 is stopped. Thereafter, NOx is reduced by the NOx catalyst 4 by injecting a reducing agent from the second injection valve 37.
  • energization to the heater 36 may be stopped and fuel injection from the first injection valve 35 may be stopped when fuel is supplied to generate a necessary amount of heat.
  • the flow rate of exhaust gas increases, so that the fuel may pass through the oxidation catalyst. If the fuel passes through the oxidation catalyst, it may adhere to the NOx catalyst 4 and reduce the NOx purification ability. Therefore, when the engine speed becomes equal to or higher than the threshold value, or when the amount of exhaust becomes equal to or higher than the threshold value, energization to the heater 36 may be stopped and fuel injection from the first injection valve 35 may be stopped. Further, the fuel injection amount may be reduced. At this time, the energization amount to the heater 36 and the fuel injection amount from the first injection valve 35 may be adjusted according to the engine speed or the exhaust amount. That is, as the engine speed increases or the exhaust gas flow rate increases, the energization amount to the heater 36 may be reduced and the fuel injection amount from the first injection valve 35 may be reduced.
  • the temperature of the NOx catalyst 4 becomes equal to or higher than the lower limit value of the activation temperature, the temperature may become lower than the lower limit value of the activation temperature depending on the operation state of the internal combustion engine 1. In this case, energization to the heater 36 and fuel injection from the first injection valve 35 are performed again to raise the temperature of the NOx catalyst 4.
  • FIG. 4 is a flowchart showing a flow of temperature increase control of the NOx catalyst 4 after engine start according to the present embodiment. This routine is repeatedly executed every predetermined time. In addition, since there is only step S102 and step S103 with respect to the flow shown in FIG. 3, description is abbreviate
  • the temperature of the NOx catalyst 4 can be increased more quickly with less fuel by providing four oxidation catalysts having a larger cross-sectional area toward the downstream side. Further, since the temperature of the fourth catalyst 34 can be increased, evaporation and dispersion of the reducing agent can be promoted. That is, since the reducing agent can be uniformly supplied to the NOx catalyst 4 while rapidly raising the temperature of the NOx catalyst 4 to the lower limit value of the activation temperature, the NOx purification ability can be enhanced.
  • the central axes of the four oxidation catalysts are positioned on the central axis of the exhaust passage 2, but the central axes of these catalysts may be shifted from the central axis of the exhaust passage 2. Further, the central axes of the respective oxidation catalysts may not be on the same line. That is, any structure may be used as long as the exhaust gas that has passed through the inside of the upstream side oxidation catalyst and the exhaust gas that has passed through the outside flow into the downstream side oxidation catalyst. Further, the guides 321, 331, and 341 may not be provided.

Abstract

 内燃機関の排気浄化装置において、上流側に備わる触媒の温度を速やかに上昇させることにより、下流側に備わる触媒の温度を速やかに上昇させることができる技術を提供する。排気浄化触媒と、排気浄化触媒よりも上流側に備わり酸化能力を有する複数の触媒と、最上流に備わる一の触媒31へ燃料を供給する燃料供給装置35と、一の触媒31を加熱する加熱装置36と、を備え、酸化能力を有する複数の触媒を排気通路内において排気の流れ方向に直列に設け、排気通路の中心軸と直交する切断面による断面積を上流側の触媒ほど小さくする。

Description

内燃機関の排気浄化装置
 本発明は、内燃機関の排気浄化装置に関する。
 酸化触媒に還元剤を供給することで熱を発生させて排気の温度を上昇させることができる。これにより、下流側に備わる触媒の温度を上昇させる技術が知られている(例えば、特許文献1参照。)。
 ところで、内燃機関の冷間始動時には、酸化触媒の温度が低いために還元剤がほとんど反応しない。そのため、ヒータ等により酸化触媒を加熱することが行われる。しかし、排気が酸化触媒を通過することにより、ヒータ等で発生する熱が排気により奪われるため、酸化触媒の温度上昇が緩慢となる。これに対し、排気により奪われる熱よりも多くの熱を発生させようとすると、酸化触媒を大型化したり、ヒータ等の消費電力量を増加させたりする必要があった。
特開2005-127257号公報 特開2004-162611号公報 特開平6-106068号公報 特開2003-120264号公報 特開2006-161629号公報 特開平9-504349号公報
 本発明は、上記したような問題点に鑑みてなされたものであり、内燃機関の排気浄化装置において、上流側に備わる触媒の温度を速やかに上昇させることにより、下流側に備わる触媒の温度を速やかに上昇させることができる技術を提供することを目的とする。
 上記課題を達成するために本発明による内燃機関の排気浄化装置は、以下の手段を採用した。すなわち、本発明による内燃機関の排気浄化装置は、
 内燃機関の排気通路に設けられ排気を浄化する排気浄化触媒と、
 前記排気浄化触媒よりも上流側に備わり酸化能力を有する複数の触媒と、
 前記酸化能力を有する複数の触媒の中で最上流に備わる一の触媒へ燃料を供給する燃料供給装置と、
 前記一の触媒を加熱する加熱装置と、
 を備え、
 前記酸化能力を有する複数の触媒を排気通路内において排気の流れ方向に直列に設け、排気通路の中心軸と直交する切断面による断面積を上流側の触媒ほど小さくすることを特徴とする。
 ここで、複数の酸化能力を有する触媒は、下流側の触媒ほど断面積が大きくなるため、下流側の触媒には、上流側に備わる触媒の内部を通過するガスと、上流側に備わる触媒の外部を通過するガスと、が流入する。上流側に備わる触媒の内部を通過したガスは、該触媒にて燃料が反応して温度が高くなっている。また、このガス中にはまだ反応していない燃料が含まれている。さらに、上流側に備わる触媒の内部で酸素が消費されるため、該触媒から流出するガスの酸素濃度は低下している。そのため、上流側の触媒の内部を通過したガスでは、下流側の触媒で反応させることのできる燃料が少なくなる。一方、上流側に備わる触媒の外部を通過したガス中には、酸素が多く含まれている。このガスを下流側の触媒に取り込むことにより、該下流側の触媒にて燃料の酸化を促進させることができる。
 ここで、一の触媒は容積が小さいため、加熱装置により速やかに温度が上昇する。そして、加熱装置により一の触媒の温度を上昇させれば、該一の触媒にて燃料を反応させることができる。これにより、一の触媒から流出する排気の温度が上昇するため、該一の触媒の下流側に備わる触媒の温度も上昇する。つまり、下流側の触媒では、上流側の触媒から与えられる熱と、下流側の触媒で発生する熱とで温度が急上昇する。このようにして、複数の触媒の温度を順次上昇させることで下流側の触媒を高温にすることができる。そして、酸化能力を有する複数の触媒にて多くの熱を発生させることができるため、最終的には排気浄化触媒の温度を上昇させることができる。
 本発明においては、前記排気浄化触媒は、尿素またはアンモニアを還元剤として利用する選択還元型NOx触媒を含んで構成され、
 前記酸化能力を有する複数の触媒の中で最下流に備わる他の触媒から流出する排気へ向けて前記還元剤を噴射する噴射装置を備えることができる。
 本発明では、最下流に備わる他の触媒の温度を速やかに上昇させることができ、且つ、該他の触媒は高温となる。これにより、他の触媒から流出する排気の温度も高温となるため、他の触媒から流出する排気へ向けて還元剤を噴射することにより、該還元剤の蒸発を促進させることができる。また、排気中の広い範囲へ還元剤を分散させることができる。なお、他の触媒は排気通路よりも断面積を小さくしても良い。
 本発明においては、前記他の触媒から流出する排気の温度を測定または推定する手段を備え、前記他の触媒から流出する排気の温度が所定値以上である場合に前記噴射装置から還元剤を噴射させることができる。
 所定値とは、還元剤を蒸発させることができる温度、または還元剤を効果的に分散させることができる温度とすることができる。つまり、他の触媒から流出する排気の温度が低いときに還元剤を噴射しても、還元剤の蒸発または分散は期待できないばかりか、排気浄化触媒に還元剤が付着する虞もある。そこで、他の触媒から流出する排気の温度が所定値以上の場合に還元剤を噴射させる。
 本発明においては、前記内燃機関の始動前に、前記燃料供給装置から前記一の触媒へ燃料を供給し且つ前記加熱装置により前記一の触媒を加熱することができる。
 つまり、内燃機関が始動する前から一の触媒の温度を上昇させる。逆に、一の触媒の温度を規定の温度まで上昇させてから内燃機関を始動するとしても良い。これにより、内燃機関の始動が開始されてから該一の触媒よりも下流の触媒の温度を速やかに上昇させることができる。これにより、排気浄化触媒において、排気の浄化が早期に可能となる。
 本発明においては、内燃機関の始動が開始された後は、前記燃料供給装置からの燃料供給量を経過時間に応じて増加させることができる。
 つまり、一の触媒の温度やその下流の酸化能力を有する触媒の温度が上昇するにしたがって、酸化能力を有する複数の触媒における酸化可能な燃料量が増加する。これに応じて燃料供給量を増加させれば酸化能力を有する複数の触媒で発生する熱量を増加させることができるため、排気浄化触媒の温度を速やかに上昇させることができる。また、排気浄化触媒への還元剤の供給が早期に可能となる。
 本発明においては、前記排気浄化触媒の温度を測定または推定する手段を備え、前記排気浄化触媒の温度が規定の温度まで上昇した場合に、前記燃料供給装置から前記一の触媒への燃料の供給を停止し且つ前記加熱装置による前記一の触媒の加熱を停止することができる。
 排気浄化触媒にて還元剤を反応させることができれば、酸化能力を有する触媒の温度を上昇させる必要はなくなる。燃料の供給や加熱装置による加熱を停止すれば、燃費を向上させることができる。また、触媒の過熱を抑制できる。
 本発明においては、前記燃料供給装置から燃料が供給されているときに排気の量が規定の量以上となった場合に、前記燃料供給装置からの燃料供給量を制限することができる。
 この規定の量とは、燃料供給装置により供給される燃料が、排気浄化触媒へ付着する虞のある量とすることができる。つまり、排気の量が多くなると、燃料が酸化能力を有する複数の触媒を通過する時間が短くなるため、該触媒にて燃料が酸化され難くなる。つまり、酸化能力を有する複数の触媒で酸化されないまますり抜ける燃料量が多くなる。このように、酸化能力を有する触媒をすり抜けた燃料が排気浄化触媒に付着すると、該排気浄化触媒の浄化能力を低下させる虞がある。これに対し、燃料供給量を制限することにより、排気浄化触媒に燃料が付着することを抑制できる。なお、排気の量に応じて燃料の供給量を減少させても良い。この場合、排気の量に応じて連続的に燃料供給量を減少させても良く、段階的に減少させても良い。また、排気の量が規定の量以上となったときに燃料供給装置からの燃料の供給を停止させても良い。
 本発明に係る内燃機関の排気浄化装置によれば、上流側に備わる触媒の温度を速やかに上昇させることにより、下流側に備わる触媒の温度を速やかに上昇させることができる。
実施例に係る内燃機関の排気浄化装置を適用する内燃機関とその排気系の概略構成を示す図である。 昇温装置の構成図である。 実施例に係る機関始動時のNOx触媒の昇温制御のフローを示したフローチャートである。 実施例に係る機関始動後のNOx触媒の昇温制御のフローを示したフローチャートである。
 以下、本発明に係る内燃機関の排気浄化装置の具体的な実施態様について図面に基づいて説明する。
 図1は、本実施例に係る内燃機関の排気浄化装置を適用する内燃機関とその排気系の概略構成を示す図である。図1に示す内燃機関1は、水冷式の4サイクル・ディーゼルエンジンである。
 内燃機関1には、排気通路2が接続されている。排気通路2の途中には、上流側から順に、昇温装置3と選択還元型NOx触媒4(以下、NOx触媒4という。)とが設けられている。NOx触媒4は、尿素またはアンモニアを還元剤として供給することにより、排気中のNOxを選択的に還元する。なお、本実施例においてはNOx触媒4が、本発明における排気浄化触媒に相当する。
 図2は、昇温装置3の構成図である。昇温装置3には、上流側から順に、第1触媒31、第2触媒32、第3触媒33、第4触媒34の4つの酸化触媒が夫々距離を置いて備わる。なお、酸化触媒は少なくとも2つ備えていれば良い。また、これらの触媒は酸化能力を有していれば良く、三元触媒または吸蔵還元型NOx触媒であっても良い。この4つの酸化触媒は夫々円柱形状であり、夫々の触媒の中心軸は、排気通路2の中心軸上に位置している。そして、排気通路2の中心軸に直交する面で切断したときの断面積は、上流側の触媒ほど小さい。つまり、第1触媒31の断面積が最も小さく、第4触媒34の断面積が最も大きい。第4触媒34の断面積は、排気通路2の流路断面積よりも小さい。また、下流側の酸化触媒ほど容積が大きい。そして、第2触媒32、第3触媒33、第4触媒34には、夫々の触媒の外周から上流側に延びる筒状のガイド321、331、341が形成されている。このガイド321、331、341は、夫々の触媒のすぐ上流側に備わる触媒の下流端よりも上流側まで延びている。なお、本実施例においては第1触媒31、第2触媒32、第3触媒33、及び第4触媒34が、本発明における酸化能力を有する複数の触媒に相当する。
 第1触媒31の上流側には、燃料を噴射する第1噴射弁35が設けられている。第1噴射弁35の噴孔は、第1触媒31の上流端面の中心に向けられている。また、第1触媒31には、該第1触媒31を加熱するためのヒータ36が設けられている。このヒータ36は、電力の供給により発熱する。つまり、第1噴射弁35は、最上流の酸化触媒よりもさらに上流に設けられ、ヒータ36は、最上流の酸化触媒に取り付けられている。第1噴射弁35の噴孔は、ヒータ36で加熱される箇所に向けても良い。なお、本実施例においては第1触媒31が、本発明における一の触媒に相当する。また、本実施例においては第1噴射弁35が、本発明における燃料供給装置に相当する。さらに、本実施例においてはヒータ36が、本発明における加熱装置に相当する。
 第4触媒34付近の排気通路2には、尿素またはアンモニアが含まれる液体を噴射する第2噴射弁37が設けられている。尿素またはアンモニアが含まれる液体は、NOx触媒4にて還元剤として働く。第2噴射弁37の噴孔は、第4触媒34から流出する排気に向けられている。なお、本実施例においては第4触媒34が、本発明における他の触媒に相当する。また、本実施例においては第2噴射弁37が、本発明における噴射装置に相当する。
 また、第4触媒34の下流には、排気の温度を測定する第1温度センサ38が設けられている。この第1温度センサ38により、第4触媒34の温度または第4触媒34から流出する排気の温度が測定される。なお、第1温度センサ38により、昇温装置3の温度またはNOx触媒4に流入する排気の温度を測定することもできる。また、NOx触媒4よりも下流の排気通路2には、排気の温度を測定する第2温度センサ13が設けられている。この第2温度センサ13により、NOx触媒4の温度を測定することもできる。なお、本実施例においては第1温度センサ38が、本発明における他の触媒の温度を測定または推定する手段に相当する。また、本実施例においては第2温度センサ13が、本発明における排気浄化触媒の温度を測定または推定する手段に相当する。
 さらに、内燃機関1には、該内燃機関1の回転数を測定するクランク角センサ11が取り付けられている。
 以上述べたように構成された内燃機関1には、該内燃機関1を制御するための電子制御ユニットであるECU5が併設されている。このECU5は、内燃機関1の運転条件や運転者の要求に応じて内燃機関1の運転状態を制御するユニットである。
 ECU5には、上記センサの他、運転者がアクセルペダル14を踏み込んだ量に応じた電気信号を出力し機関負荷を検出可能なアクセル開度センサ15、及び内燃機関1を始動させるためのスイッチ12が電気配線を介して接続され、これら各種センサの出力信号がECU5に入力されるようになっている。スイッチ12を運転者が操作することにより、ECU5は内燃機関1を始動させる。
 一方、ECU5には、第1噴射弁35及び第2噴射弁37が電気配線を介して接続されており、該ECU5によりこれらの機器が制御される。
 本実施例のように4つの酸化触媒31,32,33,34を配置することにより、上流側の酸化触媒を通過した排気のほとんどは、下流側の酸化触媒に流入する。つまり、夫々の酸化触媒から流出したガスは、下流側の酸化触媒に形成されているガイドの内側を流れて該下流側の酸化触媒へ流入する。一方、上流側の酸化触媒と、下流側の酸化触媒のガイドと、には隙間があるため、下流側の酸化触媒には、上流側の酸化触媒の外側を通過した排気の一部が流入する。
 ここで、ヒータ36に通電し且つ第1噴射弁35から燃料を噴射すると、第1触媒31で燃料が反応することにより熱が発生する。これにより、排気の温度が上昇する。そして、この排気が第2触媒32へ流入すると、該第2触媒32の温度が上昇する。この第2触媒32へ流入する排気中には、第1触媒31にて反応しないか、反応が不十分であった燃料も流入する。しかし、第1触媒31内を排気が通過するときに、該第1触媒31にて酸素が燃料と反応するため、該第1触媒から流出する排気中には酸素が少ない。一方、第2触媒32には、第1触媒31の外側を通過した排気の一部も流入する。この第1触媒31の外側を通過した排気中には酸素が多く含まれている。つまり、第2触媒32には、第1触媒31から流出する燃料と、第1触媒31の外側を通過したために酸素が多く含まれる排気と、が流入する。そのため、第2触媒32においても、燃料と酸素とが反応して熱が発生する。これにより、排気の温度がさらに上昇する。このようなことが、第3触媒33及び第4触媒34においても起こる。
 つまり、夫々の酸化触媒で酸素を取り込むことにより、夫々の酸化触媒にて排気の温度が上昇する。これにより、下流側の酸化触媒の温度もさらに上昇させることができる。例えば、4つの酸化触媒を合わせた容積と同じ容積の1つの酸化触媒を備えている場合であって同じ量の燃料を供給した場合よりも、NOx触媒4へ到達する排気の温度を高くすることができる。すなわち、本実施例によれば、NOx触媒4の温度を少量の燃料で速やかに上昇させることができる。
 また、本実施例では、第2噴射弁37から噴射する還元剤を第4触媒34から流出する排気へ向けて噴射することにより、還元剤の蒸発を促進させたり、還元剤を広い範囲に分散させたりしている。ここで、第4触媒34は、上流側に備わる3つの触媒で発生する熱と、該第4触媒34で発生する熱と、により温度が高くなる。そのため、この第4触媒34から流出する排気へ向けて還元剤を噴射することにより、還元剤を速やかに蒸発及び分散させることができる。なお、還元剤の蒸発及び分散が十分に行われる場合に限り、第2噴射弁37から還元剤を噴射しても良い。つまり、第4触媒34から流出する排気の温度が閾値以上の場合に、還元剤の蒸発及び分散が十分になされるとして、還元剤を噴射しても良い。この閾値は、予め実験等により求めておく。
 そして、本実施例では、内燃機関1の冷間始動時等であってNOx触媒4の温度が活性温度の下限値よりも低い場合には、該NOx触媒4の温度を速やかに上昇させるために以下の制御を行う。
 図3は、本実施例に係る機関始動時のNOx触媒4の昇温制御のフローを示したフローチャートである。本ルーチンは、内燃機関1の始動時に実行される。なお本実施例では、運転者が内燃機関1を始動させようとスイッチ12を操作しても、すぐには内燃機関1を始動させないで、まず第1触媒31の温度を上昇させている。
 ステップS101では、ECU5は、NOx触媒4の温度が活性温度の下限値(例えば150℃)よりも低いか否か判定する。つまり、NOx触媒4にてNOxの還元ができない状態であるか否か判定される。たとえば、第2温度センサ13により得られる温度が閾値よりも低いときに、NOx触媒4の温度が活性温度の下限値よりも低いとされる。
 ステップS101で肯定判定がなされた場合にはステップS102へ進み、一方否定判定がなされた場合には本ルーチンを終了させる。本ルーチンを終了させた場合には、直ちに内燃機関1を始動させる。そして、昇温装置3による排気の昇温を伴わずに第2噴射弁37から還元剤を噴射してNOxが浄化される。
 ステップS102では、ECU5は、ヒータ36への通電及び第1噴射弁35からの燃料噴射を開始する。このときには内燃機関1は作動していないため、排気の流れはない。そのため、第1触媒31で発生する熱が排気により奪われることが抑制されるので、該第1触媒31の温度は速やかに上昇する。
 ステップS103では、ECU5は、内燃機関1を始動させる。つまり、内燃機関1の燃焼室内へ燃料が供給される。ステップS102を実行して、第1触媒31の温度が規定の温度に達したときに内燃機関1を始動させても良い。また、ステップS101を実行してから規定の時間が経過したときに内燃機関1を始動させても良い。
 ステップS104では、ECU5は、ヒータ36への通電制御及び第1噴射弁35の噴射制御を実行する。本ステップでは、機関回転数、機関負荷、及び本ステップの実行開始からの経過時間によって、ヒータ36及び第1噴射弁35を制御している。つまり、ヒータ36への通電を行ったり、ヒータ36への通電を停止したり、第1噴射弁35からの噴射量を調節したりする。ここで、機関回転数、機関負荷、及び本ステップ開始からの経過時間に応じて各触媒における発熱量や温度が変化するため、これらに応じて発熱量を調節している。通常は、経過時間が長くなるほど、夫々の酸化触媒の活性度が高くなるため、第1噴射弁35からの噴射量を増加させる。ここで、第1噴射弁35から燃料噴射は間欠的に行う。そして、第1噴射弁35からの燃料噴射量の増加は、噴射時間を長くするか噴射間隔を短くするかの少なくとも一方により行う。そして、第1噴射弁35からの燃料噴射に合わせてヒータ36へ通電する。燃料噴射量が多くなるほど、ヒータ36への通電時間を長くしても良い。
 ステップS105では、ECU5は、NOx触媒4の温度が活性温度の下限値以上となっているか否か判定する。つまり、昇温装置3による加熱が必要なくなったか否か判定される。ステップS105で肯定判定がなされた場合にはステップS106へ進み、一方否定判定がなされた場合にはステップS104へ戻る。
 ステップS106では、ECU5は、ヒータ36への通電を停止し且つ第1噴射弁35からの燃料噴射を停止させる。つまり、昇温装置3による排気温度の上昇を停止させる。この後、第2噴射弁37から還元剤を噴射することにより、NOx触媒4にてNOxが還元される。
 なお、必要な熱量を発生させるだけの燃料を供給したときにヒータ36への通電を停止し且つ第1噴射弁35からの燃料噴射を停止させても良い。
 また、機関回転数が高いときに第1噴射弁35から燃料を噴射すると、排気の流量が多くなるために燃料が酸化触媒をすり抜ける虞がある。燃料が酸化触媒をすり抜けると、NOx触媒4に付着してNOxの浄化能力を低下させる虞がある。そこで、機関回転数が閾値以上となったとき、または排気の量が閾値以上となったときには、ヒータ36への通電を停止し且つ第1噴射弁35からの燃料噴射を停止させても良い。また、燃料噴射量を減量しても良い。このときに、ヒータ36への通電量及び第1噴射弁35からの燃料噴射量を、機関回転数または排気の量に応じて調節しても良い。つまり、機関回転数が高くなるほど、または排気の流量が多くなるほど、ヒータ36への通電量を少なくし且つ第1噴射弁35からの燃料噴射量を少なくしてもよい。
 なお、NOx触媒4の温度が活性温度の下限値以上となった後でも、内燃機関1の運転状態によっては、活性温度の下限値よりも温度が低くなることがある。この場合には、再度ヒータ36への通電及び第1噴射弁35からの燃料噴射を行ってNOx触媒4の温度を上昇させる。
 図4は、本実施例に係る機関始動後のNOx触媒4の昇温制御のフローを示したフローチャートである。本ルーチンは所定の時間ごとに繰り返し実行される。なお、図3に示したフローに対して、ステップS102及びステップS103がないだけなので説明は省略する。
 以上説明したように、本実施例によれば、下流側ほど断面積の大きな4つの酸化触媒を備えることにより、少ない燃料でより速やかにNOx触媒4の温度を上昇させることができる。また、第4触媒34の温度を高温にすることができるため、還元剤の蒸発及び分散を促進させることができる。すなわち、NOx触媒4の温度を活性温度の下限値まで速やかに上昇させつつ、該NOx触媒4に均一に還元剤を供給することができるため、NOxの浄化能力を高めることができる。
 なお、本実施例では4つの酸化触媒の夫々の中心軸が排気通路2の中心軸上に位置しているが、これらの触媒の中心軸は排気通路2の中心軸からずれていても良い。また、夫々の酸化触媒の中心軸は同一線上になくてもよい。つまり、上流側の酸化触媒の内側を通過した排気と外側を通過した排気とが下流側の酸化触媒へ流入する構造であれば良い。また、ガイド321、331、341はなくても良い。
1     内燃機関
2     排気通路
3     昇温装置
4     選択還元型NOx触媒
5     ECU
11   クランク角センサ
12   スイッチ
13   第2温度センサ
14   アクセルペダル
15   アクセル開度センサ
31   第1触媒
32   第2触媒
33   第3触媒
34   第4触媒
35   第1噴射弁
36   ヒータ
37   第2噴射弁
38   第1温度センサ

Claims (7)

  1.  内燃機関の排気通路に設けられ排気を浄化する排気浄化触媒と、
     前記排気浄化触媒よりも上流側に備わり酸化能力を有する複数の触媒と、
     前記酸化能力を有する複数の触媒の中で最上流に備わる一の触媒へ燃料を供給する燃料供給装置と、
     前記一の触媒を加熱する加熱装置と、
     を備え、
     前記酸化能力を有する複数の触媒を排気通路内において排気の流れ方向に直列に設け、排気通路の中心軸と直交する切断面による断面積を上流側の触媒ほど小さくすることを特徴とする内燃機関の排気浄化装置。
  2.  前記排気浄化触媒は、尿素またはアンモニアを還元剤として利用する選択還元型NOx触媒を含んで構成され、
     前記酸化能力を有する複数の触媒の中で最下流に備わる他の触媒から流出する排気へ向けて前記還元剤を噴射する噴射装置を備えることを特徴とする請求項1に記載の内燃機関の排気浄化装置。
  3.  前記他の触媒から流出する排気の温度を測定または推定する手段を備え、前記他の触媒から流出する排気の温度が所定値以上である場合に前記噴射装置から還元剤を噴射させることを特徴とする請求項2に記載の内燃機関の排気浄化装置。
  4.  前記内燃機関の始動前に、前記燃料供給装置から前記一の触媒へ燃料を供給し且つ前記加熱装置により前記一の触媒を加熱することを特徴とする請求項1から3の何れか1項に記載の内燃機関の排気浄化装置。
  5.  内燃機関の始動が開始された後は、前記燃料供給装置からの燃料供給量を経過時間に応じて増加させることを特徴とする請求項4に記載の内燃機関の排気浄化装置。
  6.  前記排気浄化触媒の温度を測定または推定する手段を備え、前記排気浄化触媒の温度が規定の温度まで上昇した場合に、前記燃料供給装置から前記一の触媒への燃料の供給を停止し且つ前記加熱装置による前記一の触媒の加熱を停止することを特徴とする請求項4または5に記載の内燃機関の排気浄化装置。
  7.  前記燃料供給装置から燃料が供給されているときに排気の量が規定の量以上となった場合に、前記燃料供給装置からの燃料供給量を制限することを特徴とする請求項4から6の何れか1項に記載の内燃機関の排気浄化装置。
PCT/JP2009/060226 2008-06-13 2009-06-04 内燃機関の排気浄化装置 WO2009150988A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP09762418A EP2314836A4 (en) 2008-06-13 2009-06-04 EXHAUST GAS CLEANING DEVICE FOR INTERNAL COMBUSTION ENGINE
CN2009801221066A CN102066707A (zh) 2008-06-13 2009-06-04 内燃机的排气净化装置
US12/997,280 US20110113763A1 (en) 2008-06-13 2009-06-04 Exhaust gas purification apparatus of an internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008154963A JP2009299580A (ja) 2008-06-13 2008-06-13 内燃機関の排気浄化装置
JP2008-154963 2008-06-13

Publications (1)

Publication Number Publication Date
WO2009150988A1 true WO2009150988A1 (ja) 2009-12-17

Family

ID=41416696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/060226 WO2009150988A1 (ja) 2008-06-13 2009-06-04 内燃機関の排気浄化装置

Country Status (5)

Country Link
US (1) US20110113763A1 (ja)
EP (1) EP2314836A4 (ja)
JP (1) JP2009299580A (ja)
CN (1) CN102066707A (ja)
WO (1) WO2009150988A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120159931A1 (en) * 2010-12-23 2012-06-28 Bosch Emission Systems Gmbh & Co. Kg Exhaust system and heating-up method
US20120304627A1 (en) * 2011-06-06 2012-12-06 GM Global Technology Operations LLC Electronically heated hydrocarbon (hc) adsorber

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644164B2 (ja) * 2010-04-15 2014-12-24 いすゞ自動車株式会社 排気ガス浄化装置
JP2012082708A (ja) * 2010-10-07 2012-04-26 Toyota Motor Corp 排気浄化装置および内燃機関
WO2020064579A1 (de) * 2018-09-27 2020-04-02 Vitesco Technologies GmbH Vorrichtung zur abgasnachbehandlung

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125930A (ja) * 1991-07-11 1993-05-21 Nippon Steel Corp エンジン排ガスの浄化装置及び浄化方法
JPH06106068A (ja) 1992-09-25 1994-04-19 Usui Internatl Ind Co Ltd 電気加熱式ハニカム体
JPH09504349A (ja) 1994-08-16 1997-04-28 キャタピラー インコーポレイテッド 直列組合せ型触媒コンバータ
JPH09222009A (ja) * 1996-02-15 1997-08-26 Nippon Soken Inc 内燃機関の排気微粒子浄化装置
JPH1026014A (ja) * 1996-07-10 1998-01-27 Toyota Motor Corp 内燃機関の排気浄化装置
JPH10159545A (ja) * 1996-11-28 1998-06-16 Denso Corp 内燃機関の排ガス浄化装置
JP2000345905A (ja) * 1999-06-04 2000-12-12 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003120264A (ja) 2001-10-09 2003-04-23 Mitsubishi Motors Corp 連続再生式トラップ
JP2004162611A (ja) 2002-11-13 2004-06-10 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2005127257A (ja) 2003-10-24 2005-05-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006161629A (ja) 2004-12-06 2006-06-22 Hino Motors Ltd 排気浄化装置
JP2006231248A (ja) * 2005-02-25 2006-09-07 Toyota Motor Corp 排気ガス浄化装置
JP2008101569A (ja) * 2006-10-20 2008-05-01 Suzuki Motor Corp 内燃機関の排気ガス浄化装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3602613B2 (ja) * 1995-07-04 2004-12-15 本田技研工業株式会社 内燃機関の排気ガス浄化装置
JPH09192453A (ja) * 1996-01-19 1997-07-29 Ngk Insulators Ltd 触媒コンバーター
JPH09280040A (ja) * 1996-04-10 1997-10-28 Showa Aircraft Ind Co Ltd 二輪車の排気ガス浄化触媒用補助担体
JPH1133411A (ja) * 1997-07-22 1999-02-09 Showa Aircraft Ind Co Ltd 触媒装置用補助担体の製造方法
BR0010664B1 (pt) * 1999-05-07 2008-11-18 dispositivo de purificaÇço de gÁs de descarga de motor de combustço interna.
JP2003155926A (ja) * 2001-11-21 2003-05-30 Cataler Corp 排気ガス浄化装置
US7240483B2 (en) * 2004-08-02 2007-07-10 Eaton Corporation Pre-combustors for internal combustion engines and systems and methods therefor
JP2007032472A (ja) * 2005-07-28 2007-02-08 Hitachi Ltd 尿素水を用いた排気処理装置
US7818960B2 (en) * 2007-03-14 2010-10-26 Gm Global Technology Operations, Inc. SCR cold start heating system for a diesel exhaust
US8104269B2 (en) * 2008-11-11 2012-01-31 GM Global Technology Operations LLC Catalytic combustor strategy using HC adsorber

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05125930A (ja) * 1991-07-11 1993-05-21 Nippon Steel Corp エンジン排ガスの浄化装置及び浄化方法
JPH06106068A (ja) 1992-09-25 1994-04-19 Usui Internatl Ind Co Ltd 電気加熱式ハニカム体
JPH09504349A (ja) 1994-08-16 1997-04-28 キャタピラー インコーポレイテッド 直列組合せ型触媒コンバータ
JPH09222009A (ja) * 1996-02-15 1997-08-26 Nippon Soken Inc 内燃機関の排気微粒子浄化装置
JPH1026014A (ja) * 1996-07-10 1998-01-27 Toyota Motor Corp 内燃機関の排気浄化装置
JPH10159545A (ja) * 1996-11-28 1998-06-16 Denso Corp 内燃機関の排ガス浄化装置
JP2000345905A (ja) * 1999-06-04 2000-12-12 Toyota Motor Corp 内燃機関の排気浄化装置
JP2003120264A (ja) 2001-10-09 2003-04-23 Mitsubishi Motors Corp 連続再生式トラップ
JP2004162611A (ja) 2002-11-13 2004-06-10 Mitsubishi Fuso Truck & Bus Corp 内燃機関の排気浄化装置
JP2005127257A (ja) 2003-10-24 2005-05-19 Toyota Motor Corp 内燃機関の排気浄化装置
JP2006161629A (ja) 2004-12-06 2006-06-22 Hino Motors Ltd 排気浄化装置
JP2006231248A (ja) * 2005-02-25 2006-09-07 Toyota Motor Corp 排気ガス浄化装置
JP2008101569A (ja) * 2006-10-20 2008-05-01 Suzuki Motor Corp 内燃機関の排気ガス浄化装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2314836A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120159931A1 (en) * 2010-12-23 2012-06-28 Bosch Emission Systems Gmbh & Co. Kg Exhaust system and heating-up method
US20120304627A1 (en) * 2011-06-06 2012-12-06 GM Global Technology Operations LLC Electronically heated hydrocarbon (hc) adsorber
US8973349B2 (en) * 2011-06-06 2015-03-10 GM Global Technology Operations LLC Electronically heated hydrocarbon (HC) adsorber

Also Published As

Publication number Publication date
EP2314836A4 (en) 2011-11-23
CN102066707A (zh) 2011-05-18
US20110113763A1 (en) 2011-05-19
JP2009299580A (ja) 2009-12-24
EP2314836A1 (en) 2011-04-27

Similar Documents

Publication Publication Date Title
JP5141779B2 (ja) 内燃機関の排気浄化装置
JP5293811B2 (ja) エンジンの排気浄化装置
US20100290957A1 (en) Exhaust gas purifying system
US10408103B1 (en) Method to power multiple electric heaters with a single power source
JP2008255899A (ja) アンモニア酸化触媒におけるn2o生成量推定方法および内燃機関の排気浄化システム
US20110083429A1 (en) Catalyst passing component determining apparatus and exhaust purification apparatus for internal combustion engine
WO2009150988A1 (ja) 内燃機関の排気浄化装置
US10190457B2 (en) Exhaust gas purification apparatus for an internal combustion engine
WO2008094389A1 (en) Dual path exhaust emission control system
EP2554811B1 (en) Exhaust gas purifying system of an internal combustion engine
JP2018162740A (ja) NOxセンサの異常検出装置
JP2016079852A (ja) 内燃機関の排気浄化装置の異常判定システム
JP2015031166A (ja) 内燃機関の排気浄化装置
EP1676987B1 (en) Exhaust emission purifying apparatus for an engine
JP2008223592A (ja) 内燃機関の排気浄化装置
EP2031201B1 (en) Exhaust emission purification system of internal combustion engine
JP2008038634A (ja) 内燃機関の排気浄化システム
JP4912189B2 (ja) エンジンの排気浄化装置
JP5672328B2 (ja) 内燃機関の排気浄化装置
WO2014087466A1 (ja) 内燃機関の排気浄化システム
JP2010185434A (ja) 内燃機関の排気浄化装置
JP2009243316A (ja) 排気ガス浄化装置及びその排気ガス浄化方法
JP5262640B2 (ja) 内燃機関の排気浄化装置
JP2011220302A (ja) 内燃機関の排気装置
US10883404B2 (en) Method and apparatus for controlling reductant injection into an exhaust gas feedstream of an internal combustion engine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980122106.6

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09762418

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 12997280

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009762418

Country of ref document: EP